Author's Department/Program
Mechanical Engineering and Materials Science
Language
English (en)
Date of Award
January 2010
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Chair and Committee
David Peters
Abstract
Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils: trailing-edge flaps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and flight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced flow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.
Recommended Citation
Ahaus, Loren, "An Airloads Theory for Morphing Airfoils in Dynamic Stall with Experimental Correlation" (2010). All Theses and Dissertations (ETDs). 11.
https://openscholarship.wustl.edu/etd/11
Comments
Permanent URL: http://dx.doi.org/10.7936/K7513W92