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ABSTRACT OF THE DISSERTATION 

All Together Now: Effects of Simultaneous Presentation and Stimulus Complexity on 

Categorization Performance and Strategy Preferences 

by 

Reshma Gouravajhala 

Department of Psychological & Brain Sciences 

Washington University in St. Louis, 2020 

Professor Mark McDaniel, Chair 

The present study investigated the effects of simultaneous (relative to sequential) presentation on 

participants’ learning of both simple (Experiment 1) and complex (Experiment 2) categories. 

Previous research has studied the impact of presentation mode on categorization of novel transfer 

objects, but the present study is the first to date that also examined its influence on learners’ 

strategy preferences. Participants were trained (using a blocked observational training procedure) 

on two categories of abstract shapes that were defined by a bi-dimensional disjunctive rule.   

Some participants were shown objects sequentially, while others were presented with an 

organized simultaneous display depicting all to-be-learned stimuli at once. During training, 

participants responded to block-by-block strategy probes that provided online insight into the 

extent to which they were utilizing rule-based or exemplar-based strategies. Following training, 

participants classified ambiguous, rule-favored, and memory-favored transfer objects, and also 

reported any rules they had developed during training. Measures of working memory were also 

obtained. Participants’ categorization performance on the transfer tasks were conditionalized on 

degree of rule acquisition  as well as their block-level strategy preferences. The findings revealed 

that, in contrast to existing literature, simultaneous presentation generally promoted an exemplar-

based approach to category learning.   
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Chapter 1: Introduction 
Categorization is a fundamental cognitive skill that individuals of all ages use to classify novel 

stimuli based on shared characteristics and associations with previously learned information. 

Quick and efficient categorization is integral to many aspects of daily life, from the mundane 

(whether or not tomatoes are fruit) to the critical (what diagnosis to give a patient presenting a 

certain set of symptoms).  

In the typical category learning experiment conducted in the laboratory, participants are 

presented with to-be-learned stimuli during a training phase, and then tested on their ability to 

categorize novel stimuli. Importantly, over the course of the task, participants make decisions 

about how to learn a given category. Indeed, much of category learning research over the last 60 

years has focused on two cognitive strategies – rule abstraction and exemplar memorization – 

that can be used to determine category membership of to-be-learned stimuli, and their 

psychological and neurobiological underpinnings (Ashby & Ell, 2001; Levine, 1975). Briefly, 

rule abstraction involves hypothesis testing to develop a rule that can be used to categorize novel 

stimuli into learned categories, whereas exemplar memorization involves storing presented 

stimuli in long term memory, and classifying novel stimuli based on similarity to previously seen 

exemplars. 

Critically, most category learning experiments to date share a methodological feature that 

might not accurately reflect how individuals learn new categories in more educationally relevant 

settings. Namely, typical laboratory studies present to-be-learned stimuli to participants in a 

sequential fashion: each exemplar is presented (with or without its associated category label) one 

at a time throughout a task. However, a quick glance at a science textbook or lecture slide reveals 
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that, in the classroom, students are often presented with to-be-learned stimuli in a more 

simultaneous fashion, where multiple exemplars from different categories are presented at once 

(Figure 1.1).  

Figure 1.1 Page from the Smithsonian Field Guide to the Birds of North America, depicting 

simultaneous presentation of stimuli from bird categories. 

 

The present study aimed to extend previous work by examining whether presentation 

mode (sequential versus simultaneous presentation) affected individuals’ categorization strategy 

preferences as they learned to categorize rule-based stimuli of varying complexity. Prior to 

describing our experiments, we first review the small but relevant literature on presentation mode 

in category learning, provide an overview of key findings regarding learners’ categorization 
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strategy preferences in a standard sequential presentation paradigm, and then theorize how these 

patterns might change under simultaneous learning conditions in the present study. 

1.1 Sequential versus Simultaneous Presentation of To-Be-

Learned Stimuli 
At a broad level, there are theoretical advantages of simultaneous presentation over sequential 

presentation. Specifically, simultaneous presentation of exemplars might benefit comparative 

processes due to attenuated memory demands relative to sequential presentation (Kang & 

Pashler, 2012; Meagher et al., 2017). Unlike in sequential presentation, participants attempting to 

abstract a rule during simultaneous presentation would not be required to hold items in working 

memory as they compare and contrast across to-be-learned stimuli to identify diagnostic features. 

However, because exemplar memorization revolves around storing instances in long term 

memory, lowered working memory demands resulting from simultaneous presentation might not 

benefit individuals using a memory-based strategy to the same degree. 

 Previous studies of simultaneous versus sequential presentation chiefly focused on 

blocking (presenting all stimuli from the same category before showing stimuli from another 

category) versus interleaving (intermixing stimuli from different categories) of to-be-learned 

stimuli during training. Typically, sequential presentation has been compared to two types of 

simultaneous presentation: exemplars from the same category (referred to as “simultaneous 

blocked”) and exemplars from different categories (referred to as “simultaneous interleaved”).  

These two types of simultaneous presentation have been theorized to offer unique merits. 

For example, simultaneous blocked presentation might allow participants to observe the range of 

features within a category, while simultaneous interleaved presentation encourages learners to 

contrast features between categories and identify diagnostic criteria (Andrews et al., 2011). 
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However, a direct comparison of sequential versus simultaneous presentation has yielded mixed 

results thus far: some studies have shown no difference in novel categorization performance 

(often used interchangeably with “transfer” or “generalization”) between sequential and 

simultaneous presentation (Andrews et al., 2011; Wahlheim et al., 2011), while others have 

shown the predicted benefits of simultaneous over sequential presentation (Higgins & Ross, 

2011; Kang & Pashler, 2012; Meagher et al., 2017).  

When comparing within the two simultaneous presentation types, a clearer pattern has 

emerged: simultaneous blocked presentation has resulted in worse generalization than 

simultaneous interleaved presentation (Andrews et al., 2011; Kang & Pashler, 2012; but see Sana 

et al., 2017, for some indication that simultaneous blocked might be more beneficial than 

sequential blocking). These findings indicate that performance when stimuli are presented 

simultaneously is maximized when participants are able to compare and contrast between 

exemplars of different categories.  

 Extending upon this idea, Meagher et al. (2017) recently conducted a naturalistic 

category learning study in which they presented participants organized simultaneous displays of 

complex and highly variable rock categories, interspersed within more typical sequential 

presentation blocks. The displays included all to-be-learned stimuli, ordered by category (Figure 

1.2), which the authors believed would allow participants to observe both the shared features 

within a category and the diagnostic features that distinguished the categories at the same time.  

When their rock category stimuli included highly variable exemplars, Meagher et al. found that 

the simultaneous-interspersed presentation resulted in better performance only in the 

categorization of previously trained objects; there were no conditional differences with respect to 

generalization (categorization of novel exemplars from the trained categories). However, when 
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more atypical rocks were removed from the dataset, categorization performance of novel objects 

was higher following the simultaneous-interspersed condition, in comparison to the sequential 

presentation-only condition (Experiment 2). These findings highlight that, when category stimuli 

are well-structured (i.e., have high within-category similarity), having the opportunity to 

simultaneously compare within and across categories can be beneficial for category learning.  

Figure 1.2. Organized simultaneous display of complex, multi-dimensional rock stimuli, 

organized according to their category membership. Taken from Meagher et al. (2017). 

1.2 Categorization Strategy Preferences during Sequential 

Presentation 
As previously mentioned, much of the category learning literature to date has focused on rule 

abstraction and exemplar memorization. For years, researchers argued that either all learners 

engaged in a rule-based approach to category learning (Bourne, 1974; Nosofsky et al., 1994; 

Trabasso & Bower, 1968) or that all learners employed a memory-based approach (Kruschke, 

1992; Medin & Schaffer, 1978). In contrast to these views, some category learning researchers 

proposed hybrid models wherein rule abstraction and exemplar memorization could both be used 

to categorize stimuli (Anderson & Betz, 2001; Ashby et al., 1998; Erikson, 2008; Erikson & 

Kruschke, 1998).  
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Some task-level factors have been shown to influence learners’ strategy preferences. For 

example, highly structured categories (i.e., ones that have high within-category similarity) tend 

to promote rule abstraction, while less well-structured categories appear to induce exemplar 

memorization (Craig & Lewandowsky, 2012). Furthermore, when Homa et al. (1981) increased 

the number of to-be-learned stimuli in their category learning task, participants tended to 

preferentially engage in rule abstraction, suggesting that participants adopted a rule abstraction 

strategy when the number of to-be-learned stimuli exceeded their capacity for memorization.  

More relevant to the present study, there is also some evidence that increased stimulus 

complexity (as defined by number of dimensions along which stimuli vary) encourages 

participants to engage in more exemplar-based category learning. For example, Regehr and 

Brooks (1993) used artificial stimuli (imaginary animals whose features varied along five binary 

dimensions, three of which were relevant for categorization into two categories) to demonstrate 

that when participants were tasked with learning stimuli containing many idiosyncratic features 

(relative to those that followed a more systematic structure), they favored exemplar 

memorization relative to rule abstraction (but see Minda & Smith, 2001, for the opposite finding, 

perhaps owing to their modeling-based approach). Relatedly, recent work in naturalistic category 

learning has shown that participants learning to categorize highly multi-dimensional rocks might 

prefer (and benefit more from) memory-based strategies (Nosofsky et al., 2018).  

 In addition to task-level influences on categorization strategies, there is also evidence for 

learner-level factors that influence strategy preferences. In fact, McDaniel et al. (2014) identified 

individual differences in the degree to which learners adopted rule- and memory-based strategies 

on the same complex tasks (see also Medin et al., 1984). Critically, McDaniel et al. found these 

strategy preferences to be stable across multiple tasks, suggesting that some learners might 
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exhibit a general tendency to prefer rule abstraction, while others typically engage in exemplar 

memorization. Indeed, Little and McDaniel (2015) asked younger adults to learn how to 

categorize eight abstract shapes defined by a bi-dimensional disjunctive relational rule. Using 

both an objective transfer measure and participants’ strategy self-reports, the authors found that 

52% of participants self-reported a global rule abstraction preference, while 37% of participants 

classified themselves as predominantly memorizers (and the remaining 11% reported roughly 

equal preference between the two strategies).  

 These previous studies highlight that, rather than assuming that all people approach a 

category learning task similarly, researchers and educators should be mindful of individual 

differences in strategy preferences. However, there is an additional complication to consider: 

participants might not persist with one strategy throughout a category learning task. In fact, there 

is considerable evidence of strategy shifting (from rule abstraction to exemplar memorization, or 

vice versa) in a variety of category learning tasks (Gouravajhala et al., 2019; Hoffmann et al., 

2016; Johansen & Palmeri, 2002; Kalish et al., 2005). For example, in both artificial and natural 

language learning, this same pattern (transitioning from exemplar memorization to rule 

abstraction) is evident, as individuals initially categorize exemplars by memorizing specific 

bigrams and trigrams, but then, with practice, learn to abstract a grammar (Bourne et al., 1999).  

To determine whether younger and older adults switched strategies during a feedback 

category learning task, Gouravajhala et al. (2019) utilized novel block-by-block strategy probes 

where participants self-reported strategy preferences throughout training, rather than simply 

relying on a single global strategy questionnaire, as is more typical (Wahlheim et al., 2016). 

Gouravajhala et al. found that a striking 93.3% of participants shifted between rule abstraction 

and exemplar memorization strategies at least once, and that 32.5% of participants shifted at least 
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five times over the course of training. Furthermore, participants appeared to switch strategies 

during training as a direct consequence of high performance error on previous blocks.   

Taken together, these findings suggest that strategy preferences during a category 

learning task, once believed to be the same across all learners, can be influenced by numerous 

task- and learner-level factors. To our knowledge, no category learning study to date has 

examined whether presentation mode is a task-level factor that influences strategy preferences 

(including the nuances of individual differences and strategy shifting behaviors that might 

emerge). Given the prevalence of simultaneous presentation in real-world educational settings, 

we believed it critical to address this issue. 

1.3 The Present Study 
We developed the present study with two primary objectives in mind: we aimed (1) to replicate 

and extend previous work by assessing the effects of presentation mode on rule-based category 

learning of simple (Experiment 1) and complex (Experiment 2) stimuli, and (2) to directly 

investigate whether simultaneous presentation, relative to sequential presentation, would 

differentially impact participants’ categorization strategy preferences during our task.  

To this end, younger adult participants were trained (over the course of several blocks) on 

the category membership of abstract shapes that adhere to a bi-dimensional disjunctive rule. 

Many of the procedural details of our experiments followed Gouravajhala et al. (2019), but we 

implemented three critical changes. Firstly, we added a simultaneous presentation condition 

modeled after the organized display layout used in Meagher et al. (2017). Secondly, we included 

measures of working memory to test theoretical benefits of simultaneous presentation on 
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categorization. Finally, we utilized an observational training paradigm1, such that all to-be-

learned stimuli and their associated category labels were presented in temporal conjunction.  

Participants’ learning of the rule-based categories was measured in two ways. First, 

participants were asked at the end of training to report any rules they had developed. Second, for 

a more objective measure of participants’ category learning, we measured participants’ category 

learning by testing their ability to categorize ambiguous, rule-favored, and memory-favored 

transfer objects (Gouravajhala et al., 2019; Little & McDaniel, 2015; Wahlheim et al., 2016). 

Briefly, for each ambiguous item, there was a corresponding training object that was highly 

similar in form. However, when categorized according to the correct rule, ambiguous objects in 

fact belonged to the opposite category of their training object counterparts; thus, categorization 

according to perceptual similarity would yield an incorrect response. Rule- and memory-favored 

transfer objects assessed learners’ acquisition of the correct rule and their memory for the trained 

objects, respectively. Together, these transfer objects aimed to assess how well participants had 

learned the rule-based categories.  

To address the second main question of the present study, we also obtained measures of 

participants’ strategy preferences across both presentation modes. Following Gouravajhala et al. 

(2019), participants were asked to provide strategy reports following each block of training. 

Importantly, we utilized this strategy probe methodology (in lieu of a global strategy preference 

questionnaire administered once at the end of training) in order to identify strategy preference 

dynamics during training. Next, we outline potential outcomes as they relate to our primary study 

objectives.  

 
1 The observational training paradigm was used to control for stimulus presentation time across conditions. 
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1.3.1 Presentation Mode and Categorization of Novel Transfer Objects 

As previously described, though there have been mixed findings in comparisons of participants’ 

categorization performance of novel items across sequential and simultaneous presentations, 

simultaneous presentation has been theorized to promote rule-based learning (Higgins & Ross, 

2011; Kang & Pashler, 2012; Meagher et al., 2017). Thus, we would expect a greater number of 

participants in the simultaneous condition, relative to the sequential condition, to acquire and 

self-report the correct bi-dimensional rule in the present study. Moreover, if this were the case, 

we would also expect differences in their categorization of transfer objects, with participants in 

the simultaneous condition exhibiting higher rule-based accuracy than those in the sequential 

condition. Lastly, given that the benefit of simultaneous presentation is believed to result from an 

attenuation of working memory demands involved in hypothesis testing and rule abstraction, we 

would also expect that participants with low working memory capacities would especially 

benefit from simultaneous presentation on rule-based transfer performance. 

