Author's School

Graduate School of Arts & Sciences

Author's Department/Program

Biology and Biomedical Sciences: Neurosciences


English (en)

Date of Award

Spring 4-27-2014

Degree Type


Degree Name

Doctor of Philosophy (PhD)

Chair and Committee

Lawrence H Snyder


Blood oxygen level dependent (BOLD) fMRI is the predominant method for evaluating human brain activity. This technique identifies brain activity by measuring blood oxygen changes associated with neural activity. Although clearly related, the nature of the relationship between BOLD fMRI identified brain activity and electrophysiologically measured neural activity remains unclear. Direct comparison of BOLD fMRI and electrophysiology has been severely limited by the technical challenges of combining the two techniques. Microelectrode electrophysiology in non-human primates is an excellent model for studying neural activity related to high order brain function similar to that commonly studied with BOLD fMRI in humans, i.e. attention, working memory, engagement. This thesis discusses the development of, validation of, and first results obtained using a new multi-site oxygen polarographic recording system in the awake macaques as a surrogate for BOLD fMRI. Oxygen polarography measures tissue oxygen which is coupled to blood oxygen. This tool offers higher resolution than BOLD fMRI and can be more readily combined with electrophysiology.

Using this new tool we evaluated local field potential and oxygen responses to an engaging visual stimulus in two distinct brain systems. In area V3, a key region in the visual system and representative of stimulus driven sensory cortex, we show increased tissue oxygen and local field potential power in response to visual stimulus. In area 23 of the posterior cingulate cortex (PCC), a hub of the default-mode network we show decreased oxygen and local field potential in response to the same stimulus. The default-mode network is a set of brain regions identified in humans whose BOLD fMRI activity is higher at rest than during external engagement, arguing that they sub-serve a function that is engaged as the "default-mode" in humans.

Our results provide new evidence of default-mode network activity in the macaque similar to that seen in humans, provide evidence that the BOLD identified default-mode suppression reflects neural suppression and overall support a strong relationship between neural activity and BOLD fMRI. However, we also note that the LFP responses in both regions show substantial nuances that cannot be seen in the oxygen response and suggest response complexity that is invisible with fMRI. Further the nature of the relationship between LFP and oxygen differs between regions.

Our multi-site technique also allows us to evaluate inter-regional interaction of ongoing oxygen fluctuations. Inter-regional correlation of BOLD fMRI fluctuations is commonly used as an index of functional connectivity and has provided new insight into behaviorally relevant aspects of the brains organization and its disruption in disease. Here we demonstrate that we can measure the same inter-regional correlation using oxygen polarography. We utilize the increased resolution of our technique to investigate the frequency structure of the signals driving the correlation and find that inter-regional correlation of oxygen fluctuations appears to depend on a rhythmic mechanism operating at ~0.06 Hz.


This work is not available online per the author’s request. For access information, please contact or visit

Permanent URL: