Date of Award

Spring 5-15-2016

Author's School

Graduate School of Arts and Sciences

Author's Department

Physics

Degree Name

Doctor of Philosophy (PhD)

Degree Type

Dissertation

Abstract

Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T2*. Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged.

The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure, and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics.

This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR and hyperpolarization theory, construction of dedicated hardware, development of dedicated software, and appropriate image analysis techniques for all acquired data. The author has been actively involved in each of these and has dedicated specific chapters of this dissertation to their description.

First, a brief description of lung structure-function investigations and pulmonary imaging will be given (chapter 1). Brief discussions of basic NMR, MRI, and hyperpolarization theory will be given (chapters 2 and 3) followed by their particular methods of implementation in this work (chapters 4 and 5). Analysis of acquired HP gas images will be discussed (chapter 6), and the investigational procedures and results for each lung disease examined will be detailed (chapter 7). Finally, a quick digression on the strengths and limitations of HP gas MRI will be provided (chapter 8).

Language

English (en)

Chair and Committee

Jason C. Woods

Committee Members

Mark S. Conradi, Sophia E. Hayes, Erik Henriksen, James G. Miller,

Comments

Permanent URL: https://doi.org/10.7936/K7VQ310S

Share

COinS