Genetic Algorithms: Usefulness and Effectiveness for Pattern Recognition

Authors: Mohit Verma

Genetic Algorithms have been gaining much interest since the early 1970's and have intrigued people from the fields of machine learning, artificial intelligence, neural networks and operations research. This paper describes the approach of genetic algorithms applied to neural networks. The experiments were conducted using various functions such as XOR, AND, SINE and different network sizes. Based on the experimental data, we concluded that for small network architectures represented by the functions (SINE, ENCODE, etc), genetic algorithms were not effective and the desired results were not achieved within a reasonable period of time.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation
https://openscholarship.wustl.edu/cse_research/653
Genetic Algorithms: Usefulness and Effectiveness for Pattern Recognition.

Mohit Verma

WUCS-91-35

May 1991

Department Of Computer Science
Washington University
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130-4899

This work was supported by the KUMON MACHINE project.
Abstract

Genetic Algorithms have been gaining much interest since the early 1970's and have intrigued people from the fields of machine learning, artificial intelligence, neural networks and operations research. This paper describes the approach of genetic algorithms applied to neural networks. The experiments were conducted using various functions such as XOR, AND, SINE and different network sizes. Based on the experimental data, we concluded that for small network architectures represented by the functions (XOR, AND, etc), genetic algorithms were very effective, but for larger network architectures represented by the functions (SINE, ENCODE, etc.), genetic algorithms were not effective and the desired results were not achieved within a reasonable period of time.
Table Of Contents

1. History .. 1
 1.1. Biological Background .. 1

2. Principles ... 2

3. Experiments ... 3
 3.1. Mutation Strategies used .. 3
 3.1.1. Random Swapping ... 3
 3.1.2. One-Point Crossover ... 4
 3.2. Applications to Neural networks .. 5
 3.2.1. Random Swapping for neural nets ... 6
 3.2.2. One-Point Crossover for neural nets ... 8
 3.3. Results ... 10
 3.3.1. Results using random swapping ... 11
 3.3.2. Results using one-point crossover ... 12

4. Observations .. 13

5. Conclusion .. 13

6. References ... 13

7. Appendix ... 14
List Of Figures

1. Symbolic Interpretation ... 2
2. Network Structure ... 5
3. Dataflow chart ... 6
4. Results .. 10
 4.1. Result summary for random swapping strategy 11
 4.2. Result summary for one-point crossover strategy 12
Genetic Algorithms: Usefulness and Effectiveness for Pattern Recognition
Mohit Verna

1. History

Genetic algorithms were invented by John Holland in the early 1970's. Holland was intrigued by Darwin's theory of evolution i.e. how the human species which has very complex biological functions had rapidly evolved over the centuries from a species which had only a few simple biological functions available to them.

1.1. Biological Background

The evolutionary theory proposed by Charles Darwin received the acclaim and support of biologists who were long baffled by "evolution" and its causes. The evolutionary theory has some important features which nurtured the growth of genetic algorithms:

- Evolution operates on chromosomes and not physically on a living organism. Each chromosome is made of genes which partly determine the living organism.
- Natural selection is a process that allows the fittest organism to replicate. The fittest organism is one which is able to adjust to its environment quickly and efficiently.
- Evolution occurs at the time of reproduction. Mutations or "sudden changes" cause a biological offspring completely different from its biological parents.
- Biological evolution has no memory: the only knowledge of producing new individuals is contained in the gene pool - which is the set of all the chromosomes of the current individuals.

Holland was intrigued by these features of evolution, and believed that if these features could be correctly incorporated into a computer algorithm, they might yield a technique to solve difficult problems the way nature has solved through the process of evolution. These algorithms were named genetic algorithms [1, Pg 2].
In nature, mutations have played a key role for the process of evolution. Mutations occur when genes of one chromosome are randomly swapped with other genes of another chromosome or from within, since the position of these genes on a chromosome partly determine the living organism. So, the key question for biologists is which arrangement of genes is the best; that is, which arrangement of these genes will lead to the fittest living organism for a certain given environment.

Similarly, this applies to neural networks where we have to search for a weight vector which gives the optimal result for a given function, serving as the environment in this case.

2. Principles

According to David Goldberg, genetic algorithms are defined to be "search algorithms based on the mechanics of natural selection and natural genetics" [2, Pg 1].

Based on this definition, the idea of genetic algorithms has been applied to neural networks. Mutations play a key role in natural selection and natural genetics, and in neural networks we have to try and simulate the role of mutations or "sudden changes".

\[
\begin{align*}
A = (a_1, a_2, \ldots, a_n) & \rightarrow A' \ldots A^{(m-1)} & M = \text{mutation strategy used.} \\
A* = (a_1^*, \ldots, a_n^*) & \rightarrow A' \ldots A^{(m-1)} & P = \text{performance function.} \\
\end{align*}
\]

where \(A^* \) optimizes the performance function \(P \).

