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ABSTRACT OF THE DISSERTATION

Bounding Projective Hypersurface Singularities

by

Ben Castor

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2022.

Professor Matt Kerr, Chair

We first provide background necessary for understanding monodromy and spectra. We

then compare several di↵erent methods involving Hodge-theoretic spectra of singularities

which produce constraints on the number and type of isolated singularities on a projective

hypersurface of fixed degree. In particular, we introduce a method based on the spectrum

of the nonisolated singularity at the origin of the a�ne cone on such a hypersurface, and

relate the resulting explicit formula to Varchenko’s bound. We then provide a purely

combinatorial interpretation of our theorems and our conjecture.
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1. Background

1.1 Monodromy

Definition 1. Let X, Y,B be topological spaces and let f : X ! Y be a continuous

map. Then the triple, (X, Y ; f) will be called a locally trivial fibration or fiber bundle

with fiber B, if for any point y0 2 Y , there exists a neighborhood y0 2 U ✓ Y and a

homeomorphism ⌫, such that the diagram below commutes:

f
�1(U) B ⇥ U

U

f

⌫

⇡U

Here ⇡U denotes the projection map onto U , and B is given the discrete topology.

The homeomorphism ⌫ is called the local trivialization of the fibration.

In our context, f : X ! Y will be a smooth surjective holomorphic mapping of

complex manifolds with compact fibers (i.e. a smooth surjective proper morphism).

Since f is smooth (df has maximal rank at each x 2 X), all fibers of f are non-singular

compact complex analytic submanifolds of X. If we fix a particular fiber, B = f
�1(s0) of

f , then it can be shown that (X, Y ; f) gives a locally trivial fibration with fiber B, and

the trivialization ⌫ can be chosen to be a di↵eomorphism of the the smooth manifolds

1



f
�1(U) and B ⇥ U . In this particular situation, the triple (X, Y ; f) is called a smooth

family of complex analystic manifolds and the fiber f�1(s) over s 2 Y is denoted Xs

Example 2 (Locally trivial fibration/fiber bundle). Let S
1
⇢ C denote the unit circle

{e
i✓
| ✓ 2 [0, 2⇡)}, and fix the basepoint 1 2 S

1. Let fn : X = S
1
! S

1 = Y be defined as

fn(z) ! z
n. Then fn : S1

! S
1 defines a fiber bundle with fiber B = {n

th roots of unity}.

For n = 2, we may pick our open set:

U =

⇢
e
i✓

���� ✓ 2

⇣
�
⇡

2
,
⇡

2

⌘�
✓ Y,

so that we end up with

f
�1
2 (U) =

⇢
e
i✓

���� ✓ 2 U1 =
⇣
�
⇡

4
,
⇡

4

⌘
[ U2 =

✓
3⇡

4
,
5⇡

4

◆�
✓ X.

We observe that here 1 2 U , and so f
�1
2 (1) = {�1, 1} ✓ f

�1
2 (U). Furthermore, we

note that f
�1
2 (U) is composed of two disjoint open intervals,each homeomorphic to U

and containing only one of the inverse image points. In fact, we may think about the

fiber f�1
2 (1) = {�1, 1} as the set indexing the disjoint components of the inverse image

f
�1(U). This gives us an intuitive understanding of the fiber bundle. Explicitly:

f
�1
2 (U) {�1, 1}⇥ U

U

f2

⌫

⇡U

Where ⌫ : f�1(U) = U1 [ U2 ! {�1, 1} ⇥ U is given by ⌫(x) = ((�1)i, f2(x)) where

x 2 Ui

2



(

(

1

Y = S
1

}U

)

)

(

(

1�1 }U1{U2

X = S
1

Note that, in a similar way, U can be chosen about any other point in Y in a way

that patches together, giving the full fiber bundle.

Any locally trivial fibration (X, Y ; f) satisfies the covering homotopy axiom. Namely,

for any homotopy:

�t : K ! Y, t 2 [0, 1]

of a simiplicial complex K, and any continuous mapping:

�0 : K ! X

such that f � �0 = �0, there exists a homotopy:

�t : K ! X, t 2 [0, 1]

extending �0 and such that f � �t = �t for all t 2 [0, 1].

We restrict to the case that B, the fiber of a locally trivial fibration (X, Y ; f) is a

simplicial complex and the base Y is path-connected. Consider the arc:

� : [0, 1] ! Y, �(0) = y0, �(1) = y1

3



Then this curve defines a homotopy �t : B ! Y defined by the condition that �t(b) = �(t)

for all b 2 B. Let �0 : B ! f
�1(y0) be a homeomorphism. Then there exists a homotopy

�t : B ! X covering �t and extending �0. the mapping:

µ : f�1(y0) ! f
�1(y1)

defined by:

µ(x) = �1(�
�1
0 (x))

is a homotopy equivalence of fibers.

It can be deduced from the covering homotopy axiom that the homotopy class of µ

depends only on the homotopy type of the path � joining y0 and y1 in Y . The mapping

µ, defined up to homotopy equivalence of � ✓ Y is called the monodromy transformation

of the fiber f�1(y0) into the fiber f�1(y1) defined by the curve �. That is, if [ ] denotes

homotopy class and two paths �[0, 1] ! Y and ↵ : [0, 1] ! Y with �(0) = ↵(0) =

y0, �(1) = ↵(1) = y1 are homotopic ([↵] = [�]), then µ[�] = [µ�] = [µ↵] is a well defined

map which maps µ[�] : f�1(y0) ! f
�1(y1).

Now we will restrict our attention to only the paths � : [0, 1] ! Y which are loops.

Fix y0 2 Y and let �(0) = �(1) = y0. Then µ[�] is a map from the fiber f�1(y0) to itself.

Therefore, to each element [�] 2 ⇡1(Y ; y0) we may associate a monodromy tranformation

of the fiber f�1(y0) (to itself). We may view this correspondence as a mapping:

� : ⇡1(Y ; y0) ! {monodromies of f�1(y0)}

given by:

[�] ! µ[�]

4



which is in fact a well-defined homeomorphism (viewing the right hand side as a

subgroup of automorphisms of the fiber). The image �[⇡1(Y ; y0)] of this homomorphism

is called the monodromy group of the fiber f�1(y0). Pictorally:

b0

b1

µ[�]

y0

[�]

Y X

f : X ! Y

�

b1, b0 2 f
�1(y0)

Note that here our choice of [�] implies that we may choose any loop ↵ 2 [�] and get

the same b0, b1 2 f
�1(y0).

If µ : B ! B is a continuous map of a simplicial complex B = f
�1(y0), the homotopy

class of µ defines endomorphisms of the homology and cohomology groups of B.

Example 3 (Monodromy). Let f : �⇤
! S

⇤ be defined f(z) = s = z
n from the

punctured unit disk about the origin to itself. Fix any s0 2 S
⇤. Then the fiber of the

locally trivial fibration induced by f is B = {z1, . . . zn} where zni = s0 and zk = z1e
2⇡i(k�1)

n

for 1  i, k  n. We may pick U to be an open wedge around s0 = ⇢0e
i�0 , precisely,

U =

⇢
⇢e

i�

����⇢ 2 (0, 1),� 2

⇣
�0 �

⇡

2
,�0 +

⇡

2

⌘�

giving the disjoint union of smaller wedges:

f
�1(U) =

n[

k=1

Uk

5



where:

Uk =

⇢
n
p
⇢e

i�

����⇢ 2 (0, 1),� 2

✓
2⇡(k � 1)� �0

n
�

⇡

2n
,
2⇡(k � 1) + �0

n
+

⇡

2n

◆�

We define the fiber bundle by assuming each point in S
⇤ has a corresponding open

neighborhood defined the same way. Now let � be a loop going around the origin once in

S
⇤, and starting at s0. It is easiest to think about the inverse image of this loop f

�1(�) as

going n times slower in the pre-image �⇤. The ith revolution � makes in S
⇤, corresponds

to a rotation of angle 2⇡
n given by f

�1(�)i from zi to zi+1 in �⇤. Namely, n revolutions of

�, corresponds to one full revolution about the origin made in �⇤. This relationship in

the inverse image sending z1 ! z2 ! . . . ! zn ! z1, is called the geometric monodromy.

That is, the geometric monodromy g : B ! B is a map from the fiber of the fibration to

itself.

However, the word “monodromy” alone is also used to refer to the algebraic mon-

odromy which is the map induced on the reduced homology groups of B by the geometric

monodromy map. The algebraic monodromy is therefore defined:

T : eHk(B,Z) ! eHk(B,Z),

with k 2 N specified depending on the context. In the above example, B is a set of

n-points, therefore the reduced homology groups are:

eHk(B,Z) ⇡

8
>>><

>>>:

Zn�1
k = 0

0 k � 0

In the usual reduced homology complex, C0 = h{z1}, . . . {zn}i
⇠= Zn the free abelian

group on generators {zi}, and the map " : C0 ! Z is given by
Pn

i=1 ai{zi} !
Pn

i=1 ai.

6



We also know for a set of points C1 = 0, so Im(�1) = 0 Since eH0(B,Z) is calculated via

the quotient:

Ker(")

Im(�1)
=

{(ai)ni=1 2 Zn
|
P

ai = 0}

h0i
⇠= {(ai)

n
i=1 2 Zn

|

X
ai = 0}

Which as a subgroup of Zn is isomorphic to Zn�1. We may view eH0(B,Z) in terms of

its (n � 1) generators as h{z2} � {z1}, . . . {zn} � {zn�1}i. The geometric monodromy

therefore tells us that T must send the generators:

8
>>><

>>>:

T ({zi}� {zi�1}) = {zi+1}� {zi} n� 1 � i � 2

T ({zn}� {zn�1}) = {z1}� {zn} i = n

We note that z1 � zn = �[(zn � zn�1) + (zn�1 � zn�2) + . . . z2 � z1)] Therefore, T can be

represented by the linear (n� 1)⇥ (n� 1) matrix in terms of these generators:

T =

2

666666666666664

0 0 0 . . . 0 �1

1 0 0 . . . 0 �1

0 1 0 . . . 0 �1

...
...

... . . .
...

...

0 0 0 . . . 1 �1

3

777777777777775

Example 4. In particular, if n = 4 in the above construction, we can visualize the

monodromy relation via the following picture:

7



s0� U

S
⇤

z1

�1

U1

D1

z2
�2

U2

D2

z3

�3

U3

D3

z4
�4

U4

D4

f
�1(U) =

S4
i=1 Ui

f
�1(S⇤) = {

S4
i=1 Di}/{Dj ⇠ Dk}

�i = [f�1(�)]i

and end up with the 3⇥ 3 monodromy matrix below:

T =

2

6666664

0 0 �1

1 0 �1

0 1 �1

3

7777775

[1]

8



1.2 Horizontal and Vertical Monodromy

We will now consider the case when f : Cn+1
! C has a 1-dimensional critical locus

⌃, and where ` is an admissible linear form. [2] defines an admissible linear form ` to

be a linear form ` = a0x0 . . . anxn with ai 2 C, where f
�1(0) \ {` = 0} has an isolated

singularity. The series of functions fN = f + "`
N for N 2 N is referred to as the Iomdin

series of hypersurface singularities.

The Milnor fibration is an important invariant of a singularity. Milnor showed that

for " > 0 chosen small enough, there exists an ⌘ > 0 such that

f : B" \ f
�1(S1

n) ! S
1
n

is a locally trival fibre bundle where B" is the closed "-ball in Cn+1 about 0 and S
1
n is a

circle with radius ⌘ in C. A typical fiber F = f
�1(⌘) \B" (conventially chosen as ✓ = 0)

is called the Milnor fiber of f . We make quick note that the Milnor fibration as a whole

is essentially the union [✓2[0,2⇡)f
�1(⌘ei✓) \B".

We denote:

µk(f) = dim eHk(F )

If dim ⌃ = 1, it is well known that µk(f) = 0 whenever k 6= n� 1, n. In the event that f

has an isolated singularity we have µk(f) = 0 whenever k 6= n. In this case we also call

µ(f) = µn(f) the Milnor number of f . With this in mind, the Iomdin series is special

due to the following:

Theorem 5 (Iomdin). Let f : Cn+1
! C have a 1-dimensional critical locus ⌃, and let

` be an admissible linear form. Then there exists an N0 such that for N > N0

1. fN = f + "`
N has an isolated singularity for all " 2 C, " 6= 0

9



2. µ(fN) = µ(f)� µn�1(f) +Ne0(⌃) where e0(⌃) is the algebraic multiplicity of ⌃ at

0 2 Cn+1

In this contextual example of the monodromy described above in the previous section,

The geometric monodromy is a di↵eomorphism h : F ! F , which is a characteristic map

for the Milnor fibration over the circle S
1
n of radius ⌘ in Cn+1. It has the property that

there exists a di↵eotopy H : F ⇥ [0, 2⇡] ! B" \ f
�1(S1

n) such that for each x 2 F :

1. f(H(x, t)) = ⌘e
it

2. H(x, 0) = x

3. H(x, 2⇡) = h(x)

Which induces the algebraic monodromy map on homology:

⇧ : eH⇤(F ) ! eH⇤(F )

Since the reduced homology groups of the Milnor fiber F satisfy eHk(F ) = 0 for k 6= n�1, n

we are only concerned with the nontrivial maps:

⇧ : eHn�1(F ) ! eHn�1(F )

⇧ : eHn(F ) ! eHn(F )

For every irreducible branch ⌃i of ⌃, we have on ⌃i�{0} a local system of transversal

singularities. That is for x 2 ⌃i � {0}, we may take the germ of the generic transversal

section. this will give us an isolated singularity whose µ-constant class is well-defined. we

10



may denote a typical Milnor Fiber of a transversal singuarity by F
0
i . By Deligne’s sheaf

of vanishing cycles, we know the only non-vanishing homology group of this is eHn�1(F 0
i ).

Therefore, on the level of homology, we get a local system F
0
i with two di↵erent

monodromies:

(a) (Vertical monodromy):

Ai : eHn�1(F
0
i ) ! eHn�1(F

0
i )

Which is the characteristic mapping of the local system over the punctured disc

⌃i � {0}

(b) (Horizontal monodromy):

Ti : eHn�1(F
0
i ) ! eHn�1(F

0
i )

Which is the Milnor fibration monodromy when we restrict f to a transversal slice

through x 2 ⌃i

We note that our two monodromies Ai, and Ti commute since they are defined on (⌃i �

{0})⇥ S
1
n which is homotopy equivalent to a torus [2].

We now provide an example of what this type of relation looks like.

Example 6. Let f : C2
! C be defined f(x0, x1) = x

2
0x1. Here n = 1, and f is

homogeneous of degree d = 3. Taking the partial derivatives of f , we see that:

@0 = 2x0x1

@1 = x
2
0

So ⌃ = {f = 0} \ {@0 = 0} \ {@1 = 0} = [{x1 = 0} [ {x0 = 0}] \ [{x1 = 0} [ {x0 =

0}] \ [{x0 = 0}] = {x0 = 0} which is of dimension 1. here there is only one irreducible

component of ⌃, namely ⌃1 = {x0 = 0}.

11



horizontal monodromy: We must pick a p1 6= (0, 0) on ⌃1 = {x0 = 0}, so we pick

p1 = (0, 1) and consider the slice U1 transverse to ⌃1 at p1. That is, U1 = {(x0, 1) | x0 2

C} ⇢ C2. Define g1 = f |U1 = x
2
0. We may view g1C ! C, and calculate the Milnor fiber

in this context about the origin. Let ", ⌘ 2 R>0 satisfying 0 < |⌘| << |"| << 1. Then the

Milnor fiber over {⌘} is given by:

F
0
1 = {g

�1
1 (⌘)} \ B"(0) = {⌘

1
2 ,�⌘

1
2} \ B"(0) = {⌘

1
2 ,�⌘

1
2}

Since ⌘ is chosen to be small relative to ". We can easily calculate the relevant reduced

homology group of two points:

eH0(F
0
1) = eH0({⌘

1
2 ,�⌘

1
2}) = Z

Then the Milnor fibration over the circle {⌘e
i✓
|✓ 2 [0, 2⇡)} is the union of the milnor

fibers of ⌘ei✓ at each ✓. More precisely, the Milnor fibration is given by:

[✓2[0,2⇡){g
�1(⌘ei✓) \B"(0)} = [✓2[0,2⇡){⌘

1
2 e

i✓
,�⌘

1
2 e

i✓
}

We get the following locally trivial fibration over the circle S1
n = {⌘e

i✓
}[0,2⇡): About each

point ⌘ei✓, we take the open set {⌘ei�|� 2 (✓ � ⇡, ✓ + ⇡)} = P✓ ⇢ S1
n. Then:

g
�1
1 (P✓) =

⇢
⌘

1
2 e

i�
|� 2

✓
✓

2
,
✓ + 2⇡

2

◆�
= P

1
✓

[

⇢
⌘

1
2 e

i�
|� 2

✓
✓ + 2⇡

2
,
✓ + 4⇡

2

◆�
= P

2
✓

Now we view how the loop ✓ : [0, 2, ⇡] ! ⌘e
i✓ acts on the Milnor fibration and induces

an automorphism of the Milnor fiber.

