Abstract

In this thesis, various turbulence models are used for simulating internal vortical flow, both turbulent and laminar, with large recirculation by considering the flow in a 2-D lid-driven square cavity and a 3-D lid driven cubic box. The accuracy of the newly developed Wray-Agarwal (WA) one equation turbulence model is compared against two well-known industry standard turbulence models; the Spalart-Allmaras (SA) and the Shear-Stress-Transport (SST) k-ω models. The simulations are performed by numerically solving the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with WA, SA and SST k-ω models and comparing the results with the available experimental data and Large Eddy Simulation (LES) results. 2-D numerical solutions are obtained at Reynolds numbers of 10,000, 20,000, 50,000, and 100,000. 3-D numerical solutions are obtained at Reynolds numbers of 3200 and 10,000. All numerical calculation are compared with other numerical results available in the literature. The open-source CFD code OpenFOAM is used to compute the flow field. Computational results clearly demonstrate that the Wray-Agarwal model outperforms in accuracy the Spalart-Allmaras and Shear-Stress-Transport k-ω models at all Reynolds numbers considered.


Committee Chair

Ramesh Agarwal

Committee Members

David Peters, Michael Wendl

Comments

Permanent URL: https://doi.org/10.7936/K7FT8J8S

Degree

Master of Science (MS)

Author's Department

Mechanical Engineering & Materials Science

Author's School

McKelvey School of Engineering

Document Type

Thesis

Date of Award

Summer 8-14-2015

Language

English (en)

Share

COinS