#### Event Title

#### Location

Cupples I Room 215

#### Start Date

7-21-2016 3:30 PM

#### End Date

21-7-2016 3:50 PM

#### Description

We consider a compact linear map T acting between Banach spaces both of which are uniformly convex and uniformly smooth; it is supposed that T has trivial kernel and range dense in the target space. We will try to find conditions under which the action of T is given by a series. This provides a Banach-space version of the well-known Hilbert-space result of E. Schmidt. Based on joint work/collaboration with Edmunds/Evans/Harris.

Notes on spectral theory on Banach spaces

Cupples I Room 215

We consider a compact linear map T acting between Banach spaces both of which are uniformly convex and uniformly smooth; it is supposed that T has trivial kernel and range dense in the target space. We will try to find conditions under which the action of T is given by a series. This provides a Banach-space version of the well-known Hilbert-space result of E. Schmidt. Based on joint work/collaboration with Edmunds/Evans/Harris.