generation 1 \quad \quad \text{generation 2} \quad \quad \quad \text{......} \quad \quad \text{generation m}

\[
\begin{align*}
[a_1, a_2, \ldots, a_n] & \rightarrow [a_1', \ldots, a_n'] & \rightarrow [a_1^{*}, a_2^{*}, \ldots, a_n^{*}] \\
A = \text{initial vector} & \rightarrow M(A) = A' & \quad \quad \quad \text{......} \quad \quad \quad M(A'^{(m-1)}) = A^* \\
\end{align*}
\]

Figure 1: symbolic interpretation
Figure 1 illustrates how the genetic algorithm approach is applied to engineering problems. In the above figure, A is the initial vector whose components are parameters to the performance function. Our goal is to optimize the performance function P, so we have to search for an \(A = A^* \) which optimizes the performance function. \(M \) denotes the mutation strategy which is applied to the parameters \((A, \text{etc.})\), here \(A' \) is generated from A using the mutation strategy \(M \). So at the end of each generation we have a new parameter set which is used for the next iteration. This procedure is repeated until the optimal \(A = A^* \) is found.

3. Experiments

Several experiments were conducted using the genetic algorithm approach to determine their effectiveness for simple to complex functions for neural networks.

3.1. Mutation Strategies used

Two different types of mutation strategies (M's in figure 1) were used. In the the next two sections these strategies have been described.

3.1.1. Random Swapping

The example below illustrates the random swapping strategy. In the example, \(S_1 \) and \(S_2 \) represent the parent chromosomes where the 0’s and 1’s indicate the genes present on the chromosome. According to this strategy, initially two random numbers (\(R_1 \) and \(R_2 \)) are generated in the range of \(L \) (length of string \(S_1 \)) and \(L_2 \) (length of string \(S_2 \)) respectively, which indicate the positions of the genes to be swapped.

Example:

Before Swapping:
\[
S_1 = 1 \, 0 \, 1 \, 0 \, 1 \, 0 \\
S_2 = 0 \, 1 \, 0 \, 0 \, 1 \, 1
\]

where, \(S_1 \) and \(S_2 \) represent the parent chromosomes.

\(R_1 = 3, \, R_2 = 4 \)

where, \(R_1 \) represents the position of the gene in \(S_1 \) to be swapped and \(R_2 \) represents the position of the gene in \(S_2 \) to be swapped.

\(L_1 = 6, \, L_2 = 6 \)

where, \(L_1 \) represents the number of genes present in \(S_1 \) and \(L_2 \) represents the number of genes present in \(S_2 \).
After Swapping:

\[S'_1 = 100010 \]
\[S'_2 = 010111 \]

where, \(S'_1 \) and \(S'_2 \) represent the chromosomes of the new offspring.

In the example above, the random numbers generated are \(R_1=3 \), \(R_2=4 \). After the swapping is completed, the resultant strings \(S1' \) and \(S2' \) are displayed. Since the positions are chosen randomly, a large number of new strings can be generated.

3.1.2. One-Point Crossover

Biologists have used the concept of crossover to explain the "sudden changes" occurring in the offspring. Crossover is the interchange of genes between parents. It is believed that during reproduction parents exchange their genetic material (genes) which can result in radically different offspring. John Holland used this process to formulate the one-point crossover strategy [1.Pg 16] [3.Pg 16].

Example:
Before Crossover:

\[S_1 = 101010 \]
\[S_2 = 010011 \]

where, \(S_1 \) and \(S_2 \) represent the parent chromosomes.

\[P = 4 \]

where, \(P \) represents the position in \(S_1 \) and \(S_2 \) where the crossover of genes begins.

\[L = 6 \]

where, \(L \) represents the number of genes present in \(S_1 \) and \(S_2 \).

After Crossover:

\[S'_1 = 101011 \]
\[S'_2 = 010010 \]

where, \(S'_1 \) and \(S'_2 \) represent the chromosomes of the new offspring.

The above example illustrates the one-point crossover strategy. In the above example, \(S_1 \) and \(S_2 \) represent the parent chromosomes where the 0's and 1's indicate the genes present on the chromosome. According to this strategy, initially a random number \(P \) is generated in the range \(L \) (length of the strings \(S_1 \) is \(S_2 \) are restricted to be equal to \(L \)), which indicates the position where the crossover is to begin.

In the above example \(P = 4 \). After the crossover is completed, the resultant strings \(S'_1 \) and \(S'_2 \) are
displayed. Since the positions are chosen randomly, a large number of new strings can be generated.

3.2. Applications to Neural networks

The mutation strategies described in section 3.1. have been used to simulate the genetic algorithm approach for neural networks and the experiments were conducted using these strategies. The next two subsections describe how these strategies have been applied to the case of neural networks.

![Network Structure Diagram]

--- Output Units

--- Hidden Units

--- Input Units

Figure 2: Network Structure

Figure 2 shows the neural network used for the experiments conducted. The network architecture used was hierarchical; where the number of output, input, and hidden units were arbitrary and could be chosen at the discretion of the experimenter. The arrows indicate the inputs and outputs passed along the network (chopped arrows indicate data passed within the network, solid arrows indicate the inputs given to the network and the outputs generated by the network). Also, each of the arrows (solid and chopped) drawn in figure 2 holds a weight value. For simplicity, the network was restricted to three layers.

