Author's Department/Program
Biology and Biomedical Sciences: Molecular Genetics and Genomics
Language
English (en)
Date of Award
1-1-2011
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Chair and Committee
Craig Pikaard
Abstract
Among eukaryotes, plants have the distinction of encoding multisubunit RNA polymerases used exclusively for RNA directed DNA Methylation: RdDM) in addition to Pol I, II, and III. In Arabidopsis thaliana, Pol IV is required for the biogenesis of 24nt siRNAs whereas Pol V transcription is needed for cytosine methylation of the DNA sequences corresponding to these siRNAs. The ancestry of Pol IV and V can be traced back to Pol II, and Pol II, IV and V still utilize multiple non-catalytic subunits encoded by the same genes. Genetic analysis of non-catalytic subunits that are highly similar reveals that these subunits are not necessarily redundant. For instance, NRPB9b but not its 97% similar paralog, NRPB9a is required for RdDM. Likewise, Pol IV and Pol V-specific 7th largest subunits are very similar yet have different involvements in RdDM. In some of the non-catalytic subunit mutants of Pol IV, 24nt siRNA accumulation is not dramatically reduced, yet RNA silencing is disrupted. This contrasts with Pol IV catalytic subunit mutants in which siRNA biogenesis and RdDM are coordinately disrupted. Taken together, these results suggest that Pol IV might possess functions in RdDM that are in addition to, and separable from siRNA biogenesis. Differences in Pol V subunit composition based on the use of alternative non-catalytic subunit variants might also have functional consequences for RdDM. The evidence suggests that alternative non-catalytic subunits in Pol IV and V are likely to influence interactions with other proteins needed for RdDM.
Recommended Citation
Tan, Ek Han, "Molecular Genetic Analysis of Non-Catalytic Pol IV and V Subunits" (2011). All Theses and Dissertations (ETDs). 648.
https://openscholarship.wustl.edu/etd/648
Comments
Permanent URL: http://dx.doi.org/10.7936/K7T151P9