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POLICING PREDICTIVE POLICING 

ANDREW GUTHRIE FERGUSON 

ABSTRACT 

Predictive policing is sweeping the nation, promising the holy grail of 

policing—preventing crime before it happens. The technology has far 

outpaced any legal or political accountability and has largely escaped 

academic scrutiny. This article examines predictive policing’s evolution 

with the goal of providing the first practical and theoretical critique of this 

new policing strategy. Building on insights from scholars who have 

addressed the rise of risk assessment throughout the criminal justice system, 

this article provides an analytical framework to police new predictive 

technologies. 

  

 

 
  Professor of Law, UDC David A. Clarke School of Law. Thank you to the 2015 ABA/AALS 

Criminal Justice Section Winter Conference and the 2016 AALS Annual Conference participants for 

helpful comments and critiques. Thank you to Christopher Slobogin, Mary Leary, Caren Myers 
Morrison, John Hollywood, Alexander Chohlas-Wood, and Sarah Brayne for reading drafts of the 

article.  

Washington University Open Scholarship



 

 

 

 

 

 

1110 WASHINGTON UNIVERSITY LAW REVIEW [VOL. 94:1109 

 

 

 

 

TABLE OF CONTENTS 

INTRODUCTION ...................................................................................... 1112 
I. PREDICTION AND THE CRIMINAL JUSTICE SYSTEM ........................... 1117 

A. A Brief History of Actuarial Justice ...................................... 1117 
B. The Prevalence of Prediction in the Criminal Justice 

System .................................................................................... 1120 
II. THE EVOLUTION OF PREDICTIVE POLICING ..................................... 1123 

A. Predictive Policing 1.0: Targeting Places of Property 

Crime ..................................................................................... 1126 
B. Predictive Policing 2.0: Targeting Places of Violent Crime . 1132 
C. Predictive Policing 3.0: Targeting Persons Involved in 

Criminal Activity ................................................................... 1137 
D. Reflections on New Versions of Predictive Policing ............. 1143 

III. POLICING PREDICTION .................................................................... 1144 
A. Data: Vulnerabilities and Responses ........................................ 1145 

1. Bad Data ........................................................................ 1145 
a. Human Error ......................................................... 1145 
b. Fragmented and Biased Data ................................ 1146 

2. Data: Responses ............................................................ 1150 
a. Acknowledging Error ............................................ 1151 
b. Catching & Correcting Error ................................ 1151 
c. Training and Technology ....................................... 1152 

B. Methodology: Vulnerabilities and Responses........................... 1153 
1. Methodological Vulnerabilities ..................................... 1154 

a. Internal Validity ..................................................... 1154 
b. External Validity – Overgeneralization ................. 1157 
c. Error Rates ............................................................ 1158 

2. Methodological Responses ............................................ 1159 
C. Social Science: Vulnerabilities and Responses ..................... 1161 

1. Social Science: Vulnerabilities ...................................... 1161 
2. Scientific Studies: Responses ......................................... 1164 

D. Transparency: Vulnerabilities and Responses ...................... 1165 
1. Transparency: Vulnerabilities ....................................... 1165 
2. Transparency: Responses .............................................. 1167 

E. Accountability: Vulnerabilities and Responses ..................... 1168 
1. Accountability: Vulnerabilities ...................................... 1168 
2. Accountability: Responses ............................................. 1170 

F. Practical Implementation: Vulnerabilities and Responses ... 1171 
1. Practical Implementation: Vulnerabilities .................... 1172 
2. Practical Implementation: Responses ........................... 1175 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5



 

 

 

 

 

 

2017] POLICING PREDICTIVE POLICING 1111 

 

 

 

 

G. Administration: Vulnerabilities and Responses .................... 1176 
1. Administration: Vulnerabilities ..................................... 1177 
2. Administration: Responses ............................................ 1180 

H. Vision: Vulnerabilities and Responses .................................. 1180 
1. Vision: Vulnerabilities ................................................... 1181 
2. Vision: Responses .......................................................... 1182 

I. Security: Vulnerabilities and Responses ............................... 1185 
1. Security: Vulnerabilities ................................................ 1185 
2. Security: Responses ....................................................... 1187 

CONCLUSION 1188 
 

  

Washington University Open Scholarship



 

 

 

 

 

 

1112 WASHINGTON UNIVERSITY LAW REVIEW [VOL. 94:1109 

 

 

 

 

[T]he Santa Cruz Police Department became the first law 

enforcement agency in the nation to implement a predictive policing 

program. With about eight years of data on car and home burglaries, 

an algorithm predicts locations and days of future crimes each day. 

Police are given a list of places to go to try to prevent crime when 

they were not responding to calls for service.1 

We could name our top 300 offenders. . . . So we will focus on those 

individuals, the persons responsible for the criminal activity, 

regardless of who they are or where they live. . . . We’re not just 

looking for crime. We’re looking for people.2 

INTRODUCTION 

In police districts all over America, “prediction” has become the new 

watchword for innovative policing.3 Using predictive analytics, high-

powered computers, and good old-fashioned intuition, police are adopting 

predictive policing strategies that promise the holy grail of policing—

stopping crime before it happens.4 Major cities in California, South 

 

 
 1. Stephen Baxter, Modest Gains in First Six Months of Santa Cruz’s Predictive Police Program, 
SANTA CRUZ SENTINEL (Feb. 26, 2012, 12:01 AM), http://www.santacruzsentinel.com/ general-

news/20120226/modest-gains-in-first-six-months-of-santa-cruzs-predictive-police-program 

[https://perma.cc/U8JC-HZGW]. 
 2. Robert L. Mitchell, Predictive Policing Gets Personal, COMPUTERWORLD (Oct. 24, 2013, 7:00 

AM), http://www.computerworld.com/article/2486424/government-it/predictive-policing-gets-

personal.html?page=2 [https://perma.cc/3YLU-5JHH] (quoting Police Chief Rodney Monroe, 
Charlotte-Mecklenburg County, N.C.).  

 3. See Ellen Huet, Server and Protect: Predictive Policing Firm PredPol Promises to Map Crime 

Before It Happens, FORBES (Feb. 11, 2015), http://www.forbes.com/sites/ellenhuet/2015/ 
02/11/predpol-predictive-policing/#175113db407f (“In a 2012 survey of almost 200 police agencies 

70% said they planned to implement or increase use of predictive policing technology in the next two to 

five years.”) (citing CMTY. ORIENTED POLICING SERVS., U.S. DEP’T OF JUSTICE, FUTURE TRENDS IN 

POLICING 3 (2014), http://www.policeforum.org/assets/docs/Free_Online_Documents/Leadership/ 

future%20trends%20in%20policing%202014.pdf); DAVID ROBINSON & LOGAN KOEPKE, UPTURN, 

STUCK IN A PATTERN: EARLY EVIDENCE ON “PREDICTIVE POLICING” AND CIVIL RIGHTS 4–5 (2016), 

https://www.teamupturn.com/static/reports/2016/predictive-policing/files/Upturn_-_Stuck_In_a_ 

Pattern_v.1.01.pdf. 

 4. Justin Jouvenal, Police are Using Software to Predict Crime. Is it a ‘Holy Grail’ or Biased 
Against Minorities?, WASH. POST (Nov. 17, 2016), https://www.washingtonpost.com/local/public-

safety/police-are-using-software-to-predict-crime-is-it-a-holy-grail-or-biased-against-minorities/2016/ 11/ 

17/525a6649-0472-440a-aae1-b283aa8e5de8_story.html?utm_term=.72a9d2eb22ae; Sidney Perkowitz, 
Crimes of the Future, AEON (Oct. 27, 2016), https://aeon.co/essays/should-we-trust-predictive-policing-

software-to-cut-crime; Darwin Bond-Graham & Ali Winston, All Tomorrow’s Crimes: The Future of 

Policing Looks a Lot Like Good Branding, SFWEEKLY (Oct. 30, 2013), 
http://archives.sfweekly.com/sanfrancisco/all-tomorrows-crimes-the-future-of-policing-looks-a- lot-like-

good-branding/Content?oid=2827968&showFullText=true [https://perma.cc/G35D-F543] (“[M]ore than 
150 police departments nationally are deploying predictive policing analytics. Many departments are 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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Carolina, Washington, Tennessee, Florida, Pennsylvania, and New York, 

among others, have purchased new predictive policing software to combat 

property crimes such as burglaries, car thefts, and thefts from automobiles.5 

Data from past crimes, including crime types and locations, are fed into a 

computer algorithm to identify targeted city blocks with a daily (and 

sometimes hourly) forecast of crime.6 Police officers patrol those predicted 

areas of crime to deter and catch criminals in the act.7 In large cities such as 

Los Angeles, Chicago, and New Orleans, complex social network analysis 

has isolated likely perpetrators and victims of gun violence.8 Social maps 

link friends, gangs, and enemies in a visual web of potential criminal actors.9 

Intervention strategies seek to reach these potential victims and perpetrators 

before the violence occurs.10 

Law enforcement’s embrace of predictive technology mirrors its 

adoption in other areas of the criminal justice system.11 New pretrial risk 

 

 
developing their own open-source algorithms, and a few tech heavyweights like IBM and Palantir are 

getting in on the game.”). 

 5. Huet, supra note 3 (“PredPol is being used in almost 60 departments, the biggest of which are 
Los Angeles and Atlanta, but [PredPol] is eyeing more. ‘[The] goal by the end of 2015 is to have the 

majority of large North American metro areas using this [technology].’”) (quoting Larry Samuels, 
PredPol CEO). See also infra notes 119–130.  

 6. See Erica Goode, Sending the Police Before There’s a Crime, N.Y. TIMES (Aug. 15, 2011), 

http://www.nytimes.com/2011/08/16/us/16police.html; Guy Adams, LAPD’s Sci-Fi Solution to Real 
Crime, INDEPENDENT (Jan. 10, 2012), http://www.independent.co.uk/news/world/americas/lapds-scifi-

solution-to-real-crime-6287800.html [https://perma.cc/84J5-KD3N] (describing maps with targeted 

“boxes” of predicted criminal activity measuring 500 feet by 500 feet). 
 7. Predictive Policing: Don’t Even Think About It, THE ECONOMIST (July 20, 2013), 

http://www.economist.com/news/briefing/21582042-it-getting-easier-foresee-wrongdoing-and-spot-

likely-wrongdoers-dont-even-think-about-it; Leslie A. Gordon, Predictive Policing May Help Bag 
Burglars—But it May Also be a Constitutional Problem, A.B.A. J. (Sept. 1, 2013, 8:40 AM), 

http://www.abajournal.com/mobile/mag_article/predictive_policing_may_help_bag_burglars--but_ 

it_may_also_be_a_constitutio/ [https://perma.cc/A9PX-2JJD]. 
 8. See, e.g., John Buntin, Social Media Transforms the Way Chicago Fights Gang Violence, 

GOVERNING (Oct. 2013), http://www.governing.com/topics/urban/gov-social-media-transforms-

chicago-policing.html [https://perma.cc/CM2B-LPRN]; Darwin Bond-Graham & Ali Winston, Forget 
the NSA, the LAPD Spies on Millions of Innocent Folks, LA WEEKLY (Feb. 27, 2014), 

http://www.laweekly.com/news/forget-the-nsa-the-lapd-spies-on-millions-of-innocent-folks-4473467 

[https://perma.cc/67WQ-TZQK]; PALANTIR, NOLA MURDER REDUCTION: TECHNOLOGY TO POWER 

DATA-DRIVEN PUBLIC HEALTH STRATEGIES (2014) (describing NOLA for Life, a project to reduce 

homicides in New Orleans).  

 9. Scott Harris, Product Feature: Predictive Policing Helps Law Enforcement “See Around the 
Corners”, POLICE CHIEF MAG. (Nov. 2014), http://www.policechiefmagazine.org/magazine/ 

index.cfm?fuseaction=display_arch&article_id=3539&issue_id=112014.  

 10. See, e.g., Michael Sierra-Arevalo, How Targeted Deterrence Helps Police Reduce Gun Deaths, 
SCHOLARS STRATEGY NETWORK (June 3, 2013), http://thesocietypages.org/ ssn/2013/06/03/targeted-

deterrence/ [https://perma.cc/88MD-TZVR]; Mark Guarino, Can Math Stop Murder?, THE CHRISTIAN 

SCI. MONITOR (July 20, 2014); http://www.csmonitor.com/USA/2014/ 0720/Can-math-stop-murder-
video [https://perma.cc/UDT2-A4FH]. 

 11. See infra Part I. 
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assessment models claim to be able to predict future dangerousness.12 Post-

trial sentencing predictions forecast likely recidivism.13 Probability 

outcomes forecast likely probation violations.14 It is no wonder, then, that 

predictive analytics have begun to shape policing strategies. Predictive 

analytics not only sounds like a futuristic solution to the age-old problem of 

crime, but also has the appeal of seemingly being based on empirical data 

free from human biases or inefficiencies.15 Such marketing allure has 

resulted in a series of national news stories that have proclaimed predictive 

policing to be the future of law enforcement.16 

Predictive policing thus raises some profound questions about the nature 

of prediction in an era influenced by data collection and analysis. The first 

generation of predictive policing technologies represents only the beginning 

of a fundamental transformation of how law enforcement prevents crime.17 

Identifying a future location of criminal activity may be statistically possible 

by studying where and why past crime patterns have developed over time.18 

But forecasting the precise identity of the future human “criminal” presents 

a far more troubling prediction. Both may be based on historical data with 

statistically significant correlations, but the analyses and civil liberties 

concerns differ.19 

This article addresses the deeper questions behind the adoption of 

predictive analytics by law enforcement. The article develops a framework 

for how predictive technologies must be policed by legislators, courts, and 

the police themselves. Building off a wealth of theoretical insights of 

scholars who have addressed the rise of risk assessment in other areas of 

criminal justice, the article provides an analytical structure for future 

adoption of any new predictive technology. 

 

 
 12. See, e.g., Shima Baradaran & Frank L. McIntyre, Predicting Violence, 90 TEX. L. REV. 497, 

500 (2012); Cynthia E. Jones, “Give Us Free”: Addressing Racial Disparities in Bail Determinations, 
16 N.Y.U. J. LEGIS. & PUB. POL’Y 919, 931–32 (2013). 

 13. See, e.g., Melissa Hamilton, Adventures in Risk: Predicting Violent and Sexual Recidivism in 

Sentencing Law, 47 ARIZ. ST. L.J. 1, 5 (2015); Dawinder S. Sidhu, Moneyball Sentencing, 56 B.C. L. 
REV. 671, 718 (2015); Sonja B. Starr, Evidence-Based Sentencing and the Scientific Rationalization of 

Discrimination, 66 STAN. L. REV. 803, 807 (2014). 

 14. See, e.g., Martin Hildebrand et al., Predicting Probation Supervision Violations, 19 PSYCHOL. 
PUB. POL’Y & L. 114, 115 (2013). 

 15. See Nate Berg, Predicting Crime, LAPD-style, THE GUARDIAN (June 25, 2014), 

http://www.theguardian.com/cities/2014/jun/25/predicting-crime-lapd-los-angeles-police-data-
analysis-algorithm-minority-report. 

 16. See, e.g., supra notes 1–8.  

 17. Beth Pearsall, Predictive Policing: The Future of Law Enforcement?, 266 NAT’L INST. JUST. 
J. (May 2010), http://www.nij.gov/journals/266/Pages/predictive.aspx [https://perma.cc/6UR2-

MXMD]. See also infra Part II. 

 18. See infra Part II.A. 
 19. See infra Part II.C. 
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This article offers three insights to the rather sparse literature on the 

subject of predictive policing.20 First, the article situates predictive policing 

within the decades-long search for predictive solutions to criminal justice 

problems. Predictive policing may be new, but the lure of predictive 

techniques is not. Second, the article examines the rapid evolution from 

place-based property crimes to place-based violent crimes and then to 

person-based crimes. This evolution has largely gone unchallenged, even 

though the social science justifications for the different crime types remain 

contested. Third, and most importantly, the article uses the example of 

predictive policing to develop a theoretical framework to police all future 

predictive techniques. With the rise of big data, the Internet of Things, 

intelligence-driven prosecution, and as yet uncreated surveillance tools, law 

enforcement will continue to adapt and innovate.21 

Part I situates the debate over predictive policing within the larger 

context of prediction in the criminal justice system. Prediction has been a 

“new thing” for decades and significant scholarly work has been done 

demonstrating its effects on other aspects of the criminal justice system.22 

From pretrial release to parole, predictive mechanisms now control many 

aspects of the criminal justice system. Predictive policing is but the next 

iteration of this move toward actuarial justice.23 

Part II examines the evolution of predictive policing techniques from 

placed-based property crime to place-based violent crime. I call this the 

move from Predictive Policing 1.0 to Predictive Policing 2.0, in which the 

insights of a rather rigorous empirical and scholarly approach to studying 

property-based crimes have been adopted without equivalent empirical 

studies to the problem of violent crime.24 While similar logic prevails, 

equivalent research does not. Part II also analyzes a separate technique 

focusing on the identification of individuals predicted to be involved in 

 

 
 20. See, e.g., Andrew Guthrie Ferguson, Big Data and Predictive Reasonable Suspicion, 163 U. 

PA. L. REV. 327, 329 (2015) [hereinafter Big Data]; Andrew Guthrie Ferguson, Predictive Policing and 
Reasonable Suspicion, 62 EMORY L.J. 259, 265–69 (2012) [hereinafter Predictive Policing]; Fabio 

Arcila Jr., Nuance, Technology, and the Fourth Amendment: A Response to Predictive Policing and 

Reasonable Suspicion, 63 EMORY L.J. ONLINE 87, 89 (2014). 
 21. See, e.g., Ferguson, Big Data, supra note 20; Andrew Guthrie Ferguson, The Internet of Things 

and the Fourth Amendment of Effects, 104 CALIF. L. REV. 805, 812–23 (2016) [hereinafter The Internet 

of Things]; Andrew Guthrie Ferguson, Predictive Prosecution, 51 WAKE FOREST L. REV. 705, 705–06 
(2016) [hereinafter Predictive Prosecution].  

 22. See infra Part I.A. 
 23. BERNARD E. HARCOURT, AGAINST PREDICTION: PROFILING, POLICING, AND PUNISHING IN AN 

ACTUARIAL AGE 145 (2007); Malcolm Feeley & Jonathan Simon, Actuarial Justice: The Emerging New 

Criminal Law, in THE FUTURES OF CRIMINOLOGY 173 (David Nelken ed., 1994) (coining the term 
“actuarial justice”). 

 24. See infra Part II.B. 
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crime.25 This is what I call Predictive Policing 3.0, with a focus away from 

places to persons. In cities like Chicago and New Orleans, sophisticated data 

programs are mapping shootings and studying the underlying human 

connections.26 Mirroring a public health approach to disease, this focus on 

societal violence targets both potential shooting victims and offenders.27 

Targeted individuals are identified and interventions conducted to address 

(and hopefully prevent) future violent acts. 

Part III then develops an analytical framework to evaluate police 

prediction. Specifically, I study nine core issues that must be addressed 

before adopting any predictive policing technology. These fundamental 

issues—data, methodology, social science, transparency, accountability, 

practical implementation, administration, vision, and security—present 

substantial risks and vulnerabilities for adopters of the technology. Because 

of the industry’s rapid growth, police administrators and agencies have not 

adequately addressed these risks. The goal of this section is to move beyond 

Predictive Policing 2.0 or 3.0 to address universal concerns that will affect 

the next generation of technology, and all future predictive techniques. 

The foundational insight of predictive policing is that certain aspects of 

the physical and social environment encourage quite predictable acts of 

criminal wrongdoing.28 Interfering with that environment or those 

connections will—the theory goes—deter crime.29 Predictive policing, thus, 

is less about blind fortunetelling, and more about divining hidden crime-

inducing environmental conditions which can be deterred by an intentional 

police response. The same deterrence principle also can be applied to the 

predictive technologies themselves. This article seeks to show that parallel 

vulnerabilities exist in the adoption of new predictive technologies—

vulnerabilities that can be addressed by identifying and remediating the 

underlying risks. This article then offers an analytical framework to analyze 

and improve implementation of predictive technologies, while allowing for 

continued innovations in the technology. 

 

 
 25. See infra Part II.C. 
 26. See infra notes 182–189, 204–208.  

 27. TRACEY MEARES ET AL., PROJECT SAFE NEIGHBORHOODS IN CHICAGO, HOMICIDE AND GUN 

VIOLENCE IN CHICAGO: EVALUATION AND SUMMARY OF THE PROJECT SAFE NEIGHBORHOODS 

PROGRAM 2 (2009), http://www.saferfoundation.org/files/documents/2009-PSN-Research-

Brief_v2.pdf. 

 28. Ferguson, Predictive Policing, supra note 20, at 277–78 (discussing the theory of 
environmental vulnerability).  

 29. Patrick Healey, Predictive Policing Forecasts Crime That Officers Then Try to Deter, NBC4 

News (Jan. 7, 2013, 10:19 PM), http://www.nbclosangeles.com/news/local/LAPD-Chief-Charlie-Beck-
Predictive-Policing-Forecasts-Crime-185970452.html [https://perma.cc/35MG-9HWQ]. 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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I. PREDICTION AND THE CRIMINAL JUSTICE SYSTEM 

At some level, most decision-making systems involve prediction. The 

criminal justice system is no exception. Police officers, judges, juries, 

probation officers, and parole boards all make risk-based assessments every 

single day. Predictive tools which seek to help make these difficult, life-

altering decisions more objective and fair have been embraced throughout 

the criminal justice system.30 

This article seeks to situate the specific technique of predictive policing 

within the larger move toward predictive technologies in the criminal justice 

system. This context is necessary because predictive policing has been 

billed as a new, magical “black box” solution to preventing crime,31 yet like 

all “once new” predictive technologies it suffers from the same limitations 

and challenges of all predictive techniques.32 Whether good, bad, 

ineffective, or distracting, the long-term trend has been to adopt predictive 

technologies regardless of effectiveness. Communities across the country 

will thus soon be confronted with the implementation of new technologies 

that promise to systematize and target the problem of crime. The next two 

sections detail the rise of data-driven prediction as a background to analyze 

the particular promise and concerns of predictive policing. 

A. A Brief History of Actuarial Justice 

The first experiments with prediction in the criminal justice system can 

be traced to the late 1920s and the Chicago School of Sociology’s work on 

parole recidivism.33 Early adopters such as Ernest Burgess looked at 

individual risk factors to predict the likelihood of convicted parolees 

 

 
 30. Jurek v. Texas, 428 U.S. 262, 275 (1976) (“[P]rediction of future criminal conduct is an 

essential element in many of the decisions rendered throughout our criminal justice system. The decision 

whether to admit a defendant to bail, for instance, must often turn on a judge’s prediction of the 
defendant’s future conduct. And any sentencing authority must predict a convicted person’s probable 

future conduct when it engages in the process of determining what punishment to impose. For those 

sentenced to prison, these same predictions must be made by parole authorities.”) (footnotes omitted). 
 31. Hannes Grassegger, Simple Truth Inside the Black Box. Interview with Spencer Chainey, 

W.I.R.E. (2016), http://www.thewire.ch/en/abstrakt/no-12---das-grosse-rauschen/in-der-black-box-

gespraech-mit-spencer-chainey [https://perma.cc/67TJ-USDQ]. 
 32. See infra Part III. 

 33. J.C. Oleson, Training to See Risk: Measuring the Accuracy of Clinical and Actuarial Risk 

Assessments Among Federal Probation Officers, 75 FED. PROBATION 52, 52 (2011) (“The statistical 
prediction of recidivism risk has an 80-year history, and can be traced at least as far back as the 1928 

parole prediction instrument developed by Ernest Burgess.”) (citation omitted); Nadya Labi, Misfortune 

Teller, THE ATLANTIC (Jan./Feb. 2012), http://www.theatlantic.com/magazine/archive/ 
2012/01/misfortune-teller/308846/ (“In 1927, Ernest Burgess, a sociologist at the University of Chicago, 

drew on the records of 3,000 parolees in Illinois to estimate an individual’s likelihood of recidivism.”). 
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reoffending.34 By systematizing risks and applying those factors to 

individual persons, Burgess institutionalized what we now know as the 

actuarial approach.35 In his book, Against Prediction, Bernard Harcourt sets 

forth a detailed history of the influence of Burgess and other sociologists 

who experimented with designing the first risk assessment tools for 

parolees.36 The history spans the mid-twentieth century, beginning with the 

slow adoption of actuarial recidivism predictions and then shifting to a more 

rapid growth during the later part of the twentieth century and the early part 

of the twenty-first century, when risk assessment mechanisms became the 

norm and not the exception.37  

While initially focused only on parolees, the concept of actuarial 

prediction began to catch on in other parts of the criminal justice system. 

Actuarial (or statistical) prediction can be defined as: 

[A] formal method…[that provides] a probability, or expected value, 

of some outcome. It uses empirical research to relate numerical 

predictor variables to numerical outcomes. The sine qua non of 

actuarial assessment involves using an objective, mechanistic, 

reproducible combination of predictive factors, selected and 

validated through empirical research, against known outcomes that 

have also been quantified.38 

Actuarial prediction turns on identifying and weighing specific factors that 

correlate with a probability of future actions.39 The shift toward empirical, 

 

 
 34. Bernard E. Harcourt, From the Ne’er-Do-Well to the Criminal History Category: The 

Refinement of the Actuarial Model in Criminal Law, 66 LAW & CONTEMP. PROBS. 99, 112 (2003). 

 35. Id. 
 36. HARCOURT, supra note 23, at 47–107. 

 37. Id.  

 38. Jordan M. Hyatt et al., Reform in Motion: The Promise and Perils of Incorporating Risk 
Assessments and Cost-Benefit Analysis into Pennsylvania Sentencing, 49 DUQ. L. REV. 707, 726 (2011) 

(quoting Don M. Gottfredson, Prediction and Classification in Criminal Justice Decision Making, 9 

CRIME & JUST. 1 (1987)), See also Barbara D. Underwood, Law and the Crystal Ball: Predicting 
Behavior with Statistical Inference and Individualized Judgment, 88 YALE L.J. 1408, 1420–21 (1979) 

(“The alternative [to the clinical] method for making predictions evaluates each applicant according to 

a predetermined rule for counting and weighting key characteristics. The relevant characteristics are 
specified in advance, and so is the rule for combining them to produce a score for each applicant. . . . 

This method of making predictions is often called statistical prediction.”). 

 39. Melissa Hamilton, Public Safety, Individual Liberty, and Suspect Science: Future 
Dangerousness Assessments and Sex Offender Laws, 83 TEMP. L. REV. 697, 720 (2011) (“The general 

idea for actuarial ratings for any risk at issue is to identify those factors that are correlative to the potential 

occurrence of the future event at issue, and to effectively assign appropriate weights to each factor based 
on the observation that some factors have greater correlative abilities than others relating to the particular 

result.”); Christopher Slobogin, Dangerousness and Expertise Redux, 56 EMORY L.J. 275, 283 (2006) 

(“An actuarial approach relies, like insurance actuaries do, on a finite number of pre-identified variables 
that statistically correlate to risk and that produce a definitive probability or probability range of risk.”) 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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replicable, and validated factors also meant a rejection of the “clinical 

method”40 of prediction, which required an individualized, “expert” 

judgment not controlled by predetermined already-identified variables. The 

clinical method, while individualized, had recognized methodological 

flaws.41  

Examples of actuarial prediction instruments include the Violence Risk 

Appraisal Guide (VRAG), which measures potential violent recidivism for 

offenders with mental disorders; the Rapid Risk Assessment for Sexual 

Offense Recidivism (RRASOR), which predicts sexual offender recidivism; 

and the Level of Services Inventory-Revised (LSI-R), which predicts parole 

and supervised release success.42 Each of these assessment mechanisms 

shares a structure consisting of set questions, the answers to which 

statistically correlate with predictive scores for some future action. These 

assessments require responses to a series of questions that correlate to 

higher or lower risks of reoffending. For example, the LSI-R has been used 

in states to predict parole recidivism and asks questions about the 

individual’s criminal history, education, employment, financial problems, 

family or marital situation, housing, hobbies, friends, alcohol and drug use, 

emotional or mental health issues, and attitudes about crime and 

supervision.43 The questions are detailed, asking about school suspensions, 

dissatisfaction with spouses, use of free time, and mental health.44 Of 

course, the questions also exist within certain socioeconomic realities, such 

that individuals can be penalized for living in a high-crime area, not having 

a job, accepting social assistance, or having friends with criminal records.45 

The difficulty of disentangling these poverty-correlated factors from 

individualized factors has opened these types of risk assessment 

 

 
(emphasis omitted). 

 40. William M. Grove & Paul E. Meehl, Comparative Efficiency of Informal (Subjective, 
Impressionistic) and Formal (Mechanical, Algorithmic) Prediction Procedures: The Clinical-Statistical 

Controversy, 2 PSYCHOL. PUB. POL’Y & L. 293, 294 (1996); Bernard E. Harcourt, The Shaping of 

Chance: Actuarial Models and Criminal Profiling at the Turn of the Twenty-First Century, 70 U. CHI. 
L. REV. 105, 116–17 (2003).  

 41. Slobogin, supra note 39, at 283 (“Until the late 1980s, almost all expert testimony regarding 

dangerousness was clinical in nature.”) (emphasis omitted); Alexander Scherr, Daubert & Danger: The 
“Fit” of Expert Predictions in Civil Commitments, 55 HASTINGS L.J. 1, 17 (2003) (“Clinical opinions 

have never received high marks for reliability. Early literature and studies almost completely discounted 

them, finding that clinicians did little better than chance. . . . Over the past decade, these second 
generation research methods have led to a conclusion that clinical methods perform somewhat better 

than random, but are still deeply imperfect.”). 