12



As ✓ travels between 0 and 2⇡, it traverses the circle ⌘ei✓, first starting at ⌘, and then

traveling counterclockwise and ending back at ⌘. In the inverse image, this corresponds

to two half circle paths in the Milnor fibration:

n
⌘

1
2 e

i�1 | �1 2 [0, ⇡]
o

and
n
⌘

1
2 e

i�2 | �2 2 [⇡, 2⇡]
o

which induces:

h⇤ =

8
>>><

>>>:

⌘
1
2 �! �⌘

1
2

�⌘
1
2 �! ⌘

1
2

Which is the geometric monodromy map. To find the algebraic monodromy map, we

consider the usual chain complex with respect to the reduced homology:

. . . C1(F 0
1) C0(F 0

1) Z 0
@1 "

where:

eH0(F
0
1) =

ker(")

Im(@1)
=

Dn
⌘

1
2

o
�

n
�⌘

1
2

oE

h0i
⇠=
Dn

⌘
1
2

o
�

n
�⌘

1
2

oE
⇠= Z

Since
n
⌘

1
2

o
�

n
�⌘

1
2

o
generates eH0(F 0

1), the geometric monodromy map, h⇤ induces the

following map on eH0(F 0
1):

⇧ :
n
⌘

1
2

o
�

n
�⌘

1
2

o
!

n
h⇤

⇣
⌘

1
2

⌘o
�

n
h⇤

⇣
�⌘

1
2

⌘o
=
n
�⌘

1
2

o
�

n
⌘

1
2

o

Which sends the generator to it’s additive inverse. Therefore the algebraic monodromy

⇧ : eH0(F
0
1) ! eH0(F

0
1)
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is given by:

⇧ : Z ! Z = [�1]

, the negative linear identity map. We note that by definition, this ⇧ is precisely T1, the

horizontal monodromy map.

vertical monodromy: We now calcluate the vertical monodromy, i.e. the monodromy of

the path of an object V1 transverse to ⌃1 as it revolves around the origin in the slice ⌃1

and stays transverse to ⌃1 throughout. We may imagine this as turning the thin edge of

a piece of paper as the center of the bottom edge travels in a circle on a tabletop. In this

metaphor, the paper represents V1 and the tabletop is ⌃1. The spot in the middle of the

circle is the origin with respect to the surrounding preimage of the original map f .

We fix the following values: 1 >> " >> |t| >> |⌘| >> 0. We will calculate the

monodromy over a circle contained within the slice ⌃1
⇠= C. Since ⌃1 = {x0 = 0}, the

circle in this slice is {(0, ⌘ei✓)|✓ 2 [0, 2⇡)}. As ✓ traverses this circle, the slice transverse to

⌃1 changes. That is, unlike choosing a single U1, as we did in the horizontal monodromy

case, at each ✓ we get the sets:

U1✓ = {(x0, ⌘e
i✓)} for ✓ 2 [0, 2⇡)

The vertical Milnor fiber is therefore the restriction of the Milnor fiber of f to U1✓, in a way

that is consistent with our choice of U1 when we calculated the horizontal monodromy.

Since we chose U1 = {(x0, 1)|x0 2 C}, a parallel choice is ✓ = 0 ) U1,0 = {(x0, ⌘)|x0 2 C}.

Since the Milnor fiber of f is {x2
0x1 = t}\B", the vertical Milnor fiber is {x2

0⌘ = t}\B" =

{(v1, ⌘), (v2, ⌘)}. Here v1 and v2 are simply the two square roots of t
⌘ .

This leads us to the vertical Milnor fibration which is given by:

14



[

✓2[0,2⇡)

n⇣
v1e

i( ✓
2), ⌘ei✓

⌘
,

⇣
v2e

i( ✓
2), ⌘ei✓

⌘o

Similarly as before, as ✓ traverses {(0, ⌘ei✓) from 0 to 2⇡, this induces the geometric

monodromy map:

h⇤ =
⇣
vie

i( ✓
2), ⌘ei✓

⌘
:

8
>>><

>>>:

(v1, ⌘) �! (v1ei⇡, ⌘) = (v2, ⌘)

(v2, ⌘) �! (v2ei⇡, ⌘) = (v1, ⌘)

Since the class {(v1, ⌘)} � {(v2, ⌘)} generates the reduced homology group eH0(F 0
1) ⇠= Z,

the induced algebraic monodromy map (that is the vertical monodromy map A1 is again

[�1].

1.3 Spectra of Hypersurface Singularities

1.3.1 Preliminaries

LetX = {z : F (z) = 0} ⇢ Pn be a hypersurface of degree d (that is F is a homogeneous

polynomial of total degree d). We first recall that given any (n�1)�cycle� 2 Hn�1(X,C),

we may take a tube T (�), that is locally isomorphic to �⇥S
1, such that T (�) ✓ Pn

�X.

Given any rational n-form !, we may integrate it over this tube to get a complex number.

More precisely, each choice of ! corresponds to a map:

ResX(!) : � ! z 2 C

defined by � !
R
T (�) ! Since this is invariant over the homology class of �,and is com-

patible with the cup products it defines a linear transformation on the homology group:

ResX(!) : Hn�1(X,C) ! C

15



taking each class [�] ! z 2 C. Since H
n�1(X,C) is just the linear dual of Hn�1(X,C),

we must then have, ResX(!) 2 H
n�1(X,C). We call ResX(!) the Poincaré residue of !.

We note that if n = 1, ! is just a rational function, �, is just a point in P1 (allowing

points in C or the point at infinity), and the tube becomes a closed loop about the

point, reducing the residue map to the typical case in elementary complex analysis.

Computation of higher order residues reduces down to this case through the following

algorithm for general n: The residue of any 1-form Res
�
dz
z + a

�
= 1. There exists a chart

containing X such that X is precisely the vanishing locus of an n-form !. Then any

meromorphic n-form can be written in the form:

dw

wk
^ ⇢ =

1

k � 1

✓
d⇢

wk�1
+ d

⇣
⇢

wk�1

⌘◆

showing that the cohomology classes:


d⇢

!k

�
=


d⇢

(k � 1)!k�1

�

are the same and:

ResX

✓
↵ ^

dw

w
+ �

◆
= ↵|X

We will denote by S
r
n the group of homogeneous polynomials in z1, . . . zn of degree r,

and let Sn = �rS
r
n be the ring of homogeneous polynomials. We let JF =

⇣
@F
@z0

, . . . ,
@F
@zn

⌘

denote the jacobian ideal, and set RF to be the quotient:

RF := Sn/JF = �rR
r
F

which decomposes into the graded pieces (the Jacobian rings) Rr
F = S

r+n�1
n /JF

Theorem 7. (Gri�ths 1969) Let n� 1 = p+ q. Then the Poincairé residue map:

Q(Z) ! !Q = ResX

 
Q(Z)

P
j(�1)jzjdz0dz1 ^ . . . cdzj . . . ^ dzn

F (Z)q+1

!
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Induces an isomorphism R
(q+1)d�n�1
F

⇠= H
p,q(X).

This theorem allows us to instead work with the quotient rings R(q+1)d�n�1
F to under-

stand the structure of Hp,q(X).

We now see how this theory connects to a better setting of the spectrum through the

concept of Gri�ths tranversality. Let {Xs}s2S be a family of smooth projective varieties

over a complex manifold S, and let:

[!s] 2 F
p
H

k(Xs,C) :=
M

a+b=k
a�p

H
a,b(Xs)

be a family of cohomology classes within the Hodge filtration. Gri�ths transversality is

the statement that for any local holomorphic coordinate t = t(s), we must have:

@

@t
[!s] 2 F

p�1
H

k(Xs,C)

This can be thought of as a di↵erential equation governing the period map,

� : S ! D/�,

Which uses period integrals to record the Hodge flag F
• as a function of s. Here � is

the image of the Algebraic monodromy representation ⇢ : ⇡1(S) ! Aut
�
H

k(Xs0 ,Z)
�

discussed above with s0 some fixed base point of S.

As a consequence of transversality, we get the following theorem:

Theorem 8. (Local Monodromy Theorem:Gri�ths, Landman ) Given a family of smooth

projective varieties over a punctured disk �⇤, let T 2 Aut(Hk(Xs0 ,Z)) denote the image

of the counterclockwise loop under the monodromy representation ⇢. Then T is quasi-

unipotent: that is for some integers M and N , (TN
� I)M = 0

17



An immediate consequence of this is the following corollary which illustrates why the

spectrum will be defined so naturally:

Corollary 9. Given a family of smooth projective varieties over a punctured disk �⇤, let

T 2 Aut(Hk(Xs0 ,Z)) denote the image of the counterclockwise loop under the monodromy

representation ⇢. Then for some N all the eigenvalues of T are roots of unity of the form

e
2⇡ik
N . Furthermore T can be written as the product T = TssTu of a semisimple and

unipotent matrix where the eigenvalues of T lie on the diagonal of Tss up to multiplicity.

1.3.2 Definition of the Spectrum

Let S = Z(Q) be the free abelian group on the generators (↵) with ↵ 2 Q. An element

of S is denoted as a sum
P

n↵(↵). Here n↵ 2 Z for all rationals ↵.

Let C denote the category with objects defined as C[t]-modules of finite length, each

equipped with t-stable decreasing filtrations (i.e. flitrations {Mi}, . . . ◆ Mi ◆ Mi+1 . . .

s.t. Mi ◆ (t)Mi+1, and for some s 2 N Md+s = (t)dMs 8d � 0) and such that t acts

as an automorphism of finitie order, that is,

� : M ! tM

is an automorphism for all objects M such that for each M there exists some n 2 N such

that �
n(M) = M . The morphisms of the category will be C[t]-linear maps compatible

with these filtrations. We will denote an object of C as a triple (H,F, �), where H is the

C[t] module, F is the filtration, and � is the automorphism given by the action of t.

In our context, H will be the cohomology group of the Milnor fiber of an isolated

hypersurface singularity, F will be the Hodge filtration, and � will correspond to the action

18



of the semisimple part of the monodromy (note the monodromy itself is not compatible

with F here.)

For any three objects (H,F, �), (H 0
, F, �), (H 00

, F, �) 2 C (Here we abuse notation and

write F, � for each since association is clear in context), we say that a sequence:

0 H
0

H H
00 0↵ �

is exact if the underlying sequence of vector spaces is exact, and if ↵, and � are strictly

compatible with the filtrations (i,e, ↵(H 0) \ F
p(H) = ↵(F p

H
0) and F

p
H

00 = �(F p
H) for

all p). Here the notation F
p
H refers to the filtration:

H = F
0
H ◆ F

1
H ◆ F

2
H . . .

With this concept of exact sequences, we may consider C to be an exact category.

The group S can be considered the Grothendieck group of C in the following way:

Fix n 2 Z, and let (H,F, �) 2 C . Then � acts on the quotient GrpF (H) = Fp
�Fp+1. That

is for any ↵ + F
p+1

2 GrpF (H), � · ↵ + F
p+1

! ↵ + tF
p+1 = � + F

p+1 for some � 2 F
p

since (t)F p+1
✓ F

p.

We may now define Spn(H,F, �), by finding ↵1, . . . ,↵s(p) 2 Q such that s(p) =

dimGrpF (H), and the values satisfy:

n� p� 1 < ↵j  n� p

det(tI � �; GrpF (H)) =
s(p)Y

j=1

(t� e
�2⇡i↵j)

Then Spn(H,F, �) =
P

p

Ps(p)
j=1(↵j)

For all n 2 Z, the map Spn induces an isomorphism between K0(C ) and S . Here,

K0(C ) is the zeroth algebraic K-group of the exact category, but in this sense is meant
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to consider classes of triplets (H,F, �) ⇠ (H 0
, F, �) via some equivalence. Changing n to

n+ j, or shifting the filtration index by �j corresponds to a shift (↵) ! (↵ + j) in S .

Now let f : (Cn+1
, 0) ! (C, 0) define a nonzero holomorphic function germ (i.e. an

equivalence class of functions equal in a neighborhood of 0). Then as before, its Milnor

fiber X(f), is defined:

X(f) = {z 2 Cn+1 : |z| < ⌘ and f(z) = t}

for 0 < |t| << ⌘ << 1.

The cohomology groups H
⇤(X(f)) carry a canonical mixed Hodge structure. If the

map:

T : H⇤(Cn+1
\ f

�1(0)) ! H
⇤(C \ {0})

Is the monodromy (or Picard Lefschetz transformation), then the semisimple part Tss acts

as an automorphism on the mixed Hodge structures of X(f). In particular, it preserves

the Hodge filtration F . We may now define the spectrum of f as

�f = Sp(f) =
nX

k=0

(�1)n�kSpn

⇣
eHk(X(f)), F, Tss

⌘

[3]

1.4 Spectra of Quasihomogeneous Isolated Singularities

Steenbrink simplified the explicit calculation of singularity spectra for isolated quasi-

homogenous singularities. In particular, his algorithm simplifies the calculation of the

spectra of Ak, Dk, E6, E7, and E8 singularities by using their respective normal forms. He

proves the following algorithm in [4], which is more explicitly summarized in [3].
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Theorem 10. Let f 2 C[x0, . . . , xn] be the normal form for a quasihomogenous iso-

lated singularity (at the origin). Let hx
↵
i↵2A be a C-basis for the Artinian ring Qf =

C[[x0, . . . xn]]/(@0f, . . . @nf), where ↵ = (↵0, . . . ,↵n) 2 Zn+1 defines the exponents of the

monomial x↵ = x0
↵0x1

↵1 . . . xn
↵n. Let w = (w0, . . . , wn) define the weight vector with

wi 2 Q, chosen in such a way that f has degree 1 (That is, if f =
P

�2B x
�, then w is

chosen so that the dot product w · � = 1 for all � 2 B). Let w(↵) =
Pn

i=0(↵i + 1)wi � 1.

Then �f = Sp(f) =
P

↵2A[w(↵)].

We will now view how this theoreom can be used to calculate the spectrum of any Ak

singularity.

Example 11. The normal form of an Ak singularity in C[x0, . . . , xn] is given by f =

x0
k+1 + x1

2 + . . . xn
2. Calculating the partial derivatives one has:

@0f = (k + 1)x0
k

@if = 2xi, 1  i  n

Therefore the Artinian ring Qf has a C-basis given by the monomials hx0
i
i
k
i=0. Here

we view these monomials in our context as x0
i = x0

i
x1

0
. . . xn

0. Our set A is given by

A = {(i, 0, . . . 0)}k�1
i=1 . From f , we can see that our set:

B = {(k + 1, 0, . . . , 0), (0, 2, 0 . . . , 0), . . . , (0, . . . , 0, 2)}. By inspection it is apparent that

the weight vector w =
�

1
k+1 ,

1
2 , . . . ,

1
2

�
.

Now we calculate w(↵) for each ↵ 2 A. Every ↵ 2 A has the form (i, 0, . . . 0), so:

w(i, 0, . . . , 0) =
nX

i=0

(↵i + 1)wi � 1 =

✓
(0 + 1)

1

k + 1

◆
+

nX

i=1

(0 + 1)
1

2
=

i+ 1

k + 1
+

n

2
� 1

Therefore we have:

Sp(f) =
X

↵2A

[w(↵)] =
k�1X

i=0


i+ 1

k + 1
+

n

2
� 1

�
=

kX

i=1


i

k + 1
+

n

2
� 1

�
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We may also do the same for the eE6 singularity which is also of interest in our paper

later.

