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While the integration of next-generation sequencing and bioinformatics into cancer research has 

been immeasurably useful for advancing the field, there are still many gaps in understanding the 

genomic landscape of cancer due to the complexity of cancer development and evolution. 

Likewise, there are still many challenges for identifying and applying effective therapeutics for 

cancer treatment. Thus, there remains a need to continue characterizing the genomic landscape of 

cancer, to explore the evolution of cancer, and to understand how tumors respond to treatment. 

The projects described in this dissertation cover several applications of next-generation 

sequencing, bioinformatic analysis, and database resources for cancer research and precision 

oncology. The first project described involves the use of single-cell RNA sequencing, along with 

whole genome and whole exome sequencing, to characterize the genomics of a mouse model of 

bladder cancer and explore mechanisms of response to immune checkpoint blockade treatment. 

Differential expression and gene set enrichment analysis performed on multiple immune and 



x 

stromal cell types within the tumor microenvironment revealed that IFN-g response in 

endothelial cells was upregulated in response to treatment, suggesting that IFN-g response in 

endothelial cells may play a crucial role in treatment response. Functional analysis confirmed 

that knocking out IFNgR1 in endothelial cells negated the treatment response observed in 

IFNgR1-intact mice, further indicating that IFN-g response in endothelial cells is a key mediator 

of effective treatment response. The second project described focuses on the use of whole 

genome sequencing to explore the landscape of copy number variation in over 250 pediatric 

brain tumors across four diagnosis groups (ATRT, Ependymoma, High-Grade Glioma, and 

Medulloblastoma). This analysis revealed that copy number alterations within pediatric brain 

tumors were quite common and could be extensive, particularly in Ependymoma, High-Grade 

Glioma, and Medulloblastoma. Exploration of the relationship between copy number variant 

(CNV) burden and overall survival suggested that CNV burden may have prognostic value 

within specific diagnosis groups. Likewise, analysis of the relationship between recurrently 

altered genomic regions and overall survival indicated that particular recurrent alterations within 

certain diagnosis groups could be significantly correlated with changes in overall survival. 

Lastly, the third project described covers updates to the Drug-Gene Interaction database (DGIdb, 

dgidb.org) implemented in the DGIdb 4.0 release. This resource allows researchers to explore 

drugs, genes, and known or predicted drug-gene interactions gathered from multiple sources in a 

single, harmonized database. The updates presented here (DGIdb 4.0) include the addition of 

several new sources, integration with crowdsource efforts, and improvements to the 

normalization and grouping of interactions. Collectively, this dissertation describes the use of 

next-generation sequencing, bioinformatic analysis approaches, and development of public 
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database resources for cancer research that have improved the understanding and treatment of 

cancer.



1 

Chapter 1: Introduction 

1.1 Next-generation sequencing and cancer research 

Cancer is a complex disease that encompasses numerous different cancer types and is one of the 

leading causes of death worldwide (Bray et al., 2021). As of 2020, there were an estimated 19.3 

million new cancer cases and 10 million cancer-related deaths per year worldwide (Sung et al., 

2021). While many of the hallmark functional capabilities that cells acquire to drive development 

and proliferation of cancer cells have been defined (e.g. avoiding immune destruction, resisting 

cell death, and activating invasion and metastasis), the specific mechanisms by which these 

functions are acquired can vary greatly across, and within, cancer types (Hanahan, 2022).  

The classic model of cancer development involves a multistep process by which somatic 

mutations (e.g. single nucleotide variants, insertions, deletions, translocations) and/or epigenetic 

changes (e.g. DNA methylation, histone modifications) accrue over time as a result of 

environmental stressors and improperly repaired DNA damage (Diori Karidio & Sanlier, 2021; 

Miles & Tadi, 2023). Understanding the exact combination of somatic events that leads to the 

initiation and progression of cancer presents a considerable challenge in understanding cancer 

biology and developing effective therapies. 

 Traditional cancer treatments typically involve surgical resection (for solid tumors) and 

the use of chemotherapy and/or radiotherapy, which generally function by inducing DNA 

damage that halts cell growth and division, eventually leading to cell death, through exposure to 

radiation or specific classes of drugs (e.g. alkylating agents) (Liu et al., 2021; Tilsed et al., 2022). 

While these therapies have contributed greatly to improving survival and are still widely used, 

these therapies (particularly chemotherapy) also cause damage to normal cells due to their non-
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selective mechanisms of action and are associated with severe, sometimes life-threatening, side 

effects (Min & Lee, 2022; Schirrmacher, 2019).  

The drawbacks associated with these therapies have led to an interest in discovering and 

developing targeted therapy methods which can more selectively target cancer cells and reduce 

harm to normal cells. These therapies can include molecular agents (e.g. small molecule 

inhibitors), hormonal agents (e.g. estrogen receptor blockers), and immunotherapies (e.g. 

immune checkpoint blockade inhibitors or personalized neoantigen vaccines). However, for 

these targeted therapies to be utilized effectively, the cancer must harbor the appropriate targets 

(e.g. specific mutations or receptors) (Min & Lee, 2022). This has led to the rise of precision 

oncology, which involves using genomic and transcriptomic profiling of a patient’s cancer to 

detect targetable mutations (or other features) and then developing a personalized treatment plan 

for the patient based on these profiles (Tsimberidou et al., 2020). One of the driving forces 

behind many of the recent breakthroughs in the understanding of cancer biology and the 

discovery of therapeutic targets has been the use of next-generation sequencing for profiling the 

genomic and transcriptomic landscape of cancer.  

 

1.1.1 Generating next-generation sequencing data 

Next-generation sequencing (NGS) is often defined as massively parallel sequencing that allows 

millions of DNA (or RNA) fragments to be sequenced at the same time (Satam et al., 2023). 

More generally, NGS can be defined as post-Sanger sequencing technologies (Datto & 

Lundblad, 2016). These technologies are often split into different generations based on their 

short- or long-read capabilities. Short-read technologies, i.e. technologies that capture ~50 to 

~800 bp reads, are often called second-generation technologies, while long-read technologies, 
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i.e. technologies that can capture read lengths up to 10,000 bp or more, are often considered to be 

third-generation technologies (Hu et al., 2021). Many NGS technologies can also be broadly 

separated into DNA sequencing (e.g. bulk whole genome or whole exome) and RNA sequencing 

(e.g. bulk mRNA) technologies. The basic steps for generating data from any NGS technology 

always include nucleic acid library preparation and sequencing. 

Library preparation for NGS typically starts with a fragmentation step. During the 

fragmentation step, DNA or RNA is either physically fragmented, e.g. through sonication, or 

enzymatically fragmented, e.g. via digestion by DNase I (Head et al., 2014). Generally, the 

method and target size for fragmentation are determined based on the NGS technology being 

used for sequencing (Hess et al., 2020). For RNA sequencing, additional steps are included after 

fragmentation to capture the target RNA, e.g. to remove rRNA and capture mRNA, and reverse 

transcribe the RNA fragments into cDNA fragments (Hu et al., 2021). Once a sample has been 

fragmented and size selected, adapter sequences are then ligated to the 3’ and 5’ ends of the 

fragments. These adapters contain known sequences that are used to capture the fragments for 

amplification and sequencing (Datto & Lundblad, 2016).  

After fragmentation and adapter ligation, many NGS technologies have an amplification 

step, typically using a polymerase chain reaction (PCR) method. This PCR amplification step is 

used to ensure that there are enough input fragments to be reliably detected and sequenced (Hess 

et al., 2020). When sequencing is performed, it can be either paired-end or single-end 

sequencing. In paired-end sequencing, the fragments are sequenced from both the 3’ and 5’ ends, 

which typically allows improved sequencing accuracy compared to single-end sequencing 

(Pervez et al., 2022).  
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1.1.2 Aligning NGS data 

Once raw sequencing reads have been generated, the next step is generally to align reads to a 

reference genome, such as GRCh38 for humans or GRCm39 for mice. The goal of most common 

alignment algorithms (e.g. BWA-Mem or Bowtie) is to align reads with a balance of speed and 

accuracy (H. Ye et al., 2015). For example, BWA-Mem starts by utilizing a Burrows-Wheeler 

Transform (a commonly used method) to index and compress the reference genome, which 

allows more efficient searching of the genome during sequence alignment and reduces the 

memory requirements for alignment (H. Li & Durbin, 2009). For alignment, BWA-Mem uses a 

maximal exact match method to attempt to produce accurate alignments. This method involves 

looking for the longest possible substring in a read that matches a sequence of the reference 

genome exactly and then using the Smith-Waterman algorithm to extend the alignment with 

affine gap penalties (bwa.1). Some regions of the genome, such as regions containing repeat 

nucleotide sequences, are difficult to accurately align reads to, particularly when using short-read 

sequencing. The accuracy of alignments is also affected by the limitations of the reference 

genome itself. For example, GRCh38 contains millions of bases that are unresolved, represented 

by N’s, and numerous regions that are unplaced, represented separately from the main 

chromosomes (Aganezov et al., 2022).  

