Mass Spectrometry-Based Structural Analysis of Photosynthetic Protein Assemblies

Yue Lu
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

Part of the Biochemistry Commons

Recommended Citation
https://openscholarship.wustl.edu/art_sci_etds/1127

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Mass Spectrometry-Based Structural Analysis of Photosynthetic Protein Assemblies

by

Yue Lu

A dissertation presented to
The Graduate School
of Washington University in
partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

May 2017
St. Louis, Missouri
Table of Contents

List of Figures ... vi
List of Tables .. x
List of Abbreviations ... xi
Acknowledgments ... xiii
Abstract .. xiii

Chapter 1: Introduction

1.1 Protein machineries involved in photosynthesis ... 1
1.2 Protein primary structure determination ... 3
1.3 MS-based Footprinting .. 6
1.4 CROSSLINKING (XL)-MS .. 8
1.5 Top-down MS ... 9
1.6 Challenges in photosynthetic membrane protein MS study .. 11

Chapter 2: Top-down Mass Spectrometry Analysis of Membrane-bound Light-Harvesting Complex 2 from Rhodobacter sphaeroides

2.1 Abstract ... 15
2.2 Introduction ... 16
2.3 Material and Methods .. 21
 2.3.1 LH2 Preparation ... 21
 2.3.2 Top-down LC-MS analysis of LH2 ... 21
 2.3.3 puc2B gene identification .. 22
 2.3.4 puc2B mRNA identification ... 22
 2.3.5 Homology modelling .. 23
2.4 Results and discussion ... 23
 2.4.1 Composition of mature LH2 complexes ... 23
 2.4.2 Sequence and post translational modifications ... 25
 2.5.1 Substitution of Valine for Isoleucine .. 37
2.5 Conclusions ... 41
Chapter 3: Mapping the Topology and Conformation of an Intrinsic Membrane Protein in a Lipid Bilayer by Fast Photochemical Oxidation of Proteins (FPOP)

3.1 Abstract ... 43
3.2 Introduction ... 47
3.3 Materials and Methods .. 47
 3.3.1 LH2 preparation ... 47
 3.3.2 MSP preparation ... 47
 3.3.3 Self-assembly of Nanodisc .. 47
 3.3.4 Steady-state absorption spectroscopy ... 48
 3.3.5 Time-resolved fluorescence spectroscopy .. 48
 3.3.6 Dynamic light scattering .. 49
 3.3.7 Footprinting of Nanodisc-LH2 and detergent micelle-embedded LH2 49
 3.3.8 MS analysis .. 50
 3.3.9 Data analysis ... 51
 3.3.10 Sequence alignment, topology prediction and homology modeling 51
3.4 Results and discussion ... 51
 3.4.1 Characterization of the Nanodisc containing LH2 ... 51
 3.4.2 Application of FPOP to membrane proteins .. 54
 3.4.3 Membrane protein in detergent micelle vs. Nanodisc 56
 3.4.4 Methionine as a marker in membrane protein labeling by FPOP 61
 3.4.5 Locating the membrane protein in the lipid bilayer 62
3.5 Conclusions ... 74

Chapter 4: Mass Spectrometry Characterization of Reaction Center from Blastochloris viridis—
the First Integral Membrane Protein Complex Determined by X-ray Crystallography 75

4.1 Abstract .. 75
4.2 Introduction .. 76
4.3 Materials and Methods ... 78
 4.3.1 Cell culture and reaction center preparation .. 78
 4.3.2 Top-down LC-MS ... 78
 4.3.3 Bottom-up LC-MS ... 79
 4.3.4 Native MS analysis of reactions center ... 80
 4.3.5 MS data processing ... 80
Chapter 5: Native Mass Spectrometry Analysis of Oligomerization States of FRP and OCP: Two Proteins Involved in the Cyanobacterial Photoprotection Cycle ... 94

5.1 Abstract .. 94

5.2 Introduction ... 95

5.3 Materials and Methods ... 98

5.3.1 Expression of FRP in *E. coli* .. 98

5.3.2 FRP purification .. 99

5.3.3 OCP purification .. 99

5.3.4 Native MS and IM-MS Analysis of FRP .. 99

5.3.5 Native MS of OCP ... 100

5.4 Results and discussion .. 101

5.4.1 The oligomeric state of FRP .. 101

5.4.2 Oligomeric states of OCP .. 105

5.4.3 Ion mobility of FRP .. 107

5.4.4 Gas-phase unfolding of FRP under collisional activation 109

5.5 Conclusions .. 116

Chapter 6: A Molecular Mechanism for Non-Photochemical Quenching in Cyanobacteria 117

6.1 Abstract .. 117

6.2 Introduction ... 118

6.3 Materials and Methods ... 120

6.3.1 Expression and mutagenesis of FRP ... 120

6.3.2 FRP and OCP purification .. 122

6.3.3 Native MS and IM-MS Analysis of NTD, CTD and FRP complex 122

6.3.4 Activity assays .. 122

6.3.5 Cross-linking and LC-MS .. 123

6.3.6 GEE Labeling ... 124

6.3.7 MS data analysis .. 125

iv
6.4 Results and discussion.. 125
 6.4.1 FPR accelerates the OCPr to OCPo relaxation by bridging NTD and CTD 125
 6.4.2 Binding domain on FRP to CTD... 134
 6.4.3 Regions influence FRP function .. 143
 6.4.4 Substantial conformational changes of dFRP after bridging the two domains 144
 6.4.5 Response of OCPr to FRP .. 150
 6.4.6 Response of OCPo to FRP .. 152
6.5 Conclusions .. 154

Chapter 7: Conclusions and Perspective.. 157
References.. 161
List of Figures

Figure 1.1: Photosynthesis scheme in most photosynthetic organisms……………………3

Figure 1.2: Mass spectrometry tools used to study photosynthetic protein complexes.............11

Figure 2.1: Sequence alignment of Puc1A- and Puc2A-encoded polypeptides19

Figure 2.2: Liquid chromatogram of denatured LH2 ...24

Figure 2.3: Sequence coverage and ECD product-ion spectrum of
Puc1A-encoded polypeptides ..27

Figure 2.4: Homology model of LH2 from Rb. sphaeroides ..29

Figure 2.5: Sequence alignments of LH2 ..30

Figure 2.6: Sequence coverage and ECD product-ion spectrum of
Puc1B-encoded polypeptides ..31

Figure 2.7: Sequence coverage and ECD product-ion spectrum of
Puc2B-encoded polypeptides ..32

Figure 2.8: High mass fragments of ECD product-ion spectrum of
Puc2B-encoded polypeptides ..33

Figure 2.9: Comparison of simulated and experimental isotopic pattern of parents and
fragment ions on N-terminus of Puc2B-encoded polypeptide..35

Figure 2.10: MS/MS fragmentation of N terminus peptide from Puc2B-encoded subunit......35

Figure 2.11: Mass spectrum of parent ions of Puc2B-encoded polypeptides37

Figure 2.12: DNA (a) and RNA (b) Puc2B operon sequencing result
and trace files around 14th valine region..39
Figure 3.1: The integrated Nanodisc-FPOP MS workflow

Figure 3.2: Steady-state absorption spectrum of LH2 in detergent micelles and Nanodiscs

Figure 3.3: Time-resolved fluorescence of LH2

Figure 3.4: Dynamic light scattering of empty-Nanodisc and LH2-Nanodisc

Figure 3.5: Coverage map of LH2

Figure 3.6: Oxidation level of [Leu5]-Enkephalin YGGFL in detergent micelle/Nanodisc environment

Figure 3.7a: Oxidation level of peptides from the α subunit

Figure 3.7a: Oxidation level of peptides from the α subunit

Figure 3.8: Oxidation level of Met in detergent micelle/Nanodisc environment

Fig. 3.9: Sequence alignments of LH2. α and β subunits from different LH2 complexes

Figure 3.10: EIC of m/z = 649.3074 (PAYYQGSAAVAAE)

Figure 3.11: MS/MS fragmentation spectrums of different peptides as shown in the picture

Figure 3.12: The homology model (panel c) and PDB 1NKZ (panel a and b)

Figure 3.13: Peptides on the C-terminal of α subunits are shown in red in both the homology model

Figure 3.14: Proposed borderline between the solvent accessible domains and the domains that are embedded in hydrophobic tails of lipids

Figure 3.15: Measurement of solvent inaccessible region of LH2 by Pymol

Figure 3.16: Oxidation level of N-terminal peptides from both β subunit

Figure 4.1: Mass spectra of the four subunits from reaction center (B. viridis)

Figure 4.2: (A) C-terminal sequence on the M subunit identified by MS

(B) Sequence coverage on the C-terminus of the M subunit

Figure 4.3: Product-ion (MS/MS) spectra of peptides on the C-terminus of the M subunit

Figure 4.4: Native mass spectrum of reaction center under different collisional energy
Figure 4.5: Loss of the peripheral pigments, carotenoid, quinone, and Bacteriopheophytin
Figure 4.6: Ion mobility MS measurement of CCS of reaction center at different charge states.
Figure 5.1: Native mass spectrum of FRP diluted in a series concentration
Figure 5.2: Collision induced dissociation of dimeric FRP
Figure 5.3: High order oligomeric FRP detected at 180 µM
Figure 5.4: Native mass spectrum of OCP diluted in a series concentration
Figure 5.5: High order oligomeric OCP detected at 180 µM
Figure 5.6: Calibration curve CCS vs. New Td
Figure 5.7: CCS of FRP
Figure 5.8: The unfolding heat map of FRP
Figure 5.9: Unfolding heat map of FRP
Figure 6.1: Flow chart of isotopic cross-linking experiments on FRP and OCP
Figure 6.2: Native mass spectra of FRP and the NTD/CTD mixture in a 4:1 or 1:4 ratio
Figure 6.3: Product-ion (MS/MS) spectra of the CTD-dFRP and CTD-dFRP-NTD
Figure 6.4: IM-MS unfolding heat map of CTD-dFRP complex
Figure 6.5: Native MS analysis of NTD/CTD mixture ranging from 5 µM to 200 µM
Figure 6.6: SDS-PAGE analysis of cross-linked samples
Figure 6.7: Cross-links identified between OCPr and FRP
Figure 6.8: MS/MS ion-product spectra of cross-linked peptides
Figure 6.9: Alignment of FRP residues 72-106 on different chains
Figure 6.10: Map of residues identified by native MS, cross-linking, and GEE labeling on the FRP head region
Figure 6.11: Native mass spectra of mutant FRP in the presence of NTD/CTD partial digestion
Figure 6.12: The surface electrostatic analysis by APBS on NTD and CTD
Figure 6.13: The surface electrostatic analysis on FRP by APBS.................................142

Figure 6.14: Kinetics of the conversion of OCPf to OCPo in the presence of FRP mutants......144

Figure 6.15: Bar graph showing the changes in intra-FRP cross-links

in the presence of OCPf or OCPo..145

Figure 6.16: The bar graph shows the change of inter-mFRP cross-link

in the presence of OCPf or OCPo..149

Figure 6.17: (A) GEE labeling extents of OCPr amino-acid residues in the presence or absence

of FRP. (B) GEE labeling level of OCPo amino acid residues in the presence or

absence of FRP. (C) A bar graph showing the changes in OCP mono-links in the

presence FRP. (D) An isotope-encoded mass spectrum of crosslinked OCP-FRP

showing the K167(OCP)-M1(FRP) cross-link in the orange state is less abundant

than in the red state..153

Figure 6.18: Native MS spectra showing the weak association between OCPo and dFRP......154

Figure 6.19: Proposed model of the interaction between FRP and OCP.........................156
List of Tables

Table 1.1: Table 1.1 MS-centered strategy for studying membrane proteins..........................14
Table 2.1: Molecular weight of each subunit from LH2 ..25
Table 4.1: Comparison of molecular weights (MW) determined by top-down MS
and genomic sequence...82
Table 4.2: List of mutations that we identified on the four subunits of reaction center..........83
Table 5.1: Primers used in the construction of full length and
truncated version of FRP in pET21a..99
Table 5.2: Theoretical CCS value and experimental CCS value listed in the table.............108
Table 6.1: Forward primers used to construct site-directed mutants of the
SGL_RS10235 gene..121
Table 6.2: Distances of cross-linked residues measured by Xwalk server.......................146
List of Abbreviations

APBS: Adaptive Poisson-Boltzmann Solver
CCS: Collisional Cross Section
EIC: Extracted Ion Chromatogram
FPOP: photochemical oxidation of proteins
FRP: Fluorescent Recovery Protein
IM-MS: Ion-Mobility–Mass Spectrometry
LC-MS: Liquid Chromatography–Mass Spectrometry
LH2: Light Harvesting Complex 2
MS: Mass Spectrometry
MS/MS: Tandem mass spectrometry
NTD: N-Terminal Domain
NPQ: Non-Photochemical Quenching
OCP: Orange Carotenoid Protein
PSI: Photosystem I
PSII: Photosystem II
PTM: Post Translational Modification
RC: Reaction Center
Acknowledgments

I would like to thank my two advisors, Prof. Michael L. Gross and Prof. Robert E. Blankenship, for their continual guidance, support and encouragement throughout my studies at Washington University. I thank Bob for the excitement about research and teaching me humility. I thank Dr. Gross for sharing his deep insights in science and teaching me humor.

I would like to thank Drs. Hao Zhang, Weidong Cui, Henry Rohrs and for bringing me into the world of mass spectrometry. I would like to thank Dr. Jing Jiang, Dr. Haijun Liu, Ms. Mindy Prado, Dr. Rafael Sar and Darek Niedzwiedzki for donating their time to teach me all the biological techniques. Special thanks to Drs. Michael Marty, Yelena Grinkova and Steven Sligar at UIUC.

I would like to thank my Dissertation Advisory and Examination Committee members, Prof. Michael L. Gross, Prof. Robert E. Blankenship, Prof. Dewey J. Holten, Prof. Gary J. Patti and Prof. Himadri B. Pakrasi for their help and inspiration regarding my thesis research.

I gratefully acknowledge the financial support received from the U.S. Department of Energy (DOE) and National Institutes of General Medical Sciences of the NIH. Additionally, I thank to the graduate school of art and sciences for dean’s fellowship.

Yue Lu

Washington University in St. Louis

May 2017
ABSTRACT OF THE DISSERTATION

Mass Spectrometry-Based Structural Analysis of Photosynthetic Protein Assemblies

by

Yue Lu

Doctor of Philosophy in Chemistry
Washington University in St. Louis, 2017

Professor Robert E. Blankenship, Co-Chair
Professor Michael L. Gross, Co-Chair

This dissertation focuses on using mass spectrometry-based techniques to study photosynthetic protein assemblies. Photosynthesis is a process that converts light energy into chemical energy, the basis of most life on Earth. The two most crucial protein machineries involved in this process are reaction center and light harvesting complexes. They are usually giant protein complexes with different numbers of co-factors. In a more expanded sense, photosynthesis is not just about the utilization of solar energy, the regulation of light energy is also essential as excess light energy is detrimental to photosynthesis organisms. Again, protein assemblies play an indispensable role in this process. The knowledge of the structure and function as well as the molecular mechanism of those protein complexes are desired.

Today, mass spectrometry is being widely used in proteomics studies. Its capabilities include but are not limited to the protein primary structure investigation. The development of MS-based footprinting, native MS and membrane protein MS detection platforms largely benefit the study of photosynthetic proteins. The MS-based footprinting technique can investigate protein conformational change upon its binding to other molecules or under the stimulus of pH change or other factors. Native MS can investigate the conformation and topology of protein complexes.
in a near-native environment where the non-covalent interactions are preserved. Membrane proteins are notoriously difficult to study. The development of MS-based membrane protein detection platforms largely benefits the study of photosynthesis, as reaction center and light-harvesting complexes are usually membrane proteins.

In this dissertation, a variety of MS-based techniques were utilized to study reaction center proteins, light harvesting proteins and the proteins involved in the photoprotection process. We utilized top-down MS to study the components as well as the primary structure of LH2 from a purple bacterium (Rb. sphaeroides), which reveals a new post-translational modification and mutation information. In addition, we developed a MS-based platform to footprint this LH2, investigating its topology in a lipid bilayer. The reaction center from another purple bacterium (B. viridis) was studied by both bottom-up and top-down MS and lots of unexpected mutations were identified. We also conducted a native MS study on this reaction center, and the capabilities of retaining the co-factors as well as its collisional cross section in the gas phase are discussed. Lastly, we study the orange carotenoid protein (OCP) and the fluorescence recovery protein, two major players in the non-photochemical quenching process in cyanobacteria. We utilized MS-based techniques to probe the conformation and structure of these two proteins and finally proposed a mechanism for non-photochemical quenching in cyanobacteria.
Chapter 1: Introduction

1.1 Protein machineries involved in photosynthesis

“Photosynthesis is a process in which light energy is captured and stored by an organism, and the stored energy is used to drive energy-requiring cellular processes”\(^1\). The energy is stored in the form of carbohydrate molecules, and usually oxygen is released as a byproduct. The process starts with the absorption of solar light by pigments associated with the photosynthetic antennas, delivering the energy to the reaction center where charge separation takes place (Figure 1.1).

Various photosynthetic antennas and reaction center systems have been developed in plant, algae, cyanobacteria and other photosynthetic bacteria. For example, light harvesting complex 2 (LH2) from purple bacteria is well known to adopt a “ring” structure, composed of heterodimeric units—a, b apoprotein pairs that serve as a scaffold to bind bacteriochlorophyll \(a\) and a carotenoid for optimal energy transfer\(^2\). In cyanobacteria, a giant protein complex called a Phycobilisome (PBS) harvests light and supplies energy for both photosystem II (PSII) and photosystem I (PSI). This giant antenna protein complex, which is composed of various biliproteins and linker bilipeptides, exhibits a “rods and core” structure\(^3-4\).

Although light harvesting antennas execute the capture of solar energy, the primary energy conversion in photosynthesis takes place in the reaction center. The reaction center is a protein complex that incorporates not only pigments—chlorophyll/bacteriochlorophyll and carotenoids—but also includes quinones and iron sulfur centers to carry charge. Among all the co-factors associated with the reaction center protein scaffold, one unique pair of chlorophyll/bacteriochlorophyll located in the hydrophobic core of the reaction center, called the...
special pair, can be electronically excited and initiate the charge separation1. For example, two mega protein complexes, PSI and II, are the reaction center protein complexes in oxygenic photosynthetic organisms, and function to convert the light energy into chemical energy. PSII is a supramolecular complex embedded in the thylakoid membrane, with a number of protein subunits and various cofactors5. The reaction center in most purple bacteria has a comparatively simple structure that includes protein subunits H, M and L as well as many co-factors. Reaction centers from some purple bacteria like \textit{Blastochloris viridis} possess an extra bound cytochrome subunit6.

Although utilization of light is the essential activity of the photosynthesis process, quenching any excess light energy is also crucial. During periods of excess light energy, excited triplet chlorophyll can induce the production of a high-energy form of oxygen, singlet oxygen. Singlet oxygen is detrimental to the cells, leading to the damage of proteins, pigments, and lipids7. Thus, a strategy for regulation of light utilization is needed for photosynthetic organisms. In plants and algae, light harvesting antennas are involved in modulation of light energy—photoprotection8. In cyanobacteria, protein machineries, other than light harvesting antennas, are essential to perform photoprotection. Orange carotenoid protein (OCP) is a single carotenoid-binding protein that can quench the excess energy in the light harvesting antenna phycobilisome (PBS), preventing damage of the photosynthetic apparatus by oxidative radicals9-10. The activated OCP (red) can accelerate the decay of the excited singlet states of bilin pigments in PBS, affecting the energy transfer from PBS to reaction center. Another protein, called fluorescent recovery protein (FRP), can recover the fluorescence in PBS, just as its name says, by interacting with the OCP11.

Above all, delicate protein complexes play indispensable roles in photosynthesis, an essential process for almost all life on earth. Tools that can characterize those protein machineries with a
high resolution are desired. Spectroscopic techniques have been widely utilized, owning to the unique absorption and fluorescence characteristics of photosynthetic proteins. Now, mass spectrometry (MS) has quickly developed in protein science and becoming more and more popular, owing to its high speed, sensitivity, accuracy, and high dynamic range, for studies of amino acids to mega-complexes12-14. In chapter 1, we will discuss the application of mass spectrometry to photosynthetic protein machineries.

![Diagram of Photosynthesis](image)

Figure 1.1 Photosynthesis scheme in most photosynthetic organisms. Light blue shapes represent protein assemblies involved in photosynthesis process. OCP and FRP are shown as example proteins that are involved in photoprotection.

1.2 Protein primary structure determination

The information in DNA is encoded by four bases: adenine (A), guanine (G), cytosine (C), and thymine (T). This information is passed on to RNA, in preparation for the final step that
comprises the central dogma of molecular biology. According to the genetic code, every three bases in RNA can be translated into one specific amino acid, subunits composing proteins15.

Proteins are central parts of all organisms, being essential in cell structure and function. Before the wide availability of gene sequencing, chemical or enzyme methods were being used to investigate the sequence of protein16. Edman degradation used to be the dominant method in sequencing amino acids in proteins. The amino acid is labeled from the N-terminus, followed with the releasing of this terminal amino acid derivative to be detected by chromatography, electrophoresis or Ultraviolet–visible spectroscopy (UV-Vis). The process can be repeated, and the whole sequence of the protein can be deciphered. However, the whole process is tedious, and this method is not effective in the presence of a chemically modified N-terminus. Nowadays, the MS-based sequencing (fragmentation) approach is replacing Edman degradations and has become indispensable in probing the primary structure of photosynthetic proteins.

Early mass spectrometers coupled with electrospray ionization (ESI) could only perform one straightforward function, measuring the molecular weights, while no structural information could be obtained17. The development of tandem MS enabled the probing of the primary sequence of proteins. The process involves two steps; the first step is the selection of a precursor/parent ion and the second step is the activation of the precursor/parent ion followed with MS detection of fragmented products. One of the activation methods, known as collisional induced activation (CID), is the dominant fragmentation method in probing protein primary structures18. During the CID process, the precursor/parent ion is accelerated by an electrical potential to high kinetic energy, allowing it to collide with neutral gas molecules. Nitrogen is the most commonly used neutral gas, and helium and argon are also widely utilized. The kinetic energy is converted into internal energy during this process, leading to chemical bond fragmentation, and partial/complete
sequence of the precursor/ion can be obtained by measuring the MW of fragments. The other CID method, called higher-energy collisional dissociation (HCD), leads to a shorter activation time compared to CID19. The fragmentation spectrum of HCD features a predominance of y-ions and b-ions that can be further fragmented into smaller species like a-ions. For HCD, there is no low mass cut-off restriction as there is with ion traps and the method, when coupled with an orbitrap, provides high mass accuracy in the product-ion (MS/MS) spectrum. Thus, HCD is suitable for \textit{de novo} peptide sequencing20.

In addition to CID and HCD, another fragmentation method called electron capture dissociation (ECD), developed by McLafferty, starts from capturing electrons by multiple charged ions in the gas phase21. Unlike CID/HCD, the fragmentation site is not defined by bond strength during the ECD process22. Whereas CID/HCD fragmentation occurs by increasing the internal energy of peptide/protein ions, it causes protons to move (i.e., mobile proton model), electron-capture dissociation (ECD) generally breaks bonds near the location of a protonated site that can attract the electrons23. As two complementary fragmentation methods, CID/HCD produces b and y series ions whereas ECD produces c and z series ions. Other than CID/HCD and ECD, a variety of fragmentation methods, like electron transfer dissociation (ETD) were developed and utilized in proteomics, providing complementary sequence/PTM information for a certain peptide19.