In figure 3 a dataflow chart is shown, which illustrates how the genetic algorithm approach is applied to the neural network (pattern recognition) problem. In figure 3, W is the initial vector whose components are parameters to the performance function. Our goal is to minimize the performance function P, so we have to search for an W=W* which minimizes the performance function P. M denotes the mutation strategy which is applied to the parameters (W, etc) and F denotes the function which is to be tested. W' is generated from W using the mutation strategy M. So, at the end of each generation we have a new parameter set which is used for the next iteration. This procedure is repeated until the optimal W=W* is found.
For neural nets $P(w_1, w_2, \ldots, w_n) = \sum 0.5(\gamma_i - F(x_i))^2$

where, F is the function to be tested (XOR, SINE, etc)

γ_i's are the teaching values

x_i's are the function inputs

<table>
<thead>
<tr>
<th>generation 1</th>
<th>generation 2</th>
<th>\ldots</th>
<th>generation m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[w_1, \ldots, w_n]$</td>
<td>$[w_1', \ldots, w_n']$</td>
<td>$[w_1^, \ldots, w_n^]$</td>
<td></td>
</tr>
</tbody>
</table>

$W =$ initial vector
$M(W) =$ W'
$M(W^{(m-1)}) =$ W^*

Figure 3: neural nets representation

3.2.1. Random Swapping (M1) for Neural Nets

The idea behind Random Swapping was described in section 3.1.1. This idea has been applied to neural networks where we search for an optimal weight vector each of which represents a chromosome, and whose components (weights) represent genes.

Example: To illustrate this idea of random swapping, let us take a formal example. Initially, a set of M weight vectors W (below), is generated randomly within a given range. The input function is evaluated for each of these initial weight vectors, then the best half ($M/2$) weight vectors and worst half ($M/2$) weight vectors are separated into two lists. The weight vectors are ordered according to their performance, and from these two lists are determined. The random swapping strategy is applied to two weight vectors at a time, so random swapping will be applied initially to the first weight vector in the best list and the first weight vector in the worst list, respectively. This procedure is repeated until the last set of (best & worst) weight vectors has been used.

$$W = \begin{bmatrix} w_1 & w_2 & \ldots & w_M \end{bmatrix}$$
Before Swapping:

\[
W_1 = \begin{bmatrix} w_1 & w_2 & w_3 & \ldots & w_n \end{bmatrix} \\
X_1 = \begin{bmatrix} x_1 & x_2 & x_3 & \ldots & x_n \end{bmatrix}
\]

where, \(W_1 \) and \(X_1 \) are weight vectors, \(W_1 \) is the first vector in the best list and \(X_1 \) is the first weight vector in the worst list, and their \(n \) components are the weights needed for the network.

\[
R_1 = 2, \quad R_2 = 3
\]

where, \(R_1 \) represents the position of the weight in \(W_1 \) to be swapped and \(R_2 \) represents the position of the weight in \(X_1 \) to be swapped with each other, respectively.

\[
L_1 = n, \quad L_2 = n.
\]

where, \(L_1 \) represents the number of weights of \(W_1 \) and \(L_2 \) represents the number of weights of \(X_1 \). For our purposes, the number of weights of \(W_1 \) and \(X_1 \) were restricted to be equal.

After Swapping:

\[
W_1' = \begin{bmatrix} w_1 & x_3 & w_3 & \ldots & w_n \end{bmatrix} \\
X_1' = \begin{bmatrix} x_1 & x_2 & w_2 & \ldots & x_n \end{bmatrix}
\]

Now, \(W' = \begin{bmatrix} W_1' & X_1' & W_2' & X_2' & \ldots & W_n' & X_n' \end{bmatrix} \)

Please note:

\(W' \) is the newly generated set of weight vectors.

\(W_1' \) and \(X_1' \) are the new weight vectors generated after the swapping.

\(n = (\text{number of hidden units}) * (\text{number of input units} + \text{number of output units}) \) of the network.

\(M = n \) if \(n \) is even, otherwise \(M = n + 1 \).

For this example, \(W_1 \) is the first weight vector in the best list and \(X_1 \) is the first weight vector in the worst list. The two random numbers generated are \(R_1 = 2, \ R_2 = 3 \), the corresponding weights \(w_2 \) and \(x_3 \) are swapped, and the resultant weight vectors \(W_1' \) and \(X_1' \) are shown after the swapping has occurred. This procedure is repeated \(M/2 \) times, so at the end of one iteration we have a new set of \(M \) weight vectors which are used in the next iteration. The upper bound on the number of iterations acceptable is 20000 iterations. This procedure is repeated until a weight vector is generated which optimizes the given function or the 20000 iterations are completed. This strategy was found to be \(O(n^2) \).

To illustrate this strategy, let us give an example.

\[
W = \begin{bmatrix} (a, b, c, d) & (g, h, i, j) & (m, n, o, p) & (s, t, u, v) \end{bmatrix}
\]

\[
BH = \begin{bmatrix} (a, b, c, d) & (g, h, i, j) \end{bmatrix}, \quad WH = \begin{bmatrix} (m, n, o, p) & (s, t, u, v) \end{bmatrix}
\]

7
where,
\[W \] is the set of weight vectors in order of performance,
\[M = n = 4 \] (number of weight vectors generated),
\[BH \] is the best half list of vectors,
\[WH \] is the worst half list of vectors.

