Author's Department/Program
Mechanical Engineering and Materials Science
Language
English (en)
Date of Award
Winter 1-1-2012
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Chair and Committee
Philip V Bayly
Abstract
Traumatic brain injury is an important medical problem affecting millions of people. Mathematical models of brain biomechanics are being developed to simulate the mechanics of brain injury and to design protective devices. However, because of a lack of quantitative data on brain-skull boundary conditions and deformations, the predictions of mathematical models remain uncertain. The objectives of this dissertation are to develop methods and obtain experimental data that will be used to parameterize and validate models of traumatic brain injury. To that end, this dissertation first addresses the brain-skull boundary conditions by measuring human brain motion using tagged magnetic resonance imaging. Magnetic resonance elastography was performed in the ferret brain to measure its mechanical properties in vivo. Brain tissue is not only heterogeneous, but may also be anisotropic. To characterize tissue anisotropy, an experimental procedure combining both shear testing and indentation was developed and applied to white matter and gray matter. These measurements of brain-skull interactions and mechanical properties of the brain will be valuable in the development and validation of finite element simulations of brain biomechanics.
Recommended Citation
Feng, Yuan, "Dynamic Deformation and Mechanical Properties of Brain Tissue" (2012). All Theses and Dissertations (ETDs). 1003.
https://openscholarship.wustl.edu/etd/1003
Comments
Permanent URL: http://dx.doi.org/10.7936/K7DB7ZW9