Primary structural determination of photosynthetic proteins by MS is centrally important, for verifying amino acid sequence, and identifying PTMs and even the isoforms of proteins. Bottom-up MS proteomics is widely used to identify protein proteolytic digestion products24. MS detection in combination with liquid chromatography (LC), the pre-separation before MS detection, is a very useful technique that improves enables the ability to sequence peptides in
complex mixtures (e.g., protein digests). Numerous studies have utilized this technique to gain knowledge of photosynthetic protein primary structure. For example, the MS primary structure elucidation of D1 and D2 proteins from the PS II reaction not only reveals a variety of PTMs, but more importantly, the C-terminal sequence of D1 protein is identified25. The C-terminal processing on D1 protein was later found to be essential for the function and assembly of PS II25-26.

1.3 MS-based Footprinting

Scientists are not content to know just the primary structure of proteins. MS-based footprinting as a biophysical approach is widely utilized to probe protein structure, dynamics, and interactions in different macromolecular assemblies. In general, two types of footprinting strategies are being developed, non-reversible and reversible labeling of amino acid backbones or side chains27-29, respectively. By comparing the labeling level of the target protein at different states, regions that are involved in interaction or in structural changes can be identified. Utilizing the typical bottom-up approach, we usually measure the labeling extents of two different states (e.g., apo vs. holo). Hydrogen deuterium exchange (HDX) monitored by MS can be used to investigate protein conformational changes when the protein structure is perturbed by a binding partner, pH, denaturation, for example. The targets of an HDX approach are the amide protons of the protein backbone that can undergo exchange with the deuterium in the solution. The extent of exchange reports on H bonding and solvent accessibility of the backbone30-32. As a “gentle" but “universal” approach, HDX is one of the most robust and reliable MS-based footprinting methods in probing protein structure. In green-sulfur bacterial, light energy absorbed by chlorosome is transferred to the FMO antenna protein through a baseplate protein. The molecular
details of how the baseplate is coordinating with FMO antenna protein to transfer the energy efficiently were only fully understood. Our group utilized HDX approach to investigate the binding face of the FMO antenna protein and the chlorosome CsmA baseplate protein, as the interacting region on FMO shows significant decrease of deuterium uptake after CsmA binding.

Because covalent footprinting by HDX is reversible, efforts have been made to take advantage of bottom-up proteomics for footprinting by developing irreversible labeling. The most common examples are hydroxyl radical and GEE labeling in combination with MS detection are also widely used in studying photosynthetic proteins. Based on the labeling extent on amino acids, structural change of protein assemblies can be deciphered. Oxidative hydroxyl radicals can be generated by X-ray beams, electrical discharge and laser photolysis of hydrogen peroxide in solution, labeling proteins on millisecond and sub-millisecond timescales. The amino-acid site chain reactivity with hydroxyl radicals is broad-based, although the reactivity with various amino acid side chains can vary by three orders of magnitude. Another quick and simple footprinting approach targeting carboxyl amino acids, is “GEE labeling”, and can also be used to footprint proteins. Carboxyl groups on glutamate (E) and aspartate (D) can be labeled, producing a +57 or +71 Da mass shift. OCP is the essential player during NPQ process in cyanobacteria. It has two states, the red active state and the orange inactive state. The red active state can burrow into PBS and quench the excess light energy. The structural difference of those two states has been an intriguing question. The MS-based footprinting experiments (covalent labeling) successfully identify the global and local structural rearrangement of proteins. The red state was determined to have an open structure whereas the orange state a compact structure. In particular, the hydroxyl radical footprinting method reveal the structural of orange
carotenoid protein change up to the residue level upon photoactivation38, whereas the results obtained by GEE labeling lead to a similar conclusion with an emphasis on carboxyl amino acids39.

1.4 CROSSLINKING (XL)-MS

Amino acids pairs that are adjoining in protein complexes can be “snapshotted” by a cross-linker with a certain length, thus identifying regions of proteins that bind. After proteolytic digestion, the cross-linked peptides can be identified by tandem MS. Identification of cross-linked peptides by MS provides insightful information for modelling of protein-protein interactions, protein conformational changes, and protein dynamics40-43. As photosynthetic machineries usually contain a variety of protein subunits and co-factors, crosslinking MS (XL-MS) is widely adopted to investigate the organization or topology of photosynthetic protein assemblies during the photosynthesis process, especially in the PSII-centered problems4, 44-49. PSII is a giant protein with a complex composition, that is around 20 protein subunits in cyanobacteria and plants as well as accessory light-harvesting proteins. Psb28 is an extrinsic protein of PSII and plays an important role in PSII repair50. It protects the RC47 assembly intermediate of PSII. Weisz and co-workers46 used XL-MS to investigate the transient interaction of Psb28 within PSII, and Psb28 was found to bind to cytochrome b\textsubscript{559}. XL-MS was also widely used to investigate the interaction between OCP and PBS, another giant protein complex. The OCP binding site on phycobilisome was probed by several groups using XL-MS to provide models for the structure. Although those models don’t overlap with each other precisely, all of them suggest the binding site is located on the APC core of the phycobilisome9.
1.5 Top-down MS

Bottom-up MS approach has been well established and applied in a wide range of proteomics studies, especially the primary structure sequencing and MS-based footprinting as mentioned in previous paragraphs. In the meanwhile, top-down MS proteomics study is emerging in recent years, allowing for the direct molecular weight measurement of intact proteins instead of proteolytic digestion51. Usually, fragmentation of intact proteins is carried out during top-down analysis to identify protein sequence and PTM. There are several advantages of top-down MS. Frist of all, no tedious sample preparation procedures like digestion are needed, which not only saves time and effort but also introduces less potential artifacts into the mass spectrometer. Secondly, the data processing of top-down MS is very straightforward. Proteolytic digestion usually results in a varied number of peptides based on the protein size and sequence, while the top-down approach targets only a couple of candidates based on the components of the protein complex. Lastly, crucial sequence information that might get lost by using bottom-up MS approach could be identified by the complementary MS method, top-down MS approach. The very hydrophilic peptides are usually lost during desalting LC and the extremely hydrophobic peptides are reluctant to elute during gradient LC. One example is the MS study on chlorosome proteins CsmA and CsmE, light harvesting apparatus in green bacteria. The presence of truncated versions of CsmA and CsmB were detected by matrix-assisted laser desorption ionization (MALDI) mass spectrometry52. In addition, the top-down MS approach has been widely utilized to sequence the integral membrane photosynthetic proteins that are resilient to digestion. MS studies on membrane proteins are discussed in the last part of this chapter.
An innovative form of top-down MS approach called “Native MS” is becoming popular in recent years. The novel aspect of native MS compared to traditional top-down MS is mostly the solvent used to solubilize protein complexes. Traditionally, acid and organic solvent are included in the analysis to increase the ionization efficiency while the protein is no longer in its native state. For native MS analysis, ammonium acetate buffer is used to maintain a neutral pH and a certain salt strength, thus the protein complex can be maintained in a near-native state\(^{53}\). This is especially beneficial for photosynthetic proteins, as almost all photosynthetic proteins are non-covalently associated with different co-factors, and photosynthetic protein complexes are usually composed by protein subunits non-covalently associated together. Our group has successfully utilized native MS to characterize multiple photosynthetic protein complexes. For instance, the stoichiometry of pigments in the antenna protein FMO was determined by native MS\(^{54}\). Native MS successfully analyzed the OCP protein complex with its pigment binding and further revealed that the OCP undergoes a dimer-to-monomer transition upon light illumination\(^{55}\). Later, the concentration effects on oligomerization states of FRP and OCP, two proteins involved in the NPQ process in cyanobacteria, was revealed by native MS\(^{56}\) (See chapter 5 for this study). All the MS methods that are valuable in studying photosynthetic proteins are shown in Figure 1.2.
1.6 Challenges in photosynthetic membrane protein MS study

The major protein machineries involved in photosynthetic process, reaction center and light harvesting antennas complexes, are mostly hydrophobic membrane proteins\(^1\). The information of membrane proteomics can be readily obtained with the assistance of bottom-up MS approach and multi-dimensional separation\(^57\). Considering the hydrophobicity of membrane proteins, detergent or organic solvent are usually added to increase the accessibility of cleavage site during proteolytic digestion\(^56\) (Table 1.1). Alternative enzymes that can function at harsh conditions,
like CNBr, or addition of MS-compatible detergent have been adopted to improve the coverage of intrinsic membrane proteins\(^{58-59}\). However, it is difficult to obtain 100% sequence coverage on membrane proteins, especially the hydrophobic regions. As a complementary approach to bottom-up MS approach, top-down MS approach is even more popular in studying transmembrane photosynthetic machineries, considering the complex composition of photosynthetic proteins\(^{60-61}\). Instead of ubiquitously used silica-based reverse phase column, the polystyrene/divinylbenzene column was preferred when membrane protein needs to be separated\(^62\) (Table. 1.1). Though \textit{de novo} sequencing is not the strong suit of top-down MS, the composition of complex protein samples can be quickly evaluated with high confidence by top-down MS. For example, eleven integral and five peripheral subunits of a 750 kDa PS II complex from the eukaryotic red alga has been successfully characterized by top-down MS\(^63\). We identified a new isoform of β subunit in LH2 from purple bacteria by top-down MS coupled with ECD fragmentation (See chapter 2 for this study)\(^64\).

To investigate the structure, conformation and function of photosynthetic membrane protein, native MS studies on membrane proteins are desired, though only a few studies have been conducted. In the native environment, lipids bilayers are essential to stabilize membrane proteins. Detergents are commonly used in membrane proteins study as a mimic of lipid bilayer. One of the major challenges lies in the universal usage of those detergents that interface with most MS detection techniques. The pioneering native MS work on membrane proteins performed by Barrera et al.\(^65\) shows that a membrane protein complex can be kept intact in the gas phase of a mass spectrometer after shaking off detergent micelles. The optimization of backing pressure and desolvation energy was emphasized for membrane protein native MS experiment\(^66\). For photosynthetic membrane proteins, we successfully observed the intact reaction center
complexes from two purple bacteria, *Rb. sphaeroides* and *B. viridis*, with all the protein subunits as well as several cofactors in the gas phase (See reference 66 and chapter 4). Native MS shows that the bacteriochlorophyll dimer at the core is the tightest bound pigment in both two species, consistent with other observations67. In addition, we found the reaction center from *B. viridis* inclines to bind more bacteriochlorophylls, the special pair and the peripheral ones.

MS-based footprinting has successfully been applied on membrane proteins, including HDX, oxidative labeling and other covalent labeling methods68-70. The footprinting experiment can be carried out in detergent, Nanodisc or nature lipid environment. In chapter 2, we demonstrated how to utilize MS-based footprinting to study hydrophobic photosynthetic proteins in a near-native environment. After reconstituting LH2 in a Nanodisc vehicle, we successfully utilized fast photochemical oxidative labeling to investigate the structure and topology of LH2 in a lipid bilayer71.
Table 1.1 MS-centered strategy for studying membrane proteins

<table>
<thead>
<tr>
<th>Technique</th>
<th>Strategy for Membrane Protein Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein clean-up</td>
<td>Acetone, chloroform/methanol/water72</td>
</tr>
<tr>
<td>Bottom-up MS</td>
<td>Detergent or organic phase added</td>
</tr>
<tr>
<td>(Proteolytic digestion)</td>
<td>Microwave assisted</td>
</tr>
<tr>
<td></td>
<td>Alternative enzymes and chemical like thermolysin, chymotrypsin, CNBr and etc59,73</td>
</tr>
<tr>
<td>Bottom-up MS</td>
<td>Incorporated in Nanodisc71,74 or dissolved in detergent micelle75</td>
</tr>
<tr>
<td>(Footprinting)</td>
<td></td>
</tr>
<tr>
<td>Top-down MS</td>
<td>Polystyrene/divinylbenzene column for separation62</td>
</tr>
<tr>
<td>(Denatured)</td>
<td>Fragmentation schemes: CID, ECD64,76</td>
</tr>
<tr>
<td>Top-down MS</td>
<td>Increased backing pressure</td>
</tr>
<tr>
<td>(Native MS)</td>
<td>Increased desolvation energy66</td>
</tr>
</tbody>
</table>
Chapter 2: Top-down Mass Spectrometry

Analysis of Membrane-bound Light-Harvesting Complex 2 from \textit{Rhodobacter sphaeroides}

This chapter is adapted from the previously peer-reviewed and published first-authored manuscript:

2.1 Abstract

We report a top-down proteomic analysis of the membrane-bound peripheral light-harvesting complex LH2 isolated from the purple photosynthetic bacterium \textit{Rhodobacter (Rb.) sphaeroides}. The LH2 complex is coded for by the \textit{puc} operon. The \textit{Rb. sphaeroides} genome contains two \textit{puc} operons, designated \textit{puc1BAC} and \textit{puc2BA}. Although previous work has shown consistently that the LH2 \(\beta\) polypeptide coded by the \textit{puc2B} gene was assembled into LH2 complexes, there are contradictory reports whether the Puc2A polypeptides are incorporated into LH2 complexes. Furthermore, post-translational modifications (PTM) of this protein offer the prospect that it could coordinate bacteriochlorophyll \textit{a} (Bchl \textit{a}) by a modified N-terminal residue. Here we
describe the LH2-complex components based on electron-capture dissociation (ECD) fragmentation to confirm the identity and sequence of the protein subunits. We found that both gene products of the β polypeptides are expressed and assembled in the mature LH2 complex, but only the Puc1A-encoded polypeptide α is observed here. The methionine of the Puc2B-encoded polypeptide is missing, and a carboxyl group is attached to the threonine at the N terminus. Surprisingly, one amino acid encoded as an isoleucine in both the puc2B gene and the mRNA is found as valine in the mature LH2 complex, suggesting an unexpected and unusual post-translational modification or a specific tRNA recoding of this one amino acid.

2.2 Introduction

The capture and utilization of solar energy is one of the most fundamental processes on Earth. Anoxygenic photosynthesis can occur in the absence of air without producing oxygen1. The photosynthetic complexes of purple phototrophic bacteria have a rather simple modular construction system that often utilizes two basic types of light-harvesting complexes, called light-harvesting complex 1 (LH1) and light-harvesting complex 2 (LH2). These functions to absorb light energy and to transfer that energy rapidly and efficiently to the photochemical reaction centers where it is trapped by photochemistry. LH2 is composed of heterodimeric units, consisting of α, β apoprotein pairs that serve as a scaffold to bind Bchl α and a carotenoid (Car) for optimal energy transfer. Those heterodimers aggregate to produce circular ring structures containing eight or nine heterodimeric units. The LH1 complexes have a similar heterodimeric building block but are comprised of 15 or 16 units that surround the photochemical reaction center complex. The LH1 complex from *Rb. sphaeroides* contains an LH1 dimer with 28 heterodimers78. LH2 complexes are adjacent to the LH1-reaction center (RC) core complex, and together, the two complexes effectively capture the light energy that sustains growth of the
organism. The ratio of LH2 complexes to RC is variable and depends on growth conditions. X-ray crystallography revealed structural data to atomic resolution of two types of LH2 complexes from *Rhodopseudomonas (Rps.) acidophil* and from *Phaeospirillum (Ph.) molischianum*. The structure at 100 K of LH2 from *Rh. acidophilus* was refined to 2.0 Å resolution by Papiz et al. The crystal structure of LH2 from *Ph. molischianum* was determined by molecular replacement at 2.4 Å resolution by using x-ray crystallography. In both structures, the modular α, β-heterodimers form a circular ring structure. LH2 from *Ph. molischianum* forms octamers instead of the nonamers observed in the *Rh. acidophilus* structure. Both types of LH2 complexes contain relatively isolated Bchla molecules parallel to the plane of the membrane that absorb light at 800 nm (B800) and closely coupled Bchla dimers that absorb at 850 nm (B850). One of the major differences of the two crystal structures lies in the nature of B800 orientation: aspartate is the Mg ligand in *Ph. molischianum* as opposed to carboxyl-methionine in *Rh. acidophilus*.

Rhodobacter (Rb.) sphaeroides, a member of the α-3 subclass of proteobacteria, is an exemplary model organism for the creation and study of novel protein expression systems as its genome is sequenced, genetic systems are available, and its metabolism is well characterized. Like many purple phototrophic bacteria, the photosynthetic apparatus of *Rb. sphaeroides* is composed of three multimeric transmembrane protein complexes: the LH2 light-harvesting complex, the LH1-reaction-center complex (RC-LH1), and the cytochrome (cyt) bc1 complex. The 3D structure of a dimeric RC-LH1-PufX complex was determined to 8 Å by x-ray crystallography, and a model was built. Although there is no atomic resolution structure of LH2 from *Rb. sphaeroides* available to date, a projection map of this LH2 clearly shows the nonameric organization of the ring. This is also observed for LH2 from *Rh. acidophilus*, but
different from the octamer-ring structure of LH2 from Ph. molischianum. Theiler et al.85 sequenced the apoproteins of LH2 from Rb. sphaeroides in 1984 and found a degree of heterogeneity at the N-terminus of β subunit, with some chains starting with threonine and others having an additional methionine residue at the N-terminal position. DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1 is described by Choudhary et al.86 and the amino acid sequence predicted by the genome is consistent with the previous protein sequencing result. A few years later, a new operon (designated the puc2BA operon), displaying a high degree of similarity to the original pucBA genes of Rb. sphaeroides, was identified and studied genetically and biochemically by Zeng et al in 200387 (Figure 2.1). Employing genetic and biochemical approaches, they obtained evidence that the Puc2B-encoded polypeptide is able to enter into LH2 complex formation, but neither the full-length Puc2A-encoded polypeptide nor its N-terminal 48-amino-acid derivative is able to enter into LH2 complex formation. In contrast, Wang et al.88 isolated LH2 from mutated strains and found Puc2B and both the N-terminal version and the intact version of the Puc2A-encoded polypeptides. They suggested that the transcription of puc2BA and the assembly of the LH2 complex is independent of the expression of puc1BA, and is only dependent upon the expression of pucC. According to the result from SDS-PAGE, either the first 54 amino-acid residues of the N-terminus or the one containing a 251 residue C-terminal extension of Puc2A encoded polypeptide can be assembled into the LH2 complex. It is possible that the manipulations of genome affect the assembly of LH2 complex, leading to the contradictory results. Later, Woronowicz et al.89 described a proteomic analysis of the expression levels of the various Puc1BA and Puc2BA operon-encoded polypeptides in the LH2 complexes assembled in Rb. sphaeroides. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension is of major abundance. It was also reported that genomes of Rh.
acidophilus and Rhodopseudomonas (R.) palustris contain additional, highly homologous copies of the puc operon encoding the α, β polypeptides of the LH2 complexes. All five copies of the puc operon in R. palustris were expressed and regulated by incident light intensity, whereas only two copies of the puc operon products were detected in LH2 complexes from Rh. acidophilus.

![Sequence alignment of Puc1A- and Puc2A-encoded polypeptides](image)

Figure. 2.1 Sequence alignment of Puc1A- and Puc2A-encoded polypeptides

We applied mass spectrometry (MS) to this problem because MS is now playing a role in intrinsic-membrane protein (IMPs) analyses, and high-throughput proteomics technology can accelerate the understanding of membrane protein structure/function relationships. Precise characterization of whole intrinsic membrane protein (IMPs), however, remains a challenge despite their essential roles in cell biology. The hydrophobicity of IMPs makes them difficult to be analyzed by traditional bottom-up mass spectrometry owing to its bias toward soluble, hydrophilic peptides that are easily recovered during sample processing and chromatography, and that ionize and dissociate well during mass spectrometry. For example, many membrane
proteins are insoluble under the conditions for enzyme digestion, and subsequent steps in analysis could further lead to precipitation.

In this chapter, we report a top-down MS study of the intact LH2 from wide type *Rb. sphaeroides* to identify and sequence this peripheral antenna system. IMP solubility also challenges the “top down” approach in which intact proteins are introduced directly to the mass spectrometer. In early work from Whitelegge et al.92, they studied the seven-transmembrane helix protein bacteriorhodopsin and the D1 and D2 reaction-center subunits from spinach thylakoids and demonstrated the potential of top-down analysis of IMPs. Later, they described using top-down high-resolution Fourier transform mass spectrometry with collision-induced dissociation (CID) to study post-translationally modified integral membrane proteins with polyhelix bundles and transmembrane porin motifs93. Whereas CID fragmentation occurs by increasing the internal energy of peptide/protein ions and causing protons to move, electron-capture dissociation (ECD) generally breaks bonds near the location of a protonated site that can attract the electrons21,51. The top-down analysis on the e-subunit of ATP synthase (AtpH) shows that thermal activation concomitant with electron delivery increased coverage in the transmembrane domain compared to CID fragmentation94.

2.3 Material and Methods

2.3.1 LH2 preparation

Rb. sphaeroides wild-type strain ATCC 2.4.1 was grown photosynthetically at RT in 1 L bottles. The membrane-enriched pellet obtained from ultracentrifugation of the sonicated cells was re-suspended in 20 mM Tris (pH = 8.0) to a final concentration of OD (850) = 50,
solubilized by the addition of lauryldimethylamine N-oxide (LDAO) to a concentration of 1% (w/v), and allowed to incubate for 30 min at room temperature. Solubilization was stopped by dilution of the mixture with 20 mM Tris (pH = 8.0) to a final LDAO concentration of 0.1%. This mixture was ultracentrifuged once again at 200,000xg for 1 h to remove insoluble debris. The supernatant was collected and loaded onto an anion-exchange column (QSHP resin, GE Healthcare, Uppsala, Sweden) that had been equilibrated with 20 mM tris-HCl, 0.1% (w/v) LDAO (pH = 8.0). After washing extensively, LH2 was then eluted with a linear gradient from 100 mM to 500 mM NaCl. Fractions with the highest A_{580nm}/A_{280nm} ratios (greater than 3.0) were pooled, and the accumulated sample applied to a HiLoad™ Superdex™ 200 prep grade column (GE Healthcare). The further purified LH2 was precipitated with acetone and then solubilized with 20% formic acid before being infused into the MS spectrometer.

2.3.2 Top-down LC-MS analysis of LH2

Resins (PLRP/S, 5 µm, 1000 Å) were packed into 100 µm IntegraFrit capillary (Waters Inc., Milford, MA). A NanoAcuity UPLC (Waters Inc., Milford, MA) was used to separate protein subunits. The gradient was delivered by a NanoAcuity UPLC (0–5 min, 15% solvent B; 5–35 min, 15–90% solvent B. Solvent A: water, 0.1% formic acid; Solvent B: acetonitrile, 0.1% formic acid) at a flow rate 1 µL/min. Two mass spectrometers, a hybrid ion-mobility quadrupole ToF (Synapt G2, Waters Inc., Milford, MA) and a 12 T FTICR mass spectrometer (Solarix, BrukerDaltonics, Bremen, Germany) were operated under normal ESI conditions (capillary voltage 1-2 kV, source temperature ~ 100 °C). The typical ECD pulse length was 0.4 s, ECD bias 0.4 V, and ECD lens 10 V. The ECD hollow cathode heater current was 1.6 A. MS parameters were slightly modified for each individual sample to obtain an optimized signal. For introduction to give ECD fragmentation, an Advion Triversa Nanomate sample robot infused the
sample into the 12 T FTICR. Precursor ions were each isolated over a 10 m/z window. Data were processed by using Bruker Daltonics BioTools and Protein Prospector (from the University of California-San Francisco MS Facility web site). Manual data interpretations combined with software tools were adapted to achieve improved sequence coverage. The mass tolerance for fragment ions assignment was 0.02 Da.

2.3.3 puc2B gene identification

Rb. sphaeroides genomic DNA was extracted by Qiagen® DNeasy Plant Mini Kit. *puc2B* genes were PCR-amplified by left primer GCTCCGAGCCCTGATAGTAG and right primer AAGCTGAGCAGAGGGGTCTT. The purified PCR product was cloned and sequenced.