After Random Swapping,
\[W' = \begin{bmatrix} (a \ m \ c \ p) & (b \ n \ o \ d) & (s \ h \ t \ j) & (g \ i \ u \ v) \end{bmatrix} \]

where,
\[W' \] is the set of new weight vectors generated after swapping.
There are \(4 \text{ div } 2 = 2 \) swaps ((b with m, p with d), (s with g, t with i)).
div represents the integer division function.

3.2.2. One-Point Crossover (M2) for Neural Nets

The idea behind one-point crossover was described in section 3.1.2. This idea has been applied to neural networks where we search for an optimal weight vector each of which represents a chromosome, and whose components (weights) represent genes.

Example: To illustrate this strategy, let us take a formal example. Initially, a set of M weight vectors \(W \) (below), is generated randomly within a given range. The input function is evaluated for each of these initial weight vectors, then the best half (M/2 weight vectors which give the optimal results) of the M weight vectors are separated into a list, the other half is discarded. Then a new set of M/2 weight vectors are generated randomly into another list. The one-point crossover strategy is applied to two weight vectors at a time and the crossover point is chosen initially, so one-point crossover will be applied to the first weight vector in the best half list and the first weight vector in the newly generated weight vectors list, respectively. This procedure is repeated until the last set of weight vectors has undergone this strategy.

\[W = \begin{bmatrix} W_1 & W_2 & \ldots & W_3 & \ldots & W_M \end{bmatrix} \]

Before Crossover:
\[W_1 = \begin{bmatrix} w_1 & w_2 & \ldots & w_n \end{bmatrix} \]
\[X_1 = \begin{bmatrix} x_1 & x_2 & \ldots & x_n \end{bmatrix} \]
where, \(W_1 \) and \(X_1 \) are weight vectors. \(W_1 \) is the first weight vector in the best half list and \(X_1 \) is the first weight vector in the newly generated list. Their n components are individual weights needed for the network.
For this example, we choose \(P = 3 \) as \(n \) is arbitrary. For other cases, \(P = n \text{ div } 2 \) if \(n \) is even, otherwise \(P = (n+1) \text{ div } 2 \).

where, \(P \) represents the position the crossover is to begin and \(\text{div} \) is the integer division function.

\[L_1 = n, \quad L_2 = n. \]

where, \(L_1 \) represents the number of weights of \(W_1 \) and \(L_2 \) represents the number of weights of \(X_1 \). For our purposes, the number of weights of \(W_1 \) and \(X_1 \) were restricted to be equal.

After Crossover:

\[
W_1' = \begin{bmatrix} w_1 & w_2 & x_3 & \ldots & x_n \end{bmatrix}
\]
\[
X_1' = \begin{bmatrix} x_1 & x_2 & w_3 & \ldots & w_n \end{bmatrix}
\]

Now, \(W' = \begin{bmatrix} W_1' & X_1' & W_2' & X_2' & \ldots & W_n' & X_n' \end{bmatrix} \)

Also, please note here:

\(W' \) is the newly generated set of weight vectors.

\(W_1' \) and \(X_1' \) are the new weight vectors generated after the interchange.

\(n \) = (number of hidden units) \times (number of input units + number of output units) of the network.

\(M = n \) if \(n \) is even, otherwise \(M = n + 1 \).

For the above example, \(W_1 \) is the first weight vector in the best list and \(X_1 \) is the first weight vector in the list of newly generated weight vectors. The point of crossover is chosen to be \(P = n \text{ div } 2 \), in this case we choose \(P = 3 \), as \(n \) is arbitrary. The resultant set of weight vectors \(W_1' \) and \(X_1' \) are shown in the example. This procedure is repeated \(M/2 \) times, so at the end of this iteration a new set of \(M \) weight vectors is generated which are used in the next iteration. The upper bound on the number of iterations acceptable is 20000 iterations. This procedure is repeated until a weight vector is generated that optimizes the given function or the 20000 iterations are completed. This strategy was found to be \(O(n^2) \).

An example is given to illustrate this strategy.

\[
W = \begin{bmatrix}
(a \ b \ c \ d) & (g \ h \ i \ j) & (e \ f \ k \ l) & (q \ r \ w \ x)
\end{bmatrix}
\]

\[
BH = \begin{bmatrix}
(a \ b \ c \ d) & (g \ h \ i \ j)
\end{bmatrix},\quad NH = \begin{bmatrix}
(m \ n \ o \ p) & (s \ t \ u \ v)
\end{bmatrix}
\]

where,

\(W \) is the set of weight vectors in order of performance,

\(M = n = 4 \) (number of weight vectors generated),

\(BH \) is the best half list of vectors,

\(NH \) is the newly generated half list of vectors.
After Crossover,

\[W' = \begin{bmatrix} (a b o p) & (m n c d) & (g h u v) & (s t i j) \end{bmatrix} \]

where,

- \(W' \) is the set of new weight vectors generated after swapping.
- The crossover begins at position 2, since \(4 \text{ div } 2 = 2 \).