Example 12. Let f = x
3
0 + x

3
1 + x

3
2 � �x0x1x2 with (�3

6= 27) be the local normal form

of an eE6 singularity. Then we have partial derivatives:

@0f = 3x2
0 � �x1x2

@1f = 3x2
1 � �x0x2

@2f = 3x2
2 � �x0x1

) Qf =
C[x0, x1, x2]

(3x2
0 � �x1x2, 3x2

1 � �x0x2, 3x2
2 � �x0x1)

For simplicity’s sake we will denote the ideal in the denominator as I. We now claim

that the following coset representatives serve as a C-basis for Qf :

{1 , x0 , x1 , x2 , x0x1 , x0x2 , x1x2 , x0x1x2}

If � = 0 this result is immediate. For the remainder, we assume � 6= 0

Starting with linear independence, assume:

a1 + a2x0a3x1 + a4x2 + a5x0x1 + a6x0x2 + a7x1x2 + a8x0x1x2 2 I

For ai 2 C. Then for some bi(x0, x1, x2) 2 C[x0, x1, x2] we must have that this sum

= b1(x0, x1, x2)[3x
2
0 � �x1x2] + b2(x0, x1, x2)[3x

2
1 � �x0x2] + b3(x0, x1, x2)[3x

2
2 � �x0x1]
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) a1 + a2x0 + a3x1 + a4x2 + [a5 + b3(x0, x2, x2)]x0x1 + [a6 + b2(x0, x2, x2)�]x0x2

+ [a7 + b1(x0, x2, x2)�]x1x2 + a8x0x1x2 � b1(x0, x2, x2)3x0
2
� b2(x0, x2, x2)3x1

2

� b3(x0, x2, x2)3x2
2 = 0

We immediately get that a1 = a2 = a3 = a4 = 0. Without loss of generality, we may

assume:

�b3(x0, x1, x2) = c3(x0, x1, x2)� a5

�b2(x0, x1, x2) = c2(x0, x1, x2)� a6

�b1(x0, x1, x2) = c1(x0, x1, x2)� a7

where the ci(x0, x1, x2) have no constant term. This results in the identity:

[c3(x0, x2, x2)]x0x1 + [c2(x0, x2, x2)]x0x2 + [c1(x0, x2, x2)]x1x2 + a8x0x1x2

�
3

�
[c1(x0, x2, x2)� a7]x0

2
�

3

�
[c2(x0, x2, x2 � a6)]x1

2
�

3

�
[c3(x0, x2, x2 � a5)]x2

2 = 0

Since we assumed that the ci had no constant terms, we get from the coe�cients on

degree 2 terms that a5 = a6 = a7 = 0. From the second line of above, it is clear that the

ci need at least degree 2 to cancel with each other if they cannot have constant terms.

Therefore it is impossible for the first line to cancel out if this is the case. This leaves us

with the last equality a8 = 0 This proves linear independence.

To show that this collection serves as a generating set over C in the quotient ideal,

we note that 3x0 � �x1x2 2 I ) 3x0
2 + I = �(x1x2) + I and so:

x0
2 + I =

�

3
(x1x2 + I)
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and similarly,

x1
2 + I =

�

3
(x0x2 + I)

x2
2 + I =

�

3
(x0x1 + I)

We get the third powers xi
3 are generated over C by x0x1x2 via relations of the form:

x0
3 + I = (x0 + I)(x0

2 + I) = �
3 (x0 + I)(x1x2 + I) = �

3 (x0x1x2 + I) And leftover third

degree monomial cosets of the form x0
2
x1 + I via relations like:

x0
2
x1 + I = (x0

2 + I)(x1 + I) =
�

3
(x1x2 + I)(x1 + I) =

�

3
x1

2
x2 + I

=
�

3
(x1

2 + I)(x2 + I) =
�
2

9
(x0x2 + I)(x2 + I) =

�
2

9
x2

2
x0 + I =

�
2

9
(x2

2 + I)(x1 + I)

=
�
3

27
(x1x0 + I)(x1 + I) =

�
3

27
(x0

2
x1 + I)

)

✓
1�

�
3

27

◆
x0

2
x1 2 I

Since �3
6= 27, this implies x0

2
x1 2 I. Additionally we may show powers of 4 are in I via:

x0
4 + I = (x0

2 + I)2 =

✓
�

3
(x1x2 + I)

◆2

= (x1
2
x2 + I)(x2 + I) = I

Since x1
2
x2 2 I and so x0

4
2 I as well. All this together shows that for each monomial

coset x0
a
x1

b
x2

c + I = I if a, bor c � 4, a � 2, bor c � 1, b � 2, aor c � 1, c � 2, aor b � 1,

and the rest are generated over C, as shown above.

Now we will use this basis to calculate the spectrum. The basis:

{1 , x0 , x1 , x2 , x0x1 , x0x2 , x1x2 , x0x1x2}

Corresponds to the set:

A = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
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respectively. Since f = x
3
0 + x

3
1 + x

3
2 � �x0x1x2, the corresponding weight vector w =

(w0, w1, w2)
�
1
3 ,

1
3 ,

1
3

�
. We note that:

w(1, 0, 0) = w(1, 0, 1) = w(0, 0, 1) =


(1 + 1)

1

3

�
+


(1 + 0)

1

3

�
+


(0 + 1)

1

3

�
� 1 =

1

3

w(0, 0, 0) =


(0 + 1)

1

3

�
+


(0 + 1)

1

3

�
+


(0 + 1)

1

3

�
� 1 = 0

w(1, 1, 0) = w(0, 1, 1) = w(1, 0, 1) =


(1 + 1)

1

3

�
+


(1 + 1)

1

3

�
+


(0 + 1)

1

3

�
� 1 =

2

3

w(1, 1, 1) =


(1 + 1)

1

3

�
+


(1 + 1)

1

3

�
+


(1 + 1)

1

3

�
� 1 = 1

Sp(x3
0 + x

3
1 + x

3
2 � �x0x1x2) =

X

↵2A

w(↵) = [0] + 3


1

3

�
+ 3


2

3

�
+ [1]

As we can see, the manual calculations of spectra of even isolated quasihomogeneous

hypersurface singularities can be quite laborious, even utilizing Steenbrink’s algorithm. In

practice, it is often more convenient to use the package [5], which utilizes an programmed

algorithm designed by Mathias Schulze based on the work of Brieskorn, Gröebner bases,

and other computational theories. This package is capable of calculating the singularity

spectrum of any any isolated singularity over a complex polynomial ring given only the

local defining equation.
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2. Bounding Projective Hypersurface Singularities

2.1 Introduction

The spectrum developed by Steenbrink [6] has served as an invaluable tool in under-

standing the monodromy about complex singularities, while providing a powerful and

easily computable invariant for isolated singularities. It is obtained from a natural mixed

Hodge structure on the cohomology of the Milnor fiber of such a singularity, by com-

bining information on the Hodge filtration and eigenvalues of the semisimple part of

monodromy. The Saito-Steenbrink formula (conjectured in [3], proved in [7]) expands

this theory by relating the spectrum of a nonisolated singularity to that of the isolated

singularity obtained via its Yomdin deformation by a power of a linear form.

We arrive in this setting by taking the a�ne cone on a projective hypersurface with

isolated singularities, and a separate formula from [3] provides the contributions of the

isolated singularities to the spectrum of the (nonisolated) cone point. In the present

paper, we show how to combine these results to bound the number of singularities of a

particular type (or combination of types) that can be present on the hypersurface. We

also reduce the computations of the method down to a bound similar to that of Varchenko

[8], and conjecture that this bound is the same.
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A projective hypersurface X ⇢ Pn of degree d will thus be the main object under

discussion. In Section 2.2, we derive a purely combinatorial formula for the Hodge num-

bers of X. Then in Sections 2.3-2.6 we review several attempts to use Hodge-theoretic

methods to bound the number of singularities of any particular deformation class on X

in terms of only n and d. Section 2.3 concerns itself with the vanishing cycle sequence

method, which utilizes only the exactness of the vanishing cycle sequence, and the prop-

erties of cohomological objects, summarized in Prop. 14. However, this method has some

limitations, and produces no bound for A1 singularities when n is even (i.e. when X has

odd dimension).

In Section 2.4, we review Varchenko’s bounding method [8], which was recently re-

visited in a beautiful expository article by van Straten [9]. In Section 2.5, we restate

and give an initial generalization of the “conical method” worked out by Steenbrink and

T. de Jong (cf. [3]) for bounding the number of double points on X, which duplicated

Varchenko’s bound in that case. The bound is obtained by combining a separate formula

of Steenbrink (given here as Theorem 20) with his conjecture in the case (known to him)

where the isolated singularities on X are of Pham-Brieskorn type. Steenbrink conjectures

in [3] that a version of this latter formula can be proven in much higher generality, which

Saito did in [7].

Siersma [2] proved a weaker version of Steenbrink’s conjecture by focusing solely on the

characteristic polynomials of the monodromy operators (thus dropping the information

on the Hodge filtration contained in the spectrum). An attempt to bound the number of

singularities based on Siersma’s work is given in Section 2.6. Though sometimes better

than the “naive” bound from Section 2.3, this bound is still relatively weak; on the other
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hand, Siersma’s results allow us to compute the vertical monodromies required for the

more general Saito-Steenbrink formula to work.

In section 2.7, we use this information to generalize the main results of Section 2.5

to arbitrary isolated hypersurface singularities, and we show that in this case the power

of the general linear form in the Yomdin deformation of the cone can be chosen to be

any k > d. This results in our Theorem 29, which we then make completely explicit in

Theorems 33 and 36. We conclude the paper by showing that Varchenko’s bound, while

less discrete, implies Theorem 36, and conjecture that Theorem 36 is in fact equivalent

to Varchenko’s bound. In any case, it is more explicit and eliminates the guesswork in

choosing the spectral interval on which to apply Varchenko.

The main result of this paper is given in Theorem 29 which proceeds as follows;

let f be a homogeneous polynomial of degree d, with X := eV (f) ✓ Pn having only

finitely many isolated singularities Pi. We write �gi =
Pµi

j=1[�i,j] for their spectra, and

set ↵i,j = d�i.j � bd�i,jc. Then for a suitably general linear form `, and any k > d,

fk = f + ✏`
k has an isolated singularity at zero, and

�fk,0 = �
⇤(n+1)
d �

X

i,j


�ij �

↵ij

d

�
⇤ �d +

X

i,j


�ij �

↵ij

k

�
⇤ �k, (2.1)

where �
⇤(n+1)
d = (

Pd�1
m=1[�

m
d ])

⇤(n+1) is the spectrum of
Pn

k=0 x
d
k.

In particular, the e↵ectiveness of (2.1) implies that of the right as an element of the

free abelian group Z[Q]. This leads to our “conical bound”, which is given in a reduced

form in Theorem 36, for isolated singularities on X. Here are a few concrete examples:
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• For X ⇢ P3 of degree d with only n6, fE6, n7
fE7, and n8

fE8 singularities, the sum

7n6 + 8n7 + 9n8 is bounded by the polynomial

277

432
d
3
�

23

36
d
2 +

53

12
d+

1

2
,

and in the case of only fE6 singularities we have

n6 
31

378
d
3
�

13

126
d
2 +

4

7
d+

1

14
.

This compares favorably to the “naive” Hodge theoretic bound

n6 
1

9
d
3
�

1

3
d
2 +

7

18
d�

1

6

resulting from the vanishing cycle sequence in Section 2.3.

• If X ✓ P4 has degree d with only A2m+1 singularities, then the number of these is

bounded by

r 

8
>>><

>>>:

1
2m+1

⇥
115
192d

4
�

115
48 d

3 + 185
48 d

2
�

35
12d+ 1

⇤
d ⌘ 0 mod 2

1
2m+1

⇥
115
192d

4
�

115
48 d

3 + 355
96 d

2
�

125
48 d+

45
64

⇤
d ⌘ 1 mod 2, d > m+ 1

This easily beats the naive bound, which is asymptotic to 11
24md

4.

• Many of the surface singularities “with K3 tail” classified in [10, §3], which include

for instance the Dolgachev singularities, can occur on a quartic hypersurface in P3

(Singularities whose simplest form involves powers greater than 4 can have analytically

equivalent forms where this is not the case.) The 3rd entry in [op. cit., Table 2], given

by x
2 + y

6 + z
6, is not ruled out by the “naive” bound; but it is prohibited by the

conical bound.

An appendix (Section ??) contains tables providing additional comparisons of the various

bounds.
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2.2 A Formula for Hodge Numbers of Smooth Projective Hypersurfaces

In this section, we derive explicit formulas for the Hodge numbers hi,j(Hn�1(X)) of a

smooth projective hypersurface X ✓ Pn of degree d in terms of n and d. This is of course

very classical and included mainly for reference. Since these numbers are indepedent of

X, we denote them by h
i,j
n,d. We will also write

[hi,j
n,d]

0 = h
i,j
n,d � �i,j

for the primitive Hodge numbers (denoted h
i,j
0 (X) in [11]). It is well known that hi,j

n,d = �i,j

(Kronecker delta) for n�1 6= i+j  2n�2. However, the middle Hodge numbers hk,n�1�k
n,d

are much more complicated to calculate.

Theorem 13. For a smooth hypersurface X ✓ Pn of degree d, the middle primitive Hodge

numbers [hk,n�1�k
n,d ]0 (where k 

n�1
2 ) are given by:

[hk,n�1�k
n,d ]0 = (�1)n

kX

i=0

(�1)i
✓
n+ 1

i

◆✓
n� (k + 1)d+ (d� 1)i

n

◆

In particular, if d > n, then:

[hk,n�1�k
n,d ]0 =

kX

i=0

(�1)i
✓
n+ 1

i

◆✓
(k + 1)d� 1� (d� 1)i

n

◆
.

The proof makes use of the following

Lemma 1. We let � denote the Euler characteristic in the context defined in [11]. Let

X ✓ Pn be a smooth hypersurface of degree d. Recall, ⌦p
X = ⌦p

X(0) and ⌦0
X(i) = OX(i)

by definition. Then:

1. �(⌦0
X(i)) =

�
i+n
n

�
�
�
i+n�d

n

�

2. �(⌦k
P(i)) =

Pk
j=0(�1)j

�
n+1
k�j

��
n�k+i+j

n

�
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3. P
k
d (i) = �(⌦k

P(i))� �(⌦k
P(i� d)) =

Pk
j=0(�1)j

�
n+1
k�j

�⇥�
n�k+i+j

n

�
�
�
n�k�d+i+j

n

�⇤

4. �(⌦k
X(i)) = P

k
d (i)� �(⌦k�1

X (i� d))

5. �(⌦k
X) =

Pk
m=0(�1)k�m

Pm
j=0(�1)j

�
n+1
m�j

�⇥�
n�m�(k�m)d+j

n

�
�
�
n�m�(k�m+1)d+j

n

�⇤

Proof: (1)-(4) of the lemma are just [11, Prop 17.3.2] stated in such a way that it is

easier to follow the steps of the recurrence relation.

For the proof of (5), note that by (1),

�
�
⌦k�k

X (�kd)
�
= �

�
⌦0

X(�kd)
�
=

✓
�kd+ n

n

◆
�

✓
�kd+ n� d

n

◆

And by (4):

�

⇣
⌦k�(k�m)

X (�(k �m)d
⌘
= P

k�(k�m)
d (�(k �m)d)� �

⇣
⌦k�(k�m+1)

X (�(k �m+ 1)d)
⌘

These two facts together inductively give us:

�
�
⌦k

X

�
=

"
kX

m=1

(�1)k�m
P

m
d (�(k �m)d)

#
+ (�1)k

"✓
n� kd

n

◆
�

✓
n� (k + 1)d

n

◆#

And substituting (3) for P
m
d (�(k � m)d), and noting that the second summand is just

the case m = 0, we get (5). ⇤

Now we use the last part of our lemma and the relationship between [hk,n�1�k
n,d ]0 and

�(⌦k
X) to prove our formula.