2.3.4 puc2B mRNA identification

Rb. sphaeroides genomic RNA was extracted by TRIzol® Reagent (Life Technologies, Grand Island, NY). Briefly, the cells were broken by ultrasonification in TRIzol® Reagent. After phase separation by chloroform and precipitation by isopropyl alcohol, RNA precipitates were washed by 70% ethanol. TURBO DNA-free™ Kit (Life Technologies, Grand Island, NY) was used to eliminate any remaining DNA contamination. The first strand cDNA was synthesized by RevertAid First Strand cDNA Synthesis Kit (Life Technologies, Grand Island, NY). After synthesis of the first-strand, primer-1 and primer-2 were used to PCR-amplify the *puc2B* sequence. The purified PCR product was cloned and sequenced.

2.3.5 Homology modelling

Homology models of the two subunits were generated by using the Phyre225 online modeling suite. The two subunits were combined, and energy minimization was performed by
The top model was aligned to the crystal structure of LH2 from *Rh. acidophilus* by Pymol (The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.).

2.4 Results and discussion

2.4.1 Composition of mature LH2 complexes

To study the composition of mature LH2 complexes, we purified the whole complex from a photosynthetically cultured wild type strain ATCC 2.4.1 of *Rb. sphaeroides*. There are three major protein components as seen in the chromatogram of the denatured LH2 protein; these components were later identified as the Puc1B-, Puc2B-, and Puc1A-encoded polypeptides by top-down MS (Figure 2.2). The Puc2A α polypeptide was not detected. The reason might either be the Puc2A α polypeptide is not present in mature LH2 complex or our platform failed to detect Puc2A α polypeptide. The β subunits were eluted earlier than the α subunit as the latter is more hydrophobic. Because there is 94% sequence identity of the two β subunits, the elution times of the two β copies are nearly identical. This result is in accord with those of Zeng et al., who also found that only the Puc1A-encoded α subunit exists in the mature LH2 complex. Wang et al. isolated LH2 from mutated strains and found Puc2B- and both the N-terminal version and the intact versions of the Puc2A-encoded polypeptides. Later, Woronowicz et al. found that the Puc2A-encoded polypeptide containing a 251 residue C-terminal extension is a highly abundant protein of the LH2 complex. The large protein fragment they detected does not contain any apparent membrane-spanning regions. They suggested that this peptide is not part of the functional complex and instead arises from *in vivo* enzymatic cleavage, representing an adventitious co-eluent of CNE and readily detected because mass spectrometers have a bias toward detecting soluble peptides. The existence of certain peptides from Puc2A-encoded
polypeptide indicates, however, it may have some assembly role in the complex. The differences between these results are presently not fully understood. It is possible that the growth conditions and the light intensity can affect the expression and assembly of those polypeptides. Nevertheless, the Puc2A-encoded polypeptide is not a major component according to our results. The experimental MW of each subunit were deconvoluted by Bruker Compass DataAnalysis software and shown in Table 2.1.

![Liquid chromatogram of denatured LH2.](image)

Figure 2.2. Liquid chromatogram of denatured LH2.

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Theoretical MW(mono)</th>
<th>Experimental MW(mono)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puc1A polypeptide</td>
<td>5595.0692 Da</td>
<td>5595.0512 Da</td>
</tr>
<tr>
<td>Puc1B polypeptide</td>
<td>5456.8854 Da</td>
<td>5456.8706 Da</td>
</tr>
<tr>
<td>Puc2B polypeptide</td>
<td>5355.8191 Da</td>
<td>5355.8082 Da</td>
</tr>
</tbody>
</table>
2.4.2 Sequence and post translational modifications

Natural photosynthetic organisms have developed a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate.⁹⁶ Most of the antenna systems are pigment-containing, integral membrane proteins. Detailed sequence information of some of those proteins is still not fully known except when there is a high-resolution crystal structure available. Although the MS-based proteomics characterization of the \textit{Rb. sphaeroides} intra-cytoplasmic membrane assembly was reported by several groups,⁸⁹,⁹⁷-⁹⁸ the entire sequence was not identified because 100% coverage was not achieved, which is usually the case for membrane proteins. Those missing regions may play an important role of the function of antenna systems.

We used top-down mass spectrometry to determine the sequence and post-translational modifications (PTM) information of the LH2 complex. Although not every bond of the polypeptides fragmented when we submitted the protein to ECD on a 12 T FTICR mass spectrometer, we found ~ 70% coverage of the sequence. Furthermore, many complementary ions shown in the spectrum and their accurate mass measurements (within a few ppm) provided by the instrument provide high confidence for the results. Unlike CID fragmentation, which occurs by increasing the internal energy of peptide/protein ions until peptide-bond cleavage occurs, electron-based fragmentation (ECD) breaks different bonds near the sites of positive charge where the electron capture occurs, preserving PTM information. The ECD-based top-
down sequencing identifies not only the sequence information of the protein but also the location of the PTMs.

The PTM information of LH2 complex has been of interest for some time. Papiz et al.80 reported the high-resolution crystal structure of \textit{Rh. acidophilus}, and they found that a carboxyl-modified Met1 of the α subunit is ligated to Mg2+ of B800. Our top-down MS investigation of the structure of LH2 and the possible coordination of B800 BChl-\textit{α} shows that the experimental molecular weight of the α subunit is consistent with that predicted from the gene sequence (3 ppm accuracy), clearly indicating there is no carboxylation modification on Met in \textit{Rb. sphaeroides} LH2. We observed some oxidation of methionine, and this was probably introduced during the sample handling. MS/MS with ECD fragmentation provided further evidence that the predicted sequence is correct (Figure 2.3).
The central Mg$^{2+}$ ion chelation in the core of the Bchl a macrocycle helps preserve the planar conformation of the pigment molecule. In principle, oxygen or nitrogen atoms on amino acid side chains (e.g., aspartate, glutamate, asparagine, glutamine, serine, threonine, histidine) or even water can interact with this central Mg atom of BChl a. In the LH2 complex of *Rh. acidophilus*, the ligation of B800 BChl a is accomplished in part by a carboxyl modification on methionine.
whereas in *Ph. molischianum*, the corresponding ligand is aspartate (Asp-6). For *Rb. sphaeroides*, there is no modification of the α-Met, indicating that the N-terminal Met is not the ligand. To obtain a better understanding of the structure, 52 residues (96% of sequence) were modelled with 100% confidence by the single highest scoring template (Figure 2.4A),

suggested that the N terminal region of α subunit of *Rb. sphaeroides* is quite similar to that of *Rh. acidophilus* (Figure 2.4C). The reason they have similar structures but different coordination schemes is not clear. To identify similar regions that may be a consequence of structural relationships, we aligned the sequence of *Ph. molischianum* and *Rh. acidophilus* from RCSB protein data bank to the sequence of *Rb. sphaeroides* we identified. From the sequence alignment result from ClustalW2, the amino acid in *Rb. sphaeroides* is Asp-6 whereas in *Ph. molischianum*, it is asparagine; the former is likely the Mg$^{2+}$ ligand in the LH2 complex (Figure 2.5).
Figure 2.4. Homology model of LH2 from *Rb. sphaeroides*. (A) Sequence alignment to the template (B) LH2 from *Rb. sphaeroides* is shown in green, LH2 from *Rh. acidophilus* is shown in cyan (C) N-terminus structure of two LH2. B800 is coordinated by Carboxyl-Met from *Rh. acidophilus*. (D) Valine from β subunit of *Rb. sphaeroides* is shown in red.

Figure 2.5. Sequence alignments of LH2. (a) α subunits from different LH2 complexes: (1), *Rh. acidophilus* (2), *Rb. sphaeroides* (3), *Ph. molischianum* (b) Puc1B- and Puc2B-encoded polypeptides from *Rb. sphaeroides*.

Similarly, the molecular weight obtained from the mass spectrum is consistent with the theoretical MW predicted from the amino-acid sequence of the Puc1B-encoded peptide without
any post-translational modifications (3 ppm accuracy) (Table. 2.1 and Figure 2.6). The MW observed for the Puc2B-encoded peptide, however, is 101.0589 Da less than predicted. The mass difference doesn’t match a simple modification with or without removal of the N terminal methionine. To address this discrepancy, we analyzed the fragmentation patterns and found that the methionine on the N terminus is removed and a carboxyl group is attached to threonine. In addition, the fourteenth amino acid counting from the N terminus, is a valine instead of the isoleucine that is coded in the gene sequence (Figure 2.7). The fragment ions (C$_{13}^{+}$, C$_{14}^{+}$, Z$_{36}^{3+}$) displayed on the spectrum confirm this assignment.

Figure 2.6 Sequence coverage and ECD product-ion spectrum of Puc1B-encoded polypeptides.
We were surprised to find carboxylation on the threonine residue at the N terminus. The high mass fragments (Figure 2.8) clearly show that losses of OH, COOH, COONH, and then threonine from N terminus, consistent with this modification. The simulated isotopic pattern of fragments on the N terminus is also consistent with the experimental patterns (Figure 2.9). To
verify our interpretation of the dissociation spectrum, we undertook bottom-up sequencing. The N terminal peptide has a COOH modification on threonine according to CID (Figure 2.10).

Figure 2.8. High mass fragments of ECD product-ion spectrum of Puc2B-encoded polypeptides.
\[\text{C}_{346}\text{H}_{385}\text{N}_{14}\text{O}_{15}\text{S}_{1}^{+} \rightarrow \text{C}_{325}\text{H}_{384}\text{N}_{15}\text{O}_{14}\text{S}_{1}^{+} + \text{COH} \]

Experimental Pattern

[M-COOH+2H]^+

Simulated Pattern

\[\text{C}_{346}\text{H}_{385}\text{N}_{14}\text{O}_{15}\text{S}_{1}^{+} \rightarrow \text{C}_{326}\text{H}_{385}\text{N}_{15}\text{O}_{14}\text{S}_{1}^{+} + \text{OH} \]

\[\text{C}_{347}\text{H}_{385}\text{N}_{14}\text{O}_{15}\text{S}_{1}^{+} \rightarrow \text{C}_{326}\text{H}_{385}\text{N}_{15}\text{O}_{14}\text{S}_{1}^{+} + \text{CO} \]

Experimental Pattern

[M+2H-OH]^+

Simulated Pattern

C_{325}H_{385}N_{15}O_{14}S_{1}

\[\text{C}_{346}\text{H}_{385}\text{N}_{14}\text{O}_{15}\text{S}_{1}^{+} \rightarrow \text{C}_{326}\text{H}_{385}\text{N}_{15}\text{O}_{14}\text{S}_{1}^{+} + \text{CO} \]

Experimental Pattern

[M+2H-CO]^+

Simulated Pattern

C_{326}H_{385}N_{15}O_{14}S_{1}

1771 1772 1773 1774 1775 m/z

1775 1776 1777 1778 1779 1780 m/z

1771 1772 1773 1774 1775 m/z
Proteins can carry several PTMs, and some proteins may display large numbers of different modifications101. New modifications102 and unexpectedly extensive PTMs103 can occur, and they are poorly accounted for in existing databases. There are several reports about PTMs of light-
harvesting proteins. The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry revealed gene products with variable post-translational modifications. Michael et al. found acetylation and phosphorylation on spinach light-harvesting chlorophyll protein II aside from the removal of methionine at the N terminus. A proteomics study of the green alga *Chlamydomonas reinhardtii* light-harvesting proteins shows the presence of differentially N-terminally processed forms of Lhcbm3 and phosphorylation of a threonine residue at the N terminus. For *Rh. acidophilus*, the ligation of B800 BChl a is accomplished in part by a carboxyl-methionine on the N terminus.

Carboxylation generally happens on glutamate residues, which is required for function of factors II, VII, IX, and X, protein C, protein S, and some bone proteins. Although our study identified the carboxylation of a threonine residue at the N terminus of Puc2B, the functional role of this PTM is not clear. The assignments of the N terminal fragments further confirm the sequence and PTM information of this polypeptide (Figure 2.8). Zeng et al. found that the ratio of B800 to B850 of the LH2-2 complex in mutant ΔPUC2BA (pUC2ASPhoA) is greater than that of the LH2-1 complex in mutant ΔPUC2BA (0.75 and 0.67, respectively). This result suggests that the Bchl a moieties have a slightly altered binding environment in the Puc2B-encoded complex compared to that of the Puc1B-encoded peptide. For the β subunit, 38 residues (75% of sequence) were modelled with 99.9% confidence by the single highest scoring template. The first twelve amino acids are not covered in the homology modeling because there is high sequence discrepancy of the N terminal region of β subunit. It is possible, however, that the carboxyl group serves to coordinate the Mg of B800 in the LH2 complex, increasing the ratio of B800 to B850.
2.4.3 Substitution of Valine for Isoleucine

Initially, we could not match the experimental molecular weight of Puc2B to the molecular weight predicted by the genome, even after removal of methionine and attachment of a carboxyl group on the N terminal threonine. As discussed above, an analysis of the C and Z ions that are produced upon ECD shows that the 14th amino acid from N terminal is valine, not the isoleucine predicted from the gene sequence. The experimental MW matches the theoretical value within 2 ppm, confirming this assignment. Interestingly, we observed two polypeptides, mostly as the “valine version”, but there is also a small amount of the “isoleucine version” in a roughly 10:1 ratio (Figure 2.11). The sequence chemically determined by Theiler et al. matches the predicted sequence of the Puc1B protein. It is likely that their samples also contained the Puc2B protein but did not obtain sequence from it due to the blocked N-terminus.

![Mass spectrum of parent ions of Puc2B-encoded polypeptides.](image)

The question now arises as to the origin of this isoleucine to valine conversion. The spinach chloroplast genome reports a codon for Ser at position 2 whereas Phe was detected at position 2 of PetL of chloroplast-encoded subunits. The authors believe there might be either a DNA
sequencing error or a RNA editing event. To eliminate the possibility of a mutation happening during culturing of cells over many generations, we sequenced the puc2B gene, and we found it to be the same as in the NCBI database (i.e., the 14th codon is ATC, which codes for isoleucine). Another possibility to explain the substitution is RNA editing in which the codon is changed after transcription but before translation. To study the Puc2B-encoded peptide at the transcriptional level, we sequenced the mRNA that is encoded for this region. The result shows that there is no variation at the mRNA level, and the mRNA also indicates isoleucine (See Figure 2.12). Another possibility is a mis-sense error, which results in the substitution of one amino acid for another probably by mischarging the isoleucine tRNA with valine. However, all other isoleucines in the protein, all of which are coded for by the ATC isoleucine codon, appear to be correctly inserted, so the only way that this could be the case is for a context-specific change to be made in just this one place. Another possibility is that the amino acid residue is not valine but its isomer, norvaline, which is sometimes abundant110-111. It is also likely that it is a PTM process. The existence of two forms of the polypeptides also suggests that the demethylation is not 100% complete. Thus, we suggest the isoleucine-to-valine conversion is either a posttranslational modification in which a methyl group is cleaved from isoleucine or a norvaline substituion.
Figure 2.12. DNA (a) and RNA (b) Puc2B operon sequencing result and trace files around 14th valine region.
Although there are very few protein demethylation cases reported, one well-known example is histone demethylation mediated by the nuclear amine oxidase homolog LSD1. To the best of our knowledge, the post-translational demethylation process of isoleucine to valine has not been reported previously. The norvaline is usually found in place of leucine instead of isoleucine. According to the homology modelling structure, the valine is located in the loop region of the β subunit (Figure 2.4D). The biological significance of this conversion of the Puc2B-encoded polypeptide is not clear at this stage, but given the unprecedented nature of this substitution, more study is needed. After this conversion, three amino acids on the N terminus are different and the rest of the amino acids are the same for the two copies of the β polypeptides.

Although there are very few protein demethylation cases reported, one well-known example is histone demethylation mediated by the nuclear amine oxidase homolog LSD1. To the best of our knowledge, the post-translational demethylation process of isoleucine to valine has not been reported previously. The norvaline is usually found in place of leucine instead of isoleucine. According to the homology modelling structure, the valine is located in the loop region of the β subunit (Fig. 3D). The biological significance of this conversion of the Puc2B-encoded polypeptide is not clear at this stage, but given the unprecedented nature of this substitution, more study is needed. After this conversion, three amino acids on the N terminus are different and the rest of the amino acids are the same for the two copies of the β polypeptides (Fig. 4B).
2.5 Conclusions

The composition and PTMs of LH2 of purple phototrophic bacteria likely play important roles in absorbing light energy effectively and in allowing the organism to adapt to a changing environment (i.e., light intensity). In this study, a top-down proteomic analysis of the membrane-bound peripheral light harvesting complex LH2 isolated from WT *Rb. sphaeroides* confirms the identity and sequence of these protein subunits. We showed that polypeptide encoded by puc1A is the sole source of the α subunit in the LH2 complex. Consistent with previous reports, this work also shows that both LH2 β polypeptides coded by the puc1B and puc2B gene are assembled into LH2 complexes. Overall, the complex has a similar structure to those in other purple bacteria. Unusual PTMs occur for this protein. For example, a carboxyl group is attached to the N-terminal Thr along with removal of the Met on the Puc2B-encoded polypeptide. The carboxyl group, instead of the carboxyl-methionine in *Rh. acidophilus*, likely coordinates Bchl a in *Rb. sphaeroides*. The unexpected substitution of valine to isoleucine in Puc2B-encoded polypeptide is likely to be a PTM or a norvaline substitution. The biological significance of this conversion is currently not clear and will be the subject of future studies.
Chapter 3: Mapping the Topology and Conformation of an Intrinsic Membrane Protein in a Lipid Bilayer by Fast Photochemical Oxidation of Proteins (FPOP)

This chapter is adapted from the previously peer-reviewed and published first-authored manuscript:

3.1 Abstract

Although membrane proteins are crucial participants in photosynthesis and other biological processes, many lack high resolution structures. Prior to achieving a high resolution structure, we are investigating whether MS-based footprinting can provide coarse-grained protein structure by following structural changes that occur upon ligand binding, pH change, and membrane binding. Our platform probes topology and conformation of membrane proteins by combining MS-based footprinting, specifically fast photochemical oxidation of proteins (FPOP), and lipid Nanodiscs, which more similar to the native membrane environment than are the widely used detergent micelles. We describe here results that show a protein’s outer membrane regions are...
more heavily footprinted by OH radicals whereas the regions spanning the lipid bilayer remain inert to the labeling. Nanodiscs generally exhibit more protection of membrane proteins compared to detergent micelles and also less shielding to those protein residues that exist outside the membrane. The combination of the two technologies, FPOP and Nanodiscs, is a feasible approach to map extra-membrane protein surfaces, even at the amino-acid level, and illuminate intrinsic membrane protein topology.

3.2 Introduction

Membrane proteins are involved in crucial cellular functions, including photosynthesis1, respiration113 and signal transduction114. They represent \(\sim 30\%\) of open reading frames115 of many genomes, and an increasing number of them are important drug targets116. Membrane proteins perform their functions via interaction with other molecules or with themselves to undergo conformational changes important in signaling, for example. Membrane proteins are highly flexible and dynamic, enabling them to perform different tasks with high efficiency but making structure determination difficult. Membrane protein structures are notoriously difficult to resolve compared to water-soluble proteins117. Because the membrane proteins are hydrophobic, they are less stable in water than in a membrane, and detergent are needed for solubilizing and stabilizing them. Detergents, however, can affect protein conformation and hinder protein interaction with other molecules. Compared to the large number of soluble proteins, high-resolution structures of membrane proteins are available only for a small fraction of them118.

Various detergents are used to extract membrane proteins from their native lipid bilayer and to solubilize, stabilize and enclose them in micelles119. Unfortunately, detergents are not an ideal mimic of cellular environment. The different micelle sizes and curvature restrictions compromise
protein stability and, in some cases, proper protein functioning120. In addition, an excess micellar phase may interfere with the interaction with other molecules and interfere with analytical methods. To overcome these problems, reconstitution of membrane protein in various membranes including monolayers, bicelles, and liposomes have been pursued.

One approach that provides a better mimic of a native environment and controllable stoichiometry of target membrane protein is the lipid-protein Nanodisc121. Here, two membrane scaffold proteins (MSP) form a double belt to enclose a lipid bilayer and form a water-soluble “disc” into which target membrane proteins can be incorporated. Under self-assembly conditions, the oligomeric state of a target protein and the nature of the lipids included in the bilayer can be controlled, allowing a membrane protein to be probed from both the cytoplasmic and the periplasmic sides of the “membrane”. Thus, a Nanodisc provides a simple and robust means for rendering target membrane proteins in aqueous buffer while keeping the protein in a native-like bilayer environment122.

Membrane topology can be viewed as “an important halfway house between the amino-acid sequence and the fully folded three-dimensional structure”123. Individual transmembrane helices can insert into a lipid bilayer in different ways, and because the proteins are dynamic, they can change conformation and position. Various mass spectrometry (MS)-based labeling methods are now being widely adopted to study those issues; one of them, cross-linking, has become effective in probing protein-protein interactions43. As a complementary approach, MS-based footprinting, which includes hydrogen/deuterium exchange (HX) and •OH and other radicals, serve to “label” most of the amino acids and illuminate protein-protein, and protein-ligand interactions.124 HX is widely used for soluble proteins, and the extent of exchange reports on H bonding and solvent accessibility of the protein backbone32, 125. HX can also be used for membrane proteins in the
presence of detergent micelles provided it provides fast isolation, digestion efficiency, and solubility. Footprinting, done with the FPOP platform, can label amino acids with OH radicals from photolysing hydrogen peroxide. The amino-acid reactivity with hydroxyl radicals is broad-based although the reactivity with amino acid side chains can vary by three orders of magnitude. The dominant product is a +16 adduct, but there are other pathways and products. FPOP probes solvent accessibility of different regions of proteins in a fraction of a second and at the amino acid level. The labeling is carefully controlled so that every fraction or plug of a flowing protein buffer is labeled only once. Compared to the more widely used HDX, the irreversible labeling provides flexibility in digestion as there is no concern for back exchange and good potential for general membrane protein studies, as lipid removal prior to MS analysis is relatively easily accomplished.

To our knowledge, a few different methodologies regarding oxidatively labelling of membrane proteins have been reported previously. Sze et al. adopted a Fenton reaction to oxidize the outer membrane porins and revealed the voltage gating of porin OmpF in vivo. Konermann et al. carried out the first FPOP oxidative labeling of a membrane protein, bacteriorhodopsin, in a natural lipid bilayer environment. They only detected oxidative modification of methionines located in solvent-accessible loops that are highly oxidized compared to those located in the transmembrane regions, probably because the protein is rich in Met. A subsequent study revealed the conformational change of denatured bacteriorhodopsin in SDS compared to the native state.

More recently, X-ray radiolytic footprinting was also used to study structural water and conformational change of membrane proteins. For example, rhodopsin was dissolved in detergent and radiolysis-produced OH radicals labeled both solvent-accessible and solvent-
inaccessible regions. The labeling of solvent-inaccessible regions may be due to tightly bound structural water molecules that are ionized by the radiation, produce •OH, and label nearby residues134, “elucidating in vivo structural dynamics in integral membrane protein by hydroxyl”.

In this study, we applied MS-based FPOP footprinting to a membrane protein complex in a near-native environment. As a model protein, we used the light-harvesting complex 2 (LH2) from \textit{Rhodobacter (Rb.) sphaeroides}, an intrinsic membrane protein with ~18 transmembrane helices135. We used Nanodiscs to “house” the LH2 in aqueous buffer prior to and during labeling by hydroxyl radicals. The integrated workflow is shown in figure 3.1. We compared the solvent accessibility of LH2 from FPOP with that in detergent micelles and identified labeling at the residue level. Our results show that Nanodiscs generally provide a better protection of the transmembrane core region of protein and less shielding for the outer membrane region.