3.3. Experimental Results

Several experiments were conducted using the strategies mentioned earlier, in order to compare the performance of genetic algorithms to traditional neural network approaches. A genetic algorithm simulator was designed, and later implemented in the C programming language. For simplicity, the hierarchical neural network was chosen. The program was executed on the Next Cube (68040) machine running Unix, which was the available hardware at the time. The source code of the simulator implemented in the C programming language is given in the Appendix (Section 7).

To compare the performance of genetic algorithms, a set of functions were chosen (XOR, EQUIVALENCE (EQUIV), AND, OR, SINE, ENCODE) to be the test functions. XOR, EQUIV, AND, OR, each represented functions which had relatively small architectures, while SINE and ENCODE[4] represented functions which had larger architectures and greater complexity. A total of 12 experiments were conducted for each mutation strategy. Also, two different network sizes were used for each function, so two experiments were conducted for each of the above functions for each mutation strategy respectively. Two different network sizes were used, in order to check if the performance of genetic algorithms differed for different network sizes. The results obtained confirmed our suspicions that genetic algorithms seemed to work well with small architectures, but performed rather poorly with larger architectures. An upper bound of 20000 generations was chosen which gave the machine sufficient CPU time, this bound was used to represent nonconvergence. The XOR, EQUIV, OR, AND functions each had 2 binary inputs and 1 binary output. The SINE and ENCODE functions had 8 binary inputs and 8 binary outputs, respectively.

The next two sections describe the experimental results obtained using the two different mutation strategies. The entries in the tables are to be interpreted in the following way:

- **MSE** represents that the mean square error was used to determine the accuracy of the data.
- **Avg. # of iterations** gives the avg. # of the generations needed for convergence over T trials.
- **# of Trials (T)** indicates that the data was gathered over T executions of the program.
- **Avg. Time** indicates the time taken in seconds for the program to achieve results over T trials.
- **Total Units** indicates the network size used for the given function.
- **Total Wts.** indicates the number of weights needed for the network.
• Converge indicates how many Trials (T) were able to give the desired results in 20000 iterations.
• A dash (-) indicates the data was not available, since the program did not achieve convergence.
• An infinity (∞) indicates that the program did not converge in 20000 iterations.
• The range for the weights generated was chosen to be -200 ≤ 0 ≤ 200.
• For the SINE function, 20 function patterns were tried, which represented a half period (0 to π/2).

3.3.1. Results obtained for the random swapping strategy (M1)

Figure 4 displays the data collected for the random swapping strategy. Please note that for large network (SINE, ENCODE) problems, the results are incomplete.

<table>
<thead>
<tr>
<th>Function</th>
<th>MSE</th>
<th>Avg. # of Iterations</th>
<th># Of Trials(T)</th>
<th>Avg. time</th>
<th>Total Units</th>
<th>Total Wts.</th>
<th>Converge</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOR</td>
<td>5e-6</td>
<td>208</td>
<td>20</td>
<td>3.38</td>
<td>6</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>EQUIV</td>
<td></td>
<td>0</td>
<td>294</td>
<td>4.65</td>
<td>6</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>OR</td>
<td>2.6e-3</td>
<td>6563</td>
<td>20</td>
<td>140</td>
<td>7</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>AND</td>
<td>1.9e-3</td>
<td>3657</td>
<td>20</td>
<td>93.7</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>SINE</td>
<td>-</td>
<td>∞</td>
<td>20</td>
<td>∞</td>
<td>24</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>ENCODE</td>
<td>-</td>
<td>∞</td>
<td>20</td>
<td>∞</td>
<td>22</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>XOR</td>
<td>0</td>
<td>90</td>
<td>20</td>
<td>2.23</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>EQUIV</td>
<td>2e-6</td>
<td>77</td>
<td>20</td>
<td>3.89</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>OR</td>
<td>2.5e-3</td>
<td>3366</td>
<td>20</td>
<td>147.8</td>
<td>9</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>AND</td>
<td>1.8e-3</td>
<td>979</td>
<td>20</td>
<td>43.8</td>
<td>9</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>SINE</td>
<td>-</td>
<td>∞</td>
<td>20</td>
<td>∞</td>
<td>32</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>ENCODE</td>
<td>-</td>
<td>∞</td>
<td>20</td>
<td>∞</td>
<td>24</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 4: Table for random swapping data
3.3.2. Results obtained for the one-point crossover strategy(M2)

Figure 5 displays the data collected for the one-point crossover strategy. Please note that for large network (SINE, ENCODE) problems the results were incomplete.