 42. HARCOURT, supra note 23, at 78, 84. 
 43. Id. at 79–81.  

 44. Id. at 81, tbl.3.2. 

 45. Id.; Sonja B. Starr, The New Profiling: Why Punishing Based on Poverty and Identity Is 
Unconstitutional and Wrong, 27 FED. SENT’G. REP. 229, 229 (2015). 
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mechanisms to criticisms of racial and economic bias.46 

Nevertheless, most states have adopted some measure of actuarial 

prediction in sentencing or parole determinations.47 These risk assessment 

measures represent the firm, if contested, belief that formalized measures 

provide superior insight compared to traditional, clinical practices.48 This 

belief has also impacted other parts of the criminal justice system, which 

will be discussed in the next section. 

B. The Prevalence of Prediction in the Criminal Justice System 

Today, actuarial prediction impacts almost all aspects of the criminal 

justice system, from the initial bail decision to the final parole release.49 In 

the pretrial detention stage, judges in many states routinely rely on risk 

assessment instruments to predict future dangerousness before deciding on 

release conditions.50 These measures have become so accepted that some 

researchers have proposed replacing individualized, human pretrial 

interviews with an automated assessment of predetermined risk factors to 

determine release.51 Pretrial service workers would, in essence, be replaced 

with a risk assessment algorithm. While scholars have critiqued reliance on 

 

 
 46. Starr, supra note 45, at 229. 
 47. See Starr, supra note 13, at 809. 

 48. Compare Christopher Slobogin, Prevention as the Primary Goal of Sentencing: The Modern 

Case for Indeterminate Dispositions in Criminal Cases, 48 SAN DIEGO L. REV. 1127, 1146 (2011) 
(“[R]esearch has firmly established that predictions based on the clinical method, although typically 

better than chance, are less valid than actuarial predictions by a significant magnitude.”), with Grove & 

Meehl, supra note 40, at 295 (noting that “in around two fifths of studies the two methods were 
approximately equal in accuracy”). See also Thomas R. Litwack, Actuarial Versus Clinical Assessments 

of Dangerousness, 7 PSYCHOL. PUB. POL’Y & L. 409 (2001). 

 49. Shima Baradaran, Race, Prediction, and Discretion, 81 GEO. WASH. L. REV. 157, 176–77 
(2013) (“Criminal justice actors often predict which defendants are going to commit an additional crime 

in determining whether to arrest defendants, to release them on bail, or to release them on parole, or in 

determining their sentence. This prediction is often based not only on individual evaluation, but also on 
a group’s criminality and past behavior.”). 

 50. Baradaran & McIntyre, supra note 12, at 513 (“While states have different considerations and 

definitions of dangerousness, the majority of states currently allow judges to detain the accused pretrial 

based on predictions of dangerousness.”); Jack F. Williams, Process and Prediction: A Return to a Fuzzy 

Model of Pretrial Detention, 79 MINN. L. REV. 325, 337–38 (1994); Peggy M. Tobolowsky & James F. 

Quinn, Drug-Related Behavior as a Predictor of Defendant Pretrial Misconduct, 25 TEX. TECH. L. REV. 
1019, 1028 (1994).  

 51. MARIE VANNOSTRAND & CHRISTOPHER T. LOWENKAMP, LAURA & JOHN ARNOLD FOUND., 

ASSESSING PRETRIAL RISK WITHOUT A DEFENDANT INTERVIEW (2013), http://www.arnoldfoundation. 
org/sites/default/files/pdf/LJAF_Report_no-interview_FNL.pdf. 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5

http://www.westlaw.com/Find/Default.wl?rs=dfa1.0&vr=2.0&DB=0001193&FindType=Y&ReferencePositionType=S&SerialNum=0104922295&ReferencePosition=337
http://www.westlaw.com/Find/Default.wl?rs=dfa1.0&vr=2.0&DB=0001193&FindType=Y&ReferencePositionType=S&SerialNum=0104922295&ReferencePosition=337
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such correlative factors,52 some jurisdictions are beginning to adopt them.53 

At the other end of trial, during sentencing, judges rely on established 

risk assessment instruments in an attempt to make sentences more uniform 

and predictable.54 While judges have always had to make predictions about 

future danger, the difference today is that formalized mechanisms exist to 

guide the judges’ discretion.55 These mechanisms include actual risk 

assessment instruments, as well as formal sentencing guidelines, which 

were based on actuarial studies.56 Further, upon release, probation, parole, 

or supervision officers also make predictions of recidivism based on risk 

assessment mechanisms which have been created for the task.57  

Particular types of crimes (or criminals) have generated particularized 

predictive tools to assess future risk. In sex offender cases, risk assessment 

mechanisms58 have been used to preventively detain suspects before trial,59 

and civilly commit them after they have served their sentences.60 In 

 

 
 52. Baradaran & McIntyre, supra note 12, at 521–23 (analyzing past studies on predicting future 

dangerousness in the pretrial release context); Julia Angwin et. al., Machine Bias, PROPUBLICA (May 

23, 2016), https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.  
 53. DEVELOPING A NATIONAL MODEL FOR PRETRIAL RISK ASSESSMENT, LAURA & JOHN ARNOLD 

FOUND. (Nov. 2013), http://www.arnoldfoundation.org/wp-content/uploads/2014/02/LJAF-research-
summary_PSA-Court_4_1.pdf.  

 54. J.C. Oleson, Risk in Sentencing: Constitutionally Suspect Variables and Evidence-Based 

Sentencing, 64 SMU L. REV. 1329, 1337 (2011) (discussing actuarial sentencing); Michael A. Wolff, 
Evidence-Based Judicial Discretion: Promoting Public Safety Through State Sentencing Reform, 83 

N.Y.U. L. REV. 1389, 1404 (2008) (proposing risk assessment models for sentencing); Starr, supra note 

13, at 807 (critiquing the rise of risk assessment instruments for sentencing). 
 55. Hyatt et al., supra note 38, at 724 (“Risk assessment is not a new concept in the criminal justice 

system. It is a tool—nothing more and nothing less. . . . Informally, sentencing judges have long assessed 

risk of re-offense in crafting a defendant’s sentence.”). 
 56. See generally Charles J. Ogletree, Jr., The Death of Discretion? Reflections on the Federal 

Sentencing Guidelines, 101 HARV. L. REV. 1938 (1988). 

 57. Matthew G. Rowland, Too Many Going Back, Not Enough Getting Out? Supervision Violators, 
Probation Supervision, and Overcrowding in the Federal Bureau of Prisons, 77 FED. PROBATION 3, 5 

(2013) (“Since the 1990s, the federal probation and pretrial services system has used the Risk Prediction 

Index (RPI), an actuarial risk assessment tool developed by the Research Division of the Federal Judicial 
Center, to empirically measure the risk level of the supervisee population.”). 

 58. Hamilton, supra note 39, at 726–27 (challenging the testing and scientific method for sex 

offender assessment measures).  
 59. Stephen J. Morse, Preventive Confinement of Dangerous Offenders, 32 J.L. MED. & ETHICS 

56 (2004). 

 60. John A. Fennel, Punishment by Another Name: The Inherent Overreaching in Sexually 
Dangerous Person Commitments, 35 NEW ENG. J. ON CRIM. & CIV. CONFINEMENT 37, 51–52 (2009); 

Fredrick E. Vars, Rethinking the Indefinite Detention of Sex Offenders, 44 CONN. L. REV. 161, 164 

(2011); Slobogin, supra note 39, at 276 (“Since 1990, about one third of the states have enacted laws 
that permit indeterminate post-sentence commitment of sex offenders considered to be ‘predisposed’ to 

violent behavior.”); Robert A. Prentky et al., Sexually Violent Predators in the Courtroom: Science on 

Trial, 12 PSYCHOL. PUB. POL’Y & L. 357, 358 (2006); Eric S. Janus & Robert A. Prentky, Forensic Use 
of Actuarial Risk Assessment with Sex Offenders: Accuracy, Admissibility and Accountability, 40 AM. 

CRIM. L. REV. 1443, 1454–55 (2003) (describing trial court use of actuarial instruments). 

Washington University Open Scholarship



 

 

 

 

 

 

1122 WASHINGTON UNIVERSITY LAW REVIEW [VOL. 94:1109 

 

 

 

 

domestic violence cases, courts have utilized Intimate Partner Violence 

(IPV) screening tools to identify factors that might signal future violence.61 

In non-domestic violence cases, predictors of future dangerousness are 

relied upon to determine sentences.62 In juvenile cases, over 85% of 

jurisdictions use risk assessment mechanisms to evaluate young people.63 In 

capital cases, experts regularly must make a determination of future 

dangerousness using risk assessment tools.64 While each instrument 

incorporates a different calculus, they share the same underlying assumption 

that certain reliable correlations can be drawn from patterns in data.  

This faith in predictive accuracy is not limited to the criminal context, as 

court decisions about child protection,65 civil commitment,66 and prisoner 

status67 have been guided by new predictive tools. Determinations about 

civil liberty or family autonomy are also now guided by pre-determined 

assessments that help shape court decision-making.  

 

 
 61. Amanda Hitt & Lynn McLain, Stop the Killing: Potential Courtroom Use of a Questionnaire 

That Predicts the Likelihood That a Victim of Intimate Partner Violence Will Be Murdered By Her 

Partner, 24 WIS. J.L. GENDER & SOC’Y 277, 283 (2009) (“Since the late 1970’s, as researchers clamored 
to create instruments that could accurately predict the threat of physical violence, over thirty-three IPV 

screening tools have been created.”). 
 62. John Monahan, Violence Risk Assessment: Scientific Validity and Evidentiary Admissibility, 

57 WASH. & LEE L. REV. 901, 905–10 (2000); Erica Beecher-Monas & Edgar Garcia-Rill, Genetic 

Predictions of Future Dangerousness: Is There a Blueprint for Violence?, 68 LAW & CONTEMP. PROBS. 
301, 318–19 (2006) (“The predominant instrument used in assessing violence (including sexual 

violence) is the Violence Risk Assessment Guide (VRAG).”). See also id. at 308 (“Predicting future 

dangerousness has become important as the criminal justice system has changed its focus from 
punishment to preventing violent recidivism.”).  

 63. Christopher Slobogin, Risk Assessment and Risk Management in Juvenile Justice, 27 CRIM. 

JUST. 10, 11 (2013) (“Today over 85 percent of juvenile court jurisdictions in the United States use 
formal risk assessment at some point in the process, compared to 33 percent of American jurisdictions 

prior to 1990.”); Jeffrey Fagan & Martin Guggenheim, Preventative Detention and the Judicial 

Prediction of Dangerousness for Juveniles: A Natural Experiment, 86 J. CRIM. L. & CRIMINOLOGY 415 
(1996); Albert R. Roberts & Kimberly Bender, Overcoming Sisyphus: Effective Prediction of Mental 

Health Disorders and Recidivism Among Delinquents, 70 FED. PROBATION 19, 21–23 (2006) (evaluating 

risk prediction models for juveniles). 
 64. Jonathan R. Sorensen & Rocky L. Pilgrim, Criminology: An Actuarial Risk Assessment of 

Violence Posed By Capital Murder Defendants, 90 J. CRIM. L. & CRIMINOLOGY 1251, 1252 (2000); Lisa 

M. Dennis, Constitutionality, Accuracy, Admissibility: Assessing Expert Predictions of Future Violence 
in Capital Sentencing Proceedings, 10 VA. J. SOC. POL’Y & L. 292, 307 (2002).  

 65. Marsha Garrison, Taking the Risks Out of Child Protection Risk Analysis, 21 J.L. & POL’Y 5, 

19–20 (2012) (describing the use of algorithms to guide child protection policymakers and case 
workers). 

 66. Douglas Mossman et al., Risky Business Versus Overt Acts: What Relevance Do “Actuarial,” 

Probabilistic Risk Assessments Have for Judicial Decisions on Involuntary Psychiatric 
Hospitalization?, 11 HOUS. J. HEALTH L. & POL’Y 365, 368 (2011); Alexander Tsesis, Due Process in 

Civil Commitments, 68 WASH. & LEE L. REV. 253, 287 (2011). 

 67. John Monahan, A Jurisprudence of Risk Assessment: Forecasting Harm Among Prisoners, 
Predators, and Patients, 92 VA. L. REV. 391, 434–35 (2006) (discussing the release status of sexually 

violent prisoners). 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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The prevalence of predictive technologies in the criminal justice system 

has not gone unchallenged, and many scholars have critiqued the growing 

reliance and even legitimacy of some of the chosen tools.68 Interestingly, 

these critiques have not necessarily slowed the acceptance of actuarial 

justice, although perhaps they have moderated a complete reliance on the 

new tools.69 No matter the criticism, actuarial predictions are still 

considered superior to clinical predictions, and so the temptation has been 

to adopt and test new data-driven versions.70  

That same temptation has impacted police administrators, who like 

judges wish to predict recidivism and future violence before it happens. The 

next section discusses the evolving impacts prediction has had on policing. 

II. THE EVOLUTION OF PREDICTIVE POLICING  

Prediction has always been part of policing. Police officers regularly 

predict the places and persons involved in criminal activity and seek to deter 

this pattern of lawbreaking. The move toward predictive policing, then, is 

more a shift in tools than strategy.71  

Police use of predictive techniques parallels the history of actuarial 

prediction. The same Chicago School of Sociology that sought to predict at-

risk individuals also generated interest in studying at-risk places.72 The rise 

of environmental criminology grew alongside early experiments that 

studied the geography of crime.73 These experiments informed police 

practice as crime mapping became a way to identify and study patterns of 

criminal behavior. As data collection and data analysis grew more 

sophisticated, new predictive techniques and computer-mapping 

 

 
 68. See, e.g., Starr, supra note 45, at 229. 
 69. Stephen D. Hart, The Role of Psychopathy in Assessing Risk for Violence: Conceptual and 

Methodological Issues, 3 LEGAL & CRIMINOLOGICAL PSYCHOL. 121, 126 (1998) (“Reliance—at least 

complete reliance—on actuarial decision-making by professionals is unacceptable.”); Harcourt, supra 
note 40, at 114.  

 70. See Samuel R. Wiseman, Fixing Bail, 84 GEO. WASH. L. REV. 417, 439–40 (2016) (discussing 

the superior accuracy of actuarial risk assessments to determine future dangerousness in sentencing and 
for pretrial release); Erica Beecher-Monas, The Epistemology of Prediction: Future Dangerousness 

Testimony and Intellectual Due Process, 60 WASH. & LEE L. REV. 353, 363 (2003) (“Repeated studies 

of actuarial methods have demonstrated them to be superior to clinical judgment standing alone.”). 
 71. Some predictive techniques such as Risk Terrain Modeling have adopted a strategic shift to 

accompany new technological innovations. See infra Part II.A (discussing the Risk Terrain Modeling 

attempt at addressing environmental vulnerabilities based on predictive analytics).  
 72. Calvin Morrill et al., Seeing Crime and Punishment Through A Sociological Lens: 

Contributions, Practices, and the Future, 2005 U. CHI. LEGAL F. 289, 291 (2005). 
 73. Andrew Guthrie Ferguson, Crime Mapping and the Fourth Amendment: Redrawing “High-

Crime Areas”, 63 HASTINGS L.J. 179, 186 (2011). 
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technologies also developed to make use of the information.74  

Over the course of the twentieth century, push-pin wall maps identifying 

daily crimes morphed into digital maps displaying historical patterns of all 

recorded crimes.75 Similarly, the insights of academic criminologists 

inspired police departments to hire professional crime analysts.76 Those 

crime analysts, in turn, began crunching the collected data and advising 

police administrators about how best to deploy resources. “High crime 

areas,”77 “hot spots,”78 and other techniques informed by Geographic 

Information Systems (GIS) were developed to visualize and respond to 

problem areas.79 Large-scale experiments like the CompStat system in New 

York City, in which crime data literally became the organizing principle of 

police response, were met with accolades and attention.80 Suddenly the idea 

of “smart policing” turned from buzzword into reality.81  

These predictive, data-driven techniques drew strength from the growing 

work of predictive analytics in other criminal justice fields. The predictive 

techniques were perceived as objective, focused on correlations as opposed 

to causation, and widely applicable across jurisdictions.82 Especially after 

the economic recession in 2008, when police departments were faced with 

 

 
 74. Andrew Guthrie Ferguson & Damien Bernache, The “High-Crime Area” Question: Requiring 
Verifiable and Quantifiable Evidence for Fourth Amendment Reasonable Suspicion Analysis, 57 AM. U. 

L. REV. 1587, 1605, 1607–08 (2008); WALTER L. PERRY ET AL., PREDICTIVE POLICING: THE ROLE OF 

CRIME FORECASTING IN LAW ENFORCEMENT OPERATIONS 2 (2013) (ebook) (“The use of statistical and 
geospatial analyses to forecast crime levels has been around for decades.”). 

 75. Predictive Crime Fighting, IBM, http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ 

crimefighting (last visited Nov. 13, 2016) (describing early hand drawn crayon maps of crime in New 
York City). 

 76. For a complete history of crime mapping technology, see Ferguson, supra note 73. 

 77. Illinois v. Wardlow, 528 U.S. 119, 123 (2000). 
 78. Anthony A. Braga et al., The Relevance of Micro Places to Citywide Robbery Trends: A 

Longitudinal Analysis of Robbery Incidents at Street Corners and Block Faces in Boston, 48 J. RES. 

CRIME & DELINQ. 7, 9 (2011) (“Criminological evidence on the spatial concentration of crime suggests 
that a small number of highly active micro places in cities—frequently called ‘hot spots’—may be 

primarily responsible for overall citywide crime trends.”). 

 79. See, e.g., DEREK J. PAULSEN & MATTHEW B. ROBINSON, CRIME MAPPING AND SPATIAL 

ASPECTS OF CRIME 154 (2009); KEITH HARRIES, U.S. DEP’T OF JUSTICE, MAPPING CRIME: PRINCIPLE 

AND PRACTICE 92 (1999), https://www.ncjrs.gov/pdffiles1/nij/178919.pdf. 

 80. James J. Willis et al., Making Sense of COMPSTAT: A Theory-Based Analysis of 
Organizational Change in Three Police Departments, 41 LAW & SOC’Y REV. 147, 172 (2007) 

(discussing the rise of COMPSTAT). 

 81. Charlie Beck & Colleen McCue, Predictive Policing: What Can We Learn from WalMart and 
Amazon about Fighting Crime in a Recession?, 76 POLICE CHIEF MAG. 18–24 (Nov. 2009); Steve Lohr, 

The Age of Big Data, N.Y. TIMES, Feb. 12, 2012, at SR1 (“Police departments across the country, led 

by New York’s, use computerized mapping and analysis of variables like historical arrest patterns, 
paydays, sporting events, rainfall and holidays to try to predict likely crime ‘hot spots’ and deploy 

officers there in advance.”). 

 82. CATHY O’NEIL, WEAPONS OF MATH DESTRUCTION: HOW BIG DATA INCREASES INEQUALITY 

AND THREATENS DEMOCRACY, 85–91 (2016). 
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dwindling budgets, a cost-effective, supposedly high-tech solution to crime 

became especially attractive and drew investment.83 With newspaper 

headlines hyping the technology as the future of policing, and federal grant 

money being invested in its design, predictive policing found itself leading 

the movement toward smart policing.84  

Before discussing the evolution of predictive policing, the actual claims 

of predictive policing companies and technologies must be separated from 

the hype of media coverage around the technology. This is somewhat 

difficult, because the companies themselves helped to generate the hype.85 

In fact, one might cynically argue that companies promoting predictive 

policing technologies benefit from the misconception that their algorithms 

actually predict crime.86 But, examined carefully, the claims and promises 

are much less grand. Predictive policing merely provides additional 

information about the places and persons involved in criminal activity that 

supplements, rather than replaces, existing police techniques and strategy.87 

It offers assessments of risk, rankings of risky areas or people, and can 

provide insights into associations and patterns that might be missed in the 

ordinary course of criminal investigation. As will be discussed in the next 

few sections, it has evolved rapidly, but, at base, remains a risk assessment 

tool adaptable to different problems and different jurisdictions.  

 

 
 83. Pearsall, supra note 17, at 17 (“George Gascón, chief of police for the San Francisco Police 
Department, noted that predictive policing is the perfect tool to help departments become more efficient 

as budgets continue to be reduced. ‘With predictive policing, we have the tools to put cops at the right 

place at the right time or bring other services to impact crime, and we can do so with less,’ he said.”); 
Huet, supra note 3 (“It’s impossible to know if PredPol prevents crime, since crime rates fluctuate, or to 

know the details of the software’s black-box algorithm, but budget-strapped police chiefs don’t care.”). 

 84. See Christopher Beam, Time Cops: Can Police Really Predict Crime Before it Happens?, 
SLATE (Jan. 24, 2011, 6:06 PM), http://www.slate.com/articles/news_and_politics/crime/2011/ 

01/time_cops.html [https://perma.cc/WG3B-X9GM]; Lev Grossman et al., The 50 Best Inventions of the 

Year, TIME MAGAZINE (Nov. 28. 2011), http://content.time.com/time/magazine/article/ 
0,9171,2099708,00.html [https://perma.cc/EA92-328K] (discussing preemptive policing); Vince Beiser, 

Can Computers Predict Crimes of the Future?, PAC. STANDARD (July 5, 2011), https://psmag. com/can-

computers-predict-crimes-of-the-future-5dd5ecaab617#.uz71u3fty [https://perma.cc/9S7K-4MJP]. 
 85. See Tim Kushing, ‘Predictive Policing’ Company Uses Bad Stats, Contractually-Obligated 

Shills To Tout Unproven ‘Successes’, Techdirt (Nov. 1, 2013, 9:48 AM) https://www.techdirt.com/ 

articles/20131031/13033125091/predictive-policing-company-uses-bad-stats-contractually-obligated-
shills-to-tout-unproven-successes.shtml [https://perma.cc/YD94-8SAT]. 

 86. Bond-Graham & Winston, supra note 4. 

 87. PERRY ET AL., supra note 74, at 6, 115 (discussing the “hype” problem of predictive policing 
advertising). 

Washington University Open Scholarship



 

 

 

 

 

 

1126 WASHINGTON UNIVERSITY LAW REVIEW [VOL. 94:1109 

 

 

 

 

A. Predictive Policing 1.0: Targeting Places of Property Crime 

The origin myth of predictive policing has its birthplace in California 

under the leadership of Police Chief William Bratton.88 Bratton, along with 

Jack Maple, has been credited with championing the CompStat system with 

the New York Police Department (NYPD), and when Bratton was asked to 

lead the Los Angeles Police Department (LAPD), he brought his faith in 

data-driven policing to the West Coast.89 The idea, simply put, involved a 

data-analytics command structure that directed police resources to targeted 

areas of criminal activity.90 In its first iteration, this version of predictive 

policing was basically computer-augmented hotspot policing. While given 

the label “predictive policing,” it had all of the same characteristics of past 

crime pattern identification strategies that had been in use for years.  

However, in collaboration with several academics at major 

universities,91 the LAPD experimented with a predictive algorithm to 

identify predicted locations of criminal activity.92 While other cities had 

experimented with data-driven systems,93 two California cities, Los Angeles 

and Santa Cruz, embraced these predictive technologies and promoted their 

success.94  

As originally designed in Los Angeles, predictive policing focused on 

addressing three types of crime: burglary, automobile theft, and theft from 

automobiles.95 These crimes were selected for four main reasons. First, 

property crimes, while not the most serious, generated a significant amount 

of public concern for the safety of a community. Second, property crimes 

 

 
 88. Like most origin myths, this story is incomplete and subject to interpretation and debate.  
 89. Interview by Jim Burch and Kris Rose with William Bratton, former LAPD Chief, in Los 

Angeles, Cal. (Nov. 2009), available at https://www.bja.gov/publications/podcasts/multimedia/ 

transcript/Transcripts_Predictive_508.pdf [https://perma.cc/3KRN-V42W]. 
 90. Beck & McCue, supra note 81, at 18 (“Predictive policing allows command staff and police 

managers to leverage advanced analytics in support of meaningful, information-based tactics, strategy, 
and policy decisions in the applied public safety environment.”). 

 91. The LAPD collaborated with academics Jeffrey Brantingham (UCLA) and George Mohler 

(Santa Clara). See Jouvenal, supra note 4; Huet, supra note 3. 

 92. G.O. Mohler et al., Self-Exciting Point Process Modeling of Crime, 106 J. AM. STAT. ASS’N 

100 (2011); Martin B. Short et al., Dissipation and Displacement of Hotspots in Reaction-Diffusion 

Models of Crime, 107 PROC. NAT’L ACAD. SCI. 3961 (2010). 
 93. Andrew Ashby, Operation Blue C.R.U.S.H. Advances at MPD, MEMPHIS DAILY NEWS (Apr. 

7, 2006), http://www.memphisdailynews.com/editorial/Article.aspx?id=30029 [https://perma.cc/ 

TZ5D-Y4SP] (“Operation Blue C.R.U.S.H. (Crime Reduction Using Statistical History) involves using 
mapping and statistical information to target crime hot spots and chronic perpetrators.”). See also 

Chicago Police Department Adopts Predictive Crime-Fighting Model, 2 GEOGRAPHY & PUB. SAFETY 

(Cmty. Oriented Policing Servs.), Mar. 2011, at 14 (“In April 2010, the Chicago Police Department 
began piloting a crime prevention strategy called predictive analytics.”). 

 94. Berg, supra note 15.  

 95. Ferguson, Predictive Policing, supra note 20, at 267. 
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tended to be reported, unlike drug crimes or even certain violent crimes, so 

police had a good sense of the level of crime, and could more easily measure 

any changes in frequency. Third, a large body of social science research 

suggested that these types of property crimes arose out of certain 

environmental vulnerabilities that could be identified and remedied.96 

Finally, because the crimes arose from place-based environmental factors, 

the theory became that targeted police presence in those areas might deter 

future criminal actions.  

In practice, this first iteration of predictive policing97—Predictive 

Policing 1.0—involved the collection of historical crime data (time, place, 

and type) and the application of an experimental computer algorithm that 

used data to predict likely areas of criminal activity.98 The predicted areas 

were precise—usually 500 by 500 square feet—and forecast a particular 

type of crime.99 Police officers on patrol received highlighted maps and 

visited those targeted areas as often as practicable within their regular 

patrols.100 It was believed that increased police presence at the identified 

areas would disrupt the continued pattern of property crimes.101 In Los 

Angeles, police officers in the Foothill Division were provided maps to 

guide them on patrol.102 In Santa Cruz, every morning at roll call officers 

were handed detailed maps with predictive forecasts of crime broken down 

 

 
 96. See, e.g., Lawrence W. Sherman et al., Hot Spots of Predatory Crime: Routine Activities and 
the Criminology of Place, 27 CRIMINOLOGY 27 (1989); Braga et al., supra note 78, at 9; Leslie W. 

Kennedy et al., Risk Clusters, Hotspots, and Spatial Intelligence: Risk Terrain Modeling as an Algorithm 

for Police Resource Allocation Strategies, 27 J. QUANTITATIVE CRIMINOLOGY 339, 358 (2011); Spencer 
Chainey et al., The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime, 21 SECURITY 

J. 4, 4–5 (2008). 

 97. The analysis here primarily focuses on what is now understood to be the model designed by 
PredPol. The precursor to PredPol was tested and developed with the LAPD under Chief Bratton.  

 98. Gordon, supra note 7; Ronald Bailey, Stopping Crime Before It Starts, REASON (July 10, 2012, 

5:00 PM), http://reason.com/archives/2012/07/10/predictive-policing-criminals-crime [https://perma.cc 
/LYK5-U6K]; Zach Friend, Predictive Policing: Using Technology to Reduce Crime, FBI LAW 

ENFORCEMENT BULLETIN (Apr. 9, 2013), http://www.fbi.gov/stats-services/publications/law-

enforcement-bulletin/2013/April/predictive-policing-using-technology-to-reduce-crime 
[https://perma.cc/GRN5-GD8A]. 

 99. Adams, supra note 6.  

 100. See Lawrence W. Sherman, The Rise of Evidence-Based Policing: Targeting, Testing, and 
Tracking, 42 CRIME & JUST. 377, 426 (2013) (“PredPol, the predictive policing company, sells police 

agencies proprietary software that identifies extremely tight bounding of time and place in which crime 

is predicted to occur.”). 
 101. Goode, supra note 6. 