Proof: (of Theorem) We know from [11, Lemma 17.3.1] that

[hk,n�1�k
n,d ]0 = (�1)n�1�k

�(⌦k
X) + (�1)n

Using (5) in the above lemma we easily get a sum for (�1)n�1�k
�(⌦k

X), setting m� j = i,

and noting that
�
n�i
n

�
= 0 for 1  i  k, we get:

[hk,n�1�k
n,d ]0 = (�1)n

kX

i=0


(�1)i

✓
n+ 1

i

◆✓
n� (k + 1)d+ (d� 1)i

n

◆�
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We know that for q > 0, p < 0
�
p
q

�
= (�1)q

�
q�p�1

q

�
. If d > n, Then

n � (k + 1)d + (d � 1)i = (n � d) � kd + (d � 1)i  �1 � kd + (d � 1)k  �1 < 0

for 0  i  k. Therefore:

[hk,n�1�k
n,d ]0 =

kX

i=0

(�1)i
✓
n+ 1

i

◆✓
(k + 1)d� 1� (d� 1)i

n

◆
.

⇤

2.3 The Vanishing Cycle Sequence Method

Let ⇡ : X ! � be a family of projective hypersurfaces Xt := ⇡
�1(t) ⇢ Pn over a disk

about t = 0, with smooth total space. We assume that the fibers over �⇤ := � \ {0} are

smooth of degree d, and X0 has only isolated singularities. We write f 2 C[x0, . . . , xn]

for the homogeneous polynomial of degree d cutting out X0 (= eV (f)). In this setting,

the vanishing cycle sequence is an exact sequence of mixed Hodge structures of the form

0 H
n�1(X0) H

n�1
lim (Xt) H

n�1
van (Xt) H

n(X0) H
n
lim(Xt) 0.�

(The mixed Hodge structures are induced by the nearby cycles triangle in the derived

category of mixed Hodge modules onX0, cf. [?].) In particular, when n is odd, Hn
lim(Xt) =

0 and the sequence simplifies to

0 H
n�1(X0) H

n�1
lim (Xt) H

n�1
van (Xt) H

n(X0) 0�

We will use these sequences and the following facts to induce an inequality bounding the

number and type of singularities of f .

Proposition 14. (a) H
n�1(Xt) 6= 0 has Hodge numbers hp,n�p�1(Hn�1(Xt)) = h

p,n�p�1
n,d .
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(b) Suppose X0 has isolated singularities p1, . . . pr given locally by polynomials g1, . . . , gr

(in n variables), with Milnor fibers Ygi. Then we have an isomorphism H
n�1
van (Xt) ⇠=

L
i H̃

n�1(Ygi), where the MHSs on the reduced Milnor fiber cohomologies again come

from Saito’s theory.

(c) � is a map of pure weight n and, as such, can only be nonzero on (p, q) parts for

p+ q = n.

(d) The Hodge numbers h
p,q
lim of Hn�1

lim (Xt) satisfy
P

q h
p,q
lim = h

p,n�p�1
n,d for each fixed p.

Moreover, they are symmetric about the lines p = q and p+ q = n� 1.

(e) Suppose U is a complex algebraic variety of dimension m. Then the values of (p, q)

for which the Hodge numbers h
p,q(Hk(U)) 6= 0 satisfy:

(a) 0  p, q  k;

(b) if k > m then k �m  p, q  m;

(c) if U is smooth then p+ q � k; and

(d) if U is compact then p+ q  k.

(f) With X0 the singular fiber above, if n = 2m+ 1 is odd, we have hm,m(H2m(X0)) � 1

Proof:

(a) This follows from the fact that Xt ⇢ Pn is a smooth hypersurface of degree d and

complex dimension n� 1, and therefore has a pure Hodge decomposition.

(b) This follows from [12, Theorem 5.44].

(c) See [13, Prop. 5.5].
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(d) By [12, p263,285] dimF
m
H

k(Xt) = dimF
m
H

k
lim(Xt) for any k,m 2 N, where

Steenbrink denotes H
k
lim(Xt) = H

k(X1). So
P

q h
p,q
lim = dim(GrpFH

n�1
lim (Xt)) must

equal dim(GrpFH
n�1(Xt)) = h

p,n�p�1
n,d .

(e) This is just [12, Theorem 5.39]

(f) Let X0 ⇢ P2m+1, and let fX0 denote a resolution of singularities: pictorially,

X0 P2m+1

fX0

ı

⇡
ı̃

where ı and ⇡ are the usual inclusion and projection maps. This produces a com-

mutative diagram of MHSs

H
k(P2m+1) H

k(X0) H
k+2(P2m+1)(1)

H
k(fX0)

ı⇤ ı⇤

⇡⇤ ı̃⇤

where ı̃⇤ is the Gysin map and ı⇤ was defined by the composition ı̃⇤ � ⇡
⇤. However,

the map ı⇤ � ı
⇤ is really just the Lefschetz operator Lk : Hk(P2m+1) ! H

k+2(P2m+1)

which is an isomorphism (given by cupping with a hyperplane class [H]) for all

0  k  4m by Hard Lefschetz. This implies that ı⇤ is surjective. Taking k = 2m,

its image has type (m,m), and so (H2
m(X0))m,m cannot be zero.

⇤

Proposition 15. Let f 2 C[x0, x1, x2, x3] be homogeneous polynomial of degree d > 3,

and let eV (f) ✓ P3 have only isolated fE6 singularities. Then the number r of singular

points is bounded by

r 
1

6
(h1,1

3,d � 1) =
1

6

✓
2d� 1

3

◆
� 4

✓
d

3

◆�
=

1

9
d
3
�

1

3
d
2 +

7

18
d�

1

6
.
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Proof: Since n=3 is odd, we have the following exact sequence of mixed Hodge struc-

tures:

0 H
2(X0) H

2
lim(Xt) H

2
van(Xt) H

3(X0) 0�

We may visualize the exact sequence in terms of the mixed Hodge numbers using the

Hodge-Deligne diagrams, where Wk denotes the vector subspaces with weight k:

p0 1 2 3

q

1

2

3

W1

W2

W3

Since X0 is a compact variety of dimension 2, we know that H
2(X0) has the form

below by Prop. 14[(e),(f)]. Additionally, H2
van(Xt) has Hodge numbers given by r times

the Hodge numbers of H2(Yg), where g : C3
! C has a single fE6 singularity. These are

calculated explicitly in [4] as h1,2(H2(Yg)) = h
2,1(H2(Yg)) = 1 and h

1,1(H2(Yg)) = 6, and

0 for the rest, giving the diagram below:

p0 1 2 3

q

1

2

3

a b

b

c

c

e+1

H
2(X0)

p0 1 2 3

q

1

2

3

6r r

r

H
2
van(Xt)
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The exactness of the above sequence, and the fact that � has weight 3 then forces the

following two forms of the other two diagrams (in order):

p0 1 2 3

q

1

2

3

r-f

r-f

H
3(X0)

)

p0 1 2 3

q

1

2

3

6r+e+1 f

f

b

c

b c

H
2
lim(Xt)

Now we may deduce from Prop. 14[(a),(d)] that:

c+ f = h
2,0
3,d

6r + e+ b+ f + 1 = h
1,1
3,d

c+ b = h
0,2
3,d = h

2,0
3,d

So b = f and 6r + 2b+ e+ 1 = h
1,1
3,d ) r 

1
6(h

1,1
3,d � 1) ⇤

Proposition 16. Let f 2 C[x0, x1, . . . xn] be homogeneous polynomial of degree d > 2,

let n = 2k + 1, and let eV (f) ✓ Pn have only isolated A1 singularities. Then the number

r of singular points is bounded by

r  h
k,k
n,d � 1.

Proof: Again we have the following exact sequence of mixed Hodge Structures

0 H
n�1(X0) H

n�1
lim (Xt) H

n�1
van (Xt) H

n(X0) 0�
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Since n� 1 is even, we will denote k = n�1
2 . Since X0 is a compact variety of dimension

n�1, we know that Hn�1(X0) has the form below by Prop. 14(e). Additionally, H2k
van(Xt)

has Hodge numbers given by r times the Hodge numbers of Hn�1(Yg), where g : Cn
! C

has a single A1 singularity. These are calculated explicitly using the formula from [4] as

h
k,k(H2k(Yg)) = 1, and 0 for the rest. giving the diagram below:

p0 k n-1

q

k

n-1

Wn�1

H
n�1(X0)

p0 k n-1

q

k

n-1

r

H
n�1
van (Xt)

The exactness of the above sequence, and the fact that � has weight n then forces the

following two forms of the other two diagrams (in order):

p0 k n-1

q

k

n-1

H
n(X0)

)

p0 k n-1

q

k

n-1

r+e+1

H
n�1
lim (Xt)

Now we may deduce from Prop. 14[(a),(d)] that:
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h
n�1,0
lim = h

n�1,0
n,d

r + e+ 1 +
X

q 6=k

h
k,q
lim = h

k,k
n,d

The second equation shows that r  h
k,k
n,d � 1, as desired. ⇤

2.4 Varchenko’s Bound

Varchenko was the first to integrate the concept of the singularity spectrum in attempt

to bound the number of singularities of a projective hypersurface. His original proof can

be found in [8], and a further discussion of the proof can be found in [9]. The conical

bounding method is able to duplicate these bounds in the case of ordinary double points

by means of more advanced properties of the spectrum. A discussion of this process is

given in the next section.

We use the convention of the Steenbrink spectrum (denoted �, and briefly recalled af-

ter the theorem below). For notational sake, let {�} denote the set of spectral summands

with multiplicity. That is, for the spectrum � =
⇥
1
3

⇤
+2

⇥
1
2

⇤
we would have {�} =

�
1
3 ,

1
2 ,

1
2

 
.

For any subset S ✓ R and spectrum �, let S \
#
{�} count the number of times the sets

intersect (for example if S =
�

1
2

 
and � is the one above S \

#
{�} = 2). Varchenko’s

bound can be summarized as follows.

Theorem 17 ( [8,9]). Let Z ✓ Pn be a hypersurface of degree d, with only isolated singular

points P1, . . . , Pr. Let gi : (Cn
, 0) ! (C, 0), for 1  i  r denote the corresponding germs

defined locally about Pi. Then for each ↵ 2 R, one has:
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(↵,↵ + 1) \#
{�xd

1+...+xd
n,0

} �

rX

i=1

(↵,↵ + 1) \#
{�gi,0}

Since �xd
1+...+xd

n,0
= �

⇤n
d where �d :=

Pd�1
i=1

⇥
�

i
d

⇤
this can be restated as:

(↵,↵ + 1) \#
{�

⇤n
d } �

rX

i=1

(↵,↵ + 1) \#
{�gi,0}

Here we recall that �g,0 =
P

q2Q mq[q] 2 Z[Q] means that

mq = dim{Grbn�q�1c
F (H̃n�1(Yg,0))e�2⇡iq},

where the subscript denotes the eigenvalue of the semisimple part T ss of the monodromy

operator T . The star notation is defined by [q] ⇤ [q0] = [q + q
0 + 1] on generators, and the

spectrum of
Pn

k=1 x
dk
k is given by �d1 ⇤ · · · ⇤ �dn .

Example 18. We will consider the case when Z ✓ Pn is a hypersurface of degree d, with

only ordinary double points. Then all gi have the form gi = x
2
1 + . . .+ x

2
n up to analytic

equivalence and spectra �gi,0 =
⇥
n
2 � 1

⇤
. Therefore any choice of ↵ 2

�
n
2 � 2, n2 � 1

�
will

yield a bound on the number of singularities r possible by the above theorem.

If n = 3, then �gi,0 =
⇥
1
2

⇤
for all 1  i  r. The Appendix details the spectra �

⇤3
d of

x
d
1 +x

d
2 +x

d
3 (note: in the appendix this will correspond to n = 2). It becomes clear from

these spectra that our lowest bound will be obtained by choosing ↵ = �
1
2 +

1
2d for d even

and ↵ =
b d
2 c+1

d � 1 for general d.

Let ↵ be chosen in this way. Then, in the notation of the theorem, the right hand

side of the inequality becomes

r
�
(↵,↵ + 1) \#

{�gi,0}
�
= #

r[

i=1

⇢
1

2

�
= r,
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where the left hand side will be the number of summands in �
⇤3
d which fall in the interval

(↵,↵ + 1)) inspected from the chart.

For d = 2 we get (↵,↵ + 1) =
�
�

1
4 ,

3
4

�
) r  1. For d = 3 we get (↵,↵ + 1) =

�
�

1
3 ,

2
3

�
) r  1 + 3 = 4. For d = 7, r  6 + 10 + 15 + 21 + 25 + 27 = 104. In fact it is

the case that the bounds match up with those of the next section, at least in the case of

A1 singularities.

2.5 Conical Bounding Method for Pham-Brieskorn

Throughout this section, f 2 C[x0, . . . , xn] will denote a homogeneous polynomial of

degree d. We write as above eV (f) ⇢ Pn for the projective hypersurface it defines, and

V (f) ⇢ Cn+1 for the a�ne variety it defines (which is the just the cone on eV (f)). If

eV (f) has isolated singularities, then the singularity locus ⌃ ⇢ V (f) has dimension one

and consists of lines through the origin. In the neighborhood of an isolated singularity

P 2 eV (f), we can represent eV (f) in local analytic coordinates (on Pn, about P ) by the

vanishing of a polynomial g : (Cn
, 0) ! (C, 0). (That is, we are only interested in the

intersection of g = 0 with a small ball about the origin.)

Regarding the definition of the spectrum for a nonisolated singularity p (with local

a�ne equation F = 0 and Milnor fiber Y ) on a hypersurface of dimension n, the H̃
k(Y )

can be nonvanishing for n� dim(⌃)  k  n (where ⌃ is the singularity locus). Accord-

ingly, we define the spectrum as an alternating sum �F,p :=
P

j�0(�1)j�n�j
F,p where �

k
F,p

is derived from the MHS and T
ss-action on H̃

k(Y ), see [3]. The main point is that for

the cone singularity at the origin of V (f), this takes the form �f,0 = �
n
f,0 � �

n�1
f,0 , which
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may not be e↵ective. In order to circumvent this problem, we relate �f,0 to the (e↵ective)

spectra of isolated singularities in two di↵erent ways, given by the next two theorems.

Theorem 19 ( [3, Theorem 6.3]). Assume that eV (f) ✓ Pn has only isolated singularities,

P1, . . . Pr. Let each germ gi : (Cn
, 0) ! (C, 0) be analytically equivalent to a Pham-

Brieskorn polynomial (i.e. a polynomial of the form
Pm

j=1 xj
aj , aj 2 N). Let µi denote

the Milnor number of gi, and let the values �ij be defined from the spectra by �gi,0 =

Pµi

j=1[�ij]. Then there exists a su�ciently general linear form ` and su�ciently large

k 2 N such that fk = f + ✏`
k has an isolated singularity at 0 for ✏ 6= 0 su�ciently small,

and

�fk,0 = �f,0 +
X

i,j


�ij �

↵ij

k

�
⇤ �k

with �m =
Pm�1

i=0

⇥�i
m

⇤
and ↵ij = d�ij � bd�ijc.

The fk is called a Yomdin deformation. Note that it is not necessarily homogeneous.

Theorem 20 ( [3, Theorem 6.1]). With the same notation as in Theorem 19, but dropping

the Pham-Brieskorn assumption on the isolated singularities, we have

�f,0 = �h,0 �

X

i,j


�ij �

↵ij

d

�
⇤ �d,

where h is a homogeneous polynomial of degree d such that V (h) has an isolated singularity

at 0.

Before continuing we record the following facts:

Lemma 2. (a) The Milnor fiber of an m-dimensional isolated hypersurface singular-

ity is (m � 1)-connected, so the spectrum of any germ defined locally about this

singularity is e↵ective (i.e. all of its summands’ coe�cients are nonnegative).
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(b) Let h 2 C[x0, . . . , xn] be homogeneous polynomial of degree d and let h have an

isolated singularity at 0. Then �h,0 = �
⇤(n+1)
d .

We note that in [3], it was implicitly assumed that k = d + 1 is a su�ciently high

power of the general linear form ` in the context of Theorem 4.1. We later prove the more

general Lemma 6.2 using the work of [13], verifying this assumption in greater generality.

With this in mind, we arrive at the following bounding argument which expands on an

idea of Steenbrink and T. de Jong in the case of A1 singularities.

Theorem 21 (Conical bounding method). Assume that eV (f) ✓ Pn has only r isolated

singularities of a single isomorphism class, describable in local coordinates by a Pham-

Brieskorn polynomial g with �g,0 =
P

j[�j]. Define ↵j = d�j � bd�jc. Then we have

�fd+1,0 = �
⇤(n+1)
d � r

 
X

j


�j �

↵j

d

�
⇤ �d �

X

j


�j �

↵j

d+ 1

�
⇤ �d+1

!
,

and the e↵ectiveness of the spectrum on the left-hand side bounds the number r.

Proof: By Theorem 19, and the assumption that k=d+1 is su�cient in this case, f +

✏`
d+1 has an isolated singularity at the origin, and by Lemma 2(a), the spectrum of

f + ✏`
d+1 at the origin is e↵ective. By Lemma 2(b), Theorem 19, and Theorem 20 we get

�fd+1,0 �
P

i,j[�ij �
↵ij

d+1 ] ⇤ �d+1 = �f,0 = �
⇤(n+1)
d �

P
i,j[�ij �

↵ij

d ] ⇤ �d

and thus the desired formula for the spectrum of the Yomdin deformation. ⇤

Corollary 22 (given in [3]). Assume eV (f) ✓ Pn has only r isolated A1 singularities

(ordinary double points). Then

r 

8
>>><

>>>:

the coe�cient of
⇥
n
2 � 1 + 1

d

⇤
in �

⇤(n+1)
d , nd even

the coe�cient of
⇥
n
2 � 1 + 1

2d

⇤
in �

⇤(n+1)
d , nd odd.
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Proof: The local normal form of each ordinary double point is given by germs gi :

(Cn
, 0) ! (C, 0) given by z

2
0 + . . . + z

2
n�1. And so �gi,0 = �g1,0 =

⇥
n
2 � 1

⇤
for 1  i  r.

This yields:

�fd+1,0 = �
⇤(n+1)
d � r

✓
n

2
� 1�

↵11

d

�
⇤ �d �


n

2
� 1�

↵11

d+ 1

�
⇤ �d+1

◆

If nd is even then ↵11 = d
�
n
2 � 1

�
�
⌅
d
�
n
2 � 1

�⇧
= 0 and

�fd+1,0 = �
⇤(n+1)
d � r

✓
n

2
� 1

�
⇤


�d � �d+1

�◆
.

As one can calculate, the coe�cient of
⇥
�

d�1
d

⇤
=
⇥
1
d � 1

⇤
on the right side side must be

r. By the e↵ectiveness of the left hand side we have:

r  the coe�cient of


n

2
� 1 +

1

d

�
in �

⇤(n+1)
d

If nd is odd then ↵11 = d
�
n
2 � 1

�
�
⌅
d
�
n
2 � 1

�⇧
= �

1
2 and

�fd+1,0 = �
⇤(n+1)
d � r

✓
n

2
� 1�

1

2d

�
⇤ �d �


n

2
� 1�

1

2(d+ 1)

�
⇤ �d+1

◆

The coe�cient of


n
2 � 1+ 1

2d

�
in


n
2 � 1� 1

2d

�
⇤�d is 1 and the coe�cient of


n
2 � 1+ 1

2d

�

in


n
2 � 1� 1

2(d+1)

�
⇤ �d+1 is 0

Therefore the coe�cient on


n
2 � 1 + 1

2d

�
in

r

✓
n

2
� 1�

1

2d

�
⇤ �d �


n

2
� 1�

1

2(d+ 1)

�
⇤ �d+1

◆

must be r. By the e↵ectiveness of the left hand side we have:

r  the coe�cient of


n

2
� 1 +

1

2d

�
in �

⇤(n+1)
d .
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⇤

Before continuing, we o↵er one more application of Theorem 21.

Example 23. Let f 2 C[x0, x1, x2, x3] be homogeneous polynomial of degree d > 3, and

let eV (f) ✓ P3 have only isolated fE6 singularities which have normal form x
3 + y

3 + z
3.

Then it can be shown that the number r of singular points is bounded by

r 
the coe�cient of

⇥
1 + 1

d

⇤
in �

⇤4
d

7

in a similar fashion to the proof above with the cases d ⌘ p mod 3.

We note that while Theorem 21 technically implies the following better bound for

larger d, it cannot be shown without laborious arithmetic, or made apparent without

computational facts illustrated later in this paper. If p = b
2d
3 c+ 1, then

r 
the coe�cient of

⇥
p
d

⇤
in �

⇤4
d

7
.

2.6 Eigenvalue Bounding Method

The statements of Section 2.4 might cause one to wonder whether the bound has more

to do with the Hodge filtration information in the spectrum of fk or the multiplicity of

eigenvalues of T ss, the semisimple part of monodromy. In this section, we attempt to

bound the number of singularities of eV (f) using only the eigenvalue multiplicities in the

Milnor fiber cohomology of fk. We find that while this method produces a decent bound

for small values of the degree d, as d increases the bound on the number of singularities

is often not nearly as sharp as the methods of Section 2.4. However, we already have the
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characteristic polynomials of the monodromy for fk for a much larger group of polynomials

f provided in [2].

Let F 2 C[x0, . . . , xn] have at most a single isolated singularity at 0. If YF denotes

the Milnor fiber of F , then we know that the reduced homology group eHk(YF ) can only

be nonzero for k = n. We will denote by M [F ](�) the characteristic polynomial of the

algebraic monodromy acting on eHn(YF ). In [14], Milnor gives M [F ](�) for F =
Pn

i=0 z
d
i .

Since any homogeneous polynomial of degree d in n + 1 variables with only an isolated

singularity at 0 is a µ-constant deformation of such a polynomial we have:

Proposition 24. Let F 2 C[x0, . . . xn] be homogeneous of degree d with only an isolated

singularity at 0. Then M [F ](�) is given by:

M [F ](�) =

8
>>><

>>>:

(�� 1)�1(�d
� 1)

1+(d�1)n+1

d n even

(�� 1)(�d
� 1)

(d�1)n+1�1
d n odd

And since these polynomials are dependent only on n and d, we denote this polynomial

by M
reg
n,d (�).

In [2] this polynomial is denoted by M
reg
d (�) since n was assumed to be fixed. One

may also verify that the spectrum of such a polynomial �⇤(n+1)
d , stated above and in [3],

is consistent with this characteristic polynomial.

Before we proceed with a summary of [2], we make a quick note that Siersma insists

that his version of a general linear form ` must be admissible, that is {` = 0}\f
�1(0) has

an isolated singularity. However, a close reading of the proof of Lemma 4 detailed later

in this paper tells us that our pick of ` = y0 after a coordinate change will be admissible.

45



Lemma 3. Let f 2 C[x0, . . . , xn] be homogeneous polynomial of degree d > 2 and let

eV (f) ✓ Pn have only isolated singularities. Then there is a suitable coordinate transfor-

mation such that f(y0, . . . , yn) is a homogeneous polynomial of degree d such that y0 is an

admissible linear form. Furthermore there exists an " > 0 such f + "y
k
0 has an isolated

singularity at 0 for all k > d.

Proof: In the notations of the proof of 4, f�1(0)\ sing(f)\ {y0 = 0} ✓ sing(⇡)\ {y0 =

0} = 0. Therefore {y0 = 0}\ f
�1(0) can have at most an isolated singularity at 0. Since

f is homogeneous in our case, for d > 2, f must have a singularity at {0}. ⇤

The following is stated in [2, p195]:

Theorem 25. [2] Let f 2 C[x0, . . . , xn] be homogeneous polynomial of degree d such that

eV (f) ✓ Pn has only isolated singularities, P1, . . . Pr. Let each germ gi : (Cn
, 0) ! (C, 0)

be defined locally about Pi, and let µi and Ti denote its Milnor number and algebraic mon-

odromy operator on Hn�1(Xgi) respectively. Then for our choices of " and an admissible

linear form `, we have

1. M [f + "`
d](�) = M

reg
n,d (�)

2. For k > d, we have

M [f + "`
k](�) =

M
reg
n,d (�)

(�d � 1)
P

µi
·

rY

i=1

det(�k
I � T

k�d
i ).

This leads to the following bounding argument which mimics the logic of the conical

bounding method above.

Corollary 26. With the assumptions and notation of Theorem 25, the number of singu-

larities is bounded by the following relation:
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(�d
� 1)

P
µi

����M
reg
n,d (�) ·

rY

i=1

det(�d+1
I � Ti)

In particular, if each gi has the same singularity type, then:

(�d
� 1)rµ1

����M
reg
n,d (�) · [det(�

d+1
I � T1)]

r

Proof: f + "`
d+1 has an isolated singularity at 0 by Lemma 3. Therefore M [f + "`

k](�)

must not have any poles (as it must be a polynomial). This implies the denominator of

(2) in Theorem 25 must divide the numerator. ⇤

We look at this bound in action with a case we already know from above.

Proposition 27. Let f 2 C[x0, x1, x2, x3] be homogeneous polynomial of degree d > 3,

and let eV (f) ✓ P3 have only isolated fE6 singularities. Then the number r of singular

points is bounded by

r 
(d� 1)4 � 1

8d
=

1

8
d
3
�

1

2
d
2 +

3

4
d�

1

2

Proof: In this case, n = 3 is odd, so

M
reg
3,d = (�� 1)(�d

� 1)
(d�1)4�1

d

Each fE6 singularity corresponds to µ1 = 8, and det(�I � T1) = (�3�1)3

(��1) Which can

both be inferred from the spectrum. Therefore our bounding argument gives us:

(�d
� 1)8r

����(�� 1)(�d
� 1)

(d�1)4�1
d ·

(�3(d+1)
� 1)3r

(�� 1)r
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We will count the multiplicity of the eigenvalue e
d�1
d ·2⇡i on each side. We note that this

is not a root of �3(d+1)
�1)3r since this would imply 3(d+1)(d�1)

d is an integer) d|3(d2�1) =

3d2 � 3 ) d|� 3 which is not possible since d > 3. Therefore the multiplicity on the left

side is 8r and the right side is (d�1)4�1
d . This implies r  (d�1)4�1

8d . ⇤

For A1 singularities, the eigenvalue method gives the following bound:

Proposition 28. Let f 2 C[x0, x1, x2, . . . xn] be a homogeneous polynomial of degree

d > 2, and let eV (f) ✓ Pn have only isolated A1 singularities. Then the number r of

singular points is bounded by

r 

8
>>><

>>>:

1+(d�1)n+1

d n even

(d�1)n+1�1
d n odd.

Proof: Each local A1 singularity corresponds to the spectrum [n2 � 1], hence to the

eigenvalue (�1)n; so the characteristic polynomial of each Ti is (� � (�1)n). By our

corollary this implies:

(�d
� 1)r

��M reg
n,d (�) · (�

d+1
� (�1)n)

Picking out the root e
2⇡i
d and counting the multiplicities on each side, we deduce that

r 
1
d ((d� 1)n+1

� (�1)n+1). ⇤

2.7 A generalization of the conical bound

As we have seen from the last two sections, it is necessary that we consider the spec-

trum and not just the characteristic polynomial of T ss on H
n(Yfk) to get the sharpest

bound on the number of singularities. This has to do with the fact that the Hodge filtra-

tion further sorts the eigenvalues of the monodromy, resulting in smaller multiplicities.
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The isolated singularities Pi turn out to contribute to the spectrum of the Yomdin defor-

mation in a subtle way, which involves “pairing” the action of both horizontal and vertical

monodromies on H
n�1(Ygi). Here “horizontal” means that t goes about the origin of the

disk, while “vertical” means to go about the cone point on the ith component of ⌃.

Fortunately, Saito and Siersma have left us with the necessary tools to generalize

Theorem 19 in such a way that we can generalize the conical bounding process. We will

start o↵ by giving Steenbrink’s Conjecture from [3], which was later proven by Saito in

the vast generality of mixed Hodge modules in [7], and was later specified in more detail

in a context closer to our own in [10, Thm. 7.5]. We further contextualize this theorem

in the case of homogeneous polynomials.

Theorem 29 (SS Formula for Homogeneous Cone Case). Let f 2 C[x0, . . . , xn] be ho-

mogeneous polynomial of degree d such that eV (f) ✓ Pn has only isolated singularities,

P1, . . . Pr. Let each germ gi : (Cn
, 0) ! (C, 0) be defined locally about Pi, µi denote the

Milnor number of gi, and write �gi,0 =
Pµi

j=1[�ij]. Put ↵ij = d�ij � bd�ijc. Then for a

su�ciently general linear form ` and small " 6= 0, fk = f +"`
k has an isolated singularity

at 0 and

�fk,0 = �
⇤(n+1)
d �

X

i,j


�ij �

↵ij

d

�
⇤ �d +

X

i,j


�ij �

↵ij

k

�
⇤ �k

for any k > d.

The proof is given later in this section.

Let U ✓ Cn+1 be a ball about 0 and F : U ! � a holomorphic germ, with Vt := F
�1(t)

smooth for t 6= 0. Assume that Z := sing(V0) has dimension 1, and let Zi be its irreducible

components. We assume that their only intersection point is the origin.
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Lemma 4 ( [10, §7.2]). Consider a (su�ciently general) linear form ` on Cn+1 such that

{` = 0} \ Zi is finite for each i. Let ⇡ = (F, `) : U ! �2, and denote the Jacobian

matrix by d⇡. Let P ✓ U denote the set at which d⇡ has rank 1; that is, P is the

intersection of the zero loci of all of the 2 ⇥ 2 minor determinants. Assume in addition

that P \⇡
�1(�⇥{(s =) 0}) = {0}. Writing ⇡s : P \ `

�1(s) ! �⇥{s} for the restriction,

every irreducible curve Cq ⇢ [s2�⇤
s
im(⇡s) has a parametrization of the form (tCq(s), s),

where (for some rCq 2 Q�0 and �Cq 2 C⇤)

tCq(s) = �Cqs
rCq + higher order terms.

Furthermore if

r := max
q

{rCq , 0} 2 Q�0,

then for every a > r, F + `
a has an isolated singularity at 0 (including the vacuous case

where it is nonsingular at and near 0).

We make a quick note that in the previous lemma, Z ✓ [s(P\`
�1(s)) but the reverse

inclusion need not hold.

Example 30. Consider the polynomial F = x0(x2
1 + x

2
2) 2 C[x0, x1, x2]. Then F factors

as x0(x1+ix2)(x1�ix2), and the set Z = sing(X0) = {(0, z,�iz)}[{(0, z, iz)}[{(z, 0, 0)}

for z 2 C. We choose U to be a ball about 0, and see that in U , Z has dimension 1. We

see that Z = Z1[Z2[Z3 on U where Z1 = {(0, z,�iz)}, Z2 = {(0, z, iz)}, Z3 = {(z, 0, 0)}.

Of course, each Zi is irreducible of dimension 1.

We choose ` = x0 + x1, and note {` = 0} \ Zi = {0} for i = 1, 2, 3. With ⇡ as above,

we get:

d⇡ =

2

664
x
2
1 + x

2
2 2x0x1 2x0x2

1 1 0

3

775
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Letting Fij = |Col i : Col j| for i < j, we have d⇡ has rank 1 on P = {F12 = 0} \

{F13 = 0} \ {F23 = 0}. Here P = Z [ {z, 2z, 0}. We verify P \ ⇡
�1(�t ⇥ {0}) =

{Z [ {z, 2z, 0}} \ {(y1,�y1, y2)} = {0} where yi 2 C. We have P \ `
�1(s) = {( s3 ,

2s
3 , 0)},

and so im(⇡s) = {(4s
3

27 ), s}. Therefore our only irreducible curve C ⇢ [s2�⇤
s
Im(⇡s) is given

by tC = 4
27s

3, and so r = 3. It follows that for every a > 3, F+`
a = x0(x2

1+x
2
2)+(x0+x1)a

has an isolated singularity at 0.

Example 31. An example of the vacuous case is given by F = x0(x1�x
2
2) 2 C[x0, x1, x2].

Here, Z = sing(V0) = {(0, z2, z)} for z 2 C. Again we choose U to be a ball about 0, and

here Z itself is irreducible of dimension 1.

We choose ` = x2, and note {` = 0} \ Z = {0}. With ⇡ as above, we get

d⇡ =

2

664
x1 � x

2
2 x0 �2x0x2

0 0 1

3

775 ,

which has rank 1 on P = Z. We verify P \ ⇡
�1(�t, {0}) = Z \ {(y1, 0, 0)} = {0} where

yi 2 C. We have P \ `
�1(s) = {(0, s2, s)}, and so Im⇡s = {0, s}. Therefore there is

no irreducible curve C ⇢ [s2�⇤
s
Im(⇡s) and so r = 0. We conclude that for every a > 0,

F+`
a = x0(x1�x

2
2)+(x2)a has an isolated singularity at 0. In this case, x0(x1�x

2
2)+(x2)a

is in fact nonsingular for a > 0.