While improvements in sequencing technologies, the use of paired-end sequencing, and 

targeting a higher sequencing depth can help improve the overall accuracy of alignments, the 

caveats listed above should be considered when interpreting sequencing and alignment data for 

downstream analysis. Typically, before beginning downstream analysis, aligned reads also go 

through additional processing to further improve the quality and accuracy of the final alignment 

data. These steps can include marking reads that appear to be duplicate reads introduced during 
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PCR amplification and recalibrating the base quality scores (i.e. the scores which reflect the 

confidence that each base was called correctly) to account for technical biases that can occur 

during preparation or sequencing of samples (Zverinova & Guryev, 2022). 

 

1.1.3 Variant calling with NGS data  

The next step in the analysis of next-generation sequencing data is usually to perform variant 

calling. In the context of cancer informatics, this ideally will involve comparison of a tumor 

sample and a matched normal sample. Normal samples can be used to identify inherited germline 

variants, such as single nucleotide polymorphisms (SNPs), small insertions and deletions 

(indels), and other variants that are expected to be found in all cells and are not unique to tumor 

cells. Tumor samples can be used to identify somatic variants, such as single nucleotide variants 

(SNVs), indels, copy number variants (CNVs), structural variants (SVs), and other genomic 

rearrangement events that are acquired specifically in tumor cells. While cancer is more 

commonly thought to be driven by acquired somatic mutations, there are examples of heritable 

cancer syndromes that are linked to germline mutations, such as BRCA1 and BRCA2 mutations, 

which can greatly increase a person’s risk of developing cancer (Petrucelli et al., 1998).  

The appropriate tools to use for calling variants depend on whether you are calling 

germline or somatic variants and what variant type you are trying to identify. For example, 

GATK’s HaplotypeCaller is specifically designed for detection of germline SNPs and indels, 

while Mutect2 is designed for calling somatic SNVs and indels (Benjamin et al., 2019; Poplin et 

al., 2018). As different variant callers can produce different results, the best practice for calling a 

high-quality set of SNVs and indels generally includes running multiple variant callers (such as 

Mutect2, Varscan, and Strelka2) and identifying the variants called by multiple callers (Z. Chen 
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et al., 2020). Separate tools are used for calling larger variants, including copy number variants, 

e.g. CNVkit, and structural variants, e.g. Manta (X. Chen et al., 2016; Talevich et al., 2016). 

Once variant calling results have been generated, manual review is often done to verify the 

quality and accuracy of variant calls (Barnell et al., 2019).  

 

1.1.4 Large-scale NGS databases for cancer research 

The rise of next-generation sequencing has allowed great improvement in understanding the 

mutational landscape of cancer (e.g. in the discovery of driver mutations or in the molecular 

subtyping of cancer types) and in the adoption of precision oncology approaches for diagnosing 

and treating cancer (e.g. in the use of targeted treatments based on the specific alterations found 

in a tumor) (Avila & Meric-Bernstam, 2019; Nones & Patch, 2020). While initial studies often 

focused on sequencing samples from individual patients, the success of these individual studies 

gave rise to large-scale projects that aimed to sequence and analyze genomic and transcriptomic 

data from thousands of samples across numerous cancer types (Mardis, 2019). The Cancer 

Genome Atlas (TCGA) is perhaps the most notable example of these efforts, generating multi-

omic pan-cancer and single-cancer datasets of over 20,000 cancer samples across more than 30 

cancer types (Cancer Genome Atlas Research Network et al., 2013). In addition to reporting their 

findings, these large-scale sequencing and analysis projects often make their omics data publicly 

available (or available upon request), so the research community can leverage these databases to 

explore their own projects in cancer research.  
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1.1.5 Survival analysis in cancer research 

Generically, survival analysis refers to methods of analysis used to assess the time until an event 

of interest occurs (i.e. the survival time). In particular, survival analysis is used for studies in 

which only some individuals have experienced the event of interest at the conclusion of the 

study. This means the survival time for the individuals who did not experience the event of 

interest is unknown. This is referred to as censoring. Censoring can also include patients who 

dropped out of a study before its conclusion, but were still alive at the time they dropped out 

(Clark et al., 2003). In the context of cancer research, the events can include time to death (i.e. 

overall survival) or time to recurrence or relapse (i.e. disease-free or event-free survival). 

Survival analysis is often used to compare event-free or overall survival between treatment 

groups (e.g. untreated patients versus patients that received a specific treatment) or groups of 

patients with or without certain disease characteristics (e.g. specific mutations or disease 

subtypes). Two of the most commonly used survival analysis methods are Kaplan-Meier survival 

estimates and the Cox proportional hazards model. 

 Kaplan-Meier survival probability is estimated based on both censored and uncensored 

survival times and relies on the assumption that each event occurs independently of all other 

events. Because of this independence of events, the cumulative probability of being alive at a 

given time point can be calculated by multiplying the probabilities of being alive at each 

previous time point. For each individual time point, the survival probability can be calculated by 

taking the number of subjects still alive (and still enrolled in the study) at the end of the time 

point and dividing it by the number alive (and enrolled) at the beginning of the time point (Goel 

et al., 2010; E. L. Kaplan & Meier, 1958). Kaplan-Meier curves are typically used to visualize 

the survival probability over time and estimate metrics such as median survival. 
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 The Cox proportional hazards model is a regression model that can be used to explore the 

relationship between survival and one or more variables. The Cox model is often favored for 

multivariate analysis, since it allows the potential impact of each individual variable in the model 

to be assessed in the context of all the other variables included in the model (Bewick et al., 

2004). Functions used to fit Cox proportional hazards regression models (e.g. the coxph function 

in R) output regression coefficients for each variable, p-values for each variable (which indicate 

whether the variable is significantly associated with changes in survival), and hazard ratios (the 

exponential of the corresponding coefficient) for each variable. For categorical variables, the 

hazard ratio represents the change in the probability of experiencing an event (e.g. death) at a 

specific time in a given group versus the baseline group at that same time (Deo et al., 2021). For 

continuous variables, the hazard ratio represents the change in the probability of experiencing an 

event given a unit of increase (or decrease) in the continuous variable (Abd ElHafeez et al., 

2021). Hazard ratios greater than 1 indicate that the probability of an event increases for a given 

group or given unit change (even accounting for any other variables in the model), while hazard 

ratios less than 1 indicate the probability of an event decreases for a given group or given unit 

change (again, even accounting for any other variables in the model). Chapter 3 will discuss the 

use of whole genome sequencing (WGS) data to characterize the landscape of copy number 

alteration in pediatric brain tumors and the use of survival analysis methods to evaluate the 

potential prognostic value of copy number alteration.  

 

1.2 Single-cell RNA sequencing and cancer research 

In addition to bulk next-generation sequencing (NGS), such as whole genome sequencing or 

targeted RNA sequencing, NGS also encompasses single-cell sequencing methods, such as 
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single-cell RNA sequencing. While bulk RNA sequencing methods can provide a picture of the 

global average gene expression across a sample containing hundreds of thousands of cells and a 

mixture of cell types, bulk RNA sequencing can obscure signals from rarer cell types within the 

sample (X. Li & Wang, 2021). In contrast, single-cell RNA sequencing (scRNA-seq) can 

distinguish individual cells and provide gene expression profiles for each of those individual 

cells which allows identification of the various cell types, including rare cell types, present 

within a sample. With regard to cancer research, scRNA-seq can be particularly useful for 

characterizing heterogeneity within a tumor or identifying signals from different populations of 

immune or stromal cells within the tumor microenvironment (Huang et al., 2023). Nevertheless, 

scRNA-seq has several limitations. In particular, scRNA-seq data can be quite sparse (typically 

capturing at most a few thousand genes per cell), meaning the complete expression profiles of 

cells may not be captured (X. Li & Wang, 2021). This sparsity can also inflate the number of 

genes with zero expression and make it difficult to distinguish between true biological lack of 

expression and lack of detection due to technical limitations (Kharchenko, 2021). 