 However, a key methodological feature of the present study might lead to the emergence 

of the opposite patterns. Most prior studies utilized partially simultaneous displays (where only 

some of the to-be-learned stimuli were presented in temporal conjunction per trial), and the only 

study to date that utilized a fully simultaneous display (Meagher et al., 2017) interspersed these 

trials with more traditional sequential presentations of to-be-learned stimuli. The fully organized 

simultaneous displays in the present study might in fact improve memory for the trained stimuli, 

relative to those presented sequentially, for a couple of reasons. Firstly, whereas participants in 

the sequential condition were required to allocate the same amount of time and attention to every 

training object, those viewing the simultaneous display were able to allocate more or less time 

and attention to specific instances as needed over the course of training. Secondly, because the 

displays were organized by category (i.e., all category members were grouped together), the 
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spatial proximity of objects within each category might have helped learners store more objects 

in memory. In fact, research in visual memory has found that structured displays (e.g., visual 

displays in which items are grouped together by proximity or similarity) improve memory for 

trained objects by reducing cognitive and neural loads, and effectively increase long-term 

memory capacity (Luria & Vogel, 2014; Gao et al., 2015; Magen & Emmanouil, 2019; Xu & 

Chun, 2007). If the same findings emerge in our category learning task, then fewer participants 

in the simultaneous presentation condition would be expected to acquire the correct rule (relative 

to those receiving sequential presentation), transfer performance would reflect improved memory 

for trained items, and working memory capacity would not be expected to impact categorization 

performance.  

1.3.2 Presentation Mode and Strategy Preferences 

Having detailed our predictions regarding the impact of presentation mode on categorization 

performance given previous findings, we now theorize how presentation mode might impact 

strategy preferences in the present study. We also make predictions below on the downstream 

effects these strategy preferences (with or without any individual differences that emerge) might 

have on strategy dynamics and categorization performance of novel transfer objects.  

1.3.2.1   Possibility 1: No Individual Differences in Strategy Preferences 

Owing to a few key methodological details in the present study, one possibility is that individual 

differences would not emerge in either the sequential or simultaneous presentation condition. 

Specifically, previous studies (all using a sequential presentation paradigm) showing individual 

differences in younger adults’ strategy preferences have utilized feedback training, in which 

participants are presented with to-be-learned stimuli and tasked with categorizing each object 

prior to receiving corrective feedback (Gouravajhala et al., 2019; Little & McDaniel, 2015). 
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Without this regular feedback, participants might be less likely to engage in hypothesis testing 

and rule abstraction, especially when learning multi-dimensional categories (Alfonso-Reese, 

1996; Ashby & Maddox, 2005; Ashby et al., 1998; Salatas & Bourne, 1974). Moreover, we used 

a limited set of to-be-learned stimuli that were repeated numerous times during training, which 

would also be expected to drive participants towards a memorization strategy (Homa et al., 1981; 

Kang & Pashler, 2012). Taken together, these findings suggest that all participants in the 

sequential condition might exhibit an exclusive preference for exemplar memorization. 

There are reasons to believe that participants under simultaneous presentation conditions 

might also solely prefer one strategy, though there is less clarity on which one they would be 

directed towards. One possibility is that those in the simultaneous presentation condition would 

also prefer exemplar memorization, not only because of the reasons outlined above 

(observational training and repetition of a small set of stimuli), but also because learners might 

find a full organized display too overwhelming, and struggle to abstract a rule.  

Alternatively, the opposite pattern might emerge for participants in the simultaneous 

condition. In the past, studies using a sequential presentation paradigm have found limited 

comparisons across training objects, perhaps owing to memory demands associated with 

maintaining all relevant objects in working memory. Indeed, participants have often only made 

comparisons between their current training object and those in a few preceding trials during 

training (Carvalho & Goldstone, 2014; Jones et al., 2006; Stewart & Brown, 2004). 

Simultaneous presentation of to-be-learned stimuli has been theorized to diminish working 

memory demands involved in hypothesis testing by allowing participants to have the opportunity 

to compare across training objects without needing to store them in memory (Higgins & Ross, 

2011; Meagher et al., 2017). Thus, in a fully simultaneous display, there would be a relative ease 
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of comparison across all objects (both within and between categories), which would be expected 

to encourage learners to engage in hypothesis testing more readily than in the sequential 

presentation condition. More specifically, Carvalho and Goldstone (2012) proposed that 

participants are motivated to look for similarities when comparing members of the same 

category, and differences when contrasting members of different categories. In doing so, 

participants become better equipped to identify diagnostic characteristics of categories in the 

task. Taken together, if this were the case, then we would expect all participants in the 

simultaneous condition to endorse a rule-based strategy. 

It is important to note that some of the aforementioned task-level factors (e.g., stimulus 

repetition) would require multiple training blocks to take effect. Thus, we believed it necessary 

to assess participants’ specific strategy preferences not only at the end of training (as was done in 

Gouravajhala et al., 2019), but also at the beginning of training and averaged across all training 

blocks. If no individual differences emerge in the present study, then we would expect all 

participants to show their predicted strategy preference on average or by the end of training.    

1.3.2.1.1  Strategy Preference Dynamics during Training 

We believed that the frequency of strategy shifts in the present study would be low for two 

reasons. Firstly, if participants in both sequential and simultaneous presentation conditions elect 

to endorse a single strategy (as a result of the factors described above), they would not be 

expected to switch back and forth between the two strategies. (A minor caveat: because task-

level factors might require time to take effect, some participants might shift in the initial blocks 

before settling on the one strategy they endorse for the remainder of training. As a consequence, 

we will identify learners’ strategy preferences at multiple points of training.)  
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Secondly, previous research on strategy shifts has revealed that participants’ switching 

between rule abstraction and exemplar memorization strategies was directly precipitated by high 

performance error. In order for participants to be as reactive to any performance error in this 

study, they would have had to not only test themselves on each object and its associated category 

label (as they would be required to do in a feedback learning paradigm), but also monitor their 

learning. As this course of events seemed unlikely, we believed that there would be a decrease in 

strategy shifts in the present study, relative to Gouravajhala et al. (2019). 

1.3.2.1.2   Categorization of Novel Transfer Objects and Acquisition of the 

Correct Rule 

With respect to participants’ categorization of ambiguous, rule-favored, and memory-favored 

transfer objects, we would expect performance to be driven by their preferred strategies. In other 

words, if all participants (across both presentation modes) exhibit a strong memorization 

preference, then we would expect transfer performance to reflect that tendency. Specifically, 

participants would be expected to categorize ambiguous objects according to perceptual 

similarity, show poor performance on rule-favored objects, and exhibit high accuracy on the 

memory-favored objects. However, if all participants in the simultaneous condition instead 

prefer a rule abstraction strategy by the end of training or on average, we would expect to find 

condition differences on novel transfer performance. Moving to the question of whether more 

participants in one condition would identify the correct rule, we would again expect participants’ 

acquisition of the full rule to be directly impacted by their strategy preferences in a similar 

manner.  

1.3.2.2   Possibility 2: Individual Differences in Strategy Preferences 

Another possibility regarding strategy preferences in the present study is that individual 

differences do emerge. In an extension of McDaniel et al. (2014), it could be the case that 
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participants’ preferences for rule abstraction or exemplar memorization reflect stable tendencies 

(developed over a lifetime of category learning experiences) that neither observational training 

nor presentation mode could override. Thus, it is possible that the individual difference patterns 

observed in past studies (with roughly equivalent numbers of rule abstractors and exemplar 

memorizers) might emerge in the sequential condition (Little & McDaniel, 2015; Wahlheim et 

al., 2016). 

However, if either of the previous hypotheses are affirmed for strategy preferences in the 

simultaneous condition (i.e., pushed towards memorization because of the training format, size 

of stimulus set, and feeling overwhelmed, or pushed towards rule abstraction because of lower 

working memory demands), we would expect a greater proportion of learners with that 

preference in that condition. In other words, we believed it possible that the frequencies of rule 

abstractors and exemplar memorizers in the simultaneous presentation condition would not be 

equal, unlike in the sequential condition.  

If individual differences do arise in the present study, then we would be able to help 

further an existing debate about working memory’s role in categorization strategy preferences. 

The findings thus far are mixed: Little and McDaniel (2015) found that individual differences in 

strategy preferences were not related to working memory capacity, but Wahlheim et al. (2016) 

found that younger adults with higher working memory capacity preferentially endorsed 

exemplar memorization over rule abstraction. 

1.3.2.2.1   Strategy Preference Dynamics during Training 

Even if individual differences in strategy preferences were to emerge, participants in the present 

study would not be expected to switch strategies very often due to the observational nature of 

training. In terms of potential condition differences, we would predict that, if anything, 
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participants in the simultaneous presentation condition might exhibit more strategy shifts as the 

experiment progresses, simply as a result of boredom from repeatedly reviewing the same 

organized display. Specifically, participants in this condition might be motivated to test out 

another strategy if they feel the task is too repetitive with their current strategy. As described 

previously, participants’ preferences will be calculated at the beginning and end of training, as 

well as on average. 

1.3.2.2.2   Categorization of Novel Transfer Objects and Acquisition of the 

Correct Rule 

As before, we would expect participants’ categorization of novel ambiguous, rule-based, and 

memory-based transfer objects to reflect their strategy preferences. If individual difference 

patterns differ by presentation mode, we would expect there to be significant interactions 

between presentation mode and strategy preference when investigating performance differences 

on each of the three transfer tasks. Lastly, we would predict that participants’ acquisition of the 

correct rule would again be influenced by their strategy preferences. 
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Chapter 2: Experiment 1 

2.1 Method 
Stimulus materials, programming scripts used for analysis, and raw anonymized data are 

available to the interested reader on the Open Science Framework (OSF; https://osf.io/he48n/). 

The experiment described below was approved by the Institutional Review Board of Washington 

University in St. Louis, and administered using Collector, a PHP-based software. 

2.1.1 Participants and Design 

The participants were 160 younger adults2 at Washington University in St. Louis who received 

partial course credit for their participation in the experiment. Participants were divided into two 

between-subjects conditions: sequential presentation (N = 83) and simultaneous presentation (N 

= 77). Participants were recruited through the University’s cloud-based participant management 

software system, SONA. The experiment was conducted online, and participants were instructed 

to complete the tasks individually, in one sitting, and without the use of electronic devices to aid 

them. Numerous probe questions were included to help ensure that participants paid attention to 

the task.  

2.1.2 Procedure 

The experiment lasted approximately 45 min in total. Over the course of the experiment, 

participants completed two working memory tasks (backward digit span and a shortened 

operation span), training (including block-by-block strategy probes), three transfer tasks 

(categorization of ambiguous, rule-favored, and memory-favored objects), and a brief global 

strategy questionnaire. Each task is described in further detail below: 

 
2 Sample size was determined by conducting an a priori power analysis on the interaction term for the 2 

(presentation mode: sequential versus simultaneous) x 3 (rule acquisition / strategy group levels) χ2 test. The results 

of the power analysis revealed that at least 76 participants were required in each condition.  
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2.1.2.1  Backward Digit Span 

Following the consent process, participants completed a backward digit span task. In this task, a 

sequence of numbers (ranging from four to nine digits, increased incrementally during the task) 

was presented on a computer screen against a white background, with each digit on display for 1 

s. At the end of each sequence, participants were prompted to report the numbers in that 

sequence in the reverse order of presentation. Participants first completed two practice trials 

(consisting of a three-digit sequence and a four-digit sequence) to gain familiarity with the task. 

Following these practice trials, participants completed 11 test trials, consisting of two trials per 

digit length (i.e., two sets of a four-digit sequence, then two sets of a five-digit sequence, etc.). 

This task lasted approximately five min.   

2.1.2.2  Training 

Following the backward digit span, participants were then provided the following brief 

instructional overview of the category learning component of the experiment:  

“You will now complete a category learning experiment in which you will be 

presented with images of shapes, along with their associated category labels. You 

must learn how to categorize each shape into one of two categories: Blicket or 

Dax. You may choose to formulate a rule to learn the shapes, or memorize the 

shapes and associated category labels instead. Both strategies can be used to 

successfully complete this task. After you complete the learning phase, you will 

then be tested on how well you have learned the two categories.”  

While it is not typical to alert participants to potential categorization strategies, these instructions 

aimed to help ensure that strategy probes presented throughout the proposed experiment did not 
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encourage a shift to any particular strategy3. Participants were then asked about the instructions 

to check for comprehension and attentiveness. Next, all participants completed a training phase, 

which lasted approximately 15 min. 

To help situate the present study in the existing body of literature and facilitate 

comparisons with past research, we chose to use previously created stimuli (Little & McDaniel, 

2015). The training procedure was modeled largely on those used by Wahlheim et al. (2016) and 

Gouravajhala et al. (2019), with some important differences. In this experiment, training was 

conducted using an observational learning procedure during which participants learned to 

categorize objects into the “Blicket” or “Dax” category (see Figure 2.1 for examples of training 

stimuli). All category stimuli were made up of two colored shapes with one shape inside the 

other. These categories are defined by a disjunctive rule: if objects’ inner and outer shapes 

matched on either color or form, the object belonged to the “Blicket” category, whereas if the 

shapes differed in both color and form, the object belonged to the “Dax” category.    

Figure 2.1 Eight of the 12 training stimuli used in Experiment 1. The four objects on the left 

belong to the “Blicket” category and include inner and outer shapes that share the same color or 

 
3 In the past, participants have rarely reported a preference for any strategy other than rule abstraction or exemplar 

memorization, and so there was limited concern that naming the two dominant strategies would shift participants 

away from another strategy they might otherwise have used (Gouravajhala et al., 2019).  
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form. The four objects on the right belong to the “Dax” category and include inner and outer 

shapes that share neither the same color nor form.   

 

 The training phase was divided into discrete learning blocks. As shown in Figure 2.2, 

younger adult participants in Wahlheim et al. (2016) and Gouravajhala et al. (2019) reached 

ceiling performance after approximately 10 blocks of training. However, because participants in 

the present study will be learning under observational learning conditions, they might experience 

slower learning rates (Ashby et al., 2002). To help offset this potential slower rate of learning, 

the present experiment included 12 learning blocks in the training phase.  

Figure 2.2. Probability of correct categorization across training blocks in Wahlheim et al. (2016, 

in blue) and Gouravajhala et al. (2019, in red). For the purposes of the present study, it is only 

important to note that younger adults’ performance (as depicted by round dots) reaches ceiling 

by approximately Block 10 in both studies. Taken from Gouravajhala et al. (2019).   

 

In each block, 12 training items (six objects from each category) were presented on a 

computer screen against a white background. The associated category labels for each item were 

displayed directly beneath the stimulus for the duration of each trial. The same 12 items were 

repeated, either sequentially or simultaneously, across the 12 training blocks. For participants in 

the sequential presentation condition, each item was presented individually for 5 s in a 

predetermined random order, resulting in 12 separate learning trials. Training items were 



21 

 

presented in a new random order across each sequential block. Participants in the simultaneous 

presentation condition were presented with an organized grid of all training objects (with left-

right order on the screen counterbalanced across blocks) for 60 s during each block. The order of 

items within each half of the organized simultaneous display was randomized in each block. In 

both conditions, each block (whether containing multiple trials or a single simultaneous display) 

was followed by a self-report strategy probe, described in detail next. 

