Author's School

School of Engineering & Applied Science

Author's Department/Program

Biomedical Engineering

Language

English (en)

Date of Award

1-1-2012

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Chair and Committee

Lihong Wang

Abstract

Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin. Conventionally, accurate quantification in PAT requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. We demonstrate the method using the optical-resolution photoacoustic microscopy: OR-PAM) and the acoustical-resolution photoacoustic microscopy: AR-PAM) in the optical ballistic regime and in the optical diffusive regime, respectively. The data acquisition speed in photoacoustic computed tomography: PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapted Compressed Sensing: CS) for the reconstruction in PACT. CS-based PACT was implemented as a non-linear conjugate gradient descent algorithm and tested with both phantom and in vivo experiments. Speckles have been considered ubiquitous in all scattering-based coherent imaging technologies. As a coherent imaging modality based on optical absorption, photoacoustic: PA) tomography: PAT) is generally devoid of speckles. PAT suppresses speckles by building up prominent boundary signals, via a mechanism similar to that of specular reflection. When imaging smooth boundary absorbing targets, the speckle visibility in PAT, which is defined as the ratio of the square root of the average power of speckles to that of boundaries, is inversely proportional to the square root of the absorber density. If the surfaces of the absorbing targets have uncorrelated height fluctuations, however, the boundary features may become fully developed speckles. The findings were validated by simulations and experiments. The first- and second-order statistics of PAT speckles were also studied experimentally. While the amplitude of the speckles follows a Gaussian distribution, the autocorrelation of the speckle patterns tracks that of the system point spread function.

DOI

https://doi.org/10.7936/K7F18WQT

Comments

Permanent URL: http://dx.doi.org/10.7936/K7F18WQT

Share

COinS