Author's Department/Program
Mathematics
Language
English (en)
Date of Award
Spring 4-24-2013
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Chair and Committee
Xiang Tang
Abstract
Noncommutative torus algebra was studied in the early 80's as a fundamental example of noncommutative geometry. Connes calculated its cyclic and Hochschild cohomology. In this thesis, we study noncommutative toroidal orbifolds generated by actions of finite subgroups of S L(2,) on a noncommutative torus algebra.
In the first part, we calculate the Hochschild and cyclic homology of Γ for all finite subgroups Γ S L(2,). In the second part we analyse the cohomology of these algebras and compute the Chern-Connes pairing between the elements of and explicit cocycles discovered in our calculations. In the third part we discuss some partial results and conjectures about the corresponding smooth orbifolds.
Recommended Citation
Quddus, Safdar, "On the (Co)Homology of Non-Commutative Toroidal Orbifold" (2013). All Theses and Dissertations (ETDs). 1093.
https://openscholarship.wustl.edu/etd/1093
Comments
Permanent URL: http://dx.doi.org/10.7936/K7FJ2DVQ