 102. Aaron Mendelson, Can LAPD Anticipate Crime with ‘Predictive Policing’?, THE CALIFORNIA 

REPORT (Sept. 6, 2013), http://audio.californiareport.org/archive/R201309061630/b [https://perma.cc/Z 

QS2-2ZJ2]. 
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by location and time.103 In other jurisdictions, patrol car computers 

displayed the data in real time.104 In all cases, police hoped their presence 

would deter lawbreaking.105 

The theory behind Predictive Policing 1.0 can be traced back to the work 

of criminologists who found that certain property-based crimes tended to 

have ripple effects in neighboring areas. Like contagious viruses,106 these 

crimes spurred additional crimes in the area, because either the same 

criminals came back to commit them, or certain environmental 

vulnerabilities existed to encourage crime.107 For example, a successful 

burglary of one house might encourage future attempts at nearby houses 

because the area would be familiar to the burglar, the houses might be built 

similarly, or the police presence inadequate.108 Perhaps the same burglar or 

group would strike again, or perhaps word would get out about easy targets 

in the area. Empirical studies had confirmed this “near repeat effect,”109 and 

 

 
 103. Tessa Stuart, Santa Cruz’s Predictive Policing Experiment, SANTACRUZ.COM (Feb. 14, 2012), 

http://www.santacruz.com/news/santa_cruzs_predictive_policing_experiment.html [http://perma.cc/U2 

YD-VPYC]. 
 104. Zen Vuong, Alhambra Police Chief Says Predictive Policing Has Been Successful, PASADENA 

STAR-NEWS (Feb. 11, 2014, 6:53 PM) http://www.pasadenastarnews.com/government-and-politics/201 
40211/alhambra-police-chief-says-predictive-policing-has-been-successful [https://perma.cc/ACE2 

-X55B] (“In addition to printouts of potential crime areas, [Alhambra Police Chief] Yokoyama said 

every police car is now equipped with in-car computers that receive refreshed information every five 
minutes.”); Maurice Chammah, Policing the Future, THE MARSHALL PROJECT (Feb. 3, 2016, 7:15 AM), 

https://www.themarshallproject.org/2016/02/03/policing-the-future#.fFzTrlZ 

Vp [https://perma.cc/QZ3V-838D]. 
 105. Timothy B. Clark, How Predictive Policing Is Using Algorithms to Deliver Crime-Reduction 

Results for Cities, GOV’T EXEC. MEDIA GRP.: ROUTE FIFTY (Mar. 9, 2015), http://www.govexec.com/ 

state-local/2015/03/predictive-policing-santa-cruz-predpol/107013/ [https://perma.cc/G3L3-NYHA] 
(“LAPD patrol cars are equipped with GPS-enabled mini-iPads to automatically track ‘time in the 

box.’”). 

 106. Daniel B. Neill & Wilpen L. Gorr, Detecting and Preventing Emerging Epidemics of Crime, 4 
ADVANCES IN DISEASE SURVEILLANCE, no. 13 (2007). 

 107. Jerry H. Ratcliffe & George F. Rengert, Near-Repeat Patterns in Philadelphia Shootings, 21 

SECURITY J. 58, 58 (2008) (“The near-repeat phenomenon states that if a location is the target of a crime 
such as burglary, the homes within a relatively short distance have an increased chance of being burgled 

for a limited number of weeks.”); Kate J. Bowers & Shane D. Johnson, Who Commits Near Repeats?: 

A Test of the Boost Explanation, 5 W. CRIMINOLOGY REV. 12, 13 (2004) (“[T]he (communicated) risk 
of burglary to nearby properties (within 400m of each other) was shown to be elevated for a short period 

of time, typically one-month, after which risks returned to pre-event levels. This pattern of space-time 

clustering has been referred to as the ‘near repeat’ phenomenon to reflect the association with repeat 
victimisation.”).  

 108. Shane D. Johnson, Repeat Burglary Victimisation: A Tale of Two Theories, 4 J. 

EXPERIMENTAL CRIMINOLOGY 215, 236 (2008); Gordon, supra note 7 (quoting George Mason 
University professor Cynthia Lum as saying, “[crime is] most likely to occur tomorrow where it occurred 

yesterday. We know that about offenders too: People who commit crimes are likely to commit them 

again.”). 
 109. Wim Bernasco, Them Again?: Same-Offender Involvement in Repeat and Near Repeat 

Burglaries, 5 EUR. J. CRIMINOLOGY 411, 412 (2008) (“Since the introduction of victimization surveys 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5

http://www.santacruz.com/news/santa_cruzs_predictive_policing_experiment.html
http://www.pasadenastarnews.com/government-and
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theories of “routine activity,”110 “rational choice,” and “crime patterns”111 

all have identified a similar phenomenon with these types of property 

crimes.112 Additional variables such as the weather (hot, dry), season 

(holidays), time of day (night), day of the week (paydays), or nearness to a 

particular event (concert, club) could increase the risk of crime.113 Predictive 

Policing 1.0 reduced those theories to data points and provided rather 

precise predictions for certain crimes at certain times and in certain areas.114 

If accurate, this theory supports why placing a police officer at the 

predicted location of crime might create a deterrent effect. Car thieves prefer 

dark, isolated parking lots with easy escape routes and limited police 

presence.115 If the attraction to the place for the criminal is the 

environmental vulnerability of the area, a heightened police presence will 

(temporarily) cure the vulnerability.116 Other remedial options might 

include better lighting, surveillance cameras, or civilian guards.117 For 

crimes of opportunity like car theft, the deterrence rationale makes sense.118  

In application, the early rollouts of Predictive Policing 1.0 were reported 

 

 
in the 1970s, it has become widely recognized that crime is concentrated among relatively few victims. 

A significant number of people become repeat victims, some of them over and over again.”) (citation 

omitted); Bowers & Johnson, supra note 107, at 12, 21 (“[P]rospective mapping is significantly more 

accurate than extant methods, correctly identifying the future locations of between 64%–80% of burglary 

events for the period considered.”). 
 110. Lisa Tompson & Michael Townsley, (Looking) Back to the Future: Using Space-Time Patterns 

to Better Predict the Location of Street Crime, 12 INT’L J. POLICE SCI. & MGMT. 23, 24 (2010) 

(“Research has repeatedly demonstrated that offenders prefer to return to a location associated with a 
high chance of success instead of choosing random targets.”). 

 111. Shane D. Johnson et al., Space-Time Patterns of Risk: A Cross National Assessment of 

Residential Burglary Victimization, 23 J. QUANTITATIVE CRIMINOLOGY 201, 203–04 (2007); Bowers & 
Johnson, supra note 107, at 13; Chainey et al., supra note 96, at 5 (“Crime also does not occur randomly. 

It tends to concentrate at particular places for reasons that can be explained in relation to victim and 

offender interaction and the opportunities that exist to commit crime.”). 
 112. Megan Yerxa, Evaluating the Temporal Parameters of Risk Terrain Modeling with Residential 

Burglary, 5 CRIME MAPPING 7, 10–11 (2013) (discussing environmental criminology and the different 

theories underlying predictive crime modeling).  
 113. PERRY, ET AL., supra note 74, at 44–45. 

 114. Josh Koehn, Algorithmic Crime Fighting, SANJOSE.COM (Feb. 22, 2012), 

http://www.sanjose.com/2012/02/22/sheriffs_office_fights_property_crimes_with_predictive_policing
/ (recognizing that the most common time for vehicle and residential crimes was between 5:00 PM and 

8:00 PM on Tuesdays and Thursdays).  

 115. Jill Drucker, Risk Factors of Larceny-Theft, RTM INSIGHTS (2010), http://www.rutgers 
cps.org/uploads/2/7/3/7/27370595/theftrisks.pdf. 

 116. Joel Rubin, Stopping Crime Before It Starts, L.A. TIMES (Aug. 21, 2010), 

http://articles.latimes.com/2010/aug/21/local/la-me-predictcrime-20100427-1 [https://perma.cc/J5CJ-
JVTJ] (“[A] would-be criminal must find a target that is sufficiently vulnerable to attack and that offers 

an appealing payout. An empty house with no alarm on a poorly lighted street, for example, has a much 
higher chance of being burglarized than one with a barking dog on a busy block.”). 

 117. Researchers of environmental criminology have well documented this phenomenon. 

 118. Tompson & Townsley, supra note 110, at 25. 
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as successful. In the Los Angeles test, the first six months saw a 25% drop 

in burglaries.119 In Santa Cruz, California, property crimes reportedly 

dropped between 4% and 11%.120 In Alhambra, California, police reported 

that after a year of using the technology, thefts from automobiles dropped 

21% and auto theft dropped 8%.121 In Modesto, California, property crimes 

dropped by double digits.122 Outside California, metropolitan areas like 

Seattle,123 Atlanta,124 and Reading, Pennsylvania125 adopted the technology 

with similar positive results. Of course, these initial studies may provide an 

imperfect sampling because crime across the country also decreased, and 

not all of the experiments have resulted in positive outcomes.126 Follow-up 

studies have been inconclusive,127 with some cities—including Los 

 

 
 119. Mitchell, supra note 2 (citing a 25% reduction in burglary for the first six months using 

PredPol). 
 120. Koehn, supra note 114 (“[D]uring the first half of 2011, Zach Friend, a spokesman for the 

Santa Cruz Police Department, says that after using its predictive policing algorithm, the department 

reported a drop in property crimes ranging somewhere between 4 and 11 percent.”); Baxter, supra note 
1 (“From the program’s start in Santa Cruz in July 2011 to Jan. 1, 2012, car burglaries and residential 

burglaries declined by 4 percent compared with the same period a year earlier, according to Santa Cruz 

crime analyst Zach Friend. Vehicle thefts remained about the same.”); Brian Heaton, Predictive Policing 
a Success in Santa Cruz, Calif., GOV’T TECH. (Oct. 8, 2012), http://www.govtech.com/ public-

safety/Predictive-Policing-a-Success-in-Santa-Cruz-Calif.html [https://perma.cc/AW8X-853Q] 

(reporting that a comparison of the first six months of 2012 with the first six months of 2011 showed 
thefts were down 19% without any change in police resources).  

 121. Vuong, supra note 104 (“The Alhambra Police Department focused on the two most common 

crimes in Alhambra, Yokoyama said. By year’s end, when compared to 2012 numbers, car burglaries 
decreased by 21 percent, and auto theft declined by 8 percent, a statistics report showed.”). 

 122. Rosalio Ahumada, Modesto Sees Double-Digit Drop in Property Crimes—Lowest in Three 

Years, MODESTO BEE, (Nov. 11, 2014, 4:24 PM), http://www.modbee.com/news/local/crime/ 
article3790616.html [https://perma.cc/X5NX-Z3CA]. 

 123. Martin Kaste, Can Software That Predicts Crime Pass Constitutional Muster?, NPR (July 26, 

2013, 4:55 PM), http://www.npr.org/2013/07/26/205835674/can-software-that-predicts-crime-pass-
constitutional-muster, [https://perma.cc/8TJZ-D6C8] (reporting on predictive policing in Seattle). 

 124. Will Frampton, With New Software, Norcross Police Practice Predictive Policing, CBS 

ATLANTA (Aug. 19, 2013), http://www.cbsatlanta.com/story/23178208/with-new-software-norcross-

police-utilize-predictive-policing.; Clark, supra note 105 (“The Atlanta Police Department, for example, 

conducted a 90-day pilot project in two of its six policing zones late in 2013. The test showed a marked 
decline in crime as compared with the previous year.”). 

 125. Clark, supra note 105 (“Reading, which adopted the technology in October 2013, observed a 

23 percent decline in burglaries in the next 12 months, the police department reported.”); Press Release, 
City of Reading, Pa., New Predictive Policing Strategies in Reading: Reducing Crime & Increasing 

Community Engagement, http://www.readingpa.gov/content/new-predictive-policing-strategies-reading 

-reducing-crime-increasing-community-engagement [https://perma.cc/CFN6-EDTG]. 
 126. Vuong, supra note 104. But see id. (“Yet the crime rate for certain activities has increased. 

Residential burglaries went up by 17 percent and robberies increased by 22 percent, a report found.”). 

 127. As of early 2016 there has only been a single peer-reviewed study of Predictive Policing 1.0, 
written in collaboration with the founders of PredPol. See George O. Mohler et al., Randomized 

Controlled Field Trials of Predictive Policing, 94 J. AM. STAT. ASS’N 1399 (2015), http://amstat.tandf  

online.com/doi/pdf/10.1080/01621459.2015.1077710. See also infra notes 287–289.  

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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Angeles—showing a spike in crime after initial decreases.128 In addition, 

questions exist about the validity of the crime statistics (absent any 

independent accounting).129 In fact, during one of the few independent tests 

of predictive policing the RAND Corporation found no statistically 

significant improvement in crime reduction over control districts employing 

conventional hotspot mapping techniques.130 

Nevertheless, as a result of the reported successes, the concept of 

predictive policing received widespread national attention. Media reports 

from national and international sources touted the technology.131 The 

professors who began their initial tests with the LAPD formed a company, 

PredPol, to sell the software.132 Other academics133 and large technology 

players including IBM, Motorola, and Lexis-Nexis now compete in the 

growing analytics industry.134 In short, the idea of predicting crime has 

 

 
 128. Ben Poston, Crime in Los Angeles Rose in All Categories in 2015, LAPD Says, L.A. TIMES 
(Dec. 31, 2015, 6:10 PM), http://www.latimes.com/local/crime/la-me-crime-stats-20151230-story.html 

[https://perma.cc/G6TC-AQY2]; Mike Aldax, Richmond Police Chief Says Department Plans to 

Discontinue ‘Predictive Policing’ Software, RICHMOND STANDARD (June 24, 2015), 
http://richmondstandard.com/2015/06/richmond-police-chief-says-department-plans-to-discontinue-

predictive-policing-software/ [https://perma.cc/EF84-QP8E] (quoting Richmond, California Police 

Chief Chris Magnus as saying, “In Richmond crime went down, yes, but now it’s going back up. . . . 
We’re seeing double digit increases.”). 

 129. Bond-Graham & Winston, supra note 4 (suggesting that PredPol’s creators have been “most 

successful [with] its marketing algorithms”). 
 130. PRISCILLIA HUNT ET AL., RAND CORP., EVALUATION OF THE SHREVEPORT PREDICTIVE 

POLICING EXPERIMENT 33 (2014) http://www.rand.org/content/dam/rand/pubs/research_reports/ 

RR500/RR531/RAND_RR531.pdf. 
 131. See, e.g., Goode, supra note 6; Bob Orr, LAPD Computer Program Prevents Crime by 

Predicting It, CBS NEWS, (Apr. 11, 2012, 8:40 PM), http://www.cbsnews.com/news/lapd-computer-

program-prevents-crime-by-predicting-it/ [https://perma.cc/SP93-Q4VD]; Rubin, supra note 116; 
Beam, supra note 84; Predictive Policing, supra note 7. 

 132. PREDPOL: MANAGEMENT TEAM, http://www.predpol.com/about/company/ [https://perma.cc/ 

3Z76-LSAS] (last visited Jan. 13, 2017). 
 133. RUTGERS CTR. ON PUB. SEC., RISK TERRAIN MODELING COMPENDIUM (Joel M. Caplan & 

Leslie W. Kennedy eds., 2011); Yerxa, supra note 112, at 27–29 (discussing Risk Terrain Modeling’s 

(RTM) positive prediction for residential burglaries). 
 134. Rachael King, IBM Analytics Help Memphis Cops Get ‘Smart’, BLOOMBERG BUSINESSWEEK 

(Dec. 5, 2011, 9:30 PM), http://www.businessweek.com/technology/ibm-analytics-help-memphis-cops-

get-smart-12052011.html [http://perma.cc/Q77C-WCXW] (describing the technology used by law 
enforcement in Memphis, Tennessee, which has contributed to the lowest crime rates there in a quarter-

century); Paul Bowers, Predictive Policing Arrives in Charleston, CHARLESTON CITY PAPER (June 27, 

2012), http://www.charlestoncitypaper.com/charleston/predictive-policing-arrives-in-charleston/Conte 
nt?oid=4101684 [http://perma.cc/JWL7-35TD] (discussing the use of predictive analytics to reduce 

armed robberies in Charleston, South Carolina); Juliana Reyes, Philly Police Will Be First Big City Cops 

to Use Azavea’s Crime Predicting Software, TECHNICALLY MEDIA INC. (Nov. 7, 2013, 12:30 PM), 
http://technical.ly/philly/2013/11/07/azavea-philly-police-crime-prediction-software [https://perma.cc/ 

MC69-84M2] (explaining that during 2013, Philadelphia became the first large city to use Azavea’s 

HunchLab crime software); ROBINSON & KOEPKE, supra note 3, at 3–5 (listing adoption of 
technologies). 
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become a multi-million dollar business, and a large-scale marketing 

campaign to sell predictive policing programs has commenced across the 

country.135  

Two points should be highlighted in this brief overview of Predictive 

Policing 1.0, with its focus on the PredPol technology. First, both the 

underlying theory and initial experiments focused on a limited number of 

property-based crimes and were firmly tied to place-based theories. 

Predicting violent crimes or individual criminals did not inform the early 

studies. Second, the excitement and promise of predictive policing has 

largely overtaken any perceived limitations. The belief that data-driven 

insights can transform policing has been with predictive policing since the 

beginning.136 With the same enthusiasm that actuarial predictions displaced 

clinical predictions as the primary recidivism assessment tool, the lure of 

data-driven enlightenment has replaced traditional law enforcement 

strategy.137 

B. Predictive Policing 2.0: Targeting Places of Violent Crime 

Preventing property crimes, while important, pales in comparison to the 

goal of preventing violent crimes. Thus, it is perhaps unsurprising that 

despite its brief history, predictive policing technologies have already 

evolved to target violent crime.138 Predictive policing software has been 

marketed to address robberies, shootings, and gang-related violence. This 

section looks at the move from Predictive Policing 1.0 (property crimes 

focused on place) to Predictive Policing 2.0 (violent crimes focused on 

place). This section also builds on traditional, computer-assisted hotspot 

policing. 

Violent crimes repeatedly occur in particular locations. Certain alleys 

may be conducive to robberies because of dim lighting, easy escape routes, 

 

 
 135. ROBINSON & KOEPKE, supra note 3, at 3–5. 
 136. Stephen D. Mastrofski & James J. Willis, Police Organization Continuity and Change: Into 

the Twenty-First Century, 39 CRIME & JUST. 55, 92–93 (2010) (“Predictive policing is then a forward-

looking crime diagnostic system designed to help police identify where and how their interventions can 
be most effective in preventing future crime. Its proponents envision a system that can focus narrowly 

(predicting future offenses of a serial killer) or large scale (predicting homicide patterns of an entire 

city), short term (predicting crime occurrences in hot spots over the next few days) or long term 
(predicting how city development plans will affect police resource allocations for many years).”). 

 137. See Somini Sengupta, In Hot Pursuit of Numbers to Ward Off Crime, N.Y. TIMES (June 19, 

2013, 10:48 PM), http://bits.blogs.nytimes.com/2013/06/19/in-hot-pursuit-of-numbers-to-ward-off-
crime/.  

 138. See THE PREDICTIVE POLICING CO., PREDPOL PREDICTS GUN VIOLENCE (2013), 

http://cortecs.org/wp-content/uploads/2014/10/predpol_gun-violence.pdf; RUTGERS CTR. ON PUB. SEC., 
supra note 133. 
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or close proximity to a victim-class.139 Certain clubs may be conducive to 

violent fights because of the typical mix of alcohol, drugs, and late-night 

errors in judgment.140 Certain streets might demarcate gang territory and 

thus be the locus of battles for control. These place-based attractors of 

violence have long been studied.141 Predictive policing has both mined this 

prior knowledge and developed new factors—like geographic 

vulnerabilities, precursor crimes, and temporal patterns—to allow for more 

sophisticated predictions.142 

Several police departments were early adopters of predictive policing 

programs for violent crimes. For example, IBM partnered with the 

Charleston, South Carolina Police Department to address armed 

robberies.143 Building off of an established system which collected robbery 

data in a CompStat-like system,144 the new predictive approach targeted 

particular blocks at particular times to reduce robberies.145 IBM has also 

worked with police in Memphis, Tennessee, utilizing similar technology but 

across a broader spectrum of crime.146 

Criminologists funded by the Bureau of Justice Assistance developed 

several pilot projects in Boston, Baltimore, Kansas City, Las Vegas, and 

Los Angeles to apply smart policing principles to shootings.147 In Boston, 

for example, researchers found that “fewer than 5 percent of Boston’s street 

corners and block faces generated 74% of fatal and non-fatal shootings 

between 1980 and 2008, with the most-active 65 locations experiencing 

 

 
 139. Jeffrey S. Paul & Thomas M. Joiner, Integration of Centralized Intelligence with Geographic 

Information Systems: A Countywide Initiative, GEOGRAPHY & PUB. SAFETY (Cmty. Oriented Policing 

Servs.), Oct. 2011, at 5, 6. 
 140. Joel M. Caplan, Mapping the Spatial Influence of Crime Correlates: A Comparison of 

Operationalization Schemes and Implications for Crime Analysis and Criminal Justice Practice, 

CITYSCAPE: J. POL’Y DEV. & RES. (U.S. Dep’t of Hous. & Urban Dev.), 2011, at 57, 70. 
 141. See e.g., David Weisburd, Does Hot Spots Policing Inevitably Lead to Unfair and Abusive 

Police Practices, or Can We Maximize Both Fairness and Effectiveness in the New Proactive Policing?, 

2016 U. CHI. LEGAL F. 661, 664–65 (2016) (“Perhaps the most important innovation to emerge in the 
new proactive policing to control crime is what has been termed ‘hot spots’ or ‘place-based’ 

policing….Hot spots policing emerged out of empirical observations that crime was highly concentrated 

in urban areas. The logic behind it was simply that if crime was highly concentrated on specific streets 
in the city, the police should focus their interventions at those places.”) (citing Lawrence W. Sherman 

et al., Hot Spots of Predatory Crime: Routine Activities and the Criminology of Place, 27 CRIMINOLOGY 

27, 37–42 (1989)).  
 142. See infra notes 153–56, 273, 282.  

 143. Bowers, supra note 134 (discussing the use of predictive analytics to reduce armed robberies 

in Charleston, South Carolina). 
 144. See sources cited supra note 80, 89 (discussing COMPStat).  

 145. Id. 

 146. King, supra note 134. 
 147. ANTHONY A. BRAGA ET AL., U.S. DEP’T OF JUSTICE, SMART APPROACHES TO REDUCING 

GUN VIOLENCE 4 (2014). 
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more than 1,000 shootings during this time period.”148 In addition, “[t]he 

bulk of Boston shootings take place immediately after school dismissal and 

during the weekend evening hours, and tend to increase during summer 

months.”149 Thus, the targeted solution involved focusing on those predicted 

blocks during those particular times with intensive community patrols.150 

The results showed a dramatic reduction in violence, with a 17.3% reduction 

in violent crime, including a 19.2 percent reduction in robberies and a 15.4% 

reduction in aggravated assaults.151 Similar projects using a place-based 

focus and proactive intervention have been implemented in other cities.152 

PredPol has also adapted its focus to include gun violence. Using its 

predictive software, PredPol examined the 38,740 gun-related crimes that 

occurred in Chicago during 2009–2011 and analyzed them against the 1,331 

homicides during that same timeframe.153 The data revealed a correlation 

between precursor crimes involving handguns and future gun homicides. By 

studying these non-fatal precursor crimes, a fairly general predictive 

judgment could be made about fatal shootings.154 An internal PredPol study 

of this Chicago data demonstrated that the technology could predict the 

location of 50% of gun homicides within a broad timeframe.155 Specifically, 

the technology could show an elevated risk of a homicide for 30–100 days 

after the handgun crimes and within a half mile of the precursor crime.156 

Researchers have also looked at gang violence as a similarly predictable 

event.157 Gangs are territorial, defending and protecting particular areas 

from rival gangs.158 In addition, gang violence tends to be retaliatory in 

nature, with one gang attacking another in response to a prior violent act.159 

 

 
 148. Id. (citing Anthony A. Braga et al., The Concentration and Stability of Gun Violence at Micro 

Places in Boston, 1980–2008, 1 J. QUANTITATIVE CRIMINOLOGY 26, 33–53 (2010)). 

 149. Id. 
 150. Id. 

 151. Id. at 5. 

 152. Id. at 1–9. 
 153. See THE PREDICTIVE POLICING CO., supra note 138. This number included 17,020 robberies, 

6,560 assaults, 8,252 weapons violations, 5,274 batteries, and 303 criminal sexual assaults, all described 

as involving a handgun. This data can also be found at https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-q8t2.  

 154. Id. 

 155. Id. 
 156. Id. 

 157. See, e.g., Damon Paulo et al., Social Network Intelligence Analysis to Combat Street Gang 

Violence (2013), http://arxiv.org/pdf/1306.6834.pdf. 
 158. Leslie Brokaw, Predictive Policing: Working the Odds to Prevent Future Crimes, MIT SLOAN 

MGMT. REV. (Sept. 12, 2011), http://sloanreview.mit.edu/article/predictive-policing-working-the-odds-
to-prevent-future-crimes/ [https://perma.cc/GX8M-UCGT] (“Crime is often a clustering event: if there 

is an act of inter-gang violence, for instance, there’s likely to be a retaliatory act shortly after.”).  

 159. Id. 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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The locations in between rival gangs’ territories thus tend to be the focus of 

more violent actions. George Mohler, one of the founders of PredPol, 

worked with colleagues to study and map predicted gang shootings.160 Other 

studies claim that 58% of gang crimes in Los Angeles occurred within two 

blocks of a known gang border, and 83% occurred within three blocks of 

that location.161 This type of geographical awareness could be useful for 

diffusing gang tensions or preventing retaliatory attacks. 

Other researchers have developed more sophisticated models to predict 

robberies, aggravated assaults, and shootings. Researchers at the Rutgers 

Center for Public Security have developed a risk assessment technique 

called Risk Terrain Modeling (RTM),162 which has been successfully used 

to study certain types of violent crime.163 RTM develops digitized risk 

terrain maps identifying particular factors associated with particular crimes. 

Identified factors are layered on a computer map to highlight the intensity 

of risk in particular micro-areas. Instead of focusing on past crimes, RTM 

focuses on current environmental risk factors which heighten the risk for 

crime. For example, the risk factors for armed robbery were found to be an 

area’s proximity to or high density of each of the following seven types of 

location: drug dealing areas; prostitution areas; bus stops and rail stations; 

bars, pubs and exotic clubs; leisure and fast-food outlets; universities; and 

banks.164 As can be seen, many of the factors attract potential victims who 

are then targeted by potential robbers. In a year-long study in Newark, New 

 

 
 160. Laura M. Smith et al., Adaption of an Ecological Territorial Model to Street Gang Spatial 

Patterns in Los Angeles, 32 DISCRETE & CONTINUOUS DYNAMICAL SYS. 3223 (2012). See also 

Predictive Policing: George Mohler Interview, DATA SCI. WKLY., http://www.datascienceweekly.org/ 
data-scientist-interviews/predictive-policing-george-mohler-interview [https://perma.cc/QF64-K958]. 

 161. Meg Smith, Remapping Gang Turf, Math Models Show Crimes Cluster on Borders Between 

Rivals, UCLA NEWSROOM (June 25, 2012) (discussing P. Jeffrey Brantingham, et al., The Ecology of 
Gang Territorial Boundaries, 50 CRIMINOLOGY 851, 867 (2012)).  

 162. Kennedy et al., supra note 96, at 345–46; Leslie W. Kennedy et al., Results Executive 

Summary: A Multi-Jurisdictional Test of Risk Terrain Modeling and a Place-Based Evaluation of 
Environmental Risk-Based Patrol Deployment Strategies, RUTGERS CTR. ON PUB. SEC. 4–6 (2015), 

http://www.rutgerscps.org/uploads/2/7/3/7/27370595/nij6city_resultsexecsum_final.pdf [hereinafter 

Results: Executive Summary]. 
 163. Jie Xu et al., Crime Generators for Shootings in Urban Areas: A Test Using Conditional 

Locational Interdependence as an Extension of Risk Terrain Modeling, RUTGERS CTR. ON PUB. SEC.,2 

(2010) (“Gun shootings are not randomly distributed throughout a terrain; but rather, are concentrated 
in a statistically significant way around certain features. In Newark and Irvington, these features are 

middle and high schools, bus stops, and public housing.”). As a disclosure, I have worked in a very 

limited capacity as an unpaid consultant with Professor Joel Caplan, Leslie Kennedy, and Eric Piza as 
part of a National Institute of Justice Grant studying “A Multi-Jurisdictional Test of Risk Terrain 

Modeling and a Place-Based Evaluation of Environmental Risk-Based Patrol Deployment Strategies.” 

My role has been limited to a handful of brief consultations without financial compensation and I have 
had no role in the development of the RTM technology or the studies.  

 164. RUTGERS CTR. ON PUB. SEC., supra note 133, at 74. 
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Jersey, an RTM map demonstrated that for every additional risk factor there 

was a 2.3% increased risk of a robbery.165 

For shootings, RTM examines the following factors: “locations of drug 

arrests, proximity to ‘at-risk’ housing developments, ‘risky facilities,’ 

locations of gang activity, known home addresses of parolees previously 

incarcerated for violent crimes and/or violations of drug distribution laws, 

locations of past shooting incidents, and locations of past gun robberies.”166 

Recent RTM studies focused on predicting shootings and other assaultive 

conduct in Irvington, New Jersey,167 with initial statistical success.168 

RTM’s focus on risk allows for a more detailed place-based assessment of 

locations of violent crime. In a recent multi-jurisdictional survey, RTM 

demonstrated significant short- and long-term crime reduction across a wide 

variety of cities.169 

Finally, one company has chosen to integrate the theories behind PredPol 

and RTM into a single commercial product.170 HunchLab, part of the 

Azaeva company, was founded by a former crime analyst with the 

Philadelphia Police Department.171 HunchLab 2.0 looks at baseline crime 

rates, near repeat patterns, routine activities theory, socioeconomic factors, 

seasons, time of month, day of week, time, holidays, sporting events, 

weather, and other RTM-like factors.172 The information is integrated into a 

machine-learning algorithm with updates for every police shift. As of yet, 

 

 
 165. Id. at 75. 

 166. Kennedy et al., supra note 96, at 345–46. 
 167. Joel M. Caplan et al., Risk Terrain Modeling: Brokering Criminological Theory and GIS 

Methods for Crime Forecasting, 28 JUST. Q. 360 (2011) (discussing shootings in Irvington). See 

generally Joel M. Caplan et al., Risk Terrain Modeling for Spatial Risk Assessment, CITYSCAPE: J. POL’Y 

DEV. & RES. (U.S. Dep’t of Hous. & Urban Dev.), 2015, at 7; William D. Moreto et al., “A Plague on 

both Your Houses?”: Risks, Repeats and Reconsiderations of Urban Residential Burglary, 31 JUST. Q. 