 

1.2.1 Generating scRNA-seq data 

Currently, one of the most commonly used high-throughput methods for generating scRNA-seq 

data is droplet-based microfluidics (e.g. Drop-Seq or 10x Genomics). For example, the 10x 

Genomics sequencing platform relies on a technology called GEM (Gel bead in EMulsion). In 

addition to the adapters and oligo dT primers used to capture mRNAs and initiate reverse 

transcription, these beads also contain barcode sequences and unique molecular identifier (UMI) 

sequences (Zheng et al., 2017). Barcodes serve to identify individual cells, i.e. all transcripts 

from the same cell will have the same barcode, while UMIs serve to identify individual 
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transcripts within a cell. Within a channel on a microfluidics plate, individual beads are 

combined with individual cells (from a single-cell suspension) in oil droplets, where the process 

of reverse transcription takes place to produce cDNA.  

Once this process is completed, the cDNA from individual cells is pooled into one 

sample, which then undergoes library preparation, PCR amplification, sequencing, and 

alignment, similar to the preparation and alignment discussed for bulk DNA and RNA samples 

(Zheng et al., 2017). For the 10x Genomics workflow, reads are then aligned to a reference 

genome using STAR, an alignment tool designed specifically for aligning RNA sequencing data 

(Dobin et al., 2013). This workflow also includes steps to correct for sequencing errors in 

barcode and UMI sequences, which allows the cells and transcripts corresponding to the 

corrected barcodes and UMIs to be included in downstream analysis. The final output for the 

pipeline is a gene-barcode matrix. This matrix includes all valid barcodes (i.e. barcodes 

corresponding to cells) and unique UMI counts (i.e. UMI counts excluding PCR duplicates) for 

each gene in each cell (Zheng et al., 2017). This gene-barcode matrix is the input used for most 

downstream analysis of scRNA-seq.  

 

1.2.2 Preparing scRNA-seq data for analysis 

Before beginning analysis of scRNA-seq data, several pre-processing steps are usually 

performed, including filtering low-quality cells, detecting and removing doublets (or multiplets), 

and correcting for ambient RNA contamination. The two main metrics often used to filter low-

quality cells are low feature count (typically gene count) per cell, which can indicate low 

underlying quality of the cell itself or technical issues sequencing the cell, and high percentage of 
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UMIs mapping to mitochondrial genes per cell, which can indicate a dying cell (Heumos et al., 

2023).  

Doublets or multiplets refer to droplets that have captured more than one cell, making it 

appear as if the transcripts from multiple cells are originating from one cell. When multiple cells 

of the same cell type are captured, homotypic multiplets are formed. Homotypic multiplets are 

typically more difficult to detect. When multiple cells of different cell types are captured, 

heterotypic multiplets are formed. Heterotypic multiplets are generally easier to detect and what 

most tools for detection focus on identifying (Xi & Li, 2021). Tools (e.g. DoubletFinder) that 

create artificial doublets from the user’s input dataset and then identify doublets by comparing 

the distance between the expression profiles of artificial doublets and the expression profiles of 

each cell in the input dataset generally perform best at accurately detecting doublets (McGinnis 

et al., 2019; Xi & Li, 2021). 

Ambient RNA refers to extracellular RNA contamination in a single cell suspension that 

likely originates from burst cells, such as those that have undergone apoptosis. Ambient RNA 

can be captured in a droplet along with the RNA from an intact cell and be barcoded as if it 

originates from that intact cell. When this ambient RNA is captured, it can artificially inflate the 

UMI counts for the gene expression profile of the actual cell or make it appear as if genes which 

are not truly expressed in the cell are being expressed (S. Yang et al., 2020). Several tools have 

been developed to identify and correct for ambient RNA expression in scRNA-seq data. These 

tools typically either quantify ambient RNA contamination on a global basis for an entire sample 

(e.g. SoupX) or on a per cell basis for each cell in a sample (e.g. DecontX) (S. Yang et al., 2020; 

Young & Behjati, 2020). 
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 After cells have been filtered, the final preprocessing step before beginning any analysis 

is typically to normalize and scale the raw UMI counts from the gene-barcode matrix for the 

remaining cells. For example, the default method used by Seurat (one of the most commonly 

used tools for scRNA-seq analysis) normalizes UMI counts for each gene within a cell by the 

total UMI count for that cell, scales the counts by a factor of 10,000, and then log-transforms that 

value. To scale the data across cells, Seurat shifts the expression of each gene such that the mean 

expression across cells is 0 and the variance across cells is 1 (Stuart et al., 2019). Once these 

preprocessing steps are completed, the scRNA-seq dataset can be used for downstream analysis. 

 

1.2.3 Clustering and visualizing scRNA-seq data 

The first steps for analysis of scRNA-seq data usually involve linear dimensionality reduction, 

clustering, and visualization of clustering using non-linear dimensionality reduction. One 

common method used for linear dimensionality reduction is principal component analysis (PCA), 

which is used to identify highly variable sets of genes (i.e. the principal components) across the 

dataset. Ideally, the top principal components identified will serve as a fairly comprehensive 

compression of the dataset. The number of principal components to use for further processing 

and analysis of the dataset can be chosen based on the amount of variance within the dataset 

explained by each component (Satija et al., 2015; Shalek et al., 2013). For example, if the first 

ten principal components capture the majority of variance in the dataset, then principal 

components one through ten can be used for downstream analysis.  

The principal components chosen can then be used to construct a k-nearest neighbors 

(KNN) graph. In the KNN graph, edges are drawn between cells with similar expression profiles 

based on their Euclidean distance and weights for these edges are calculated based on the Jaccard 
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similarity (a measure of shared overlap in local neighbors) between the cells (Levine et al., 

2015). Clusters are identified from this graph using modularity optimization methods like the 

Louvain algorithm. Modularity refers to the measure of the quality of the division of a network 

(or graph) into communities (or clusters) (Newman, 2006). The Louvain algorithm starts with 

placing each cell in its own cluster and then moves each cell into shared clusters based on the 

moves that increase the quality measure the most. These clusters are then combined to make an 

aggregated graph. The clusters in this aggregated graph are then moved to generate the highest 

quality measure again. These steps are repeated iteratively until the quality can no longer be 

increased and the final clustering is produced (Traag et al., 2019). 

Next, once clustering has been generated, clusters are often visualized in 2D using non-

linear dimensionality reduction methods like t-distributed stochastic neighbor embeddings 

(tSNEs) or uniform manifold approximation and projections (UMAPs) (Clarke et al., 2021). 

tSNE projections generally preserve the local relationships between similar cells, meaning that 

tSNEs can be useful for visualizing distinct groups of cells, but are not good for interpreting the 

relationships between different clusters. In contrast, UMAPs are generally considered to be better 

for visualizing the global relationships between clusters of cells (Clarke et al., 2021). However, 

while these projections may reveal some broad characteristics of the relationships within and 

across clusters of cells, these projections should not be relied on for interpretation of the 

underlying biology of a dataset as they are only 2D representations of extremely complex 

datasets. 
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1.2.4 Analyzing scRNA-seq data 

Another common initial step for analysis of scRNA-seq data is to assign cell types to each 

individual cell. While this can be done manually based on known marker expression (e.g. using 

CD79A expression to distinguish B cells), many tools exist that automate assigning cell types by 

leveraging existing datasets that contain expression profiles for annotated cell types (Pasquini et 

al., 2021). One commonly used tool for automated cell typing is SingleR. SingleR assigns cell 

type labels based on the Spearman correlation between the expression profiles of individual cells 

in a dataset and reference expression profiles of cell types sequenced using methods such as 

microarray or RNA-seq (Aran et al., 2019). In addition to allowing the user to specify their own 

reference dataset, SingleR includes several built-in, well-curated reference datasets for both 

human and mouse cell typing. For example, built-in reference data from the Immunological 

Genome Project (ImmGen) can be used to annotate mouse cell types in SingleR. The ImmGen 

dataset contains gene expression profiles for hundreds of immune cell types, as well as stromal 

cell types, characterized using a combination of Affymetrix arrays, ultra-low-input RNA-seq, 

and scRNA-seq (Heng et al., 2008; Immunological Genome Project, 2020). Once cell types have 

been assigned to each cell, there are many types of downstream analysis that can be performed 

within each cell type population (in addition to being performed across the entire dataset).  