2.1.2.2.1  Block-by-block Strategy Probes 

After each training block, participants were probed about the degree to which they used rule-

based or memorization-based strategies to categorize the objects in the previous two blocks. The 

following questions were presented (in a random order for each block) to participants: “How 

often did you apply a rule?”; “How often did you memorize objects and their associated category 

labels?”; “How often did you use a strategy other than rule abstraction or exemplar 

memorization?”.  Participants rated their strategy use on a 5-point Likert scale, ranging from 1 

(Never) to 5 (Always), and were instructed to use the full range of the scale and give an extreme 

rating only when they used a strategy exclusively during the preceding blocks. Not only were 

these probes utilized to reveal important information about individuals’ strategy preferences 

throughout training, but they also served to interject an interactive component to the 

observational learning paradigm. 

2.1.2.3  Transfer 

Following the 12 blocks of training, participants were then tested on their ability to categorize 

objects into “Blicket” and “Dax” categories on three different transfer tasks. The transfer phase 

lasted approximately 15 min. 
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2.1.2.3.1  Ambiguous Object Categorization 

In this phase, participants categorized a set of 12 new ambiguous objects into either the “Blicket” 

or “Dax” category. As shown in Figure 2.3 (left panel), these transfer objects were created to be 

highly similar in form to training objects. However, when categorized according to the correct 

rule, each transfer object belongs to the opposite category than it did during training. As such, 

this task offers a more objective index of participants’ strategy preferences, relative to their 

strategy self-reports. For example, a rule abstraction strategy preference would be revealed if 

ambiguous objects are categorized according to the rule, and an exemplar memorization 

preference would be revealed if ambiguous objects are instead categorized primarily according to 

memory for trained exemplars. Objects (without their associated category labels) were presented 

sequentially in a random order, and participants were provided labels (“Blicket” and “Dax”) for 

their categorization selection. Participants were given 5 s to categorize each object. No feedback 

was provided during this task. 

Figure 2.3. Left panel: Examples of training stimuli (left column) and their respective ambiguous 

transfer objects (right column). The ambiguous objects place rule-abstraction and memorization 

strategies in opposition to one another. Therefore, categorization of an ambiguous object 

according to the rule results in classification opposite that to which the perceptually similar 

training items belonged. Middle panel: Examples of novel objects used to assess rule-abstraction 
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for categories of training objects. Right panel: Examples of novel objects used to assess memory 

for categories of training objects. Taken from Gouravajhala et al. (2019). 

2.1.2.3.2  Global Strategy Probes 

After categorizing ambiguous transfer objects, participants completed a two-question strategy 

questionnaire, with questions presented in a random order for each participant. On the rule-

oriented question, participants were instructed to verbalize any rule they used to classify objects 

(if they had developed one) so far in the experiment. There was no character limit imposed on 

participant responses. Participants who did not develop a rule were asked to type “No rule” or 

leave the answer field blank. While the rule question was of primary importance in the present 

experiment, a memory-oriented question was also presented to participant in order to not bias 

participants towards a rule-based strategy for the remainder of the category learning task. Thus, 

participants were also asked to report how many of the training objects they had memorized, and 

were provided the options “None”, “Some”, and “All” to choose from. The global strategy 

questionnaire was self-timed.  

2.1.2.3.3  Rule-favored Object Categorization 

In this phase, participants categorized 12 new objects that were perceptually dissimilar to any 

previously presented objects into the “Blicket” and “Dax” categories (see Figure 2.3, middle 

panel). Six of the objects followed the rule for the “Blicket” category, and six followed the rule 

for the “Dax” category. Rule-favored objects will be presented sequentially in a random order, 

without any associated category labels. As with ambiguous transfer objects, participants were 

given 5 s to select their response. No feedback was provided during this phase.   

2.1.2.3.4  Memory-favored Object Categorization 

In this final transfer phase, participants were presented with 12 new objects that comprised only 

of the outer shape (with the original color) of training objects (see Figure 2.3, right panel). As 
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with the other transfer objects, memory-favored objects were presented sequentially in a random 

order, and no feedback was provided. The order of presentation between the rule-favored and 

memory-favored transfer was counterbalanced across participants, such that half of all 

participants completed the rule-favored transfer task following the ambiguous transfer task, and 

the other half completed the memory-favored task first. 

2.1.2.4  Operation Span 

In the final task, participants completed a shortened version of the Operation Span (Unsworth et 

al., 2005). In this task, participants were shown sets of letters (displayed for 1 s each) separated 

by arithmetic problems (displayed for a maximum of 15 s each). Each arithmetic problem was 

presented along with a solution, and participants were tasked with determining whether the 

solution was correct on each trial. After each set of letters and arithmetic problems, participants 

were then asked to report all the letters in the preceding series in the exact order of presentation. 

Sets ranged in size from three to seven letters, presented in a pre-determined random order for all 

participants. The task lasted approximately 10 min.   

2.2 Results 
We first present descriptive analyses for our two working memory tasks (backward digit span 

and operation span). Then, we address the question of whether participants in the sequential and 

simultaneous conditions differed in their accuracy of the rule, and present analyses with transfer 

performance conditionalized on learners’ degree of rule acquisition. Here, we also present 

secondary analyses pertaining to the relationship between working memory capacity and rule-

based transfer performance. Next, we address our second question about the relationship between 

presentation mode and categorization strategy preferences. We determined whether participants 

in the two conditions differed in their strategy preferences on the first training block, on the final 
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training block, and on average across all training blocks. Then, we present analyses pertaining to 

participants’ strategy preference dynamics during training. Lastly, we re-conditionalized 

participants according to the classification method that best captured their transfer performance 

(as determined by linear discriminant analyses; LDAs), and identified any differences in their 

categorization of ambiguous, rule-favored, and memory-favored transfer objects.  

The level of significance was set at  = .05. Logistic mixed effect regression models were 

created using the glmer function in the R package lme4, and subsequent linear combination tests 

of the fixed effects were conducted using the glht function in the R package multcomp (Bates et 

al., 2015). Subjects were entered as random effects in all models. Groups comparisons were 

reported as Wald z tests, and fixed effect estimates for all relevant analyses were converted to 

odds ratios (OR) for easier interpretation.  

2.2.1 Working Memory 

2.2.1.1   Backward Digit Span 

In this task, participants were shown 12 sets of number sequences (each comprising four to nine 

digits), and then reported each series in the opposite order of presentation. For each set, 

participants were awarded credit (one point) if their response contained all presented numbers in 

the exact opposite order of presentation (i.e., reporting “5, 4, 3, 2, 1” following presentation of 

“1, 2, 3, 4, 5”). Thus, the total possible score on this task was 12 points. There were no 

differences in performance on this task between those in the sequential presentation condition (M 

= 6.25, SD = 2.34) and those in the simultaneous condition (M = 6.01, SD = 2.43), t(156.02) = 

.63, p = .53. 



26 

 

2.2.1.2   Operation Span 

In this task, participants were shown 10 sets of three to seven letters intermixed with math 

problems (accompanied by potential solutions), and they were instructed to verify the accuracy 

of each solution while maintaining the letters in memory. Following each equation-letter set, 

participants were then asked to report the letters in the exact order of presentation. Participants’ 

scores on this task were determined by calculating the sum of all perfectly recalled letter sets, for 

a total possible score of 75 points. As with the backward digit span, there were no differences in 

performance between those in the sequential presentation condition (M = 48.37, SD = 18.27) and 

those in the simultaneous condition (M = 46.33, SD = 17.50), t(157.83) = .72, p = .48. 

2.2.1.3   Composite Working Memory Measure 

Having established that there were no differences in working memory performance between 

conditions, we then examined the relationship between the two working memory measures 

collapsed across presentation modes, and found a significant correlation: r = .50, t(158) = 7.23, p 

< .001. Next, we standardized participants’ performance in both tasks, and created an average 

working memory composite that was used in all future analyses involving working memory. 

Finally, as shown in Figure 2.4, we affirmed that there was a wide range of working memory 

composite scores in our sample. 
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Figure 2.4. Histogram of the working memory composite scores in Experiment 1. 

2.2.2 Effects of Presentation Mode on Rule Acquisition and Transfer 

We first coded participants’ free response reports on the rule question of the global strategy 

questionnaire. The author and a research assistant in the laboratory independently coded 

participants’ self-reported rules into categories of “full rule” (responses mentioned both shape 

and color as diagnostic dimensions for classification of stimuli into “Blicket” and “Dax” 

categories), “partial rule” (responses mentioned only shape or color as a diagnostic dimension for 

classification) and “incorrect rule”4 (responses mentioned using dimensions other than shape or 

color for classification, or participants stated that they had not used a rule and/or indicated 

reliance on memorization instead). The two raters exhibited excellent initial agreement (95.6% of 

responses), and they resolved disagreements through discussion. The frequencies of participants 

 
4 Following Gouravajhala et al. (2019), participants who reported use of an incorrect rule or no rule were grouped 

together. Furthermore, models that included four rule acquisition groups (full rule, partial rule, incorrect rule, no 

rule) failed to converge. 



28 

 

classified according to their degree of rule acquisition are displayed in Table 2.1. We first 

conducted a 2 (presentation mode: sequential vs. simultaneous) x 3 (rule acquisition: full vs. 

partial vs. incorrect) chi-square test of independence, which revealed a non-significant 

presentation mode x rule acquisition interaction, χ2(2) = 4.03, p = .13. 

Table 2.1 Frequencies of Rule Acquisition in Experiment 1 

      

   Degree of Rule Acquisition 

 

      

Condition  Full Partial  Incorrect/None 

      

      

Sequential  34 14  35 

      

Simultaneous  20 17  40 

 

 

We then conditionalized participants’ transfer performance on their degree of rule 

acquisition (Table 2.2). It is important to note that categorization performance on our three tasks 

is measured differently. Owing to the nature of the ambiguous transfer task, performance closer 

to 1.00 reflects categorization according to the rule, whereas a score closer to 0.00 signifies 

categorization according to perceptual similarity. On the transfer task of rule-favored and 

memory-favored objects, however, performance is measured simply as a proportion of accurate 

responses.  
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Table 2.2 Probabilities of Correct Categorization of Transfer Objects as a Function of Rule 

Acquisition in Experiment 1 

Note: Performance on ambiguous and rule-favored objects reflect probabilities of categorization 

according to the correct rule. For ambiguous objects, performance of 1.00 would indicate perfect 

categorization according to the correct rule, and performance of 0.00 would indicate perfect 

categorization according to memory for perceptually similar training objects. Performance on 

Memory-favored objects reflects probabilities of correct categorization based on perceptually 

similar trained items. Margins of error for 95% confidence intervals are displayed in brackets. 

 

To identify any performance differences, we conducted a no-intercept logistic mixed 

effect regression model that contained 19 fixed effects. The first 18 fixed effects each 

corresponded to a group (e.g., sequential presentation partial rule learner categorizing rule-

favored objects) that was dummy coded (using 0s and 1s). The final fixed effect was working 

memory, which served as a covariate in the model. Overall, the model accounted for 39.53% of 

the variance (conditional R2 = .40). We then conducted a series of theoretically motivated linear 

combination hypothesis tests to determine the significance of any effects (see Figure 2.5). 

     

  Degree of Rule Acquisition 

     

     

Object Type Presentation 

Mode 

Full Partial Incorrect/None 

     

     

Ambiguous Sequential .93 [.90, .95] .35 [.28, .42] .25 [.21, .30] 

     

 Simultaneous .84 [.80, .89] .42 [.35, .49] .20 [.16, .24] 

     

     

Rule-favored Sequential .95 [.93, .97] .71 [.64, .78] .57 [.52, .62] 

     

 Simultaneous .95 [.93, .98] .66 [.66, .72] .56 [.51, .60] 

     

     

Memory-favored Sequential .74 [.70, .78] .76 [.70, .83] .81 [.77, .85] 

     

 Simultaneous .89 [.85, .93] .84 [.79, .89] .83 [.80, .87] 
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Figure 2.5. Probability of correct categorization of ambiguous, rule-favored, and memory-

favored transfer objects in Experiment 1, conditionalized on the degree of participants’ rule 

acquisition (full, partial, and incorrect) and presentation mode condition (sequential in red, 

simultaneous in teal). 

 

Collapsing across rule acquisition levels, when going from sequential to simultaneous 

presentation, the odds of categorizing ambiguous objects according to the rule decreased by a 

factor of 3.03 (z = -2.21, p = .03), and the odds of an accurate response when categorizing 

memory-favored objects increased by a factor of 7.54 (z = 3.91, p < .001). There was no 

significant difference between presentation modes on categorization accuracy of rule-favored 

objects (OR = .90, z = -.19, p = .85).  

Next, as a validity check for our scoring rubric, we compared whether participants in 

each of the three rule acquisition groups differed in their transfer performances, when collapsed 

across the two presentation conditions. In comparison to participants in the partial rule group, 

those in the full rule group categorized significantly more ambiguous objects according to the 

rule (OR = 236.81, z = 13.06, p < .001) and also had higher odds of a correct response when 

categorizing rule-favored  objects (OR = 109.62, z = 9.20, p < .001). There was no difference 

Sequential 

Simultaneous 
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between the two groups in categorization of memory-favored objects (OR = 1.48, z = .91, p = 

.36). When going from the incorrect rule to the full group, the odds of categorizing ambiguous 

objects according to the rule increased by a factor of 1889.35 (z = 18.47, p < .001) Moreover, the 

odds of a correct response on the rule-favored task increased by a factor of 374.98 (z = 12.40, p < 

.001), but there were no differences between the two groups in their performance on the 

memory-favored transfer task (OR = .91, z = -.24, p = .81).  

Lastly, we tested the significance of relevant interactions. The presentation mode x full 

rule versus partial rule group interaction was significant only for ambiguous objects (OR = .34, z 

= -2.58, p = .01), but not for rule-favored or memory-favored objects (both ps > .05). Participants 

in the sequential condition who acquired the full rule had especially greater odds (in comparison 

to their simultaneous counterparts) of categorizing ambiguous objects according to the rule. The 

presentation mode x full rule versus incorrect rule group interactions were nonsignificant for 

ambiguous or rule-favored objects (both ps > .05) but were marginally significant for memory-

favored objects (OR = 2.06, z = 1.83, p = .07). Specifically, participants in the simultaneous 

condition had greater odds of an accurate response when categorizing memory-favored objects if 

they had acquired the full rule. Lastly, the presentation mode x partial rule versus incorrect rule 

group interaction was significant only for ambiguous objects (OR = 2.00, z = 1.77, p = .08). As 

seen in Figure 2.5, the odds of categorizing ambiguous objects according to the rule were 

especially decreased for participants in the simultaneous condition who did not acquire a rule. 

