Quantum Nanophotonics: Creating Strong Photon-photon Interaction and Quantum Interference with Applications in Physics and Engineering
Abstract
The field of quantum nanophotonics has recently been attracting a great deal of interest. In quantum nanophotonics, fermionic degrees of freedom such as atoms or quantum dots are coupled to traditional nanophotonic systems. As the fermionic components can only absorb a finite number of photons at a time, the interplay between the fermionic and photonic degrees of freedom can fundamentally alter the transport properties of photons and their correlations.
In many conventional photonic systems, however, atom-photon interactions are too weak to realize efficient devices at ultra-low power levels. We show that in properly designed quantum nanophotonic geometries, we can create strong photon-photon interaction and quantum interference to realize efficient devices operating down to the single-photon power level. In particular, quantum nanophotonic geometry allows us to establish quantum interference to provide efficient single-photon frequency conversion and long-term photonic storage. Moreover, we use strong photon-photon interactions in cavity-QED to produce strongly antibunched streams of photons with shot noise below the classical limit which can allow fundamentally secret communication over large distances.
Committee Chair
Jung-Tsung Shen
Committee Members
Alexander Seidel, Lan Yang
Degree
Doctor of Philosophy (PhD)
Author's Department
Electrical & Systems Engineering
Document Type
Dissertation
Date of Award
Spring 5-15-2014
Language
English (en)
DOI
https://doi.org/10.7936/K7FX77C2
Recommended Citation
Bradford, Matthew, "Quantum Nanophotonics: Creating Strong Photon-photon Interaction and Quantum Interference with Applications in Physics and Engineering" (2014). McKelvey School of Engineering Theses & Dissertations. 21.
The definitive version is available at https://doi.org/10.7936/K7FX77C2
Comments
Permanent URL: https://doi.org/10.7936/K7FX77C2