1102 (2014); Joel M. Caplan et al., Joint Utility of Event-Dependent and Environmental Crime Analysis 
Techniques for Violent Crime Forecasting, 59 CRIME & DELINQ. 243 (2013); Joel M. Caplan et al., 

Kansas City’s Violent Crime Initiative: A Place-Based Evaluation of Location-Specific Intervention 

Activities During a Fixed Time Period 4 CRIME MAPPING 9 (2012).  
 168. Kennedy et al., supra note 96, at 345–46. 

 169. See Leslie W. Kennedy et al., Results in Brief: A Multi-Jurisdictional Test of Risk Terrain 

Modeling and a Place-Based Evaluation of Environmental Risk-Based Patrol Deployment Strategies, 
RUTGERS CTR. ON PUB. SEC. (2010), http://www.rutgerscps.org/uploads/2/7/3/7/27370595/ 

nij6city_results_inbrief_final.pdf; Kennedy et al., supra note 162. 

 170. See HUNCHLAB, HUNCHLAB: UNDER THE HOOD (2015), https://cdn.azavea.com/pdfs/ 
hunchlab/HunchLab-Under-the-Hood.pdf.  

 171. Laura Nahmias & Miranda Neubauer, NYPD testing crime-forecast software, POLITICO NEW 

YORK (July 8, 2015, 5:52 AM), http://www.capitalnewyork.com/article/city-hall/2015/07/ 
8571608/nypd-testing-crime-forecast-software [https://perma.cc/38N9-7HW9]. 

 172. See HUNCHLAB, supra note 170; Michael Thomsen, Predictive Policing And The Fantasy Of 

Declining Violence In America, FORBES (June 30, 2014), http://www.forbes.com/sites/ 
michaelthomsen/2014/06/30/predictive-policing-and-the-fantasy-of-declining-violence-in-america/. 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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HunchLab has not publicly released any formal studies on the effectiveness 

of its combined approach.173  

Applying predictive policing programs to prevent place-based violent 

crimes—Predictive Policing 2.0—follows the same logic as Predictive 

Policing 1.0. Essentially, place-based environmental vulnerabilities exist 

that encourage violent crime, and thus should create a higher risk that crime 

will occur in that location. Again, predictive policing is not actually 

predicting a particular crime, but predicting an elevated risk of crime based 

on pre-determined place-based factors. 

C. Predictive Policing 3.0: Targeting Persons Involved in Criminal 

Activity 

Place has been the central concept behind the rise of predictive policing. 

Place-based crimes can be predicted because of the environmental 

vulnerabilities that encourage criminal activity. Obviously, however, it 

takes a person to commit the crime in that place, and new predictive 

technologies are being created to target individuals predicted to be involved 

in criminal activity.174 This section examines the use of predictive 

technologies to identify individuals and groups involved in predicted 

criminal activity. 

This move to Predictive Policing 3.0 rests on the insight that negative 

social networks, like environmental vulnerabilities, can encourage criminal 

activity. In addition, it involves utilizing big data capabilities to develop 

predictive profiles of individuals based on past criminal activity, current 

associations, and other factors that correlate with criminal propensity.175 

While arrests based purely on pre-crime predictions will not likely happen 

any time soon, police have shifted surveillance and investigation resources 

to focus on prediction as part of a larger push toward proactive policing.176  

 

 
 173. Chammah, supra note 104. 
 174. See generally Erin Murphy, Databases, Doctrine & Constitutional Criminal Procedure, 37 

FORDHAM URB. L.J. 803, 830 (2010) (“But the use of databases to generate suspects represents a new 

kind of investigation altogether—whether based on particular information (e.g., ‘who called this 
number’) or upon predefined algorithms (e.g., ‘who has traveled to these three countries and bought 

these two items within a one month period’).”). 

 175. Mark Ward, Crime Fighting with Big Data Weapons, BBC (Mar. 18, 2014), 
http://www.bbc.com/news/business-26520013 [http:// perma.cc/4ETS-GKDF]; Mitchell, supra note 2; 

Bond-Graham & Winston, supra note 8. 

 176. Richard A. McFeely, Statement Before the Senate Judiciary Committee, FBI (June 20, 2011), 
http://www.fbi.gov/news/testimony/information-sharing-efforts-with-partners-span-many-fbi-

programs [https://perma.cc/KC33-GTJR]. 
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The insight that social networks can reveal potential criminal actors 

arises from two separate avenues of study. The first involves a public health 

approach to crime that has attempted to understand the interconnected 

causes and sources of youth violence.177 Similar to the insight that property 

crime is contagious, criminologists discovered that a small percentage of 

the population has an elevated risk of becoming the victim or perpetrator of 

gun violence.178 Using data analysis, these individuals then could be mapped 

out as a social network. The second insight evolved out of technology 

developed to map international terror networks.179 Social network theory 

maps associations and connections, and links to addresses, phone numbers, 

and other data sources, providing insights into ongoing investigations and 

identifying new patterns in crime.180 Both share a similar goal of identifying, 

targeting, and tracking individuals who have a high risk of committing 

certain offenses.  

In cities such as Chicago, Kansas City, and Boston, epidemic gun 

violence affected a relatively small group of young people.181 For decades, 

criminologists studied this phenomenon and then sought to isolate the 

causes and identify the participants.182 For example, in Chicago, researchers 

found that: 

[A] very small number of neighborhoods in Chicago are responsible 

for most of the city’s violence trends. The “city’s” crime problem is 

in fact geographically and socially concentrated in a few highly 

impoverished and socially isolated neighborhoods. Data also 

 

 
 177. Lenny Bernstein, Gun Violence as a Public Health Issue, WASH. POST (Apr. 10, 2014), 

https://www.washingtonpost.com/news/to-your-health/wp/2014/04/10/gun-violence-as-a-public-
health-issue/.  

 178. See infra notes 181–189.  
 179. Los Angeles Police Using CIA Software to Track Criminals, Ex-cons, RT (Nov. 15, 2014) 

http://rt.com/usa/205727-lapd-criminals-data-collection/ [https://perma.cc/FTH4-M5MF]. 

 180. See generally Cynthia Rudin, Predictive Policing: Using Machine Learning to Detect Patterns 
of Crime, WIRED (Aug. 22, 2013), http://www.wired.com/insights/2013/08/predictive-policing-using-

machine-learning-to-detect-patterns-of-crime [http://perma.cc/84SQ-RCBG] (“The algorithm tries to 

construct a modus operandi (M.O.) of the offender. The M.O. is a set of habits that the offender follows 
and is a type of behavior used to characterize a pattern. The M.O. for the burglaries included factors like 

means of entry (front door, back door, window), day of the week, characteristics of the property 

(apartment, single family house), and geographic proximity to other break-ins.”). 
 181. BRAGA ET AL., supra note 147 (“In 2006, roughly one percent of Boston youth between the 

ages of 15 and 24 participated in gangs, but these gangs generated more than half of all homicides, and 

gang members were involved in roughly 70 percent of fatal and non-fatal shootings as either a 
perpetrator and/or a victim.”) (citing Anthony A. Braga et al., Losing Faith? Police, Black Churches, 

and the Resurgence of Youth Violence in Boston, 6 OHIO ST. J. CRIM. L. 141 (2008)). 

 182. See, e.g., David M. Kennedy, Pulling Levers: Chronic Offenders, High-Crime Settings, and a 
Theory of Prevention, 31 VAL. U. L. REV. 449, 449–51 (1997); Andrew V. Papachristos et al., Social 

Networks and the Risk of Gunshot Injury, 89 J. URB. HEALTH 992, 993 (2012). 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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revealed that most victims (and offenders) of gun violence in Chicago 

tend to be young African American men who live in neighborhoods 

on the West or South sides of the city.183 

In Chicago, District Intelligence Officers were tasked with identifying those 

most at risk of gun violence. Police officers evaluated past criminal activity, 

past arrests involving other victims, whether the person had been identified 

as part of a gang audit,184 or identified to be on a “strategic subjects list.”185 

As described by Chicago Police Department Special Order S10-05: 

The Strategic Subjects List (SSL) is a rank-order list of potential 

victims and subjects with the greatest propensity for violence. The 

SSL model looks at individuals with criminal records who are ranked 

according to their probability of being involved in a shooting or 

murder, either as a victim or an offender, known as a “Party to 

Violence” (PTV). The software is generated based on empirical data 

that lists attributes of a person’s criminal record, including the record 

of violence among criminal associates, the degree to which his 

criminal activities are on the rise, and the types of intensity of 

criminal history.186 

Once an individual is identified and placed on this “heat list,”187 a police 

detective, a social worker, and a community leader (such as a football coach 

or pastor) conduct a “custom notification,” which involves a face-to-face 

meeting at home or a “call-in” at a public space, and the delivery of a custom 

notification letter.188 

While designed as a public health approach, the same techniques have 

been used in a more punitive way to identify and track gang violence in the 

city. The Chicago Police Department now uses “network analysis” to map 

 

 
 183. Meares et al., supra note 27. 

 184. See Chicago Police Department Special Order S10-05, § V.A (Oct. 6, 2015), 
http://directives.chicagopolice.org/directives/ (search “Basic Search” field for “S10-05,” then select 

“Custom Notifications in Chicago”). 

 185. Id. at § IV.B. 
 186. Id. 

 187. Monica Davey, Chicago Tactics Put a Major Dent in Killing Trend, N.Y. TIMES, June 11, 

2013, at A1. See also Guarino, supra note 10. 
 188. Jeremey Gorner, Chicago Police Use ‘Heat List’ As Strategy to Prevent Violence, CHI. TRIB. 

(Aug. 21, 2013), http://articles.chicagotribune.com/2013-08-21/news/ct-met-heat-list-20130821_1_ 

chicago-police-commander-andrew-papachristos-heat-list [https://perma.cc/GKJ7-29LQ]; Bryan 
Llenas, The New World of ‘Predictive Policing’ Raises Specter of High-Tech Racial Profiling, FOX 

NEWS LATINO (Feb. 25, 2014), http://latino.foxnews.com/latino/news/2014/02/24/brave-new-world-

predictive-policing-raises-specter-high-tech-racial-profiling/ [https://perma.cc/N65R-JDND]. 
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relationships between thousands of gang members in the city.189 Police 

study social networks, and even social media, as many times retaliatory 

violence can be detected by monitoring such platforms.190 The shift from 

predicting and ranking “hot spots” to “hot people” has become a new focus 

for police.191 In fact, as a recent RAND study found, these early heat lists 

have been used to arrest suspects involved in suspected violence.192 The 

Heat Lists transformed into data-driven most wanted lists, as opposed to 

violence prevention programs.193 

A similar project has been undertaken in Kansas City. As part of a Smart 

Policing Initiative (SPI) funded by the Department of Justice’s Bureau of 

Justice Assistance, a sophisticated social network analysis was conducted 

of the likely offenders in the city:194  

[T]he SPI team employs advanced social network analysis using 

official offense data, field interview forms, and gang data. The 

analysis identifies a social deviant network that depicts the 

connections between individuals. The analysis begins with an 

identified list of target offenders. In Kansas City, the initial target list 

of offenders included those who were suspects in murders, shootings, 

or other serious assaults. The team examined all formal police 

contacts with each of these initial offenders to identify their 

 

 
 189. Buntin, supra note 8 (“Today, the Chicago Police Department is doing something similar with 
gangs. Using a tool academics call ‘network analysis,’ the CPD is mapping the relationships among 

Chicago’s 14,000 most active gang members. It’s also ranking how likely those people are to be involved 

in a homicide, either as victims or offenders.”). See also Joseph Goldstein & J. David Goodman, Seeking 
Clues to Gangs and Crimes, Detectives Follow Internet Rap Videos, N.Y. TIMES, Jan. 8, 2014, at A20 

(“Directed by prosecutors to build evidence that individual shootings are part of larger criminal 

conspiracies, officers are listening to local rappers for a better sense of the hierarchy of the streets. ‘You 
really have to listen to the songs because they’re talking about ongoing violence.’”) (quoting Officer 

Fred Vanpelt, part of an anti-gang squad in Brooklyn, NY). 

 190. Douglas Belkin, Chicago Hunts for Answers to Gang Killings: Police Build Facebook-Like 
Database to Prevent Swift Cycles of Retaliation, WALL ST. J. (July 12, 2012, 7:34 PM), 

http://www.wsj.com/articles/SB10001424052702303644004577520863051001848 

[https://perma.cc/CUP4-UAMH]. 

 191. Buntin, supra note 8 (“[T]he CPD has discovered something striking: Cities don’t so much 

have ‘hot spots’ as ‘hot people.’ That finding is transforming the way the police do business in Chicago 

and has significant implications for how other cities should be policed.”); Mitchell, supra note 2 
(“Charlotte-Mecklenburg, N.C. is now going beyond predicting where and when crime will occur to 

predict who is likely to reoffend. Instead of studying just crimes and locations to decide where crimes 

will occur, police departments make predictions using criminal histories to predict who will commit a 
crime.”). 

 192. Jessica Saunders et. al., Predictions Put Into Practice: A Quasi-Experimental Evaluation of 
Chicago’s Predictive Policing Pilot, 12 J. EXP. CRIMINOLOGY 347, 363–64 (2016). 

 193. Matt Stroud, Chicago’s Predictive Policing Tool Just Failed a Major Test, THE VERGE (Aug. 

19, 2016), www.theverge.com/2016/8/19/12552384/chicago-heat-list-tool-failed-rand-test. 
 194. BRAGA ET AL., supra note 147, at 12–13. 
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associates (e.g., who had been arrested or stopped with the initial 

offender). The team then performed the same analysis with the newly 

identified associates, resulting in a social network that includes three 

layers of offenders: the initial target offenders, the target offenders’ 

associates, and the associates of the target offenders’ associates.195 

This initial process identified 120 individuals who were contacted by police 

and informed that they had been identified as a cause of the violence in the 

city.196 Police informed these predicted suspects that they would be held 

responsible for future violence, and advised them of available social 

services.197 When these individuals did commit a crime, they were punished 

more severely.198 Similar projects identifying “socially deviant networks” 

have been initiated in Boston, Las Vegas, and other jurisdictions.199 

Advanced analytics has also allowed police to begin collecting 

intelligence on suspected criminal networks and individuals. Palantir, a 

private company that once designed some of the most advanced data 

collection and analysis systems for the intelligence community, has 

partnered with police forces and local governments to address violent 

crime.200 In Los Angeles, a project called Operation LASER (Los Angeles 

Strategic Extraction and Restoration) identifies likely criminal actors201 and 

develops “Chronic Offender Bulletins” of targeted individuals.202 These 

bulletins are provided to police for surveillance and investigation purposes. 

As described, “[t]he basic premise is to target with laser-like precision the 

violent repeat offenders and gang members who commit crimes in the 

 

 
 195. Id. at 13. 

 196. Id.  
 197. Id. (“In April 2013, the team held their first offender call-ins (three were held throughout the 

day). Invitations were sent to more than 120 individuals and 38 attended the call-ins. Individuals received 
three basic messages at the call-in: (1) violence cannot be tolerated; (2) further violence will be met with 

certain and severe consequences from law enforcement; and (3) those who want help to change will 

receive it. A range of social services were available to the call-in attendees including education, job 
training, and substance abuse training.”). 

 198. John Eligon & Timothy Williams, On Police Radar for Crimes They Might Commit, N.Y. 

TIMES, Sept. 25, 2015, at A1 (“Tammy Dickinson, the United States Attorney for the Western District 
of Missouri, related the story of a man in the program who was given a 15-year prison sentence for being 

caught with a bullet in his pocket.”). See also Ferguson, Predictive Prosecution, supra note 21, at 717–

20 (discussing how prosecutors enforce punishment through predictive policing systems).  
 199. Mitchell, supra note 2; BRAGA ET AL., supra note 146, at ii–iii.  

 200. RT, supra note 179; BRAGA ET AL., supra note 146, at 11 (“This data-driven approach includes 

the use of Palantir, a powerful analytical computer platform that allows CID to quickly access and 
search multiple databases.”). 

 201. CRAIG D. UCHIDA ET AL., U.S. DEP’T OF JUSTICE, LOS ANGELES, CALIFORNIA SMART 

POLICING INITIATIVE: REDUCING GUN-RELATED VIOLENCE THROUGH OPERATION LASER 3 (2012).  
 202. Id. at 7; BRAGA ET AL., supra note 146, at 10 (describing the use of “Chronic Offender 

Bulletins, which contain detailed information about prolific offenders”). 
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specific target areas. The program is analogous to laser surgery, where a 

trained medical doctor uses modern technology to remove tumors or 

improve eyesight.”203 

In Louisiana, Palantir has partnered with the City of New Orleans to 

address gun-related homicides.204 Using network analysis, the technology is 

able to “illuminate[] the roles of feuds, retaliations, drugs, common 

disputes, and gangs in shootings and homicides.”205 Specifically, the 

technology identified approximately 3,000 individuals (1% of the 

population of 378,000) who had the highest risk of being involved in gun 

violence.206 According to Palantir’s own reporting, the technology could 

identify 35–50% of the likely shooting victims.207 Acting on these tips, and 

implementing an intervention strategy to target and investigate those 

involved, the City of New Orleans’ murder rate fell 21.9%.208 

These approaches each share several commonalities. First, the predictive 

assessments focus on identifiable individuals.209 Second, the technologies 

 

 
 203. UCHIDA ET AL., supra note 201, at 6.  
 204. PALANTIR, supra note 8, at 1–5 (describing NOLA for Life, a project to reduce homicides in 

New Orleans). See also Jeffrey Goldberg, A Matter of Black Lives, THE ATLANTIC (Sept. 2015), 

http://www.theatlantic.com/magazine/archive/2015/09/a-matter-of-black-lives/399386/ [https://perma. 
cc/GZ49-JFWR]; Jason Shueh, New Orleans Cuts Murder Rate Using Data Analytics, GOV’T TECH. 

(Oct. 22, 2014), http://www.govtech.com/data/New-Orleans-Cuts-Murder-Rate-Using-Data-Analytics. 

html [https://perma.cc/R64Q-7AKL]; CITY OF NEW ORLEANS, NOLA FOR LIFE: COMPREHENSIVE 

MURDER REDUCTION STRATEGY (2016), http://www.nolaforlife.org/files/n4l-2016-comprehensive-

murder-reduction-strategy-b/; PALANTIR TECHNOLOGIES, PHILANTHROPY ENGINEERING: 2015 ANNUAL 

IMPACT REPORT (2016), https://www.palantir.com/philanthropy-engineering/annual-
report/2015/murder-reduction/ [https://perma.cc/LH8X-8CUJ] (quoting Sarah Schirmer, Criminal 

Justice Policy Advisor in the Mayor’s Office of Criminal Justice Coordination, as saying, “Since 2012, 

Mayor Mitch Landrieu has committed significant resources and effort to reducing murder in New 
Orleans, and has asked every partner and stakeholder in the city to play a role. Palantir has made it 

possible for our intelligence analysts to question preconceived ideas about murder victims and suspects. 
The analysis has strengthened our ability to prevent and intervene in violent conflicts, and connect at-

risk individuals to services.”).  

 205. PALANTIR TECHNOLOGIES, supra note 8, at 6.  
 206. Id. at 8. 

 207. Id. at 7, 9 (“NOLA analysts have developed advanced techniques to identify the most high-

risk and vulnerable populations. Using social graph analysis of data ranging from 2011 to the present, 

analysts can effectively identify 35–50% of the likely shooting victims from a population of 

approximately 3,900 citizens (1% of the total city population).”). 

 208. Id. at 9. 
 209. Even smaller jurisdictions like Rochester, Minnesota have developed similar technologies. 

Partnering with IBM, the Rochester police use a program called “Infosphere Identity Insight,” which 

allows police to identify juveniles who might be involved in criminal activity. Maya Rao, Rochester 
hopes predictive policing can steer juveniles away from crime, STAR TRIBUNE (Oct. 24, 2014, 11:18 

PM), http://www.startribune.com/rochester-police-plan-to-target-at-risk-teens-raises-concerns/ 2803 

85202/ [https://perma.cc/9BPT-ZXKU]; Sarah Rich, Cities Turn to Analytics for Targeting Habitual 
Criminals, GOV’T TECH. (Jan. 25, 2012) http://www.govtech.com/public-safety/Cities-Turn-to-

Analytics-for-Targeting-Habitual-Criminals.html [https://perma.cc/75HG-CMCN]. 
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augment identification, surveillance, investigation, and intervention, but do 

not independently create the justification to stop or arrest individuals.210 

Third, to ensure a deterrent effect, additional police resources are needed to 

interact with the identified suspects. Initial reports about reduced crime rates 

appear promising, but the potential of falsely accusing individuals based on 

associations or suspicions has raised many concerns.211 

D. Reflections on New Versions of Predictive Policing 

Predictive policing is evolving at a rapid rate. In fact, the technological 

developments have far outpaced legal or policy debates around the subject. 

Generally, local police administrators contract with predictive policing 

companies with little public oversight.212 On occasion a media story reveals 

the purchase of new technology, but only rarely does this publicity have any 

effect on the adoption of the practice.213 With the exception of a few 

journalists and scholars, the technology has largely escaped scrutiny.214 

As such, the different strains of predictive policing have been analyzed 

together, without focusing on the different theoretical bases, practical 

implications, and social science support underlying the technology. 

Suspicion based on correlation may be acceptable when talking about place-

based crimes, but it is insufficient when talking about person-based crimes. 

Sending a police car to patrol a suspected area is less consequential than 

sending a police detective to interrogate a suspect. Further, the hype 

surrounding property- and place-based predictive policing has been used to 

justify adoption of violent crime-focused or person-focused technology, 

despite a lack of equivalent empirical testing to support it. 

In some ways, labeling these different strains of technology with the 

broad title of “predictive policing” may well encourage such misleading 

hype and expectations. The algorithms in their current state really amount 

 

 
 210. Ferguson, Big Data, supra note 21, at 387–89. 
 211. Id. at 403; Jack Smith IV, ‘Minority Report’ is Real—And It’s Really Reporting Minorities, 

MIC (Nov. 9, 2015), http://mic.com/articles/127739/minority-reports-predictive-policing-technology-is-

really-reporting-minorities#.zwXVV93jm [https://perma.cc/35GD-56VL]. 
 212. But see Bellingham police consider ‘predictive policing’ software, ASSOCIATED PRESS (Aug. 

6, 2015). 

 213. But see Gov. Doug Ducey vetoes bill funding predictive policing program, ASSOCIATED PRESS 
(Apr. 14, 2015). 

 214. But see Elizabeth E. Joh, Policing by Numbers: Big Data and the Fourth Amendment, 89 

WASH. L. REV. 35 (2014); Kate Crawford & Jason Schultz, Big Data and Due Process: Toward a 
Framework to Redress Predictive Privacy Harms, 55 B.C. L. REV. 93, 103 (2014); Matt Stroud, The 

minority report: Chicago’s new police computer predicts crimes, but is it racist?, THE VERGE (Feb. 19, 

2014), http://www.theverge.com/2014/2/19/5419854/the-minority-report-this-computer-predicts-
crime-but-is-it-racist; Bond-Graham & Winston, supra note 4. 
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to “crime forecasting,” or perhaps even more precisely, “risk forecasting,” 

rather than actual crime prediction.215 Like an old-school weather 

forecast,216 the data can provide localized forecasts—“cloudy with a chance 

of murder”—with a significant degree of variability and fallibility. As in 

weather forecasting, the move to objective, data-driven computer models 

signals an improvement from subjective instincts or traditional guesses 

about the weather.217 And just as meteorology has improved its accuracy, 

the same will be true with predictive criminal forecasting as the data 

collection mechanisms and models grow in sophistication. 

All predictive innovations raise difficult questions about how to evaluate 

such new technologies. The next section attempts to organize the larger 

theoretical questions underlying adoption of any predictive technology by 

studying the questions that arise from existing predictive policing 

technologies. 

III. POLICING PREDICTION  

How should predictive technologies be policed? As has been 

demonstrated, the criminal justice system has eagerly embraced a data-

driven future without significant political oversight or public discussion. 

Worse, the temptations of new technology have at times overwhelmed 

considerations of utility or effectiveness and ignored considerations of 

fairness or justice. This claim is not to cast aspersions on police 

administrators adopting new approaches, or technologists inventing new 

predictive techniques, but simply to reflect the nature of new technologies. 

Certain vulnerabilities exist in predictive systems and this section proposes 

an analytical framework to evaluate current and future predictive policing 

technologies. The goal is to expose, analyze, and respond to these issues so 

that police departments, communities, courts, technologists, and citizens 

can honestly evaluate the next proposed predictive solution to crime. 

Building off the fundamental insight of predictive policing—that by 

addressing environmental vulnerabilities police can deter actors seeking to 

exploit those vulnerabilities—this section seeks to address the potential 

systemic vulnerabilities of any future predictive technology. These 

 

 
 215. Sherman, supra note 100, at 425 (recognizing that evidence-based police targeting “employs 

forecasting, not precise predictions, about when and where crimes are likely to occur”). 
 216. See NOAA’s Weather Forecasts Go Hyper Local With Next-Generation Weather Model, (Sept. 

30, 2014); http://www.noaanews.noaa.gov/stories2014/20140930_hrrr.html. 
 217. Jaikumar Vijayan, Big Data Key to Bringing Hyperlocal Weather Forecasts to Georgia 

Farmers, COMPUTERWORLD (April 25, 2014) http://www.computerworld.com/article/2488618/big-

data/big-data-key-to-bringing-hyperlocal-weather-forecasts-to-georgia-farmers.html.  
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vulnerabilities involve: (1) data; (2) methodology; (3) social science 

limitations; (4) transparency; (5) accountability; (6) vision; (7) practical 

implementation; (8) administration; and (9) security. In building this risk 

analysis framework, Part III offers practical responses to counteract these 

vulnerabilities. 

A. Data: Vulnerabilities and Responses 

The backbone of any new predictive technology is data.218 Predictive 

technologies require data, and the difficulty in obtaining usable, accurate, 

and clean data to integrate into a predictive system exposes a massive 

vulnerability.219 Predictive Policing 1.0 and 2.0 require crime data. 

Predictive Policing 3.0 requires integrated crime data, personal data, and 

pattern matching programs. Because any future predictive policing 

technology will require the collection of some data, the difficulties of 

obtaining good data must be identified and addressed. 

1. Bad Data 

Any data-driven system risks being undermined by bad data. This data 

includes flaws, fragmentation, and the internal and external pressures to 

collect vast amounts of information constantly, instantaneously, and 

without adequate financial resources to ensure accuracy.  

a. Human Error 

To be used, data must be collected, and much of that collection is done 

by human beings. Human beings make mistakes.220 Errors can arise in initial 

collection.221 For example, a police officer might write down the wrong 

address of a crime scene. Errors can arise during data input. For example, 

the officer could input the wrong address by transposing a number or 

misspelling a name. Errors can arise in the integration of the data. For 

example, combining data from different datasets could create duplicate 

 

 
 218. Harry Surden, Machine Learning and Law, 89 WASH. L. REV. 87, 106 (2014) (“In general, 

machine learning algorithms are only as good as the data that they are given to analyze.”). 

 219. Scherr, supra note 41, at 33 (2003) (“Prediction inevitably brings with it a risk of error. We 
can hope to reconstruct past events, but future events have not yet happened. Making ‘findings’ about 

the future thus carries a greater risk of error.”). 

 220. Joh, supra note 214, at 58 (“[N]o predictive policing program is entirely objective. The basic 
building blocks of a predictive software program necessarily involve human discretion.”). 

 221. Ferguson, supra note 73, at 191. 
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entries.222 Errors can arise in the cleansing of the data. For example, in an 

attempt to avoid duplicates, an entry can be erroneously deleted.223 The 

reality of this vast variety of error has been exposed in government-run 

databases relied upon by law enforcement.224 These errors grow 

exponentially when law enforcement databases are combined with 

commercial big data sources.225  

b. Fragmented and Biased Data 

Crime data is notoriously incomplete. Certain crimes like murder, 

burglary, and auto theft tend to be consistently reported to authorities, while 

other crimes like sexual assault, domestic violence, and fraud tend to be 

underreported.226 Some communities, frustrated with current policing 

practices, simply decline to report crimes.227 The Department of Justice has 

 

 
 222. Anita Ramasastry, Lost in Translation? Data Mining, National Security and the “Adverse 
Inference” Problem, 22 SANTA CLARA COMPUTER & HIGH TECH. L.J. 757, 774 (2006) (“One factor in 

error rates is data quality, which refers to the accuracy and completeness of data used to draw inferences. 

Duplicate records, the inconsistent or complete lack of data standards, the timeliness of updates, and 
human error (e.g. incorrect data entry) can all impact how effective data analysis will be.”). 