2.2.2.1   Effects of Working Memory Capacity on Rule-based Transfer 

We next addressed a secondary question of whether participants’ working memory capacities 

predicted rule-based transfer performance (i.e., categorization of ambiguous and rule-favored 

objects).  
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We first conducted a linear regression on mean ambiguous transfer performance, with 

presentation mode, working memory capacity, and presentation mode x working memory 

included as factors. The model accounted for 1.59% of the variance (adjusted R2 = .02). After 

accounting for working memory capacity, there was a significant effect of presentation mode, β 

= -.13, t(156) = -2.27, p = .02, such that those in the simultaneous condition categorized more 

ambiguous objects according to perceptual similarity, relative to those in the sequential 

presentation condition. There was, however, neither a significant main effect of working memory 

capacity nor a significant presentation mode x working memory capacity interaction, both ps > 

.05.  

We then conducted a linear regression on mean accuracy on the rule-favored objects, 

again with presentation mode, working memory capacity, and presentation mode x working 

memory included as factors in the model. This model accounted for .82% of the total variance 

(adjusted R2 = .008). After accounting for working memory capacity, there was a marginally 

significant effect of presentation mode, β = -.07, t(156) = -1.95, p = .05, such that participants in 

the simultaneous condition showed poorer performance when categorizing rule-favored objects, 

relative to their counterparts in the sequential condition. Again, there were no other significant 

effects, both ps > .05. 

2.2.3 Categorization Strategy Preferences during Training 

Using the heuristic outlined in Gouravajhala et al. (2019), we compared participants’ responses 

on the 5-point rule and memory probes5 that followed each training block to classify each 

individual according to their responses. On each block, participants were assigned a strategy 

preference based on any numerical difference between their probe responses. For example, if on 

 
5 Participants gave consistently low ratings on the “Other” strategy probes, and so we did not include those strategy 

reports in determining their strategy preference on each block (consistent with Gouravajhala et al., 2019). 
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the third block, a participant responded with a “4” on the rule probe, and gave a “3” rating for the 

memory probe, that participant was classified as having a rule preference for that block. 

Importantly, because probes were presented in quick succession, we believed any numerical 

difference between them was meaningful. Individuals who provided the same numerical ratings 

for both the rule and memory probes were classified as having an equal preference for that block. 

 We used these block-level strategy preferences to identify whether individual differences 

in strategy preferences emerged at three points of training (following the first block, following 

the final block, and averaged across all blocks), and in either case, whether strategy preference 

patterns differed as a function of participants’ presentation mode condition.  

2.2.3.1   First-block Strategy Preference 

We first focused on participants’ strategy preferences following Block 1, which would reflect 

their initial choices after their first exposure to their assigned presentation mode. As a reminder, 

if there were no individual differences in strategy preferences at this point of training, then all 

participants within each condition would be expected to endorse the same strategy. However, as 

shown by the frequencies of participants classified according to this first-block method (Table 

2.3), participants in the task endorsed different strategies.  

Table 2.3 Frequencies of First-block Strategy Preferences in Experiment 1 

      

  First-block Strategy Preference 

  

     

Condition  Rule Memory Equal 

     

     

Sequential  41 23 19 

     

Simultaneous  24 39 14 
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To determine whether these strategy preference differences differed by condition, we 

conducted a 2 (presentation mode: sequential vs. simultaneous) x 3 (first-block strategy: rule-

first vs. memory-first vs. equal preference-first) chi-square test of independence, which revealed 

a significant presentation mode x first-block strategy interaction, χ2(2) = 9.12, p = .01.  

Because of the 2 x 3 nature of the experimental design, the chi-square test was 

insufficient in revealing the underlying reasons for this interaction. Thus, we conducted a 

generalized linear model (using a Poisson error distribution) to predict frequency by presentation 

mode (dummy coded using 0s and 1s) and first-block strategy (with group membership dummy 

coded using 0s and 1s). In addition to these dummy-coded main effects, we included three 

presentation mode x first-block strategy interaction terms to create a fully saturated model that 

accounted for all variability in frequency counts.  

We then performed a series of theoretically motivated linear combination tests of 

significance to identify any condition differences in each of the first-block strategy groups. The 

odds of endorsing a rule-first strategy decreased by a factor of 1.71 when going from sequential 

to simultaneous presentation (z = 2.08, p = .04). The odds of endorsing a memory-first strategy 

increased by a factor of 1.69 when going from sequential to simultaneous presentation (z = -2.01, 

p = .04). Participants in both presentation mode conditions, however, did not differ in their odds 

of endorsing rule and memory strategies equally following the first block of training (OR = 1.36, 

z = .87, p = .39).  

Lastly, we conducted a linear regression on working memory capacity with rule-first, 

memory-first, and equal preference-first groups included as factors (dummy coded using 0s and 

1s for group membership), collapsed across presentation mode condition. The results of our 

subsequent linear combination tests of significance revealed no significant effects, all ps > .05. 
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2.2.3.2   Final-block Strategy Preference 

To determine if there were still individual differences in strategy preferences following the final 

block of training, we re-classified individuals according to their strategy preferences following 

the 12th training block. Again, as shown in Table 2.4, the frequencies of participants according to 

this final-block method revealed that participants in either condition did not settle on a single 

strategy preference by the end of training.  

Table 2.4 Frequencies of Final-block Strategy Preferences in Experiment 1 

      

   Final-block Strategy Preference 

 

      

Condition  Rule Memory  Equal 

      

      

Sequential  42 16  25 

      

Simultaneous  34 24  19 

 

 

To test for condition differences in strategy preferences, we conducted a 2 (presentation 

mode: sequential vs. simultaneous) x 3 (final-block strategy: rule-final vs. memory-final vs. 

equal preference-final) chi-square test of independence. Unlike with first-block strategy 

preference frequencies, there was no significant presentation mode x final-block strategy 

preference interaction, χ2(2) = 3.04, p = .22.  

As before, we conducted a linear regression to examine the relationship between working 

memory capacity and each of the three final-block strategy groups (dummy coded using 0s and 

1s for group membership), collapsed across presentation modes. There were no significant 

effects, all ps > .05.  
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2.2.3.3   Average Strategy Preference 

Finally, we re-classified participants according to their average strategy preference over the 12 

training blocks. In other words, for each individual, we determined which strategy preference 

they endorsed most often. For a specific example, if a participant exhibited a rule preference on 7 

blocks, a memorization preference on 3 blocks, and an equal strategy preference on 2 blocks, 

they would then be classified as having an average rule preference6. The frequencies of 

participants classified according to this average strategy method are displayed in Table 2.5. 

Table 2.5 Frequencies of Average Strategy Preference in Experiment 1 

      

   Average Strategy Preference 

 

      

Condition  Rule Memory  Equal 

      

      

Sequential  46 17  20 

      

Simultaneous  32 21  24 

 

 

 We conducted a 2 (presentation mode: sequential vs. simultaneous) x 3 (average strategy: 

rule vs. memory vs. equal) chi-square test of independence, which revealed a non-significant 

presentation mode x average strategy preference interaction, χ2(2) = 3.08, p = .21. Thus, there 

were no differences in average strategy preferences across the two presentation mode conditions.  

Again, we conducted a linear regression on working memory capacity with average rule, 

average memory, and average equal strategy preference groups included as factors (dummy 

coded using 0s and 1s for group membership). There were no significant effects, all ps > .05.  

 
6 Two participants exhibited equal endorsement of rule and memorization strategies across blocks, and were 

classified as having an average equal preference. 
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2.2.4 Strategy Preference Dynamics during Training 

Having explored strategy preferences at different points of training, we next addressed the issue 

of strategy preference dynamics in the present experiment. Using the same method described in 

Gouravajhala et al. (2019), we calculated whether individuals’ strategy preferences changed – 

rule to memory, rule to equal, memory to equal, memory to rule, equal to rule, equal to memory 

– in consecutive training blocks7. Thus, each participant was able to switch for a total possible 11 

times. For participants in both conditions, we calculated the total number of strategy switches or 

shifts (see Figure 2.6).  

 

Figure 2.6. Histogram depicting the number of times, in Experiment 1, participants in the 

sequential presentation condition (top panel, in red) and the simultaneous condition (bottom 

panel, in blue) shifted from one strategy to another on consecutive blocks. 

 

 
7 All six patterns were considered to reflect a strategy switch, as they indicated a change in preference from the 

previous block. 

Sequential 

Simultaneous 
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 While participants in both conditions exhibited shifting behavior, there was no difference 

in the total number of shifts by participants in the sequential condition (M = 2.47, SD = 1.93) and 

simultaneous condition (M = 2.62, SD = 2.25), t(150.37) = -.46, p = .65. Additionally, the 

correlation between working memory and total number of shifts was not significant, r = .04, 

t(158) = .48, p = .63. Finally, as predicted, there were significantly fewer shifts in the present 

experiment (collapsed across presentation mode condition; M = 2.54, SD = 2.10) relative to in 

Gouravajhala et al. (2019; M = 3.44, SD = 2.62), t(222.61) = 3.08, p = .002. As a reminder, the 

observational nature of the present study (where participants were not provided direct correct-

answer feedback following each trial) was expected to result in fewer strategy shifts (Kalish et 

al., 2005).  

2.2.4 Effects of Participants’ Strategy Preferences on Transfer 

Although we previously examined condition differences in participants’ transfer performance 

(conditionalized on their degree of rule acquisition), those analyses neglected learners’ strategy 

preferences. Thus, we were interested in whether the strategy preference patterns that emerged 

during training had a downstream impact on categorization performance.  

Though we had developed three approaches to classify participants (first-block strategy 

preference, final-block strategy preference, and average strategy preference) that could feasibly 

be used to conditionalize transfer performance, we believed that learners’ first-block strategy 

preferences would be least aligned with their categorization of transfer objects. After all, 

participants reported first-block preferences after the first block of training, and then categorized 

transfer objects at a minimum of eleven training blocks later. Relatedly, we believed the strategy 

shifting behavior exhibited in the present study (78% of participants shifted at least once, and 
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32.5% shifted at least four times) lent additional support against conditionalizing transfer 

performance on participants’ first-block preferences. 

 With respect to the other two classification methods, we predicted that learners’ final-

block strategy preferences would more closely align with subsequent transfer performance, as 

their preferences might reflect their final representations before beginning the transfer phase (as 

was theorized by Gouravajhala et al., 2019). To test this hypothesis, we conditionalized 

participants’ transfer performance both on final-block strategy preferences and on average 

strategy preferences. We then conducted separate linear (canonical) discriminant analyses to 

determine whether mean transfer performance was better able to separate participants into their 

final-block strategy groups or their average strategy groups. The results of these analyses 

indicated that, while both classification methods captured similar amounts of variance, 

conditionalizing transfer performance according to participants’ final-block strategy preferences 

was slightly more effective (canonical R2 = .325) relative to conditionalizing on average strategy 

preference (canonical R2 = .289). 

Thus, we chose to conditionalize categorization transfer performance on participants’ 

final-block strategy preferences8, and conducted a no-intercept mixed-effects logistic regression 

analysis (Table 2.6). This model was composed of 19 fixed effects. The first 18 fixed effects 

each represented a group (e.g., sequential presentation rule-final learner categorizing ambiguous 

objects) that was dummy coded (using 0s and 1s). The final fixed effect was working memory, 

which acted as a covariate in the model. Overall, the model accounted for 36.98% of the total 

variance (conditional R2 = .37).  

 
8 The interested reader can find similar analyses with participants classified according to their average strategy 

preferences in Appendix A. 
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Table 2.6 Probabilities of Correct Classification of Transfer Objects as a Function of Final-block 

Strategy Preferences in Experiment 1 

     

  Final-block Strategy Preference 

     

     

Object Type Presentation 

Mode 

Rule Memory Equal 

     

     

Ambiguous Sequential .74 [.70, .78] .27 [.21, .33] .39 [.34, .45] 

     

 Simultaneous .61 [.57, .66] .33 [.27, .39] .16 [.11, .21] 

     

     

Rule-favored Sequential .83 [.80, .87] .60 [.53, .67] .71 [.66, .76] 

     

 Simultaneous .79 [.75, .83] .59 [.54, .65] .60 [.54, .66] 

     

     

Memory-favored Sequential .77 [.73, 81] .78 [.72, .84] .77 [.72, .82] 

     

 Simultaneous .86 [.82, .89] .82 [.78, .87] .87 [.82, .91] 

     

Note: Performance on ambiguous and rule-favored objects reflect probabilities of categorization 

according to the correct rule. For ambiguous objects, performance of 1.00 would indicate perfect 

categorization according to the correct rule, and performance of 0.00 would indicate perfect 

categorization according to memory for perceptually similar training objects. Performance on 

Memory-favored objects reflects probabilities of correct categorization based on perceptually 

similar trained items. Margins of error for 95% confidence intervals are displayed in brackets. 

 

We then computed a series of theoretically motivated linear combination hypothesis tests 

to determine significance of any effects (Figure 2.7). When going from the memory-final to the 

rule-final preference group, the odds of categorizing ambiguous objects according to the rule 

increased by a factor of 43.97 (z = 8.27, p < .001) and the odds of an accurate response on the 

rule-favored transfer task increased by a factor of 14.65 (z = 5.83, p < .001). There were no 

differences between the preference groups, however, in their odds of an accurate response on the 

memory-favored transfer task (OR = 1.69, z = 1.09, p = .28).  
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Figure 2.7. Probability of correct categorization of ambiguous, rule-favored, and memory-

favored transfer objects in Experiment 1, conditionalized on participants’ final-block strategies 

(rule, memory, and equal preference) and presentation mode condition (sequential in red, 

simultaneous in teal).   

 

Relative to those who endorsed both strategies equally after the final block of training, 

participants in the rule-final group had significantly greater odds of categorizing ambiguous 

objects according to the rule (OR = 63.69, z = 9.21, p < .001). Participants in the rule-final group 

also had greater odds of an accurate response on the rule-favored task (OR = 8.76, z = 4.86, p < 

.001), but the two groups did not differ in their odds of an accurate response on the memory-

favored objects (OR = 1.34, z = .62, p = 54). There were no differences in the categorization of 

ambiguous, rule-favored, or memory-favored objects between those who ended with a memory 

preference versus those who ended with an equal preference, all ps > .05.  

The presentation mode x rule-final versus memory-final strategy preference group 

interaction was significant only for ambiguous objects (OR = .39, z = -2.04, p = .04), but not for 

rule-favored or memory-favored objects (both ps > .05). Specifically, participants in the 

Sequential 

Simultaneous 
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sequential presentation condition had greater odds of categorizing ambiguous objects according 

to the rule especially when they were in the rule-final group. The presentation mode x rule-final 

versus equal preference-final group interactions were nonsignificant across all transfer objects 

type, all ps > .05. Lastly, the presentation mode x memory-final versus equal preference-final 

strategy group interaction was significant only for the ambiguous objects (OR = .75, z = 3.18, p = 

.001), such that the odds of categorizing ambiguous objects according to the rule were especially 

lower for equal preference-final participants in the simultaneous condition.  