Figure 3.1. The integrated Nanodisc-FPOP MS workflow. Cells are shown by Lamellar chromatophores in \textit{Rhodospirillum photometricum}136. LH2 is shown by PDB 1NKZ, MSP is shown by PDB 2A01.
3.3 Materials and Methods

3.3.1 LH2 Preparation.

Rb. sphaeroides wild-type strain ATCC 2.4.1 was grown photosynthetically at room temperature (RT) in 1 L bottles, and LH2 was isolated as previously described. Briefly, lauryldimethylamine N-oxide (LDAO, 1.5%) was added to the resuspended membrane pellets with stirring for an hour at RT. After centrifugation, the supernatant was loaded onto an anion-exchange column (QSHP resin, GE Healthcare, Uppsala, Sweden), and a linear gradient elution was performed. The fractions containing LH2 were loaded onto HiLoad Superdex 200 prep grade column (GE Healthcare). The protein-to-pigment ratio was measured from the absorbances at 850 nm (Q_y absorption band of bacteriochlorophyll <i>a</i>) and at 280 nm (protein absorption band); fraction showing a ratio greater than 3.0 were collected.

3.3.2 MSP Preparation.

A pMSP1E3D1 plasmid was purchased from Addgene (Cambridge, MA). Purification was performed as previously described. Briefly, after breaking the cells by ultra-sonication, the supernatant was loaded onto Ni-NTA agarose column (QIAGEN, Valencia, CA). After extensive washing and elution, the purity of MSP was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis.

3.3.3 Self-assembly of Nanodiscs.

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) dissolved in chloroform (Avanti, Alabaster, Alabama) as dispensed into a disposable glass tube and allowed to dry in a fume hood. The tube was placed in a vacuum desiccator overnight to remove residual solvent. A buffer
containing cholic acid (Affymetrix, Santa Clara, CA) with a concentration twice that of the lipid was added to the lipid film followed by sonication and gentle heating to solubilize the lipid. The MSP and LH2 were added to the lipid buffer in a 2:1:120 ratio and incubated at room RT for 30 min. After adding amberlite XAD-2 (Sigma Aldrich, St. Louis, MO), the mixture was gently shaken for 2 h at RT until the self-assembly process was complete. Finally, the Nanodisc preparation was purified by HPLC with a Superdex 200 prep grade column (GE Healthcare).

3.3.4 Steady-state absorption spectroscopy.

Steady-state absorption spectra of the LH2 were recorded at RT using a Perkin-Elmer Lambda 950 UV-Vis spectrophotometer. Prior to measurements the LH2-Nanodisc sample was dissolved in saline buffer (PBS) containing 10 mM phosphate, 140 mM NaCl and 2.3 mM KCl (Sigma Aldrich, St. Louis, MO). For comparison, a solution of free LH2s was dissolved in the same buffer containing 0.02% n-Dodecyl-β-D-Maltopyranoside (DDM).

3.3.5 Time-resolved fluorescence spectroscopy.

B850 BCHl α fluorescence decay dynamics were measured using time-correlated single photon counting (TCSPC) setup based on a stand-alone Simple-Tau 130 system (Becker&Hickl, Germany), equipped with a PMC-100-20 detector (GaAs version with full width at half maximum of instrument response function <200 ps), PHD-400 high speed Si pin photodiode (as triggering module), motorized Oriel Cornerstone 130 1/8 m monochromator with ruled 1200 l/mm grating blazed at 750 nm (Newport, USA), and a manual filter wheel. Excitation pulses at 590 nm (Qx band of BCHl α) were delivered by ultrafast optical parametric oscillator Inspire100 (Spectra-Physics, USA) pumped with Mai-Tai, an ultrafast Ti:Sapphire laser (Spectra-Physics,
USA), generating ~90 fs laser pulses at 820 nm with a frequency of 80 MHz. The final frequency of the excitation beam was set to 8 MHz (125 ns between excitations) by using a 3980 Pulse Selector from Spectra-Physics. To avoid polarization effects, the excitation beam was depolarized using an achromatic DPU-25 depolarizer (Thorlab, USA). The beam was focused to ~1 mm circular spot at the sample; to assure annihilation-free conditions, the beam intensity was set to ~10\(^{10}\) photons/cm\(^2\) per pulse. The signal was collected at right angle to the excitation. The sample absorbances at 850 nm were adjusted to ~0.1.

3.3.6 Dynamic light scattering.

The sample was filtered (0.2 μm filter) prior to analysis by dynamic light scattering using a Malvern Zetasizer Nano S/ZS instrument (Worcestershire, UK.) to estimate the diameter of the Nanodisc. The diameter of empty-Nanodisc was also measured as a control at 25 °C. Data were fitted using the Zetasizer software (Worcestershire, UK) to estimate the diameter of the particles.

3.3.7 Footprinting of Nanodisc-LH2 and detergent micelle-embedded LH2.

The LH2 concentration was estimated by using the molar absorptivity of B850 bacteriochlorophyll \(a^{138}\), and the MSP concentration was calculated according to the predicted molar absorptivity at 280 nm and used for the following experiments\(^{139}\). The LH2-Nanodisc sample was dissolved in PBS buffer to the specifications: 2 μM of Nanodisc-LH2, 350 μM of histidine, 5μM of [leu5]-enkephalin (reporter peptide), and 20 mM of H\(_2\)O\(_2\). The LH2 dissolved in PBS buffer containing 0.02% DDM, 2μM of LH2, 2μM of MSP, 350 μM histidine, 5μM of [leu5]-enkephalin (reporter peptide), and 20 mM H\(_2\)O\(_2\). To minimize any pre-oxidation by H\(_2\)O\(_2\), it was added immediately before the laser irradiation. The FPOP experiment was performed as
previously described140. The energy of the KrF excimer laser (GAM Laser Inc., Orlando, FL) was adjusted to 22.3 mJ, and sample flow rate was 22 μL/min to ensure a 20% exclusion volume. After laser-induced labeling, each sample was collected in a vial containing 10 mM catalase and 20 mM Met to reduce leftover H\textsubscript{2}O\textsubscript{2}. Control samples for both Nanodisc- and detergent-LH2 were handled in the same manner without laser irradiation. All experiments were performed in triplicate. For each collection, the buffer was divided into two portions. Formic acid (1%) was added to one portion prior to desalting with a Sep pak C18 (Waters Inc., Milford, MA). The other portion was precipitated with acetone and dissolved in buffer containing 100 mM Tris, 1 mM CaCl\textsubscript{2}, and 0.02% RapiGest SF. Digestion was at 37 °C for 1 h with chymotrypsin (Promega Corporation, Madison, WI) and subsequently quenched by FA (1%).

3.3.8 MS analysis

Peptide mixtures were trapped by a guard column (Acclaim PepMap100, 100 μm × 2 cm, C18, 5 μm, 100 Å; Thermo Fisher Scientific, Breda, Netherlands) and then fractionated on a custom-packed Magic C18 reversed-phase column. The MS analysis was with a Thermo Scientific™ Q Exactive™ hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen Germany). Peptides were eluted with a 85 min, 250 nL/min gradient coupled to the nanospray source. A 50 min, 250 nL/min gradient was adopted for the reporter-peptide analysis. The default charge state was 2, and the scan range was from m/z 380-1500. Mass spectra were obtained at high mass resolving power (70,000, FWHM at m/z 200) and the top 15 most abundant ions corresponding to eluting peptides per scan were submitted to CID in the ion trap, with charge-state rejection of unassigned and >8 ions enabled. Precursor ions were added to a dynamic exclusion list for 8 s to ensure good sampling of each elution peak.
3.3.9 Data analysis

The oxidation extent was calculated with the equation shown below. Briefly, the strategy relied on an integrated peak area relation between of un-oxidized and oxidized peptides. The integration of peak area was performed by using Xcalibur™ Software. (Thermo Fisher Scientific) For consistency, only +16 modifications were considered in this study as the abundance of di-oxidized products was either low or below the detection limit of the instrument.

\[
\text{Normalization factor} = \frac{\text{Oxidation level of reporter peptide in LH2-Nanodisc}}{\text{Oxidation level of reporter peptide in LH2-micelle}}
\]

\[
\text{Oxidation level of LH2 peptides in micelle} = \frac{\sum I_{ox}}{\sum I_{ox} + \sum I} \times \text{Normalization factor}
\]

\[
\text{Oxidation level of LH2 peptides in Nanodisc/reporter peptide} = \frac{\sum I_{ox}}{\sum I_{ox} + \sum I}
\]

3.3.10 Sequence alignment, topology prediction and homology modeling

Sequence alignment of LH2 from different purple bacteria was performed by an online web server141. The TOPCONS web server was adopted for prediction of LH2 topology142. Homology models of LH2 from \textit{Rb. sphaeroides} were generated, as previously described44. The heterodimer models (α and β) were based on PDB 1NKZ and processed by Pymol143 (The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.).

3.4 Results and discussion

3.4.1 Characterization of the Nanodisc containing LH2
The model membrane protein in this study is LH2, a protein complex belonging to the photosynthetic antenna family whose primary function is to harvest light and transfer absorbed energy. It is important to characterize the protein in Nanodiscs and detergent prior to footprinting to insure that our comparisons are valid and that the Nanodisc indeed contains the intact complex. An advantage of using LH2 is the Nanodisc-protein can be convincingly characterized by absorption and fluorescence spectroscopies. Ideally, LH2 preparations in Nanodiscs and detergent media should show identical absorption spectra with characteristic well-developed and resolved electronic absorption bands for bound pigments (i.e., B800 and B850 bands at 800 and 850 nm associated with bacteriochlorophyll \(a\), and carotenoid (spheroidene) absorption band between 480 and 515 nm). This essential analysis shows that the pigment environments are not fundamentally altered in the two preparations (Figure 3.2).

Figure 3.2. Steady-state absorption spectrum of LH2 in detergent micelles and Nanodiscs.

In addition, the intact LH2 complex can be probed by time-resolved fluorescence using the B850 emission. The B850 fluorescence decay lifetime of this LH2 complex is typically ~ 1 ns\(^{144}\), and any significant variation of this value will indicate perturbation of the B850
bacteriochlorophyll \(a\) array. Furthermore, different excitonic coupling in the B850 exciton will alter the rate of radiative decay. Alternatively, a significant reduction of fluorescence lifetime of the Nanodisc-LH2 would indicate that the Nanodisc bundles more than one LH2 complex and allows formation of oligomeric LH2 structures. As shown in Figure 3.3, however, the B850 fluorescence lifetimes are essentially the same for both preparations and fit the expected time range for monomeric and not structurally deficient or altered LH2. To add certainty, we also used the A850/A280 ratio as a marker of the LH2 purity. The ratio for LH2 in detergent (3.05) should be higher than in in the Nanodiscs (2.34) because the MSP also contributes to the absorption at 280 nm and lowers the ratio. Furthermore, a calculation based on molar absorptivity indicates that the “Nanodisc” contains one LH2 complex and a certain percentage of “empty” Nanodisc is also present.

![Figure 3.3: Time-resolved fluorescence of LH2. Fluorescence decay of (A) detergent and (B) Nanodisc LH2 preps. Fluorescence was monitored at maximum of the B850 emission band. The fits (red lines) consist of mono-exponential decay function convoluted by instrument response function (IRF). Fluorescence decay lifetimes obtained from data fitting are indicated in graphs.](image)

53
To complete the characterization of the preparation, we used dynamic light scattering (DLS) to characterize rapidly the particle size of the Nanodisc145. The homogeneity of empty- and LH2-embeded Nanodiscs is revealed by the size distribution (Figure 3.4). The result (~10 nm) is consistent with a previous report146 and demonstrates that the nanoidsc-LH2 has a slightly larger dimension compared to the empty-Nanodisc. This perturbation is probably caused by expansion of the disc induced by the LH2 residing in its middle, and it is consistent with a previous report that shows that addition of target membrane protein into Nanodiscs slightly enlarges their dimensions147.

![Size distribution by number/empty-nanodisc and Size distribution by number/LH2-nanodisc](image)

Figure 3.4. Dynamic light scattering of empty-Nanodisc and LH2-Nanodisc

\subsection*{3.4.2 Application of FPOP to membrane proteins}

Fuller advantage of Nanodiscs as a convenient and powerful vehicle for membrane proteins, may be achieved by combining the technology with protein footprinting. Now that a variety of membrane proteins have been successfully reconstituted into Nanodiscs148-151 and characterized
biophysically, we can seek higher resolution structural information to complement data on the size and activity of target membrane proteins. High motivation exists for this goal because no crystal structure exists for many membrane proteins including the LH2 of interest here.

“Footprinting” can be done by NMR and HDX. Stefan et al.152 showed, for example, that membrane-protein bond orientations in Nanodiscs can be obtained by measuring residual dipolar couplings with the outer membrane protein. Jorgenson, Rand, Engen and coworkers probed the conformational analysis of γ-glutamyl carboxylase by HDX, demonstrating the applicability of HDX to Nanodiscs153. Subsequently, Jorgenson and Engen154 investigated binding of γ-glutamyl carboxylase to a propeptide, employing good separation and HDX. Recently, Adkins and coworkers studied the membrane interactions, ligand-dependent dynamics, and stability of cytochrome P450 in Nanodiscs by HDX155. In the HDX studies, it is required to disassemble rapidly the Nanodisc and remove the excess lipid from solution prior to MS analysis while minimizing back exchange, which can be a nagging problem. We are advocating irreversible labeling with the hydroxyl radical to permit, prior to the MS analysis, easier lipid removal such as acetone precipitation, chloroform/methanol extraction, and other forms of offline desalting by use of reversed-phase cartridges. Indeed, we adopted acetone precipitation, and we could remove most of the lipid after processing. Moreover, we could obtain complete coverage (100\%) in the digestion of the α and β subunits in LH2 (Figure 3.5) and extend the analysis from the peptide to the amino-acid residue level in some cases. Our results show that the regions that are likely to be in the cytoplasmic or periplasmic space undergo a higher extent of oxidative labeling compared to the regions of the protein deeply embedded in the Nanodisc. The MSP proteins that wrap around the lipid bilayer also get labeled to different extents for different regions.
3.4.3 Membrane protein in detergent micelle vs. Nanodisc

Because both lipids and detergents are prone to oxidative modifications by •OH, we measured the hydroxyl radical reactivity in the two environments normalized to the labeling yield of a reporter peptide (i.e., the five amino-acid leu enkephalin)\(^{156-157}\). In this way, we can compensate for any differences in protein reactivity introduced by changing from detergent to Nanodisc. We found that the oxidation level of the reporter peptide in Nanodiscs is 1.67 times greater than with the DDM micelles under the same experimental conditions (Figure 3.6). Due to the lack of high resolution structure, we then used homology modeling with the known structure of LH2 from \textit{Rh. acidophilus} \(^{64}\) and obtained a result with the high certainty (99.9%) to assist the discussion of the results.
Although large amounts of lipids are present in solution when footprinting a protein in Nanodiscs, their alkyl tails are embedded and not highly available for reaction with the free radicals. Coarse-grain molecular dynamics simulations reveal that the lipids in the Nanodisc have higher acyl tail order than lipids in a lamellar bilayer phase158. The detergent, however, exists as a monomer at low concentration, and when its concentration is increased above the critical micelle concentration (CMC), it self-associates to form non-covalent micelles. Although a spherical detergent micelle is often viewed as uniformly packed, they are not, and the octyl glucoside micelles contain a distribution of surfactant molecules. Instead of a static shape as usually assumed, those different size micelles fluctuate between spherical and near-ellipsoidal shapes159. And not all hydrophobic tails are buried or point toward the center of the micelle; rather the micelle surface is rough and heterogeneous. Furthermore, the state of detergent micelles and of detergent-protein micelles is relatively dynamic, undergoing rapid exchange of detergent and solvent160. Thus, a detergent is more likely to quench •OH than a Nanodisc.
Considering now the protein complex in a Nanodisc, we find, as expected, that the solvent-exposed terminal regions of LH2 undergo greater oxidative modification than the transmembrane regions (Figure 3.7). Although this is the case for both the detergent and the Nanodisc, we expect that the hydrophobic regions of a membrane protein will be protected less in a detergent micelle than in Nanodiscs, and this is seen for all regions of LH2 where the oxidation level is larger in the presence of detergent micelles than of Nanodiscs. Nevertheless, the overall reactivity trends are similar, suggesting that detergent micelles do provide a similar environment to the lipid bilayer. A previous study shows that detergent molecules in a globular micelle can exchange over hundreds of nanoseconds with detergent molecules in a micelle bound to a protein161. For example, the dynamic fluctuations of OmpA protein are 1.5 times greater in the micellar environment than in the lipid bilayer, and this increased overall mobility may be attributed to the increased diffusion properties and reduced packing of detergent molecules162. The differences we observed are in accord with those results, suggesting that membrane proteins in detergent micelles have more flexibility and solvent accessibility compared to in a lipid Nanodisc. For the methionine residues located in the transmembrane region of LH2, the Nanodisc affords even more protection than detergent micelles. This region is embedded in the lipid bilayer of a Nanodisc but only closely associated with hydrophobic tails in the detergent (Figure 3.8).
Figure 3.7a. Oxidation level of peptides from the α subunit. Peptides in detergent are shown in blue, and in Nanodiscs are shown in red. The lower panel shows the consensus prediction of membrane protein topology by TOPCONS web server.
Figure 3.7b. Oxidation level of peptides from β1 subunit. Peptides in detergent are shown in blue, and in Nanodiscs are shown in red. The lower panel shows the consensus prediction of membrane protein topology by TOPCONS web server.

Figure 3.8. Oxidation level of Met in detergent micelle/Nanodisc environment. Met were labeled in orange and the proposed position of Met are shown as orange dots. Proposed N-terminal of β subunit (MTDDLNKVWPSG) is shown as red line. Mets in detergent are shown in blue, Nanodisc are shown in red.
3.4.4 Methionine as a marker in membrane protein labeling by FPOP

A previous study of bacteriorhodopsin reports extensive oxidation of methionines located in its solvent-accessible loops\(^1\)\(^\text{32}\). For LH2 in our study, Met is also relatively reactive, but the protein reactivity occurs on many residues besides Met. For each heterodimer (α and β) composing the ring of LH2, there are three Mets. One is in the transmembrane region, and the other two are near the N-terminus (Figure 3.8). LH2 in a lipid bilayer exhibits higher protection for those regions compared to in a detergent micelle. According to the homology modeling, the N-terminal Met of the α subunit is not protruding into the outer region of the membrane but instead is bent toward the inner region of a lipid bilayer\(^6\)\(^4\) where it coordinates the central Mg\(^{2+}\) ion of a nearby bacteriochlorophyll \textit{a}, and preserves the planar conformation of the pigment molecule.

The axial coordination of a central Mg\(^{2+}\) ion is crucial for all the photosynthetic chlorophyll-proteins, in terms of both structure and function\(^1\)\(^\text{63}\). A carboxyl modified Met1 of the α subunit from \textit{Rhodoblastus} (\textit{Rh.}) \textit{acidophilus} is ligated to Mg\(^{2+}\) of B800\(^8\)\(^0\) whereas for \textit{Phaeospirillum} (\textit{Ph.}) \textit{molischianum} \(^8\)\(^1\), the corresponding ligand is Asp6. For both these structures, the N-terminal regions of the α subunits exist as a loop structure but are closely associated with the transmembrane regions owing to its coordination with B800. In our homology model, the N-terminal of α subunit of the LH2 from \textit{Rb. sphaeroides} is also closely associated with the transmembrane region (Figure 3.8). The Met located in the transmembrane region of the protein shows a similar oxidative modification to the one located on the N-terminal of the α subunit. The first few amino acids on the N-terminal end of the β subunit are not covered in the homology model (Figure 3.9). We suggest this Met is pushed out of the membrane and undergoes
relatively high oxidative modification. As a reference, the methionine-containing peptides from the MSP of the Nanodisc show a 0.15-0.60 range of oxidation. We conclude that the extent of oxidative modification of the highly reactive Met is a good marker for the topology of transmembrane proteins on the FPOP platform.

Figure 3.9. Sequence alignments of LH2. α and β subunits from different LH2 complexes: (1), Rb. sphaeroides (2), Rh. acidophilus (3), Ph. molischianum

3.4.5 Locating the membrane protein in the lipid bilayer

Membrane proteins are closely associated with lipid bilayers and integral transmembrane domains are more deeply embedded than exterior regions. It is intriguing to probe the interaction of lipid bilayer with different domains of membrane proteins. The lipid hydrophobic tails are closely associated with the LH2 hydrophobic transmembrane domains, and their lengths determine the thickness of the membrane core (typically ~ 3 nm). The thickness of the polar head of lipids on each side is ~ 1.5 nm. Siuda et al. observed that the Nanodisc thickness is smaller near the MSP double belt, owing to the perturbation from boundary lipids. The average thickness of MSP1E3, which is the MSP we used for the LH2-Nanodisc, obtained by applying small-angle X-ray scattering (SAXS), is 4.6 nm. Previous studies showed the Stokes diameter of MSP1E3 is 12.1 nm, whereas SAXS gives a value of 12.8 nm. LH2, mapped by atomic force microscopy, shows average center-to-center distances between complexes within...
the dimer as 7.7 nm. The above values show that although the LH2 has a relatively large transmembrane domain, it could be positioned in the middle of the MSP1E3D1 Nanodisc. Those values also strongly suggest that only a single LH2 complex can be incorporated into the Nanodisc. This fixed stoichiometry of LH2 in the disc is also carefully controlled by using an appropriate ratio of LH2 and MSP in the assembly process.

Although an increasing number of high-resolution crystal structures of membrane proteins are published every year, it is necessary to picture the topology of membrane protein sitting in the dynamic membrane bilayer. To do this, we adopted the TOPCONS web server for a consensus prediction of the structural and functional features, membrane-inside and outside (i and o, respectively). In addition, we used a biological hydrophobicity scale to predict the free energy of membrane insertion centered on each position in the sequence. Experimental data, however, are needed to confirm the topology and conformation of membrane proteins. Oxidative labeling shows that the terminal ends of the two transmembrane helices are more heavily solvent-accessible than are the integral regions. The oxidative modification levels are generally in accord with the free-energy trends. For transmembrane regions, little or no oxidative modification occurs. Further, LH2 in the Nanodisc shows a lower level of oxidation compared to the one in detergent, suggesting better protection of LH2 in a lipid bilayer (Figure 3.7).

The Met in the N-terminal end of the α subunit, as discussed above, is pointed inward to coordinate a pigment molecule. Thus, the oxidation level of this Met is not high compared to the other Met residues in the protein assembly (Figure 3.8). The C-terminal end of the α subunit is highly modified even though no highly reactive methionine is present. This region, as modeled
with 99.9\% confidence to the crystal structure of the LH2 from *Rh. acidophilus*, and it shows a helix-loop structure sticking out of the “ball” structure (Figure 3.7a). This region has an extended conformation that passes between the β-chains of the neighboring heterodimers, and the large occupancy volume indicates high flexibility80. The extracted ion chromatogram (EIC) of the oxidized form (+16) shows one major and two minor peaks (Figure 3.10). The product-ion spectra (see Figure 3.11 a-e) reveal that the first two minor peaks represent the peptide with oxidatively modified Tyr, Ser and Val and the major peak represents the peptide with an oxidized Pro. Because the elution time for peptides containing oxidized Tyr, Ser or Val are overlapping, we cannot differentiate the modification extents of those residues in detergent or in the Nanodisc. The rate constants of Pro, Ser and Val with •OH are of the same order of magnitude but an order of magnitude lower than that for Tyr128. The high oxidative extent of Pro and low level of Tyr should be related to the protein conformation of this region. The 2.0 Å crystal structure of the LH2 from the template shows that the glucoside head groups of the rhodopsin glucoside carotenoid molecule (RG1) are located at the cytoplasmic surface whereas the second carotenoid (RG2) is at the periplasmic surface80 (Figure 3.12). Raman scattering, however, shows no bands that could be attributed to RG2169. Later, the authors claimed that this RG2 site is actually occupied by a mix of BOG and LDAO molecules, owing to incomplete detergent exchange. This “RG2” was located adjacent to the Tyr residues, as shown in Figure 6. Our results also suggest that this Tyr site is relatively solvent-inaccessible owing to its association with detergents/lipids. The crystal structure shows Pro is facing inward and the other residues are either shielded by the detergent/lipid molecules (Tyr-Tyr in PDB 1NKZ, Tyr-Tyr in homology model) or adjacent to the C-terminal end of the β subunit (Gly in PDB 1NKZ and Ser in the homology model) with the exception of valine (Figure 3.12a-c). We propose that the
association of transmembrane helices with detergents/lipids in the “hole” or center of the LH2 ring complex is different than outside, similar to the lipids adjoining the MSP in the Nanodisc where the thickness of the disc is smaller. This may be a result of distorted packing of the lipids to minimize any hydrophobic mismatch at the protein-lipid interface166, 170. It is interesting that the Pro exhibits lower oxidative modification in Nanodiscs, which is consistent with the behavior of other peptides/residues in LH2. Other residues (Tyr, Ser and Val) in this peptide, however, exhibit slightly higher levels of oxidation in Nanodiscs than in detergent, suggesting that the lipids provide better protection of proline compared to the detergent micelle, while the other residues are slightly more exposed in the lipid bilayer (Figure 3.12d). The detergent micelle might hinder the solvent accessibility of a number of residues on the surface of the C-terminal end of the α subunit, while relatively more regularly packed lipids in the Nanodiscs exhibit lesser blocking.

