Author's School

School of Engineering & Applied Science

Author's Department/Program

Mechanical Engineering and Materials Science

Language

English (en)

Date of Award

January 2010

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Chair and Committee

David Peters

Abstract

Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils: trailing-edge flaps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and flight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced flow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.

Comments

Permanent URL: http://dx.doi.org/10.7936/K7513W92

Share

COinS