2.3 Discussion 
To our knowledge, Experiment 1 was the first investigation into the effects of simultaneous 

(relative to sequential) presentation on both categorization of novel transfer items and 

categorization strategy preferences. With respect to the effects of simultaneous presentation on 

rule acquisition and categorization performance, the two presentation modes have sometimes 

resulted in similar transfer performance, but when differences have emerged, simultaneous 

presentation has improved generalization. Researchers have theorized that these benefits were 

due to simultaneous presentation (especially when the display contained stimuli from all to-be-

learned categories) lowering working memory demands, and thus directly benefiting hypothesis 

testing and rule abstraction (Kang & Pashler, 2012; Meagher et al., 2017). If this were the case, 

participants in the simultaneous condition would have benefitted from their training in their 

categorization of rule-favored objects, especially if they had low working memory capacities.  

However, the findings of Experiment 1 directly contradicted this prediction. We found 

similar frequencies of learners in both conditions across rule acquisition groups (full, partial, and 

incorrect rule), suggesting that simultaneous presentation did not improve learners’ ability to 

acquire the correct bi-dimensional disjunctive rule that defined “Blickets” and “Daxes.” Further, 
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when conditionalizing transfer performance on degree of rule acquisition, the patterns strongly 

indicated that participants’ simultaneous presentation training had in fact improved memory for 

studied stimuli (relative to those in the sequential condition). Those in the sequential condition 

were better able to categorize objects according to the rule (especially if they were able to 

identify the full rule), whereas participants in the simultaneous condition fared better on 

memory-favored objects. And finally, working memory capacity was not related to participants’ 

performance on rule-favored transfer tasks in either condition, suggesting that previous theories 

about the benefits of simultaneous presentation might require revision.  

 With respect to strategy preferences, we outlined competing hypotheses in the 

introduction regarding whether individual differences in strategy preferences would emerge in 

the present study, and what downstream effects these strategy preference patterns would have on 

strategy dynamics and categorization performance. Individual differences in strategy preferences 

emerged at various points of training (following the first block, following the final block, and 

averaged across all 12 blocks), suggesting that presentation mode in our study was not a task-

level factor that could drive all participants towards a single strategy. Furthermore, even in the 

presence of individual differences, there were some differences in strategy preferences across 

those in the simultaneous versus sequential condition. Following the initial training block under 

their respective presentation conditions, participants differed systematically in their preferred 

strategies. Specifically, those receiving simultaneous presentation preferred to engage in 

exemplar memorization, while those learning in the more typical sequential paradigm showed an 

initial preference for rule abstraction. These findings suggest that, when presenting novel to-be-

learned stimuli only once, educators should be cognizant of presentation mode, as it could impact 

the categorization strategy learners choose to adopt.  
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However, by the end of training, learners across both presentation modes displayed 

similar patterns of individual differences in strategy preferences (Table 2). Thus, it might be the 

case that extensive repetition of a relatively limited set of to-be-learned stimuli encouraged some 

learners to vary in their strategy use, as both strategies were viable and effective. Indeed, there 

was clear evidence of strategy shifting, with almost a third of individuals switching between 

strategies at least four times during training. As predicted, however, the observational nature of 

the experiment (i.e., absence of direct corrective feedback to help learners monitor their error 

rates) contributed to decreased switching rates relative to Gouravajhala et al. (2019).  

Taken together, the findings in Experiment 1 suggest that the two presentation modes 

confer different benefits. Thus, educators should consider their specific goals for students (i.e., 

whether they want students to abstract a rule for to-be-learned categories or memorize trained 

stimuli and categorize novel exemplars based on perceptual similarity) prior to choosing a 

particular mode of display.  

While there were clear differences in transfer performance across the two presentation 

modes, we were intrigued that that these differences were not always reflected in participants’ 

self-reports. One possible explanation for this discrepancy was that the stimuli used in 

Experiment 1 were too simple and allowed participants to readily choose either a rule- or 

memory-based strategy, even though their respective presentation modes offered different 

benefits. Thus, in Experiment 2, we manipulated the to-be-learned stimuli in an effort to direct 

all participants (especially those in the simultaneous presentation condition) towards a memory-

based strategy, and we examined whether there would be more alignment between participants’ 

strategy preferences and categorization performance.  
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Chapter 3: Experiment 2 

3.1 Introduction 
Experiment 1 focused on the effects of simultaneous presentation on the category learning of 

previously used stimuli (“Blickets” and “Daxes,” as developed in Little & McDaniel, 2015). In 

Experiment 2, we aimed to extend these findings by investigating what patterns would emerge 

when using more complex stimuli. Specifically, categories from Experiment 1 were modified to 

be more idiosyncratic in nature, with multi-dimensional stimuli that now varied along three 

salient but irrelevant dimensions: internal shape pattern, external shape pattern, and antennae 

(see Figure 3.1 for examples of training stimuli).  

Figure 3.1. Eight of the 12 training stimuli used in Experiment 2. The four objects on the left 

belong to the “Blicket” category, and they include inner and outer shapes that share the same 

color or form. The four objects on the right belong to the “Dax” category, and they include inner 

and outer shapes that share neither the same color nor form. The additional dimensions of 

internal stripe pattern, external dot pattern, and antennae are irrelevant for correct classification. 

 

Critically, the underlying category-defining rule – the inside and outside shapes of 

“Blickets” match in either form or color, whereas “Daxes” match in neither – remained the same 
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in this experiment. Because the three additional dimensions were not diagnostic, objects within 

and across both categories shared certain dimension values. For example, objects from both 

“Blicket” and “Dax” categories might share a striped pattern in the internal shape. To ensure that 

participants do not immediately discount each of these dimensions as being irrelevant to the 

categorization task, the shared features were not exactly the same across all members of both 

categories. To refer back to the striped inner shape example, the number and orientation of 

stripes might differ from object to object. 

The stimulus modifications in Experiment 2 were motivated by several factors. For 

example, one primary objective was to create stimuli that would more accurately reflect the 

complexity existent in many real-world categories, thus improving upon the ecological validity 

of the present study (Murphy, 2003).  

Another objective was to extend Experiment 1 findings regarding the benefits of 

simultaneous presentation for memory of trained stimuli. We had reason to believe that these 

patterns would be replicated. Specifically, by constructing a highly dimensional stimulus set, we 

increased the idiosyncrasy and distinctiveness of the stimuli, thus rendering them easier to store 

in long-term memory (Konkle et al., 2010; Regehr & Brooks, 1993). However, prior research on 

stimulus complexity has only been conducted under feedback learning conditions (with all to-be-

learned stimuli presented sequentially), and thus the present experiment directly tested whether 

these patterns would emerge under observational and simultaneous presentation conditions.   

Finally, we wished to extend previous findings regarding participants’ strategy 

preferences. The same training procedures from Experiment 1 were used in this experiment, such 

that the relatively limited set of to-be-learned stimuli were repeated across 12 blocks. Thus, both 

rule-based and exemplar-based strategies were equally viable in this experiment. However, we 
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expected that the additional irrelevant dimensions would cause confusion during hypothesis 

testing and increase the prevalence of incorrect rules, especially when participants attempted to 

incorporate all five dimensions into their rules (Vong et al., 2019). Thus, we believed that 

participants across both conditions would preferentially endorse exemplar memorization during 

the task. If simultaneous presentation was still beneficial for memory-based learning, then we 

would have greater alignment between transfer performance and participants’ strategy 

preferences than in Experiment 1. 

Below, we describe our predictions regarding how sequential versus simultaneous 

presentation of these complex stimuli might impact rule acquisition, categorization of novel 

transfer objects, and categorization strategy preferences.  

3.1.1 Effects of Presentation Mode on Rule Acquisition and Transfer using 

Complex Stimuli 

Because the addition of irrelevant dimensions was expected to impair hypothesis testing and rule 

abstraction, we expected fewer participants across both conditions would obtain the correct rule 

and that rule-based transfer performance would be poorer in this experiment (relative to 

Experiment 1). With respect to differences across the two conditions, there are several potential 

outcomes. 

Previously, we found that simultaneous presentation, relative to sequential presentation, 

promoted memory for the trained items (as evidenced by participants’ performance on the 

transfer tasks), rather than benefiting the acquisition and use of the bi-dimensional rule, as had 

been previously theorized by other researchers (Andrews et al., 2011; Meagher et al., 2017). 

Since no procedural details of the presentation modes were altered in Experiment 2, we believed 

it likely that the simultaneous presentation condition would again benefit participants’ memory 

for trained stimuli.  
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 Alternatively, it is possible that the organized simultaneous display would in fact promote 

rule-based learning (in contrast to Experiment 1 findings) by alerting participants to the 

irrelevant dimensions (especially since certain feature values were shared by members of both 

categories) more readily than sequential presentation would be expected to. If this were the case, 

then we would expect a greater number of participants in the simultaneous condition to acquire 

the correct rule and exhibit higher accuracy on the rule-based transfer tasks. Additionally, 

learners find the multi-dimensional stimuli too overwhelming to memorize in the simultaneous 

condition, and instead attempt to abstract a rule to increase efficiency.  

 Moving to a secondary question about the relationship between working memory 

capacity and rule-based transfer performance, one possibility is that Experiment 1 findings 

would be replicated, such that working memory capacity would have no effect on categorization 

performance. Another possibility, however, is that low working memory capacity learners in the 

sequential presentation condition would have especially poor rule-based transfer performance, as 

they would be at the greatest disadvantage when hypothesis testing and abstracting a rule 

(Andrews et al., 2011; Bourne, 1974).  

3.1.2 Presentation Mode and Categorization Strategy Preferences 

In Experiment 1, there were some differences across the two presentation modes in terms of 

strategy preferences. Specifically, learners in the simultaneous presentation condition were more 

likely to exhibit a memorization preference following the first training block, while those in the 

sequential presentation condition had greater odds of endorsing a rule abstraction strategy. 

However, individual differences in strategy preferences abounded, and condition differences 

disappeared by the end of training, and on average across all training blocks. As previously 

mentioned, a primary objective of Experiment 2 was to, by utilizing complex stimuli that 
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comprised numerous irrelevant dimensions, determine if participants would preferentially 

endorse an exemplar-based strategy throughout training. Thus, one possibility is that participants 

in Experiment 2 (especially in the simultaneous condition) would all exhibit a persistent 

exemplar memorization strategy preference. If this were the case, then we would expect there to 

be very few strategy switches during training, and for transfer performance to be largely 

memory-favored.  

Another possibility is that the same individual difference patterns as in Experiment 1 

again emerge: although participants in the two conditions might exhibit a strong preference for 

one of the strategies following the first block, other task-level factors (such as stimulus set size 

and repetition during training) might lead to the emergence of individual differences in strategy 

preferences in subsequent blocks. Transfer performance would then be expected to follow 

Experiment 1 in this case.  

With respect to strategy dynamics, if individual differences in strategy preferences 

develop, one possibility is that participants in Experiment 2 will shift strategies with a similar 

frequency as participants in the first experiment. However, it is also possible that the complexity 

of the stimuli would encourage more strategy shifting than in Experiment 1. Specifically, we 

would expect that Experiment 2 stimuli would be more difficult to learn (either through 

memorization or rule abstraction), and thus participants might struggle more during their training 

than did participants in Experiment 1. Thus, learners in the present experiment (if they were 

attuned to their category learning during the task) might be more motivated to shift between 

strategies. In support of this point, there is evidence suggesting that younger adults have enough 

metacognitive awareness to evaluate their learning and moderate their use of general study 

strategies (Brigham & Pressley, 1988). 
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3.2 Method 
As with Experiment 1, all stimulus materials, programming scripts used for analysis, and raw 

anonymized data are available to the interested reader on the OSF (https://osf.io/he48n/). This 

experiment was approved by the Institutional Review Board of Washington University in St. 

Louis, and administered using Collector, a PHP-based software.  

3.2.1 Participants and Design 

The participants were 160 younger adults at Washington University in St. Louis who received 

partial course credit for their participation. Participants were again divided into two between-

subjects conditions: sequential presentation (N = 80) and simultaneous presentation (N = 80). 

Participants were recruited through the University’s cloud-based participant management 

software system, SONA, and completed the experiment online. As before, participants were 

instructed to complete the tasks in one sitting, and without the aid of other people or electronic 

devices. Lastly, Experiment 2 was conducted in temporal conjunction with Experiment 1, and all 

participants from the first experiment were excluded from participating in the present 

experiment.  

3.2.2 Procedure 

As mentioned above, the critical difference between Experiment 1 and Experiment 2 was that the 

category stimuli in the present experiment were modifications of Experiment 1 stimuli, with the 

addition of internal and external shape, as well as antennae. New “Blickets” and “Daxes” were 

also created for each of the three transfer tasks. As shown in Figure 3.2 (left panel), ambiguous 

transfer objects were those whose external shape (including any external patterns and antennae) 

was the same as that of a trained object, but whose internal shape differed in such a way that 

classification according to the rule yielded the opposite category label than classification 
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according to perceptual similarity. Novel rule objects (i.e., items that were perceptually 

dissimilar to any objects previously presented to participants in the study; see Figure 3.2, middle 

panel) and memory objects (i.e., items whose external shapes, including any pattern and 

antennae, were the same as in trained stimuli; see Figure 3.2, right panel) were also presented to 

the participant. 

Figure 3.2. Left panel: Examples of training stimuli (left column) and their respective ambiguous 

transfer objects (right column). The ambiguous objects place rule-abstraction and memorization 

strategies in opposition to one another. Therefore, categorization of an ambiguous object 

according to the rule results in classification opposite that to which the perceptually similar 

training items belonged. Middle panel: Examples of novel objects used to assess rule-abstraction 

for categories of training objects. Right panel: Examples of novel objects used to assess memory 

for categories of training objects. In comparison to Experiment 1, these stimuli have been 

modified to include the nondiagnostic dimensions of internal stripe pattern, external dot pattern, 

and antennae. 

 

 All other procedural details, from task instructions and working memory tasks to training 

blocks and the post-transfer strategy probes, followed Experiment 1 exactly. 
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3.3 Results 
Experiment 1 scoring procedures were used in the present experiment when calculating 

participants’ performance on the backward digit span and the operation span tasks. Furthermore, 

the same heuristics as before were used to classify participants according to their rule reports on 

the global strategy probe questionnaire, as well as according to their block-by-block strategy 

reports (first-block, final-block, and average).    

3.3.1 Working Memory Capacity 

3.3.1.1   Backward Digit Span 

There were no differences in performance on this task between those in the sequential 

presentation condition (M = 6.09, SD = 2.30) and those in the simultaneous condition (M = 6.40, 

SD = 2.15), t(157.3) = -.88, p = .38. 

3.3.1.2   Operation Span 

As with the backward digit span, there were no differences in performance between those in the 

sequential presentation condition (M = 48.23, SD = 16.88) and those in the simultaneous 

condition (M = 46.71, SD = 16.21), t(157.74) = .57, p = .57. 

3.3.1.3   Composite Working Memory Measure 

Having established that there were no differences in working memory task performance between 

conditions, we again calculated the correlation between the two working memory measures 

collapsed across presentation modes, and found it to be significant: r = .47, t(158) = 6.44, p < 

.001. Thus, as before, we created a working memory composite score for each participant by 

averaging their standardized performance on both tasks (Figure 3.3). These composite scores 

were used in all future analyses involving working memory capacity. 
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Figure 3.3 Histogram of working memory composite scores in Experiment 2. 