Figure 3.10. EIC of m/z = 649.3074 (PAYYQGSAAVAAE). The oxidized residues are marked in red.
Figure 3.11. MS/MS fragmentation spectrums of different peptides as shown in the picture
Figure 3.12. The homology model (panel c) and PDB 1NKZ (panel a and b) were used to present the residues being discussed in the paper. The “second carotenoid” (RG2) is shown in yellow as spheres. Pro in both structures are shown in orange; Tyr-Tyr in PDB 1NKZ and the corresponding Tyr-Tyr in homology model are shown in blue; Gly and Lys in PDB 1NKZ and the corresponding Ser and Val in homology model are shown in red. Panel d shows the oxidation level of proline vs. other residues. Peptides in detergent are shown in blue, and in Nanodiscs are shown in red.

The C-terminal loop domain of the β subunit (AAAATPWLG), does not extend from the membrane but more likely exists at a water/lipid interface and bends inward (Figure 3.13), considering the low oxidatively labeling (Figure 3.7b). Although Trp, a highly reactive residue with •OH, is present in this subunit, no prominent oxidative modification occurs for it (Figure 3.7b). MS/MS shows only the terminal Pro, Trp and Leu are oxidatively modified (Figure 3.11f-h) but not Gly, which is inert to FPOP.
Figure 3.13. Peptides on the C-terminal of α subunits are shown in red in both the homology model (PAYYQGSAAVAAE) and PDB 1NKZ (YWQGGVKKAA). Peptides (PWL) on the C-terminal of β subunits are shown in blue in both the homology model and PDB 1NKZ. (Full length C-terminal cannot be shown here because it is not covered 100% in the homology model)

The consensus from TOPCON also indicates that the N-terminal end is much less hydrophobic than the C-terminal end. The former contains an N-terminal Met that undergoes the highest oxidative modification of all the Mets (Figure 3.7). This Met in the β subunit has higher solvent-accessibility than the others. Although this region is not covered in our homology model64, it may exist, on the basis of LH2 from *Rh. acidophilus*,80 as an “elongated” peptide region attached to the homology model (Figure 3.8). This region extends beyond the membrane and has good solvent accessibility (Figure 3.14). The remaining part of the LH2 is approximately 5 nm in length (Pymol), a length that is nearly equal to the width of the Nanodisc (4.6 nm)166 (Figure 3.15).
Figure 3.14. Proposed borderline between the solvent accessible domains and the domains that are embedded in hydrophobic tails of lipids. The heterodimer is shown by the homology model and the half ring structure is shown by PDB 1NKZ. Proposed position of β subunit N-terminal (MTDDLNKVWPSG) is shown in purple in the isolated heterodimer, the proline in C-terminal of α subunit is shown in red and the C-terminal of β subunit is shown in blue. The perturbed lipids packing inside the ring is presented here as cartoon.

Figure 3.15. Measurement of solvent inaccessible region of LH2 by Pymol. PWL on the C-terminal of β subunit is shown in blue, highly oxidized Pro from α subunit is shown in red.

The final question we want to address is the topology difference of the two β subunits which could be crucial for the function of LH2. The function of the second copy of β subunits as previously investigated by amplifying and cloning the puc2BA operon of Rb. sphaeroides. The resulting LH2 is spectroscopically distinct from the Puc1BA encoded LH2 with a blue-shifted B850 absorption band at 846 nm. Another study found that Puc2AB-encoded LH2 are predominant under high light and in the early stages of acclimation to low light. To assess the
solvent accessibility and topology of the two β subunits, we compared the oxidation levels of the N-terminal peptides from the two. We used the longer peptide on the N terminal end for this comparison as the signal intensity of the shorter β2 peptide was too low. Because a highly reactive Met is present on the N-terminal end of the β1 subunit and not on the β2 end, it is difficult to make a fair comparison. No oxidation of Val and Trp occurs for the β1 subunit, whereas ~10% of oxidized Val or Trp occurs in the β2 subunit (Figure 3.16). This result suggests that the regions adjacent to Val and Trp of the β2 subunit are more exposed to the cytoplasmic space than is β1. The role of these two copies of β is still not fully understood at this stage, and this study provides another perspective.

Figure 3.16. Oxidation level of N-terminal peptides from both β subunit. The oxidized residues are shown in red. Peptides in detergent are shown in blue, and in Nanodiscs are shown in red.
3.5 Conclusions

We describe here an MS-based platform to map the topology and conformation of an intrinsic membrane protein complex. To the best of our knowledge, this is the largest transmembrane assembly that has been successfully inserted into Nanodiscs. Although this large protein complex has overall ~18 transmembrane helices and most are embedded in the lipid bilayer, there is only one transmembrane helix for each subunit. As the outer-membrane structure is short, it has little higher order structure, affording an opportunity to understand, for example, steric shielding at the interface of lipid/water. We probed the LH2 topology and conformation in both lipid Nanodics and detergent micelles. On the basis of the oxidative-modification extents of peptides/residues, we conclude that Nanodiscs generally provide better protection for LH2 than do detergent micelles. For the residues that are located at the membrane interface, there is also less shielding in the Nanodisc system. Nevertheless, Met shows high modification propensity and may be a good marker for comparing solvent accessibility of different regions. Sample handling can be more considered with FPOP footprinting than with HDX. Lipid Nanodiscs offer an environment with accessibility from both sides of the membrane and the opportunity to assess topology and conformation of membrane protein in a near native-state. Thus, we think the FPOP-Nanodisc platform is a promising experimental tool for studying membrane protein topology. It opens the door for studying membrane protein interactions with other molecules, for determining the conformational changes induced by various factors, and investigating the lipid influence on membrane proteins.
Chapter 4: Mass Spectrometry

characterization of reaction center

from *Blastochloris viridis*——the first

integral membrane protein complex
determined by X-ray crystallography

4.1 Abstract

The reaction center from *Blastochloris viridis* is the first integral membrane protein complex determined by X-ray crystallography and has been studied extensively since then. It is composed of four protein subunits, H, M, L and cytochrome as well as co-factors, including bacteriopheophytin, bacteriochlorophyll, menaquinone, ubiquone-9, carotenoid and Fe. In this study, we utilized mass spectrometry to study this reaction center protein via bottom-up sequencing to top-down ligand-binding analysis. The results show a series of mutations on this protein complex and the unusual alteration and extension on the C-terminus of the M-subunit. This reaction center exhibits not only a strong ability to bind the special pair but also a tendency to preserve the two peripheral bacteriochlorophylls as shown by the native MS result.
4.2 Introduction

Membrane proteins play essential roles in various cellular process. Thirty percent of naturally occurred proteins are predicted to be membrane proteins. However, membrane proteins are not friendly to most of the characterization techniques owing to their hydrophobic properties171-172. In early years, researchers worked on predicting the structure of membrane proteins based on their own unique sequences, an algorithms analysis173. Nowadays, those tools are easily accessible on the internet and is being routinely used for membrane protein structure prediction142. However, experimental results on membrane protein structures are still desired. The first membrane protein structure revealed by its X-ray crystal structure at atomic resolution is the reaction center from \textit{Blastochloris viridis}174.

With the development of genomics and proteomics, up to date, more than 600 unique membrane protein structures are solved by X-ray crystallography175. Crystallography is still the primary method in providing detailed information for the structure of membrane proteins and their important ligand binding. The selection and purity of detergent molecules are crucial for obtaining those atomic resolution structures176. Although mass spectrometry (MS) cannot provide an atomic resolution structure, it is generally applicable to all membrane proteins. It is especially useful in determining the isoforms of membrane proteins as crystal structure determinations usually deliver structures of only one form of the membrane proteins. Thus, MS has been widely utilized to study membrane proteins and their protein constituents to obtain the sequence information. For example, our group successfully utilized MS-based techniques to extract the components and PTM information of an integral membrane protein, light harvesting complex 2 from purple bacteria64.

76
In recent years, the emergence of native MS endowed the mass spectrometer with the power to decipher the topology, structure and dynamics of membrane proteins66, 177-178. After using collisional events to shake off the detergent micelles around a membrane protein complex, the intact membrane protein complex can be detected with a quadrupole time-of-flight (Q-TOF) MS66. In this experiment, the membrane proteins are dissolved in ammonium acetate buffer to which has been added a MS-friendly detergent. Then the membrane protein solution can be directly introduced into the electrospray source of the mass spectrometer66. The protocol maintains the integrity of the membrane protein complex after shaking off the detergent micelles. In the photosynthetic protein area, this native MS technique is especially desired, as reaction centers and light harvesting complexes, the two-major players in photosynthesis process, are mostly transmembrane protein complexes with many cofactors non-covalently interacting with the protein scaffold. Our team has demonstrated an example using this technique to characterize the reaction center from \textit{Rhodobacter sphaeroides} in lauryl-\(\beta\)-D-maltoside (DDM) micelles67.

As mentioned in the first paragraph, the reaction center from \textit{Blastochloris viridis} is the first membrane protein obtained with an atomic resolution structure,174 and 30 X-ray crystallographic structures of this reaction center have now been published. This protein has been a well-accepted model membrane protein to evaluate new crystallographic techniques179-181. Here, we describe the use of MS to study this model membrane protein for two purposes. Firstly, we want to verify the components and PTM/mutation information of this protein complex. Secondly, we want to evaluate the native MS platform for studying photosynthetic reaction centers, probing the topology as well as the co-factor binding, laying groundwork for future studies on transmembrane photosynthetic membrane proteins.
Unexpectedly, we identified an unusual extension on the C-terminal of M subunit as well as a series of mutations on all four subunits. In addition, we observed the intact reaction center in the gas phase and showed that increasing the collisional energy gradually stripped off the co-factors associated with this protein complex until four bacteriochlorophylls remained, exhibiting a strong binding ability to the protein scaffold.

4.3 Materials and Methods

4.3.1 Cell culture and reaction center preparation

B. viridis strain DSM 133 cells were grown anaerobically in 1:1 YPS/RCV media and harvested. A Branson 450 sonifier was used to break the cells. After sonication, the sample was centrifuged at 10 000 × g for 1 h at 4 °C using a Sorvall SS-34 rotor to pellet the cell debris. The supernatant was spun at 450 000 × rpm for 4 h at 4 °C using a Beckman Type 70 Ti (BT) rotor. After pelleting the membranes, 30% (v/v) lauryldimethylamine N-oxide (LDAO, Sigma) was added to the membrane pellets resuspension. The resuspension was stirred at 1.5% (v/v) final LDAO concentration at room temperature for ~1 hr followed by centrifugation (450 000 × rpm for 1 h at 4 °C using a Beckman Type 70 Ti (BT) rotor). The supernatant was kept and loaded on to HiTrap Q HP anion-exchange column (GE Healthcare) and eluted with a gradient of NaCl-containing buffer (20mM Tris). The separation was further elaborated by elution from a Sephacryl S-200 (GE Healthcare) gel filtration column previously equilibrated with a buffer containing 100 mM NaCl (20mM Tris).

4.3.2 Top-down LC-MS

For intact protein MS analysis, the experiment was conducted by using the protocol described in a previous publication. Briefly, the purified reaction center was precipitated by
acetone, and the pellet was solubilized in 40% formic acid right before the analysis. After separation on custom-packed capillary column (PLRP/S, 5 µm, 1000 Å, ~10cm) (Waters Inc., Milford, MA), a hybrid ion-mobility quadrupole TOF (Synapt G2, Waters Inc., Milford, MA) was used to analyze the molecular weight of protein subunits.

4.3.3 Bottom-up LC-MS

Cyanogen bromide (CNBr) cleavage of reaction center was performed following a published protocol93. The product was vacuum dried and then dissolved in 10 µL 8 M urea in preparation for following enzymatic digestion. Peptide mixtures were trapped by a guard column (Acclaim PepMap100, 100 µm × 2 cm, C18, 5 µm, 100 Å; Thermo Fisher Scientific, Breda, Netherlands) and then fractionated on a ACQUITY UPLC Peptide BEH C18 Column (10 K psi, 130 Å, 1.7 µm, 75 µm X 100 mm, Waters Corporation, Milford, MA). The MS analysis was with a Thermo Scientific™ Q Exactive™ hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen Germany). Peptides were eluted with a 120 min, 250 nL/min gradient coupled to the nanospray source. The default charge state chosen for the MS was 3, and the scan range was from \(m/z \) 380-1500. Mass spectra were obtained at high mass resolving power (70,000, FWHM at \(m/z \) 200) and the top 15 most abundant ions corresponding to eluting peptides per scan were submitted to CID in the ion trap, with charge-state rejection of unassigned and > 8 ions enabled. Precursor ions were added to a dynamic exclusion list for 8 s to ensure good sampling of each elution peak.
4.3.4 Native MS analysis of reactions center

Buffer exchange assisted by a 100 kDa MWCO filter (Millipore Amicon Centrifugal Filters, Billerica, USA) was conducted on the purified reaction centers. After 5 cycles of concentration-dilution, 10 μL of the mixture was loaded into an offline electrospray capillary (GlassTip 2 μm ID, New Objective, Woburn, USA). The sample solution was injected to a hybrid ion mobility quadrupole time-of flight mass spectrometer (Q-IM-TOF, SYNAPT G2 HDMS, Waters Inc., Milford, MA). The instrument was operated in the sensitive mode under gentle ESI conditions (ES387, Hudson, New Hampshire, Thermo Scientific, source temperature 37 °C). The sampling cone and extraction cone voltages were adjusted to reach the best signal for protein complexes. The pressure of the vacuum/backing region was 5-6 mbar. The instrument was externally calibrated up to 10000 m/z with a NaI solution. The peak picking and data processing was performed in Masslynx (v 4.2, Water Inc, Milford, MA). For IM experiments, the gas flow rate was 50 mL/min, the ion mobility separation (IMS) wave height was 40 V, and the IMS wave velocity was 700 m/s.

4.3.5 MS data processing

The top-down MS raw data file was combined and smoothed in Masslynx (v 4.2, Water Inc, Milford, MA). The mass list with intensities was exported and saved as a txt file for re-plotting and data analysis. Massign software package was used to assign peaks in reaction center mass spectra183. The bottom-up MS data were processed by PEAKS software and searched against the \textit{B. viridis} proteomics database. For ion mobility MS experiment, the drift-time information from native MS ion-mobility experiments was converted into CCS by considering the molecular weight and charge state of the protein assemblies184-185.
4.4 Results and discussion

4.4.1 Top-down MS analysis of denatured reaction center

Although more than a dozen crystallographic structures of this reaction center are available, we still want to examine the components by top-down MS, to remove any concerns about contaminants during the purification process as well as to examine the possible existence of isoforms. We observed a total of four protein components by top-down LC-MS. All four protein subunits from the reaction center, H, M, L and cytochrome exhibit a discrepancies of the experimental MW to the theoretical one (Figure 4.1) (the calculated MW based on the genome186 and experimental MWs are listed in Table 4.1). The MW discrepancies on H, L and cytochrome may be ascribed to mutations or the presence of PTMs. Such do not readily explain the more than 600 Da MW discrepancy on the M subunit. Thus, we decided to use bottom-up MS to decipher the unusually large MW discrepancy on the M subunit.

Figure 4.1. Mass spectra of the four subunits from reaction center (\textit{B. viridis})
Table 4.1. Comparison of molecular weights (MW) determined by top-down MS and genomic sequence

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Experimental (Da)</th>
<th>Theoretical (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>28549</td>
<td>28526</td>
</tr>
<tr>
<td>M</td>
<td>36713</td>
<td>36035</td>
</tr>
<tr>
<td>L</td>
<td>30495</td>
<td>30447</td>
</tr>
<tr>
<td>Cytochrome</td>
<td>40612</td>
<td>40443</td>
</tr>
</tbody>
</table>

4.4.2 Bottom-up MS analysis of reaction center

To map those MW discrepancies on amino acid sequence, we utilized a combination of chemical and enzyme-cleavage reagents, CNBr and trypsin, to locate any possible PTMs and mutations. Many mutations are located on all four subunits, and unexpectedly, the C terminal alteration and extension was identified on the M subunit. Rosak and co-worker187 reported the intraspecies evolution of reaction center over the 14 years in the laboratory from the same strain that we studied. They identified a total of 16 amino acid mutations by comparing the genome sequence of the current active strain and the glycerol stock strain from 14 years ago. In this work, we identified more than 20 mutations by MS sequencing (Table 4.2). One of the typical mutation types is “methylation/demethylation” as seen by the alteration between D and E, and V and L. The reason for those alterations are not clear; it could be the evolution of genome in the laboratory, or a change of codon after transcription but before translation during the RNA editing.
Table 4.2. List of mutations that we identified on the four subunits of reaction center. For example, the forty-fourth amino acid on H subunits is shown as H44.

<table>
<thead>
<tr>
<th>Position</th>
<th>H44</th>
<th>H55</th>
<th>H126</th>
<th>H128</th>
<th>H158</th>
<th>H163</th>
<th>H186</th>
<th>H215</th>
<th>H216</th>
<th>H252</th>
<th>L66</th>
<th>L152</th>
<th>L187</th>
<th>L250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted</td>
<td>V</td>
<td>D</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>L</td>
<td>S</td>
<td>E</td>
<td>E</td>
<td>S</td>
<td>S</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>L</td>
<td>E</td>
<td>D</td>
<td>L</td>
<td>L</td>
<td>F</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>M4</th>
<th>M7</th>
<th>M27</th>
<th>M30</th>
<th>M36</th>
<th>C64</th>
<th>C68</th>
<th>C180</th>
<th>C192</th>
<th>C196</th>
<th>C199</th>
<th>C331</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted</td>
<td>Y</td>
<td>I</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>A</td>
<td>T</td>
<td>I</td>
<td>M</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>Experimental</td>
<td>W</td>
<td>V</td>
<td>E</td>
<td>L</td>
<td>L</td>
<td>D</td>
<td>P</td>
<td>Q</td>
<td>V</td>
<td>R</td>
<td>T</td>
<td>Q</td>
</tr>
</tbody>
</table>

The most surprising finding is not the large number of mutations, but the seven-amino acid alteration plus seven-amino acid extension on the C-terminus of the M subunit (Figure 4.2). When we identified the large MW discrepancy of M subunit by top-down approach, we posited that PTMs to be the most likely reason. Owing to the hydrophobicity of the M subunit, we first used CNBr to cut the protein into large sections and then used trypsin to cleave those long peptides into smaller pieces. In addition, we considered the report that dilute acid can cleave at aspartic acid188. Because of these cleavage processes, we could observe several peptides mapping the whole region of this C-terminal extension (Figure 4.2, See Figure 4.3 for product-ion (MS/MS) spectra).
Figure 4.2 (A) C-terminal sequence on the M subunit identified by MS (B) Sequence coverage on the C-terminus of the M subunit.
The core subunit D1 in reaction center (PSII) from cyanobacteria is firstly synthesized with a C-terminal extension and must be processed by a C-terminal peptidase before incorporation into PSII and final assembly. In higher plants, this core subunit D1 is essential not only for the PSII assembly but also for the formation of supercomplexes. Here, we also found the extension of C-terminal on the reaction center from purple bacteria. The evolutionary relationship of reaction center among cyanobacteria, higher plants and purple bacteria could be an intriguing topic for future studies.

Figure 4.3 Product-ion (MS/MS) spectra of peptides on the C-terminus of the M subunit. The fragment ion assignment is performed by PEAKS software.

88
4.4.3 Native MS analysis of reaction center

Native MS analysis on intrinsic membrane proteins is an emerging and quickly developing field177,191. Native MS enables us to analyze the reaction center in near-native state191. The reaction center is dissolved in ammonium acetate buffer with the addition of DDM. The mass spectra show that the intact RC can be observed in the gas phase with/without co-factors (Figure 4.4). Under medium collisional energy, we can “shake off” the detergent micelles and observe a series of peaks corresponding to intact reaction center protein scaffold binding to different number of co-factors (See spectrum in Figure 4.4A). Owing to the mild analysis conditions, various numbers of water or ammonium can remain with the reaction center, causing small increases in the experimental MW compared to the theoretical one. Increasing the collisional energy in the Trap region of the mass spectrometer leads to the gradual loss of co-factors (Figure 4.5). Under the most vigorous conditions, the reaction center can be completely stripped of co-factors, leaving only the protein scaffold (Figure 4.4B). In addition, we found that the reaction center protein scaffold with four bacteriochlorophylls comprises a stable complex in the gas phase, producing the most intense peaks during medium collisional energy and remaining during application of the largest collisional energy available on the instrument (Figure 4.4).
Figure 4.4 Native mass spectrum of reaction center under (A) medium collisional energy (The first peak series represents the RC protein binding to the special pair) (B) the highest collision energy that can be achieved
Our previous analysis on a different reaction center from *Rb. sphaeroides* shows that reaction centers can be observed in the gas phase in a near-native state, and they have a strong tendency to preserve the bacteriochlorophyll special pair. Here, we observed that the reaction-center protein from *B. viridis* also strongly binds to the special pair as shown in fig 4.4a. This new reaction center investigated here, however, tends to preserve more co-factors, four bacteriochlorophylls, including the special pair and some peripheral ones (Figure 4.4, 4.5). Those two reaction centers must adopt a similar overall architecture and protein-pigment interactions. The different results obtained by native MS analysis might be attributed to the extra cytochrome in the reaction center from *B. viridis*, which stabilizes and protects the co-factors in the protein complex.

Unfolded protein complex ions undergo more collisions with the neutral gas in an ion mobility chamber and, therefore, exhibit a larger collisional cross section (CCS) than the theoretical one. Here, we observed the ion mobility-MS (IM-MS) measurements of CCS on reaction center proteins are larger than the theoretical one. In addition, the measurement exhibit a linear relationship between charge state and protein size, indicating the partial unfolding of the reaction center complex in the gas phase (Figure 4.6). A linear relationship between charge state and CCS has been confirmed by multiple studies. In brief, the reaction center we observed in the gas phase might be partially unfolded regarding its crystal structure.
Figure 4.5. Loss of the peripheral pigments, carotenoid, quinone, and Bacteriopheophytin. The highlighted peak represents the intact RC carrying four bacteriochlorophylls. The four bacteriochlorophylls bound to the protein remain as the most abundant component under these conditions.
Figure 4.6 Ion mobility MS measurement of CCS of reaction center at different charge states.