 223. Alex R. Hess, Herring v. United States: Are Errors in Government Databases Preventing 

Defendants from Receiving Fair Trials?, 11 J. HIGH TECH. L. 129, 147 (2010) (“In . . . inter-linked 
databases, one error can spread like a disease, infecting every system it touches, plaguing the individual 

with false records and undue suspicion.”). 

 224. See, e.g., Herring v. United States, 555 U.S. 135, 155 (2009) (Ginsburg, J., dissenting) (“The 
risk of error stemming from these databases is not slim. Herring’s amici warn that law enforcement 

databases are insufficiently monitored and often out of date. Government reports describe, for example, 

flaws in NCIC databases, terrorist watchlist databases, and databases associated with the Federal 
Government’s employment eligibility verification system.”) (citations omitted); Joshua D. Wright, The 

Constitutional Failure of Gang Databases, 2 STAN. J. C.R. & C.L. 115, 129 (2005) (“In sum, gang 

databases appear to be riddled with factual inaccuracies, administrative errors, lack of compliance with 
departmental guidelines, and lack of oversight.”); Green v. City & Cty. of San Francisco, 751 F.3d 1039, 

1042 (9th Cir. 2014) (“ALPR occasionally makes false ‘hits’ by misreading license plate numbers and 

mismatching passing license plate numbers with those listed as wanted in the database.”). 
 225. Hess, supra note 223, at 147 (“According to the Bureau of Justice Statistics (‘BJS’), ‘[i]n the 

view of most experts, inadequacies in the accuracy and completeness of criminal history records is the 

single most serious deficiency affecting the Nation’s criminal history record information systems.’”) 

(citations omitted). 

 226. James J. Tomkovicz, On Teaching Rape: Reasons, Risks, and Rewards, 102 YALE L.J. 481, 

491 n.32 (1992) (“Statistics indicate that sexual assaults upon women are grossly underreported—more 
so than perhaps any other crime.”); Rebecca S. Ross, Because There Won’t Be A “Next Time”: Why 

Justice Court Is an Inappropriate Forum for Domestic Violence Cases, 13 J.L. & FAM. STUD. 329, 333 

(2011) (“Domestic violence is … chronically underreported.”); Mark Mermelstein, Strategic Remedies 
for Corporate Crime Victims, 35 L.A. LAW. 12, 12 (2012) (“There is little doubt that crime, particularly 

fraud, goes underreported.”).  

 227. Montré D. Carodine, “Street Cred”, 46 U. C. DAVIS L. REV. 1583, 1596–97 (2013) 
(“Minorities who do not trust the police are not as likely to report crimes or voluntarily assist police in 

their investigations and other law enforcement tasks.”). 
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reported that half of crimes with victims go unreported.228 Internal 

administrative pressures sometimes result in the manipulation of formal 

police reports.229 Audits of the NYPD crime statistics exposed manipulated 

numbers.230 Police-reported data about arrests in other jurisdictions has also 

been shown to be inaccurate, misleading, and occasionally fraudulent.231 As 

such, the data that forms criminal predictions may be limited by the types 

of crime data collected, and may be further distorted by errors in the 

collection process.232 

As to incompleteness, the fragmented nature of crime data on the state 

and local level makes reliance on it questionable. As Professor Ronald 

Wright explained, “there are 17,876 state and local law enforcement 

agencies operating in the United States. Only 6.1% of those agencies 

employ 100 or more full-time sworn officers. Seventy-four percent of the 

agencies employ fewer than twenty-four officers.”233 Necessarily, local data 

collections create small datasets from which to build a predictive system.234 

 

 
 228. Cecelia Klingele et al., Reimagining Criminal Justice, 2010 WIS. L. REV. 953, 956 (2010) 
(“[A]ccording to the U.S. Department of Justice, at least half of all crimes in which a victim is aware of 

having been victimized go unreported to police.”); Press Release, U.S. Dep’t of Justice, Nearly 3.4 

Million Violent Crimes Per Year Went Unreported to Police from 2006 to 2010 (Aug. 9. 2012), 
http://www.bjs.gov/content/pub/press/vnrp0610pr.cfm [https://perma.cc/BH9L-UF9N]. 

 229. Klingele et al., supra note 228, at 957 (“Sometimes offenses that are reported to police are not 

recorded as crimes, and consequently, may not be investigated fully. . . . Police may have reason to doubt 
the citizen-reporter’s accuracy or truthfulness. The facts presented may not clearly establish that a crime 

has occurred. The investigating officer may feel administrative pressure to define incidents as non-

criminal activity. Officers may believe that because little can or will be done to solve the crime, little 
will be gained by initiating an investigation.”); William K. Rashbaum, Retired Officers Raise Questions 

on Crime Data, N.Y. TIMES, Feb. 7, 2010, at 1. 

 230. Jeff Morganteen, What the CompStat audit reveals about the NYPD, THE NEW YORK WORLD 
(July 3, 2013), http://www.thenewyorkworld.com/2013/07/03/compstat/ [https://perma.cc/PP7R-

P2MX] (“The outside audit . . . not only confirmed that such data manipulation takes place but found 
several weak points in the ways the department tracks and uncovers it.”); see also DAVID N. KELLEY & 

SHARON L. MCCARTHY, THE REPORT OF THE CRIME REPORTING REVIEW COMMITTEE TO 

COMMISSIONER RAYMOND W. KELLY CONCERNING COMPSTAT AUDITING (2013), http://www.nyc. 
gov/html/nypd/downloads/pdf/public_information/crime_reporting_review_committee_final_report_2

013.pdf. 

 231. See, e.g., David Rudovsky, Law Enforcement by Stereotypes and Serendipity: Racial Profiling 

and Stops and Searches Without Cause, 3 U. PA. J. CONST. L. 296, 312 (2001); David A. Harris, The 

Reality of Racial Disparity in Criminal Justice: The Significance of Data Collection, 66 LAW & 

CONTEMP. PROBS. 71, 81–82 (2003). 
 232. Klingele et al., supra note 228, at 956 (“Many crimes simply go undetected by police. It is 

estimated, for example, that police detect only about one out of every two hundred to five hundred illegal 

retail drug transactions and only about one out of every two thousand drunken driving trips.”). 
 233. Ronald F. Wright, Fragmented Users of Crime Predictions, 52 ARIZ. L. REV. 91, 94 (2010) 

(“These markets are too small to offer reliable predictions of crime.”). 

 234. Thomas E. Feucht & William J. Sabol, Comment on A “Modest Proposal” for A Crime 
Prediction Market, 52 ARIZ. L. REV. 81, 84 (2010) (“[L]ocal crime data may be subject to greater relative 

error and easier manipulation (compared to national data like UCR [Uniform Crime Reports]), and crime 

reports in local newspapers or other local media may be more vulnerable to spurious factors like 
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As discussed in the next section, predictive judgments suffer as sample size 

decreases. National crime statistics exist, but they cannot provide a relevant 

database necessary to predict local crime patterns because the information 

is not localized. The result is that the existing data may be of limited value 

for predictive validity in the vast majority of jurisdictions and only useful 

in large urban cities with significant crime data collection capabilities.  

To be fair, predictive policing companies tend to focus on areas with 

sufficient data. The large test cities of Los Angeles, Chicago, Seattle, New 

York City, and so on, tend to be areas with not only large crime problems, 

but large enough data collection systems. Further, at least with Predictive 

Policing 1.0, the original models focused only on crimes that were regularly 

and rather consistently reported (burglary, auto theft, and theft from auto). 

So PredPol’s primary business of targeting burglary and auto-related crimes 

avoids many of the data collection problems of a broader crime focus. 

But beyond property crime, and with the advent of aggregating big data 

information sources, the vulnerabilities of bad data grow. Both limited 

datasets for non-property crime and rapidly growing datasets of personal 

information raise real concerns for the accuracy of data underlying any 

algorithm-based prediction. 

Data can also be biased. The assumptions behind predictive technologies 

are affected by unseen influences that may have unintended and 

discriminatory consequences. First, the data itself can be the result of biased 

collection.235 Implicit bias has been demonstrated to impact policing 

decisions on the street.236 The targeting of certain areas or certain races 

creates the impression of higher crime rates in those areas, which then 

justifies continued police presence there.237 As Professor Shima Baradaran 

has noted: “As law enforcement dedicates more of its resources to patrolling 

and investigating blacks in urban areas, the resulting arrest population is not 

a proportional representation of all offenders, but rather disproportionately 

represents black citizens.”238 

The result has been to justify disproportionate minority contacts and the 

collection of minority names in databases. These actions then feed a 

confirmation feedback loop that equates those currently in the system with 

 

 
unbalanced crime reporting in the media. With local crime data, there is no corollary to the national 

compilation of UCR data that can help eliminate error.”). 
 235. Ferguson, Big Data, supra note 21, at 389–90. 

 236. See, e.g., L. Song Richardson, Arrest Efficiency and the Fourth Amendment, 95 MINN. L. REV. 

2035 (2011); Adam Benforado, Frames of Injustice: The Bias We Overlook, 85 IND. L.J. 1333, 1367 
(2010). 

 237. Ferguson, supra note 20, at 297. 

 238. Baradaran, supra note 49, at 180. 
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those who need to be policed by the system.239 Essentially, high-crime areas 

or high-value suspects might only be considered “high” because police 

already have data about those areas or people. Some scholars have even 

argued that such a predictive focus merely increases arrests rather than 

decreases crime.240 Finally, explicit bias has also been a factor in the 

collection of data on suspects, potentially undermining the basis of the 

predictive technologies. Sadly, racial and class-based bias remain a problem 

in American policing.241 

More bluntly, the initial predictive policing projects have raised the 

question of whether this data-driven focus serves merely to enable, or even 

justify, a high-tech version of racial profiling.242 If the underlying data is 

biased, then how can a data-driven system based on that data not also be 

biased?243 As civil liberties advocate, Hanni Fakhoury, has warned: 

It ends up being a self-fulfilling prophecy. . . . The algorithm is telling 

you exactly what you programmed it to tell you. “Young black kids 

in the south side of Chicago are more likely to commit crimes,” and 

the algorithm lets the police launder this belief. It’s not racism, they 

can say. They are making the decision based on what the algorithm 

is, even though the algorithm is going to spit back what you put into 

it. And if the data is biased to begin with and based on human 

judgment, then the results the algorithm is going to spit out will 

reflect those biases.244 

 

 
 239. Aaron Cantú, Algorithms and Future Crimes: Welcome to the Racial Profiling of the Future, 

SAN DIEGO FREE PRESS (Mar. 1, 2014), http://sandiegofreepress.org/2014/03/algorithms-and-future-

crimes-welcome-to-the-racial-profiling-of-the-future/ [https://perma.cc/YP5M-Q9FJ] (“Any attempt to 
predict future criminality will be based on the crime rates of the past. It’s well known that blacks and 

Hispanics are arrested at a higher rate than whites and comprise the majority of the prison population. If 

that’s the reality that is supposed to inform who we criminalize in the future, won’t initiatives like 
predictive policing just perpetuate the racist criminal justice policies and practices of the present?”). 

 240. Baradaran, supra note 49, at 176–77 (“When police rely on predictive methods, success is 

amplified by increased arrests (rather than decreased crime).”); HARCOURT, supra note 23, at 123 
(arguing that focusing on maximizing arrest rates will only increase arrests of African-Americans). 

 241. James B. Comey, Director, Fed. Bureau of Investigation, Remarks at Georgetown University: 

Hard Truths: Law Enforcement and Race (Feb. 12, 2015), https://www.fbi.gov/news/speeches/hard-
truths-law-enforcement-and-race [https://perma.cc/8VGG-8MUR]; Terrence M. Cunningham, 

President, Int’l Ass’n of Chiefs of Police (IACP, Remarks Made at the 2016 IACP Annual Conference: 

The Law Enforcement Profession and Historical Injustices (Oct. 17, 2016) http://www.iacp.org/ 
ViewResult?SearchID=2690 [https://perma.cc/39E3-PGKT]. 

 242. Stroud, supra note 214. 

 243. Ezekiel Edwards, Predictive Policing Software is More Accurate at Predicting Policing than 
Predicting Crime, HUFFINGTON POST (Aug. 31, 2016, 2:58 PM), http://www.huffingtonpost. 

com/entry/predictive-policing-reform_us_57c6ffe0e4b0e60d31dc9120 [https://perma.cc/8H79-3K9G]; 

ROBINSON & KOEPKE, supra note 3, at 3–5. 
 244. Llenas, supra note 188. 
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Some predictive companies, like PredPol, would respond by stating that 

their data is based on reported crime rather than arrest statistics, and thus is 

not biased by officer judgments. In other words, police responding to a 

reported crime (e.g., “my car has been stolen”) creates a data point not 

dependent on police patrol patterns. This counterargument merits analysis. 

Reported crimes are less subject to bias than mere arrests. Some crime only 

comes to the attention of police because of a victim’s report. In traditional 

Predictive Policing 1.0 cases, usually the homeowner reports the burglary 

or the car owner the theft. As such, in that instance, crime reports might be 

less biased and more reliable than arrest statistics. However, sometimes the 

crime and arrest overlap. When a police officer stops an individual breaking 

into cars with a screwdriver, there is both an arrest and a reported crime. 

But in the latter case all of the issues of implicit bias or other factors are 

present to explain the police officer’s presence in the area and suspicion of 

the suspect. If this dual arrest and crime is included in the data, then the 

predictive model is still impacted by arrest patterns and not just reported 

crimes, thereby giving rise to the concern of data bias. 

While “data bias” presents a potential vulnerability, it may not be any 

worse than the existing policing practice. The same implicit and explicit 

biases that influence the data also influence the police officer on the street 

(with or without the data). Thus, supporters of predictive policing might 

rightly argue that while predictive policing programs are not completely free 

from bias, the move to a data-driven system could reduce bias, or at worst 

maintain the status quo.245 Further, if these vulnerabilities could be 

addressed, then an overall reduction of bias would occur.246 

2. Data: Responses 

In response to the problem of bad or biased data, predictive technologies’ 

proponents must address the errors inherent in data collection, data 

matching, data warehousing, and data cleansing.247 This section looks at 

 

 
 245. Marsha Garrison, Taking the Risks Out of Child Protection Risk Analysis, 21 J.L. & POL’Y 5, 
19 (2012) (“Algorithms also have the capacity to improve the quality of predictive judgments, and they 

are particularly valuable in taming the biases that can flow from interview situations, where first 

impressions often overpower other important data.”). 
 246. As I have written previously, this defense may fail when focused on Predictive Policing 3.0, 

which targets individuals based on data. Biased data can distort suspicion when it comes to person-based 

suspicion. With more information in the database about an individual, it is easier to generate a level of 
suspicion sufficient to justify stopping or arresting the individual. While it might be bad to rely on biased 

data for patrol decisions, it is unacceptable to allow biased data to justify deprivations of liberty. 

Ferguson, Big Data, supra note 20, at 403. 
 247. Tal Z. Zarsky, Transparent Predictions, 2013 U. ILL. L. REV. 1503, 1518 (2013).  
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mechanisms that could be adopted to improve data collection and retention. 

It first focuses on the raw material of data, and then addresses issues of 

predictive methodology, transparency, accountability, and security.  

a. Acknowledging Error 

Data-driven systems promote themselves as being better than human-

controlled systems because of their perceived objectivity. Algorithms, the 

argument goes, cannot be biased or discriminatory. Yet the data underlying 

the algorithm can suffer from the influence of bias or error. The first step in 

responding to this reality is to acknowledge it.248 Predictive technologies 

will be wrong at times, and police departments reliant on them must 

acknowledge this fact. Acknowledging error does not discount the value of 

predictive technologies, but only qualifies the findings and tempers the 

unquestioning acceptance of the information. Acknowledging error also sets 

the stage for correcting error, auditing error, and training humans to prevent 

error.  

Many predictive policing systems, however, avoid admitting to the 

inherent data problems. This is so for two main reasons. First, the economic 

competition between companies that design such programs makes it more 

difficult to admit the flaws in the underlying data collection system. While 

police likely know that mistakes might be made or predictions may be 

wrong, an actual acknowledgment of systemic error is harder to sell. 

Second, the attractiveness of predictive technologies is bound up with a faith 

in technological precision. While society might not understand the 

algorithm (or even what an algorithm is),249 there is a trust in technology. 

Acknowledging that the algorithm is based on an error-filled database, 

however, undercuts that trust.  

Adopters of predictive policing technologies need to accept the 

limitations of the data itself, and the resulting limitations of the conclusions 

that can be drawn from it. Acknowledging the systemic error and looking 

for ways to remedy it will be ultimately more constructive than ignoring it. 

b. Catching & Correcting Error 

The vulnerability of data to error can be corrected by mechanisms to 

catch and correct the errors. Auditing mechanisms can be established to 

 

 
 248. Angwin et. al., supra note 52. 
 249. See Paul Ford, What is Code?, BLOOMBERG BUSINESSWEEK (June 11, 2015), 

https://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/ [https://perma.cc/Z3DP-HG3W].  
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check the quality of inputs. This can be as simple as supervisors or analysts 

double-checking daily crime reports, to large-scale forensic audits of the 

reporting system.250 Data services can cleanse databases for duplicate or 

erroneous records. Systems can be designed to manage error. While beyond 

the scope of this article, a systems approach to error in police databases 

might be needed to design a thorough error reduction strategy.251  

The difficulty, of course, is that the sheer amount of data being 

collected—from daily crime statistics to individual citizens’ personal 

information—will overwhelm most police systems. Police administrators, 

even those experienced with sophisticated data collection systems, do not 

have the resources (or sometimes the will) to make data inputting error-

free.252 Worse, the nature of shared and aggregated data systems means that 

even correcting an error in one location might not also correct the same error 

now populating other datasets. While steps can and should be taken to catch 

and correct error, the data will likely remain imperfect. 

c. Training and Technology  

To ease the burden on a system to catch and correct errors, adopters of 

predictive technologies must ensure proper training for the frontline 

collectors of the data. Most police officers did not go into the profession for 

the paperwork, and the training and incentives for perfectly accurate data 

inputs are lacking. Adopters of predictive policing technologies must focus 

on training and technology to address these concerns. 

Formal training mechanisms, while burdensome, may be necessary for a 

data-driven system to be successful. Police officers obviously know the 

importance of police paperwork as it is regularly used in criminal 

prosecutions. Simple transposition errors, while embarrassing fodder for 

cross-examination, do not usually result in more than a few questions at 

trial. However, in a data-driven system, the wrong code or the wrong 

address can undermine the integrity of the system itself. Thus, police 

administrators will need to educate police officers about the importance of 

detail and accuracy in data collection. The inclusion of crime analysts into 

 

 
 250. Kelley & MCCARTHY, supra note 230. 

 251. See generally James M. Doyle, Learning from Error in American Criminal Justice, 100 J. 

CRIM. L. & CRIMINOLOGY 109 (2010). 
 252. Sherman, supra note 100, at 434 (“For all the progress that COMPSTAT has brought policing, 

it is striking how little measurement it has used of what police do. In 1999–2005, for example, the 

Philadelphia Police Department’s COMPSTAT never reviewed data on where police patrolled, where 
they made arrests, where they conducted stop-and-frisks, or even how many police were scheduled to 

work by time or day in relation to the hourly frequency of crime in any police district.”). 
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the police forces of some major police districts may have an added benefit 

of creating built-in trainers for these lessons.253 

Similarly, data companies whose products are being adopted by police 

have an incentive to create and staff formal training programs. The police, 

by generating the crime data, in many ways are helping to fuel the 

development of future predictive technologies for those companies. The 

companies thus have a real incentive to ensure that police officers on the 

ground are accurately and completely collecting the data that will ultimately 

be relied upon. 

As a final response to the vulnerabilities associated with data error, 

adopters of predictive technologies should look to advances in predictive 

technology and automation to minimize human error. Whereas most police 

officers are required to fill out a crime report with a statement or estimation 

of the crime time, duration, and location, new technology involving Global 

Positioning Satellite (GPS) might be used to automatically mark the time, 

date, and location of an incident.254 For example, if the technology existed 

to automatically record a crime’s precise time and geo-location, then 

estimates of addresses or transcribed number errors and other details would 

be minimized. Furthermore, technologies that encourage other passive 

collection of information would ease the burden on officers. Many police 

departments still require handwritten police forms, sometimes in duplicate 

form. New automated document generation forms would not only ease 

transcription work of arresting officers, but also allow for automated 

transmittal of that information into a central database.255 Once automated, 

other data mechanisms could be implemented, including automated 

checklists to ensure completion, forcing functions to ensure compliance, 

and redundancy mechanisms to ensure accuracy. In these ways, technology 

can encourage the accuracy, completeness, and usefulness of data. 

B. Methodology: Vulnerabilities and Responses 

Beyond the fuel of data, the engine of predictive technologies lies in its 

methodology. Predictive policing relies on proprietary algorithms that adopt 

 

 
 253. Bond-Graham & Winston, supra note 4 (“Virtually every police department in medium to large 

cities today has one or more crime analysts on staff to crunch numbers and plot past crimes on maps.”). 

 254. Such technology may also create issues, as GPS technology has its limitations. GPS technology 
may need to be augmented with wireless Internet points of presence in order to capture the data. Thank 

you to John Hollywood for this and other suggestions. 

 255. Avery Hartmans, This Startup Founder Rode Around in Police Cars for Hours to Build His 
Software, BUSINESS INSIDER (Nov. 27, 2016) http://www.businessinsider.com/mark43-builds-software-

to-aid-police-forces-2016-11. 
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a particular analytical methodology. Yet the methodologies surrounding 

predictive techniques are fraught with vulnerabilities. In fact, since the 

advent of prediction in the criminal justice system, critics have repeatedly 

pointed out the flaws inherent in many predictive techniques.256 

1. Methodological Vulnerabilities 

Not surprisingly, predictive technologies built on incomplete datasets 

exacerbate methodological vulnerabilities. These limitations go beyond 

human bias or incorrect assessments to complex statistical problems.257 

Three interrelated problems—validity, error rates, and overgeneralization—

will be discussed in this section, with the recognition that a full discussion 

of methodological vulnerabilities is beyond the scope of this article. 

a. Internal Validity 

Predictive policing technologies purport to provide a more effective 

means of reducing crime. Studies demonstrating that claim exist, but have 

certain vulnerabilities in terms of validity. Internal validity “is the extent to 

which a methodology can accurately determine cause-effect 

relationships.”258 Internally valid studies must be such that individual 

variables can be isolated and results reproduced.259 Currently, at the early 

stages of evaluation, most of the traditional concerns about internal validity 

(like selection bias, testing errors, and history) apply to predictive 

policing.260 

 

 
 256. See generally Christopher Slobogin, supra note 63; Scherr, supra note 41.  
 257. Joh, supra note 214, at 58 (“The assumptions underlying any method of crime prediction rely 

upon the decision to choose one model of risk prediction over another. The data used to build the models 

will depend on discretionary judgments about the types of crimes used for prediction, and the type of 
information used to predict those crimes.”). 

 258. John B. Meixner & Shari Seidman Diamond, The Hidden Daubert Factor: How Judges Use 

Error Rates in Assessing Scientific Evidence, 2014 WIS. L. REV. 1063, 1131 (2014). 
 259. William A. Woodruff, Evidence of Lies and Rules of Evidence: The Admissibility of fMRI-

Based Expert Opinion of Witness Truthfulness, 16 N.C. J.L. & TECH. 105, 204 (2014) (“Internal validity 

‘refers to the degree to which the research design isolates the variable of interest and permits drawing 
valid inferences about the relationships between variables from the resulting data.’”); Tammy W. Cowart 

et al., Two Methodologies for Predicting Patent Litigation Outcomes: Logistic Regression Versus 

Classification Trees, 51 AM. BUS. L.J. 843, 875 (2014) (“Internal validity (reproducibility) is the ability 
to achieve the same results when applied to the same population of the data.”). 

 260. Joseph Sanders, Scientific Validity, Admissibility, and Mass Torts After Daubert, 78 MINN. L. 

REV. 1387, 1401 (1994) (discussing “the threats to internal validity” including “history (the threat that 
an observed effect may be due to an event that takes place between two points of measurement when 

this event is not the treatment under investigation), testing (the threat that an effect may be due to the 

number of times responses are measured), and selection (a threat that groups being compared are 
composed of different types of individuals and, therefore, that observed differences are due to factors 
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The first PredPol test in the Foothill section of Los Angeles attempted a 

blind study that gave police officers predictive information about an area 

but not told whether the prediction came from an algorithm or from a crime 

analyst.261 The positive results showed a reduction in crime, but could not 

be fully attributed to the technology due to flaws in the study and the 

complexity of testing in real world situations. Further studies have shown a 

significant decrease in predicted crime,262 although some critics caution that 

the PredPol success story involves cherry-picked statistics.263 Other 

technologies have also demonstrated positive correlative effects. Initial tests 

of RTM demonstrate a relatively accurate correlation between the predicted 

areas and actual gun violence.264 But, however strong these correlations are, 

they do not show an actual causal connection. As such, it will be difficult 

for predictive policing to ever become an internally valid technology.  

Simply put, for Predictive Policing 1.0 and 2.0, there have been no 

sustained studies demonstrating cause and effect. Crime rates go up and 

down.265 Even in jurisdictions that have adopted PredPol with initial 

success, crime rates have later risen for unknown reasons.266 Thus, as a 

measure of internal validity, the question is still open as to whether any 

particular predictive policing technology really shows a causal success.  

In addition, the limited data available for some crimes interferes with 

measurement validity. For example, PredPol’s White Paper on gun violence 

claims, “Crimes involving guns continue to have an impact on future gun 

homicides for 30–100 days and risk spreads over as much as 1/2 mile in 

area.”267 Even if completely accurate, this information offers little 

constructive information to police officers. Unlike the 500 by 500 square 

foot box for property crimes (updated every day), with gun crimes police 

 

 
other than the treatment under investigation)”). 

 261. Bond-Graham & Winston, supra note 4 (“Foothill Division, a sprawling LAPD patrol sector 
in the northeast San Fernando Valley that, at 46 square miles, is about as big as San Francisco, was 

chosen as the site of a pilot program in 2012.”). 

 262. PredPol reported a 29% drop in crime. See PredPol Partners LAPD-Foothill Records Day 
Without Crime!, PREDPOL BLOG, (Feb. 22, 2014), http://www.predpol.com/predpol-partners-lapd-

foothill-records-day-without-crime/ [https://perma.cc/PN4H-YMWC]. 

 263. Kushing, supra note 85. 
 264. Kennedy et al., Results: Executive Summary, supra note 162.  

 265. Bond-Graham & Winston, supra note 4 (Philip Stark, chair of the statistics department at UC 

Berkeley expressed caution at the findings, stating, “I’m less than convinced.” When asked whether 
using PredPol leads to a decrease in a city’s crime rate, he responded, “You would need to do a 

comparison of similar-sized cities, with similar conditions, similar trends in their crime rates, with one 

group of cities using predictive policing, and the others not. Then you’d compare them to each other. . . 
. A comparison of the same jurisdiction to itself means nothing. . . . Crime fluctuates normally from year 

to year in the same city.”). 

 266. Aldax, supra note 128. 
 267. THE PREDICTIVE POLICING CO., supra note 138, at 3. 
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would need to be alert for one to three months and in a much larger 

geographical space. Extra police presence in that area might deter the next 

shooting, but it can hardly be considered a strong prediction. Nor is the 

prediction really all that insightful, as most experienced police officers 

could predict future gun violence three months out in particular areas.  

Predictive Policing 3.0 presents an even more difficult causation versus 

correlation dilemma. As has been well debated in the context of preventative 

detention and recidivism, causal factors that can identify risk do not 

determine risk. The fact that a young man makes the Chicago “Heat List” 

might be in error, might mean nothing, or might mean he is a potential 

victim rather than a potential offender.268 Further, risk factors might change 

in a way that a list does not reflect. For example, the heightened risk factor 

for being an unemployed high school dropout might be remedied by a career 

training program. The risks can change, but the lists of risk-associated 

people might not, distorting even the correlative accuracy of the prediction. 

Initial reports from Chicago present a few contradictory conclusions.269 

First, the Heat List predictions have, according to police reports, been 

accurate at identifying victims of violence.270 Police officials stated that on 

Memorial Day weekend in 2016, 78% of the 64 people shot had been 

identified on the Heat List,271 and that on Mother’s Day weekend in 2016, 

80% of the 51 people shot had been identified on the Heat List.272 At the 

same time, the first independent research study of the Heat List’s 

effectiveness demonstrated that the identification process largely failed.273 

RAND conducted a study on the first iteration of the Chicago Heat List and 

found no predictive accuracy: “[T]he main result of this study is that at-risk 

individuals were not more or less likely to become victims of a homicide or 

shooting as a result of the SSL, and this is further supported by city-level 

 

 
 268. In a public health model, the goal is to try to intervene with both potential victims and offenders 

involved in gun violence. 

 269. Nissa Rhee, Can police big data stop Chicago’s spike in crime?, THE CHRISTIAN SCI. 
MONITOR (June 2, 2016), http://www.csmonitor.com/USA/Justice/2016/0602/Can-police-big-data-

stop-Chicago-s-spike-in-crime [https://perma.cc/64SE-SLLD]; Monica Davey, Chicago Police Try to 

Predict Who May Shoot or Be Shot, N.Y. TIMES (May 23, 2016), http://www.nytimes.com/2016/05/ 
24/us/armed-with-data-chicago-police-try-to-predict-who-may-shoot-or-be-shot.html?_r=0. 