3.3.2 Effects of Presentation Mode on Rule Acquisition and Transfer 

We first coded participants’ responses on the rule question of the global strategy questionnaire. 

Again, the author and a research assistant independently coded rule responses into the 

aforementioned categories of “full rule”, “partial rule”, and “incorrect rule”. The two raters 

exhibited excellent initial agreement (97.5% of responses), and they resolved disagreements 

through discussion. The frequencies of participants classified according to their degree of rule 

acquisition are displayed in Table 3.1.  

Table 3.1 Frequencies of Rule Acquisition in Experiment 2 

      

   Degree of Rule Acquisition 

 

      

Condition  Full Partial  Incorrect/None 

      

      

Sequential  10 17  53 

      

Simultaneous  7 10  63 
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We then conducted a 2 (presentation mode: sequential vs. simultaneous) x 3 (rule 

acquisition: full vs. partial vs. incorrect) chi-square test of independence, which again revealed a 

nonsignificant presentation mode x rule acquisition interaction, χ2(2) = 3.21, p = .20. As 

predicted, far fewer participants in the present experiment were able to correctly identify the full 

rule (n = 17), relative to in Experiment 1 (n = 54). 

We then conditionalized participants’ transfer performance on their degree of rule 

acquisition, and we conducted a no-intercept logistic mixed effect regression model to look for 

differences across condition and rule acquisition groups (Table 3.2). The model was composed 

of 19 fixed effects, 18 of which each corresponded a dummy-coded group (e.g., simultaneous 

presentation full rule learner categorizing memory-favored objects), and the last of which was 

our working memory composite. Overall, the model accounted for 35.94% of the variance 

(conditional R2 = .36). 
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Table 3.2 Probabilities of Correct Categorization of Transfer Objects as a Function of Rule 

Acquisition in Experiment 2 

     

  Degree of Rule Acquisition 

     

     

Object Type Presentation 

Mode 

Full Partial Incorrect/None 

     

     

Ambiguous Sequential .88 [.83, .93] .36 [.30, .43] .25 [.21, .28] 

     

 Simultaneous .80 [.70, .88] .39 [.31, .48] .21 [.18, .24] 

     

     

Rule-favored Sequential .99 [.98, 1.00] .68 [.62, .75] .51 [.47, .55] 

     

 Simultaneous .98 [.94, 1.00] .70 [.62, .78] .50 [.45, .52] 

     

     

Memory-favored Sequential .84 [.78, .90] .81 [.76, .87] .80 [.77, .83] 

     

 Simultaneous .73 [.63, .82] .85 [.78, .91] .79 [.76, .82] 

     

Note: Performance on ambiguous and rule-favored objects reflect probabilities of categorization 

according to the correct rule. For ambiguous objects, performance of 1.00 would indicate perfect 

categorization according to the correct rule, and performance of 0.00 would indicate perfect 

categorization according to memory for perceptually similar training objects. Performance on 

Memory-favored objects reflects probabilities of correct categorization based on perceptually 

similar trained items. Margins of error for 95% confidence intervals are displayed in brackets. 

 

We then performed a series of linear combination tests of significance on the transfer data 

(see Figure 3.4). Collapsing across rule acquisition levels, participants in the simultaneous and 

sequential conditions did not differ in their odds of correctly classifying ambiguous, rule-

favored, or memory-favored objects, all ps > .05.  
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Figure 3.4. Probability of correct classification of ambiguous, rule-favored, and memory-favored 

transfer objects in Experiment 2, conditionalized on the degree of participants’ rule acquisition 

(full, partial, and incorrect) and presentation mode condition (sequential in red, simultaneous in 

teal).  

 

When going from the partial rule to the full rule group, the odds of categorizing 

ambiguous objects according to the rule increased by a factor of 87.20 (z = 8.98, p < .001), and 

the odds of an accurate response on the rule-favored transfer task increased by a factor of 

1024.20 (z = 5.46, p < .001). The two groups did not differ in their odds of accurately 

categorizing the memory-favored objects (OR = .53, z = -1.24, p = .22).  

Next, as a validity check for our scoring rubric, we determined whether participants in 

each of the rule acquisition groups differed in their categorization of the transfer objects. The 

odds of categorizing ambiguous objects according to the rule increased by a factor of 376.71 

going from the incorrect rule to the full rule group (z = 13.35, p < .001). Similarly, the odds of an 

accurate response when categorizing rule-favored objects increased by a factor of 5383.98 

Sequential 

Simultaneous 
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between the two groups (z = 6.89 p < .001). There were no differences in their categorization of 

memory-favored objects (z = -.22, p = .83). Relative to the incorrect rule group, participants in 

the partial rule group had greater odds of categorizing more ambiguous objects according to the 

rule (OR = 4.32, z = 4.91, p < .001), and of having an accurate response when categorizing rule-

favored (OR = 5.25, z = 5.52, p < .001) but not memory-favored objects (OR = 1.71, z = 1.48, p = 

.14).  

The presentation mode x full rule versus partial rule group interaction was only 

marginally significant for memory-favored objects (OR = .39, z = -1.85, p = .06), but not 

significant for either ambiguous or rule-favored objects (both ps > .05). While participants in 

both conditions who acquired the partial rule performed similarly on the memory transfer task, 

full rule learners in the simultaneous condition had lower odds of an accurate response on the 

task. No other interactions were significant, all ps > .05.   

3.3.2.1   Effects of Working Memory Capacity on Rule-based Transfer 

We next investigated the relationship between working memory and participants’ mean 

performance on the rule-based transfer tasks (where they categorized either ambiguous or rule-

favored objects). We conducted a linear regression on mean ambiguous transfer performance, 

with presentation mode, working memory, and presentation mode x working memory included 

as factors. The model accounted for -.3% of the variance (adjusted R2 = -.003). There were no 

significant effects, all ps > .05. We then conducted a linear regression on mean accuracy on the 

rule-favored objects, including the same factors as above in the model. This model accounted for 

1.51% of the total variance (adjusted R2 = .015). Again, there were no significant effects, all ps > 

.05.  
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3.3.2.2   Cross-Experimental Comparison of Transfer Performance 

One of the goals of Experiment 2 was to create more complex stimuli (relative to Experiment 1) 

that would discourage participants from endorsing rule-based strategies. To verify whether 

Experiment 2 stimuli did indeed yield worse rule-based transfer performance, we conducted an 

independent samples t-test comparing mean performance on categorization of rule-favored 

objects across experiments. As predicted, participants exhibited significantly lower accuracy 

when categorizing these novel stimuli in the present experiment (M = .58, SD = .21), relative to 

Experiment 1 (M = .72, SD = .23), t(317.07) = 5.50, p < .001. Further in line with our 

predictions, a t-test comparing participants’ accuracy on memory-favored objects across 

experiments (ME1 = .81, SDE1 =  .17; ME2 = .80, SDE2 = .21) was not significant, t(307.56) = .34, 

p =.74. 

3.3.3 Categorization Strategy Preferences during Training 

Next, we addressed whether individual differences in strategy preferences would emerge in the 

present experiment (with its complex stimuli), or if participants in both presentation modes 

would be driven towards a single strategy. As in Experiment 1, we assessed learners’ strategy 

preferences at three points of training.  

3.3.3.1   First-block Strategy Preference 

We classified participants’ strategy preferences following the first training block. As shown in 

Table 3.3, the frequencies of participants classified according to this first-block method clearly 

reveal individual differences in strategy preferences. To determine if the two presentation mode 

conditions differed in their preferences, we computed a 2 (presentation mode: sequential vs. 

simultaneous) x 3 (first-block strategy: rule-first vs. memory-first vs. equal preference-first) chi-

square test of independence, which revealed a marginally significant presentation mode x first-

block strategy interaction, χ2(2) = 4.74, p = .09.  
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Table 3.3 Frequencies of First-block Strategy Preferences in Experiment 2 

     

  First-block Strategy Preference 

 

     

Condition  Rule Memory Equal 

     

     

Sequential  38 28 14 

     

Simultaneous  26 41 13 

 

 

We then conducted a generalized linear model (using a Poisson error distribution) to 

predict frequency by presentation mode (dummy coded using 0s and 1s) and first-block strategy 

(with group membership dummy coded using 0s and 1s). As before, we also included three 

presentation mode x first-block strategy interaction terms to create a fully saturated model that 

accounted for all variability in frequencies. Follow-up linear combination tests of significance 

revealed that the two presentation modes did not differ in their odds of endorsing a rule-first 

training strategy (OR = .94, z = -.25, p = .80). The odds of endorsing a memory-first strategy, 

however, increased by a factor of 1.67 (z = -2.03, p = .04) and the odds of endorsing an equal 

preference-start strategy decreased by a factor of 2 (z = -1.70, p = .09) going from the sequential 

presentation to the simultaneous presentation condition.  

Lastly, we conducted a linear regression on working memory with rule-first, memory-

first, and equal preference-first included as factors (dummy coded using 0s and 1s for group 

membership), collapsed across condition. The results of our subsequent linear combination tests 

of significance revealed no significant effects, all ps > .05. 
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3.3.3.2   Final-block Strategy Preference 

In line with Experiment 1, we next classified individuals according to their strategy preferences 

following the final training block. The frequencies of participants according to this final-block 

method are displayed in Table 3.4, and they revealed a mix of strategy preferences amongst 

participants in both conditions.  

Table 3.4 Frequencies of Final-block Strategy Preferences in Experiment 2 

      

   Final-block Strategy Preference 

 

      

Condition  Rule Memory  Equal 

      

      

Sequential  28 25  27 

      

Simultaneous  20 36  24 

 

 

We then conducted a 2 (presentation mode: sequential vs. simultaneous) x 3 (final-block 

strategy: rule-final vs. memory-final vs. equal preference-final) chi-square test of independence. 

The presentation mode x final-block strategy preference interaction was not significant, χ2(2) = 

3.49, p = .17. We also conducted a linear regression to determine if participants’ final-block 

strategy preferences (with each group dummy coded using 0s and 1s) predicted their working 

memory ability. Again, linear combination tests revealed no significant effects, all ps > .05.   

3.3.3.3   Average Strategy Preference 

The frequencies of participants classified according to their average strategy are displayed in 

Table 3.5, again revealing individual differences in preference. We conducted a 2 (presentation 

mode: sequential vs. simultaneous) x 3 (average strategy: rule vs. memory vs. equal) chi-square 

test of independence. There was no significant presentation mode x average strategy interaction, 
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χ2(2) = 1.05, p = .59. Finally, we conducted a linear regression to help illuminate the relationship 

between participants’ average strategy preferences and working memory ability. Follow-up 

linear combination tests revealed no significant effects, all ps > .05. 

Table 3.5 Frequencies of Average Strategy Preferences in Experiment 2 

      

   Average Strategy  Preference 

 

      

Condition  Rule Memory  Equal 

      

      

Sequential  20 35  25 

      

Simultaneous  19 30  31 

 

 

3.3.4 Strategy Preference Dynamics during Training 

Next, we calculated the total number of times each participant switched from one of the 

strategies (rule, memory, equal preference) to another on a consecutive block (see Figure 3.5). 

While participants in both conditions switched between strategies throughout training, there was 

no difference in the total number of shifts by participants in the sequential condition (M = 3, SD 

= 2.43) and simultaneous condition (M = 3.51, SD = 2.42), t(157.98) = -1.33, p = .19.  
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Figure 3.5 Histogram depicting the number of times, in Experiment 2, participants in the 

sequential presentation condition (top panel, in red) and the simultaneous condition (bottom 

panel, in blue) shifted from one strategy to another on consecutive blocks.  

 

Collapsing across presentation modes, there were, as predicted, significantly more shifts 

in the present experiment (M = 3.26, SD = 2.42) relative to the first experiment (M = 2.54, SD = 

2.45), t(311.04) = -2.80, p = .005. Lastly, the correlation between working memory and total 

number of shifts, collapsed across condition, was nonsignificant, r = -.01, t(158) = -.19, p = .85. 

3.3.5 Effects of Participants’ Strategy Preferences on Transfer 

As was the case in Experiment 1, we were interested in whether the individual differences that 

emerged in participants’ strategy preferences impacted their transfer performance. Given the 

prevalence of strategy shifting in this experiment – 85% of participants shifted at least once 

during training, and 43% shifted at least four times – we did not conditionalize transfer 

performance on participants’ first-block strategy preferences. To decide between the other two 

classification methods, we conditionalized participants’ transfer performance on both methods 

Sequential 

Simultaneous 
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and conducted separate linear discriminant analyses. Conditionalizing transfer performance 

according to participants’ average strategy preference was slightly more effective (canonical R2 = 

.231) than when participants were classified into their final-block strategy groups (canonical R2 = 

.198). Thus, we chose to conditionalize categorization transfer performance on participants’ 

average strategy preferences9 (Table 3.6). 

Table 3.6 Probabilities of Correct Categorization of Transfer Objects as a Function of Average 

Strategy Preferences in Experiment 2 

     

  Average Strategy Preference 

     

     

Object Type Presentation 

Mode 

Rule Memory Equal 

     

     

Ambiguous Sequential .53 [.47, .59]  .24 [.20, .28] .36 [.31, .42] 

     

 Simultaneous .43 [.37, .50] .16 [.13, .20] .31 [.26, .36] 

     

     

Rule-favored Sequential .73 [.68, .79] .54 [.50, .59]  .60 [.54, .65] 

     

 Simultaneous .68 [.61, .74] .48 [.43, .53] .56 [.52, .61] 

     

     

Memory-favored Sequential .81 [.76, .86] .87 [.83, .90] .73 [.68, .78] 

     

 Simultaneous .75 [.69, .80] .88 [.84, .91] .74 [.70, .78] 

     

Note: Performance on ambiguous and rule-favored objects reflect probabilities of categorization 

according to the correct rule. For ambiguous objects, performance of 1.00 would indicate perfect 

categorization according to the correct rule, and performance of 0.00 would indicate perfect 

categorization according to memory for perceptually similar training objects. Performance on 

Memory-favored objects reflects probabilities of correct categorization based on perceptually 

similar trained items. Margins of error for 95% confidence intervals are displayed in brackets. 

 

 
9 The interested reader can find analyses of participants’ transfer performance conditionalized on their final-block 

strategies in Appendix B.  
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 To this end, we conducted a no-intercept mixed-effects logistic regression model, which 

comprised 19 fixed effects. The first 18 fixed effects each represented a dummy-coded group 

(e.g., simultaneous presentation average rule learner categorizing memory-favored objects), and 

the final fixed effect was the covariate working memory. Overall, the model accounted for 

32.99% of the total variance (conditional R2 = .33).  

Follow-up linear combination tests of significance were then conducted (Figure 3.6). 