Some of the next steps for analysis of scRNA-seq data often include identification of 

mutations within cells (particularly in the context of cancer research), differential expression 

analysis, and gene set enrichment analysis (Conesa et al., 2016; Petti et al., 2019; Wang et al., 

2022). Methods for identifying variants within cells can include methods which leverage sets of 

known variants called using bulk sequencing to look for evidence of variant-supporting reads 

within scRNA-seq data at the known variant positions and methods which attempt to call 
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variants from scRNA-seq data itself. VarTrix is an example of a tool which uses known SNV 

and indel calls to look for evidence of SNVs and indels in single cell sequencing data generated 

using 10x Genomics platforms. The input required for VarTrix includes a VCF of pre-called 

variants, a bam file of reads captured from single cell sequencing, and the cell barcodes from the 

single cell sequencing. VarTrix then evaluates reads mapping to the pre-called variant positions 

and outputs matrices containing information on each variant position in each cell. These matrices 

can be in a binary format, indicating whether a variant was detected and if more reads supported 

the reference or alternate allele, can contain read counts for the reference and alternate alleles, or 

can report a variant allele fraction (Vartrix: Single-Cell Genotyping Tool). The results from 

VarTrix can then be used to explore variant-positive cells and cell populations within a single 

cell dataset. In the context of cancer research, detection of variants within cells can be useful for 

confidently identifying tumor cell populations and for characterizing subclonal tumor 

populations.  

Differential expression analysis is one of the most common analyses performed for 

scRNA-seq data. Approaches used for differential expression analysis are often grouped as either 

pseudo bulk methods that use existing bulk RNA-seq methods (e.g. DESeq2 or edgeR) with 

aggregated expression values from populations of single cells or as single-cell methods which 

use expression values of individual cells (e.g. the Wilcoxon rank-sum test) (Soneson & 

Robinson, 2018; Squair et al., 2021). The Wilcoxon rank-sum (Wilcox) test is one of the most 

commonly used differential expression testing methods for scRNA-seq and is the default method 

used by Seurat (Squair et al., 2021). The Wilcox test is a non-parametric test which (in the 

context of single cell differential expression testing) tests whether the mean expression of a gene 

across two populations of cells is significantly different, comparing the rank of the expression 
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values from each population of cells (Das et al., 2021). For each gene tested, Seurat’s default 

differential expression method (the FindMarkers function) reports a p-value indicating whether 

gene expression was significantly different (per the Wilcox test) between two cell populations of 

interest, a log2 fold change of the average expression between the two populations, the percent 

of cells expressing the given gene in each population, and an adjusted p-value, which is corrected 

for multiple testing using Bonferroni correction. These differential expression results can then be 

used to explore how specific cell populations are changing in response to perturbations such as 

treatment methods or cellular stress. 

After differential expression results have been generated, another common step is to 

perform gene set enrichment analysis. Gene set enrichment analysis (GSEA) can be used to 

assess whether differentially expressed genes are significantly enriched for up- or down-

regulated genes that are functionally or biologically related (A. Subramanian et al., 2005). To test 

for enrichment, differentially expressed genes are compared to published gene sets that have 

been grouped based on common functionality and/or biology. One commonly used source for 

these test gene sets is the Molecular Signatures Database (MSigDB), which offers access to 

thousands of well-curated, well-annotated gene sets generated specifically with gene set 

enrichment analysis in mind (Liberzon et al., 2011, 2015). While gene set enrichment analysis 

was originally developed for analysis of microarray data, it is now commonly used to analyze 

RNA-seq data.  

For scRNA-seq data, a pre-ranked GSEA method is typically used. This method involves 

providing a list of genes that were analyzed for differential expression, ranked by a single metric 

reflecting the degree of differential expression (often the log2 fold change). The ranked gene list 

is then tested for either positive enrichment, (e.g. enrichment of upregulated genes) or negative 
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enrichment (e.g. enrichment of downregulated genes) against a specified category of gene sets 

(e.g. Hallmark gene sets). For each gene set tested, an enrichment score is calculated using a 

running-sum statistic. The value for this running-sum statistic is generated by going down the 

input gene list and increasing the score when a gene in the list is found in a given gene set and 

decreasing the score when a gene in the list is not found in a given gene set. The significance of 

the enrichment score for each gene set tested is determined by using permutation testing to 

generate a null distribution of the enrichment scores and calculating the p-value of the observed 

enrichment score. A normalized enrichment score is then calculated for each gene set to adjust 

for the size of the gene set. Finally, a false discovery rate (FDR) is calculated for each 

normalized enrichment score to correct for testing multiple gene sets (A. Subramanian et al., 

2005). Significantly enriched gene sets can often provide insight into the biological and 

functional mechanisms that are being perturbed by changes in conditions (e.g. control versus 

treated tumors). Chapter 2 will discuss the use of single-cell RNA sequencing and analysis to 

characterize response to immune checkpoint blockade treatment in a mouse model of bladder 

cancer. 

 

1.3 The druggable genome 

The concept of “the druggable genome” was first coined in 2002 by Hopkins & Groom and was 

defined as the set of genes in the human genome that express proteins which can be bound by 

drug-like molecules (Hopkins & Groom, 2002). Over the years, this concept has grown to 

include both established druggable targets and predicted druggable targets. There are multiple 

methods that have been employed to attempt to predict druggability. These have included 

predicting druggability based on the known druggability of other molecules in the same families, 
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attempting to predict binding between proteins and drug-like molecules based on 3D protein 

structures, and developing predictive computational methods, such as machine learning models 

(Hajduk et al., 2005; Radoux et al., 2022; Raies et al., 2022).  

Numerous publications and sources cataloging known and predicted drug-gene 

interactions have also been released over time. While some of these sources make their 

information readily accessible, some do not. Additionally, there is often a lack of standardization 

in the way drugs, genes, and drug-gene interactions are represented across sources. To address 

these issues, the Drug-Gene Interaction database (DGIdb) was released in 2013 to provide a 

single curated resource that mines existing drug, gene, and drug-gene interaction sources and 

presents them in one publicly available database with a user-friendly interface and standardized 

data model (Griffith et al., 2013). Since its first release, DGIdb has released several updates to 

include additional sources, update existing sources, improve the user interface, and refine the 

information presented for drugs, genes, and drug-gene interactions (Cannon et al., 2023; Cotto et 

al., 2018; Freshour et al., 2021; Wagner et al., 2016). Chapter 4 will discuss updates to DGIdb 

(DGIdb 4.0) published in 2021. 
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Chapter 2: Endothelial cells are a key target 

of IFN-g during response to combined  

PD-1/CTLA-4 ICB treatment in a mouse 

model of bladder cancer  

2.1 Preamble 

The following chapter has been published as a peer reviewed manuscript with the following 

citation: 

Freshour SL, Chen THP, Fisk B, Shen H, Mosior M, Skidmore ZL, Fronick C, Bolzenius JK, 

Griffith OL, Arora VK, Griffith M. Endothelial cells are a key target of IFN-g during response to 

combined PD-1/CTLA-4 ICB treatment in a mouse model of bladder cancer. 2023. iScience. 

DOI: 10.1016/j.isci.2023.107937 

 

As an author of the published manuscript, and in compliance with the editorial policies at 

iScience, the cited publication is included in full in the following chapter. As the first author of 

this manuscript, I performed bioinformatic analysis of sequencing data, generated figures, 

assembled the manuscript for submission, and addressed reviewer responses for final 

publication. A complete list of author contributions is included within the publication (Chapter 

2.7).  
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2.2 Summary 

To explore mechanisms of response to combined PD-1/CTLA-4 immune checkpoint blockade 

(ICB) treatment in individual cell types, we generated scRNA-seq using a mouse model of 

invasive urothelial carcinoma with three conditions: untreated tumor, treated tumor, and tumor 

treated after CD4+ T cell depletion. After classifying tumor cells based on detection of somatic 

variants and assigning non-tumor cell types using SingleR, we performed differential expression 

analysis, overrepresentation analysis, and gene set enrichment analysis (GSEA) within each cell 

type. GSEA revealed that endothelial cells were enriched for upregulated IFN-g response genes 

when comparing treated cells to both untreated cells and cells treated after CD4+ T cell 

depletion. Functional analysis showed that knocking out IFNgR1 in endothelial cells inhibited 

treatment response. Together, these results indicated that IFN-g signaling in endothelial cells is a 

key mediator of ICB induced anti-tumor activity. 

