This item is under embargo and not available online per the author's request. For access information, please visit http://libanswers.wustl.edu/faq/5640.

Date of Award

Spring 5-15-2020

Author's School

McKelvey School of Engineering

Author's Department

Electrical & Systems Engineering

Degree Name

Doctor of Philosophy (PhD)

Degree Type

Dissertation

Abstract

Target detection and tracking are the most fundamental and important problems in a wide variety of defense and civilian radar systems. In recent years, to cope with complex environments and stealthy targets, the concept of cognitive radars has been proposed to integrate intelligent modules into conventional radar systems. To achieve better performance, cognitive radars are designed to sense, learn from, and adapt to environments. In this dissertation, we introduce cognitive radars for target detection in nonstationary environments and cognitive radar networks for target tracking.For target detection, many algorithms in the literature assume a stationary environment (clutter). However, in practical scenarios, changes in the nonstationary environment can perturb the parameters of the clutter distribution or even alter the clutter distribution family, which can greatly deteriorate the target detection capability. To avoid such potential performance degradation, cognitive radar systems are envisioned which can rapidly recognize the nonstationarity, accurately learn the new characteristics of the environment, and adaptively update the detector. To achieve this cognition, we propose a unifying framework that integrates three functions: (i) change-point detection of clutter distributions by using a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learning/identification of clutter distribution by using kernel density estimation (KDE) methods and similarity measures (iii) adaptive target detection by automatically modifying the likelihood-ratio test and the corresponding detection threshold. We also conduct extensive numerical experiments to show the merits of the proposed method compared to a nonadaptive case, an adaptive matched filter (AMF) method, and the clairvoyant case.For target tracking, with remarkable advances in sensor techniques and deployable platforms, a sensing system has freedom to select a subset of available radars, plan their trajectories, and transmit designed waveforms. Accordingly, we propose a general framework for single target tracking in cognitive networks of radars, including joint consideration of waveform design, path planning, and radar selection. We formulate the tracking procedure using the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE). This procedure includes two iterative steps: (i) solving a combinatorial optimization problem to select the optimal subset of radars, waveforms, and locations for the next tracking instant, and (ii) acquiring the recursive Bayesian state estimation to accurately track the target. Further, we use an illustrative example to introduce a specific scenario in 2-D space. Simulation results based on this scenario demonstrate that the proposed framework can accurately track the target under the management of a network of radars.

Language

English (en)

Chair

Arye Nehorai

Committee Members

Murat Akcakaya, Neal Patwari, Ulugbek Kamilov, Xuan Zhang,

Comments

Permanent URL: https://doi.org/10.7936/3zdb-gn80

Available for download on Friday, June 17, 2022

Share

COinS