Author's Department/Program
Biomedical Engineering
Language
English (en)
Date of Award
Spring 5-15-2014
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Chair and Committee
Mark A Anastasio
Abstract
Many new promising X-ray-based biomedical imaging technologies have emerged over the last two decades. Five different novel X-ray based imaging technologies are discussed in this dissertation: differential phase-contrast tomography (DPCT), grating-based phase-contrast tomography (GB-PCT), spectral-CT (K-edge imaging), cone-beam computed tomography (CBCT), and in-line X-ray phase contrast (XPC) tomosynthesis. For each imaging modality, one or more specific problems prevent them being effectively or efficiently employed in clinical applications have been discussed. Firstly, to mitigate the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods in DPCT, we analyze the numerical and statistical properties of two classes of discrete imaging models that form the basis for iterative image reconstruction. Secondly, to improve image quality in grating-based phase-contrast tomography, we incorporate 2nd order statistical properties of the object property sinograms, including correlations between them, into the formulation of an advanced multi-channel (MC) image reconstruction algorithm, which reconstructs three object properties simultaneously. We developed an advanced algorithm based on the proximal point algorithm and the augmented Lagrangian method to rapidly solve the MC reconstruction problem. Thirdly, to mitigate image artifacts that arise from reduced-view and/or noisy decomposed sinogram data in K-edge imaging, we exploited the inherent sparseness of typical K-edge objects and incorporated the statistical properties of the decomposed sinograms to formulate two penalized weighted least square problems with a total variation (TV) penalty and a weighted sum of a TV penalty and an l1-norm penalty with a wavelet sparsifying transform. We employed a fast iterative shrinkage/thresholding algorithm (FISTA) and splitting-based FISTA algorithm to solve these two PWLS problems. Fourthly, to enable advanced iterative algorithms to obtain better diagnostic images and accurate patient positioning information in image-guided radiation therapy for CBCT in a few minutes, two accelerated variants of the FISTA for PLS-based image reconstruction are proposed. The algorithm acceleration is obtained by replacing the original gradient-descent step by a sub-problem that is solved by use of the ordered subset concept (OS-SART). In addition, we also present efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units (GPUs). Finally, we employed our developed accelerated version of FISTA for dealing with the incomplete (and often noisy) data inherent to in-line XPC tomosynthesis which combines the concepts of tomosynthesis and in-line XPC imaging to utilize the advantages of both for biological imaging applications. We also investigate the depth resolution properties of XPC tomosynthesis and demonstrate that the z-resolution properties of XPC tomosynthesis is superior to that of conventional absorption-based tomosynthesis. To investigate all these proposed novel strategies and new algorithms in these different imaging modalities, we conducted computer simulation studies and real experimental data studies. The proposed reconstruction methods will facilitate the clinical or preclinical translation of these emerging imaging methods.
Recommended Citation
Xu, Jiaofeng, "Modeling and Development of Iterative Reconstruction Algorithms in Emerging X-ray Imaging Technologies" (2014). All Theses and Dissertations (ETDs). 1270.
https://openscholarship.wustl.edu/etd/1270
Comments
Permanent URL: http://dx.doi.org/10.7936/K7PC30C9