Author's School

School of Engineering & Applied Science

Author's Department/Program

Electrical and Systems Engineering


English (en)

Date of Award

January 2010

Degree Type


Degree Name

Doctor of Philosophy (PhD)

Chair and Committee

Arye Nehorai


We develop algorithms to detect and track targets by employing a wideband orthogonal frequency division multiplexing: OFDM) radar signal. The frequency diversity of the OFDM signal improves the sensing performance since the scattering centers of a target resonate variably at different frequencies. In addition, being a wideband signal, OFDM improves the range resolution and provides spectral efficiency. We first design the spectrum of the OFDM signal to improve the radar's wideband ambiguity function. Our designed waveform enhances the range resolution and motivates us to use adaptive OFDM waveform in specific problems, such as the detection and tracking of targets. We develop methods for detecting a moving target in the presence of multipath, which exist, for example, in urban environments. We exploit the multipath reflections by utilizing different Doppler shifts. We analytically evaluate the asymptotic performance of the detector and adaptively design the OFDM waveform, by maximizing the noncentrality-parameter expression, to further improve the detection performance. Next, we transform the detection problem into the task of a sparse-signal estimation by making use of the sparsity of multiple paths. We propose an efficient sparse-recovery algorithm by employing a collection of multiple small Dantzig selectors, and analytically compute the reconstruction performance in terms of the $ell_1$-constrained minimal singular value. We solve a constrained multi-objective optimization algorithm to design the OFDM waveform and infer that the resultant signal-energy distribution is in proportion to the distribution of the target energy across different subcarriers. Then, we develop tracking methods for both a single and multiple targets. We propose an tracking method for a low-grazing angle target by realistically modeling different physical and statistical effects, such as the meteorological conditions in the troposphere, curved surface of the earth, and roughness of the sea-surface. To further enhance the tracking performance, we integrate a maximum mutual information based waveform design technique into the tracker. To track multiple targets, we exploit the inherent sparsity on the delay-Doppler plane to develop an computationally efficient procedure. For computational efficiency, we use more prior information to dynamically partition a small portion of the delay-Doppler plane. We utilize the block-sparsity property to propose a block version of the CoSaMP algorithm in the tracking filter.


Permanent URL: