Author's School

School of Engineering & Applied Science

Author's Department/Program

Biomedical Engineering

Language

English (en)

Date of Award

January 2009

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Chair and Committee

Yoram Rudy

Abstract

ABSTRACT OF THE DISSERTATION Contributions to the Methodology of Electrocardiographic Imaging: ECGI) and Application of ECGI to Study Mechanisms of Atrial Arrhythmia, Post Myocardial Infarction Electrophysiological Substrate, and Ventricular Tachycardia in Patients by Yong Wang Doctor of Philosophy in Biomedical Engineering Washington University in St. Louis, 2009 Professor Yoram Rudy, Chair Electrocardiographic Imaging: ECGI) is a noninvasive imaging modality for cardiac electrophysiology and arrhythmia. ECGI reconstructs epicardial potentials, electrograms and isochrones from body-surface electrocardiograms combined with heart-torso geometry from computed tomography: CT). The application of a new meshless method, the Method of Fundamental Solutions: MFS) is introduced to ECGI with the following major advantages: 1. Elimination of meshing and manual mesh optimization processes, thereby enhancing automation and speeding the ECGI procedure. 2. Elimination of mesh-induced artifacts. 3. Simpler implementation. These properties of MFS enhance the practical application of ECGI as a clinical diagnostic tool. The current ECGI mode of operation is offline with generation of epicardial potential maps delayed to data acquisition. A real time ECGI procedure is proposed, by which the epicardial potentials can be reconstructed while the body surface potential data are acquired: < 1msec/frame) during a clinical procedure. This development enables real-time monitoring, diagnosis, and interactive guidance of intervention for arrhythmia therapy. ECGI is applied to map noninvasively the electrophysiological substrate in eight post-MI patients during sinus rhythm: SR). Contrast-enhanced MRI: ceMRI) is conducted to determine anatomical scar. ECGI imaged regions of electrical scar corresponded closely in location, extent, and morphology to the anatomical scars. In three patients, late diastolic potentials are imaged in the scar epicardial border zone during SR. Scar-related ventricular tachycardia: VT) in two patients are imaged, showing the VT activation sequence in relation to the abnormal electrophysiological substrate. ECGI imaging the substrate in a beat-by-beat fashion could potentially help in noninvasive risk stratification for post-MI arrhythmias and facilitate substrate-based catheter ablation of these arrhythmias. ECGI is applied to eleven consecutive patients referred for VT catheter ablation procedure. ECGI is performed either before: 8 patients) or during: 3 patients) the ablation procedure. Blinded ECGI and invasive electrophysiology: EP) study results are compared. Over a wide range of VT types and locations, ECGI results are consistent with EP data regarding localization of the arrhythmia origin: including myocardial depth) and mechanism: focal, reentrant, fascicular). ECGI also provides mechanistic electrophysiological insights, relating arrhythmia patterns to the myocardial substrate. The study shows ECGI has unique potential clinical advantages, especially for hemodynamically intolerant VT or VT that is difficult to induce. Because it provides local cardiac information, ECGI may aid in better understanding of mechanisms of ventricular arrhythmia. Further prospective trials of ECGI with clinical endpoints are warranted. Many mechanisms for the initiation and perpetuation of atrial fibrillation: AF) have been demonstrated over the last several decades. The tools to study these mechanisms in humans have limitations, the most common being invasiveness of a mapping procedure. In this paper, we present simultaneous noninvasive biatrial epicardial activation sequences of AF in humans, obtained using the Electrocardiographic Imaging: ECGI) system, and analyzed in terms of mechanisms and complexity of activation patterns. We performed ECGI in 36 patients with a diagnosis of AF. To determine ECGI atrial accuracy, atrial pacing from different sites was performed in six patients: 37 pacing events), and ECGI was compared to registered CARTO images. Then, ECGI was performed on all 36 patients during AF and ECGI epicardial maps were analyzed for mechanisms and complexity. ECGI noninvasively imaged the low-amplitude signals of AF in a wide range of patients: 97% procedural success). The spatial accuracy in determining initiation sites as simulated by atrial pacing was ~ 6mm. ECGI imaged many activation patterns of AF, most commonly multiple wavelets: 92%), with pulmonary vein: 69%) and non-pulmonary vein: 62%) trigger sites. Rotor activity was seen rarely: 15%). AF complexity increased with longer clinical history of AF, though the degree of complexity of nonparoxysmal AF varied and overlapped. ECGI offers a way to identify unique epicardial activation patterns of AF in a patient-specific manner. The results are consistent with contemporary animal models of AF mechanisms and highlight the coexistence of a variety of mechanisms among patients.

Comments

Permanent URL: http://dx.doi.org/10.7936/K7QF8QV5

Share

COinS