4.5 Conclusions

The reaction center from *B. viridis* is one of the most well-studied intrinsic membrane proteins, and it has been utilized as a model membrane protein in the development of new analytical approaches. We found that this membrane protein, however, might not behave exactly as we expected. Many mutations were located on the proteins, including alteration between valine and leucine, aspartic acid and glutamic acid and so forth. In addition, the unusual alteration and extension on the C-terminus of the M subunit occurs, including a total of 14 amino acids. This result is not consistent with the reported crystallographic structures, and the reason for the discrepancy is not clear at this stage. In addition, this reaction center can also be observed in the gas phase at near-native state just like the one from *Rb. sphaeroides*, exhibiting a tendency of preserving all four bacteriochlorophyll molecules as a “special quartet”.

93
Chapter 5: Native mass spectrometry analysis of oligomerization states of FRP and OCP: Two proteins involved in the cyanobacterial photoprotection cycle

This chapter is adapted from the previously peer-reviewed and published first-authored manuscript:

5.1 Abstract

The orange carotenoid protein (OCP) and fluorescence recovery protein (FRP) are present in many cyanobacteria, and regulate the essential photoprotection cycle in an antagonistic manner as a function of light intensity. We characterized the oligomerization states of OCP and FRP by using native mass spectrometry, a technique that has the capability of studying native proteins under a wide range of protein concentrations and molecular masses. We found that dimeric FRP (dFRP) is the predominant state at protein concentrations ranging from 3 μM to 180 μM, and that higher order oligomers gradually appeared at protein concentrations above this range. The OCP, however, demonstrates significantly different oligomerization behavior. Monomeric OCP
(mOCP) dominates at low protein concentrations, with an observable population of dimeric OCP (dOCP). The ratio of dOCP to mOCP, however, increases proportionally with the protein concentration. Higher order OCP oligomers form at protein concentrations beyond 10 µM. Additionally, native mass spectrometry coupled with ion mobility analysis allowed us to measure protein collisional cross sections (CCS) and interrogate the unfolding of different FRP and OCP oligomers. We found that monomeric FRP exhibits a roughly one-stage unfolding process, in accord with its C-terminal bent crystal structure. The structural domain compositions of FRP and OCP are compared and discussed.

5.2 Introduction

Oligomerization of proteins is a common phenomenon; 35% or more of the proteins in a cell are oligomeric. This behavior is advantageous for protein evolution because it opens opportunities for new function and control. The strength and duration of association depend on the nature of the protein and various experimental variable (e.g., T, pH, and concentration). Oligomerization also occurs for photosynthetic proteins, which are involved in solar energy capture and storage. An example is chlorophyll a-chlorophyll c2-peridinin-protein (apcPC), one of the major light harvesting complexes in the dinoflagellate Symbiodinium. Size exclusion chromatography (SEC), blue native gel electrophoresis (BN-PAGE), and native mass spectrometry (MS) all demonstrate that it exists as a trimer. Nondenaturing electrophoresis of light-harvesting complex 2 from a purple bacterium revealed the presence of dimers, trimers, and even supercomplexes. These examples provide valuable insights into the higher-order assemblies of and interactions among the different components of a photosynthetic apparatus. The oligomerization states of many photosynthetic proteins, whether they be monomers, oligomers, or co-exist as multi-oligomeric states, however, still remain largely unclear.
Photosynthesis starts with light-energy absorption by pigment-protein antenna complexes and continues with transfer to reaction centers for photochemistry. The regulation of energy transfer is crucial for sustainable photosynthesis because excess energy, if not properly dissipated, may damage the photosynthetic machinery and lead to photoinhibition and cell death. In many cyanobacteria, the excess excitation energy absorbed by phycobilisome (PBSs) antennae is dissipated through a nonradiative pathway. This pathway starts from the absorption of blue light by the orange carotenoid protein (OCP) to induce a color and conformational change of the OCP from an orange (OCPO) to a red form (OCPR). The OCPR is competent for PBS binding, forming a PBS-OCPR quenching complex. Quenching is terminated by the action of a fluorescence recovery protein (FRP), which facilitates the conversion of OCPR back to OCPO, thereby expelling OCP from the PBS. The OCP is the first photoactive protein identified to use a carotenoid as the photoresponsive chromophore. The crystal structure of OCP reveals an antiparallel homodimer. Each monomer is composed of two domains that encompass a keto-carotenoid: an α-helical N-terminal domain (NTD) and an α helix/β sheet C-terminal domain (CTD). Although dimerization of OCP may be an artifact of crystallization, native MS, which does not require protein crystallization, reveals the existence of both dimeric and monomeric OCP. The oligomerization of FRP, like that of OCP, is also not well understood. Most of the FRP sequences in cyanobacterial strains contain 106 to 111 amino acids. In Synechocystis sp. PCC 6803, the first Met (GTG) encoded by slr1964 gene can be considered as the first Met of the FRP and the fourth Met coincides with the first Met of most of the homologs. Using a series of Synechocystis mutants, Gwizdala et al. compared “shorter” and “longer” versions of FRP. The
results suggest that the longer version FRP (beginning at Met1) synthesized in *Synechocystis* is less active than the shorter version, and that the starting Met for the shorter version is Met26. Remarkably, FRP exists in two different oligomeric states in the same crystal unit: dimeric and tetrameric, and the dimer is in two different conformations. Based on co-immunoprecipitation and docking simulation results, one dimeric FRP (dFRP) appears to be the active form whereas the tetrameric form may be inactive.

Thus, the oligomeric states of OCP and FRP remain an open question. Here we report the use of native MS to probe the oligomeric state of FRP and OCP in solution, and to investigate further how concentration affects the oligomeric states of those proteins. Native MS is emerging for the characterization of proteins, especially large protein assemblies that are recalcitrant to crystallization. Although native MS does not provide resolution at the atomic level, its broad mass range and ability to analyze multiple species simultaneously makes it a powerful tool for interrogating protein and cofactor stoichiometries, protein topologies, and ligand-protein interactions.

One classical example is the characterization of the 4-oxalocrotonate tautomerase protein, which was originally reported as a pentamer. A hexamer, however, was later observed with X-ray crystallography, consistent with native MS. Determination of protein oligomeric states by native MS, however, is challenging to interpret when oligomers dissociate during desolvation or form as non-specific adducts in the spray. The former possibility can be avoided by carefully optimizing sample cone and collisional voltages to maintain the complex intact. For the latter, protein concentration seems to be an important factor. For example, native MS identified urease as an \((\alpha\beta)_{12}\) assembly that readily disassembles into \((\alpha\beta)_3\) subunits, supporting an \((\alpha\beta)_3)_4\) architecture, in accord with the crystal structure, which revealed an \((\alpha\beta)_{12}\) assembly. At higher
concentrations, urease forms 24-, 36-, and even 48-mers in the gas phase, probably as non-
specific adducts without any biological relevance214. Insulin, for example, not only forms well-
defined oligomers in its native state, but also aggregates and gives amyloid fibril215. Native MS
shows that association of insulin is concentration-dependent whereas HDX shows the rapid
equilibrium between higher order oligomers and monomers216.

Additionally, native MS can be coupled with ion mobility (IM) to separate ions based on
their size and shape and provide collisional cross section (CCS) to be compared with those from
the crystal structure and from theory217-218. Increasing the collisional voltage causes protein
unfolding as seen by an increase in the CCS; thus, native MS and IM can provide insights in
conformational dynamics of protein higher order structures219-220. Our goal in this work is to
utilize native MS and IM to probe the oligomerization state of FRP and OCP in their native
states.

5.3 Materials and Methods

5.3.1 Expression of FRP in E. coli

The full-length version of FRP (Slr1964) without its stop codon was amplified by using the
primers (FRPndeIF and FRPEcoRIR, Table 5.1) from genomic DNA of \textit{Synechocystis} sp. PCC
6803 and cloned into the pET21a vector. The insertion sites are NdeI and EcoRI as indicated by
the primer names. The truncated (short) version of FRP starting from the second open reading
frame (i.e., MLQTAEA) was generated by using primers (FRPSF and FRPSR, Table S1). Cell
culture and protein induction were performed according to previously reported methods207.

98
Table 5.1. Primers used in the construction of full length and truncated version of FRP in pET21a

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRPndeIF</td>
<td>AGC TGG CAT ATG GTC ATG ATA ATT ACA AAT C</td>
</tr>
<tr>
<td>FRPEcoRIR</td>
<td>GCA AAT GAA TTC TCA GTG ATG GTG ATG ATG CAG CCG TGC CAG GCC CTT AA</td>
</tr>
<tr>
<td>FRPSF</td>
<td>GTT TAA CTT TAA GAA GGA GAT ATA CAT ATG TTA CAA ACC GCC GAA GCA CC</td>
</tr>
<tr>
<td>FRPSR</td>
<td>GGT GCT TCG GCG GGT TGT AAC ATA TGT ATA TCT CCT TCT TAA AGT TAA AC</td>
</tr>
</tbody>
</table>

5.3.2 FRP purification

E. coli cells were lysed by sonication in 20 mM Tris buffer (pH 7.5) buffer A supplemented with protease inhibitor cocktail and DNase (Sigma, St. Louis, MO) and 200 mM NaCl. The cell lysate was clarified by centrifugation at 25,000 x g, and the supernatant was loaded onto a HisTrap HP column (GE healthcare, Marlborough, MA). The His₆-tagged FRP was eluted with buffer A containing 300 mM imidazole, and further purified by gel filtration chromatography by using a HiPrep Sephacryl S-200 HR (GE healthcare, Marlborough, MA) column and an isocratic flow of buffer A. The purity of FRP was confirmed by SDS–PAGE by using a precast gradient gel (Any kDTM Mini-PROTEAN, Bio-Rad, CA). The concentration of FRP was determined by 280 nm absorption on a NanoDrop spectrophotometer (Thermo Scientific, MA, USA).

5.3.3 OCP purification

OCP was isolated from *Synechocystis sp. PCC 6803* using the procedure of Zhang et al.⁵⁵

5.3.4 Native MS and IM-MS Analysis of FRP

The purified FRP sample was washed with 400 mM ammonium acetate (pH 8.0) in a 10 kDa molecular weight cut off filter (Vivspin, Goettingen, Germany). The original buffer and salts were removed after 10 cycles of washing. The FRP sample was introduced into the ESI source of
a Waters Synapt G2 mass ESI-TOF (Electrospray ionization-quadrupole time of flight, Waters Corporation, Milford, MA) mass spectrometer by using commercial borosilicate emitters with extra coating. (ES387, Hudson, New Hampshire, Thermo Scientific). To investigate the effects of concentration on the oligomeric state of FRP, the concentrations of the introduced FRP were varied. The backing pressure was adjusted to 5 mBar for transferring large protein ions. The sample cone voltage was 20 V. The collisional energy for the trap region was manipulated to observe the dissociation of FRP. For IM experiments, the gas flow rate was 35 mL/min, the ion mobility separation (IMS) wave height was 20 V, and the IMS wave velocity was 500 m/s. The data were output from MassLynx (Waters Corporation, Milford, MA) and plotted by Origin (OriginLab Corporation, Northampton, MA). The IM experiment was calibrated with protein standards (ubiquitin and myoglobin) by using published protocols. The drift-time information from native MS ion-mobility experiments was converted into CCS by considering the molecular weight and charge state of the protein assemblies.184-185

5.3.5 Native MS of OCP

OCP was analyzed on the same instrument with the same parameters as mentioned above. The samples were washed with 400 mM ammonium acetate solution (pH 8.0) and analyzed at a series of different concentrations. To be consistent with FRP analysis, the pH value of the buffer was adjusted to be 8.0 instead of 6.8 as our previous study55. Because the dimer to monomer ratio can vary slightly depending on the instrument conditions; this concentration analysis was conducted in rapid succession.
5.4 Results and discussion

5.4.1 The oligomeric state of FRP

To probe the oligomeric state of FRP, we performed a native MS experiment by using one stock FRP sample diluted in series to concentrations of 3, 5, 10, 40, and 180 µM. (Figure 5.1). Considering the estimated pI (isoelectric point) of FRP is approximately 6.49 from amino acid component analysis221, we adjusted the pH of NH\textsubscript{4}Ac buffer to 8.0 to avoid precipitation.

![Native mass spectrum of FRP diluted in series to concentrations of 3, 5, 10, 40, and 180 µM.](image)

Figure 5.1. Native mass spectrum of FRP diluted in series to concentrations of 3, 5, 10, 40, and 180 µM.

The foundation of native MS is that ionization of protein complexes from aqueous solution, preserves the native structure, at least for the time scale of MS. The sample in the capillary is held at high electric potentials, and droplets containing high charge are drawn out to form the “Taylor cone”222. The droplet size is reduced by a potential gradient, aided by the nebulizing gas, until the “Rayleigh limit” is reached223. When the protein concentration is high, a significant
number of droplets will contain more than one protein or protein complexes. Adopting low concentrations of proteins for native MS analysis avoids the formation of non-specific adducts. A calculation, based on “18 nm” average droplet size, shows that most droplets are empty and a few contain one protein when the protein concentration is 50 µM223. In this study, the lowest concentration we used is 3 µM, as lower concentrations lead to a low signal-to-noise spectrum (data not shown) and a less confident interpretation. A distribution of dFRP carrying different charges was identified at all concentrations. \(m/z = 2199.65\) at +12, \(m/z = 2399.74\) at +11, \(m/z = 2639.57\) at +10, \(m/z = 2932.73\) at +9 and \(m/z = 3299.0881\) at +8 (experimental MW = 26,385.23 Da). The peak representing the +12 charge state is slightly higher, however, than the +11 charge state of dimeric FRP at 3 µM, inconsistent with a Gaussian distribution of charge states. This suggests the presence of small amounts of monomeric FRP (Figure 5.1) because the peaks representing dFRP carrying +12 charge and monomeric FRP (mFRP) carrying +6 charge overlap. This trace amount of monomer is likely generated during desolvation and transmission to the mass spectrometer, as we could observe no prominent peaks representing mFRP when we decreased the protein concentration. Furthermore, peaks representing mFRP increased when we increased the collisional voltage, confirming that the small amount of mFRP can be generated in the transmission process (Figure 5.2).
We found that dFRP is consistently the dominant state in native MS at all protein concentrations, and the charge states appear as a Gaussian distribution. Trimeric and tetrameric FRP forms gradually appeared in the spectrum when the concentration increased. Furthermore, higher order oligomers—up to octamers—form at 180 µM (Figure 5.3). Aside from the peaks representing mFRP and dFRP, those for the higher order protein oligomers decrease in relative abundance as the oligomer increases in size; tetrameric FRP is no exception. In other words, no special behavior was observed for tetrameric FRP. Although X-ray crystallography favors the tetramer207, that species is unlikely to be of any biological relevance. Instead, it is concentration-driven and forms more readily at high concentration.
Figure 5.3. High order oligomeric FRP detected at 180 µM.

The MW of the protein complex in the native state, from a calibration curve of SEC, shows FRP exist as a trimer\(^{11}\); however, this was later revised to a dimer\(^{207}\). Another study on concentration effects on the oligomeric state of FRP suggests partial dissociation of dimeric FRP at low concentration\(^{224}\). The discrepancies may be due to the proteins (calibrants or the sample) existing in various conformation, as protein shapes do not necessarily correlate linearly with MW\(^{225}\). The FRP crystal structure showed that two conformations exist as dimer and one as a tetramer\(^{207}\).
5.4.2 Oligomeric states of OCP

Although a dimer is revealed by crystallography, OCP elutes as a monomer by SEC in both its active (red) and inactive (orange) states38, 205, and the dimerization of OCP may not be biologically relevant, considering the energy of binding and the number of conserved residues.205 Because determining protein oligomeric states under native conditions can be challenging especially \textit{in vitro} and biases can be introduced by different techniques (e.g., band broadening during SEC) we compared the oligomeric state of OCP at various protein concentrations to that of FRP, as a reference point and follow-up to our previous report55. We found Gaussian distributions of mOCP (+9, +10 and +11) and dOCP (+14, +15 and +16), in agreement with our previous report55. Moreover, the relative abundance of dOCP to mOCP increased proportionally to the concentration, as shown in Figure 5.4. This result suggests that the dimerization of OCP (also revealed by crystallography) could be the consequence of the high concentrations of protein sample required for protein crystallography38, 204 and also for some native mass spectrometry experiments55.
Thus, OCP has a high tendency to dimerize, depending on the protein concentration in vitro, and perhaps in vivo. Of note is that OCP can form higher order oligomers just as FRP (Figure 5.5). In our previous report, we found the dimer to monomer ratio is different for the red and orange states of the protein55. Whether the functional form of OCP is a monomer or a dimer still remains unclear. In our first report in which we used native MS, we could detect a monomer-to-dimer transition. How this phenomenon is related to physiological function, and how the dimer-monomer transition could benefit biosensor designs are questions for future studies.
5.4.3 Ion mobility of FRP

Unfolded or large protein complex ions undergo more collisions with the neutral gas in an IM chamber and, therefore, exhibit a larger CCS than folded or small protein complex ions36. To look for folded or unfolded conformers in the gas phase, we calibrated the ion mobility instrument with denatured protein standards according to previous reports (calibration curve is shown in Figure 5.6)184-185. We then calculated theoretical CCS values by a projection approximation (PA) method. This method calculates the averaged projected area, ignoring the scattering and long-range interactions between the neutral gas and the ions226. Whereas the resulting CCS is usually underestimated by this method227, an empirically scaled PA, proposed by Ruotolo and Robinson, can correct for this. Its accuracy in predicting protein CCS was previously verified228-229. The CCS values for FRP as analyzed by IM-MS in this study, and the
scaled PA values of FRP (PDB 4JDX), along with the measured ones, are listed in Table 5.2. The predicted CCS agree generally with the measured values. It is worth noting that the calculated E/F chain (comprising the tetrameric FRP in PDB 4JDX) dimer is only 0.5% different from the measured one.

Figure 5.6. Calibration curve CCS vs. New Td.

Table 5.2. Theoretical (scaled PA) CCS value and experimental CCS value are listed in the table. Experimental CCS value are adopted at 10% peak height.

<table>
<thead>
<tr>
<th>Chain</th>
<th>PA/Å²</th>
<th>Difference</th>
<th>Experimental/Å²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/C</td>
<td>1428</td>
<td>4.3%</td>
<td></td>
</tr>
<tr>
<td>B/D</td>
<td>1433</td>
<td>4.7%</td>
<td></td>
</tr>
<tr>
<td>E/F</td>
<td>1500</td>
<td>9.5%</td>
<td></td>
</tr>
<tr>
<td>Dimer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>2310</td>
<td>4.7%</td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>2375</td>
<td>7.7%</td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>2215</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Tetramer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFEF</td>
<td>3480</td>
<td>-4.2%</td>
<td></td>
</tr>
</tbody>
</table>

108
5.4.4 Gas-phase unfolding of FRP under collisional activation

Although the measured CCS agrees well with the theoretical CCS, FRP clearly exhibits an inverse relationship between charge state and CCS, especially for the monomer and dimer (Figure 5.7). When FRP carries extra charges, the protein partially unfolds, and this “enlarged CCS effect” is more obvious for mFRP and dFRP, as a relatively high percentage of domains are affected compared to higher order FRP oligomers. Multiple studies support a linear relationship between charge state and CCS194–196, which is in agreement with our results.

Robinson and co-workers using IM-MS230 reported experimental evidence of long-lived, unfolded non-covalent complexes. The intermediates in the dissociation pathway can be correlated with increases in CCS indicating that the protein complex undergoes both high order structure refolding and monomer unfolding prior to dissociation. Thus, the unfolding heat map can provide information on the stability and flexibility of protein complex. Here we observed stable unfolding intermediates of all the oligomeric FRP samples in the gas phase of the mass spectrometer (Figure 5.7 and Figure 5.8).

Interestingly, monomeric FRP exhibits a roughly one-stage unfolding process, whereas the dimer undergoes a two-stage process, and the trimer and tetramer a three-stage unfolding process. Usually, the more complex the protein domains are, the more diversified the conformations it can assume before reaching a Coulombic repulsion limit. We propose the one-step unfolding of mFRP to be in the C-terminal region, which is “bent” toward the center chain in the crystal structure. The two-step unfolding process of dFRP then reflects the unfolding of individual FRP C-terminal domains, while maintaining the interface between two subunits. Proteins that fold via a two-state kinetics pathway usually evolve toward a dimer form231. This is in accord with our results, as this unfolding process could be viewed as the folding process.
performed in reverse. The dramatic change of CCS for different charge states (Figure 5.7) is as large as the intermediates observed during the increasing of collisional voltage (Figure 5.8) and suggests that dFRP retains highly flexible and multiple conformations during the unfolding process.

(A)
Figure 5.7. CCS of FRP (a) monomer and dimer (b) trimer and tetramer at different charge states.
Figure 5.8. Unfolding heat map of FRP (a) monomer at +4 charge state, (b) dimer at +11 charge state, (c) trimer at +13 charge state, (d) tetramer at +15 charge state.

The unfolding heat maps of pentameric, hexameric, heptameric, and octameric FRP (Figure 5.9) show that as the complexity of interacting domains is increased, fewer intermediate states exist. Specifically, heptameric and octameric FRP exhibit rather rigid structures in the gas phase. Dimeric state FRP was proposed to be the functional state207; thus, any form of higher order FRP in the native environment, if present \textit{in vivo}, would require some structural flexibility to dissociate into the active dimer. Thus, these higher order FRP oligomers cannot re-dissociate into dimeric FRP owing to the rigid structure. This reinforces our proposal that the higher order oligomers of FRP are artifacts of a high protein concentration.
Figure 5.9. Unfolding heat map of FRP (a) pentamer at +16 charge state, (b) hexamer at +19 charge state, (c) heptamer at +21 charge state, (d) octamer at +21 charge state
5.5 Conclusions

Protein oligomerization plays important roles in their conformation, function and stability. In this report, we analyzed the structure and oligomeric state of two proteins, OCP and FRP, which are crucial participants in the cyanobacterial photoprotection cycle. FRP is a non-chromophore protein, but its oligomeric state and active form remained largely enigmatic until a crystal structure was determined. Up to three conformations, however, exist in the crystal structure: two separate dimers and a tetramer. In the meantime, the native state of OCP, whether monomeric or dimeric, has also been controversial.

In this study, we used native MS to characterize FRP and OCP and found FRP to be predominantly dimeric independent of the protein concentration, although a small fraction of higher order oligomers forms at higher protein concentration. We analyzed the oligomeric state of OCP in the same manner and observed, in contrast to FRP, that OCP exists as both monomer and dimer, and the relative abundance of dOCP increases with protein concentration. Moreover, the unfolding heat map revealed by IM-MS shows a one-step unfolding process for mFRP, a two-step for dFRP and a three-step for trimeric and tetrameric FRP. The high order FRP oligomers retain a rather rigid structure, strongly suggesting they are of little relevance in vivo. This study offers new insights into the biological assemblies of FRP and OCP, especially in terms of their oligomeric states, providing the groundwork for future structure-function analyses of this important photoprotection mechanism.

Chapter 6: A Molecular Mechanism for

Non-Photochemical Quenching in

Cyanobacteria

Manuscript in preparation:

6.1 Abstract

The cyanobacterial Orange Carotenoid Protein (OCP) protects photosynthetic cyanobacteria from photodamage by dissipating excess excitation energy collected by phycobilisomes (PBS) as heat. Dissociation of the PBS-OCP complex in vivo is facilitated by another protein known as the Fluorescence Recovery Protein (FRP), which primarily exists as a dimeric complex. We used a range of mass spectrometry-based techniques to investigate the molecular mechanism of this FRP-mediated process. FRP in the dimeric state (dFRP) retains high affinity to the C-terminal domain (CTD) of OCP in the red state (OCP⁰). The site-directed mutagenesis and native MS results suggest the head region on FRP could be a binding candidate to OCP. After attachment to CTD, the conformational changes of dFRP enable dFRP to bridge the two domains together, which facilitates the reversion of OCP⁰ into the orange state (OCP⁰) accompanied with the
structural rearrangement of dFRP. Interestingly, we found a mutual response between FRP and OCP: FRP and OCP\textdegree destabilize each other, whereas FRP and OCPo stabilize each other. A detailed mechanism of FRP function is proposed based on the experimental results.

