89

Figure 6.3: Equivalent symmetric networks for the meeting example (the numbers in
the circles are thresholds): (a) cubic; (b) quadratic; and (c) quadratic for the simple

conversion {no naming).

Representing SNs as Penalty Logic Formulas. This subsection shows that it is
possible to describe efficiently any network by a penalty logic formula. The motiva-
tion here is to demonstrate that penalty logic is an efficient and compact language for

specifying symmetric networks.

THEOREM 6.3.2 EVERY ENERGY FUNCTION E IS STRONGLY EQUIVALENT TO SOME
PLOFF ; i.e., THERE EXISTS A CONSTANT ¢ SUCH THAT rankp = Vranky + c.

Construction:
The following algorithm generates a strongly equivalent PLOFF from an energy func-

tion.

1. Eliminate any hidden variables from the energy function, using the algorithm of
Section 3.3.2,

2. The energy function (with no hidden variables) is now brought into a sum-of-

products form and is converted into a PLOFF in the following way:

Let E(&) = 3070, w; Hﬁ{_ﬂ zj, be the energy function.

We construct a PLOFF ¢ = {< —w;,/\ﬁ‘zl zi, >l w < O}CI{< w;,-a/\ﬁgl xy, >
w > 0}.

a0

The formula that is generated is strongly equivalent to the original energy function and
the network. The size of the formula is linear in the number of the connections of the

original network.

Proof:
To show Vranky = rankg + c:

Vranky(Z) = Z —w; + Z W]
w;{O/\—:(EI: /\.X.'“) w;)ﬂl\'ﬁ(flz-\(/\ Xln))

= - Z w; + Z wy

w<OAT (A Xi,) w>0AT = (A Xi1)

=- Y wi+ 3 w; + > wy

wi<0 w.‘<0/\i"l=/\X.'n w;>0Af‘=(AX:n}
= Z 'w,-HX,'n + Z 'leXIn - Z w; = rankg + ¢
w; <0 3 why >0 n ;<0

1

ExAMPLE 6.3.7 Looking at the network of Figure 6.2, we would like to describe this
network as a PLOFF.
The energy function is:

E=-1000NQ — 1000N R+ 10RP — 10Q P — 1000N + 106
The negative terms are:
< 1000, NAQ >, < 1000, NA R >, <10,QA P >, < 1000,N > .

The positive terms are:
< 10,-RV-P >,<10,-Q > .

The final PLOFF is therefore:

< 1000, NAQ >, < 1000, NAR >,< 10, QAP >,< 1000, N >< 10,mRV-P >,< 10,-Q > .

Note that as is usually the case with reverse-compilation, the formula we get is not
very meaningful; however, it is clear that a compact description exists for every network.

6.4. A Connectionist Inference Engine

Suppose we have a background PLOFF 1, an evidence PLOFF e, and a query which is
a strict standard WFF . We would like to construct a connectionist network to give

one of the possible three answers: 1) @bLjel:go; 2) 1/;63}:(-:99); or 3) both pUe A and
$Ue f=(~p) (“ambiguous”).

91

Intuitively, our connectionist engine is built from two sub-networks, each of which
is trying to find a satisfying model for '(,blje. The first sub-network is biased to search
for a preferred model which also satisfies ¢, whereas the second sub-network is biased
to search for a preferred model which satisfies —¢. If two such models exist, then
we conclude that ¢ is “ambiguous” (sz*Je entails neither ¢ nor —¢). If no preferred
model also satisfies ¢, we conclude that tj)ifjel:—rcp, and if no model also satisfies ~¢, we
conclude that 'l/JCJelch. For simplicity let us first assume that the evidence e is a strict
conjunction of literals and that ¢ is a single atomic proposition. Later we will describe
a general solution.

To implement this intuition we first need to duplicate our background knowledge
and create its copy 9’ by naming all the atomic propositions 4 using A’. For each atomic
proposition A that might participate in a query, we then add two more propositions
“QUERY,” and “AMBIGUOUS,”. QUERY 4 is used to initiate a query about A; it
will be externally clamped by the user, when he or she inquires about A. The unit
“AMBIGUQUS 4” represents the answer of the system. It will be set to TRUE iff we
can conclude neither that % entails A nor that 1 entails —A.

Our inference engine can be therefore described (in the language of penalty logic) by:

) searches for a preferred model of 9 that
satisfies also A

Ljv,b’ searches for a preferred model of ¥ that
satisfies also =4

Cl{< 6,(QUERY4—A) >} bias 3 to search for a model that
satisfies 4

ljl{< 6, (QUERY—(-A") >} bias 4’ to search for a model that

satisfies (-A4")

CJ{(& (AN-AN) AMBIGUOUS, >} if two satisfying models exist that do not
agree on A, we conclude “AMBIGUQUS”

t*}{< 6, (A Ay (~AMBIGUOUS,) >} if despite the bias we are unable to find
two such satisfying models we conclude
“o AMBIGUOUS,”
Using the algorithm of Theorem 6.3.1, we generate the corresponding network, The net-
work that is generated for the Nixon example is shown in Figure 6.4.

To initiate a query about A the user externally clamps the unit QU FRY,. This causes
a small positive bias € to be sent to unit A and a small negative bias —¢ to be sent to
A’. Each of the two sub-networks ¢ and 4, searches for a global minimum (a satisfying
model) of the original PLOFF. The bias (¢) is small enough so it does not introduce
new global minima for each of the subnetworks. It may, however, constrain the set of
global minima. If a satisfying model that also satisfies the bias exists, then this model
is in the new set of global minima of 9. The new set of global minima is the set of all
preferred models of 1 that also satisfy the query. If no preferred model also satisfies the

92

Figure 6.4: Inference network for the Nixon diamond case: the two rings represents two
simiiar subnetwork: One searches for a preferred model that satisfies the query and the
other searches for a preferred model the falsifies the query.

query then the set of global minima is unaffected by the bias and the network searches
for one of those models that does not satisfy A.

The network therefore tries to find models that also satisfy the bias rules. If it
succeeds, we conclude “AMBIGUQUS”, otherwise we conclude that all the satisfying
models agree on the same truth value for the query. The AMBIGUQUS 4 proposition
is then set to “false”, and the answer to whether ¥}=¢ or }=-¢ can be found in the
unit A. If A is “true” then the answer is ¥|=¢, since 4 holds in all satisfying models.
Similarly, if A is false, we conclude that ¥E=-¢.

When the evidence is a strict conjunction of literals, the user may add it to the
background network simply by clamping the appropriate atomic propositions whenever
new evidence is observed. In the general case we need to combine arbitrary evidence
e and an arbitrary query . We do this by building an inference network for ¢Delj{<
M, A >} and in querying about A4, a new atomic proposition. Adding evidence to
a network v may be done simply by computing the energy terms of the evidence and
then updating the weights of the network.

93

6.5. Related Work

6.5.1. Connectionist Systems

Derthick [Derthick 88] observed that weighted logical constraints (which he called “cer-
tainties”) can be used in massively parallel architectures. Derthick translated those
constraints into special energy functions and used them to implement a subset of the
language KL-ONE. The approach described in this chapter has a lot of similarities to
his system. Looking at his reduction from logic to energy functions {Derthick uses a dif-
ferent architecture, different energy functions and no hidden units), there are, however,
several basic differences: 1) Derthick’s “mundane” reasoning is based on finding a most
likely single model; his system is never skeptical. The system described in this chapter
is much more cautious and closer in its behavior to symbolic nonmonotonic systems,
described in recent lLiterature (see Section 6.5.2). 2) The nonmonotonic system that
is described here can be implemented with standard low-order units, using relatively
well-studied architectures such as Hopfield networks, Harmony, MFT or Boltzmann ma-
chines. It is possible therefore to take advantage of the hardware implementations as
well as of the learning algorithms that were developed for these networks. 3) Formal
proofs of two-way equivalence are given so that every network can be described as a
PLOFF and not just the reverse.

Another connectionist nonmonotonic system is [Shastri 88]. It uses evidential rea-
soning based on maximum likelihood to reasen in inheritance networks. My approach is
different; Shastri’s system is restricted to inheritance networks,® and propagates prob-
abilities along paths of the network. Shastri’s system needs to have a priori knowledge
(e.g., conditional probabilities) that is not usually available; however, once conditional
probabilities are known, the system can perform probabilistic reasoning efficiently and
reliably. In contrast, reasoning with penalty logic is intractable; however, time is traded

with reliability.

We may look at penalty logic as one of the layers of abstraction that is needed
between descriptions of high-level cognitive processes and low-level neural implemen-
tations. Thus, penalty logic may be seen as a first level of abstraction that is higher
than the neural implementation (see [Barnden 91] for a nice discussion on the multi-span
approach). Using the language described in this chapter we can map several of the sym-
bolic systems that will be mentioned in the next subsection into penalty logic, and then
compile them into symmetric networks (possibly by sacrificing efficiency) [Pinkas 91e].

6.5.2. Symbolic Systems

Penalty logic is along the lines of work done in preferential semantics [Shoham 88] and is
related in particular to systems with preferential semantics that use ranked models, like

®Propositional formalisms may be extended to handle predicates and variables by looking at the
atomic propositions as predicates with free variables which are taken from a predefined list of variables.
In inheritance systems only one variable {which is externally instantiated) is used.

94

[Lehmann, Magidor 88 |, [Lehmann 89] or [Pearl 90]. Lehmann and Magidor’s results
about the relationship between rational consequence relations and ranked models can
be applied to our paradigm. A strict consequence relation induced by a PLOFF 7 is a
binary relation between strict evidence and a strict conclusion. It is therefore a set of

pairs By = {< ¢', 9 >| ¢ litp}, where both ¢’ and ¢ are strict WFFs. Lehmann and
Magidor defined a rafional consequence relation as one that satisfies certain conditions
(inference rules) and proved that a consequence relation is rational iff it is defined by
some ranking function. As a result, we may conclude a rather strong conclusion for the
system given in this chapter. For every rational consequence relation we can build a
ranked model and implement it in a symmetric network. Also, any symmetric network
can be viewed as implementing some rational consequence relation. We can therefore be
sure that every implementation of our connectionist inference engine induces a rational

consequence relation.

One system of ranked models that can be reduced directly to penalty logic is
[Goldszmidt, Pearl 91]. This system actually computes the penalties for a given condi-
tional knowledge-base using maximal entropy considerations {the user does not specify
any penalty). The system uses the same ranking function as the one described in this
article; i.e., summing the penalties of violated beliefs.

Penalty logic has some similarities with systems that are based on priorities given to
beliefs. One such system [Brewka 89] is based on levels of reliability. Brewka’s system
for propositional logic can be mapped (approximately) into penalty logic by selecting
large enough penalties. Systems like [Poole 88] (with strict specificity) can also be
implemented using our architecture, and as in [Goldszmidt, et al. 90], the penalties can
be generated automatically. Another system that is based on priorities is system Zt
[Goldszmidt, Pearl 91] where the user does specify the penalties, but there is a “ghost”
that changes them so that several nice properties hold (e.g. specificity). Penalty logic can
only approximate priority systems by assigning scaled-penalties.” Every conclusion that
is entailed in a priority system like system Z¥ will also be entailed by the approximating
penalty logic knowledge base. However, some conclusions that are ambiguous in a
priority system may be drawn decisively in penalty logic. In this sense penalty logic
can be considered as bolder (less cautious) than those which are based on priorities.

For example consider the “penguins and the wings” case [Goldszmidt, Pearl 91].
We are given the following defaults: birds fly; birds have wings; penguins are birds
and penguins do not fly. Many systems based on priorities (like Z1) will not be able
to conclude that penguins have wings (since “birds fly” is defeated). Penalty logic
in contrast will conclude according to our intuition; i.e., that penguins do have wings
despite the fact that penguins do not fly. The reason for this intuitive deduction is
that penalty logic considers the models where penguins do not fly but have wings to
be more “normal” than models where penguins do not fly and have no wings (as in

"The penalties are scaled so that there is no subset of low-priority assumptions whose sum exceeds
the penalty of a higher priority.

95

[Goldszmidt, et al. 90]). Priority-based systems will usually be ambiguous since they
don’t have such preference.®

For another example, consider the Nixon case (Example 6.2.1) when we add to it:
< 1000, N—=FF > and < 10, FPF--P > (Nixon is also a football fan and football fans
tend not to be pacifist). Most other nonmonotonic systems will still be skeptical about
P (e.g., [Touretzky 86], [Loui 87], [Geffner 89] [Pearl 90], [Lehmann 89]). Our system
boldly, and in contrast with intuition, decides =P since it is better to defeat the one
assumption supporting P than the two assumptions supporting —P. We can correct
this behavior ad-hoc® by multiplying the penalty for A— P by two. In general, however,
such ad-hoc treatment will not always help.

Because we do not allow for an arbitrary partial order {{Shoham 88] [Geffner 89])
among the models, there are other fundamental’® problematic examples where the sys-
tem proposed (and all systems with ranked models semantics) boldly concludes, while
other systems are skeptical (these are cases where the intuition tells us that skepticism
is the right behavior). The following is an example for which we may have an intuition
that cannot be represented with any ranking function.

ExXaAMPLE 6.5.1 Assume the following defeasible rules: A—D, B—+—D and C—~D.
The intuition we might want states that:

Given A,C, D, we should conclude ~B; therefore, rank{ABCD) < rank(ABCD).
Given A, B,C, we should conclude that D is ambiguous; therefore, rank(ABCD) =
rank(ABCD).

Given A4,C, D we should conclude that B is ambiguous; therefore, rank(ABCD) =
rank(ABCD).

Given A, B,C we should conclude that D is ambiguous; therefore, rank(ABCD) =
rank(ABCD).

This is a contradiction since rank(ABCD) < rank(ABCD). Thus, the intuition as
stated by the examples cannot be implemented by any ranked model.

6.6. Summary

The chapter introduced penalty logic and showed eflicient magnitude-preserving trans-
formations between its sentences and SNs. Penalty logic may be used as a framework for
defeasible reasoning and inconsistency handling. Several systems can be mapped into
this paradigm and therefore suggest settings of the penalties. When the right penalties
are given, penalty logic features a nonmonotonic behavior that (usually) matches our
intuition. It is possible to show, though, that some intuitions cannot be expressed as

ranking functions.

*H the priority is given explicitly, then the problem may be solved ad hoc by assigning higher priority
to “birds have wings” than to “birds tend to fly”. In systems I mentioned, priorities are derived from
the knowledge-base and this distinction between the two properties of birds is not made.

% A network that learns may adjust the penalties and thus develop its own intuition and nonmonotonic
behavior.

10¥ector Geffner (private communication).

96

A strong equivalence between sentences of penalty logic and symmetric networks is
formally proved. This two-way equivalence serves two purposes. 1) We can translate a
sentence of penalty logic into an equivalent network (this serves the basic construction
of our inference engine). 2) Any symmetric network can be described by penalty logic
sentences.’? The logic may thus be used as a specification language and gives another
clarifying look at the dynamics of such networks.

Several equivalent high-level languages can be used to describe SNs: 1) quadratic
energy functions; 2) high-order energy functions with no hidden units; 3) propositional
logic, and finally 4) penalty logic. All of these languages are expressive enough to
describe any SN, and every sentence of such languages can be translated into a SN;
however, penalty logic has properties that make it more attractive than the other lan-
guages. Algorithms are given for translating between any two of the languages above.

An inference engine is constructed that is capable of answering whether a query
follows the knowledge or not. When a query is clamped, the global minima of the
network correspond exactly to the correct answers.

Revision of the knowledge-base and adding new evidence are incremental tasks if
we use penalty logic to describe the network. Adding (or deleting) a PLOFF is simply
computing the energy function of the new PLOFTF and then adding (deleting) the energy
terms to the function that describes the existing knowledge. Thus, a local change to
the PLOFF describing the network is translated to a local change in the network.

I have implemented several nonmonotonic toy problems (like Nixon, Penguins, etc.)
on a Boltzmann machine simulator, and the network managed to always find a global
minimum. I have not noticed any problems with local minima although they definitely
exist. The good results for large-scale satisfiability problems are encouraging; however,
we may discover that nonmonotonic problems are harder than strict satisfiability, and it
may be that they are much more sensitive to the selection of penalties. For a discussion
on future hopes for speed-up see Section 8.2.

1 Any non-oscillating asymmetric network can also be represented as a logic sentence [Pinkas 9le].

a7

7. ON THE FEASIBILITY OF FINDING A GLOBAL MINIMUM

7.1. Introduction

The networks! constructed so far implement knowledge-level theories [Newell 80] that
were described in previous chapters. In order to perform a sound computation with
respect to the desired knowledge-level theory, a network must find a global solution for
the minimization of the energy associated with it. In this thesis and in many other
works (e.g. [Hopfield, Tank 85], [Derthick 88], [Ballard et al. 86]), the problem at hand
is formulated so that the best solutions® are the global minima of the energy function.
Unfortunately, existing connectionist algorithms do not guarantee the finding of a global
minimum, and even the search for a local minimum may take an exponential number
of steps [Kasif et al. 89], [Papadimitriou et al. 90].

Even when we are interested just in approximation® of our knowledge-level theory, a
desired algorithm is one that reduces the impact of shallow local minima and improves
the chances of finding a global minimum.

Models such as Boltzmann machines and Harmony networks use simulated annealing
to escape from local minima in the search for a global solution. These models asymp-
totically converge to a global minimum; i.e., if the annealing schedule is slow enough, a
global minimum is guaranteed to be found. Nevertheless, such an annealing schedule is
hard to find and therefore, practically, finding a global minimum for such networks is not
guaranteed even in exponential time (note that the minimization problem is NP-hard).

The main questions that are asked in this chapter are: Is there a uniform distributed
algorithm with one processor for each node that guarantees a global minimum? Are
there network topologies that enable us to efficiently find a global minimum? Can we
improve the standard algorithms so that special topologies are minimized efficiently
while the performance for other topologies does not degrade?

The chapter looks at the topology of symmetric networks and studies the feasibility
of finding a global minimum under various topologies and scheduling assumptions. It
presents an improvement to the standard activation functions which guarantees that
a global minimum is found in linear time for tree-like subnetworks. In addition, the
new algorithm performs no worse than the standard algorithms for an arbitrary net-
work topology. The chapter also studies self-stabilization (to be defined later) of the
algorithm under various assumptions and investigates the feasibility of guaranteeing a

YThis chapter is based on work done in collaboration with Rina Dechter {Pinkas, Decter 92].

ZSometimes the only solutions.

*Note that a recent result shows that ne approximation scheme exists for maximal 2-satisfiability
[Arora et al. 92] unless P=NP. Since quadratic energy minimization can be reduced to MAX-2-SAT
{see Section 6.2) no approximation scheme is likely to be found te our problem.

98

global minimum in non-tree topologies. In particular, negative results show that we
cannotl do much better than the algorithm presented here; i.e., we will never find a uni-
form algorithm that guarantees a global minimum for topologies that are less restricted
than trees.

The section is organized as follows. Section two presents the improved algorithm.
Section three gives an example where the improved algorithm out-performs the standard
algorithms. Section four considers self-stabilization, convergence and feasibility under
various scheduling demons. Section five summarizes the results.

7.2. An Improved Algorithm for Energy Minimization

This section presents an algorithm that optimizes tree-like subnetworks in linear time.
A tree-like subnetwork is characterized by an undirected graph without cycles; i.e., only
one path exists between any two nodes. The terms “cycle-free” and “unrooted tree”
are synonymous in this context. The algorithm is based on an adaptation of a dynamic
programming algorithm presented in [Dechter et al. 90] and [Bertelé, Briosch 72]. The
adaptation is connectionist in style; that is, the algorithm can be stated as a simple,
uniform activation function [Rumelhart et al. 86], [Feldman 89]. It does not assume
the desired, tree topology and performs no worse than the standard algorithms for
all topologies. In fact, the algorithm may be integrated with many of the standard
algorithms in such a way that if the network happens to have tree-like subnetworks, the
new algorithm out-performs the standard algorithms in the following sense. In the case
where there are trees whose roots are joined in a cyclic mesh (tree subnetworks), the
new algorithm performs better than the standard algorithms by aveiding local minima
along the trees and by optimizing the free energy of these trees in linear time.

7.2.1. Energy and Goodness

Suppose a quadratic energy function of the form:

n n
E(X1,.y Xn) = =Y i XiXj+ > —6:X:.
i<j i
Each of the variables X; may have an activation value of zero or one, and the task
is to find a zero/one assignment to the variables X, ..., X, that minimizes the energy
function. To avoid confusion with signs, consider the equivalent problem of maximizing
the goodness function:

I
G(X1y w0y Xn) = —E(Xyy oo, Xn) = D wij XiX;+ 5 6: X5 (7.1)
i<y i

Each of the nodes in the network is assigned a processing unit, and the network collec-
tively searches for an assignment that maximizes the goodness. The algorithm that is

99

repeatedly executed in each unit/node is called the protocol or the activation function.
A protocol is uniform if all the units execute it.

The standard activation functions that are common in the literature are presented
in Section 2.5; however, I will review here two of the most popular ones; the discrete
Hopfield model and the Boltzmann machine.

In the discrete Hopfield model, each unit computes its activation value using the

formula
X, = 1 if Zj w; ; X; > —0;,
' 0 otherwise.

For Boltzmann machines, the determination of the activation value is stochastic and
the probability of setting the activation value of a unit to one is

P(X,' = 1) = 1/(1 + e'(EJ-WE.ij-H?s)/T),

where T is the annealing temperature.

Both approaches can be integrated with our topology-based algorithm; in other
words, nodes that cannot be identified as parts of a tree-like subnetwork use one of the

standard algorithms.

7.2.2. Model of Communieation

Our model of communication assumes shared memory, multi-reader /single-writer, schedul-
ing under a central demon, and fair execution. In shared memory, mulii-reader/single-
writer communication, each unit has a shared register called the activation register. A
unit may read the content of the registers of all its neighbors, but write only its own.
Central demon scheduling means that the units are activated {asynchronously) one at
a time in an arbitrary order.* An execution is said to be fair if every unit is activated

infinitely often.

7.2.3. Key Idea

The algorithm identifies parts of the network that have no cycles (tree-like subnetworks)
and optimizes the free energy on these subnetworks. Once a tree is identified, it is
optimized using an adaptation of a constraint optimization algorithm for cycle-free
graphs presented in [Dechter et al. 90]. The algorithm belongs to the family of nonserial
dynamic programming methods [Bertelé, Briosch 72].

Let us assume first that the network is an unrooted tree. Any such network may be
directed into a rooted tree. The algorithm is based on the observation that given an
activation value (0/1) for a node in a tree, the optimal assignments for all its adjacent

Standard algorithms assume the same condition in order to guarantee convergence to a local min-
imum (see [Hopfield 82]). This condition can be relaxed the restriction that only adjacent nodes may
not be activated at the same time.

100

nodes are independent of each other. In particular, the optimal assignment to the
node’s descendants are independent of the assignments for its ancestors. Therefore, each
node i in the tree may compute two values: G¢ and G}. G!? is the maximal goodness
contribution of the subtree rooted at i, including the connection to i’s parent whose
activation is one. Similarly, G? is the maximal goodness of the subtree, including the
connection to i’s parent whose activation value is zero. The acyclic property will allow
us to compute each node’s G} and G? as a simple recursive function of its children’s
values, implemented as a propagation algorithm initiated by the leaves.

Knowing the activation value of its parent and the values G’?, G of all its children, a
node can compute the maximal goodness of its subtree. When the information reaches
the root, it can assign a value (0/1) that maximizes the goodness of the whole network.
The assignment information then propagates towards the leaves. Given the activation
value of its parent, a node can compute the ideal activation value for itself to maximize
the goodness of the subtree rooted by the node. At fermination (at stable state), the

tree is optimized.

The algorithm has three basic steps:
1) Directing a tree. Knowledge is propagated from leaves towards the center of the

network, so that after a linear number of steps, every unit in the tree knows its parent
and children.

2) Propagation of goodness values. The values G}, G? are propagated from leaves
to the root. At terminafion, every node knows the maximal goodness of its subtree, and
the appropriate activation value it should assign, given that of its parent. In particular,
the root can now decide its own activation value so as to maximize the goodness of the
whole tree.

3) Propagation of activation values. Starting with the root, each node in turn
determines its activation value. After O(depth of iree) steps, the units are in a stable
state which globally maximizes the goodness.

Each unit’s activation register consists of the fields X; (the activation value); G},
G} (the maximal goodness values); and P2, .., P/ (a bit for each of the j neighbors of 4
that indicates which is ¢’s parent).

7.2.4. Directing a Tree

The goal of this algorithm is to inform every node of its role in the network and of its
child-parent relationships. Nodes with a single neighbor identify themselves as leaves
first and then identify their neighbor as a parent by pointing to it. A node whose
neighbors all point towards it identifies itself as a root. A node whose neighbors all
point towards it except for one neighbor, selects the one as a parent. Finally, a node
that has at least two neighbors not pointing towards it, identifies itself as being outside
a tree.

Each unit uses one bit per neighbor to keep the pointing information: P;i =1
indicates that node i sees its jth neighbor as its parent. By looking at P;, node ¢ knows
whether j is pointing to it.

101

Identifying tree-like subnetworks in a general network may be done by the following
algorithm:

Tree Directing (for unit 7):

1. Initialization: If first time, then for all neighbors j, Pf = 0. /¥ Start with
clear pointers (this step is not needed in trees) */

2. If there is only a single neighbor (j) and Pj = 0, then P,-j = 1. /¥ A leaf selects
its neighbor as parent if that neighbor doesn’t point to it */

3. Else, if one and only one neighbor (k) does not point to ¢ (P{ = 0), then
P¥ =1, and, for the rest of the neighbors, P! = 0. /* k is the parent */

4. Else, for all neighbors 7, Pf- = 0. /* Node is either a root or outside the tree.

In Figure 7.1(a), we see a cycle-free network after the tree-directing phase. The numbers
on the edges represent the values of the P} bits. In Figure 7.1-(b), a tree-like subnet-
work is identified inside a cyclic network. Note that node 5 is not a root, since not all its
neighbors are pointing towards it. A detailed proof of convergence and self-stabilization
(see Section 7.4.2) appears in Appendix A.10.

Figure 7.1: Directing a graph: (a) a tree, (b) a cyclic graph.

7.2.5. Propagation of Goodness Values

In this phase, every node 7 computes its goodness values G}, GY by propagating these
two values from the leaves to the root (see Figure 7.2).

Given a node Xj, its parent X}, and its children child(i) in the tree, it can be
shown based on the energy function (7.1) that the goodness values obey the following

102

Figure 7.2: (a) Propagating goodness values. (b) Propagating activation values.

recurrence:
GTF = maz{ Z GT + wip X Xy + 0: X3}
j€child(s)
Consequently, a nonleaf node i computes its goodness values using the goodness values
of its children as follows. If X, = 0, then ¢ must decide between setting X; = 0,
obtaining a goodness of 37, G?, or setting X; = 1, obtaining a goodness of }; GJI- + ;.

This yields
Gf=maz{ > G}, > Gj+6}
JEchild(d) JF€child(d)

Similarly, when X} = 1, the choice between X; = 0 and X; = 1 yields

G} = maz{ E G?, Z Gjl- + w;x +6;}.
jcchild(i) jechild(d)

The initial goodness values for leaf nodes can be obtained from the above with no

children. Thus,
G? = maz{o:giL

G} = {0, w;k + 6;}.

For example, if unit 3 in Figure 7.2 is zero, then the maximal goodness contributed by
node 1 is GY = mazx, ¢fo,1}{2X1} = 2, and it is obtained at

X1 = 1. Unit 2 (when X3 = 0) contributes G§ = mazx,eq013{—X2} = 0, obtained
at X; = 0, while G} = mazx,efo13{3X2 — X2} = 2 is obtained at X; = 1. As
for nonleaf nodes, if X4 = 0, then when X3 = 0, the goodness contribution will be
>k G2 = 240 = 2, while if X3 = 1, the contribution will be ~3+4+3, G} = —3+1+2 = 0.
The maximal contribution G = 2 is achieved at X3 = 0.

103

7.2.6. Propagation of Activation Values

Once a node is assigned an activation value, all its children can activate themselves so
as to maximize the goodness of the subtrees they control. When such a value is chosen
for a node, its children can evaluate their activation values, and the process continues
until the whole tree is assigned.

There are two kinds of nodes that may start the process: a root which will choose an
activation value to optimize the entire tree, and a non-tree node which uses a standard
activation function.

When a root X; is identified, it chooses the value zero if the maximal goodness is
25 G_?, while it chooses one if the maximal goodness is 3°; G’} + 6;. In summary, the
root chooses its value according to

X;z{ 1 Y G+ 6> 769,

) otherwise.

In Figure 7.2, for example, G} + G3 + 0 = 2 < G2 + G§ = 3 and therefore X4 = 0.

An internal node whose parent is k£ chooses an activation value that maximizes
225 G7° -+ wix XiXy + 6; X;. The choice, therefore, is between }°; G9 (when X; = 0) and
> G} + w; ;X + 6; (when X; = 1), yielding:

oo LY Gt wipXe+ 6> ;G
! 0 otherwise.

As a special case, aleaf i chooses X; = 1 iff w; 1 Xi > —0;, which is exactly the discrete
Hopfield activation function for a node with a single neighbor. For example, in Figure
7.2, X5 = 1 since wy Xy = 0> —0; = —1, and X3 = 0 since G} + G} +2X, + 65 =
1+2+0-3=0< GJ+ GY = 2. Figure 7.2-(b) shows the activation values obtained
by propagating them from the root to the leaves.

7.2.7. A Complete Activation Function

Interleaving the three algorithms described earlier achieves the goal of identifying tree-
like subnetworks and maximizing their goodness. In this subsection the complete algo-
rithm is presented, combining the three phases while simplifying the computation. The
algorithm is integrated with the discrete Hopfield activation function; however it can
also be integrated with the other activation functions mentioned in Section 2.5.5

“Note how similar the new activation function is to the original Hopfield function.

104

Let ¢ be the executing unit, j a non-parent neighbor of ¢, and & the parent of i:

Optimizing on Tree-like Subnetworks (unit 7):

1. Initialization: If first time, then (V§) Pf = 0. /*Clear pointers (needed only
for cyclic nets)*/

2. Tree directing: If there exists a single neighbor k, such that P = 0,
then P¥ = 1, and for all other neighbors 7, P/ = 0;
else, for all neighbors, P/ = 0.

3. Computing goodness values: _
G = maz{Yecnitag) G?P}_ s 2ojechild(i) G}P}"i' 6:}.
G} = maz{¥ conitay GiP5 Ljecnitai)(G1P; +wi i P) + 6:}.

4. Assigning activation values:
If at least two neighbors are not pointing to ¢, then /*use standard activation

function (Hopfield) */

x.=41 if 30 wiiX; > -,

! 0 otherwise;

else, /* Node in a tree (including root a.nd_lea,ves) */
X;= { 13 (G = GOPi + wi i X; PP > —0;,

0 otherwise.

THEOREM 7.2.1 THE ALGORITHM ALWAYS CONVERGES TO A SOLUTION THAT MINI-
MIZES THE ENERGY ALONG TREE-LIKE SUBNETWORKS IN LINEAR TIME.

Proof:
See Appendix A.10. D

7.3. An Example

The example in Figure 7.3 demonstrates a case where a local minimum of the standard
algorithms is avoided. Standard algorithms may enter such a local minimum and stay
in a stable state that is clearly wrong.

The example is a variation on a Harmony network [Smolensky 86] and an example
from [McClelland et al. 86]. The task of the network is to identify words from low-level
line segments. Certain patterns of line segments excite units that represent characters,
and certain patterns of characters excite units that represent words. The line strokes
used to draw the characters are the input units: L1,..., L5. The units “N,” “5,” “A,”
and “T” represent characters. The units “able,” “nose,” “time,” and “cart” represent
words, and Hn, Hs, Ha, Ht, H1,...,H4 are hidden units required by the Harmony model.

105

cyclic subnetwork

Figure 7.3: A Harmony network for recognizing words. Local minima along the subtrees
are avoided.

For example, given the line segments of the character S, unit L4 is activated (input),
and this causes units Hs and “S” to be activated. Since “NOSE” is the only word that
contains the character “S,” both H2 and the unit “nose” are also activated and the
word “NOSE” is identified.

The network has feedback cycles (symmetric weights) so that ambiguity among
characters or line-segments may be resolved as a result of identifying a word. For
example, assume that the line segments required to recognize the word “NOSE” appear,
but the character “N” in the input is blurred, and therefore the setting of unit L2 is
ambiguous. Given the rest of the line segments (e.g., those of the character “S”), the
network identifies the word “NOSE” and activates units “nose” and H2. This causes
unit “N” to be activated along with all of its line segments. Thus the ambiguity of L2
is resolved.

The network is indeed designed to have a global minimum when L2, Hn, “N,” H2,
and “nose” are all activated; however, standard connectionist algorithms may fall into
a local minimum when all these units are zero, generating goodness of 5 — 4 = 1, The
correct global minimum is found by our tree-optimization protocol with goodness: 3-
14-3-143-14-5-1-4+3-14-5=13. The thick arcs in the upper network of Figure 7.3 mark
the arcs of a tree-like subnetwork. This tree-like subnetwork is drawn with pointers
and weights in the lower part of the figure. Node “S” is not part of the tree, and its
activation value is set to one because the line-segments of “S” are activated. Once “S”
is set, the units along the tree are optimized (by setting them all to one) and the local
minimum is avoided.

106

7.4. Feasibility, Convergence and Self-Stabilization

So far, a way has been shown to enhance the performance of connectionist energy
minimization networks without losing much of the simplicity of the standard approaches.
The simple algorithm presented is limited in two ways, however. First, the central
demon® is not a realistic restriction. We would like the network to work correctly under
a distributed demon, where any subset of units may be scheduled for execution at the
same time. Second, we would like the algorithm to be self-stabilizing. It should converge
to a legal, stable state given enough time, even after noisy fluctuations that cause the
units to execute arbitrary program states and the registers to have arbitrary content.

7.4.1. Negative Results for Uniform Protocols
Following [Dijkstra 74] and [Collin et al. 90], we show the following theorem:

THEOREM T7.4.1 NO DETERMINISTIC UNIFORM ALGORITHM EXISTS THAT GUARAN-
TEES A GLOBAL MINIMUM UNDER A DISTRIBUTED DEMON, EVEN FOR SIMPLE CHAIN-

LIKE TREES.

Froof:

Consider the network of Figure 7.4(a). There are two global minima possible :
(11...1101...11) and (11...1011...11). If the network is initialized such that all units have
the same register values, and all units start with the same program state, then there
exists a fair execution under a distributed demon such that in every step, all units are
activated. The units left of the center (1,2,3,...7) “see” the same input as those units
right of the center (2¢,2i—1,2¢—2,...,i+ 1) respectively. Because of the uniformity and
the determinism, the units in each pair (7,7 + 1),(i — 1,7+ 2),...,(1,2{) must transfer
to the same program state and produce the same output on the activation register.”
Thus, after every step of that execution, units 7 and ¢ + 1 will always have the same
activation value and a global minimum (where the two units have different values) will

never be obtained. D

This negative result should not discourage us, since it relies on an obscure infinite
sequence of executions which is unlikely to occur under a truly random demon. The
algorithm presented optimizes the energy of tree-like subnetworks under a distributed
demon in each of the following cases: 1) If step 2 of the protocol in Section 7.2.7
is atomic; 2) if for every node ¢ and every neighbor j, node i is executed without §
infinitely often; 3) if one node is unique and acts as a root, that is, does not execute
step 2 (an almost uniform protocol); and 4) if the network is cyclic (one node will be
acting as a root).