<table>
<thead>
<tr>
<th>Function</th>
<th>MSE</th>
<th>Avg. # of Iterations</th>
<th># Of Trials(T)</th>
<th>Avg. time</th>
<th>Total Units</th>
<th>Total Wts.</th>
<th>Converge</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOR</td>
<td>0</td>
<td>185</td>
<td>20</td>
<td>3.33</td>
<td>6</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>EQU IV</td>
<td>5e-6</td>
<td>226</td>
<td>20</td>
<td>3.92</td>
<td>6</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>OR</td>
<td>2.6e-3</td>
<td>4607</td>
<td>20</td>
<td>131.2</td>
<td>7</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>AND</td>
<td>1.9e-3</td>
<td>2233</td>
<td>20</td>
<td>55.1</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>SINE</td>
<td>-</td>
<td>∞</td>
<td>20</td>
<td>∞</td>
<td>24</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>ENCODE</td>
<td>-</td>
<td>∞</td>
<td>20</td>
<td>∞</td>
<td>22</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>XOR</td>
<td>1e-6</td>
<td>94</td>
<td>20</td>
<td>2.66</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>EQU IV</td>
<td>2e-6</td>
<td>91</td>
<td>20</td>
<td>2.69</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>OR</td>
<td>2.7e-3</td>
<td>3497</td>
<td>20</td>
<td>175.2</td>
<td>9</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>AND</td>
<td>2.8e-3</td>
<td>1036</td>
<td>20</td>
<td>53.9</td>
<td>9</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>SINE</td>
<td>-</td>
<td>∞</td>
<td>20</td>
<td>∞</td>
<td>32</td>
<td>256</td>
<td>0</td>
</tr>
<tr>
<td>ENCODE</td>
<td>-</td>
<td>∞</td>
<td>20</td>
<td>∞</td>
<td>24</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5: Table for one-point crossover data
4. Observations

During the experimentations using genetic algorithms, we made some interesting observations:

- XOR, EQUIV, OR, AND converged rapidly if the network size was increased, but the time complexity also increased.
- For SINE and ENCODE both strategies converged for 1 or 2 patterns of the function, but convergence was not achieved for greater number of patterns.
- For both mutation strategies, the results were consistent with each other.
- If the range of the weights was decreased significantly, the convergence rates (# of iterations) decreased for XOR, OR, AND, EQUIV. Convergence for the SINE and ENCODE functions was not achieved if the range of weights was changed.

5. Conclusion

Based on the experiments conducted and the data gathered, we concluded that genetic algorithms seem to be very effective for simple functions (XOR, AND, etc) and small architectures, but as the complexity of the function increases (SINE, etc) and the network architectures become larger, genetic algorithms become ineffective and are less useful.

6. References

7. Appendix

/* THIS PROGRAM USES A 3 LAYERED NEURAL NETWORK TO EMULATE THE BEHAVIOUR OF A
FUNCTION. THE NUMBER OF OUTPUTS, INPUTS AND HIDDEN UNITS ARE ARBITRARY AND
CAN BE CHOSEN BY THE USER. THE NETWORK USED IS HIERARCHICAL. A RANDOM NUMBER
GENERATOR IS USED TO GENERATE THE INITIAL SET OF WTS, THEN A GENETIC ALGORITHM
IS USED TO RANDOMLY PERMUTE THE WTS TO OBTAIN A MORE QUALIFIED SET OF WEIGHT
VECTORS. THE PROGRAM DISPLAYS A WT_VECTOR WHICH SATISFIES THE ERROR
TOLERANCE. THE SYSTEM TIME IS ALSO DISPLAYED. */

#include <stdio.h>
#include <math.h>
#include <sys/file.h>
#include <sys/time.h>
#include "rand.h"
#define MAX 100
#define INPUTFILE "and.data" /*INPUT FILE TO BE USED*/
#define NUMLAYERS 3
#define SQR(x) ((x)*(x))
#define TOLERANCE 0.01
#define RANGE 200.0 /* RANGE OF RANDOM NUMBERS TO BE
GENERATED */
#define TOTAL 20000 /* MAXIMUM NUMBER OF GENERATIONS
ALLOWED */
#define COUNT 20 /* NUMBER OF TRIALS */

typedef struct cell
{
 float actvalue;
 float inputvalue;
 float wts[MAX];
} LAYER[NUMLAYERS+1][MAX]; /* UNIT IN NETWORK */

typedef struct in_out
{
 float value[MAX];
} IN_struct[MAX],OUT_struct[MAX];

typedef float WTS[MAX][MAX]; /* WEIGHT ARRAY */

typedef struct node
{
 int index;
 float value;
} STORE[MAX];

IN_struct in_data;
OUT_struct out_data;

/* THIS ROUTINE PRINTS OUT THE SYSTEM TIME */

void TIME(void)
{
 struct timeval tv; /* SYSTEM STRUCT */
struct timezone tzp;

if (gettimeofday(&tp,&tzp) == 0)
 { printf("The Time is %s",ctime(&tp.tv_sec));
 printf("Microsecs: %ld\n",tp.tv_usec);
 }

/* RETURNS A RANDOM NUMBER BETWEEN - BOUND AND BOUND */

float Randomize(double BOUND)
 {
 return(rand010*2.0*BOUND - BOUND);
 }

/* THIS ROUTINE GENERATES THE WT-VECTORS REQUIRED. ALWAYS AN EVEN NUMBER OF
WEIGHT VECTORS ARE GENERATED. */

void INIT(int numout,int numin,int numhid,WTS wt_array)
 {
 int i,j; /* LOOP INDEXES */
 int numwts = (numin + numout) * (numhid); /* WTS NEEDED */
 int copy = numwts;

 srand(0); /* INITIALIZE THE RANDOM NUMBER GENERATOR */
 if (ODD(numwts) == 1)
 numwts++;
 for (i=1;i<=numwts;i++)
 for (j=1;j<=copy;j++)
 wt_array[i][j] = Randomize(RANGE);
 }

/* THIS ROUTINE SETS UP THE NETWORK AND ASSIGNS THE WTS TO THE CONNECTIONS IN
THE NETWORK */

void ASSIGN(LAYER net_array,WTS wt_array, int index,
 int numin, int numout, int numhid)
 {
 int i,j;
 int count = 1;

 for (i=1;i<=numin;i++)
 for (j=1;j<=numhid;j++)
 { net_array[1][i].wts[j]=wt_array[index][count];
 count++;
 }
 for (i=1;i<=numhid;i++)
 for (j=1;j<=numout;j++)
 { net_array[2][i].wts[j]=wt_array[index][count];
 count++;
 }
 }

/* ACTIVATION FUNCTION USED */

float Lambda(float x)
{ return (1/(1 + exp(-1*x))));

/* THIS ROUTINE COMPUTES THE INPUT AND ACTIVATION VALUES OF A UNIT IN THE
NETWORK */

void COMPUTE(int numin,int numout, int numhid,
 LAYER net_array)
{
 int i,j; /* LOOP INDEXES */
 float temp=0;

 for (i=1;i<=numhid;i++)
 for (j=1;j<=numin;j++)
 temp += net_array[1][i].wts[j] * net_array[1][j].actvalue;
 net_array[2][i].inputvalue = temp;
 net_array[2][i].actvalue = Lambda(temp);

 temp = 0;
 for (i=1;i<=numout;i++)
 for (j=1;j<=numhid;j++)
 temp += net_array[2][i].wts[j] * net_array[2][j].actvalue;

/* THIRD LAYER = OUTPUT UNITS */

 net_array[3][i].inputvalue = temp;
 net_array[3][i].actvalue = Lambda(temp);
}

/* THIS ROUTINE FETCHES THE INPUT FROM A GIVEN INPUT FILE. */

void INPUT(int *numin, int *numout,int *numhid,int *patterns)
{
 int i,j;
 FILE *fp;
 int test,fd;

 fd = open(INPUTFILE,O_RDWR,0700);
 fp = fdopen(fd,"r");
 fscanf(fp,"%d",patterns);
 fscanf(fp,"%d",numin);
 fscanf(fp,"%d",numhid);
 fscanf(fp,"%d",numout);
 for (i=1;i<= *patterns;i++)
 for (j=1;j<= *numin;j++)
 fscanf(fp,"%f",&in_data[i].value[j]);
 for (j=1;j<= *numout;j++)
 fscanf(fp,"%f",&out_data[i].value[j]);

 fclose(fp);
 close(fd);

/* THIS SUBROUTINE COMPUTES THE MEAN SQUARE ERROR FOR EACH PATTERN OF THE
FUNCTION */
void COMPUTE_ERR(int numout, LAYER net_array,
 OUT struct out, float *ans, int index)
{
 int i;
 float temp = 0;
 float var = *ans;

 for (i = 1; i <= numout; i++)
 temp += 0.5 * SQR(out[index].value[i] -
 net_array[3][i].actvalue);
 var += temp;
 *ans = var;
}

/* CHECK IF THE INTEGER IS ODD OR EVEN */
int ODD(int x)
{
 if ((x % 2) == 0)
 return 0;
 else
 return 1;
}

/* RETURNS THE ABSOLUTE VALUE OF THE NUMBERS */
float ABS(float x)
{
 if (x < 0)
 return (x * -1);
 else
 return x;
}

/* CHECKS IF THE ERROR IS WITHIN THE REQUIRED TOLERANCE OR NOT */
int CHECK(STORE error, int numin, int numout, int numhid,
 int *index)
{
 if (error[1].value < TOLERANCE)
 {
 *index = error[1].index;
 return 1;
 }
 else
 return 0;
}

/* SORTS THE ERROR ARRAY IN ASCENDING ORDER */
void SORT(STORE error, int num)
{
 int i, j;
 float temp;
for (j=2;j<=num;j++)
{ temp = error[j].value;
 i = j-1;
 while ((i>0) && (error[i].value > temp))
 { error[i+1].value = error[i].value;
 i--;
 }
 error[i+1].value = temp;
 }