 270. Editorial: Who will kill or be killed in violence-plagued Chicago? The algorithm knows, CHI. 

TRIB. (May 10, 2016, 5:00 PM), http://www.chicagotribune.com/news/opinion/editorials/ct-gangs-
police-loury-algorithm-edit-md-20160510-story.html [https://perma.cc/8333-CVAZ]. 

 271. Andrew V. Papachristos, Commentary: CPD’s Crucial Choice: Treat Its List as Offenders or 

as Potential Victims?, CHI. TRIB. (July 29, 2016, 10:00 AM), http://www.chicagotribune.com/news/ 
opinion/commentary/ct-gun-violence-list-chicago-police-murder-perspec-0801-jm-20160729-story. 

html [https://perma.cc/G8TU-PBXA]. 

 272. Editorial, supra note 270. 
 273. Saunders et al., supra note 192, at 355–64.  
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analysis finding no effect on the city homicide trend. We do find, however, 

that SSL subjects were more likely to be arrested for a shooting.”274 

The RAND researchers found that police failed to follow up with 

Custom Notification Letters or social services, and used the program more 

as a “data-driven most-wanted list.”275 At-risk individuals became targets 

for arrest, rather than candidates for violence prevention.276 The Chicago 

Police Department has responded to such criticism by pointing out that the 

early Heat List system studied by RAND has changed and any criticism 

relates to an out-of-date algorithm. But no matter the accuracy of the 

technology, the facts are that the use of the Heat List has not reduced 

violence in Chicago. In fact, in August 2016, Chicago saw its deadliest 

month in two decades with a spike of murders.277 

b. External Validity – Overgeneralization  

Because of the fragmented nature of crime data and the inexact nature of 

data aggregation, the few jurisdictions that have ample and accurate data are 

sometimes used to justify the universal application of the technology. 

Success in one jurisdiction is used to suggest future success in another 

jurisdiction. However, the predictive results in Los Angeles or Chicago may 

not apply to, say, Topeka or Anchorage because of differences in 

geography, crime patterns, or police culture. Generally speaking, the 

vulnerability of overgeneralization runs throughout predictive risk 

assessments and should be a caution for new adopters.278  

Similarly, the predictive judgments of certain types of crime may be 

impacted by the lack of crime data. For example, because certain violent 

crimes like shootings are comparatively rare, the data can be of a limited 

predictive value. Partially for that reason, some predictive techniques have 

 

 
 274. Id. at 363–64. 

 275. Matt Stroud, Chicago’s Predictive Policing Tool Just Failed a Major Test, THE VERGE (Aug. 

19. 2016, 10:28 AM), http://www.theverge.com/2016/8/19/12552384/chicago-heat-list-tool-failed-

rand-test [https://perma.cc/JAJ6-3BRX]. 

 276. Nissa Rhee, Study Casts Doubt on Chicago Police’s Secretive “Heat List”, CHI. MAG. (Aug. 

17, 2016), http://www.chicagomag.com/city-life/August-2016/Chicago-Police-Data/; Papachristos, 
supra note 271. 

 277. Monica Davey, Chicago Has Its Deadliest Month in About Two Decades, N.Y. TIMES (Sept. 

1, 2016), http://www.nytimes.com/2016/09/02/us/chicago-august-homicides.html?_r=0. 
 278. Hamilton, supra note 39, at 730 (“It is also important to recognize that one of the most 

important limitations of actuarial assessments as a rule is the problem of overgeneralization or, more 

empirically, external validity. One overgeneralizes results of research by presuming the results derived 
from one population (the reference group) are reliable when applied to a second population. If the second 

population differs in any risk-relevant way from the reference group, then the predictive result is 

invalid.”). 
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chosen to focus on precursor crimes (not violent in and of themselves)279 or 

fixed geographic markers (bus stops, liquor stores, etc.).280 As a result of 

this limited data, the conclusions themselves may be weaker. As LAPD 

Sergeant Christi Robbin admitted to a reporter, “With gun crimes you have 

fewer incidents, so the predictions aren’t as strong.”281 Of course, this is not 

to say that there are not numerous studies to demonstrate that violent acts 

generate retaliatory violent responses, or that social networks cannot be 

studied to show webs of violence in communities, but studying whether 

predictive policing can deter violence is only just now being tested in any 

rigorous way.282  

c. Error Rates 

Predictive technologies have error rates. Error rates encompass both 

false negatives and false positives.283 For Predictive Policing 1.0 and 2.0, 

false positives (no crime in a predicted high risk area) create unwanted 

police-citizen contact or unwanted surveillance in certain areas. False 

negatives (crime in a predicted low risk area) divert police resources by 

sending officers to the wrong areas. Both are suboptimal, but not necessarily 

any worse than non-predictive policing, which also leads officers to 

investigate non-crimes and miss actual crimes.  

For Predictive Policing 3.0, the risk of error grows when police use big 

data technologies to match suspicious patterns in large databases.284 A false 

positive predictive tip could result in innocent individuals being singled out 

and investigated for noncriminal activity. These investigations could 

involve physical police contact, which might be threatening or even violent. 

 

 
 279. THE PREDICTIVE POLICING CO., supra note 138. 
 280. RUTGERS CTR. ON PUB. SEC., supra note 133. 

 281. Mitchell, supra note 2.  

 282. Christopher Moraff, The Problem with Some of the Most Powerful Numbers in Modern 
Policing, NEXT CITY (Dec. 15, 2014), https://nextcity.org/daily/entry/predictive-policing-crime-stats-

data-measure [https://perma.cc/RS9J-A7KB]. 

 283. Slobogin, supra note 39, at 291. 
 284. Bruce Schneier, Why Data Mining Won’t Stop Terror, WIRED (Mar. 9, 2006, 12:00 PM), 

http://www.wired.com/politics/security/commentary/securitymatters/2006/03/70357 [https://perma.cc 

/8PV5-ZV3U]; Bruce Schneier, Data Mining for Terrorists, SCHNEIER ON SECURITY (Mar. 9, 2006, 8:54 
AM), http://www.schneier.com/blog/archives/2006/03/data_mining_for.html [https://perma.cc/ 87UU-

NKF6]; Fred H. Cate, Government Data Mining: The Need for A Legal Framework, 43 HARV. C.R.-

C.L. L. REV. 435, 473 (2008) (“Data mining for national security and law enforcement presents far 
greater challenges than data mining for target marketing for many reasons. . . . Government data mining 

often is searching for a needle not in a haystack, but among millions of other needles.”). 
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Such contacts build resentment toward the perceived over-aggressive police 

presence.285 

In addition, any understanding of error rates can only be evaluated by 

understanding the base rate.286 A base rate is the frequency with which the 

behavior (suspected crime) occurs in the overall group studied (usually the 

population). Currently, because of poor reporting, inadequate resources, and 

the nature of certain crimes, police do not know the base rate for different 

crimes in many jurisdictions. 

2. Methodological Responses  

These methodological vulnerabilities lead to four main lessons for the 

future adoption of predictive technologies. First, because predictive 

policing is largely untested, jurisdictions must independently evaluate initial 

claims of success. The San Francisco Police Department examined the 

possibility of adopting predictive policing, but declined to adopt the PredPol 

technology due to concerns about effectiveness.287 Currently, independent 

data does not exist to verify the methodology of the companies selling the 

technology.288 Because the efficacy remains unknown, jurisdictions seeking 

to purchase the technology need to check the methodology and prepare 

responses to future legal and community challenges. 

Second, adopting jurisdictions must remain cautious about extending 

conclusions from one jurisdiction to another. Problems of 

overgeneralization can be addressed by recognizing that the urban 

landscape, police culture, and economic realities might be very different in 

different parts of the country. Just because predictive policing works in 

sprawling areas of Los Angeles does not mean it would work in the 

vertically constructed New York City. Just because burglaries appear to 

encourage repeat offending in nearby areas does not mean that aggravated 

assault or other crimes will follow suit. 

 

 
 285. SOC. PSYCHOL. ANSWERS TO REAL-WORLD QUESTIONS, STRATEGIES FOR CHANGE: 

RESEARCH INITIATIVES AND RECOMMENDATIONS TO IMPROVE POLICE-COMMUNITY RELATIONS IN 

OAKLAND, CALIF. (Jennifer L. Eberhardt ed., 2016); REBECCA C. HETEY ET AL., SOC. PSYCHOL. 
ANSWERS TO REAL-WORLD QUESTIONS, DATA FOR CHANGE: A STATISTICAL ANALYSIS OF POLICE 

STOPS, SEARCHES, HANDCUFFINGS, AND ARRESTS IN OAKLAND, CALIF., 2013–2014 (2016). 

 286. Slobogin, supra note 39, at 292 (“The accuracy of expert predictions can be fully understood 
only if base rates of recidivism are taken into account.”). 

 287. Bond-Graham & Winston, supra note 4. 

 288. Moraff, supra note 282 (“[T]he vast majority of what we know about predictive policing comes 
from data released unilaterally by individual police agencies, or by the firms peddling software to them. 

This not only makes it hard to compare results from city to city, but raises serious questions of data 
reliability.”). 
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Third, communities adopting predictive policing must remain cognizant 

of the temporal limitations of the predictions. One of the oft-ignored 

limitations of predictive policing involves its timeframe for predictions. For 

example, PredPol’s property-based predictions occur on a daily (and even 

hourly) basis, allowing for a rather sophisticated matching of time and 

place. However, PredPol’s violence-predicting technologies look at a 30–

100 day window, allowing for far less useful actionable data.289 Both might 

be accurate in their predictions, but the former provides a much more useful 

and relevant dataset for police officers looking for immediate suspicious 

activity. 

Finally, the predictive technologies targeting individuals face even 

harder questions. Correlation should not be confused with causation when 

individual liberties are concerned.290 When the physical and emotional 

impact of police authority is involved, some individualized suspicion is 

required.291 The fact that a prediction identifies a particular individual 

should not, without more, be enough to initiate investigation. Strikingly, 

Jeffrey Brantingham, one of the founders of modern predictive policing and 

the creator of PredPol, was quoted saying: “These ‘person-centric’ models 

are problematic . . . because they carry an elevated margin of error and can 

legitimize racial, gender-based and socioeconomic-driven profiling. As a 

scientist you better be damn sure the model of causality is right or else it’s 

going to lead to a lot of false positives.”292 These false positives have grave, 

liberty-eroding consequences, and so responses must be built in to ensure 

accuracy. Even if sufficient suspicion could be generated through pattern-

matching or social network theory, acting on that suspicion should not be a 

foregone conclusion. While perhaps these predictive techniques could be 

useful for an initial lead, further screening mechanisms must be created 

before reliance on correlation leads to the physical and sometimes painful 

power of the state being brought to bear on an individual. 

These methodological responses can be summarized into two simple 

recommendations. First, the acknowledged vulnerabilities of predictive 

 

 
 289. The near repeat effects of violent crime have not been strongly demonstrated, which may 

provide a second reason to qualify the utility of this approach. 
 290. Underwood, supra note 38, at 1446 (“A statistical correlation in data about one group of people 

may not hold when used as a basis for predictions about another group of people. A causal theory helps 

to identify any relevant differences between the two groups, or differences in the surrounding 
circumstances.”). 

 291. Arguably, if all that were at issue were therapeutic interventions without coercive law 

enforcement or judicial impacts, a looser correlation standard might be justified. But, as predictive 
policing is connected with real policing, more than therapy is at issue.  

 292. Moraff, supra note 277. 
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methodologies need to be addressed before adopting the technology. 

Second, the limitations should encourage a more scientifically rigorous 

approach. The second response will be the subject of the next section. 

C. Social Science: Vulnerabilities and Responses  

Social science, not simply technology, underlies the promise of 

predictive policing.293 As a legitimizing principle, the fact that predictive 

policing rests on established social science experiments has carried 

significant weight in its promotion and adoption. Decades of criminology 

theory and practice support many of the insights behind why crime can be 

predicted.294 At the same time, new iterations of predictive policing have 

evolved without equivalent empirical testing. While some studies are 

currently in progress, police adoption has outpaced scientific findings, 

leading to ongoing uncertainty. 

1. Social Science: Vulnerabilities 

Only one published peer-reviewed scientific paper has evaluated the 

claims of PredPol.295 The paper, written in collaboration with the founders 

of PredPol, offers a good illustration of the limits of current social science 

on predictive policing. This first published article describes the results of an 

approximately eight-month study in Los Angeles that compared PredPol 

predictions with professional crime analyst predictions.296 The focus was on 

Predictive Policing 1.0 crimes (burglary, car theft, and theft from 

automobiles), and the algorithm and analyst alternated days of the week to 

offer criminal predictions.297 Over the period of comparison (117 days), the 

analyst successful predicted 2.1% of crimes, while the PredPol algorithm 

predicted 4.7% of crimes. The PredPol model thus demonstrated a 

predictive accuracy 2.2 times greater than the control.298  

As with any study, questions of size, scope, and generalizability arise. 

 

 
 293. See, e.g., Chainey et al., supra note 96, at 5; Braga et al., supra note 78, at 9. 

 294. Tompson & Townsley, supra note 110, at 25; Caplan, supra note 140, at 60. 
 295. See George O. Mohler et al., Randomized Controlled Field Trials of Predictive Policing, 94 J. 

AM. STAT. ASS’N 1399 (2015), http://paleo.sscnet.ucla.edu/MohlerEtAl-2015-JASA-Predictive-

InPress.pdf. In contrast, the researchers conducting Risk Terrain Modeling tests have conducted several 
research studies emphasizing the risk factors underlying certain criminal activity. As detailed supra 

notes 115, 166, 263, they have published a series of scholarly articles demonstrating significant success 

in risk forecasting abilities. These reports have not been peer reviewed.  
 296. See Mohler, et al. supra note 295. The study also compared crime prediction in Kent, England, 

but a discussion of the Kent findings is omitted from this discussion. 

 297. Id. 
 298. Id.  
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But more fundamentally, the methodology underlying the PredPol study 

presents difficult questions. First, PredPol sets up the study comparing its 

algorithm to crime analysts. But the predictions of crime analysts 

themselves have no scientific or empirical validity; while the algorithm 

beats the analyst, the analyst is not a valid scientific control.299 Second, 

“success” is difficult to prove. If the algorithm predicts a crime and the 

crime occurs (without police intervention), it is hard to claim a success 

(because actual crime increased). But if the crime is predicted and it doesn’t 

occur because the police have acted as a deterrent, how can one measure 

that non-event as a success? Maybe the police deterred the crime, or maybe 

it was not going to happen, but it seems difficult to call it a measurable 

success. These concerns are emblematic of the type of methodological 

difficulties in studying real world crime. 

While PredPol has begun to analyze its programs, most of the other 

commercial products claim no scientific proof of their technology’s 

effectiveness.300 Part of the reason for this absence of data and peer-

reviewed publications is that scientists require time and funding to conduct 

experiments, and policing urban areas with real criminals and real victims 

provides an imperfect testing environment.301 In addition, the variables for 

why crime occurs or why crime rates drop across jurisdictions and over time 

are multifaceted, so it remains difficult to draw causal conclusions. 

Early criminology studies which developed the near repeat theory and 

the flag and boost theories all arose from academic settings.302 These 

theories explained why predicting certain crimes might work, and offered 

scientifically valid studies to support the claims. These theories, tested over 

 

 
 299. A valid response to this criticism is that the study was designed specifically to see if it was 
better than the analysts because crime analysts are the professional norm. As Jeff Brantingham explained 

to me in an email, “The reason why we tested against real human analysts was that the critique of our 

[earlier] paper was: “Sure, you can beat another algorithm, but you could never beat a real human expert 
in the field.” We took that criticism to heart and designed an experiment to test the hypothesis with two 

police agencies who reasonably represent the some of the best the profession has to offer in terms of 

analysis and its use in the field. The experiments establish what is called “ecological validity,” which is 

essential for real-world functionality.” See E-mail from Jeffrey Brantingham, Professor of 

Anthropology, UCLA, to Andrew Ferguson, Professor of Law, UDC David A. Clarke School of Law 

(Nov. 1, 2016) (on file with author). 
 300. Academic researchers at Rutgers University have produced studies on Risk Terrain Modeling, 

and further studies are ongoing. See supra notes 112, 167, 264, The Risk Terrain Modeling website 

includes a series of academic journal articles and book chapters detailing the results of RTM tests. See 
Publications, RUTGERS CTR. ON PUB. SEC., http://www.rutgerscps.org/publications.html (last visited 

Nov. 28, 2016). 

 301. Bond-Graham & Winston, supra note 4 (quoting Jerry Ratcliffe, the chair of Temple 
University’s department of criminology, as saying, “Testing these systems requires experimental 

conditions which are rarely conducted in policing and crime prevention, unfortunately.”). 

 302. See supra notes 107–109.  
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time with publicly released data, provided a means for other scholars to 

challenge and refine the theories. These studies did not, however, purport to 

prove that any particular technology could predict crime. While certain 

predictive policing theories have arisen from the academic environment, the 

drivers of predictive policing programs have largely been commercial 

entities. These companies, while supportive of the concept of scientific 

validity, also recognize that positive statistics, even without scientific 

validity, might be enough to convince police departments to purchase the 

technology. Thus, the veneer of scientific legitimacy has been embraced 

without significant peer-reviewed findings to back it up. 

In fact, the only independent scientific assessment of predictive policing 

technology resulted in largely inconclusive findings. A 2012 RAND report 

studied a predictive policing pilot program in Shreveport, Louisiana.303 

Funded in part by the National Institute of Justice, RAND sought to 

compare predictive policing techniques with traditional law enforcement 

methods. The report was “the first published randomized controlled trial 

(RTC) of predictive policing.”304 According to the Report, “[Shreveport 

Police Department] wanted to predict and prevent the emergence of . . . 

property crime hot spots rather than employ control and suppression 

strategies after the hot spots emerged.”305 Researchers conducted a twenty-

nine-week study evaluating six police units.306 The researchers adopted a 

traditional Predictive Policing 1.0 approach. This approach was not based 

on the technology developed by PredPol, RTM, or HunchLab, but was 

designed by Shreveport Crime Analysts with technical assistance from 

RAND analysts.307 To evaluate predicted areas of property crime, 

researchers factored in the presence of residents on probation or parole, the 

previous six months of tactical crime, forecasts of tactical crime, 911 calls 

for disorderly conduct, vandalism, juvenile arrests, and weighted fourteen 

days of tactical crime.308 After a lengthy study, RAND concluded, “Overall, 

the program did not result in a statistically significant reduction in property 

crime, as envisioned. This could be because the program does not work, the 

program was not implemented as intended, or that there was insufficient 

 

 
 303. HUNT ET AL., supra note 130, at 1. 
 304. Id.  

 305. Id.  

 306. Id. at 4. 
 307. Id. at 9 (“The predictive analytics team used statistical software to build and test regression 

models that estimate probabilities of crime, along with geospatial software to plot these estimated future 
probabilities of crime per geospatial unit onto maps.”). 

 308. Id. at 10. 
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statistical power to detect the effect.”309 Researchers conceded that such a 

finding does not mean that predictive policing cannot work, but merely that 

one approach in one location did not work.  

The lack of scientific studies remains a real vulnerability in the 

development of predictive policing. As will be discussed in the next section 

on transparency, this problem is exacerbated by the fact that much of the 

data rests in private hands and is controlled by proprietary interests.  

2. Scientific Studies: Responses 

The simple response to the lack of scientific studies would be to develop 

studies to test competing predictive policing technologies. These studies 

will likely emerge over time as part of the larger movement of evidence-

based policing. According to the Center for Evidence-Based Crime Policy 

at George Mason University, only a limited number of studies have been 

done with a moderate level of scientific rigor.310 That is beginning to change 

with the influence of the National Institute of Justice, which has begun 

funding such projects,311 and other philanthropic organizations focusing on 

data-driven criminal justice innovation.312 Other academic institutions such 

as the Rutgers Center on Public Security, host of the RTM research, have 

provided more funding for scholarly research into the effectiveness of 

predictive policing technologies.313 Further, as predictive policing gains 

currency in the media and academia, scholars will begin testing the 

scientific validity of the theories and how transferrable they are to other 

jurisdictions.314 

 

 
 309. Id. at 38. See also id. at 33 (“There was no statistically significant impact of the program on 

crime overall, but it is unclear if that is because of a failure in the program model or a failure in the 

program implementation.”). 
 310. See Evidence-Based Policing Matrix, CTR. FOR EVIDENCE BASED CRIME POLICY, 

http://cebcp.org/evidence-based-policing/the-matrix/ [https://perma.cc/29JV-VCTP] (providing a 
resource to collect and study evidence based policing studies). 

 311. See Law Enforcement Policing Strategies, NAT’L INST. OF JUSTICE, http://www.crime 

solutions.gov/TopicDetails.aspx?ID=84 [https://perma.cc/ET64-9YUF]. 
 312. PRETRIAL CRIMINAL JUSTICE RESEARCH, LAURA & JOHN ARNOLD FOUND. (Nov. 2013), 

http://www.arnoldfoundation.org/wp-content/uploads/2014/02/LJAF-Pretrial-CJ-Research-

brief_FNL.pdf; LAURA & JOHN ARNOLD FOUND., supra note 53. 
 313. See Risk Terrain Modeling, RUTGERS CTR. ON PUB. SEC., http://www.rutgerscps.org/ rtm.html 

[https://perma.cc/ML96-SZM8] (last visited Jan. 15, 2017). 

 314. Sherman, supra note 100, at 432 (“There is also a scientific question of how reliably research 
in one police agency (or more) will predict effectiveness in any other agency.”).  
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D. Transparency: Vulnerabilities and Responses 

The appeal of predictive policing has in large measure been that it offers 

a “black box” solution to crime. The corresponding vulnerability, however, 

is that such solutions lack sufficient transparency to ensure that the “black 

box” really works. The lack of transparency in data collection, data use, and 

effectiveness requires designing processes to guarantee that predictive 

policing technologies live up to the promise of their creation.315 

1. Transparency: Vulnerabilities  

As currently implemented, a lack of transparency exists at all levels of 

predictive policing. Even something as simple as crime statistics, which in 

many cases are publicly available, remain rife with concerns about accuracy 

and completeness.316 Adding personal data dossiers to these crime statistics 

creates new problems, as the sheer volume of information complicates 

transparent assessment of the sources underlying the predictions.317 How do 

you fix an error in the data if you cannot see that such an error exists? How 

do you even know who has the responsibility to input information into these 

big aggregated databases?318 In addition, unintended personal or cultural 

biases can infect the data, the scoring systems, the source codes, and thus 

the resulting predictive outcome.319 Simply stated, without significant 

investment in exposing the data collection methods, weaknesses, and gaps, 

and without equal investment in understanding the challenges associated 

 

 
 315. Zarsky, supra note 247 at 1521 (recognizing that transparency in the context of automated 

prediction must be broken down into three segments: “(1) the collection of data and aggregation of 
datasets, (2) data analysis, and (3) actual strategies and practices for using the predictive models, 

effectiveness of which could be measured by both the way they are applied ex ante and their final impact 

ex post”). 
 316. James F. Gilsinan, The Numbers Dilemma: The Chimera of Modern Police Accountability 

Systems, 32 ST. LOUIS U. PUB. L. REV. 93, 95 (2012) (“The simple act of deciding to count or not count 

something confers or denies a certain importance to an object or outcome.”). 
 317. Andrew M. Smith & Peter Gilbert, Privacy and Fair Credit Reporting Act Update—2014, 70 

BUS. LAW. 585, 586 (2015) (“The sheer volume of big data and the complexity of algorithms used to 

analyze it complicate transparency in data collection and use, and the rapidly increasing volume of 
aggregated personal data increases the risks of data security breaches for consumers.”). 

 318. Erin Murphy, supra note 174, at 831 (“Databases also are often, by their nature, secret from 

within. They have multifarious inputs, which means both that the identity of the relevant agent can be 
difficult to discern, along with their responsibility for particular substance.”). 

 319. Danielle Keats Citron & Frank Pasquale, The Scored Society: Due Process for Automated 

Predictions, 89 WASH. L. REV. 1, 25 (2014) (arguing for FTC transparency: “The FTC’s expert 
technologists could test scoring systems for bias, arbitrariness, and unfair mischaracterizations. To do 

so, they would need to view not only the datasets mined by scoring systems but also the source code and 

programmers’ notes describing the variables, correlations, and inferences embedded in the scoring 
systems’ algorithms.”). 
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with inputting and analyzing the data, the entire system runs the risk of 

being built on an unknown and unknowable database.320 

The nature of algorithms further obscures the process, except perhaps to 

technical experts. Police officers and administrators receive the results, but 

due to the complexity of the chosen algorithm they can rarely understand 

the underlying math. Thus, predictive policing runs into the same problems 

as other automated predictive technologies: the technical complexity of the 

design makes it nearly impossible for outsiders to determine the accuracy, 

effectiveness, or fairness of the program.321 True, police can see if the 

system works, but police cannot see how the system works. This lack of 

transparency is not simply the result of new technology, but also the 

influence of the proprietary nature of the software. The companies involved 

in these real-world tests are in a multimillion-dollar race to convince police 

departments to adopt their particular products. The companies have 

financial interests and proprietary secrets to protect, and every incentive to 

report positive outcomes.322  

Effectiveness itself remains a contested issue. Early tests show a 

correlation between use of certain predictive policing techniques and 

decreased crime rates (for some crimes). But how do police districts 

determine metrics in the future? Crime may go up or down independent of 

the chosen computer program. Crime analysts may make a more or less 

accurate comparative judgment. Most importantly, how can outsiders audit 

the data? In similar police data collection experiments (DNA databases, 

“stop and frisk” reporting), the police have audited themselves with mixed 

results.323  

These vulnerabilities exist with any data-driven solution, and, as such, 

lessons can be learned from other data-based systems. Every aspect of the 

data collection system must be imbued with a focus on transparency in an 

effort to catch, correct, and understand errors. 

 

 
 320. Wayne A. Logan & Andrew Guthrie Ferguson, Policing Criminal Justice Data, 101 MINN. L. 

REV. 541, 545–55 (2016). 

 321. Frank Pasquale, Restoring Transparency to Automated Authority, 9 J. ON TELECOMM. & HIGH 

TECH. L. 235 (2011) [hereinafter Restoring Transparency]; Zarsky, supra note 247, at 1534; Frank 

Pasquale, Beyond Innovation and Competition: The Need for Qualified Transparency in Internet 

Intermediaries, 104 NW. U. L. REV. 105 (2010); Oren Bracha & Frank Pasquale, Federal Search 
Commission? Access, Fairness, and Accountability in the Law of Search, 93 CORNELL L. REV. 1149, 

1159 (2008); Mark Fenster, The Opacity of Transparency, 91 IOWA L. REV. 885, 895–96 (2006). 

 322. Bond-Graham & Winston, supra note 4. 
 323. Stephen Mercer & Jessica Gabel, Shadow Dwellers: The Underregulated World of State and 

Local DNA Databases, 69 N.Y.U. ANN. SURV. AM. L. 639, 681 (2014) (discussing lack of transparency 

in local DNA databases); KELLEY & MCCARTHY, supra note 230. 
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2. Transparency: Responses 

Transparency is difficult, but it matters to a functioning predictive 

system that deals with individuals’ lives and liberty. Transparency serves as 

a check on governmental power.324 Intentional openness encourages better 

behavior of police on the street in recording data, administrators at 

headquarters in analyzing it, and error reduction at a systemic level.325 In 

the context of sophisticated algorithms, it may not ever be perfect,326 but a 

focus on transparency can create a better sense of trust in the technology.327 

It was for this reason that many people originally considered the public 

mapping of crime a victory for transparency advocates.328 

To ensure transparency three basic things must happen. First, an 

independent auditing system must be created to span the entire collection, 

analysis, and data maintenance process.329 Compliance systems must be 

created that can check whether and how data is being collected, recorded, 

and inputted.330 Auditing of the system must include peer review and outside 

testing of the algorithms.331 This audit would need to be conducted by 

professional data analysts who understand the predictive systems and can 

see whether the claims made are supported by the data. Finally, auditing 

systems must create a notice mechanism to preserve the auditing results and 

potentially publish them at the appropriate time. 

 

 
 324. Zarsky, supra note 247, at 1533 (“The most basic and popular justification for transparency is 

that it facilitates a check on governmental actions.”). 

 325. Mary D. Fan, Panopticism for Police: Structural Reform Bargaining and Police Regulation by 
Data-Driven Surveillance, 87 WASH. L. REV. 93, 129 (2012) (“Monitoring through data generation 

exerts its own control function. The greater transparency produced by data generation is a technique of 

police panopticism. When police are subject to the watchful gaze of courts, the public, and self-
surveillance, they behave in better conformity with expectations.”); Zarsky, supra note 247, at 1534 

(“Transparency facilitates ‘shaming.’ The fear that a broad segment of the public will learn of the 

bureaucrats’ missteps will deter these decision makers from initially engaging in problematic conduct.”). 
 326. Cynthia Dwork & Deirdre K. Mulligan, It’s Not Privacy, and It’s Not Fair, 66 STAN. L. REV. 

ONLINE 35, 37 (2013) (“Exposing the datasets and algorithms of big data analysis to scrutiny—

transparency solutions—may improve individual comprehension, but given the independent (sometimes 
intended) complexity of algorithms, it is unreasonable to expect transparency alone to root out bias.”). 

 327. Julie Brill, The Internet of Things: Building Trust and Maximizing Benefits Through Consumer 

Control, 83 FORDHAM L. REV. 205, 215 (2014) (discussing transparency and trust in the context of the 
Internet of Things). 