Another negative result similar to [Collin et al. 90] is given in the following theorem.

%The same results are obtained if the protocol is atomic.
"We assume that when execution begins, all units are initialized with the same values and that all

of them start in the same program state.

107

i1 i i+l i+2 2i
Global Minima: 11...1101...1
11...1011...1

Global Minima: 010101
101010

Scheduie: 1,4,2,5,3,6,1,4,2,5,......

®

Figure 7.4: (2) No uniform algorithm exists to optimize chains under distributed demon;
(b) No uniform algorithm exists that is guaranteed to optimize rings even under a central
demon.

THEOREM 7.4.2 Ir THE NETWORK IS CYCLIC, NO DETERMINISTIC UNIFORM ALGO-
RITHM EXISTS THAT GUARANTEES A GLOBAL MINIMUM, EVEN UNDER A CENTRAL

DEMON.

This may be proved even for cyclic networks as simple as rings.

Proof:

In Figure 7.4-(b), we see a ring-like network whose global minima are (010101) and
(101010). Consider a fair execution under a central demon that activates the units
1,4,2,5,3,6 in order and repeats this order indefinitely. Starting with the same program
state and same inputs, the two units in every pair of (1,4), (2,5), (3,6) “see” the same
input, therefore they have the same output, and transfer to the same program state,
As a result, these units never output different values, and a global minimum is not

obtained. []

7.4.2. Self-Stabilization

A protocol is self-stabilizing if in any fair execution, starting from any input configura-
tion and any program state (of the units), the system reaches a valid stable configura-
tion. The motivation here is that even if hardware fluctuations occur and change the
content of the registers (as well as the state of the program), the algorithm is guaranteed
to recover and to find a correct stable state.

108

The algorithm in Section 7.2.7 is self-stabilizing for cycle free networks (trees), and
it remains self-stabilizing under a distributed demon with the same weak restrictions
as in the previous section; i.e., executes without a neighbor infinitely often or is almost

uniform (has a marked root).

DeFINITION 7.4.1 A scheduler has the fair ezclusion property if for every two neigh-
bors, one is executed without the other infinitely often.

THEOREM 7.4.3 THE ALGORITHM IS SELF-STABILIZING FOR TREES EVEN UNDER A
DISTRIBUTED DEMON WITH FAIR EXCLUSION. THE ALMOST UNIFORM VERSION IS
SELF-STABILIZING FOR GENERAL TOPOLOGIES EVEN UNDER A (PURE) DISTRIBUTED

DEMON.

Proof:
See Appendix A.10. D

The algorithm is not self-stabilizing for general cyclic topologies. For example,
consider the configuration of the pointers in the ring of Figure 7.5. It is in a stable
state, although clearly not a valid tree.® To solve the problem of self-stabilization in

1 0

0 1

6 1 0

Figure 7.5: The simple protocol is not self-stabilizing in cyclic networks.

cyclic networks, we need to make our algorithm more complex. For example, we may
use a variation of the sell-stabilizing tree-directing protocol of [Collin et al. 90]. This
algorithm remains self-stabilizing even in cyclic networks. Thus, self-stabilization may
be obtained in the general case, but at the expense of more complexity and more space.

7.5. Summary and Discussion

The chapter shows a uniform, self-stabilizing, connectionist activation function that is
guaranteed to find a global minimum of acyclic symmetric networks in linear time. The
algorithm optimizes tree-like subnetworks within general (cyclic) networks; however, the
simple version of the algorithm loses its self-stabilization property in cyclic networks.
Nevertheless, we can extend the algorithm to be self-stabilizing for all network topologies
at the expense of more space requirements.

Such a configuration will never occur if all units start at the starting point; i.e., clearing the bits of
F;. It may only happen due to some noise or hardware fluctuation.

109

Two negative results were proved. First, under a pure distributed scheduling de-
mon, no uniform algorithm exists to optimize even simple chains. Second, no uniform
algorithm exists to optimize simple cyclic networks (rings) even under a central demon.

The conclusion is that there is not much hope to do better than what we did with the
algorithm presented here, assuming we insist on global minima and uniform algorithms.
If we insist on uniformity, no algorithm can guarantee global solutions for networks
that are less restricted than trees. I conjecture, however, that these negative results are
not of significant practical importance, since in truly random scheduling demons, the
probability of having such pathological executions approaches zero. It is more likely
that real schedulers will have the fair exclusion property which assumes that for every
two neighbors, one is executed without the other infinitely often. The algorithm remains
correct under a distributed scheduling demon if some weak assumptions are made about
the demon; i.e., fair exclusion, almost-uniformity or atomicity.

