Author's School

School of Engineering & Applied Science

Author's Department/Program

Energy, Environmental and Chemical Engineering


English (en)

Date of Award

January 2010

Degree Type


Degree Name

Doctor of Philosophy (PhD)

Chair and Committee

Pratim Biswas


Electrospray is an aerosolization method that generates highly charged droplets from solutions or suspensions and, after a series of solvent evaporation - droplet fission cycles, it results in particles carrying multiple charges. Highly charged particles are used in a variety of applications, including particle characterization, thin film deposition, nanopatterning, and inhalation studies among several others. In this work, a soft X-ray photoionization was coupled with an electrospray to obtain monodisperse, singly charged nanoparticles for applications in online size characterization with electrical mobility analysis. Photoionization with the soft X-ray charger enhanced the diffusion neutralization rate of the highly charged bacteriophages, proteins, and solid particles. The effect of nanoparticle surface charge and nanoparticle agglomeration in liquids on the electrospray process was studied experimentally and a modified expression to calculate the effective electrical conductivity of nanosuspensions was proposed. The effective electrical conductivity of TiO2 nanoparticle suspensions is strongly dependent on the electrical double layer and the agglomeration dynamics of the particles; and such dependence is more remarkable in liquids with low ionic strength. TiO2 nanoparticle agglomerates with nearly monodisperse sizes in the nanometer and submicrometer ranges were generated, by electrospraying suspensions with tuned effective electrical conductivity, and used to deposit photocatalytic films for water-splitting. Nanostructured films of iron oxide with uniform distribution of particles over the entire deposition area were formed with an electrospray system. The micro-Raman spectra of the iron oxide films showed that transverse and longitudinal optical modes are highly sensitive to the crystallize size of the electrospray-deposited films. The fabrication of films of natural light-harvesting complexes, with the aim of designing biohybrid photovoltaic devices, was explored with an electrospray. The ability to charge chlorosomes with large number of charges allowed their ballistic deposition onto TiO2 nanostructured columnar films simultaneously maintaining their light-harvesting properties. Single units of natural light-harvesting complexes were isolated in charged electrospray droplets for subsequent size characterization. The charge distribution of natural light-harvesting complexes, aerosolized with a collision nebulizer, was determined with tandem differential mobility analysis. It was found that nebulized light-harvesting complexes were multiply charged; hence they have potential applications in the deposition of functional films using electric fields. The studies conducted as part of this dissertation addressed fundamental issues in the characterization and deposition of nanoparticle suspensions and elucidated applications of the electrospray technique, particularly for solar energy utilization.


Permanent URL: