Date of Award

Summer 8-15-2013

Author's Department

Biomedical Engineering

Degree Name

Doctor of Philosophy (PhD)

Degree Type



Radiotherapy is a common medical treatment in which lethal doses of ionizing radiation are preferentially delivered to cancerous tumors. In external beam radiotherapy, radiation is delivered by a remote source which sits several feet from the patient's surface. Although great effort is taken in properly aligning the target to the path of the radiation beam, positional uncertainties and other errors can compromise targeting accuracy. Such errors can lead to a failure in treating the target, and inflict significant toxicity to healthy tissues which are inadvertently exposed high radiation doses.

Tracking the movement of targeted anatomy between and during treatment fractions provides valuable localization information that allows for the reduction of these positional uncertainties. Inter- and intra-fraction anatomical localization data not only allows for more accurate treatment setup, but also potentially allows for 1) retrospective treatment evaluation, 2) margin reduction and modification of the dose distribution to accommodate daily anatomical changes (called `adaptive radiotherapy'), and 3) targeting interventions during treatment (for example, suspending radiation delivery while the target it outside the path of the beam).

The research presented here investigates the use of inter- and intra-fraction localization technologies to improve radiotherapy to targets through enhanced spatial and temporal accuracy. These technologies provide significant advancements in cancer treatment compared to standard clinical technologies. Furthermore, work is presented for the use of localization data acquired from these technologies in adaptive treatment planning, an investigational technique in which the distribution of planned dose is modified during the course of treatment based on biological and/or geometrical changes of the patient's anatomy. The focus of this research is directed at abdominal sites, which has historically been central to the problem of motion management in radiation therapy.


English (en)


Parag Parikh

Committee Members

Mark Anastasio, Shelton Caruthers, Dennis Hallahan, Sasa Mutic Pamela Woodard


Permanent URL:

Included in

Engineering Commons