 328. Gilsinan, supra note 316, at 93–94 (“The increasing use of accessible, web-based, real time 

crime data, using geographic information system (GIS) technology to display neighborhood crime 
patterns, represents the move toward transparency on the part of major city police departments.”).  

 329. Zarsky, supra note 247, at 1553–68 (advocating for strong process protections to compensate 

for the difficulty of making predictive algorithms transparent). See also, e.g., Pasquale, Restoring 
Transparency, supra note 321, at 235–36; Erik Luna, Transparent Policing, 85 IOWA L. REV. 1107, 

1163 (2000). 
 330. Danielle K. Citron, Technological Due Process, 85 WASH. U. L. REV. 1249, 1305 (2008). 

 331. See Logan & Ferguson, supra note 320, at 599.  
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Second, metrics must be publicly released to allow a judgment about 

whether the promise of predictive policing has met its goal. A transparent 

system must provide a way to show that predictive policing works.332 This 

metric may be objective—a set target for a crime rate reduction. The metric 

may be comparative—a target set in comparison to a crime analyst’s 

prediction. The metric might be subjective—a judgment by a designated 

official that the program has met certain goals. Whichever types of metric 

are selected, some metrics that can be measured and evaluated are necessary 

to judge the effectiveness of any system. 

Finally, training programs within police departments must be established 

at all levels to ensure that the data processes work and are being followed. 

Everything that is going to be audited and judged by an officer should first 

be made part of a comprehensive training program.  

E. Accountability: Vulnerabilities and Responses 

 

Improved transparency leads to increased accountability.333 

“Accountability refers to the ethical obligation of individuals (in this case, 

governmental officials) to answer for their actions, possible failings, and 

wrongdoings.”334 The concepts of transparency and accountability, while 

related, are distinct. As Tal Zarsky has written, “[t]ransparency is an 

essential tool for facilitating accountability because it subjects politicians 

and bureaucrats to the public spotlight.”335 But accountability involves more 

than transparency’s sunlight, including providing citizens the power to hold 

decision-makers responsible for their actions.  

1. Accountability: Vulnerabilities 

Police accountability has long been a fraught issue, involving local 

political tensions, community tensions, and legal oversight.336 Adoption of 

 

 
 332. See Ferguson, Predictive Policing, supra note 20, at 324 (“To allow predictive policing such 

influence without mechanisms of accountability for the data and analysis, and without full transparency, 
may result in a troubling lack of protection for individuals who end up in the forecasted areas.”). 

 333. David A. Harris, Across the Hudson: Taking the Stop and Frisk Debate Beyond New York City, 

16 N.Y.U. J. LEGIS. & PUB. POL’Y 853, 878 (2013) (“One hears the term ‘transparency’ in many contexts 
these days. The idea is that by making the workings of government open to public scrutiny, the public 

will better understand what those in charge are doing, and can hold officials accountable in appropriate 

ways.”).  
 334. Zarsky, supra note 247, at 1533. 

 335. Id. at 1533–34. 

 336. See generally Rachel A. Harmon, The Problem of Policing, 110 MICH. L. REV. 761 (2012).  
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predictive policing technologies changes little about these ongoing issues. 

This section looks at specific concerns with predictive policing, putting 

aside larger structural issues with police accountability in general. 

As discussed earlier, the lack of transparency and technological expertise 

make accountability very difficult. Political and community leaders can be 

held accountable only if individuals understand what the predictive 

technology is doing. As it currently stands, many politicians defer to the 

“black box” promise of predictive policing without actually understanding 

why or how it works. Even with robust data collection and sharing, most 

politically accountable leaders care as much about the bottom line crime 

statistics (up or down) than the efficiency or fairness of any particular 

technology. In fact, political accountability has only rarely taken the lead in 

police accountability, as politicians usually delegate authority to local police 

chiefs, thus insulating themselves from responsibility for the results.337 

A larger issue involves lack of legal accountability for most internal 

policing decisions. With the exception of federal oversight through practice 

and pattern lawsuits338 and individual civil rights lawsuits,339 there are few 

legally cognizable claims a plaintiff or the government can raise regarding 

policing strategy. This means police administrators can choose the approach 

that they believe works best for their communities without running afoul of 

constitutional challenges.340 Even the NYPD stop and frisk lawsuits—one 

of the most prominent challenges to policing in recent memory—did not 

directly focus on the choice of police tactics, but on the racially disparate 

impact of the practices.341 Similarly, there will be no accountability-based 

legal challenges to predictive policing, absent some inequity in application. 

Finally, a lack of accountability exists because of the immaturity of the 

technology. Predictive policing is still experimental, and as such it gets the 

benefit of being thought too new to judge. This may well be true, but the 

nature of the technology is that it will always be new. Predictive policing 

 

 
 337. See Barry Friedman & Maria Ponomarenko, Democratic Policing, 90 N.Y.U.L. REV. 1827, 

1831 (2015) (“Policing agencies may not be entirely immune from democratic oversight–police chiefs 

typically serve at the pleasure of the mayor, police commission, or city council, and sheriffs are directly 
elected by the people…. Given their incentives, executive officials to whom police report typically will 

grant policing agencies carte blanche so long as crime remains in check.”). 

 338. See generally Samuel Walker, The New Paradigm of Police Accountability: The U.S. Justice 
Department “Pattern or Practice” Suits in Context, 22 ST. LOUIS U. PUB. L. REV. 3 (2003). 

 339. See David Rudovsky, Litigating Civil Rights Cases to Reform Racially Biased Criminal Justice 

Practices, 39 COLUM. HUM. RTS. L. REV. 97, 116–19 (2007). 
 340. But see Henry Gass, Chicago Police, ACLU Reach Agreement on ‘Stop and Frisk’ Practice, 

THE CHRISTIAN SCI. MONITOR (Aug. 7, 2015), http://www.csmonitor.com/USA/Justice/2015/0807/  

Chicago-police-ACLU-reach-agreement-on-stop-and-frisk-practice [https://perma.cc/2KPQ-9P84]. 
 341. See, e.g., Floyd v. City of New York, 959 F. Supp. 2d 668 (S.D.N.Y. 2013) (addressing the 

constitutionality of the NYPD’s stop and frisk practices). 
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technologies, almost by definition (if not design), will continue to improve, 

innovate, and change. In that constantly shifting framework, it will be a 

moving target to say any particular technique has failed.342 Presumably, the 

next generation of the technology will fix the error, and there may never be 

a moment of true accountability.343 Such is the nature and speed of 

continuously innovating technologies. By the time evaluators have 

accounted for past successes or failures, the technology will already have 

evolved to the next version. 

2. Accountability: Responses 

Despite vulnerabilities, predictive policing can be a force for 

accountability. The original data-driven police systems were created to 

foster accountability.344 In New York City, Commissioner Bratton’s 

innovation of demanding real-time reports of crime statistics allowed for 

both internal and external accountability about crime rates.345 CompStat 

organizational meetings literally brought police leaders into a room to be 

held accountable for what had happened in their district.346 The recognition 

that accountability matters should be central to the next generation of 

predictive policing technologies. 

At an operational level, if accountability becomes a priority, the data-

driven nature of the technologies makes accountability easier to implement. 

Building off the CompStat model, such statistics could be made available to 

city administrators and the larger community.347 In some jurisdictions, 

 

 
 342. The 2016 RAND study of Chicago’s Heat List proves the point. See supra note 192 and 
accompanying text. RAND found the algorithm and program provided no statistical evidence that the 

Heat List worked to reduce violence. The Chicago Police discounted this criticism, stating that the 

algorithm had since been improved, so any criticism was dated and unwarranted. See Stroud, supra note 
192. 

 343. Stroud, supra note 193 (discussing the Chicago Police Department’s upgrade of the algorithm 

since the RAND study had been conducted). 
 344. Ferguson, supra note 73, at 193 (“CompStat created an integrated data-management system 

for police statistics that required weekly data updates, crime mapping, targeted police responses, and an 

accountability mechanism that was primarily data driven.”); Ronal W. Serpas & Matthew Morley, The 
Next Step in Accountability Driven Leadership: “CompStating” the CompStat Data, POLICE CHIEF 

MAG. (May 2008), http://www.policechiefmagazine.org/magazine/index.cfm?fuseaction=display_arch  

&article_id=1501&issue_id=52008.  
 345. Gilsinan, supra note 316, at 94 (“[T]he rapid adoption of COMPSTAT-like programs in mid 

to large size departments speaks to a willingness to be held accountable for crime occurrences and their 

control.”). 
 346. Willis et al., supra note 80, at 148; Eli B. Silverman, With a Hunch and a Punch, 4 J.L. ECON. 

& POL’Y 133, 144–45 (2007). 

 347. Robert D. Behn, THE PERFORMANCESTAT POTENTIAL: A LEADERSHIP STRATEGY FOR 

PRODUCING RESULTS, 12–21 (2014). 
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crime data regularly gets reported to the public through open-access 

websites. Posting the predictive policing results (after they have been 

utilized by police) would provide the public with a mechanism to assess the 

technology’s efficacy, fairness, and scope.  

At a theoretical level, the world of data-driven police accountability is 

just being imagined.348 While beyond the scope of this article, scholars have 

proposed a host of data-driven tactics to hold police accountable to the 

community.349 Technologies that can track and record police activity have 

been proposed.350 Consumer technologies that “police the police” have been 

developed.351 Administrative procedures have been suggested.352 New legal 

oversight structures that involve both federal intervention and community 

accountability have been envisioned.353 What these suggestions share in 

common is a belief that a focus on police data might provide a two-way 

street of accountability—reducing crime and reducing police misconduct.354 

F. Practical Implementation: Vulnerabilities and Responses 

Even assuming perfect data collection and well-calibrated algorithms, 

vulnerabilities exist in applying predictive policing techniques to the real 

world of police practice. While application will be different in each 

 

 
 348. I. Bennett Capers, Crime, Surveillance, and Communities, 40 FORDHAM URB. L.J. 959, 961 

(2013); Kami Chavis Simmons, New Governance and the “New Paradigm” of Police Accountability: A 
Democratic Approach to Police Reform, 59 CATH. U. L. REV. 373 (2010). 

 349. Andrew Guthrie Ferguson, Policing ‘Stop and Frisk’ with ‘Stop and Track’ Policing, 

HUFFINGTON POST (Aug. 17, 2014, 4:54 PM), http://www.huffingtonpost.com/andrew-guthrie-
ferguson/policing-stop-and-frisk-w_b_5686208.html [https://perma.cc/A3LW-8KT3]. See also infra 

Part III.H.1. Cf. Sherman, supra note 100, at 392. 

 350. Kenneth A. Bamberger, Technologies of Compliance: Risk and Regulation in a Digital Age, 
88 TEX. L. REV. 669, 723 (2010) (discussing regulating technologies); Fan, supra note 325. 

 351. ACLU Launches Police Watch App in Oregon and Other States, ACLU (Nov. 6, 2014), 

https://www.aclu.org/news/aclu-launches-police-watch-app-oregon-and-other-states 
[https://perma.cc/5SRM-UW75]; Law Enforcement Wants Police-Tracking App Waze Disabled, U.S. 

NEWS & WORLD REPORT (Jan. 26, 2015, 5:00 PM), http://www.usnews.com/news/articles/2015/ 

01/26/law-enforcement-wants-police-tracking-app-waze-disabled [https://perma.cc/TL2G-RLW5]. 

 352. Harmon, supra note 336, at 762–64 (discussing the importance of sub-constitutional 

regulations to improve police accountability); David A. Harris, How Accountability-Based Policing Can 

Reinforce—Or Replace—the Fourth Amendment Exclusionary Rule, 7 OHIO ST. J. CRIM. L. 149, 195, 
203–07 (2009). 

 353. Walker, supra note 338. 

 354. See, e.g., Rachel Harmon, Why Do We (Still) Lack Data on Policing?, 96 MARQ. L. REV. 1119, 
1134 (2013) (“Federal law authorizes federal agencies to produce data on law enforcement, but those 

data are not well tailored to facilitate public accountability, strengthen local governance, or improve 

state and federal regulation of the police.”); Andrew E. Taslitz, Foreword: The Political Geography of 
Race Data in the Criminal Justice System, 66 LAW & CONTEMP. PROBS. 1, 11–12 (2003) (“Data 

collection and revelation can play a part in improving police-community relations because transparency 

and accountability breed trust.”). 
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jurisdiction, certain commonalities exist that need to be studied before 

adoption. This section examines the reality for police officers on the street, 

and the next section examines the impact on police administration and 

policy. 

1. Practical Implementation: Vulnerabilities 

New predictive policing technologies may shift the way police officers 

do their jobs. This may include where police patrol, how they patrol, and 

how they treat the people they interact with on patrol. For example, early 

reports out of Los Angeles offer cautionary lessons about deployment. The 

San Francisco Police Department’s Chief Information Officer, Susan 

Merritt, publicly expressed concern that police could become too fixated on 

the boxes.355 “In L.A. I heard that many officers were only patrolling the red 

boxes, not other areas . . . . People became too focused on the boxes, and 

they had to come up with a slogan, ‘Think outside the box.’”356 While this 

was certainly not the intent of the program, in practice the goal of targeting 

certain areas overwrote normal policing strategy. Police officers, told to 

focus on predicted areas, focused on those areas to the neglect of others. 

In addition, officers’ perceptions about predicted areas can become 

distorted. If expecting to find a high crime area, police will become hyper-

vigilant about the perceived dangerousness of the area. As criminologist 

Peter Scharf worried, “the red-box designation might cause young cops to 

exaggerate a neighborhood’s dangers.”357 Obviously, this sense about an 

area or individuals in an area may also affect how police officers treat a 

suspect. Issues of implicit or explicit bias discussed earlier in the context of 

crime data are also at issue in how police treat citizens on the streets. The 

perception of danger may be well-grounded in crime data, making it 

difficult or dangerous for police officers to ignore. After all, if police are 

targeting violent shootings in particular areas, officers would be wise to be 

cautious in interacting with people they encounter. 

Adoption of a predictive policing strategy can also have other 

unintended impacts on police practice. An interesting byproduct of the 

RAND study on the Shreveport Police Department’s experiment was the 

revelation of how the new technology impacted routine police tactics.358 As 

described in the RAND study, police shifted their emphasis from generating 

 

 
 355. Bond-Graham & Winston, supra note 4. 
 356. Id.  

 357. Huet, supra note 3. 

 358. HUNT ET AL., supra note 130, at 12. 
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arrests to developing intelligence, or (in the parlance of the officers) from 

increasing the quantity of arrests to increasing “quality arrests.”359 This 

meant in practice that police were encouraged to do more intelligence 

gathering by using their continuing presence in the predicted area. As 

described: 

There was a large emphasis on intelligence gathering through 

leveraging low-level offenders and offenses. Officers stopped 

individuals who were committing ordinance violations or otherwise 

acting suspiciously and would run their names through database 

systems. If an individual had significant prior convictions, he or she 

would be arrested for the violation (as applicable). If the individual 

was on probation or parole, officers would check his or her standing 

with the parole or probation officers. For those not in good standing, 

a parole or probation officer was asked to come to the scene. Lastly, 

individuals with warrants were arrested. For those not meeting these 

criteria, officers stated that they gave these individuals a warning and 

were as polite as possible in order to note that they were trying to take 

action against property crimes in the area and to ask whether the 

individual had any knowledge that would be useful to police.360 

Police admitted that under this new guidance they “[s]topped and 

questioned juveniles committing truancy offenses” more often, “[w]alked 

around apartment complexes and discussed criminal activities in [the] area, 

particularly narcotics, with residents,” and “[v]isited people they kn[e]w, 

especially parolees, probationers, and truants, to learn about criminal 

activities (largely drug activity) in the neighborhood.”361 This extra 

emphasis on individual interaction—arguably more of a micro-community 

policing initiative—362 was caused by the data-driven targeting of particular 

areas. Patrol officers began focusing on who was in these areas and used 

information from those individuals to generate leads for other crimes. 

One way to look at the result is that officers began prioritizing the 

investigation of other crimes and developing suspects not normally 

associated with the investigation of property crimes.363 This extra 

 

 
 359. Id. at 12–13. 
 360. Id. at 12.  

 361. Id. at 13. 

 362. See generally James Forman, Jr., Community Policing and Youth as Assets, 95 J. CRIM. L. & 

CRIMINOLOGY 1 (2004); Tracey L. Meares, Praying for Community Policing, 90 CALIF. L. REV. 1593 

(2002). 
 363. HUNT ET AL., supra note 130, at 13 (“Officers reported that PILOT changed the amount of 

recent information provided per case. This occurred because PILOT officers at a crime scene asked more 
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information was then passed on to detectives who, counter-intuitively, were 

less than appreciative because it added more investigative responsibilities 

from cold leads.364 In practice, detectives resented receiving this 

information without a connection to an actual case. While the additional 

information should have been helpful in developing an intelligence-oriented 

approach to a community, without the appropriate information-management 

structure it actually produced resistance among police colleagues.365 

Further, this patrol-level intelligence focus delayed officers from continuing 

on to the next emergency call for service.366  

This change in policing strategy resulted in both positive and negative 

community effects independent of the crime rate, which remained 

unchanged. From the positive side, 

According to officers, since the public saw so-called real criminals 

being inconvenienced and since police were conducting more follow-

up questions after crimes, the public became more willing to provide 

additional information or call in with tips. This improved relationship 

with the public was evidenced, in part, by members of the public 

waving hello to patrol cars.367 

On the less positive side, more people were stopped in these areas and 

inconvenienced without any corresponding reduction in the crime rate. 

Predictive policing resulted in more social control of communities already 

targeted by the criminal justice system. Predictive policing, thus, changed 

the reality on the street, even if it had no statistical impact on the crime rate. 

On the opposite side of the spectrum from police being too engaged in 

predicted areas, or too involved in investigating individuals in those areas, 

is the concern that police will simply ignore the predictive tools. While 

initial adoption of predictive policing has been met with general acceptance, 

some veteran officers have dismissed the idea as telling them what they 

already know.368 Many experienced police officers not only have a good 

sense of the likely areas of crime, but an instinct that has served them well 

 

 
questions of victims, their neighbors, and individuals in the neighborhood, which is not normally done 
for property theft cases, as there is not enough time before officers have to respond to another call for 

service.”).  

 364. Id. (“Officers indicated that this was problematic for solving the case, because officers were 
essentially handing detectives a cold case when the detectives already had full caseloads.”).  

 365. Id. 

 366. Id.  
 367. Id. at 26. 

 368. Vince Beiser, To Catch a Thief, SANTA CLARA MAG. (Winter 2013), http://www.scu 

.edu/scm/winter2013/features.cfm?c=15053 [http://perma.cc/H8U3-S6KW] (“On a more practical 
level, hard-headed street cops are understandably skeptical about the whole notion.”). 
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before geo-locational mapping technology was available.369 Further, some 

question the utility of only focusing on place. As one Santa Cruz patrol 

officer stated: 

This box here [pointing a PredPol predicted area], it doesn’t tell us 

what crime or who to watch out for. We know this is a busy street 

with a lot of stuff getting stolen out of parked cars. We don’t need 

predictive policing to tell us that. I personally don’t think it’s very 

helpful . . . . Most of my guys feel the same way.370  

In the Shreveport RAND study, some officers complained that chasing the 

boxes was a waste of time and fuel, even as others thought the experiment 

was an improvement on traditional techniques.371 Even the best predictive 

policing system will not provide useful information if it is ignored by the 

police charged with implementing it.  

2. Practical Implementation: Responses 

Two main responses exist to the vulnerabilities in implementing 

predictive policing technologies. First, the technology will require an 

additional level of administrative review to examine how police officers are 

implementing the data-driven mission. This administrative focus involves 

both an awareness of what is being measured and how this measurement 

may shape officer actions. Second, predictive policing requires training and 

compliance mechanisms to ensure that police are, in fact, utilizing the 

technology as designed. The administrative responses discussed in this 

section are targeted to the actions of police on the streets, independent of 

the concern discussed in the next section of how predictive policing might 

affect broader administration policy. 

The need for oversight responds to the concern that police officers will 

react to how they are evaluated. If “quality arrests” means those individuals 

with more informational value, rather than the number of arrests, then police 

practice will change. If police are rewarded for spending more time in the 

targeted box, then police will follow those incentives. The difficulty is that 

neither of those ways might be the best way to reduce crime. That is to say, 

the metrics being established may be consistent with the technology, but not 

 

 
 369. Alene Tchekmedyian, Police Push Back Against Using Crime-Prediction Technology to 

Deploy Officers, L.A. TIMES (Oct. 4, 2016, 8:00 PM), http://www.latimes.com/local/lanow/la-me-
police-predict-crime-20161002-snap-story.html [https://perma.cc/NL7V-3ZKW] (describing police 

officers in Burbank, California’s reluctance to use the predictive policing technology). 
 370. Beiser, supra note 368. 

 371. HUNT ET AL., supra note 130, at 14. 
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the ultimate goal of crime reduction. 

Similarly, following the technology without additional training may 

create a distorted picture of targeted areas or targeted individuals. Many 

people live and work in areas of targeted crime, and the vast majority of 

them do not engage in criminal activity. Priming police officers’ responses 

in ways that encourage aggressive policing in particular areas might 

undermine the larger social goals of police-citizen cohesiveness or 

community building. Training on the implications of implicit bias or 

confirmation bias may reduce some of those negative impacts. And, as can 

be seen at least from the police perception of the RAND project, some 

community members had a better understanding of why police were present 

in their community and responded with positive acts of good will,372 

meaning that these programs might have positive results for those broader 

community goals. 

In addition, training and compliance is necessary to ensure that the 

system designed becomes the system implemented. Many systems can be 

undercut at the ground level by very practical problems. For example, in 

Shreveport, the predictive policing experiment was hampered by the fact 

that the police had a limited number of police cars with air conditioning 

available during the hot Louisiana summer.373 Fewer cars meant fewer 

volunteers for the project. Other problems arose, too; for example, while the 

“predictive analytics team produced the maps and attended roll calls to 

provide and discuss maps and other intelligence gathered, . . . [t]he 

participants did not attend the planned monthly deployment meetings.”374 

This information gap created implementation problems.375 Each of these 

problems could be addressed with better management, but it takes 

identifying these foreseeable challenges before implementation to solve 

them. 

G. Administration: Vulnerabilities and Responses 

Parallel to the practical concerns of implementing predictive policing on 

the streets are the administrative and management concerns associated with 

running a predictive policing system. Stepping back to consider the 

traditions of police practice, the act of centralizing data with administrators 

and analysts means a shift in power from police officers to police 

 

 
 372. Id. at 26. 
 373. Id. at 15. 

 374. Id. at 23. 

 375. Id.  
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administrators.376 As has been noted concerning the proto-predictive 

policing CompStat system, data tend to centralize power to those who 

crunch the numbers.377 In New York City under CompStat, police 

administrators studied and were held accountable for weekly changes in 

crime statistics, which shaped staffing allocation, police tactics, and 

resource deployment.378 The result did contribute to the reduction of crime 

rates, but also dramatically shifted decision-making power to those who 

controlled the data.379 

1. Administration: Vulnerabilities 

For administrators, three interrelated vulnerabilities exist in any system 

influenced by predictive algorithms. The first involves the natural 

inclination to be overly influenced by data-based metrics. If the identified 

metrics revolve around arrests, then arrests are what get measured and 

tracked.380 If monetary fines for minor crimes are the goal, then police focus 

on those fines.381 If administrators are rewarded for crime-rate reduction, 

then crime-rate reduction data becomes the controlling focus.382 The 

consequences of an arrest-driven stop and frisk policy in New York City, or 

a fine-driven system in Ferguson, Missouri, resulted in significant damage 

to the relationship between police and residents in those areas.383 Similarly, 

a potential vulnerability for predictive policing systems is that data collected 

and analyzed becomes prioritized over other crime-stopping measures. 

As a related concern, a well-understood byproduct of data-driven 

 

 
 376. George L. Kelling, Why Did People Stop Committing Crimes? An Essay About Criminology 
and Ideology, 28 FORDHAM URB. L.J. 567, 578 (2000). 

 377. Silverman, supra note 346, at 146 (describing how COMPSTAT reinforced a top-down 

command and control model). 
 378. Willis et al., supra note 80, at 148.  

 379. Id. 

 380. Issa Kohler-Hausmann, Managerial Justice and Mass Misdemeanors, 66 STAN. L. REV. 611, 
633 n.53 (2014) (“There is also significant evidence to show that as time passed misdemeanor arrests 

and summonses became institutionalized as performance metrics inside the NYPD and incentivized by 

their quantitative management system, irrespective of the quality-of-life or crime-reducing benefit of the 
activities.”). 

 381. U.S. DEP’T OF JUSTICE, INVESTIGATION OF THE FERGUSON POLICE DEPARTMENT 79 (2015), 

https://www.justice.gov/sites/default/files/opa/press-
releases/attachments/2015/03/04/ferguson_police_department_report.pdf [https://perma.cc/T6CM-

JDB5] (detailing a systemic focus on collecting fines through minor criminal and civil enforcement 

actions). 
 382. Al Baker & Ray Rivera, On Secret Tape, Police Press a Tickets Quota, N.Y. TIMES, Sept. 10, 

2010, at A1 (“[T]here is persuasive evidence of the existence of quotas.”); Jim Hoffer, NYPD Officer 

Claims Pressure To Make Arrests, WABC-TV (Mar. 2, 2010, 10:37 PM), http://abclocal.go.com/ 
wabc/story?section=news/investigators&id=7305356 [http://perma.cc/66T3-6VB7]. 

 383. U.S. DEP’T OF JUSTICE, supra note 381, at 79. 
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systems is data-based myopia. Police administrators follow the data even if 

questions arise from it. This phenomenon is called “automation bias,” and 

can be observed in many contexts.384 As Kenneth Bamberger writes, 

“Human judgment is subject to an automation bias, which fosters a tendency 

to ‘disregard or not search for contradictory information in light of a 

computer-generated solution that is accepted as correct.’”385 In the 

predictive policing context, this focus might result in following the 

judgment of algorithms at the expense of other information. In the 

Predictive Policing 1.0 context, this could just amount to a waste of 

resources (such as sending patrol cars to the wrong box). But in the 

Predictive Policing 3.0 context, it could lead to erroneous contact with 

individuals wrongfully suspected of a crime. Blind reliance on such 

automated results leads to what Gary T. Marx, professor emeritus of 

sociology at the Massachusetts Institute of Technology, termed “the tyranny 

of the algorithm.”386 

The combination of policy priorities and automation bias can also create 

self-reinforcing or self-fulfilling predictions.387 Predictive policing 

technologies direct officers to certain areas, which causes them to make 

arrests in those areas, which generates arrest statistics to be fed into some 

future algorithm, which in turn identifies those areas as higher crime 

areas.388 Administrators focus on those areas because of the predictive 

validity of the tip, and the cycle repeats. This phenomenon has been 

recognized in both early crime mapping experiments389 and modern 

predictive policing projects.390 As the RAND study reported: 

An additional issue noted by officers was that the predicted hot spots 

changed little from month to month—for the most part, grid squares 

flagged one month would show up the next month. RAND team 

 

 
 384. Citron, supra note 330, at 1271–72 (2008) (defining “‘automation bias’—the ‘use of 

automation as a heuristic replacement for vigilant information seeking and processing.’”) (quoting Linda 

J. Skitka et al., Automation Bias and Errors: Are Crews Better Than Individuals?, 10 INT’L J. AVIATION 

PSYCHOL. 85, 86 (2000)). 

 385. Bamberger, supra note 350, at 711–12 (2010) (quoting Mary L. Cummings, Automation and 

Accountability in Decision Support System Interface Design, 32 J. TECH. STUD. 23, 25 (2006)). 
 386. Berg, supra note 15. 

 387. Kevin Miller, Total Surveillance, Big Data, and Predictive Crime Technology: Privacy’s 

Perfect Storm, 19 J. TECH. L. & POL’Y 105, 124 (2014) (“[E]ven relatively unbiased models may be 
plagued by self-reinforcement: police look for crime where the model tells them to look, and each time 

they find it the model seems more valid—much like the proverbial drunk who only looks for his keys 

under the streetlight because that is where the light is.”). 
 388. Sengupta, supra note 137; Rashbaum, supra note 229, at 1. 

 389. Ferguson, supra note 73, at 195 (describing early crime mapping strategies in Miami-Dade 

County). 
 390. HUNT ET AL., supra note 130, at 27. 
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members, for example, observed officers on ride alongs . . . looking 

at newly distributed maps and remarking that they already knew 

where the hot spots were.391 

Some predictive technologies attempt to avoid this trap by only focusing on 

reported crimes, not arrests (like PredPol). But other technologies’ 

predictions, as an examination of the RAND Shreveport factors shows 

(presence of residents on probation or parole, previous six months of tactical 

crime, juvenile arrests, etc.), analyze factors that will not quickly shift over 

time, creating rather fixed predicted areas of crime. 

Finally, these self-fulfilling systems can create a ratchet effect that 

distorts a broader focus on crime suppression and undermines an efficient 

allocation of police resources. Harcourt has explained the inefficiency 

behind certain predictive strategies.392 He describes how predictive 

techniques require resources to investigate and arrest certain groups, 

resulting in a higher distribution of arrests of those groups.393 As he writes, 

“[c]riminal profiling, when it works, is a self-confirming prophecy. It 

aggravates over time the perception of a correlation between the group trait 

and crime.”394 At the same time, those not targeted may in fact increase their 

crime rates due to the shift in resources.395 Overall, crime may go up, even 

if the targeted population’s crime rate goes down. His insightful work 

carries far beyond the scope of this article, but offers another potential 

vulnerability associated with decisions by administrators as to how to 

allocate resources to implement predictive policing. 