Going from the memory average to the rule average group, the odds of categorizing ambiguous 

objects according the rule increased by a factor of 16.62 (z = 7.41, p < .001), the odds of an 

accurate response on the rule-favored task increased by a factor of 7.19 (z = 5.30, p < .001), and 

the odds of an accurate response when categorizing memory-favored objects decreased by a 

factor of 2.86 (z = -2.53, p = .01). Meanwhile, when comparing the equal average to the rule 

average group, participants in the rule average group had greater odds of categorizing ambiguous 

objects according to the rule (OR = 3.84, z = 3.58, p < .001), greater odds of an accurate response 

on the rule-favored task (OR = 3.87, z = 3.54, p < .001), and marginally lower odds of an 

accurate response on the memory-favored task (OR = 2.09, z = 1.82, p = .07). When going from 

the equal average to the memory average group, the odds of categorizing ambiguous objects to 

the rule decreased by a factor of 4.35 (z = -4.29, p < .001) and the odds of an accurate response 

on the rule-favored task decreased by a factor of 1.85 (z = -4.29, p < .001), but the odds of an 

accurate response on the memory-favored task increased by a factor of 5.97 (z = 4.85, p < .001). 
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Figure 3.6 Probability of correct categorization of ambiguous, rule-favored, and memory-favored 

transfer objects in Experiment 2, conditionalized on participants’ average strategies (rule, 

memory, and equal preference) and presentation mode condition (sequential in red, simultaneous 

in teal). 

 

The presentation mode x rule versus memory average strategy preference group 

interactions were not significant for ambiguous, rule-favored, or memory-favored objects, all ps 

> .05. The presentation mode x rule versus equal average preference interaction, however, was 

marginally significant for memory-favored objects (OR = .51, z = -1.65, p = .10), but not for the 

other two transfer object types, both ps > .05. Although participants in both presentation 

conditions showed similar accuracy when they had an equal average strategy preference, 

participants in the simultaneous rule average group had especially lower odds of an accurate 

response on the memory-favored task. The presentation mode x memory versus equal average 

strategy preference interactions were not significant for ambiguous, rule-favored, or memory-

favored objects, all ps > .05.  

Sequential 

Simultaneous 
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3.4 Discussion 
The primary objective of Experiment 2 was to extend the investigation of the relationship 

between presentation mode and category learning with the use of complex (multi-dimensional) 

stimuli. Prior research has suggested that increased stimulus complexity should lead to more 

benefit from and broader adoption of memory-based categorization strategies (Nosofsky et al., 

2018; Regehr & Brooks, 1993). The complexity of the stimuli would render rule-learning more 

difficult, and the distinctiveness of each individual to-be-learned object would be expected to 

more memorable. When using simple stimuli (in Experiment 1), we found that simultaneous 

presentation improved memory-based transfer performance for participants in that condition, 

despite prevalent individual differences in their strategy preferences. Thus, we hypothesized that 

simultaneous presentation would confer the same benefits as before in terms of categorization 

performance, and that all participants in the experiment would preferentially endorse exemplar 

memorization as their strategy throughout training. Our findings, however, did not wholly 

support these predictions. 

With respect to categorization performance when categorizing novel transfer objects, 

participants in this experiment fared worse than those in the previous one, as predicted. 

Underscoring the difficulty in hypothesis testing with complex stimuli (that contained three 

salient but irrelevant dimensions), only 10.63% of participants in the present study acquired the 

full rule, compared to 48.75% in Experiment 1. Moreover, when participants were grouped 

according to their degree of rule acquisition, there emerged no consistent condition differences in 

the categorization of novel transfer objects, suggesting that neither presentation mode was 

particularly beneficial for the learning of complex stimuli. These findings were in line with 
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previous work that found no differences in novel categorization performance between sequential 

and simultaneous presentation modes (Andrews et al., 2011, Wahlheim et al., 2011).  

As in Experiment 1, participants’ patterns of self-reported block-level strategy 

preferences revealed mixed use of strategies throughout training, as opposed to endorsement of a 

single strategy. For example, following the initial training block, participants in both conditions 

exhibited similar frequencies of different strategy preferences to Experiment 1 (as shown by a 

visual comparison across Tables 3 and 9). Comparing across presentation modes, however, the 

trends were more aligned with our prediction. Unlike in Experiment 1, participants in the 

sequential condition did not show a bias for a rule-based strategy preference (relative to 

simultaneous presentation learners), but instead trended towards equal endorsement of rule- and 

memory-based strategy preferences. Furthermore, participants in the simultaneous presentation 

condition were significantly more likely to prefer exemplar memorization in the first training 

block. However, in further replication of Experiment 1, these first-block strategy preference 

differences did not persist through the final block of training. In other words, participants across 

the two presentation modes did not differ in their endorsement of the strategies, nor was there an 

overarching preference for exemplar memorization over rule abstraction. As previously 

mentioned, these findings directly contradict prior research, and strongly suggest that more 

research must be conducted to illuminate the circumstances in which participants are or are not 

directed towards an exemplar memorization preference when categorizing complex stimuli.  

Finally, moving to strategy dynamics during training, participants in Experiment 2 

switched strategies more often than their counterparts in Experiment 1. This was presumably 

because the complexity of the stimuli rendered them more difficult to learn through either rule- 

or exemplar-based strategy use, and so the frequency of switching increased even in the absence 
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of direct feedback. Relatedly, participants’ increased propensity for switching strategies could 

help explain why their transfer performance was better captured by their average strategy 

preferences, rather than their final block strategy reports. After all, the former classification 

method took strategy switches throughout training into consideration, while the latter focused 

only on strategy preferences from one block. Together, these findings strongly suggest that 

future laboratory studies should consider the complexity of stimulus materials when developing 

measures used to capture learners’ strategy preferences.  
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Chapter 4: General Discussion 
In the present study, we examined how sequential versus simultaneous presentation during 

training impacted participants’ categorization of novel transfer objects (including degree of rule 

acquisition) and strategy preferences as they learned to categorize both simple (Experiment 1) 

and complex (Experiment 2) stimuli. The “Blickets” and “Daxes” used in both experiments 

followed a bi-dimensional disjunctive rule, where “Blickets” were objects whose inside and 

outside shapes shared either form or color, and “Daxes” shared neither (Little & McDaniel, 

2015). We utilized Gouravajhala et al.’s (2019) block-by-block strategy probes to identify 

participants’ strategy preferences and dynamics during training, and also incorporated a global 

strategy questionnaire following training to obtain participants’ rules. Participants’ categorization 

of novel ambiguous, rule-favored, and memory-favored transfer objects was first conditionalized 

on their degree of rule acquisition, and then on their block-level strategy preferences. Below, we 

address the key findings and implications of the present study.  

4.1 Categorization of Novel Transfer Objects 
The first major objective of the present study was to extend prior research on how presentation 

mode impacts the categorization of transfer objects. As outlined in the introduction, findings 

have been inconclusive thus far. For example, some researchers have found no difference 

between the two conditions in transfer performance (Andrews et al., 2011; Wahlheim et al., 

2011). Others, however, have found a benefit of simultaneous presentation in the categorization 

of novel objects (Higgins & Ross, 2011; Kang & Pashler, 2012; Meagher et al., 2017). Rather 

than settling the debate, the present study also offered mixed findings.  
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When simple stimuli were used (Experiment 1), our data clearly suggested that the fully 

organized simultaneous display benefited exemplar-based category learning (i.e., categorization 

of novel exemplars in accordance with similarity to objects stored in memory), collapsed across 

all strategy preferences. Such a pattern vastly diverged from any of the previous findings, and so 

we developed several potential explanations for this discrepancy. As theorized in the 

introduction, it is possible that our specific design gave participants in the simultaneous 

condition more of an opportunity to self-regulate their allocation of time and attention for any 

given training object (relative to those in the sequential condition).  

Another possibility is that prior research that has been assumed to show rule-favored 

benefits of simultaneous presentation was more aligned with exemplar-based learning than 

previously considered. After all, many researchers have not required participants to self-report 

their strategy use or utilized transfer items that objectively differentiated memorizers versus rule 

abstractors (as was the case with our ambiguous transfer task). In a related vein, sometimes the 

category learning stimuli used in studies can also complicate the issue. For example, Kang and 

Pashler (2012) used landscape paintings as their stimuli; because these paintings have no 

underlying category defining rule, it is difficult to confirm exactly how participants categorized 

novel objects during transfer. 

A final possibility is that the design of our simultaneous display directly resulted in the 

discrepancy between our findings and previous research. Excepting Meagher et al. (2017), all 

previous studies comparing sequential and simultaneous presentation utilized only partial 

simultaneous presentations (i.e., presenting participants with only some of the to-be-trained 

stimuli at once). Thus, it is possible that the full simultaneous display of the present study was 

too large to allow for easy comparisons within and across categories. Instead, simultaneous 
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presentation allowed participants to more efficiently and effectively (relative to sequential 

presentation) memorize training stimuli. Future research should manipulate the degree of 

simultaneous presentation and examine the effects on learners’ categorization of novel 

ambiguous, rule-favored, and memory-favored objects.  

  When we utilized more complex stimuli (Experiment 2), there were no differences in 

categorization performance between those in the sequential and simultaneous presentation 

conditions. One possibility is that simultaneous presentation could not stimulate exemplar-based 

learning in this experiment because the stimuli contained too many dimensions for effective 

storage in long-term memory. In support of this view, previous work with similar findings (i.e., 

no condition differences in transfer performance) has utilized artificial organism-like aliens 

(Andrews et al., 2011) and naturalistic bird species (Wahlheim et al., 2011), both of which were 

highly complex. However, Higgins and Ross (2011) also used fictitious aliens as their stimuli 

and found that participants in their simultaneous presentation condition outperformed their 

sequential presentation counterparts on the transfer task, and so we caution against drawing 

strong conclusions. 

Across all previous studies, the theorized benefits of simultaneous presentation focused 

on allowing participants to compare and contrast between exemplars from different categories (in 

an effort to identify diagnostic characteristics) without needing to hold details in working 

memory. To directly test this theory, we measured working memory ability using the backward 

digit span and the operation span in the present study. Interestingly, participants’ working 

memory capacity was not related to their categorization performance in either presentation mode, 

whether simple or complex stimuli were used. Given that we also did not demonstrate a benefit 
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of simultaneous presentation for rule-based learning, we do not find the lack of relationship 

between working memory capacity and transfer performance surprising.    

At a broader level, our findings also contradict previous relevant research showing a 

positive relationship between working memory capacity and categorization performance on rule-

based transfer tasks (DeCaro et al., 2008; Lewandowsky, 2011; Lewandowsky et al., 2012). 

Importantly, these previous studies not only presented objects sequentially, but they also 

incorporated feedback learning paradigms, in which participants were tested on their ability to 

categorize each to-be-learned stimulus before being presented with its correct category label. For 

participants abstracting a rule, they would be expected to update existing hypotheses and 

reorganize their category structures based on the feedback they received, both of which rely on 

working memory. In the present study, however, participants engaged in observational learning 

and to-be-learned stimuli (whether presented sequentially or simultaneously) were always 

accompanied by their category labels throughout training. Perhaps then the training format – 

feedback versus observational – impacted the relationship between working memory and rule-

based transfer performance.  

To address this question, we subdivided data in both experiments to only include 

participants with a rule-final preference in the sequential presentation condition, as they were 

direct counterparts of participants in the aforementioned studies. We then conducted separate 

linear regressions examining whether participants’ working memory capacities predicted mean 

performance on the ambiguous transfer and the rule-favored transfer tasks in each experiment. 

We found no significant relationships between working memory capacity and rule-based transfer 

performance, all ps > .05, in either task or in either experiment. Thus, it appears as though, even 

when limiting our scope to include only rule participants who received sequential presentation, 
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working memory did not positively predict rule-based transfer performance when using 

observational training. One potential explanation is that, in the absence of testing in the form of 

feedback learning, participants in the present study were less motivated to use their working 

memory capacities as often during training.   

Another possible explanation for our findings – one that includes all participants, 

regardless of presentation mode condition or strategy preference – relates to the stimuli used in 

the present study. In support of this, Little and McDaniel (2015) also used “Blickets” and 

“Daxes” to test the relationship between working memory (as measured by performance on the 

operation span) and categorization performance. While they found that performance on a fluid 

intelligence task predicted categorization of ambiguous objects according to the rule (for 

participants who had a rule-based preference), there was no correlation between working 

memory capacity and transfer task performance. The present study extended these findings by 

uncovering the same lack of relationship even when using simultaneous presentation in an 

observational learning paradigm. More research using a variety of category learning stimuli 

should be conducted in the future to help illuminate these and other possibilities.  

4.1.1 Presentation Mode and Rule Acquisition 

A related major finding of the present study was that participants in the two presentation modes 

did not differ in the degree to which they acquired the correct bi-dimensional disjunctive rule. 

However, as previously mentioned, participants in the sequential condition exhibited better rule-

favored transfer performance, at least when categorizing simple stimuli. Furthermore, a 

comparison between sequential and simultaneous presentation learners who acquired the full rule 

in Experiments 1 and 2 (see Tables 2.1 and 3.1) revealed a numerical trend favoring participants 

in the sequential presentation.  
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To determine whether our two experiments were simply underpowered to detect a 

significant difference in the frequency of the three different rule acquisition groups (full, partial, 

and incorrect) between the two presentation conditions, we collapsed across rule acquisition data 

from both experiments (see Table 4.1 for combined frequencies). A chi-square test of 

independence and subsequent log-linear model10 revealed a marginally significant effect: 

following sequential presentation, participants were more likely to acquire the full rule. 

Participants who received sequential presentation were also more likely to acquire the partial 

rule. These findings revealed that presentation mode might in fact impact the degree to which 

participants are able to acquire a bi-dimensional disjunctive rule during 12 blocks of training, 

and thus should be taken into consideration in future studies. However, because the overall 

interaction was only marginally significant, we caution against drawing stronger conclusions 

regarding this relationship. 

Table 4.1 Combined Frequencies of Rule Acquisition across Experiments 1 and 2 

      

   Degree of Rule Acquisition 

 

      

Condition  Full Partial  Incorrect/None 

      

      

Sequential  44 31  88 

      

Simultaneous  27 27  103 

 

 

 
10 We conducted a 2 (presentation mode: sequential vs. simultaneous) x 3 (rule acquisition: full vs. partial vs. 

incorrect) chi-square test of independence, which revealed a marginally significant presentation mode x rule 

acquisition interaction, χ2(2) = 5.41, p = .07. Follow-up linear combination tests of significance showed that there 

were significantly more sequential learners who acquired the full rule (z = 3.17, p = .002). Additionally, participants 

in the sequential condition were more likely to acquire the partial rule (z = 2.92, p = .003). There was no difference 

in the frequency of sequential versus simultaneous participants in the incorrect rule group, p > .05. 
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A final secondary analysis of interest in the present study was related to the memory 

probe, where participants were asked to classify how many training objects they had memorized 

(with “All,” “Some,” and “None,” serving as possible response options. The majority of 

participants in the present study (72.5% in Experiment 1 and 81.76% in Experiment 2) reported 

having memorized either some or all of the stimuli by the end of training. Interestingly, 

participants who acquired the full rule also reported having memorized some or all of the objects 

with high frequency (67.92% in Experiment 1 and 64.71% in Experiment 2). These findings 

align with theoretical frameworks of category learning which attest that rule abstractors 

simultaneously acquire memory for particular instances, as opposed to storing only the rule 

(Erikson & Kruschke, 1998, Experiment 2; Jacoby, 1991). Thus, it was unsurprising that even 

rule learners in the present study self-reported having a good memory for trained stimuli.  

