ORCID

http://orcid.org/0000-0002-8761-1431

Date of Award

Winter 12-15-2021

Author's School

Graduate School of Arts and Sciences

Author's Department

Biology & Biomedical Sciences (Neurosciences)

Degree Name

Doctor of Philosophy (PhD)

Degree Type

Dissertation

Abstract

The brain is an organ. It is subject to the same physiological regulatory processes that engage the rest of the body’s organs, sculpted over hundreds of millions of years to sustain life so effectively. The central message of this thesis is that the holistic functioning of the brain, rather than operating at some level above or independent from these systemic regulatory processes, is deeply related to them. In short, as our limited attention spans might suggest: brain function is internally regulated. I propose that this internal regulation is a primary function of intrinsic brain activity. Chapter 2 provides a theoretical treatment of this issue, recasting intrinsic activity as an internal regulatory process operating on the brain’s temporal “states” and spatial “networks”. After establishing this framework, Chapters 3 and 4 provide tests of specific predictions. Thus, Chapter 3 confirms, in humans and macaque monkeys, the presence of topographically organized traveling waves occurring in synchrony with ongoing arousal fluctuations, with propagation occurring in parallel within the neocortex, striatum, thalamus, and cerebellum. This process is argued to provide a heretofore lacking physiological account of “resting-state functional connectivity” and related phenomenology. Chapter 4 extends this observation by demonstrating a continuous and tightly coordinated temporal evolution of brain, body, and behavioral states along a latent arousal cycle. Across multiple recording techniques and species, this cyclic trajectory is shown to be coupled to the traveling wave process described in Chapter 3, thus providing a parsimonious and integrative account of intrinsic brain activity and its spatiotemporal dynamics. Taken together, this thesis argues for the existence of an intrinsic regulatory process for global brain function.

Language

English (en)

Chair and Committee

Marcus Raichle

Committee Members

Adam Bauer

Share

COinS