Date of Award
Summer 8-15-2013
Degree Name
Doctor of Philosophy (PhD)
Degree Type
Dissertation
Abstract
Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles.
Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture.
In the third chapter of the dissertation, we demonstrate that the use of PEG cell culture substrates can improve efficiency of direct reprogramming from fibroblasts to cardiomyocytes for cell transplantation. Standard tissue culture plastic adsorbs proteins from the cell media, increasing experimental variability via non-specific signaling. Because of its protein resistant properties, PEG provides cells with highly specific signals. In addition to improving the efficiency, we found that presentation of RGD peptides stimulated proliferation during reprogramming. Combined, the improvements enabled us to approximately double the number of cardiomyocytes produced by the protocol.
In Chapter 4, we explore the effects of 3D culture on the direct reprogramming protocol described in Chapter 3. We demonstrate that the variables involved in 3D culture, including scaffold material, diffusion, cellular remodeling, and scaffold topography, have significant effects on reprogramming efficiency. This chapter provides the groundwork for future studies developing 3D microenvironments for efficient and scalable reprogramming to cardiomyocytes.
Language
English (en)
Chair
Donald Elbert
Committee Members
Igor Efimov, Guy Genin, Robert Mecham, Jeanne Nerbonne, Shelly Sakiyama-Elbert
Comments
Permanent URL: https://doi.org/10.7936/K7765CRS