4.2 Presentation Mode and Categorization Strategy 

Preferences 
The second major objective of the present study was to investigate whether presentation mode 

affected participants’ categorization strategy preferences, a question that no published study to 

date has addressed. While previous studies have identified the emergence of individual 

differences in strategy preferences in a sequentially presented rule-based task (Little & 

McDaniel, 2014), we were interested in whether simultaneous presentation of simple and 

complex stimuli would instead drive all participants toward one particular strategy.  

A major contribution of the present study is that individual differences in strategy 

preferences emerged in both the sequential and simultaneous presentation conditions at various 

points of training (following the first block, following the final block, and on average across all 
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blocks). Importantly, however, participants in the two presentation modes sometimes differed in 

their preference patterns.  

 Specifically, participants in the simultaneous presentation condition had greater odds of 

endorsing a memorization strategy following the first training block across both experiments, 

whereas those in the sequential presentation had greater odds of initially preferring a rule-based 

strategy (for simple stimuli) or a tendency to adopt both strategies equally (for complex stimuli). 

We believed that these strategy preference patterns largely emerged due to the salience of the 

relatively limited stimulus set size (12 training objects in total) for participants in the 

simultaneous condition. Prior research using “Blickets” and “Daxes” has trained younger adult 

participants on similar set sizes and found that participants were able to effectively use 

memorization as a categorization strategy (Little & McDaniel, 2015; Wahlheim et al., 2016). 

This outcome suggests that the 12-item training set in the present study was not too large for 

memorization to be a viable strategy and importantly, stimulus set size has impacted strategy 

preferences in previous studies, such that smaller set sizes were more conducive for exemplar 

memorization (Homa et al., 1981; Little & McDaniel, 2013). One might question why 

participants in the sequential condition did not exhibit such a memory-first bias across both 

experiments, considering that participants across both conditions were presented with the same 

number of items per block. To this, we note that it was unlikely that learners in the sequential 

presentation condition were counting the objects as they were presented; therefore, we would 

expect less susceptibility on their part to the effects of set size following the first training block. 

To check the plausibility of this explanation, we suggest that future experiments should, after the 

first block, ask participants in both conditions to report how many objects were presented to 

them.  
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 Moving to the rest of training, there were no differences across presentation mode 

conditions in final-block or average strategy preferences, suggesting that other task- and 

individual-level factors influenced participants’ strategy preferences. For example, prior to the 

category learning task, all participants were informed of the viability of both rule-based and 

memory-based strategies, which might have encouraged them to vary in their preferences 

throughout training. Furthermore, the repetitive nature of training (i.e., each stimulus was shown 

to the participant 12 times) might also have driven some participants to adopt different strategies 

over time. Another possibility is that while presentation mode might have moderated 

participants’ initial task approach, they subsequently reverted to their general preference 

tendencies which led to the emergence of typical individual difference patterns by the end of 

training (Little & McDaniel, 2015; McDaniel et al., 2014; Wahlheim et al., 2016).  

A secondary finding of the present study was that working memory capacity (as 

measured by performance on the backward digit span and operation span) was not related to 

participants’ strategy preferences when categorizing simple or complex stimuli. Previous 

findings regarding on the relationship between working memory and strategy preferences have 

been mixed. For example, McDaniel et al. (2014) found that high working memory capacity (as 

measured by performance on the operation span) predicted a rule-based strategy preference on a 

function learning task, whereas Wahlheim et al. (2016) found that high working memory 

capacity (as measured by performance on the reading span and operation span) correlated with 

an exemplar memorization strategy preference in a rule-based category task similar to the one 

used in the present study. These studies used feedback learning paradigms that, as mentioned 

previously, might have brought participants’ working memory ability to the fore more than 

observational training would be expected to. However, Little and McDaniel (2015) also found no 
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relationship between performance on the operation span and participants’ training strategy 

preferences using feedback learning on the same rule-based task as Wahlheim et al. (2016). 

Thus, more research is needed to help determine the conditions in which working memory might 

play a role in participants’ strategy preferences. 

Lastly, when conditionalizing transfer performance on their block-level strategy 

preferences (final-block in Experiment 1 and average block in Experiment 2), we found that 

participants’ preferences generally aligned with how they categorized ambiguous, rule-favored, 

and memory-favored objects. These findings further validate Gouravajhala et al. (2019)’s block-

by-block strategy probes. Interestingly, some presentation mode x strategy preference 

interactions emerged across both studies, all of which generally showing that simultaneous 

presentation improved memory for trained items, rather than facilitating rule use in transfer.  

4.2.1 Categorization Strategy Preference Dynamics during Training 

Prior research has shown that performance error during training precipitates strategy switching 

during rule-based category learning tasks using feedback learning (Gouravajhala et al., 2019). 

The present study extended this work by revealing that participants exhibit switching even in the 

absence of direct feedback, which was previously believed to be a necessary factor in inducing 

strategy switches (Kalish et al., 2005). Though participants switched less than in previous 

studies, our findings nevertheless suggest that participants have the capacity to monitor the 

effectiveness of their current strategy in their learning. Indeed, participants’ tendency to switch 

more often when presented with more difficult and complex stimuli highlighted their 

metacognitive awareness of the extent to which they were learning the categories.  

 In further extension of previous work, we were interested in whether working memory 

capacity was an additional factor that could help explain participants’ switching behavior. To this 
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point, we found that working memory as not predictive of total number of strategy switches in 

either experiment. This lack of relationship was unsurprising in light of a previous finding with 

respect to working memory and strategy preferences. If there had been a significant correlation 

between working memory and a particular strategy preference, then perhaps participants with 

high working memory capacities would be expected to switch less often (as they would instead 

exhibit a stable strategy preference). Importantly, our study was the first, to our knowledge, to 

investigate this relationship, and so we caution against drawing strong conclusions that working 

memory might never be an important factor in participants’ switching behavior. Instead, we 

encourage future researchers to incorporate block-by-block strategy probes (or other measures of 

strategy dynamics) to continue exploring mechanisms underlying strategy switching. 

4.3 Educational Implications and Conclusion 
As mentioned in the Introduction, the present study was partially motivated by a consideration of 

presentation mode in educational settings. Specifically, we aimed to determine whether 

simultaneous presentation (often utilized in textbooks and other classroom materials) would 

yield different category learning benefits in comparison to sequential presentation (often used in 

laboratory settings). Based on our findings of different first-block strategy preferences in the 

sequential and simultaneous conditions, we advise educators to be particularly mindful of the 

presentation mode of to-be-learned stimuli in lecture settings.  

If professors wish for students to have improved memory for previously learned items, 

then a fully simultaneous display of to-be-learned stimuli would be expected to be more effective 

than sequential presentation. On the contrary, if educators’ goal is for learners to abstract a rule, 

then a more traditional sequential presentation might be more beneficial. A mismatch in 

presentation mode and course aim might disadvantage students. For example, imagine a geology 
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major presented with rock categories in a manual prior to a test where they must identify 

underlying rules (see Figure 4.1). If the to-be-learned rocks are presented simultaneously (with 

category labels accompanying each one), then the display might instead facilitate memory for the 

rocks, rather than supporting rule abstraction. Relatedly, it is also possible that the presentation 

of to-be-learned stimuli in educational settings might motivate different strategy preferences in 

students. After all, it is likely that most lectures will present learners with information only once 

or twice (as opposed to repeating the same information 12 times).  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Examples of simultaneously presented igneous rocks in a geology manual. Taken 

from The Rock and Gem Book: And Other Treasures of the Natural World. 

 

Much of prior category learning research has only utilized sequential presentation. 

Because much of category learning in the real world often diverges from this laboratory norm, 
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we believed it worthy of further investigation. The present study was the first, to our knowledge, 

to examine the effects of simultaneous presentation (relative to sequential) on the learning of 

both simple and complex rule-based category stimuli. We focused on learners’ categorization of 

three types of transfer objects, their acquisition of a bi-dimensional disjunctive rule, and their 

self-reported categorization strategy preferences and dynamics during observational training.  

We identified several important areas of divergence between participants across the two 

presentation modes. When presented with simple rule-based stimuli, participants in the 

simultaneous condition categorized transfer objects according to memory for trained items, 

rather than according to an abstracted rule. Further, following the first training block, participants 

in this condition preferentially endorsed an exemplar memorization strategy, while those in the 

sequential presentation mode had greater odds of a rule abstraction preference. With more 

complex stimuli, though there were no differences in transfer performance, participants in the 

simultaneous condition again showed greater odds of a memory-based strategy preference after 

the first training block. Finally, when collapsing across both experiments, participants in the 

sequential presentation condition had greater odds of abstracting the correct bi-dimensional 

disjunctive rule.  Thus, we strongly advocate for the incorporation of simultaneous displays into 

more future studies, so that we are better able to identify the underlying reasons for these 

differences. 
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Appendix A 
We conducted a no-intercept mixed-effects logistic regression model which comprised 19 fixed 

effects. The first 18 fixed effects each represented a dummy-coded group (e.g., simultaneous 

presentation average rule learner categorizing memory-favored objects), and the last fixed effect 

was working memory. Overall, the model accounted for 37.06% of the total variance 

(conditional R2 = .371; see Table A.1).  

Table A.1 Probabilities of Correct Categorization of Transfer Objects as a Function of Average 

Strategy Preferences in Experiment 1 

     

  Average Strategy Preference 

     

     

Object Type Presentation 

Mode 

Rule Memory Equal 

     

     

Ambiguous Sequential .72 [.68, .76]  .25 [.20, .31] .40 [.33, .46] 

     

 Simultaneous .60 [.55, .65] .29 [.23, .35] .28 [.23, .33] 

     

     

Rule-favored Sequential .85 [.82, .88] .59 [.52, .65] .67 [.61, .73] 

     

 Simultaneous .80 [.76, .84] .56 [.50, .62] .63 [.58, .69] 

     

     

Memory-favored Sequential .78 [.75, .81] .80 [.75, .86]  .73 [.67, .78] 

     

 Simultaneous .84 [.81, .88] .83 [.50, .63] .88 [.58, .69] 

     

 

Follow-up linear combination tests of significance were conducted. Going from the 

average rule to the average memory group, the odds of categorizing ambiguous objects according 

to the rule increased by a factor of 45.65 (z = 8.11, p < .001), and the odds of an accurate 
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response on the rule-favored task increased by a factor of 19.59 (z = 6.30, p < .001). There were 

no differences, however, between these groups in their categorization of memory-favored objects 

(OR = 1.34, z = .58, p = .56). The odds of categorizing ambiguous objects according to the rule 

was 23.71 times greater for the average rule group than for those who endorsed rule and memory 

strategies equally (z = 7.12, p < .001). Further, the odds of an accurate response when 

categorizing rule-favored objects were increased by a factor of 9.66 going from the average rule 

to the average equal preference group (z = 4.99, p < .001). The odds of accurate categorization 

on the memory-favored task, however, were the same across both groups (OR = 1.37, z = .66, p = 

.51). There were no performance differences between those with an average memory preference 

and those who, on average, endorsed rule and memory strategies equally, all ps > .05.  

The presentation mode x rule versus memory average strategy group interaction was 

marginally significant only for ambiguous objects (OR = .45, z = -1.66, p = .10). While 

participants in both conditions categorized ambiguous objects similarly in the memory average 

group, sequential average rule learners had greater odds of categorizing ambiguous objects 

according to the rule than participants in the simultaneous average rule group. None of the 

presentation mode x rule versus equal average strategy preference group interactions were 

significant, all ps > .05. Lastly, the presentation mode x memory versus equal average strategy 

group interaction was marginally significant only for memory-favored objects (OR = .39, z = -

1.70, p = .09). In this instance, average memory learners across sequential and simultaneous 

presentation modes exhibited similar performance when categorizing memory-favored objects, 

but equal average strategy participants in the simultaneous condition had greater odds of an 

accurate response compared to their sequential counterparts. 
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Appendix B 
We conducted a no-intercept mixed-effects logistic regression model which was composed of 19 

fixed effects. The first 18 fixed effects each represented a dummy-coded group (e.g., sequential 

presentation rule-final learner categorizing ambiguous objects), and the final fixed effect was 

working memory. Overall, the model accounted for 33.16% of the total variance (conditional R2 

= .33; see Table B.1).  

Table B.1 Probabilities of Correct Categorization of Transfer Objects as a Function of Final-

block Strategy Preferences in Experiment 2 

     

  Final-block Strategy Preference 

     

     

Transfer Objects Mode Rule Memory Equal 

     

     

Ambiguous Sequential .48 [.42, .53] .24 [.19, .29] .32 [.28, .38] 

     

 Simultaneous .50 [.43, .56] .18 [.14, .21] .27 [.22, .32] 

     

     

Rule-favored Sequential .70 [.65, .75] .53 [.48, .59] .58 [.52, .63] 

     

 Simultaneous .65 [.59, .71] .50 [.46, .55] .56 [.50, .61] 

     

     

Memory-favored Sequential .82 [.78, .86] .87 [.83, .90] .75 [.70, .79] 

     

 Simultaneous .69 [.63, .75] .85 [.82, .89] .79 [.74, .83] 

     

 

We then conducted linear combination hypothesis tests of significance. Relative to 

memory-final participants, those in the rule-final group had 16.65 times greater odds of 

categorizing ambiguous objects according to the rule (z = -2.98, p = .003). Their odds of accurate 

categorization were 4.84 times greater on the rule-favored task (z = 4.29, p < .001), and 3.23 
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times lower on the memory-favored task (z = -1.78, p = .07). Going from the equal-final to the 

rule-final group, the odds of categorizing ambiguous objects according to the rule increased by a 

factor of 16.65 (z = 7.61, p < .001). Further, the odds of an accurate response on the rule-favored 

task increased by a factor of 4.84 (z = 4.41, p < .001), whereas the odds of an accurate response 

when categorizing memory-favored objects decreased by a factor of 3.23 (z = -2.94, p = .003). 

The odds of categorizing ambiguous objects according to the rule increased by a factor of 2.94, 

going from memory-final to equal-final groups (z = -2.96, p = .003). Both groups exhibited equal 

odds of correctly categorizing both rule-favored objects (OR = .67, z = -1.16, p = .25), but the 

memory-final group had 3.85 times greater odds of an accurate response when categorizing 

memory-favored objects (z = 3.46, p < .001).  

The presentation mode x rule-final versus memory-final strategy preference group 

interaction was marginally significant for memory-favored objects (OR = .48, z = -1.8, p = .07), 

but not for ambiguous or rule-favored objects. In this case, participants in the sequential rule-

final group had greater odds of an accurate response on the memory-favored task than did 

simultaneous rule-final participants, but participants in both conditions exhibited similar levels of 

accuracy in the memory-final group.  

The presentation mode x rule-final versus equal preference-final group interaction was 

significant only for memory-favored objects (OR = .33, z = -2.81, p = .005). Though participants 

in both conditions had similar odds of correct categorization if they were in the equal 

performance-end group, sequential rule-final participants had greater odds relative to 

simultaneous rule-final learners. No other interactions were significant, all ps > .05.  
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