We now apply Lemma 4 to our case of interest.

Lemma 5. Let f 2 C[x0, . . . , xn] be homogeneous polynomial of degree d and let eV (f) ✓

Pn have only isolated singularities. Then there exists a su�ciently general linear form `

such that f + `
k has an isolated singularity at 0 for all k > d.
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Proof: Recall that the singular locus ⌃ := sing(V (f)) of the a�ne cone is a union

of lines passing through the origin. Then there exists a suitable change of coordinates

(y0, . . . , yn) and a ball B = B✏(0) such that the components ⌃i of ⌃ are parametrized by

y0. That is, each ⌃i has the form:

⌃i = [s2�s{(s, f
j
i (s), . . . , f

n
i (s)) | f

j
i (0) = 0 8i}

Furthermore we can set (y1, . . . , yn) = y and rewrite f(y0, y) =
Pd

j=0 gj(y)y
d�j
0 , and since

eV (f) has only isolated singularities, we may further assume our coordinates were chosen

so that f(0, y) = gd(y) defines a smooth hypersurface eV (gd) ✓ Pn�1
(y0=0). We choose ` = y0

and let ⇡ = (f, `) : B ! �2
t,s. Denote @if = @yif . Then we have:

d⇡ =

2

664
@0f @2f . . . @nf

1 0 . . . 0

3

775 ,

which has rank 1 precisely when @if = 0 for every i > 0.

We must show that sing(⇡) \ {y0 = 0} = {0}. Let p = (p0, p) 2 sing(⇡) \ {y0 = 0}.

Then p = (0, p) and

@if(p) = @i

"
dX

j=0

gj(x)x
d�j
0

#
(p) = 0 for i > 0.

This yields @igd(p) = 0 for i > 0 Since eV (gd) is smooth in x, this implies p = 0 ) p = 0.

Therefore there will exist a k such that for " small enough f + "y
k
0 will have an isolated

singularity at 0.

In the notation above, P = {@if = 0 | i > 0}\B. By Euler’s identity, we have d · f =

Pn
i=0 yi@if . Any curve C given by the image of ⇡s of points ps 2 P \ {y0 = s}\ {f = 0}

is just given by tC = 0. So we consider the case when d · f = x0@0f . The points where
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f = 0 just give the curve tCq = 0. We let ps 2 P \ {f 6= 0}. That is, ps = (s, ps). By

Euler’s homogeneous function theorem,

f(ps) =
1

d

nX

i=0

psi@if(ps)f(ps) =
s

d
@0f(ps) =

s

d

d�1X

j=0

(d� j)gj(ps)s
d�j�1 =

1

d
·
d

ds
f(s, ps)

Let h(s) = f(s, pS). Then by above, h(s) = d
s · h

0(s) for s 6= 0. Therefore:

Z
h
0(s)

h(s)
ds = d

Z
ds

s
) log(h(s)) = d log(s) + C ) h(s) = As

d

And so, by Lemma 4, we have shown that f + "y
d+1
0 must have an isolated singularity at

0. ⇤

The following is detailed in [2, p195]:

Lemma 6. Let f 2 C[x0, . . . , xn] be homogeneous polynomial of degree d such that eV (f) ✓

Pn has only isolated singularities, P1, . . . Pr. Let each germ gi : (Cn
, 0) ! (C, 0) be defined

locally about Pi. Let µi denote the Milnor number of gi. Let Ti and ⌧i be the algebraic

horizontal and vertical monodromy operators respectively, each corresponding to gi. Then

we must have:

Ti
�d = ⌧i.

Proof: [Proof of Theorem 29] We note that our choice of ` and k > d yields an fk

with isolated singularity by Lemma 5. Additionally, this lemma was proven in accor-

dance with Lemma 4, which is precisely the condition contained in the preface to [10,

Thm. 7.5]. Therefore our choice of d as the bounding exponent r is su�cient to invoke

Saito-Steenbrink, but where the ↵ij are a priori given by the eigenvalues of the vertical

monodromy operators.
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Recall that there exist matrix representations of Ti and ⌧i in Jordan normal form, so

that they each have a Jordan-Chavalley decomposition into the product of a unipotent

and semisimple matrices:

Ti = T
ss
i T

u
i

⌧i = ⌧
ss
i ⌧

u
i

Furthermore, these representations can be chosen in such a way that there exists a simul-

taneous eigenbasis vij for T ss
i and ⌧

ss
i for which:

Ti
ss
vij = (e�2⇡i�ij)vij

⌧i
ss
vij = (e2⇡i↵ij)vij for ↵ij 2 [0, 1)

Note that while the values �ij are the spectral summands above, this relation is what

defines the values ↵ij. By Lemma 6, T�d
i = ⌧i ) (T ss

i T
u
i )

�d = ⌧
ss
i ⌧

u
i , but since the

pieces of the Jordan-Chavalley decomposition commute, the LHS is just (T ss
i )�d(T u

i )
�d.

By the uniqueness of the decomposition into semisimple and unipotent parts, we have

(T ss
i )�d = ⌧

ss
i . This implies our values of ↵ij = d�ij � bd�ijc.

Finally, by [10, Thm. 7.5], we must have:

�fk,0 = �f,0 +
X

i,j


�ij �

↵ij

k

�
⇤ �k

where �m =
Pm�1

i=0


�

i
m

�
. Combining this with Theorem 20 now gives the desired

formula:

�fk,0 = �
⇤(n+1)
d �

X

i,j


�ij �

↵ij

d

�
⇤ �d +

X

i,j


�ij �

↵ij

k

�
⇤ �k.

⇤

Considering the case where k = d+1 we get the following general bound for multiple

singularity types at once:
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Theorem 32 (Generalized Conical bounding method). Let Let f 2 C[x0, . . . , xn] be a

homogeneous polynomial of degree d, and let eV (f) ✓ Pn have only r isolated singularities

given locally by gi : (Cn
, 0) ! (C, 0) having corresponding Milnor numbers µi for 1  i 

r. Let �gi,0 =
Pµi

j=1[�ij] be their corresponding spectra. Then:

�fd+1,0 = �
⇤(n+1)
d �

 
rX

i=1

µiX

j=1

dX

k=1


bd�ijc+ k

d

�
�

rX

i=1

µiX

j=1

d+1X

k=1


�ij + bd�ijc+ k

d+ 1

�!

and the e↵ectiveness of this spectrum restricts the set of r singularities which can be

present.

Proof: We know from Theorem 29 and Lemma 2 that k = d + 1 gives an e↵ective

spectrum which satisfies:

�fd+1,0 = �
⇤(n+1)
d �

X

i,j


�ij �

↵ij

d

�
⇤ �d +

X

i,j


�ij �

↵ij

d+ 1

�
⇤ �d+1.

Since ↵ij = d�ij � bd�ijc, this is just

= �
⇤(n+1)
d �

 
X

i,j

dX

k=1


bd�ijc+ k

d

�
�

X

i,j

d+1X

k=1


�ij + bd�ijc+ k

d+ 1

�!
.

⇤

2.8 Some more user-friendly formulas

In this section, we will explain how to adapt Theorem 32 to a formula which serves

the purpose of reducing the number of calculations. The caveat is that the formula holds

no deeper meaning within greater spectral theory. As one can see, Theorem 32 explicitly

describes a relationship between the spectrum �fd+1,0 and the spectra of local singularities.
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If we throw away the concept of spectra all together, we are left with theorems which

only describe relationships of elements in Z[Q].

This becomes more convenient because it allows us to simply throw things away that

don’t matter to the arithmetic we need to do to simply bound the possible singularities.

We get the following:

Theorem 33. Let Let f 2 C[x0, . . . , xn] be a homogeneous polynomial of degree d, and

let eV (f) ✓ Pn have only r isolated singularities given locally by gi : (Cn
, 0) ! (C, 0)

having corresponding Milnor numbers µi for 1  i  r. Let �gi,0 =
Pµi

j=1[�ij] be their

corresponding spectra. Then the following sum in Z[Q] is e↵ective:

�
⇤(n+1)
d �

0

BBB@

rX

i=1

µiX

j=1

d�1X

k=1


bd�ijc+ k

d

�
+

rX

i=1

d�ij

µiX

j=1

/2Z


bd�ijc

d
+ 1

�
1

CCCA

and the e↵ectiveness of this sum restricts the set of r singularities which can be present.

We will first need to prove a very short lemma:

Lemma 7. If the quantities:

bd�i,jc+ k

d
=

bd�ghc+ `+ �gh

d+ 1

for values d 2 N , 1  `  d+ 1, and 1  k  d, then we must have the following:

1. ` = d+ 1

2. d�gh 2 Z

Proof: Assume:

bd�i,jc+ k

d
=

bd�ghc+ `+ �gh

d+ 1
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) (d + 1)(bd�ijc+ k) = d(bd�ghc+ ` + �gh). Since the left is an integer, the right must

be ) dbd�ghc+ d`+ d�gh 2 Z ) d�gh 2 Z ) bd�ghc = d�gh. This restricts the equality

to be:

) (d+ 1)(bd�ijc+ k) = d(d�gh + `+ �gh) = d(d+ 1)�gh + d`

) bd�ijc + k = d�gh +
d

d+1` Where the left must be an integer so the right must be.

Since d�gh is also an integer

)
d

d+1` 2 Z. Our values of ` only range 1  `  d+ 1 ) ` = d+ 1. ⇤

Proof: [Proof of Theorem 7.1]

By Theorem 32, we have that

�fd+1,0 = �
⇤(n+1)
d �

 
rX

i=1

µiX

j=1

dX

k=1


bd�ijc+ k

d

�
�

rX

i=1

µiX

j=1

d+1X

k=1


�ij + bd�ijc+ k

d+ 1

�!

is an e↵ective sum in Z[Q]. By our lemma, the only summands of the right triple sum

which may cancel with those of the left triple sum in the subtraction are those that satisfy

the properties in the conclusion of the lemma. Therefore

�
⇤(n+1)
d +

rX

i=1

d�ij

µiX

j=1

2Z


�ij + d�ij

d+ 1
+ 1

�
�

rX

i=1

µiX

j=1

dX

k=1


bd�ijc+ k

d

�

= �
⇤(n+1)
d +

rX

i=1

d�ij

µiX

j=1

2Z


�ij + 1

�
�

rX

i=1

µiX

j=1

dX

k=1


bd�ijc+ k

d

�

is an e↵ective sum in Z[Q]. But

rX

i=1

µiX

j=1

dX

k=1


bd�ijc+ k

d

�
=

rX

i=1

d�ij

µiX

j=1

2Z


�ij+1

�
+

rX

i=1

d�ij

µiX

j=1

/2Z


�ij+1

�
+

rX

i=1

µiX

j=1

d�1X

k=1


bd�ijc+ k

d

�
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So we conclude that

�
⇤(n+1)
d �

0

BBB@

rX

i=1

µiX

j=1

d�1X

k=1


bd�ijc+ k

d

�
+

rX

i=1

d�ij

µiX

j=1

/2Z


bd�ijc

d
+ 1

�
1

CCCA

is e↵ective in Z[Q]. ⇤

The power of this form, as opposed to the one in Theorem 32 is immense. The original

theorem would have one believe, on first glance, that it were possible to have a set of two

types of local singularities g1 and g2 such that the values of the summands
h
�1j+bd�1jc+k

d+1

i

with positive coe�cients corresponding to g1 give extra wiggle room to the coe�cients

of �⇤(n+1)
d to cancel out the summands

h
bd�2jc+k

d

i
with negative coe�cients corresponding

to g2. With our theorem in this section, we have proven that this possibility is, in fact,

irrelevant to our use of the bounding method.

We prove the following statements, which serve to further bridge the gap of how our

bound becomes increasingly similar to that of Varchenko in Section 2.4.

Lemma 8. The number of positive integer solutions (x1, . . . , xk) to the equation:

kX

i=1

xi = N

for some positive integer N subject to the constraints 1  xi  ↵ for i = 1, . . . , k is given

by:
mX

i=0

(�1)i
✓
k

i

◆✓
N � ↵i� 1

k � 1

◆

where m =
j
min

�
k,

N�k
↵

 k
acts as a truncator.

Furthermore, in the case that min
�
k,

N�k
↵

 
= N�k

↵ we may choose any
⌅
N�k
↵

⇧
 m 

⌅
N�1
↵

⇧
, as this simply adds zero terms in the sum.
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Proof: This follows from a basic combinatorial argument using a “stars and bars” style

proof and inclusion exclusion principles. ⇤

Proposition 34. For any p 2 Z such that n� d  p  n(d� 1)� d, we have:

n
p

d

o
\

#
{�

⇤n
d } =

bn�1� p
d�1cX

i=0

(�1)i
✓
n

i

◆✓
d(n� 1)� p� 1� (d� 1)i

n� 1

◆

and this completely determines the spectrum �
⇤n
d .

Proof: Recall that

�
⇤n
d =

 
d�1X

i=1


�
i

d

�!⇤n

=
d�1X

x1,...,xn=1


n� 1�

Pn
i=1 xi

d

�

So it’s clear that every summand of �⇤n
d has the form p

d where the numerator p 2 Z

is restricted to the range n � d  p  n(d � 1) � d. Calculating the coe�cient of each

summand amounts to counting the number of ways the sum
Pn

i=1 xi = d(n � 1) � p

subject to the constraint 1  xi  d � 1 for 1  i  n. The result then immediately

follows from the above lemma. ⇤

We make note of the following cute fact, which follows immediately from Theorem 13

and Proposition 34:

Corollary 35. Let d > n and the values
h
h
k,n�1�k
n,d

i0
be the primitive hodge numbers of a

smooth hypersurface in Pn of degree d. Then for k 
n�1
2 , we have:

h
h
k,n�1�k
n,d

i0
= {n� k � 1} \#

{�
⇤(n+1)
d }.

We state one more lemma comparing the coe�cients of �⇤n
d and �

⇤(n+1)
d :

Lemma 9. The following is a result of combinatorial arithmetic:

n
p

d

o
\

#
{�

⇤(n+1)
d } =

⇢
p� 1

d
,
p� 2

d
, . . . ,

p� (d� 1)

d

�
\

#
{�

⇤n
d }
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=
⇣
p

d
� 1,

p

d

⌘
\

#
{�

⇤n
d }

The following is an equivalent statement of the conical bound:

Theorem 36 (Alternative statement of the conical bound). Let f 2 C[x0, . . . , xn] be a

homogeneous polynomial of degree d, and let eV (f) ✓ Pn have only r isolated singularities

given locally by gi : (Cn
, 0) ! (C, 0) having corresponding Milnor numbers µi for 1  i 

r. Let �gi,0 be their corresponding spectra. Then for every p 2 Z we must have:

n
p

d

o
\

#
{�

⇤(n+1)
d } �

rX

i=1

⇣
p

d
� 1,

p

d

⌘
\

#
{�gi,0}

or equivalently:

⇣
p

d
� 1,

p

d

⌘
\
#
{�

⇤n
d } �

rX

i=1

⇣
p

d
� 1,

p

d

⌘
\

#
{�gi,0}.

Proof: Theorem 33 tells us the following sum in Z[(Q] is e↵ective:

�
⇤(n+1)
d �

0

BBB@

rX

i=1

µiX

j=1

d�1X

k=1


bd�ijc+ k

d

�
+

rX

i=1

d�ij

µiX

j=1

/2Z


bd�ijc

d
+ 1

�
1

CCCA

This is equivalent to a set of statements for every coe�cient of
⇥
p
d

⇤
in �

(n+1)
d and the

coe�cient on
⇥
p
d

⇤
in the summation to the right of it. That is, for every p 2 Z, we have:

n
p

d

o
\

#
{�

⇤(n+1)
d } �

rX

i=1

µiX

j=1

#

⇢
[�ij] :

p

d
=

bd�ijc

d
+ 1, d�ij /2 Z

�

+
rX

i=1

µiX

j=1

d�1X

k=1

#

⇢
[�ij] :

p

d
=

bd�ijc+ k

d

�

=
rX

i=1

{[�] : p� d < d� < p} \
#
{�gi,0} =

rX

i=1

⇣
p

d
� 1,

p

d

⌘
\

#
{�gi,0}
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giving our result. The alternative statement follows immediately from the above lemma.

