Abstract
During the course of evolution, proteins have evolved to perform exquisite functions including structural support, signal transduction, actuation, sensing, catalysis, trafficking, gating, light-harvesting, charge transfer, molecular recognition, self-assembly, self-organization, or combinations of two or more of these functions. A precise control and manipulation of the structure and function of proteins is conceivable with the advent of nanotechnology, which has facilitated the integration of nanomaterials with functional biomolecules to realize bio-nano hybrids with synergistically enhanced functionalities.
At the genesis of bionanotechnology, a paucity in the fundamental understanding of the bio-nano interfaces is a grave impediment to the progress of the field. In this study, we seek to understand the structure and biophysicochemical properties of bio-nano hybrids by a careful consideration of the interactions between these distinct material systems. We hypothesize that the functional properties of the bio-nano hybrids depend on the physical (size, shape, curvature) and chemical (surface charge and functional groups) characteristics of the nanomaterials. We have employed model structural and functional proteins interfaced with nanostructures to understand the influence of biomolecular structure at the interface on the functionality of the bio-nano hybrids. Overall, we establish design rules for the rational integration of functional nanostructures with proteins to realize bio-nano hybrids for biosensing, biocatalysis, nanomedicine, biomimetic composites and biorobotics.
Committee Chair
Srikanth Singamaneni
Committee Members
Shantanu Chakrabartty, Julio M. D'Arcy, Young-Shin Jun, Jeremiah J. Morrissey,
Degree
Doctor of Philosophy (PhD)
Author's Department
Mechanical Engineering & Materials Science
Document Type
Dissertation
Date of Award
Winter 12-15-2017
Language
English (en)
DOI
https://doi.org/10.7936/K7KW5FG1
Recommended Citation
Tadepalli, Sirimuvva, "Functional Bio-Nano Hybrids Through a Precise Control of Interfacial Interactions at the Nanoscale" (2017). McKelvey School of Engineering Theses & Dissertations. 298.
The definitive version is available at https://doi.org/10.7936/K7KW5FG1
Included in
Biomedical Engineering and Bioengineering Commons, Materials Science and Engineering Commons, Mechanics of Materials Commons, Nanoscience and Nanotechnology Commons
Comments
Permanent URL: https://doi.org/10.7936/K7KW5FG1