 

2.3 Introduction 

Bladder cancer is a common malignancy worldwide (6th most common among men and 17th 

most common among women) and accounts for over 500,000 new cancer diagnoses and 200,000 

cancer-related deaths per year (Woods, 2022). While over 95% of bladder cancer cases are 

classified as urothelial carcinomas, they encompass a range of molecular subtypes, which are 

primarily distinguished by differential expression of differentiation markers and may predict for 

response to specific treatments (Compérat et al., 2022; Robertson et al., 2017). Initial diagnosis 

stages can be broadly grouped into non-muscle invasive (NMIBC), muscle invasive (MIBC), and 

metastatic disease. About 75% of cases are initially diagnosed as NMIBC, 20% as MIBC, and 
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the remaining 5% as metastatic. Depending on the initial degree of invasiveness and metastasis, 

5-year survival rates can range from 96% to 6% (Survival Rates for Bladder Cancer). 

Standard treatment recommendations likewise depend on the initial degree of 

invasiveness as well as the risk stratification of recurrence and progression. NMIBC is typically 

treated with a transurethral resection followed by either chemotherapy, Bacillus Calmette-Guerin 

immunotherapy, or radical cystectomy in high-risk cases (Compérat et al., 2022). MIBC is 

typically treated with neoadjuvant chemotherapy followed by radical cystectomy and, in some 

cases, adjuvant immunotherapy. Previous research has suggested that response to treatment may 

differ by subtype. For example, basal/squamous bladder cancers may have better response to 

neoadjuvant chemotherapy than luminal-infiltrated tumors (Robertson et al., 2017). While 

neoadjuvant chemotherapy has historically been used most commonly, clinical trials looking at 

the use of neoadjuvant immune checkpoint blockade (ICB) treatments have shown promise as 

well (Lenis et al., 2020; Muscle-Invasive and Metastatic Bladder Cancer). 

Currently, there are several ICB treatments approved by the FDA for treatment of bladder 

cancer, all of which are either PD-1 or PD-L1 inhibitors (Lopez-Beltran et al., 2021; Rhea & 

Aragon-Ching, 2021). Initially, these treatments were approved specifically for treatment of 

advanced disease, targeting patients who were ineligible for cisplatin treatment (Suzman et al., 

2019). Over time, ICB use has become more widespread and has been applied across the range 

of bladder cancer stages from NMIBC to metastatic disease (Albisinni et al., 2021; Kartolo et al., 

2021; Lopez-Beltran et al., 2021). While ICB therapy shows great promise for treatment of 

bladder cancer, there are still many patients who do not receive benefit from ICB treatment. 

Thus, there remains a need to improve treatment methods, determine which patients will respond 
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well to treatment, understand mechanisms of response to treatment, and identify potential 

predictors of response (Lenis et al., 2020). 

Clinical trials examining the benefit of PD-1/PD-L1 inhibitors in urothelial carcinoma 

have found that high IFN-g expression is associated with treatment response, suggesting that 

IFN-g signatures could serve as a predictor of response (Sharma et al., 2017). Additionally, 

treatment response has been associated with high expression of CXCL9 and CXCL10, two IFN-g 

induced chemokines that have been associated with increased T cell infiltration in multiple tumor 

types (Kohli et al., 2022; Rosenberg et al., 2016). However, these trials did not fully explore how 

or where IFN-g may be acting to help induce or improve treatment response. Clinical trials have 

also looked at improving treatment response by combining PD-1/PD-L1 inhibitor treatments 

with CTLA-4 inhibitor treatments. These trials have shown greater response rates compared to 

PD-1/PD-L1 monotherapy (Gao et al., 2020; Roviello et al., 2021; Sharma et al., 2016; van Dijk 

et al., 2020). Nevertheless, the challenges of identifying ideal patients for treatment as well as 

identifying mechanisms and predictors of response remain. 

To study mechanisms of response to combined PD-1/CTLA-4 ICB treatment, we used a 

murine muscle-invasive urothelial carcinoma cell line generated by exposing mice to 4-

hydroxybutyl(butyl)nitrosamine (BBN), which caused them to develop areas of invasive disease. 

These tumor bearing bladders were then resected and used to propagate an organoid cell line, 

MCB6C (Sato et al., 2018). Previous analysis showed that MCB6C is responsive to ICB 

treatments and achieves the best treatment response with combined PD-1/CTLA-4 ICB 

treatment. Additionally, this previous work showed that treatment response was dependent on 

CD4+ T cells and not dependent CD8+ T cells, consistent with research showing that CD4 T 

cells may be the primary mediators of anti-tumor activity in human bladder cancer (Oh et al., 
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2020; Sato et al., 2018). Analysis of the MCB6C model also showed that ICB treatment led to an 

increase of IFN-g producing CD4+ T cells with a Th-1 like phenotype. Neutralizing IFN-g in the 

tumor negated the anti-tumor activity of combined treatment, indicating that IFN-g was a key 

mediator of response. Surprisingly, this research showed that knocking out IFNgR1 in the tumor 

cells themselves did not affect treatment response, suggesting that IFN-g was mediating 

treatment response through non-tumoral cells in the tumor microenvironment (TME) (Sato et al., 

2018). 

To better understand mechanisms of treatment response in this model, we performed 

single cell RNA sequencing (scRNA-seq) on MCB6C tumors isolated from mice under three 

conditions: untreated tumor, tumor treated with combined PD-1/CTLA-4 ICB treatment, and 

tumor treated with combined ICB treatment after CD4+ T cell depletion (Figure 2.1A). For each 

condition in each replicate, tumors from three mice were resected and pooled to generate single 

cell suspensions for 10x Genomics 5′ gene expression sequencing as well as B cell receptor 

(BCR) and T cell receptor (TCR) sequencing (Figure 2.1B, STAR Methods). This sequencing 

was performed for five biological replicates. In addition to scRNA-seq, whole genome and 

exome sequencing of the tumor cell line were performed, along with matched normal whole 

genome and exome sequencing of a tail sample (Figure 2.1C, STAR Methods). 
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Figure 2.1: Experimental design for single cell RNA and bulk DNA sequencing 

(A) Timelines for generating tumor samples for individual mice for each condition. (B) 

Workflow for generating single cell suspensions for single cell RNA sequencing for one of five 

biological replicates sequenced. For each condition in each replicate, tumors from three 
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individual mice were pooled into one suspension and used to create libraries for 10x Genomics 

5′ single cell gene expression (GEX), B cell receptor (BCR), and T cell receptor (TCR) 

sequencing. (C) Sources for normal and tumor bulk DNA sequencing. DNA was isolated from a 

normal mouse tail sample and an MCB6C tumor cell line sample for whole genome sequencing 

(WGS) and whole exome sequencing (WES). ICB = combined PD-1/CTLA-4 immune checkpoint 

blockade treatment, ICBΔT = combined PD-1/CTLA-4 immune checkpoint blockade treatment 

received after CD4+ T cell depletion, Isotype control = rat IgG2a and mouse IgG2b. 

 

2.4 Results 

2.4.1 Bulk DNA sequencing shows that the MCB6C cell line has a high 

mutation burden, normal ploidy, and a stable genome 

Bulk whole genome sequencing (WGS) of the tumor cell line generated over one billion paired 

reads, 88% of which produced high quality alignments (i.e., had a mapping score of Q20 or 

greater). Bulk WGS of the normal tail sample produced over 1.1 billion reads, with 

approximately 91% of reads having high quality alignments. Bulk whole exome sequencing 

(WES) of the tumor cell line produced over 55 million reads with over 90% of reads having high 

quality alignments, while WES of the tail sample produced over 77 million reads with over 90% 

of reads having high quality alignments (Table S1A). 

After alignment, we performed somatic variant calling with the WES data and identified 

16,449 possible somatic variants, including 16,315 single nucleotide variants (SNVs) and 134 

small insertions or deletions (indels), before filtering. These variants were then filtered using 

several metrics, including total coverage, variant allele frequency (VAF), and consensus across 

somatic variant callers (STAR Methods). 10,427 variants remained after filtering, of which 
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10,407 were SNVs and 20 were indels, showing that the MCB6C cell line has a high SNV 

burden (approximately 4.17 mutations per Mb) consistent with a mutagen induced tumor model. 

We then characterized the clonality of the cell line by examination of the VAF distribution 

(STAR Methods) (Zhang et al., 2016). This distribution appeared to be centered close to 50%, 

with a median VAF of ∼ 48.0%, and had a near-normal distribution (Figure 2.2A; Table S1B). 