⇤

We have now deduced that the bounding argument resulting from our above Theorem

29 mimics the form of a particular case of the Varchenko bound. We note that while

Varchenko’s bound is stronger than our bound, as proven in the following theorem, it

is not the case that Varchenko’s bounding argument implies the full scope of Theorem

29 itself. This is due to the fact that we sacrificed many of the structurally important

components of the spectra in order to make this bounding argument in the first place.

Theorem 37. Varchenko’s bound Theorem 17 implies the formula given in Theorem 36.

Proof: Let Z ✓ Pn be a hypersurface of degree d, with only isolated singular points

P1, . . . , Pr. Let gi : (Cn
, 0) ! (C, 0), for 1  i  r denote the corresponding germs

defined locally about Pi.

Then Theorem 17 tells us that for any ↵, we must have:

(↵,↵ + 1) \#
{�

⇤n
d } �

rX

i=1

(↵,↵ + 1) \#
{�gi,0}

For any p 2 Z, let ↵ = p
d � 1. Since this can be done for each p the result immediately

follows. ⇤

It is our experience that picking ↵ 6= p
d for some p 2 Z, always gives a worse bound

than either p = bd↵c or p = bd↵c + 1. However the proof that this is true in general

becomes highly technical arithmetic, and so we leave it as the following conjecture:

Conjecture 38. Our bound, given in Theorem 36, implies the bound given by Varchenko

in Theorem 17.
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We will now demonstrate the usefulness of Theorem 36 with several examples, which

duplicate or improve known results. In the paper [15], the author gives an explicit example

of a projective hypersurface X ⇢ P4 of degree 3 with a single A11 singularity. In the paper

[10], the authors prove that m = 11 is in fact the maximal Am singularity that can be

present in such a hypersurface with only isolated singularities. The following example

illustrates how one can use Theorem 36 to provide another proof that this is in fact the

case:

Example 39. Let X ⇢ P4 be a hypersurface of degree 3 with only r isolated singularities.

Here we have n = 4 and d = 3. Assume X has an Am singularity. Without loss of

generality, assume the local equations gi 1  i  r corresponding to the r singularities

are indexed in such a way that g1 corresponds to the Am singularity.

The local normal form of g1 is given by the equation: z
m+1
0 + z

2
1 + z

2
2 + z

2
3 , and the

corresponding spectrum is given by:

�g1,0 =
µ1X

j=1

[�1j] =
mX

j=1


j

m+ 1
+

1

2

�

Therefore by Theorem 36,

1 =

⇢
2

3

�
\

#
{�

⇤5
3 } �

✓
�
2

6
,
4

6

◆
\

#
{�g1,0} = #

⇢
j : 1  j  m, j <

m+ 1

6

�

However, the last count is greater than 1 whenever m > 11, and so we must have m  11.

We can easily extend this argument to general n, d. We get that:

m 
2d+ (d� 2)(n+ 1)

2d� (d� 2)(n+ 1)
.
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We now show how Theorem 36 can be used to extend and improve the arguments of

Proposition 15, and Proposition 16. The Hodge-theoretic bounds rely on the assumption

that n+1 is even to work. Furthermore, one can verify that the former bound is equivalent

to using Theorem 36 with p = d, which can be improved if we allow the interval some

flexibility.

Proposition 40. Let f 2 C[x0, x1, x2, x3] be homogeneous polynomial of degree d > 3,

and let eV (f) ✓ P3 have only n6 isolated fE6, n7 isolated fE7, and n8 isolated fE8 singulari-

ties. Define:

b(d, p) =

✓
3d� p� 1

3

◆
� 4

✓
2d� p

3

◆
+ 6

✓
d� p+ 1

3

◆

=
d
3

6
+

d
2
p

2
�

p
3

2
+

dp
2

2
+�d

2
� 2dp+ p

2 +
11d

6
+

p

2
� 1

Then:

1. 7n6  b(d, p)  31
54d

3
�

13
18d

2 + 4d+ 1
2 for p =

⌅
2d
3

⇧
+ 1

2. 7n6 + 8n7  b(d, p)  235
384d

3
�

11
16d

2 + 101
24 d+

1
2 for p =

⌅
3d
4

⇧
+ 1

3. 7n6 + 8n7 + 9n8  b(d, p)  277
432d

3
�

23
36d

2 + 53
12d+

1
2 for p =

⌅
5d
6

⇧
+ 1

Proof: We note that the normal forms and spectra for each singularity type are as

follows:

1. fE6: x
3 + y

3 + z
3

�fE6
= [0] + 3

⇥
1
3

⇤
+ 3

⇥
2
3

⇤
+ [1]

2. fE7: x
2 + y

4 + z
4

�fE7
= [0] + 2

⇥
1
4

⇤
+ 3

⇥
1
2

⇤
+ 2

⇥
3
4

⇤
+ [1]

3. fE8: x
2 + y

3 + z
6

�fE8
= [0] + 1

⇥
1
6

⇤
+ 2

⇥
1
3

⇤
+ 2

⇥
1
2

⇤
+ 2

⇥
2
3

⇤
+ 1

⇥
5
6

⇤
+ [1]
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We apply Theorem 36 for the choices of p =
⌅
2d
3

⇧
+ 1,

⌅
3d
4

⇧
+ 1, and

⌅
5d
6

⇧
+ 1, respec-

tively. The b(d, p) are simply calculated using Proposition 34. Since these values of p

are increasing, and the values of p
d � 1 < 0 in any of these choices, our bound for 8n7,

duplicates as a bound for 7n6 + 8n7 and our bound for 9n8, duplicates as a bound for

7n6 + 8n7 + 9n8. The polynomials bounding b(d, p), are obtained from inequalities of

the form 2d
3 

⌅
2d
3

⇧
+ 1 

2d
3 + 1, and plugging these values into the polynomial form of

b(d, p), depending on the sign of pm in each summand.

⇤

Example 41. In particular, we can compare the first bound with that of Proposition

2.2. The bounds for the following manually calculated bounds and those of Proposition

2.2 for 4  d  9

bound/d 4 5 6 7 8 9

1
7b(d, p) 2 5 11 17 29 45

1
6(h

1,1
3,d � 1) 3 7 14 24 38 56

for d � 10, the values 1
6(h

1,1
3,d � 1) � 1

7

�
31
54d

3
�

13
18d

2 + 4d+ 1
2

�
�

1
7b(d, p) for p =

⌅
2d
3

⇧
+ 1

So this bound is always better than the hodge theoretic bound given in Proposition 2.2

Proposition 42. Let f 2 C[x0, x1, x2.x3, x4] be homogeneous polynomial of degree d > 2,

and let eV (f) ✓ P4 have only isolated A2m+1 singularities. Then the number r of singular

points is bounded by
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r 

8
>>><

>>>:

1
2m+1

⇥
115
192d

4
�

115
48 d

3 + 185
48 d

2
�

35
12d+ 1

⇤
d ⌘ 0 mod 2

1
2m+1

⇥
115
192d

4
�

115
48 d

3 + 355
96 d

2
�

125
48 d+

45
64

⇤
d ⌘ 1 mod 2, d > m+ 1

Proof: LetX ⇢ P4 be a hypersurface of degree d with only r isolated A2m+1 singularities

Let the local equations be given by gi 1  i  r.

The local normal form of gi for 1  r  is given by the equation: z2m+2
0 + z

2
1 + z

2
2 + z

2
3 ,

and the corresponding spectra are given by:

�gi,0 =
µ1X

j=1

[�ij] =
2m+1X

j=1


j

2m+ 2
+

1

2

�

Pick p = 3d
2 for d even, and p = 3d+1

2 for d odd (assuming d > m+ 1). Then by 36,

n
p

d

o
\

#
{�

⇤5
d } �

rX

i=1

⇣
p

d
� 1,

p

d

⌘
\

#
{�gi,0} = r(2m+ 1)

A simple calculation of the left hand side using Proposition 34 for d ⌘ 0, 1 mod 2

gives the desired result. ⇤

We note, however, that this bound is best for larger m. One can verify, for example,

that our bound on the number of A1 singularities given above does better (this is the

case where m = 0). This is because the bounds above were chosen to give a convenient

polynomial bound that does best for all m. Technically, when working with a particular

m, a better bound can be found by choosing p =
j
(3m+2)d
2m+2

k
+1. In particular this can be

done even for the cases when d is odd and m+ 1 � d.
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3. A Purely Combinatorial Interpretation of the Conjecture

Put your first chapter here.

3.1 Spectrums Viewed as Combinatorial Objects

or our purposes, we may simply consider a spectrum � as merely an object � 2 Z(Q),

the free abelian group on the generators [↵], with ↵ 2 Q such that �g must be symmetric,

and have ony finitely many nonzero coe�cients. Put more formally, we may designate

any spectrum as an element � =
P

↵2Q n↵[↵] with n↵ 2 Z such that:

1. Finitely many n↵ 6= 0

2. There exists some p 2 Q such that
P

↵2Q n↵[↵] =
P

↵2Q n2p�↵[2p� ↵]

Where g is a particular isolated singularity, and for our purposes we may consider it as

some relevant function dictating the type of singularity, we denote the spectrum associ-

ated to g as �g.

Example 43. The fE6 singularity g = x
3 + y

3 + z
3 has spectrum:

�g = 1[0] + 3


1

3

�
+ 3


2

3

�
+ 1[1]

The spectrums of particular usefulness are those of homogeneous pham-brieskorn func-

tions, that is, those of the form:

nX

i=1

x
d
i = x

d
1 + x

d
2 + . . . x

d
n
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Which only vary based on the degree d and the number of variables n. Their spectrums

are so combinatorial in structure that we denote them as follows:

�xd
1+xd

2+...xd
n
= �d

⇤n

where:

�d
⇤n =

d�1X

x1,...xn=1


n� 1�

Pn
i=1 xi

d

�

We note that finding the form
P

↵2Q n↵[↵] of �d⇤n amounts to counting how many times

[↵] appears in the above sum, which then amounts to counting the number of ways

P
i=1 xi = d(n�1�↵) for 1  xi  d�1. It is clear from the notion that ↵ = n�1�

Pn
i=1 xi

d ,

that only ↵ of the form p
d with p 2 Z need be considered. Furthermore, in �

⇤n
d , the smallest

↵ can be is n � 1 � n(d�1))
d = n

d � 1 and the largest ↵ can be is n � 1 � n
d = n(d�1)

d � 1,

both of which must have a coe�cient of 1. A stars and bars style combinatorial proof,

along with inclusion exclusion principles yeilds the following lemma:

Lemma 10. The number of positive integer solutions (x1, . . . , xk) to the equation

Pk
i=1 xi = N for some positive integer N subject to the constraints 1  xi  � for

1  i  k is given by:

mX

i=0

(�1)i
✓
k

i

◆✓
N � �i� 1

k � 1

◆

where m = bmin
n
k,

N�k
�

o
acts as a truncator of zero value terms.

We now let {�} denote the spectrum set. That is if � =
P

↵2Q n↵[↵], then {�} =

S
↵2Q{[↵], . . . , [↵]} where the set {[↵], . . . , [↵]} contains n↵ copies of [↵].

Example 44. The fE6 singularity g = x
3 + y

3 + z
3 with spectrum:

�g = 1[0] + 3


1

3

�
+ 3


2

3

�
+ 1[1]
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would have spectrum set:

{�g} =

⇢
[0],


1

3

�
,


1

3

�
,


1

3

�
,


2

3

�
,


2

3

�
,


2

3

�
, [1]

�

For any set S ✓ R, let S \
#
{�} denote the number of elements in {�} which are

contained in S. If g is again the fE6 singularity contained in the above example, then:

⇢
1

3

�
\

#
{�g} = 3

,

(0, 1) \#
{�g} = 6

This new notation and the above lemma leads us immediately to the following coral-

lary:

Corollary 45. For any p 2 Z in the range n� d  p  n(d� 1)� d,

n
p

d

o
\

#
�
⇤n
d =

bn�1� p+1
d�1 cX

i=0

(�1)i
✓
n

i

◆✓
(n� 1)d� p� (d� 1)i� 1

n� 1

◆

And this completely determines �
⇤n
d .

We may give an example verifying the accuracy of this calculation.

Example 46.

�
⇤4
4 = 1 [0] + 4


1

4

�
+ 10


1

2

�
+ 16


3

4

�
+ 19 [1] + 16


5

4

�
+ 10


3

2

�
+ 4


7

4

�
+ 1 [2]

Taking p = 3 should give us the coe�cient of
⇥
3
4

⇤
. Plugging it in to the above lemma we

get the sum:

1X

i=0

(�1)i
✓
4

i

◆✓
8� 3i

3

◆
=

✓
8

3

◆
� 4

✓
5

3

◆
= 56� 4(10) = 16

Which matches what we have above
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3.2 Another Purely Combinatorial Way to Determine �
⇤n
d

Recall that Pascal’s triangle is given by the following pyramid:

n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

n = 6 1 6 15 20 15 6 1

Where each number is the sum of the two numbers above it. We can similarly view it in

a left justified version:

n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

n = 6 1 6 15 20 15 6 1

Where each number is instead a sum of the number above it and the one up and to the

left. We may instead consider an analogue of this left justified triangle where the number

on the bottom is the sum of the three numbers above it, starting with the number above

and moving to the left. We consider blank spots to be 0.:
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n = 0 1

n = 1 1 1 1

n = 2 1 2 3 2 1

n = 3 1 3 6 7 6 3 1

n = 4 1 4 10 16 19 16 10 4 1

As we can see, the first 16 in the row corresponding to n = 4 is given by the sum of

the 3 numbers above 16 = 3+6+7. The last line of numbers in this triangle should seem

familiar, as they are the coe�cients (in order) of �⇤4
4 given in the previous subsection.

This serves as motivation for exploring whether such a relationship exists between the

coe�cients of our special spectra and triangles that can be jotted down just as Pascal’s

can with only simple addition. In order to consider all triangles determined this way,

we denote the above triangle as �3, the left justified version of Pascal’s triangle will be

denoted as �2, and in general, we will denote the left justified triangle determined by

summing the n numbers above each spot by �n. As we can see, �4 will start o↵ as

follows:

n = 0 1

n = 1 1 1 1 1

n = 2 1 2 3 4 3 2 1

n = 3 1 3 6 10 12 12 10 6 3 1

We will index their rows i the way we do with n = i starting with row 0, and their

columns j again starting with 0. We will denote the ith row of triangle as �n as �n
i , and

the number in the {i, j}
th entry as �n

i,j. For example, �2
3 = 1, 3, 3, 1 and �4

2,3 = 4.
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Restating some well-known properties of Pascal’s triangle in terms of this new nota-

tion, we get:

1. �2
i,j =

�
i
j

�

2.
P

j �
2
i,j = 2i

3. �2
i,j = �2

i�1,j +�2
i�1,j�1

Perhaps most interesting is that the second property generalizes to the rest of the trian-

gles. That is, for any natural number k � 2,

(k�1)n+1X

j=1

�k
i,j = k

i

For example,
P

j �
4
3,j = 1 + 3 + 6 + 10 + 12 + 12 + 10 + 6 + 3 + 1 = 64 = 43

As hinted above, the same combinatorial formulas that govern these triangles also

govern the coe�cients of �⇤n
d . Therefore we can use these triangles to completely deter-

mine �
⇤n
d . We recall that the minimum and maximum values of ↵ in �

⇤n
d =

P
↵2Q n↵[↵],

are respectively n
d � 1 and n(d�1)

d � 1 with coe�cients 1, and all other ↵ = p
d of which all

values of p with p
d between this max and min must be present in the sum. Putting all of

this together, it is not a stretch to see that:

�
⇤n
d =

mX

j=0

nn
d�1+ j

d


n

d
� 1 +

j

d

�

where m =
⇣⇣

n(d�1)
d � 1

⌘
�
�
n
d � 1

�⌘
d = n(d� 2), and nn

d�1+ j
d
= �d�1

n,j . Altogether this

gives us the following complete determination of �⇤n
d :

�
⇤n
d =

n(d�2)X

j=0

�d�1
n,j


n

d
� 1�

j

d

�
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The literature discussing triangles �n are incredibly sparse. The first analogue, �3 is

often referred to as the trinomial triangle, and the numbers �3
i,j composing it are referred

to as trinomial coe�cients. Several of its properties were discussed in [16]. It is also fairly

straightforward to see why the above stated property,
P

j �
k
i,j = k

i holds once one realizes

that the same triangles also dictate the coe�cients of (1 + x+ x
2 + . . .+ x

n)d ordered by

exponents on x. Put more clearly:

(xk
� 1)n

(x� 1)n
= (1 + x+ x

2 + . . .+ x
k�1)n =

1+(k�1)nX

i=0

�k
n,ix

i

Plugging in x = 1 on the middle and right gives us the result. We give the leftmost

equality only by means of quickly calculating the coe�cients.