6.2 Introduction

Solar energy is utilized by photosynthetic organisms to perform photosynthesis, a process that produces and stores chemical energy, later to be used to power cellular processes. Excess light energy is detrimental, however, to photosynthetic organism, resulting in oxidative stress, and ultimately leading to the damage of photosynthetic apparatus or even the death of the cell. Light regulation strategies, therefore, are necessary for balancing the absorption and utilization of light energy. One of the most important protection mechanisms is called non-photochemical quenching (NPQ), during which excited-state chlorophylls or other pigments are quenched, and excess excitation energy is dissipated as heat232. In plants and algae, NPQ is carried out by light-harvesting antennas, a process mediated by a ΔpH across the thylakoid membrane. NPQ is also related to the xanthophyll cycle, which plays an important role in the protection of plants and algae against oxidative stress232-233. In cyanobacteria, the major light-harvesting complex is the phycobilisome (PBS), a soluble complex attached to the surface of the membrane, unlike the integral membrane light-harvesting complexes in plants and algae. Thus, a distinct photoprotection mechanism has evolved in cyanobacteria. The orange carotenoid protein (OCP), a single carotenoid-binding protein, functions both as a light sensor and a photoprotective entity9, 202, 234.

The OCP is composed of an α-helical N-terminal domain (NTD), an α-helix/β-sheet C-terminal domain (CTD), and a flexible linker region that joins them. A keto-carotenoid spans both
domains and is encapsulated by the protein scaffold with almost no solvent exposure. The OCP forms a compact globular structure by a strong interaction between the NTD and CTD via salt bridges as well as by hydrogen bonds. Under high-intensity illumination, these bonds are broken, which leads to the solvent exposure of the major NTD-CTD interface, accompanied by a 12 Å carotenoid translocation; this process converts orange OCP (OCPo) into its active quenching (red) state (OCPr)7, 38, 204-205, 235-237. It is generally accepted that OCPr quenches energy and fluorescence via its interaction with the core of the PBS. Efforts have been made to locate the specific binding site on PBS, and several models have been proposed1, 55, 238-240. FRP is able to recover the fluorescence from the PBS by interacting with OCPr. The active OCPr is metastable, and reverts back to the inactive orange state in the dark. FRP greatly accelerates this reversion process by interacting with the CTD206-207. The FRP crystal structure reveals three conformational states: two in the dimeric form and one in the tetrameric form. The dimeric form was proposed to be the functional state207, and it was found to be the dominant state in solution56, 207, 224. The study on OCP apoprotein suggests FRP functions as a general scaffold protein for OCP maturation237. The recent model proposed by Thurotte et al.241 demonstrates that FRP has two distinct activities during the fluorescence recovery process: it first accelerates OCPr detachment from phycobilisomes242 and then assist OCPr relaxation into OCPo. The detailed molecular mechanism of how FRP mediates the fluorescence recovery process in cyanobacteria is still elusive.

We have chosen mass spectrometry (MS) to investigate this problem. MS is now being widely used to study protein conformation, structure, dynamics, and protein-protein or protein-ligand interactions43, 209, 243-245. Native MS, in particular, allows for the detection and analysis of intact protein complexes in their near-native states53, 246. Cross-linking complements native MS
because it can reveal amino acid pairs that are positioned in close proximity by linking protein partners constrained by the effect length of the linker40. A medium-resolution interaction model can be obtained by mapping the adjacent residues on protein complexes43. MS-based isotopic cross-linking can provide quantitative information on protein interactions, giving insights into the binding sites as well as conformation changes41. MS-based protein footprinting techniques can further provide detailed information on protein solvent accessibility13, 29, 34, 247. All in all, an integrative MS-based tool kit can provide complementary information of protein structures in complexes to afford a more complete description of interaction model.

In this work, we utilized a variety of techniques, especially MS-based ones, to investigate the molecular mechanism of the FRP-mediated OCPr to OCPo conversion process. We found that FRP accelerates OCPr to OCPo conversion through several distinct steps. A dramatic conformational change of FRP occurs upon interacting with OCP in both the red and orange states. In addition, the head domain on FRP could play an essential role during its binding to OCP. Our study provides novel insights into the FRP-mediated OCPr to OCPo process, and a working model is proposed based on the experimental results.

6.3 Materials and Methods

6.3.1 Expression and mutagenesis of FRP

The expression of WT FRP (SGL_RS10235) was performed as previously reported56. Site-directed mutants of FRP were constructed by using complementary mutagenic PCR primers. A list of all the primers used is shown in Table S1. Each mutagenic PCR reaction consisted of ~50 ng of plasmid DNA, 10 pmol of each primer, 10 nmol of dNTPs, 0.5 µL of a high-fidelity DNA
polymerase (Phusion, Thermo Fisher Scientific, Waltham MA), and 10 µL of a 5x PCR reaction buffer (Phusion HF buffer, Thermo Fisher Scientific) in a 50 µL reaction. The PCR reaction consisted of an initial denaturation step at 98 °C for 15 sec, followed by 18 cycles of 98 °C for 15 sec, 50 °C for 20 sec, and 72 °C for 20 sec. Because the length of the SGL_RS10235 gene is short, a final extension step was not included in the PCR reaction. Following the mutagenic PCR reaction, 1 µL of DpnI restriction enzyme (New England Biolabs, Ipswich, MA) was added to each reaction in order to digest the original template DNA. Five microliters of this reaction were used to transform chemically competent *E. coli* DH10B cells. Plasmids extracted from the transformants were confirmed by DNA sequencing prior to a subsequent transformation of the closed circular plasmid into *E. Coli* BL21(DE3) cells for protein expression.

Table. 6.1

Forward primers used to construct site-directed mutants of the SGL_RS10235 gene (reverse primers are the reverse complements of the forward primers)

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Forward primer sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R60L</td>
<td>GAAACTCCATGATTTTTTGAGTGCAAAACTGCACGAAATTGATGGC AAGTACG</td>
</tr>
<tr>
<td>D64A</td>
<td>GTGCAAAAACGCCACGAAATTGCCGCAGATACTGACGATCGACC</td>
</tr>
<tr>
<td>G65D</td>
<td>GTGCAAAAACGCCACGAAATTGCCGCAGCTGACGATCGACC</td>
</tr>
<tr>
<td>R70D</td>
<td>GAAATTGATGGCAAGTGACGATCGATCTGCGGTGATTATTTTTG TTTTTC</td>
</tr>
<tr>
<td>F76D</td>
<td>CGATCGCCGGTCGCGGATTATTTGATATTTTTGCCCCACTGCTCAAGG</td>
</tr>
<tr>
<td>K102D</td>
<td>TAGCCGCGCGATAAGCAATCTGATATTAAAGGCCCTGGCCCGG</td>
</tr>
</tbody>
</table>

6.3.2 FRP and OCP purification
The isolation of OCP, FRP and FRP mutants were performed by using published protocols\(^{55-56}\). The OCP\(^r\) partial digestion was carried out as previously described\(^{248}\).

6.3.3 Native MS and IM-MS Analysis of NTD, CTD and FRP complex

The NTD/CTD mixture obtained after OCP\(^r\) partial digestion and FRP samples were separately washed with 400 mM ammonium acetate at pH = 8.0 (09689, Sigma-Aldrich, Missouri, USA) in a 5 kDa molecular weight cut off filter (Vivaspin, Goettingen, Germany). The original buffer and salts were removed by 10 cycles of washing. The NTD/CTD and FRP were mixed in 4:1 and 1:4 ratios, respectively, and introduced into the ESI source of a Waters Synapt G2 ESI Q-TOF (Electrospray ionization-quadrupole time of flight, Waters Corporation, Milford, MA) mass spectrometer by using commercial borosilicate emitters with extra coating (ES387, Hudson, New Hampshire, Thermo Scientific). The backing pressure was adjusted to 5 mBar for transferring the large protein ions. All the mutant FRP proteins were mixed with the NTD/CTD in a 2:1 ratio, respectively, and analyzed in the same manner. As a reference, intact OCP was also mixed with FRP in a 1:2 ratio to investigate the affinity of FRP to OCP\(^o\). The IM-MS experiment and data processing were carried out as previously described\(^{56}\).

6.3.4 Activity assays

The OCP was previously photoconverted to the red form by 10 min illumination with 2,000 \(\mu\)mol photons m\(^{-2}\)s\(^{-1}\) white light at 8 °C. The OCP\(^r\) to OCP\(^o\) reversion processes in the absence/presence of FRP WT/mutants were monitored in a Lambda 950 (Perkin Elmer UV WinLab) spectrophotometer at 8 °C. One point was recorded per second by monitoring the absorption at 550 nm for 30 min.
6.3.5 Cross-linking and LC-MS

All the cross-linking experiments were carried out in triplicate at 4 °C for 2 h. Illumination with 2,000 μmol photons m$^{-2}$s$^{-1}$ white light was kept constant during the cross-linking process for OCPr-included samples. The cross-linker, disuccinimidyl suberate (DSS-d$_0$, Cross-linking reagent without any deuterium atoms, ProteoChem, UT, USA), was added to FRP (reference 1), OCPo and OCPr-FRP samples. DSS-d$_4$ (Cross-linking reagent with 4 deuterium atoms that provide a 4 Dalton mas shift, ProteoChem, UT, USA) was added to FRP (reference 2), OCPr and OCPo-FRP samples. OCPr-FRPd_4 and OCPo-FRPd_0; FRPd_4, OCPo.d$_4$ and OCPo-FRPd_0; FRPd_0, OCPr.d$_0$ and OCPo-FRPd_4 were mixed, respectively, in equimolar quantities to investigate the structural changes and interacting regions of these proteins. (See Figure 6.1 for a flow chart). The molecular weight of cross-linked complexes was analyzed by SDS-PAGE. Peptides from the digest of cross-linked samples were prepared by acetone precipitation and enzymatic digestion as previously described249. Sep Pak cartridges (Waters Corporation, Milford, MA) were used to desalt the sample. An LC-MS experiment was done, as previously described, with some adjustments71. Peptide mixtures were trapped by a guard column (nanoACQUITY Trap Column, Waters Corporation, Milford, MA) and then fractionated on an ACQUITY UPLC Peptide BEH C18 Column (10 K psi, 130 Å, 1.7 μm, 75 μm X 100 mm, Waters Corporation, Milford, MA). The MS analysis was performed with a Thermo Scientific™ Q Exactive™ hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen Germany). Peptides were eluted with a 120 min, 250 nL/min gradient coupled to the nanospray source. The default charge state was 3, and the scan range was from m/z 380-1500. Mass spectra were obtained at high mass resolving power (70,000, FWHM at m/z 200), and the top 15 most abundant ions corresponding to eluting peptides per scan were submitted to collision-induced dissociation (CID) in the ion
trap, with charge-state rejection of unassigned, +1, +2 and >8 ions enabled. Precursor ions were added to a dynamic exclusion list for 8 s to ensure a good sampling of each elution peak.

Figure 6.1. Flow chart of isotopic cross-linking experiments on FRP and OCP.

6.3.6 GEE Labeling

The FRP protein was mixed with OCPe and OCPo respectively in a 2:1 ratio. The modification reaction was carried out for a time course up to 2 h under either dark or light conditions at 4 °C, using freshly prepared 1.5 M GEE (Sigma, St. Louis, MO) and 0.5 M EDC (Pierce, Rockford, IL) stock solutions. (10 mM PBS, pH 8.0) The reaction was quenched by adding a 1/10 volume of 1 M Tris–HCl (pH 8.0) followed by buffer-exchange using a ZebaTM desalting spin column (Thermo Scientific, Rockford, IL) according to the manufacture's protocol. The FRP-only sample was also labeled by GEE on the same platform as the control. Preparing the peptides and conducting the LC/MS experiments were performed in the same way as for the cross-linked samples39.
6.3.7 MS data analysis

Byonics and Protein Prospector online server (Baker, P.R. and Clauser, K.R. http://prospector.ucsf.edu) were utilized to identify DSS- and GEE-labeled peptides. The searching parameters were set as follow: Peptide tolerance: 10 ppm, MS/MS tolerance: 0.02 Da, Mass type: Monoisotopic, 13C isotope ions: Yes, Enzyme: Trypsin, Missed cleavages: 2.

6.4 Results and Discussion

6.4.1 FPR accelerates the OCPr to OCPo relaxation by bridging NTD and CTD

The OCP is a unique protein that functions as a light sensor, a signal propagator, and an energy quencher. The NTD is a chromophore-containing domain that can burrow into the PBS and thermally dissipate excess excitation energy in the PBS, whereas the CTD can regulate the accessibility of OCP, and hence the activity of the PBS-binding NTD. The spontaneous reversion from the red to orange state of OCP is significantly accelerated in the presence of FPR. Under light irradiation, the most exposed cleavage sites for trypsin are located on the linker region of OCP owing to complete domain dissociation. Thus, fragments of the CTD (186-310) and NTD (10-170) can be obtained by partial proteolysis, whereas parts of the linker region and N-terminal arm (flexible loop region located on the N-termini) are missing.

Immunoprecipitation, size-exclusion chromatography (SEC), native-gel electrophoresis, and molecular modelling results all suggest that the CTD is the domain that interacts with FPR. Our previous native MS study shows that FPR primarily exists as a dimer, although two different oligomeric states were identified by crystallography. In this study, FPR was mixed
with NTD/CTD partial digestion fragments in 4:1 and 1:4 ratios and subjected to native MS analysis. The electrospray ionized protein complex in the gas phase carries a series of charges which usually exhibit a Gaussian distribution. All the peak assignment was determined both manually and by Massign software. The results indicate that a high abundance of the dFRP-CTD complex is formed (Figure 6.2), which is convincing evidence of the high affinity of the CTD to dFRP. Collisional induced dissociation (CID) of this protein complex produces monomeric FRP-CTD (mFRP), suggesting a strong interaction between one FRP monomer and the CTD (Figure 6.3A). A previous ion mobility (IM)-MS analysis shows one intermediate state in the unfolding process of dFRP, and none in the unfolding process of the CTD owing to its compact structure. Here, two intermediate states occur during the unfolding process of CTD-dFRP, driven by the higher order structure refolding, suggesting high stability of this complex (Figure 6.4).

Surprisingly, protein complexes containing components of the NTD, dFRP, and CTD were found to co-exist with the CTD-dFRP complex. NTD fragments (sequences from 10-168 and 10-170 with and without carotenoid, respectively) are binding partners to the dFRP-CTD (Figure 6.2A). We then carried out tandem MS to investigate the topology of those protein complexes. When protein complex ions are accelerated to high kinetic energy it usually results in ejection of a single protein subunit. After those ejection events, complexes including the dFRP-NTD and mFRP-NTD remain, giving evidence for the existence of a binding face between FRP and the NTD (Figure 6.3B). Interestingly, no such complexes were detected during an MS1 analysis, when no MS/MS activation was applied. The previous study on FRP and NTD mixture also shows FRP doesn’t bind to NTD. It appears that the binding of the CTD to dFRP initiates a conformational change of dFRP, facilitating its binding to the NTD. In another word, the
determining step of OCP binding to dFRP event is the attachment of CTD to dFRP. An interface between CTD and NTD might also exist in protein complex CTD-dFRP-NTD, but the interaction is likely to be weak since no NTD-CTD complex can be observed with or without CID.

Figure 6.2. Native mass spectra of FRP and the NTD/CTD mixture in a (A) 4:1 or (B) 1:4 ratio. Complexes include the dCTD-dFRP-NTD, CTD-dFRP-NTD, dCTD-dFRP and CTD-dFRP. The inset in A shows the binding of the NTD fragments to the dFRP-CTD.
Figure 6.3. (A) Product-ion (MS/MS) spectrum of the CTD-dFRP ion obtained at 58 V collisional voltage. The resolved complex of the CTD-mFRP suggests a primary binding face exists on one of the FRP subunits. (B) Product-ion (MS/MS) spectra of CTD-dFRP-NTD recorded at 58 V and 108 V collisional voltage. The resolved complexes of NTD-dFRP and NTD-mFRP after CID suggest that a binding interface exists between the NTD and FRP.

Figure 6.4. IM-MS unfolding heat map of CTD-dFRP complex.

We also observed the formation of complexes consisting of the dCTD-dFRP-NTD and dCTD-dFRP (Figure 6.2). To investigate whether the CTD can form a dimer by itself, the NTD/CTD mixture was submitted to native MS at concentrations ranging from 5 µM to 200 µM. The analysis revealed a noticeable level of dimeric CTD (dCTD), even at low concentrations (Figure 6.5), which is in accord with the previous SEC results253. Thus, a complex of dCTD-dFRP is formed owing to the binding of dCTD to dFRP. These results suggest that different regions of the CTD are involved in binding to the other CTD and FRP. Similarly, the NTD could bind to this dCTD-dFRP complex forming dCTD-dFRP-NTD. When the NTD/CTD is in excess, more dCTD-dFRP-NTD complexes are formed (Figure 6.2B).
To describe better the interaction between FRP and OCP, an isotopic cross-linking strategy was adopted to compare quantitatively their interactions under dark or illuminated conditions. SDS-PAGE analysis revealed bands corresponding to the molecular weights of one FRP and one OCP, and two FRPs and one OCP in the red state, while the corresponding bands in the orange state were barely visible (Figure 6.6). It appears that mFRP-OCP is more abundant than dFRP-OCP on the gel image, but we don’t see that as a direct evidence of dFRP monomerization. Usually only a very small fraction of interacting protein complex can be cross-linked. In order to observe dFRP-OCP, mFRP needs to be cross-linked to the other mFRP and OCP needs to be cross-linked to mFRP which lower the chance of obtaining them. Nevertheless, among all the lysine-NH₂ groups in OCP (twelve) and FRP (eight), and the N-termini of the two proteins, we identified six cross-links by LC/MS out of the 117 potential cross-links (Figure 6.7A). A residue located at the CTD (K249) was found to be linked to K23 on FRP, further proving the adjacency of CTD to FRP. The linker region and the N-terminal arm of OCP were also found to be cross-linked to FRP (Figure 6.7A, product-ion (MS/MS) spectra are shown in Figure 6.8). Mapping the
cross-linked residues on the FRP and OCP crystal structures, we notice that those residues are located near the interface of two terminal domains (Figure 6.7B, C, D).

Figure 6.6. SDS-PAGE analysis of cross-linked samples. The content of sample is labeled on top of each lane.
Figure 6.7. (A) Cross-links identified between OCP and FRP. The corresponding positions are mapped on the cartoon representations of the OCP NTD (B, PDB 4XB5) and CTD (D, PDB 3MG1, sequence 170-311) crystal structures. (C) Model of the OCP-FRP interaction from crosslinking data. The missing loop regions in the crystal structure were generated by software available at UCSF. Each mFRP unit is shown by yellow rhombus.
6.4.2 Binding domain on FRP to CTD

To locate the binding site of FRP, we generated a series of FRP site-directed mutants based on conservation analysis and analyzed them with the same native MS platform. The existence of both FRP and NTD/CTD including complexes is seen as direct evidence of the binding affinity between mutant FRP and the NTD/CTD. The peak series (+11, +12 and +13)
representing dFRP-CTD complex dropped to different degree in all mutant samples (Figure 6.10C and Figure 6.11). Thus, the peak series representing the free dFRP (+9 and +10) increased in the two mutant samples mentioned above (Figure 6.10C and Figure 6.11A). The F76D mutant exhibits the most striking decrease in interaction, and the binding of the K102D mutant to the NTD/CTD is also severely affected. Overlapping of the three crystallographic conformation states207 shows that FRP is composed conservatively of an extended α-helical domain, a small helical cap, while the chain regions are folded in a slightly different way. F76 and K102 are located on the conserved helical cap (“head” region) in all three conformations (Figure 6.9A). Based on the affinity analysis of CTD to dFRP, we propose that this head domain could be the binding face of FRP to the CTD. To be certain of the binding face on FRP, however, more experiments need to be carried out, such like construction of different mutations on the head region.
Figure 6.9. (A) Alignment of FRP residues 72-106 on chain A/C (cyan), chain B/D (green) and chain E/F (yellow) from PDB 4JDX143, 207. F76 and K102 are colored in red. (B) Chain A/C (cyan), chain B/D (green) and chain E/F (yellow) from PDB 4JDX143, 207. The residues being cross-linked are shown in red. K59 and K66 in E/F dimer cannot be labeled because they are located in the missing loop structures.

CTD shows a negatively charged interface that is hidden in the orange state (Figure 6.12A, B), while the binding domain of FRP is positively charged (Figure 6.13A, B). In previous mutagenesis studies on OCP, the “catalytic” ability of FRP was found to be affected by the mutations on the surface of the inter-domain cavity256. One proposal is that the positively charged head domain of FRP interacts with the negatively charged interface on the CTD. In addition, the other side of the head, which is originally embedded between the head and chain of FRP, is negatively charged (Figure 6.13D, F). The NTD interface that is hidden in the orange state reveals a positively charged surface (Figure 6.12C, D). One possibility is that, upon binding
of the positively charged head domain of FRP to the negatively charged CTD interface, the head
domain on FRP unfolds, exposing the originally embedded negative face that interacts with the
positively charged interface on the NTD. In brief, one assumption from the molecular modelling
and surface electrostatic analysis is OCP and FRP interacts via an unfolding and bridging
mechanism. After the head domain attaching to the CTD, the head domain unfolds and the
original hidden face on the head domain attach to the NTD.
Figure 6.10. Map of residues identified by native MS, cross-linking, and GEE labeling on the FRP head region (A) and dimer-interacting region (B) of chains B/D; structure from PDB 4JDX. (C) Native mass spectra of the NTD/CTD in the presence of WT or F76D FRP. The binding affinity of F76D mutant to NTD/CTD is greatly diminished. (D) A bar graph showing the changing of mono-link extent on FRP in the presence of OCP or OCPo. R = \frac{\text{Abundance of FRP monolink upon FRP interacting with OCP}}{\text{Abundance of FRP monolink for FRP only sample}} (E) Bar graph showing the change in solvent accessibility of FRP residues, as probed by GEE labeling.
Figure 6.11. Native mass spectra of mutant FRP in the presence of NTD/CTD partial digestion fragments (Red). The native MS spectra of WT FRP are shown in black.
Figure 6.12. The surface electrostatic analysis by APBS (Adaptive Poisson-Boltzmann Solver) shows negatively charged CTD interface (A, the corresponding cartoon structure is shown in B) and positively charged NTD interface (C, the corresponding cartoon structure is shown in D).
Figure 6.13. The surface electrostatic analysis by APBS shows negatively charged head domains and positively charged chain domain of BD (A) and AC (B) dimer from PDB 4JDX. Chain B (cyan) is aligned to the “unfolded” chain B (Green) as shown in C and D, and the corresponding surface electrostatic analysis of the “unfolded” chain B are shown in E and F. The positively charged binding region is highlighted with blue circle, and the negatively charged region, which in hidden in original state, is highlighted with red circle. The modified structure of chain B (Green) was generated by using the structure building and energy minimization tools in Chimera software255. The dihedral angles in the loop region from AA 68-73 (DDRQSV) were modified. Then the produced geometry was energy minimized by applying 1000 steepest descent steps with a step size of 0.02 angstrom (C, D, E, F).
6.4.3 Regions influence FRP function

To evaluate the residues that influence the function of FRP, and not just its binding affinity, we performed a kinetic analysis on the OCPr to OCPo relaxation process by monitoring changes in the absorption at 550 nm in the presence of different FRP mutants. The F76D and R60L mutations were found to lose their ability to accelerate OCPr conversion, and the G65D mutation also greatly affects the FRP function (Figure 6.14). A previous study also demonstrates that the R60L mutant loses its acceleration ability on OCPr relaxation207. The result with the F76D mutant is not surprising, as this mutant loses its affinity to interact with the NTD/CTD, as discussed in the previous section. The R60L mutant can still bind to the NTD/CTD to some degree (Figure 6.11E), although no acceleration capability on OCPr relaxation is retained (Figure 6.14). We propose that the binding and the acceleration of OCPr relaxation processes can be decoupled because different amino acids are involved. Native MS analysis is essentially a snapshot of the interaction between the FRP and OCPr (without the linker region and N-terminal arm), whereas the kinetic analysis requires the FRP to perform its function fully by converting OCPr into OCPo. R60 is not located in the binding face on FRP; thus, the binding affinity of FRP is not affected upon mutation. Thurotte and co-workers241 found that the R60L mutant can still detach OCP from the PBS, but it is unable to accelerate the conversion to the orange state. Both results indicate that the acceleration process can be decoupled into several stages. In addition, the R60L mutant FRP can still perform a conformation change upon binding with the CTD, as the dFRP-CTD-NTD complex was also observed during native MS analysis (data not shown). It is likely that R60 is the crucial residue in the later conformational change, when the two domains are already attaching to FRP.
6.4.4 Substantial conformational changes of dFRP after bridging the two domains

To investigate the possible conformational changes that take place upon bringing the two domains together, we utilized intra-molecular cross-links on FRP to evaluate the structural change upon its interaction with OCP. When FRP interacts with OCPr, the intensity of intra-molecular links increase by several folds, whereas a decrease of intra-molecular cross-link intensity occurs when FRP was incubated with OCPo (Figure 6.15). The cross-links identified here can either arise from one individual chain, or two subunits of dFRP, although the abundance of cross-linked dFRP is much lower than intra-linked mFRP, as observed by SDS-PAGE (Figure 6.6). The measured distance of the cross-linked amino acid pairs within chains A/C, B/D, and...
E/F, as well as dimeric AC, BD and EF (Figure 6.9B) are listed in Table S2. Although the spacer length of DSS is 11.4 Å, a distance constraint of 26–30 Å between Cα atoms is considered to be possible owing to native-state protein dynamics\(^\text{42}\). AC and BD dimers have a higher chance to form the intra-molecular links than the EF dimer when considering the distance constraints. Nevertheless, a substantial structural rearrangement of FRP takes place upon interaction with OCP, especially when OCP is in the red state.

