Author's School

Arts & Sciences

Author's Department

Biology

Document Type

Article

Publication Date

9-1997

Originally Published In

Frankel S, Sigel EA, Craig C, Elgin SC, Mooseker MS, Artavanis-Tsakonas S. An actin-related protein in Drosophila colocalizes with heterochromatin protein 1 in pericentric heterochromatin. J Cell Sci. 1997;110 ( Pt 17):1999–2012.

Abstract

The actin-related proteins have been identified by virtue of their sequence similarity to actin. While their structures are thought to be closely homologous to actin, they exhibit a far greater range of functional diversity. We have localized the Drosophila actin-related protein, Arp4, to the nucleus. It is most abundant during embryogenesis but is expressed at all developmental stages. Within the nucleus Arp4 is primarily localized to the centric heterochromatin. Polytene chromosome spreads indicate it is also present at much lower levels in numerous euchromatic bands. The only other protein in Drosophila reported to be primarily localized to centric heterochromatin in polytene nuclei is heterochromatin protein 1 (HP1), which genetic evidence has linked to heterochromatin-mediated gene silencing and alterations in chromatin structure. The relationship between Arp4 and heterochromatin protein 1 (HP1) was investigated by labeling embryos and larval tissues with antibodies to Arp4 and HP1. Arp4 and HP1 exhibit almost superimposable heterochromatin localization patterns, remain associated with the heterochromatin throughout prepupal development, and exhibit similar changes in localization during the cell cycle. Polytene chromosome spreads indicate that the set of euchromatic bands labeled by each antibody overlap but are not identical. Arp4 and HP1 in parallel undergo several shifts in their nuclear localization patterns during embryogenesis, shifts that correlate with developmental changes in nuclear functions. The significance of their colocalization was further tested by examining nuclei that express mutant forms of HP1. In these nuclei the localization patterns of HP1 and Arp4 are altered in parallel fashion. The morphological, developmental and genetic data suggest that, like HP1, Arp4 may have a role in heterochromatin functions. Keywords: Chromatin, Actin-related protein, Drosophila, Heterochromatin-protein 1, Position effect variegation

Comments

© 1997 by Company of Biologists

ORCID

https://orcid.org/0000-0002-5176-2510 [Elgin]

Included in

Biology Commons

Share

COinS