However, there was a small group of low VAF (i.e., VAF of 20% or less) variants detected. Out 

of the 2,128 variants used to assess clonality based on VAF distribution, 31 variants had low 

VAF values. These variants could represent a subclone within the cell line. 
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Figure 2.2: Bulk DNA sequencing shows that the MCB6C cell line has a high mutation 

burden, normal ploidy, and a stable genome 
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(A) Distribution of variant allele frequencies (VAFs) for the set of somatic SNVs used to assess 

clonality. Only variants with 100x normal and tumor coverage, normal VAF = 0%, tumor VAF 

>5%, and no overlap of CNV regions were used. SNVs were detected using matched tumor and 

normal whole exome sequencing of the MCB6C cell line. Red line indicates overall median VAF 

(∼48.0%). (B) Visualization of copy number variants detected using matched tumor and normal 

whole genome sequencing of the MCB6C cell line. Copy number calling was performed using 

CNVkit with 100k bin size. Dots represent read count differences in bins. Solid lines represent 

segments identified by CNVkit using circular binary segmentation. The red dotted line 

corresponds to a log2 copy ratio of 0.32. Bins and segments falling above this line are classified 

as copy gains. The blue dotted line corresponds to a log2 copy ratio of −0.32. Bins and segments 

falling below this line are classified as copy losses. Three chromosomes exhibited large segments 

of copy number alteration: chr2 (copy gain of ∼86.9 Mb), chr11 (copy gain of ∼41.2 Mb), and 

chr12 (copy loss of ∼43.0 Mb). See also Tables S1B and S1D. 

 

Looking at individual somatic mutations, we confirmed three driver mutations (Kras 

G12D, Trp53 T122K, and Kdm6a H1146Y) for the MCB6C cell line, which were previously 

reported from analysis of bulk whole transcriptome sequencing (RNA-seq) (Sato et al., 2018). 

Along with these three mutations, we identified 31 additional mutations across 20 previously 

reported driver genes in human bladder cancer, including a second Trp53 mutation (a splice 

donor variant) and a second missense Kdm6a mutation (Table S1C, STAR Methods) (Martínez-

Jiménez et al., 2020). This set also included mutations in Atm (S1884T), Fat1 (two missense, one 

stop-gained mutations), Kmt2a (H1067Q), and Kmt2c (one splice region mutation), which have 

each been shown to harbor mutations in over 10% of bladder cancers, although none of the 
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specific mutations identified appear to have been previously reported in bladder cancer 

(Robertson et al., 2017). In addition to the stop-gained and splice region mutations identified in 

Atm and Kmt2c, respectively, two additional stop-gained mutations (one in Birc6 and one in 

Rnf213) and three additional splice region variants (one in Birc6, one in Brca2, and one in Sf3b1) 

were identified. Finally, a mutation in Sf3b1 (E873K), which was identified as a possible driver 

of a similar mouse urothelial carcinoma cell line, but was not previously detected in MCB6C 

using RNA-seq, was detected using WES (Sato et al., 2018). 

In addition to calling SNVs and indels, we called copy number variants using the WGS 

data (STAR Methods). These results indicated that the MCB6C cell line has a relatively stable 

genome with only a few larger regions of copy number alteration consisting of copy gains on 

chromosomes 2 and 11 and a single copy loss on chromosome 12 (Figure 2.2B; Table S1D). 

Together, these results indicated that the MCB6C cell line has high SNV burden and low CNV 

burden. Previous research has shown that metastatic urothelial carcinoma patients with high 

SNV/low CNV tumor profiles may benefit more from ICB therapy. While high SNV/low CNV 

status has been associated with greater chance of response, the utility of SNV and CNV status is 

still being evaluated as a possible predictor of treatment response in bladder cancer (Roviello et 

al., 2020). 

 

2.4.2 scRNA-seq was generated for over 64,000 cells, with over 59,000 cells 

passing filtering 

10x Genomics 5′ single cell gene expression sequencing (scRNA-seq) was performed for five 

biological replicates, with each replicate consisting of three conditions: untreated tumor, treated 

tumor, and tumor treated after CD4+ T cell depletion (Figure 2.1A). In total, fifteen samples 
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were sequenced, generating ∼8.3 billion reads across 64,049 cells (Table S2A). In addition to 

gene expression sequencing, 10x Genomics V(D)J B cell receptor (BCR) and T cell receptor 

(TCR) sequencing was also performed for all fifteen samples (Figure 2.1B; Tables S2B and 

S2C). 

Before analyzing the scRNA-seq data, we aggregated all three conditions for each 

replicate and performed basic filtering on each of the five replicates to remove cells that 

appeared to be low quality based on mitochondrial gene expression per cell, detected gene count 

per cell, and/or total UMI count per cell. Briefly, cells expressing high percentages of 

mitochondrial genes, cells with low gene counts, and cells with high UMI counts were removed 

(Table S3, STAR Methods). Ultimately, 4,708 cells across all fifteen samples were removed, 

with 59,341 cells remaining. 

 

2.4.3 scRNA-seq allows identification of lymphocyte, myeloid, and stromal 

cell populations in the tumor microenvironment 

After completing basic filtering of cells, we used SingleR with the ImmGen dataset to 

assign fine label cell types to all remaining cells from each replicate (Aran et al., 2019; Heng et 

al., 2008; Shay & Kang, 2013). We then further filtered the set of remaining cells, removing all 

cells marked as “pruned” by SingleR. “Pruned cells” are those cells that have received poor-

quality cell type assignments, potentially because of underlying poor quality of the cell itself. 

Once we removed all pruned cells, we were left with 57,818 cells total across all conditions and 

all replicates, which we aggregated into a single gene-barcode matrix for downstream analysis. 

Next, we performed manual curation of SingleR’s fine label cell type assignments to 

group fine labels of the same broad cell type and to identify subtypes within certain broad cell 
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types, e.g., to identify naive CD4 and CD8 T cells within the broader CD4 and CD8 T cell 

populations (STAR Methods). We also confirmed the general accuracy of the cell type 

assignments. First, for several cell types, we picked one reported marker for each cell type (e.g., 

Cd79a for B cells, Epcam for epithelial cells, and Col3a1 for fibroblasts) and compared the 

expression of each marker in the cell type expected to express it (based on the SingleR cell type 

assignment) versus all other cell types (Figures S1A–S1D; Table S4). These plots confirmed that 

the expected cell types generally showed more common and higher expression of their markers 

than non-expected cell types. Additionally, cells identified as expressing BCR sequences (i.e., 

cells that are likely B cells) or TCR sequences (i.e., cells that are likely T or NK cells) were 

compared to cells labeled as either B or T/NK cells, respectively, according to their gene 

expression signatures. These results showed that approximately 92.8% of cells identified as 

expressing BCR sequences were labeled as B cells by SingleR and 98.9% of cells identified as 

expressing TCR sequences were labeled as some type of T or NK cell, i.e., CD4, CD8, NK, 

NKT, Tgd, or Treg cells (Figures S1E and S1F; Table S4). 

Before beginning any additional analysis, we also filtered out lowly expressed genes. For 

a gene to pass filtering, we required the gene to be detected in two or more cells in each 

replicate, with a UMI count of at least two in each cell. After filtering genes based on these 

criteria, we were left with 11,398 genes. Finally, we generated a tSNE projection for the 

aggregated dataset and colored cells by their manually curated cell type labels (Figure 2.3; Table 

S4, STAR Methods). This tSNE projection suggested that epithelial cells formed two distinct 

clusters, indicating there may be two transcriptionally distinct populations of epithelial cells 

within the dataset (discussed extensively in the following section). 
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Figure 2.3: scRNA-seq allows identification of lymphocyte, myeloid, and stromal cell 

populations in the tumor microenvironment 

tSNE projection of the aggregated dataset containing 57,818 cells, across all replicates and 

conditions, that passed filtering and were not “pruned” by SingleR. Cells were clustered using 

PCs = 20. Cells are colored by manually curated SingleR cell types. See also Figure S1 and 

Table S4. 

 

After cell typing was completed, we also explored the BCR and TCR sequencing results. This 

analysis revealed little evidence of clonotype expansion of BCRs or TCRs across any of the 

conditions or replicates. For the TCR analysis, we excluded samples containing less than 1,500 

TCR+ cells after filtering. We found that the majority of samples with less than 1,500 cells did 

not appear to have had their naive T cell populations captured during sequencing, which could 

lead to a skewed appearance of clonal expansion among the T cell populations that were 
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captured (Figures S2A and S2B). For the remaining samples, there did not appear to be any 

dominant clonotypes detected (Figure S3A). The most commonly observed clonotype in any 

sample was present in only 41 cells and the vast majority of clonotypes were present in only one 

cell (Figure S3B). While no samples had evidence of dominant clonotypes, several samples did 

show evidence of cells with modestly expanded clonotypes (i.e., clonotypes detected in more 

than one cell) clustering together on the tSNE projection (Figure S4A). These clonotypes were 

largely found to be expressed in CD8 effector T cells, which showed evidence of co-expression 

of some exhaustion markers (Figures S4B, S5A, and S5B). For BCR analysis, most samples (11 

of 15) had less than 1,000 BCR+ cells that passed filtering (Figure S6A). For samples where 

more than 1,000 cells passed filtering, there was little evidence of clonal expansion (Figure 

S6B). 

 

2.4.4 Somatic variation can be used to identify tumor cell populations with 

high confidence 

Since we expected tumor tissue to be epithelial, we expected that the epithelial populations 

identified by SingleR would correspond to the tumor cell populations. To verify this expectation, 

we classified cells as tumor or non-tumor based on the presence or absence of somatic mutations 

as follows. 

With the 10,427 somatic variants identified from WES, we used VarTrix to detect 

supporting reads for the reference and alternate alleles at each variant position in each individual 

cell in the aggregated dataset (Figure 2.4A). To identify a high confidence set of variant-

containing cells, we required a cell to have at least two variant positions with greater than 20x 



34 

total coverage, greater than five reads supporting the alternate allele, and a VAF over 10%. 

Using these criteria, we classified 4,628 cells as somatic variant-containing cells. 

These variant-containing cells largely formed two distinct clusters on the tSNE 

projection, which heavily overlapped the two clusters identified as epithelial clusters using 

SingleR’s cell type labels (Figure 2.4B; Table S5). Since we expected the tumor tissue to be 

epithelial tissue, this extensive overlap appeared to confirm that variant-positive status could be 

used to identify tumor cells with high confidence. Additionally, we compared the overlap of 

variant-positive cells, cells that were assigned as epithelial cells by SingleR, and cells that were 

expressing Epcam, a marker of epithelial tissue. While the two variant-positive, epithelial-typed 

clusters showed high, widespread expression of Epcam as expected, there was also expression of 

Epcam detected across numerous other clusters (Figure 2.4B). These results indicated that 

variant status could be used to distinguish Epcam+ cells that are epithelial tumor cells from cells 

that appear to be Epcam+, but are not likely to be tumor cells (i.e. variant-negative, non-

epithelial labeled cells) and may have simply been contaminated by ambient Epcam RNA. 
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Figure 2.4: Somatic variation can be used to identify tumor cell populations with high 

confidence 
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(A) Workflow for detecting somatic variation in scRNA-seq data to identify variant-containing 

cells. (B) tSNE projections showing the classification of tumor cells based on variant detection, 

epithelial cell typing from SingleR, Epcam expression, and labeling of tumor subpopulations (T1 

and T2) based on clustering, respectively. See also Table S5. 

 

2.4.5 Tumor cell populations show evidence of two distinct subpopulations 

After confirming which cells and clusters corresponded to tumor cell populations, we 

investigated why tumor cells appeared to form two distinct clusters, which we labeled T1 and T2 

(Figure 2.4B). To further explore whether these populations truly represented distinct tumor cell 

populations, we separated the tumor clusters from the rest of the aggregated dataset and 

reclustered them (STAR Methods). The tSNE projection again revealed distinct clustering of 

each of the two subpopulations (Figure 2.5A). We then assigned relative differentiation scores to 

each cell using CytoTRACE (Gulati et al., 2020). We also performed differential expression 

analysis comparing the T1 subpopulation, containing all three conditions, to the T2 

subpopulation, also containing all three conditions (STAR Methods). 

The relative differentiation scores revealed that the T2 cells largely corresponded to the 

most highly differentiated cells, while the T1 cells appeared to form two groups of cells—one 

which corresponded to the least differentiated cells and one which corresponded to slightly more 

differentiated, but still relatively lowly differentiated cells (Figure 2.5A; Table S6A). As 

previous literature has established that luminal bladder cancers display characteristics of greater 

differentiation than basal bladder cancers, we next wanted to determine if these two 

subpopulations might have different basal-like and luminal-like expression patterns (Robertson 

et al., 2017). 
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Figure 2.5: Tumor cell populations show evidence of two distinct subpopulations 
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(A) tSNE projections of tumor cell populations showing subpopulation labels, differentiation 

scores (1 - CytoTRACE scores), average expression of basal bladder cancer markers, and 

average expression of luminal bladder cancer markers. Differentiation scores indicate the 

relative differentiation states of each cell within the full tumor cell population. Differentiation 

scores close to 1.00 indicate cells are relatively more differentiated. Differentiation scores close 

to 0.00 indicate cells are relatively less differentiated. Cells were clustered using PCs = 20. (B) 

Bar plot showing the normalized enrichment scores (NES) for GSEA of gene sets related to basal 

and luminal bladder and breast cancer gene expression. Bars are colored by their FDR q-value 

status. Salmon pink indicates a significant FDR q-value (<0.05). Blue indicates a non-significant 

FDR q-value (>0.05). See also Tables S6A and S6B. 

 

First, we calculated the average expression of reported basal (Cd44, Krt14, Krt5, Krt16, 

Krt6a) and luminal (Cd24a, Erbb2, Erbb3, Foxa1, Gata3, Gpx2, Krt18, Krt19, Krt7, Krt8, 

Upk1a) bladder cancer markers in each tumor cell and overlaid the values on the tSNE projection 

of the tumor populations (Figure 2.5A; Table S6A) (W. Choi et al., 2014; Guo et al., 2020). 

These results indicated that the less differentiated cells (the T1 population) had stronger and 

more widespread expression of basal markers than the more differentiated cells (the T2 

population), consistent with the expectation that basal-like bladder cancer cells would be less 

differentiated than luminal-like bladder cancer cells (Figure 2.5A). Both populations showed 

expression of luminal markers. However, the less differentiated T1 population appeared to have 

lower levels of luminal marker expression overall, suggesting that the T1 population could 

represent a population with more basal-like expression, while the T2 population could represent 

a population with more luminal-like expression. 
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Next, after generating differential expression analysis results for comparing the full basal-

like population (T1) to the full luminal-like population (T2), we performed gene set enrichment 

analysis (GSEA) using gene sets generated by comparing basal and luminal breast cancers, 

which have been shown to have highly similar expression profiles to basal and luminal bladder 

cancers (STAR Methods) (Dadhania et al., 2016). We also included two gene sets that we 

generated from reported lists of basal and luminal bladder cancer markers, respectively (W. Choi 

et al., 2014; Guo et al., 2020). These results indicated that upregulated genes in the T1 

population were significantly enriched (FDR <0.05) for basal bladder cancer markers. These 

upregulated genes were also significantly enriched for genes that were found to be upregulated in 

basal breast cancers compared to luminal breast cancers (Figure 2.5B; Table S6B). Both of these 

observations were consistent with the T1 population being more basal-like than the T2 

population. 

By contrast, genes that were downregulated in the T1 population showed enrichment of 

luminal bladder cancer markers as well as genes that were found to be downregulated in basal 

breast cancers compared to luminal breast cancers. While this enrichment was not significant at 

an FDR cutoff of 0.05, the direction of enrichment was consistent with the observation that the 

T2 population appeared to have stronger expression of luminal markers than the T1 population 

(Figure 2.5B; Table S6B). These results further indicated that there were two distinct 

subpopulations of tumor cells within the full tumor cell population, i.e., a population with more 

basal-like characteristics and a population with more luminal-like characteristics. 
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2.4.6 Overrepresentation and gene set enrichment analysis identify IFN-g 

response as a commonly perturbed gene set across immune and tumor cell 

types upon ICB treatment 

After assigning cell types and subtypes, where appropriate, to all cells, we explored how each 

individual cell type was responding to ICB treatment. To do this, we performed differential 

expression analysis comparing each possible pair of conditions within each cell type (STAR 

Methods). We then used the results of these differential expression analyses to perform 

overrepresentation analysis and GSEA. 

Overrepresentation analysis showed that the top 5 most commonly overrepresented 

hallmark gene sets across cell types and comparisons were related to immune response (Table 

S7A). The IFN-g response gene set was the second most commonly overrepresented gene set 

(Figure 2.6A). Given that prior research suggested that IFN-g within the TME may be an 

important mediator of treatment response, we chose to explore the IFN-g response gene set 

further (Sato et al., 2018). 