![Figure 6.15](image_url)

Figure 6.15. Bar graph showing the changes in intra-FRP cross-links in the presence of OCP\(^r\) or OCP\(^o\). The numbers on x axis correspond to the position of amino acid residues on FRP.

\[
R = \frac{\text{Abundance of intra-FRP crosslink upon FRP interacting with OCP}}{\text{Abundance of intra-FRP crosslink for FRP only sample}}
\]
Table 6.2

Distances of cross-linked lysine/N-termini residues measured by Xwalk server207 in PDB 4JDX207 Cross-links involving M1 are not covered in analysis due to the missing N-terminal loop in PDB file.207 (A) A/C chain (B) B/D chain (C) E/F chain (D) AC dimer (E) BD dimer (F) EF dimer

(A)

<table>
<thead>
<tr>
<th>Residue 1</th>
<th>Residue 2</th>
<th>Euclidean Distance (Å)</th>
<th>SAS Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K23</td>
<td>59</td>
<td>18.4</td>
<td>27.5</td>
</tr>
<tr>
<td>K23</td>
<td>66</td>
<td>13.6</td>
<td>26.4</td>
</tr>
<tr>
<td>K23</td>
<td>104</td>
<td>18.2</td>
<td>27.6</td>
</tr>
<tr>
<td>K59</td>
<td>66</td>
<td>9.7</td>
<td>12.6</td>
</tr>
<tr>
<td>K59</td>
<td>104</td>
<td>25.5</td>
<td>34.2</td>
</tr>
<tr>
<td>K66</td>
<td>104</td>
<td>19.3</td>
<td>33.1</td>
</tr>
</tbody>
</table>

(B)

<table>
<thead>
<tr>
<th>Residue 1</th>
<th>Residue 2</th>
<th>Euclidean Distance (Å)</th>
<th>SAS Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K23</td>
<td>59</td>
<td>19.2</td>
<td>28.4</td>
</tr>
<tr>
<td>K23</td>
<td>66</td>
<td>14.8</td>
<td>28.8</td>
</tr>
<tr>
<td>K23</td>
<td>104</td>
<td>18.4</td>
<td>28.0</td>
</tr>
<tr>
<td>K59</td>
<td>66</td>
<td>10.2</td>
<td>12.9</td>
</tr>
<tr>
<td>K59</td>
<td>104</td>
<td>26.5</td>
<td>34.1</td>
</tr>
<tr>
<td>K66</td>
<td>104</td>
<td>19.6</td>
<td>32.3</td>
</tr>
</tbody>
</table>
(C)

<table>
<thead>
<tr>
<th>Residue 1</th>
<th>Residue 2</th>
<th>Euclidean Distance (Å)</th>
<th>SAS Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K23</td>
<td>59</td>
<td>57.6</td>
<td>68.4</td>
</tr>
<tr>
<td>K23</td>
<td>66</td>
<td>54.9</td>
<td>61.3</td>
</tr>
<tr>
<td>K23</td>
<td>104</td>
<td>43.2</td>
<td>48.6</td>
</tr>
<tr>
<td>K59</td>
<td>66</td>
<td>9.2</td>
<td>10.8</td>
</tr>
<tr>
<td>K59</td>
<td>104</td>
<td>27.9</td>
<td>48.9</td>
</tr>
<tr>
<td>K66</td>
<td>104</td>
<td>23.8</td>
<td>38.0</td>
</tr>
</tbody>
</table>

(D)

<table>
<thead>
<tr>
<th>Residue 1</th>
<th>Residue 2</th>
<th>Euclidean Distance (Å)</th>
<th>SAS Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K23</td>
<td>59</td>
<td>14.1</td>
<td>16.1</td>
</tr>
<tr>
<td>K23</td>
<td>66</td>
<td>13.6</td>
<td>30.3</td>
</tr>
<tr>
<td>K23</td>
<td>104</td>
<td>15.8</td>
<td>35.1</td>
</tr>
<tr>
<td>K59</td>
<td>66</td>
<td>9.7</td>
<td>12.6</td>
</tr>
<tr>
<td>K59</td>
<td>104</td>
<td>19.0</td>
<td>19.3</td>
</tr>
<tr>
<td>K66</td>
<td>104</td>
<td>18.7</td>
<td>35.4</td>
</tr>
</tbody>
</table>

(E)

<table>
<thead>
<tr>
<th>Residue 1</th>
<th>Residue 2</th>
<th>Euclidean Distance (Å)</th>
<th>SAS Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>59</td>
<td>18.7</td>
<td>28.7</td>
</tr>
<tr>
<td>23</td>
<td>66</td>
<td>13.9</td>
<td>26.3</td>
</tr>
<tr>
<td>23</td>
<td>104</td>
<td>18.4</td>
<td>28.0</td>
</tr>
<tr>
<td>59</td>
<td>66</td>
<td>10.2</td>
<td>12.9</td>
</tr>
<tr>
<td>59</td>
<td>104</td>
<td>26.0</td>
<td>34.4</td>
</tr>
<tr>
<td>66</td>
<td>104</td>
<td>19.6</td>
<td>32.3</td>
</tr>
</tbody>
</table>
Interestingly, we identified cross-links between two mFRP subunits: M1 to M1 and K23 to K23. We also found an increased number of M1-M1 cross-links when FRP interacts with OCPr and, vice versa, when FRP interacts with OCPo (Figure 6.16B). In addition, the frequency of K23-K23 cross-linking also drops when FRP interacts with OCPo (Figure 6.16B). One possibility is that the flexible N-terminal loop on each mFRP approaches each other when dFRP interacts with OCPr, and vice versa when dFRP interacts with OCPo; the region containing K23 on each mFRP dissociates from each other when dFRP interacts with OCPo. The other possibility is FRP unfolds into a long alpha helix and thus causes an increase of solvent accessibility. In this new conformation, the N-terminus of each mFRP gets closer compared to the original structure.
Figure 6.16. (A) Distances between the corresponding residues in PDB 4JDX (A/C chain, B/D chain and E/F chain) are measured by using Pymol software. (B) The bar graph shows the change of inter-mFRP cross-link in the presence of OCP or OCP.

To investigate further the conformational change of FRP upon interaction with OCP, we probed the solvent accessibility of the protein by evaluating the intensity change of DSS mono-links and GEE-labeled residues in a carboxyl (GEE) footprinting experiment. When FRP interacts with OCP, all the mono-links show an increased intensity except for K99, which is located on the binding domain of FRP (Figure 6.10D). To get a more comprehensive or higher resolution picture of solvent accessibility under different conditions, we adopted GEE to footprint carboxyl groups on the amino-acid residues. The reactivity of a carboxyl group on D and E amino-acid side chains is proportionally related to the solvent-accessible surface area of it and the adjacent regions. Similar to that of most of the lysine residues, the solvent accessibility of all the D and E residues on FRP increase dramatically upon interacting with OCP (Figure 6.10E). These results strongly support the idea that FRP undergoes a dramatic conformational change during its interaction with OCP. The most dramatic change is located on D54, followed by on D68 and D69 (Figure 6.10E). The mutagenesis analysis shows that the amino acids that form a network of hydrogen bonds between the two mFRP chains (R60, W50 and D54) are essential for the enhancement of OCP to OCP conversion. In addition, two of the previous
studies suggests that FRP monomerizes when interacting with OCP analogs224, 237. In this study, a protein complex including mFRP, CTD and NTD was observed after MS/MS dissociation (Figure 6.3B). Thus, the dramatic solvent accessibility change on D54 may be caused by a structural rearrangement of two FRP subunits—perhaps a monomerization of dFRP. However, the increased amount of inter-mFRP M1-M1 cross-links contradicts the monomerization idea of dFRP during its interaction with OCPr. It is worth mentioning that OCPr is under constant illumination at low temperature during the labeling process, and the samples including OCPr still exhibit a red color upon quenching of the reaction. Thus, the FRP hasn’t reached the end of its journey of converting the OCPr into orange. After dFRP attaching to the two domains, the leaving mFRP could be in equilibrium with both the bound mFRP and free mFRP in solution (Figure 6.7C). It is likely that the increasing dynamic motion facilitates the forming of inter-mFRP and intra-FRP cross-links (Figure 6.15, Figure 6.16B). The other possibility is FRP unfolds into long alpha helix and thus causing the increasing of solvent accessibility. And in this new conformation, the N-terminal on each mFRP gets closer compared to the original structure.

6.4.5 Response of OCPr to FRP

In this part of the study, we identified multiple cross-links between OCPr-K167, -K170, and -P2 to FRP, suggesting the adjacency of the N-terminal arm and linker region during its interaction with FRP (Figure 6.7). In addition, both domains can attach to FRP, despite the CTD being the major target of FRP, as discussed in the previous section. The two domains of OCP are fully dissociated upon photoactivation, whereas an unstructured loop (the linker region) connecting the two domains becomes significantly exposed38. That the OCP photo-activation is not reversible after partial enzymatic digestion indicates that this unstructured loop is crucial for
the conversion of active OCPr to inactive OCPo. The N-terminal arm is also a crucial coordinator in the OCP conversion process; this arm not only dissociates from the CTD but becomes disordered during the activation$^{38-39}$. Moreover, the absence of the N-terminal arm largely facilitates the action of FRP on OCPr and accelerates the detachment of the OCPr from the PBS258. Those previously published findings reinforce our conclusion that the linker-region, N-terminal arm and CTD on OCPr could be adjacent to the regions that are interacting with FRP.

The extent of both DSS mono-linking and GEE-labeling on OCPr exhibits no obvious changes in the presence or absence of FRP. An exception is residue E311, which is located at the C-terminal loop of OCP (Figure 6.7D); its decrease in solvent accessibility suggests that E311 could be the binding residue to FRP (Figure 6.17A). The C-terminal loop of OCP is not fully seen in the crystal structures, likely owing to its flexibility$^{204-205}$. Our previous GEE-labeling study shows, upon photoactivation, a marked increase in the extent of E311 labeling39 as well as a >2-fold decrease in the labeling of P309/K310 in OCPr relative to the corresponding amino acids in OCPo.38. Both results suggest a movement or structural rearrangement of the C-terminus upon photoactivation. In this study, we found that the C-terminal loop plays a role in the FRP-mediated OCPr to OCPo conversion process. In addition, that the FRP burrows into the intercavity of the two OCP domains may further separate them, exposing the linker region to a larger extent (increased labeling extent on K167) and slightly increasing the solvent accessibility of K249 on the CTD interface (Figure 6.17C).
6.4.6 Response of OCPo to FRP

That FRP prevents OCPo from photoactivation11,224 suggests two possible mechanisms: one is that FRP associates with OCPo and hinders its activation, and the other is that FRP immediately converts OCPr to OCPo, preventing the detection of OCPr. OCPo was proposed to be weakly or not attached at all to FRP by an immuno-precipitation study11, and a similar study on the NTD/CTD reveals that only the CTD can bind FRP207. The results obtained by Sluchanko et al.224 suggest a transient interaction between FRP and OCPo. In this study, we confirmed the interaction between FRP and OCPo, and found that the linker region is in adjacency with FRP during interaction.

A cross-link was found between the linker region and FRP. Unlike for OCPr, only one cross-link between OCPo and FRP could be identified (Figure 6.17D). The intensity of the signal representing this cross-link is much lower compared to that for the red state, suggesting a much smaller interface or binding affinity. The only residues exhibiting a noticeable decrease of solvent accessibility upon binding to FRP are D35 (from GEE labeling) and T15 (from DSS cross-linking) (Figure 6.17B, C). These results suggest that the NTD in the orange state associates with the FRP to some degree.

In addition, the abundance of signals representing intra-molecular links on FRP all decreased when interacting with OCPo (Figure 6.15). This could be due to the anchoring of dFRP on OCPo, preventing dynamic motions or transition into other states of FRP. In addition, the formation of OCP-dFRP is barely detectable by native MS (Figure 6.18), and the corresponding bands on SDS-PAGE are barely visible (Figure 6.6). Thus, the interaction between OCPo and FRP is significantly weaker compared to OCPr and FRP.
Figure 6.17. (A) GEE labeling extents of OCP\(^*\) amino-acid residues in the presence or absence of FRP. (B) GEE labeling level of OCP\(^*\) amino acid residues in the presence or absence of FRP.

\[
\text{GEE labeling level} = \frac{\text{Peak area of labeled peptide}}{\text{Peak area of labeled peptide + Peak area of unlabeled peptide}}
\]

(C) A bar graph showing the changes in OCP mono-links in the presence FRP. \(R = \frac{\text{Abundance of monolink upon interacting with FRP}}{\text{Abundance of monolink for OCP only sample}} \)

(D) An isotope-encoded mass spectrum of crosslinked OCP-FRP showing the K167(OCP)-M1(FRP) cross-link in the orange state is less abundant than in the red state.
Figure 6.18. Native MS spectra showing the weak association between OCP and dFRP. The collisional energy is increased from bottom to top.

6.5 Conclusion

We propose that FRP performs its function through several independent steps, involving various amino acids in the process. The accelerated conversion process starts with dFRP binding to the CTD on OCP as suggested by native MS results. The preliminary results obtained by native MS, site-directed mutagenesis (F76, K102) and mono-crosslink (K99) suggest the initial binding domain on FRP to the CTD. The structural rearrangement of dFRP upon binding with the CTD enables its binding to the NTD. To the best of our knowledge, this is the first experimental evidence showing the interaction between the NTD on OCP and dFRP.

Considering the cross-links found between two domains of OCP and FRP, we can propose a bridging mechanism. This is in accordance with previous molecular modeling results. In that
model, the CTD interacts with both head and chain domains of the FRP, while the NTD is in contact only with the head domain. We also here propose that the head domain interacts with the two domains on OCP. This proposal also explains the low affinity of OCP° to FRP; that is, the binding face is hidden owing to the compact structure of the orange state. Besides, the previous publication suggests the N-terminal arm on OCP could interfere with the interaction with FRP⁴⁹. The cross-linking results suggest the adjacency of N-terminal arm to FRP, which reinforces this view. To reset OCP° into a compact structure, the FRP interaction must bring the two domains back together, preparing for the translocation of carotenoid. Native MS results provide the direct evidence that NTD, CTD and dFRP can form a stable complex. The cross-linking results suggest the adjacency of the interface on NTD and CTD to FRP. Either the monomerization of dFRP or dFRP unfolds into a long alpha helix is likely to happen after dFRP bridges the two domains together, enabled by the crucial role of residue R60 in this conformational change. The linker region or N-terminal arm of OCP might be crucial in inducing the structural rearrangement of dFRP. In the orange state, the linker region is associated with dFRP to a lesser degree and the NTD also possibly retains an affinity to dFRP (Fig. 9). In addition, we found an interesting mutual response between FRP and OCP. FRP destabilize OCP° by accelerating its conversion to orange state, while FRP itself is also “destabilized”. FRP can “lock” OCP° in orange state, while FRP itself is also “stabilized” by OCP°. Thus, we propose a “stiff” structure when FRP interacting with OCP° and a dynamic structure when FRP interacting with OCP°. This study offers new insights into the interaction between FRP and OCP, laying the groundwork for further investigations into the energy-transfer regulation mechanisms of cyanobacterial NPQ.
Figure 6.19. Proposed model of the interaction between FRP and OCP. FRP is shown as a rectangle with different colors corresponding to different states; the OCP NTD is shown as a red ball in the red state and an orange ball in the orange state; the OCP CTD is shown as a wheat-colored ball; the APC core from the PBS is shown as three green circles. In the first step, dimeric FRP approaches and binds the CTD, inducing a conformational change in FRP (likely unfolding of the head region) and enabling its binding to the NTD. dFRP forms a stable complex with OCP by bridging the two domains. At the stage, OCP can be detached from PBS by FRP. The cooperative action of the linker region and the N-terminal arm facilitates the dissociation of the FRP dimer. Monomeric FRP is more flexible and effectively facilitates the closing-up of the two OCP domains. Finally, the accelerated conversion process finishes, and dFRP weakly associates with OCP around the linker region. The “capped” N-terminal arm on the CTD inhibits the dFRP from entering the cavity.
Chapter 7: Conclusions and Perspective

Photosynthesis is one of the most important biological processes, supplying energy for almost all life on Earth. Solar energy is stored as chemical energy, and the oxygen content of the atmosphere is produced and maintained by photosynthesis. Understanding the molecular mechanism of photosynthesis is crucial; however, some important details of the molecular processes are still missing. For example, one of the biggest concerns in photosynthesis is the water-splitting process at the oxygen evolution center. Even more noteworthy is that although a variety of protein machineries play critical roles in this process, how those machineries coordinate the photosynthesis process remains an unanswered and intriguing question. To continue to elaborate the details of photosynthesis, protein chemistry must be addressed, and mass spectrometry now plays a central and indispensable role in protein science.

In chapter 2, we utilized the top-down MS and ECD fragmentation to identify the PTM/mutation on LH2, an intrinsic membrane protein. We identified the isoforms of α and β subunit as well as a new PTM and an unexpected mutation. Although the 100% identification of membrane protein structure by MS is usually difficult, especially via bottom-up approaches, the top-down sequencing of photosynthetic membrane proteins is a promising platform, as the issue of low accessibility for enzymatic digestion is avoided, and the advance of different fragmentation methods largely increase the capability of top-down MS. Especially given the fact that many photosynthetic proteins are encoded with more one copy of operon, whether the proteins encoded with those operons are expressed and incorporated into the protein complexes is an intriguing question.
We developed a MS-based membrane protein footprinting platform, using LH2 as a model membrane protein and Nanodiscs as a vehicle to carry this membrane protein, as described in chapter 3. The results indicate that the outer membrane part has a larger solvent accessibility while the regions spanning the membrane have a lower solvent accessibility. This study lays the foundation for future studies of other photosynthetic membrane proteins where the experimentalist can focus on protein-protein interactions, protein-pigment interactions and protein-lipid interactions. For example, whether the properties of lipids influence the topology, and whether the intrinsic lipid binding regions exist on the protein pigment complex.

Chapter 4 describes a combination of MS-based methods to study the reaction center from *B. viridis*, the first membrane protein structure obtained with an atomic resolution structure. The results contradict a crystallographic study. A 7-amino acid alteration plus a 7-amino acid extension were identified on the M subunit of this reaction center. The native MS results show that this reaction center can maintain its integrity in the gas phase, even to the point to preserve four non-covalent bacteriochlorophylls that are contained as part of its higher order structure. We think it is a good example showing that it is necessary to conduct MS analysis on proteins even with the crystal structure available, providing complementary information and even contradictory results.

In chapter 5, we utilized the native MS to investigate the oligomeric state of FRP and OCP proteins, as the oligomeric state of these two proteins has been controversial. We observed that OCP exhibits concentration-dependent behavior in terms of oligomeric state whereas FRP exhibits a dimeric structure consistently. In addition, ion mobility MS reveals the high flexibility of the FRP protein.
Chapter 6 shows how a combination of MS-based methods, including XL-MS, footprinting and native MS, as well as mutagenesis and kinetic studies can reveal the molecular mechanism of non-photochemical quenching in cyanobacteria. FRP functions like an enzyme, “catalyzes” the relaxation of OCP and interacts with both states of OCP. This study lays the ground work for the future study of the three-player system in the cyanobacterial NPQ process. That system includes OCP, FRP and PBS. As OCP burrows into PBS to quench the excess energy, FRP may work as an inducer of conformational change of OCP or as a stronger binder than PBS and, thus, drag the OCP away from PBS. It will be intriguing to draw the global picture as well as the local detail of mechanism in this process.

MS has been routinely used to conduct proteomics analysis, for example, evaluating the proteomics in different cell fractions. This is especially useful for photosynthetic proteins, as the composition is complex, many of them are expressed with PTMs, and more than one isoform may be expressed. Now, mass spectrometers can be employed to achieve different goals: deciphering the structure, dynamics and function of proteins. These advances are beginning to benefit the study of photosynthesis.

We foresee a broad utilization of mass spectrometry to study protein-pigment interactions, reaction center/light harvesting complex dynamics, and structure. For example, the protein subunit organization of PSII is being probed by XL-MS, as shown in collaborative work between the Pakrasi and Gross labs, underscoring the utility of crosslinking in the future. In addition, the development of membrane protein MS techniques in recent years also benefits the study of photosynthetic membrane proteins. Our MS-based footprinting platform on membrane proteins lays ground for future membrane protein studies: membrane protein-ligand
interaction, influence of lipids on membrane protein, influence of pH on membrane protein and so forth. One promising direction is the native MS interrogation of photosynthetic proteins incorporated in a Nanodisc. The most native structure of photosynthetic membrane proteins may be probed and protein-lipid and even pigment-lipid interaction can be investigated.
References

90. Tadros, M.; Waterkamp, K., Multiple copies of the coding regions for the light-harvesting B800-850 alpha-and beta-polypeptides are present in the Rhodopseudomonas palustris genome. The *EMBO journal* 1989, 8 (5), 1303.

170

224. Sluchanko, N. N.; Klementiev, K. E.; Shirshin, E. A.; Tsoraev, G. V.; Friedrich, T.; Maksimov, E. G., The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* 2017, 1858 (1), 1-11.

228. Hall, Z.; Politis, A.; Bush, M. F.; Smith, L. J.; Robinson, C. V., Charge-State Dependent Compaction and Dissociation of Protein Complexes: Insights from Ion Mobility and Molecular Dynamics. *Journal of the American Chemical Society* 2012, 134 (7), 3429-3438.