/* THIS ROUTINE RANDOMLY SWAPS THE WEIGHTS OF TWO CHOSEN WEIGHTS VECTORS
 TO GENERATE ANOTHER SET OF WEIGHT VECTORS TO BE USED IN THE NEXT GENERATION */

void MUTATE1(STORE error, WTS wt_array, int numin, int numout, int numhid)
{
 int i,j;
 /* LOOP INDEXES */
 int num = (numin+numout)*numhid; /* NUMBER OF WEIGHTS */
 int copy = num;
 float var;
 int rand1, rand2;

 if (ODD(num) == 1)
 num++;
 num = (int)(num/2);
 for (i=1;i<=num;i++)
 for (j=1;j<=(int)(num/2);j++)
 { rand1 = (int) ABS(Randomize((double)copy)) + 1;
 rand2 = (int) ABS(Randomize((double)copy)) + 1;
 /* SWAP THE WEIGHTS */
 var = wt_array[i][rand1];
 wt_array[i][rand1] = wt_array[i+num][rand2];
 wt_array[i+num][rand2] = var;
 }
}

/* THIS ROUTINE USES ONE-POINT CROSSTOVER TO GENERATE A NEW SET OF WEIGHT
 VECTORS. THE BEST HALF WEIGHT VECTORS ARE RETAINED AND ANOTHER HALFW VECTORS
 ARE GENERATED. THEN THE ONE-POINT CROSSTOVER STRATEGY IS APPLIED TO THEM TO GENERATE THE NEW SET */

void MUTATE2(STORE error, WTS wt_array, int numin, int numout, int numhid)
{
 int i,j;
 int num = (numin+numout)*numhid; /* NUMBER OF WEIGHTS */
 WTS temp, new_wts, worst; /* HOLDS THE NEW WEIGHTS GENERATED */
 int copy = num;
 float var;

 if (ODD(num) == 1)
 num++;
 num = (int)(num/2);
for (i=1;i<=num;i++) /* save best weights*/
for (j=1;j<=copy;j++)
 temp[i][j] = wt_array[i][error[i].index[j]];
for (i=1;i<=num;i++)
for (j=1;j<=copy;j++)
/* GENERATE THE NEW WEIGHTS */
new_wts[i][j] = Randomize(RANGE);
for (i=1;i<=num;i++) /* use one-point crossover */
for (j=1;j<=num;j++)
{ var = temp[i][j];
 temp[i][j] = new_wts[i][j];
 new_wts[i][j] = var;
}
for (i=1;i<=num;i++)
for (j=1;j<=copy;j++)
 wt_array[i][j] = temp[i][j];
for (i=num+1;i<=2*num;i++)
for (j=1;j<=copy;j++)
 wt_array[i][j] = new_wts[i-num][j];

/* THIS SUBPROGRAM INVOKES THE SUBROUTINES TO CREATE THE NEEDED CYCLE IN ORDER TO DETERMINE THE BEST SUITING WEIGHT VECTOR FOR THE NETWORK */

void START_LOOP(int numin,int numout,int numpatterns,
 int numhid,WTs wt_array,AYER net_array,
 IN_struct in, OUT_struct out, STORE error,
 int *generations)
{
 int i,j,k; /* LOOP INDEXES */
 int temp = (numin+numout)*numhid; /* NUMBER OF WEIGHTS */
 float result = 0;
 int index = 0;
 int sw = 1; /* LOOP VARIABLE */
 int gen = 1; /* GENERATION COUNT */
 int copy = temp;

 INTT(numout,numin,numhid,wt_array);
 if (ODD(temp) == 1)
 temp++;
 while (sw != 0)
 {
 for (i=1;i<=temp;i++)
 {
 ASSIGN(net_array,wt_array,i,numin,numout,numhid);
 for (j=1;j<=numpatterns;j++)
 {
 for (k=1;k<=numin;k++)
 {
 net_array[i][j].inputvalue = in[j].value[k];
 net_array[i][j].actvalue = Lambda(in[j].value[k]);
 }
 COMPUTE(numin,numout,numhid,net_array);
 COMPUTE_ERR(numout,net_array,out,&result);
 }
 error[i].value = result/numpatterns;
 error[i].index = i;
 result = 0;
 }
 SORT(error,temp);
if (CHECK(error,numin,numout,numhid,&index) == 1)
 { sw == 0;
 break;
 }
MUTATE2(error,wt_array,numin,numout,numhid);
gen++;
}
if (gen > TOTAL)
 { printf("No convergence in %d generations\n",TOTAL);
 return;
 }
if (index != 0)
 { printf("Convergence!! After %d generations\n",gen);
 *generations += gen;
 printf("For weight_vector W\n");
 for (i=1;i<=copy;i++)
 printf("%f\n",wt_array[index][i]);
 }

/* MAIN DRIVER ROUTINE */

void main(void)
{
 LAYER network;
 WTS weight_array;
 STORE error;
 int numin;
 int numout;
 int numhid;
 int numpatterns;
 int i,j;
 float total_error = 0;
 int generations = 0;

 for (i=1;i<=COUNT;i++)
 { TIME();
 INPUT(&numin,&numout,&numhid,&numpatterns);
 START_LOOP(numin,numout,numpatterns,numhid,
 weight_array, network, in_data, out_data, error,
 &generations);
 if (error[1].value < TOLERANCE)
 total_error += error[1].value;
 TIME();
 }
 printf("Cumulative Error/Nooftrials = %f\n",total_error/COUNT);
 printf("NoOfGenerations/Nooftrials = %d\n",generations/COUNT);
}