 

 
 391. Id.  

 392. HARCOURT, supra note 23, at 145; Harcourt, supra note 34, at 112; Harcourt, supra note 40; 
Bernard E. Harcourt, A Reader’s Companion to Against Prediction: A Reply to Ariela Gross, Yoram 

Margalioth, and Yoav Sapir on Economic Modeling, Selective Incapacitation, Governmentality, and 
Race, 33 LAW & SOC. INQUIRY 265, 267–69 (2008) [hereinafter A Reader’s Companion to Against 

Prediction]. 

 393. HARCOURT, supra note 23, at 145 (describing a “ratchet effect”). 
 394. Id. at 154. 

 395. Id. at 124–25 (“If the police shift their allocation of resources away from white motorists and 

toward minority motorists, the offending rate among minority motorists may well decrease, but 
simultaneously the offending rate among white motorists may increase. The problem is, of course, that 

there are more white motorists. Depending on the relationship between the comparative elasticity of 

offending to policing of white and minority motorists and the comparative offending rates, the total 
increase in absolute numbers of offending by white motorists may outweigh the total decrease in absolute 

numbers of minority offending.”). But see Yoram Margalioth, Looking at Prediction from an Economics 

Perspective: A Response to Harcourt’s Against Prediction, 33 LAW & SOC. INQUIRY 243, 248–49 
(2008); Harcourt, A Reader’s Companion to Against Prediction, supra note 392, at 267–69. 
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2. Administration: Responses 

Because of the complexity and scale of police operations, the 

vulnerabilities inherent in administrating a predictive policing system are 

significant. Yet one of the most promising aspects of predictive policing 

systems is that they can be evaluated and changed in real time. For example, 

at the LAPD’s Real-Time Analysis and Critical Response Division, police 

administrators can evaluate crime data, security cameras, and satellite 

images showing recent arrests, and observe patterns and trends instantly.396 

This allows police administrators to respond in real time to increase patrols 

or design other intervention strategies. Similar programs exist in other large 

cities, such as New York City.397 These predictive systems go beyond using 

data as productivity metrics to using data as strategic intelligence, which 

can result in a more adaptive approach to policing. 

Police systems can also adapt by taking select aspects of predictive 

policing and linking them to other types of police intervention. Certainly, 

by investing time and energy into building a predictive policing strategy, 

the risk becomes that the technology will control the outcome. But 

sometimes other synergies result. While the RAND study ultimately 

concluded that predictive policing did not reduce the crime rate in 

Shreveport, it did generate a more intelligence-focused policing strategy. 

Perhaps some jurisdictions will adopt predictive policing techniques not 

primarily to reduce crime, but to rethink their strategies for gathering 

information from the community. Predictive policing might inadvertently 

promote an intelligence-based, problem-solving approach, and that could be 

a positive result in its own right. 

H. Vision: Vulnerabilities and Responses 

One step removed from the administration of predictive policing 

technologies exist the deeper questions of whether a focus on predicting 

crime addresses the ultimate goal of reducing crime in society. Generally 

speaking, police administrators or police officers are not tasked with “the 

 

 
 396. Berg, supra note 15. 
 397. See Thomas H. Davenport, How Big Data is Helping the NYPD Solve Crimes Faster, FORTUNE 

(July 17, 2016), http://fortune.com/2016/07/17/big-data-nypd-situational-awareness/; Chris Dolmetsch 

& Henry Goldman, New York, Microsoft Unveil Join Crime-Tracking System, BLOOMBERG (Aug. 8, 
2012) https://www.bloomberg.com/news/articles/2012-08-08/new-york-microsoft-unveil-joint-crime-

tracking-system; TALKPOLITIX, New York City - Domain Awareness, YOUTUBE (June 7, 2013), 

https://www.youtube.com/watch?v=ozUHOHAAhzg (excerpt from NOVA - Manhunt - Boston 
Bombers, New York City Domain Awareness System). 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5



 

 

 

 

 

 

2017] POLICING PREDICTIVE POLICING 1181 

 

 

 

 

vision question,” but by adopting a predictive strategy they have, in part, 

helped answer it. This section explores three big questions about how 

predictive policing shapes our vision of criminal justice policy. By adopting 

a data-driven, crime-based predictive approach, certain other aspects of the 

crime problem become obscured or distorted. 

1. Vision: Vulnerabilities 

The vision question looks at three choices the current policing system 

has made which are reinforced by the move toward predictive policing: (1) a 

focus on targeted hotspot places, and not overall crime patterns; (2) a focus 

on crime statistics, and not root socio-economic problems; and (3) a focus 

on criminal activity, and not police activity.  

First, predictive policing raises the problem of displacement. The utility 

of predictive policing relies on its geo-locational precision. The smaller the 

predicted areas, the easier it becomes for police to target and disrupt crime 

in those areas. The question, however, is whether—even assuming crime 

goes down in the hotspot areas—the overall crime rates also go down.398 

The general trends have been positive, but the continued focus on particular 

areas does not address the displacement effect. Scholars have been debating 

displacement for years, as the issue emerged in studying pre-predictive hot 

spots, or other targeted areas of crime.399 The concern of displacement is 

that police may succeed in shifting crime from one place to another, but not 

actually in reducing overall crime.  

Second, there exists the perennial question of why we direct our energy 

and investment to invent new police technologies, rather than spend that 

same money to target the root problems underlying crime. Most property-, 

drug-, and gang-related crime occurs in poor neighborhoods where residents 

have significant socio-economic disadvantages. Predicting levels of crime 

might be less constructive than addressing the foreseeable barriers to 

education, employment, and stable housing that contribute to an 

individual’s decision to turn to crime. This is so because remedying some 

of those disadvantages might provide a positive forecast for less criminal 

activity overall. 

 

 
 398. Bond-Graham & Winston, supra note 4 (“Ed Schmidt, a criminologist and veteran police 

officer. . . . [says] ‘I look at this all with skepticism . . . . Where are they coming from, how are they 
implementing [the technology]? Are they just displacing crime between divisions? Are they just 

displacing crime from one precinct to another? Mine goes down, yours go up?’”). 
 399. See, e.g., Doron Teichman, The Market for Criminal Justice: Federalism, Crime Control, and 

Jurisdictional Competition, 103 MICH. L. REV. 1831, 1839–40 (2005) (discussing the displacement 

effect literature).  
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Third, another big question is why we focus on criminal activity and not 

also police activity to reduce crime. For example, crime mapping is now a 

routine part of policing, as reported crimes, calls for service, and arrests are 

regularly monitored and mapped.400 But this mapping is incomplete because 

it does not include information about where the police officers were at the 

time of the crime. Were the officers two blocks away when the robbery 

occurred? Had they just passed the alley? Were there physical barriers 

keeping police from seeing the crime? These questions could be analyzed 

by a complete crime map that included both reported crimes and real-time 

police locations during those reported crimes. Just as seeing the place of 

crime can provide insights about the cause of crime, seeing the location of 

police officers (through GPS mapping) during the crime can provide 

insights about the failure to prevent it.401 In addition, police supervisors 

would have a better sense of what the officer is doing on a daily basis, 

including a complete record of the officer’s daily travels.402 A focus on “stop 

and track policing”403 would allow police administrators to see the near 

misses, the areas in need of attention, and even daily logs of police 

interaction with the community. By focusing on both aspects of the problem 

(the location of crimes and the location of police during the crimes), police 

administrators might be better able to address the gaps in coverage. 

Currently, we only see half the picture of how criminals and police interact.  

2. Vision: Responses 

The obvious response to concerns about “the vision question” is that 

predictive policing has never claimed to be the ultimate solution, but only 

an improvement over existing practices which have not managed to 

eradicate crime from society. While that is a fair response, it avoids 

addressing some of the intriguing possibilities arising from new predictive 

technologies if one takes the criticisms seriously. 

For example, the displacement effect may very well occur from an 

intensive targeting of selected areas. Criminal actors may react to policing 

 

 
 400. Ferguson, supra note 73, at 185, 191.  

 401. Sherman, supra note 100, at 434 (“Since then, technologies such as GPS have made such 
measurement even easier. All that is required is a commitment to tracking policing along with crime and 

an investment in information technology to produce the data and graphics. Mapping police presence in 

relation to crime harm, for example, would produce an algorithm that could identify outliers. Wherever 
a patrol district deployed its patrols (or arrests) in too great a departure from the occurrence of crime, a 

list of such “exceptions” can be generated for police managers. If they fail to correct the discrepancies, 

the lists can be reviewed in aggregate at COMP-STAT meetings.”). 
 402. Id. at 436. 

 403. Ferguson, supra note 349. 
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strategies in a way that avoids unnecessary exposure. But unlike some 

strategies, predictive policing is designed to account for that change. The 

targets of predictive policing are not static. An uptick in crimes in the next 

block over will make that block a new target. Many predictive policing 

strategies embrace the constantly evolving patterns of crime and the factors 

that contribute to it, designing equally evolving algorithms to track changes. 

In addition, displacement disrupts crime, making it harder to complete. 

This disruption effect may well be the reason for the observed reduction in 

crime rates. As proponents of predictive policing explain, increasing 

deterrence can be more impactful than increasing arrests.404 With Predictive 

Policing 1.0, placing the squad car in the box may not stop a thief from 

breaking into a car (it may only displace him), but it will disrupt him in the 

short term. For some, this disruption might be enough to prevent certain 

crimes of opportunity altogether. For other, more committed criminals, it 

might not. But either way, displacement acts as a barrier, increasing the 

costs, risks, and effort of crime. Similarly, while the nature of many violent 

crimes defies a pure deterrence rationale, displacement can at least reduce 

crimes on the margins. For example, retaliatory gang shootings regularly 

involve emotional motivations of loss, respect, bravado, and self-

sacrifice.405 The presence of additional police cruisers at the gang border 

may delay the immediate retaliatory shooting, and possibly even deter it 

completely. Estimates hold that one third of shootings are in retaliation for 

other shootings, so delaying the opportunity to retaliate and making it more 

difficult might reduce the overall number of violent acts.406 

Furthermore, predictive policing may not address the root causes of 

crime, but it does offer ways to identify some of those root causes. To be 

clear, as predictive policing is currently implemented police have not 

embraced this secondary use of the technology, but it exists and responds 

quite forcefully to the concerns. 

First, underlying the theory of Predictive Policing 1.0 are the 

environmental vulnerabilities that generate criminal activity. Instead of 

simply focusing on the targeted box, predictive policing can help ask why 

that box exists. Is it because the area is dark, difficult to patrol, or near other 

 

 
 404. Emily Thomas, Why Oakland Police Turned Down Predictive Policing, VICE MOTHERBOARD 

(Dec. 28., 2016), http://motherboard.vice.com/en_ca/read/minority-retort-why-oakland-police-turned-
down-predictive-policing (discussing how predictive policing shifted the strategic focus from generating 

arrests to preventing victimization). 

 405. Madhumita Venkataramanan, A Plague of Violence: Shootings are Infectious and Spread Like 
a Disease, SLATE, (May 18, 2014) (interviewing Gary Slutkin, Professor at University of Illinois and 

founder and executive director of CURE Violence). 

 406. Id. 
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attractors of crime (like bars or ATMs)? Some of those environmental issues 

are root causes, and can be remedied once identified. Predictive policing, if 

so used, can map out the social and economic vulnerabilities in an area, and 

(given the political will) help to improve them.407 

Second, the general theory behind Predictive Policing 3.0 is that certain 

individuals face external challenges that increase the chance for violence. 

The public health model for identifying people in need of protection could 

be expanded to identify people in need of other social services (education, 

employment, mental health treatment). While fraught with concern about 

stigma and stereotypes, this approach can lead to positive interventions 

between at-risk youth and government services.408  

Finally, as to whether predictive policing should embrace the task of 

studying police activity as well as criminal activity, there are two added 

benefits of doing so. First, all data, including police routes, patterns, and 

practices could be mapped against crime, creating a full picture of crime 

patterns. This would allow police to react more quickly to changing crime 

realities. Second, one could go even farther to try to predict police activity 

that might have a negative impact on community relations. Just as police 

investigators are beginning to turn to predictive analytics to target particular 

people suspected of committing crimes, so that same technology could be 

used to identify red flags or patterns of police misconduct.409 This is not to 

say that one could predict which officers will violate constitutional rights, 

but neither does the best system of predictive suspicion necessarily predict 

who will commit a crime. It simply focuses attention on potential 

vulnerabilities and risk factors that can and should be addressed.  

 

 
 407. See Kennedy et al., supra note 162 (discussing the RTM model, which includes addressing 
environmental vulnerabilities through a more holistic approach). 

 408. Goldberg, supra note 204; CITY OF NEW ORLEANS, supra note 204; David M. Kennedy, DON’T 

SHOOT: ONE MAN, A STREET FELLOWSHIP, AND THE END OF VIOLENCE IN INNER-CITY AMERICA 4, 6 
(2011). 

 409. In a similar vein, some jurisdictions have turned litigation data into early warning systems. See, 

e.g., Joanna C. Schwartz, What Police Learn from Lawsuits, 33 CARDOZO L. REV. 841, 845 (2012); 

Joanna C. Schwartz, Myths and Mechanics of Deterrence: The Role of Lawsuits in Law Enforcement 

Decisionmaking, 57 UCLA L. REV. 1023, 1061 (2010). Other jurisdictions have asked big data scientists 

to examine causes of police stress and violence. See, e.g., Michael Gordon, CMPD’s Goal: To Predict 
Misconduct Before it Can Happen, CHARLOTTE OBSERVER (Feb. 26, 2016), 

http://www.charlotteobserver.com/news/local/crime/inside-courts-blog/article62772592.html; Jaeah 

Lee, How Science Could Help Prevent Police Shootings, MOTHER JONES (May/June 2016), 
http://www.motherjones.com/politics/2016/04/data-prediction-police-misconduct-shootings. 

https://openscholarship.wustl.edu/law_lawreview/vol94/iss5/5
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I. Security: Vulnerabilities and Responses 

A predictive system based on crime data, police data, and personal data 

requires mechanisms to protect that data. Security difficulties arise both 

from generic data security vulnerabilities that affect all data-driven systems, 

as well as specific vulnerabilities that arise from the collection of law 

enforcement investigative data.  

1. Security: Vulnerabilities 

Police collect vast amounts of data, some quite personal. Pure crime 

statistics such as place, time, and type of crime present few concerns with 

privacy, and thus few concerns with security.410 In fact, many jurisdictions 

publicly post such information on the Internet.411 Other types of crime 

data—locations of domestic violence victims, gang associates, or known 

drug markets—may be more privileged, because they reveal personal 

information or because they could reveal tactical plans of police 

intervention. While police may wish to possess such data, public release 

could interfere with use of the information. For example, police would 

likely not want to forecast the next location of a predicted hot spot, in order 

to avoid undermining strategies to arrest the predicted perpetrators.  

The real problem arises with personal data in big data systems. While 

police benefit from collecting, aggregating, and sharing that individualized 

and sometimes-sensitive data, concerns about data security exist. Social 

network predictions or pattern matches are built on databases with personal 

identifying information.412 Social security numbers, dates of birth, addresses 

and other personal information form the basis of the networked information 

that can be linked and searched for clues about criminal patterns or 

relationships.413 For many police departments, the available databases have 

been either locally and organically developed or borrowed from larger 

national sources. Part of the reason for a lax data control system is that much 

of the raw data was properly collected through the criminal justice system, 

which is largely a publicly run, if not publicly accessible, data system. Such 

 

 
 410. Predictive Policing 1.0 systems, such as PredPol, thus have fewer data security issues. 
 411. See, e.g., Clear Map, CHICAGO POLICE DEP’T, http://gis.chicagopolice.org/clearmap/ 

startpage.htm (last visited Jan. 24, 2017). 

 412. EXEC. OFFICE OF THE PRESIDENT, BIG DATA: SEIZING OPPORTUNITIES, PRESERVING VALUES 
30–31 (2014).  

 413. See, e.g., Paul M. Schwartz & Daniel J. Solove, The PII Problem: Privacy and a New Concept 

of Personally Identifiable Information, 86 N.Y.U. L. REV. 1814, 1828–36 (2011); Tal Z. Zarsky, 
Governmental Data Mining and Its Alternatives, 116 PENN. ST. L. REV. 285, 330 (2011).  
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raw material requires fewer data security protocols, because of the 

perceived legitimate and quasi-public nature of the information. In addition, 

the posture of traditional police efforts did not embrace a robust data 

security mindset.414 While it has always been theoretically possible that 

criminal elements might hack into police databases, the concerns seemed 

less important than obtaining and maintaining the data about criminals. 

Police officials take care to keep the information confidential, but the 

information is not necessarily secure from external cyber threats. As such, 

data controls and data security protocols in police systems have lagged 

behind private databases. 

This reality has not changed despite the growing adoption and 

integration of larger third party and private networks.415 While the FBI and 

national criminal justice databases recognize the need to protect personal 

data,416 as these databases expand to include more sources of data, the 

information becomes more valuable and more vulnerable to data breaches. 

The recent inclusion of biometric data only increases the risk.417 These 

threats include internal dangers from rogue police officers misusing the 

personal data418 and external dangers of criminal elements hacking, 

manipulating, or erasing the data with damaging results to the investigative 

capabilities and legitimacy of the system.419 Finally, while perhaps of lesser 

 

 
 414. See Paul Suarez, AntiSec Hackers Steal, Post Police Data, PCWORLD (Aug. 6, 2011, 1:31 
PM), http://www.pcworld.com/article/237459/antisec_hackers_steal_post_police_data.html [https://perma. 

cc/432K-V2YD]. 

 415. Robert O’Harrow Jr. & Ellen Nakashima, National Dragnet Is a Click Away, WASH. POST 
(Mar. 6, 2008), http://www.washingtonpost.com/wp-dyn/content/article/2008/03/05/AR2008030 

503656.html; Chris Jay Hoofnagle, Big Brother’s Little Helpers: How ChoicePoint and Other 

Commercial Data Brokers Collect and Package Your Data for Law Enforcement, 29 N.C. J. INT’L L. & 

COM. REG. 595 (2004); Joshua L. Simmons, Note, Buying You: The Government’s Use of Fourth-Parties 

to Launder Data About “The People”, 2009 COLUM. BUS. L. REV. 950, 951 (2009); Bob Sullivan, Who’s 

Buying Cell Phone Records Online? Cops, MSNBC.COM (June 20, 2006, 11:59 AM), 
http://www.msnbc.msn.com/id/12534959/ [https://perma.cc/GPD3-8EPR]. 

 416. U.S. DEP’T OF JUSTICE, CRIMINAL JUSTICE INFORMATION SERVICES (CJIS) SECURITY POLICY 

VERSION 5.5 (2016), https://www.fbi.gov/file-repository/cjis-security-policy-v5_5_20160601-2-1.pdf.  
 417. Laura K. Donohue, Technological Leap, Statutory Gap, and Constitutional Abyss: Remote 

Biometric Identification Comes of Age, 97 MINN. L. REV. 407, 437 (2012); Gina Kolata, Poking Holes 

in Genetic Privacy, N.Y. TIMES (June 16, 2013), http://www.nytimes.com/2013/06/18/science/poking-
holes-in-the-privacy-of-dna.html. 

 418. Robert Abel, NYPD Officer Arrested for Hacking FBI Databases, SC MAG. (Mar. 19, 2015), 

http://www.scmagazine.com/nypd-officer-hacked-databases-to-get-info-on-accident-
victims/article/404250/ [https://perma.cc/SLU7-EJB9]. 

 419. Sandra Gittlen, Six Hours to Hack the FBI (and Other Pen-Testing Adventures), 
COMPUTERWORLD (May 27, 2008, 1:00 AM), http://www.computerworld.com/article/2536061/ 

cybercrime-hacking/six-hours-to-hack-the-fbi--and-other-pen-testing-adventures-.html [https://perma. 

cc/JA47-XUZW]; Jaikumar Vijayan, FBI Declares Cloud Vendors Must Meet CJIS Security Rules, 
COMPUTERWORLD (Feb. 7, 2012, 3:37 PM), http://www.computerworld.com/article/2501156/cloud-

computing/fbi-declares-cloud-vendors-must-meet-cjis-security-rules.html [https://perma.cc/TY2U-
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value, if criminal elements knew the location of predictive targets or social 

network linkages, such information might thwart on-going police 

intervention strategies.  

2. Security: Responses 

Security strategy in predictive policing parallels responses to data 

security risks in other industries.420 Data security has become a big business 

because almost every private and public entity must account for the personal 

data it collects and stores. From health care services,421 to consumer 

products,422 to government agencies,423 and even computer security firms 

themselves,424 the concerns of data breaches have become all too real.  

Predictive policing systems, especially as they move toward big data-

infused surveillance, must protect against external and internal data threats. 

The first concern will be to build computer systems that include security by 

design against outside threats.425 Privacy by design principles,426 network 

 

 
4NWC]. 
 420. See, e.g., Kim Zetter, Citi Credit Card Hack Bigger Than Originally Disclosed, WIRED (June 

16, 2011, 10:35 AM), http://www.wired.com/threatlevel/2011/06/citibank-hacked/ [https://perma.cc/ 
Y8DG-T665]; Insider Data Breach Costs Bank of America Over $10 Million, Says Secret Service, 

INFOSECURITY (May 26, 2011), http://www.infosecurity-magazine.com/view/18237/insider-databreach 

costs-bank-of-america-over-10-million-says-secret-service/ [https://perma.cc/Y6XD-E8XV]; Robert 
Lemos, Data Thieves Nab 55,000 Student Records, CNET NEWS (Mar. 7, 2003), http://news.com. 

com/2100-1002-991413.html [https://perma.cc/YE7W-YW4V]. 

 421. See, e.g., Andrea Peterson, 2015 Is Already the Year of the Health-Care Hack – And It’s Only 
Going to Get Worse, WASH. POST (Mar. 20, 2015), https://www.washingtonpost.com/news/the-

switch/wp/2015/03/20/2015-is-already-the-year-of-the-health-care-hack-and-its-only-going-to-get-

worse/; Elizabeth Weise, Massive Breach at Health Care Company Anthem Inc., USA TODAY (Feb. 5, 
2015), http://www.usatoday.com/story/tech/2015/02/04/health-care-anthem-hacked/22900925/. 

 422. See, e.g., Sarah Halzack, Target Data Breach Victims Could Get Up To $10,000 Each from 

Court Settlement, WASH. POST (Mar, 19, 2015), https://www.washingtonpost.com/news/ 
business/wp/2015/03/19/target-data-breach-victims-could-get-up-10000-each-from-court-settlement/. 

 423. See, e.g., Julie Hirschfeld Davis, Hacking of Government Computers Exposed 21.5 Million 

People, N.Y. TIMES (July 9, 2015), http://www.nytimes.com/2015/07/10/us/office-of-personnel-
management-hackers-got-data-of-millions.html?_r=0; Brian Naylor, IRS Hack Bigger Than First 

Thought, NPR (Aug. 17, 2015, 4:20 PM), http://www.npr.org/sections/thetwo-way/2015/08/17/ 

432618109/irs-hack-bigger-than-first-thought [https://perma.cc/BDS5-7CSW]. 
 424. Riva Richmond, The RSA Hack: How They Did It, N.Y. TIMES (Apr. 2, 2011), 

http://bits.blogs.nytimes.com/2011/04/02/the-rsa-hack-how-they-did-it/; Kim Zetter, Hacker Spies Hit 

Security Firm RSA, WIRED (Mar. 17, 2011, 6:40 PM), http://www.wired.com/threatlevel/2011/03/rsa-
hacked/ [https://perma.cc/4XKB-Z9JJ]; Jason Mick, Reports: Hackers Use Stolen RSA Information to 

Hack Lockheed Martin, DAILYTECH (May 30, 2011, 10:14 AM), http://www.dailytech. 

com/Reports+Hackers+Use+Stolen+RSA+Information+to+Hack+Lockheed+Martin/article21757.htm. 
 425. See, e.g., Derek E. Bambauer, Privacy Versus Security, 103 J. CRIM. L. & CRIMINOLOGY 667, 

668–69 (2013); Gerard M. Stegmaier & Wendell Bartnick, Psychics, Russian Roulette, and Data 

Security: The FTC’s Hidden Data-Security Requirements, 20 GEO. MASON L. REV. 673 (2013). 
 426. Woodrow Hartzog & Frederic Stutzman, Obscurity by Design, 88 WASH. L. REV. 385, 387–

88 (2013) (discussing privacy by design through “back end” concerns, “such as data security through 
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protection,427 increased firewalls,428 and encryption must all be considered 

when designing the system.429 Preventing the mischief that could occur if 

hackers were able to penetrate or manipulate crime statistics or police 

databases must be a priority. This protection from external threats becomes 

more complicated when networked systems are designed to be shared by 

different law enforcement organizations.430 Access controls, password 

protection, and written memoranda of understanding must be put in place to 

ensure the confidentiality of the data. Such protections will also minimize 

internal threats, such as the intentional misuse by law enforcement officers 

or inadvertent exposure through lax procedures.431 

Security by design must be supported by security protocols that include 

systemic network tracking, data audits, and policies to ensure data security 

compliance.432 While difficult and time consuming, a positive byproduct of 

data-driven systems is that supervisors can track who has had access to the 

data in the system. These protocols will require formal training for police 

and analysts tasked with managing the information. Protocols will also need 

to be created to minimize or delete unnecessary data in the system. Finally, 

police administrators will need to make clear that new privacy protections 

may arise because of the connection to growing databases of private 

consumer information.433  

CONCLUSION 

The lessons of history show that predictive technologies will continue to 

be an attractive goal for police and the criminal justice system. As data 

 

 
encryption, data minimization techniques, anonymity, and structural protection though organizational 

prioritization of privacy,” and “front end” concerns, “such as privacy settings, search visibility, password 

protections, and the ability to use pseudonyms.”). 
 427. Kathryn E. Picanso, Protecting Information Security Under a Uniform Data Breach 

Notification Law, 75 FORDHAM L. REV. 355, 358 (2006) (“[I]nsecure networks are susceptible to 
security attacks.”). 

 428. Mark Lachniet, From the Perspective of A Computer Security Consultant, 7 THOMAS M. 

COOLEY J. PRAC. & CLINICAL L. 53, 59 (2004) (describing firewall design). 
 429. The Hunchlab White Paper devotes some significant time to the importance of security and 

protecting police generated data. See HUNCHLAB, supra note 170. 

 430. Ira S. Rubinstein et al., Data Mining and Internet Profiling: Emerging Regulatory and 
Technological Approaches, 75 U. CHI. L. REV. 261, 267 (2008) (discussing access controls and 

authorization controls). 

 431. Bret Cohen, The Law of Securing Consumer Data on Networked Computers, 18 J. INTERNET 

L. 3, 6 (2014). 

 432. Rubinstein et al., supra note 430 (suggesting a data audit system). 

 433. EXEC. OFFICE OF THE PRESIDENT, COUNCIL OF ADVISORS ON SCI. & TECH., REPORT TO THE 

PRESIDENT: BIG DATA AND PRIVACY: A TECHNOLOGICAL PERSPECTIVE 33 (2014), https://www.white 

house.gov/sites/default/files/microsites/ostp/PCAST/pcast_big_data_and_privacy_-_may_2014.pdf. 
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becomes easier to collect, and as computer algorithms become more 

sophisticated, more advanced predictive technologies will be developed. 

From the Chicago School to the future, the desire to understand, categorize, 

and forecast criminal risk will continue to drive innovation and policing.  

Police have entered the age of actuarial justice and, as demonstrated, 

there is no real hope of going back. The technology exists, is adapting, and 

is pushing much farther ahead than lawyers, courts, and policymakers. 

Predictive policing will alter policing strategy across the country. Real-time 

reporting, professional crime analysts, and expanding computer capabilities 

have turned the daily crush of incidents, reports, and human tragedies into 

measurable and usable data. The result will be to inform officers about the 

realities of criminal patterns in a community and redirect resources to 

address the causes of those criminal actions. At the same time, real 

vulnerabilities exist in the adoption of the technology. This article has 

sought to develop an analytical framework to analyze current and future 

predictive policing techniques. The vulnerabilities, while real, can be 

mitigated by thoughtful responses and careful implementation. 

The recent pattern in predictive analytics has been invention first, then 

adoption, and finally assessment only after the fact. This article has sought 

to provide a framework to put assessment and predictive analysis at the 

beginning of the process. Simply put, if a community or administrator 

cannot respond to the nine vulnerabilities of all predictive technologies, they 

cannot responsibly move forward with next-generation technology. This 

systemic analysis should become the first step for all new predictive 

technologies. Any jurisdiction interested in adopting predictive policing 

techniques must be able to respond to the vulnerabilities discussed in this 

article. Without successful answers to these difficult questions about data, 

methodology, scientific legitimacy, transparency, accountability, vision, 

practice, administration, and security, any predictive policing system 

remains open to criticism and challenge.  

Predicting the future of predictive technologies is never wise, but one 

safe prediction is that these issues will be coming to more cities and towns 

in the very near future. As former NYPD Commissioner Bratton stated in 

2016, “Predictive policing used to be the future. Now it’s the present.”434

 

 

 
 434. David Black, Here Comes Predictive Policing, NEW YORK DAILY NEWS (Jan. 24, 2016, 5:00 
AM) http://www.nydailynews.com/opinion/david-black-predictive-policing-article-1.2506580 [https:// 

perma.cc/Q2MX-8PZ5]. 
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