Author's Department/Program
Biology and Biomedical Sciences: Biochemistry
Language
English (en)
Date of Award
Winter 1-1-2012
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Chair and Committee
Himadri B. Pakrasi
Abstract
Phycobilisomes are the large, membrane extrinsic light harvesting antenna of cyanobacteria. They function to absorb light energy and deliver it efficiently to the photosystems, thereby increasing photosynthetic light absorption. Wild type phycobilisomes in the model organism Synechocystis sp. PCC 6803: Synechocystis 6803) consist of a tricylindrical core from which six rods radiate. The colored phycobiliproteins are held together by colorless linker polypeptides.
Several phycobilisome truncation mutants have been generated in Synechocystis 6803. The first, CB, has truncated phycobilisome rods; the second, CK, has only the phycobilisome core; and the third, PAL, has no phycobilisomes at all. Together, these mutants construct a series of increasingly truncated phycobilisomes which are useful for studying the physiology of antenna truncation in cyanobacteria.
In this dissertation, the physiological effects of antenna truncation are examined from three perspectives. First, the effect of partial and complete phycobilisome removal on the expression and activity of photosystem II is examined using a variety of assays that center around fluorescence and oxygen evolution. Second, the overall effects of antenna truncation on thylakoid membrane spacing and structure is explored using electron microscopy and small angle neutron scattering. Finally, the effects of antenna truncation on culture-wide biomass productivity are examined in a variety of setting, including a bench-scale photobioreactor. Together, these studies represent a comprehensive examination of the physiological effects of antenna truncation on Synechocystis 6803.
Recommended Citation
Page, Lawrence Edward, "The Physiological Effects of Phycobilisome Antenna Modification on the Cyanobacterium Synechocystis sp. PCC 6803" (2012). All Theses and Dissertations (ETDs). 1015.
https://openscholarship.wustl.edu/etd/1015
Comments
Permanent URL: http://dx.doi.org/10.7936/K79Z92WK