Author's School

Graduate School of Arts & Sciences

Author's Department/Program

Biology and Biomedical Sciences: Neurosciences


English (en)

Date of Award

January 2011

Degree Type


Degree Name

Doctor of Philosophy (PhD)

Chair and Committee

Jeffrey Neil


Half a million infants are born before term gestation each year in the United States. Although advances in newborn medicine have increased survival rates of very preterm infants to almost 90%, surviving preterm infants are at increased risk for developing lasting neurologic impairments. In order to develop a plausible neuroprotective strategy it is imperative that we improve our understanding of normal cortical development and develop tools to evaluate injury. Using a surface based approach we have characterized normal cortical development in healthy term infants and analyzed abnormalities associated with preterm birth. Accurate cortical surface reconstructions for each hemisphere of 12 healthy term gestation infants and 12 low-risk preterm infants at term equivalent postmenstrual age were generated from structural magnetic resonance imaging data using a novel segmentation algorithm. Data from the 12 term infants were used to establish the first population average surface based atlas of human cerebral cortex at term gestation. Comparing this atlas to a previously established atlas of adult cortex revealed that cortical structure in term infants is similar to the adult in many respects, including the pattern of individual variability and the presence of statistically significant structural asymmetries in lateral temporal cortex, suggesting that that several features of cortical shape are minimally reliant on the postnatal environment. Surprisingly, the pattern of postnatal expansion in surface area is strikingly non-uniform; regions of lateral temporal, parietal, and frontal cortex expand nearly twice as much as other regions in insular and medial occipital cortex. Differential expansion may point to differential sensitivity of cortical circuits to normal or aberrant childhood experiences. The pattern of human postnatal expansion parallels the pattern of evolutionary cortical expansion revealed by comparison between the human and the macaque monkey. Finally, in comparing term and preterm infants, region-specific alterations in cortical folding in the preterm population were found. The most striking shape differences were present in the orbitofrontal and inferior occipital regions with reductions in folding in the insular, lateral temporal, lateral parietal, and lateral frontal cortex. Overall these findings improve our understanding of normal cortical development and help elucidate the potential pathways for cortical injury in preterm infants.


Permanent URL: