Author's Department/Program
Physics
Language
English (en)
Date of Award
5-24-2012
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Chair and Committee
Jason Woods
Abstract
While high quality MR Images of lungs are difficult to obtain with conventional proton MRI due to the organ's low tissue density, the advent of techniques in noble gas polarization have enabled MR investigations of the lung's more abundant air space rather than its tissue. In addition to high-resolution images of lung ventilation, lung morphometry via gas diffusion NMR provides information about the size and shape of the microscopic airways that account for over 95% of the lung's airspace. Consequently, gas diffusion NMR provides an important new tool for investigating changes in lung microstructure during macroscopic changes in lung volume. Despite decades of research into the mechanisms of lung inflation and deflation, there is little consensus about whether macroscopic changes in lung volume occur due to changes in the size and/or shape of alveoli and alveolar ducts or by alveolar recruitment and derecruitment. In this dissertation lung morphometry is performed via 3He diffusion MRI in order to measure the average alveolar depth and alveolar duct radius at multiple levels of both inspiration and expiration in in vivo human subjects and in explanted human and canine lungs. Average alveolar volume, surface area, and the total number of alveoli at each lung volume are calculated from the 3He morphometric parameters. The results suggest that human lungs inflate/deflate primarily by recruitment/derecruitment of alveoli, and that individual alveolar ducts in both human and canine lungs increase in volume non-isotropically by accordion-like extension. The results further suggest that this change in alveolar duct volume is the primary mechanism of lung volume change in canine lungs but is secondary to alveolar recruitment/derecruitment in humans.
Recommended Citation
Hajari, Adam, "Studies of Lung Micromechanics via Hyperpolarized 3He Diffusion NMR" (2012). All Theses and Dissertations (ETDs). 694.
https://openscholarship.wustl.edu/etd/694
Comments
Permanent URL: http://dx.doi.org/10.7936/K7S75DFG