3.3 The Conjecture

In 3.1 we gave the conditions which govern the spectra �g we are concerned with

as combinatorial objects and elements of ZQ, the free abelian group with generators in

Q and coe�cients in Z. In 3.2, we gave a new way to calculate the coe�cients on the

bounding element �⇤(n+1)
d . In this section we will state the combinatorial analogue of our

conjecture.

Let g be an isolated singularitiy with a normal form represented in n variables. Recall

that �g 2 ZQ such that �g is a sum of finitely many generators and is symmetric about

some rational number. More specifically, we know in this case which number about which

�g must be symmetric, and some information about the coe�cients:

1. �g is symmetric about ↵ = n�2
2
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2. All coe�cients n↵ must be positive in �g

We now state the context of our bound:

Theorem 47 (Our Bound). : Let g1, . . . , gr be a set of isolated singularities with normal

form represented with n-variables and let this set as the complete set of local isolated

singularities about te origin of some homogeneous polynomial f of degree d in n + 1

variables with singular locus ⌃ of dimension 1. Then For any p 2 Z, we must have:

n
p

d

o
\

#
{�

⇤(n+1)
d } �

rX

i=1

⇣
p

d
� 1,

p

d

⌘
\

#
{�gi}

or equivalently:

⇣
p

d
� 1,

p

d

⌘
\

#
{�

⇤n
d } �

rX

i=1

⇣
p

d
� 1,

p

d

⌘
\

#
{�gi}.

This gives us the immediate corollary governing bounds on the summands of �gi :

Corollary 48. For 1  i  r we must have:

n

d
� 1  {↵ : {↵} \#

{�gi} 6= 0} 
n(d� 1)

d
� 1

The Varchenko bound replicates our bound but adds the additional bound that for

all 0 < " <
1
d ,

n
p

d

o
\

#
{�

⇤(n+1)
d }+

n
p

d

o
\

#
{�

⇤n
d } �

rX

i=1

⇣
p

d
� 1 + ",

p

d
+ "

⌘
\

#
{�gi}

For simplicity’s sake, we may just assume that �g =
Pr

i=1 �gi follows the rules above just

as any �gi .

Our conjecture essentially boils down to the statement that this extra condition is

extraneous. Put more formally:
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Conjecture 49. Assume that �g is a finitely generated element of ZQ such that:

1. �g is symmetric about ↵ = n�2
2

2. All coe�cients n↵ must be positive in �g

3. n
d � 1  {↵ : {↵} \#

{�g} 6= 0} 
n(d�1)

d � 1

and
n
p

d

o
\

#
{�

⇤(n+1)
d } �

⇣
p

d
� 1,

p

d

⌘
\

#
{�g}

then this implies that for all 0 < " <
1
d ,

n
p

d

o
\

#
{�

⇤(n+1)
d }+

n
p

d

o
\
#
{�

⇤n
d } �

rX

i=1

⇣
p

d
� 1 + ",

p

d
+ "

⌘
\

#
{�g}

This is purely a question of combinatorial arithmetic.
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4. Appendix

There is in fact quite a long history of bounding the number of singularities of

projective hypersurfaces, most notably bounding the number of nodes (also called an

A1 singularity or ordinary double point). In the tables that follow, “naive” denotes the

vanishing cycle sequence method of Section 2.3. Note that it makes no prediction for

nodes on a threefold (second table).
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A1 singularities, n = 3:

d Naive Eigenvalue Conical Sharp

Eq 2
3d

3
� 2d2 + 7

3d� 1 d
3
� 4d2 + 6d� 4 23

48d
3
�

9
8d

2 + 5
6d, even d

23
48d

3
�

23
16d

2 + 78
48d+

9
16 odd

1 0 0

2 1 1

3 6 5 4 4

4 19 20 16 16

5 44 51 31 31

6 85 104 68 65

7 146 185 104 99-104

10 489 656 375

20 4579 6516 3400

30 16269 23576 11950

40 39559 57836 28900

50 78449 115296 57125

100 646899 960596 468000

1,000 664668999 996005996 478042500
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A1 singularities, n = 4:

d Eigenvalue Conical Sharp

Eq d
4
� 5d3 + 10d2 � 10d+ 5 11

24d
4
�

19
12d

3 + 49
24d

2
�

11
12d

1 0

2 1

3 11 10 10

4 61 45 45

5 205 135 130-135

6 521 320

7 1111 651

10 5905 3195

20 123805 61465

30 683705 330310

40 2255605 1075230

50 5649505 2671725

100 95099005 44270325
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fE6 singularities, n = 3:

d Naive Eigenvalue Conical Sharp

Eq 1
9d

3
�

1
3d

2 + 7
18d�

1
6

1
8d

3
�

1
2d

2 + 3
4d�

1
2

1
7b(d, p)

1 0 0

2 0 0

3 1 1

4 3 3 2 1

5 7 6 5

6 14 13 11

7 24 23 17

10 82 82 60

20 763 815 570

30 2712 2947 2040

40 6593 7230 4865

50 13075 14412 9706

100 107817 120075 79577

1,000 110778167 124500750 81764819

For reference, we give the output of �⇤(n+1)
d for select values:
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n d �
⇤(n+1)
d

2 2 1
⇥
1
2

⇤

2 3 1[0] + 3
⇥
1
3

⇤
+ 3

⇥
2
3

⇤
+ 1[1]

2 4 1
⇥
�

1
4

⇤
+ 3 [0] + 6

⇥
1
4

⇤
+ 7

⇥
1
2

⇤
+ 6

⇥
3
4

⇤
+ 3 [1] + 1

⇥
5
4

⇤

2 5 1
⇥
�

2
5

⇤
+ 3

⇥
�

1
5

⇤
+ 6 [0] + 10

⇥
1
5

⇤
+ 12

⇥
2
5

⇤

+12
⇥
3
5

⇤
+ 10

⇥
4
5

⇤
+ 6 [1] + 3

⇥
6
5

⇤
+ 1

⇥
7
5

⇤

2 6 1
⇥
�

1
2

⇤
+ 3

⇥
�

1
3

⇤
+ 6

⇥
�

1
6

⇤
+ 10 [0] + 15

⇥
1
6

⇤
+ 18

⇥
1
3

⇤
+ 19

⇥
1
2

⇤

+18
⇥
2
3

⇤
+ 15

⇥
5
6

⇤
+ 10 [1] + 6

⇥
7
6

⇤
+ 3

⇥
4
3

⇤
+ 1

⇥
3
2

⇤

2 7 1
⇥
�

4
7

⇤
+ 3

⇥
�

3
7

⇤
+ 6

⇥
�

2
7

⇤
+ 10

⇥
�

1
7

⇤
+ 15 [0] + 21

⇥
1
7

⇤
+ 25

⇥
2
7

⇤
+ 27

⇥
3
7

⇤

+27
⇥
4
7

⇤
+ 25

⇥
5
7

⇤
+ 21

⇥
6
7

⇤
+ 15 [1] + 10

⇥
8
7

⇤
+ 6

⇥
9
7

⇤
+ 3

⇥
10
7

⇤
+ 1

⇥
11
7

⇤

3 2 1[1]

3 3 1
⇥
1
3

⇤
+ 4

⇥
2
3

⇤
+ 6 [1] + 4

⇥
4
3

⇤
+ 1

⇥
5
3

⇤
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n d �
⇤(n+1)
d

3 4 1[0] + 4
⇥
1
4

⇤
+ 10

⇥
1
2

⇤
+ 16

⇥
3
4

⇤
+ 19 [1] + 16

⇥
5
4

⇤
+ 10

⇥
3
2

⇤
+ 4

⇥
7
4

⇤
+ 1 [2]

3 5 1
⇥
�

1
5

⇤
+ 4 [0] + 10

⇥
1
5

⇤
+ 20

⇥
2
5

⇤
+ 31

⇥
3
5

⇤
+ 40

⇥
4
5

⇤
+ 44 [1]

+40
⇥
6
5

⇤
+ 31

⇥
7
5

⇤
+ 20

⇥
8
5

⇤
+ 10

⇥
9
5

⇤
+ 4 [2] + 1

⇥
11
5

⇤

3 6 1
⇥
�

1
3

⇤
+ 4

⇥
�

1
6

⇤
+ 10 [0] + 20

⇥
1
6

⇤
+ 35

⇥
1
3

⇤
+ 52

⇥
1
2

⇤
+ 68

⇥
2
3

⇤
+ 80

⇥
5
6

⇤
+ 85 [1]

+80
⇥
7
6

⇤
+ 68

⇥
4
3

⇤
+ 52

⇥
3
2

⇤
+ 35

⇥
5
3

⇤
+ 20

⇥
11
6

⇤
+ 10 [2] + 4

⇥
13
6

⇤
+ 1

⇥
7
3

⇤

3 7 1
⇥
�

3
7

⇤
+ 4

⇥
�

2
7

⇤
+ 10

⇥
�

1
7

⇤
+ 20 [0] + 35

⇥
1
7

⇤
+ 56

⇥
2
7

⇤
+ 80

⇥
3
7

⇤
+ 104

⇥
4
7

⇤

+125
⇥
5
7

⇤
+ 140

⇥
6
7

⇤
+ 146 [1] + 140

⇥
8
7

⇤
+ 125

⇥
9
7

⇤
+ 104

⇥
10
7

⇤
+ 80

⇥
11
7

⇤
+ 56

⇥
12
7

⇤

+35
⇥
13
7

⇤
+ 20 [2] + 10

⇥
15
7

⇤
+ 4

⇥
16
7

⇤
+ 1

⇥
17
7

⇤

4 2
⇥
3
2

⇤

4 3 1
⇥
2
3

⇤
+ 5 [1] + 10

⇥
4
3

⇤
+ 10

⇥
5
3

⇤
+ 5 [2] + 1

⇥
7
3

⇤

4 4 1
⇥
1
4

⇤
+ 5

⇥
1
2

⇤
+ 15

⇥
3
4

⇤
+ 30 [1] + 45

⇥
5
4

⇤
+ 51

⇥
3
2

⇤

+45
⇥
7
4

⇤
+ 30 [2] + 15

⇥
9
4

⇤
+ 5

⇥
5
2

⇤
+ 1

⇥
11
4

⇤
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n d �
⇤(n+1)
d

4 5 1 [0] + 5
⇥
1
5

⇤
+ 15

⇥
2
5

⇤
+ 35

⇥
3
5

⇤
+ 65

⇥
4
5

⇤
+ 101 [1] + 135

⇥
6
5

⇤
+ 155

⇥
7
5

⇤

+155
⇥
8
5

⇤
+ 135

⇥
9
5

⇤
+ 101 [2] + 65

⇥
11
5

⇤
+ 35

⇥
12
5

⇤
+ 15

⇥
13
5

⇤
+ 5

⇥
14
5

⇤
+ 1 [3]

4 6 1
⇥
�

1
6

⇤
+ 5 [0] + 15

⇥
1
6

⇤
+ 35

⇥
1
3

⇤
+ 70

⇥
1
2

⇤
+ 121

⇥
2
3

⇤
+ 185

⇥
5
6

⇤
+ 255 [1]

+320
⇥
7
6

⇤
+ 365

⇥
4
3

⇤
+ 381

⇥
3
2

⇤
+ 365

⇥
5
3

⇤
+ 320

⇥
11
6

⇤
+ 255 [2] + 185

⇥
13
6

⇤

+121
⇥
7
3

⇤
+ 70

⇥
5
2

⇤
+ 35

⇥
8
3

⇤
+ 15

⇥
17
6

⇤
+ 5 [3] + 1

⇥
19
6

⇤

4 7 1
⇥
�

2
7

⇤
+ 5

⇥
�

1
7

⇤
+ 15 [0] + 35

⇥
1
7

⇤
+ 70

⇥
2
7

⇤
+ 126

⇥
3
7

⇤
+ 205

⇥
4
7

⇤

+305
⇥
5
7

⇤
+ 420

⇥
6
7

⇤
+ 540 [1] + 651

⇥
8
7

⇤
+ 735

⇥
9
7

⇤
+ 780

⇥
10
7

⇤
+ 780

⇥
11
7

⇤

+735
⇥
12
7

⇤
+ 651

⇥
13
7

⇤
+ 540 [2] + 420

⇥
15
7

⇤
+ 305

⇥
16
7

⇤
+ 205

⇥
17
7

⇤
+ 126

⇥
18
7

⇤

+70
⇥
19
7

⇤
+ 35

⇥
20
7

⇤
+ 15 [3] + 5

⇥
22
7

⇤
+ 1

⇥
23
7

⇤

5 2 1 [2]

5 3 1 [1] + 6
⇥
4
3

⇤
+ 15

⇥
5
3

⇤
+ 20 [2] + 15

⇥
7
3

⇤
+ 6

⇥
8
3

⇤
+ 1 [3]

5 4 1
⇥
1
2
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1989.

[4] Joseph Steenbrink. Intersection form for quasi-homogeneous singularities. Compo-

sitio Mathematica, 34(2):211–223, 1977.

[5] Singular.

[6] Steenbrink J. H. M. Semicontinuity of the singularity spectrum. Inventiones math-

ematicae, 79:557–565, 1985.

[7] Saito M. On steenbrink’s conjecture. Mathematische Annalen, 289:703–716, 1991.

84



[8] Varchenko A. Semicontinuity of the spectrum and an upper bound for the number of

singular points of the projective hypersurface. Dokl. Akad. Nauk SSR, 270(6):1294–

1297, 1983.

[9] van Straten D. The spectrum of hypersurface singularities. arXiv: Algebraic Geom-

etry, 2020.

[10] Matt Kerr and Radu Laza. Hodge theory of degenerations, (ii): vanishing cohomol-

ogy and geometric applications. arXiv: Algebraic Geometry, 2020.

[11] Arapura Donu. Algebraic Geometry over the Complex Numbers. Universitext.

Springer, Boston, MA, 1 edition, 2012.

[12] Steenbrink J.H.M. Peters C.A.M. Mixed Hodge Structures. Ergebnisse der Mathe-

matik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.

Springer, Berlin, Heidelberg, 1 edition, 2008.

[13] Matt Kerr, Radu Laza, and Morihiko Saito. Hodge theory of degenerations, (i):

consequences of the decomposition theorem. Selecta Mathematica, 27:1–48, 2021.

[14] Milnor J. Singular points of complex hypersurfaces, volume 61 of Ann. Math. Studies.

Princeton Univ. Press, 1968.

[15] Daniel Allcock. The moduli space of cubic threefolds. Journal of Algebraic Geometry,

12:201–223, 2003.

[16] G. Andrews. Euler’s ’exemplum memorabile inductionis fallacis’ and q-trinomial

coe�cients. J. Amer. Math. Soc., 3:653–669, 1990.

85


	Bounding Projective Hypersurface Singularities
	Recommended Citation

	Acknowledgments
	ABSTRACT OF THE DISSERTATION
	Background
	Monodromy
	Horizontal and Vertical Monodromy
	Spectra of Hypersurface Singularities
	Preliminaries
	Definition of the Spectrum

	Spectra of Quasihomogeneous Isolated Singularities

	Bounding Projective Hypersurface Singularities
	Introduction
	A Formula for Hodge Numbers of Smooth Projective Hypersurfaces
	The Vanishing Cycle Sequence Method
	Varchenko's Bound
	Conical Bounding Method for Pham-Brieskorn
	Eigenvalue Bounding Method
	A generalization of the conical bound
	Some more user-friendly formulas

	A Purely Combinatorial Interpretation of the Conjecture
	Spectrums Viewed as Combinatorial Objects
	Another Purely Combinatorial Way to Determine d*n
	The Conjecture

	Appendix
	References