Since the overrepresentation analysis did not include information about the directionality 

or magnitude of overrepresentation, we generated a quantitative metric that captured both these 

aspects. Specifically, we summed the average log2 fold changes reported by Seurat for each 

detected gene in the IFN-g response gene set. With this method, a positive value indicates that 

genes from the gene set skew toward upregulation in the first condition of a given comparison in 

a given cell type, while a negative value indicates that genes skew toward downregulation. These 

sums indicated that ICB-treated endothelial cells experience upregulation of IFN-g response 

genes when compared to both untreated endothelial cells and endothelial cells treated after CD4+ 

T cell depletion (Figure 2.6B). These sums also suggested that untreated endothelial cells 
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experience upregulation of IFN-g response genes when compared to endothelial cells treated 

after CD4+ T cell depletion. Endothelial cells appeared to be the only non-tumor cell type that 

experienced upregulation across all three comparisons (Figure S7A; Table S7B). 

To explore enrichment of up- and downregulated genes more formally, we performed 

ranked GSEA, using average log2 fold changes as the ranking metric and MSigDB’s hallmark 

gene sets as the test set (STAR Methods). Similar to the results seen with the overrepresentation 

analysis, we found that the IFN-g response gene set was commonly enriched across multiple cell 

types. Furthermore, the enrichment results followed similar patterns to those seen using the “sum 

of fold changes” metric. When looking at the ICB treated condition versus both the control and 

CD4+ T cell depleted conditions, endothelial cells showed significant enrichment of upregulated 

IFN-g response genes (Figure S7B). Additionally, endothelial cells were the only cell type to 

show significant positive enrichment across all three comparisons (Figure S7B). Examination of 

the top genes contributing to enrichment in each comparison within endothelial cells indicated 

that upregulation of chemokines, such as Cxcl9 and Cxcl10, and adhesion molecules, such as 

Vcam1 and Icam1, was common across comparisons (Figure 2.6C; Tables S7C–S7E). Since 

IFN-g signaling in endothelial cells has been suggested to play multiple roles in the tumor 

immune response, but its role in ICB treatment response has not been documented, we examined 

the role of IFN-g signaling in endothelial cells further (Kammertoens et al., 2017; Ni & Lu, 

2018). 
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Figure 2.6: Overrepresentation and gene set enrichment analysis identify IFN-g response as 

a commonly perturbed gene set across immune and tumor cell types upon ICB treatment 
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(A) Heatmap showing the overrepresentation status of MSigDB’s hallmark IFN-g response gene 

set across each pairwise comparison of conditions in each cell type. A green square indicates 

IFN-g response genes were significantly overrepresented for the given comparison and cell type. 

A gray square indicates IFN-g response genes were not significantly overrepresented for the 

given comparison and cell type. (B) Sum of fold changes for hallmark IFN-g response genes for 

each pairwise comparison of conditions in endothelial cells. Positive values indicate that IFN-g 

response genes skew toward upregulation in the first condition of a given comparison. (C) Fold 

changes for the top 10 genes contributing to gene set enrichment of MSigDB’s hallmark IFN-g 

response gene set for each pairwise comparison of conditions in endothelial cells. ICB = 

combined PD-1/CTLA-4 immune checkpoint blockade treatment, ICBΔT = combined PD-

1/CTLA-4 immune checkpoint blockade treatment received after CD4+ T cell depletion. See also 

Figures S7A and S7B and Table S7. 

 

2.4.7 Functional analysis confirms endothelial cells are a principal target of 

IFN-g and a key mediator of treatment response 

To test the role of IFN-g signaling in endothelial cells in response to ICB treatment, we 

generated a mouse model system where IFNgR1 could be knocked out specifically in endothelial 

cells with tamoxifen treatment by crossing CDH5-ERT2-Cre+ mice with IFNgR1 flox/flox (f/f) 

mice. Using flow cytometry, we confirmed IFNgR1 expression was significantly reduced in 

CD31+ endothelial cells from mice in the knockout conditions compared to intact mice lacking 

the Cre-expressing allele (Figures S8A, S9A, and S9B). 

After establishing this model system, we compared tumor growth in IFNgR1 intact mice 

with and without ICB treatment to tumor growth in endothelial IFNgR1 knockout mice with and 
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without ICB treatment (STAR Methods). This comparison revealed that ICB treated knockout 

mice had tumor growth patterns nearly identical to untreated intact mice, demonstrating that 

significantly reducing IFNgR1 expression in endothelial cells negated the anti-tumor effects of 

ICB treatment (Figure 2.7A; Table S8A). Thus, IFN-g response in endothelial cells is necessary 

for an effective ICB treatment response. Furthermore, untreated tumors in the knockout mice 

grew more quickly than untreated tumors in the intact mice (Figure 2.7A; Table S8A). These 

findings are analogous to previously reported findings which showed that CD4+ T cell depletion 

in the MCB6C model not only prevented ICB induced tumor rejection, but also led to increased 

tumor growth even in the absence of ICB treatment, indicating that a basal level of T cell activity 

restrains tumor growth (Sato et al., 2018). Similarly, the findings presented here indicated that 

basal levels of IFN-g signaling in endothelial cells restrained tumor growth and that upregulation 

of IFN-g activity in endothelial cells was necessary for tumor rejection upon ICB treatment. 

Flow cytometric analysis indicated that ICB treatment induced recruitment of CD4+ T 

lymphocytes to the TME in intact mice, consistent with previous work (Figures 2.7B and S8B) 

(Sato et al., 2018). However, in mice where IFNgR1 had been knocked out in endothelial cells, 

this recruitment of CD4+ T lymphocytes after treatment was negated (Figure 2.7B; Table S8B). 

Furthermore, recruitment of Tbet+, IFN-g+, CD4+ T lymphocytes (i.e., Th1-like cells) seen after 

ICB treatment was no longer seen in the knockout condition (Figure 2.7C; Table S8C). Similar 

to previously reported analysis of the MCB6C model, this analysis showed no significant change 

in the proportion of CD8+ T cells seen before or after ICB treatment in either intact or knockout 

mice (Figure S10) (Sato et al., 2018). These results further indicated that IFN-g signaling in 

endothelial cells is a key mediator of treatment response and that it underlies recruitment of 

CD4+ effector T cells in the TME. 
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Figure 2.7: Functional analysis confirms endothelial cells are a principal target of IFN-g 

and a key mediator of treatment response 
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(A) Tumor diameter measurements for IFNgR1 intact and endothelial IFNgR1 knockout mice 

with and without ICB treatment over time (pre- and post-treatment). For all comparisons, a 2-

way ANOVA for repeated measures was performed. P-values <0.05 were considered significant. 

Error bars represent one standard deviation. (B) Bar graphs displaying the percentage of CD4+ 

lymphocytes in the tumor microenvironment across the same four conditions as (A). (C) Bar 

graphs displaying the percentage of Tbet+, IFNg+ cells detected within the CD4+ T lymphocyte 

population across the same four conditions as (A). For all bar graphs, bar height indicates the 

average percentage across all mice from the given condition. Each point represents the 

percentage for an individual mouse. For all comparisons, a two-tailed, unpaired Student's t-test 

was performed. P-values <0.05 were considered significant. Error bars represent one standard 

deviation. f/f = flox/flox, ICB = combined PD-1/CTLA-4 immune checkpoint blockade treatment, 

Iso = rat IgG2a and mouse IgG2b isotype control. See also Figures S8–S10 and Table S8. 

 

2.5 Discussion 

To explore mechanisms of response to combined PD-1/CTLA-4 ICB treatment of bladder cancer 

in individual cell types, we generated scRNA-seq from a mouse model of urothelial carcinoma. 

The three sample conditions used in this study were untreated tumor, combined PD-1/CTLA-4 

ICB treated tumor, and tumor that received combined ICB treatment after CD4+ T cell depletion. 

In total, we performed scRNA-seq on fifteen samples (five per each condition) and captured over 

57,000 cells that passed filtering and were aggregated into a single dataset for downstream 

analysis. Within the aggregated dataset, we identified numerous lymphocyte, myeloid, and 

stromal cell populations. Clustering and visualization of the data revealed two distinct epithelial 

clusters, which we confirmed corresponded to tumor cell populations based on expression of 
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somatic variants and, more specifically, appeared to correspond to distinct basal-like and 

luminal-like subpopulations. 

After identifying cell types present within the aggregated dataset, we used differential 

expression, overrepresentation, and GSEA to explore how individual cell types were responding 

to treatment. This analysis showed that IFN-g response was commonly perturbed with treatment 

across multiple cell types, including endothelial cells. Multiple clinical trials exploring human 

bladder cancer have identified IFN-g pathway activity as being correlated with increased benefit 

from ICB treatment (Rosenberg et al., 2016; Sakatani et al., 2022; Sharma et al., 2017). Previous 

work in the MCB6C model established that IFN-g activity is necessary for ICB treatment 

response (Sato et al., 2018). While previous research of tumor immunosurveillance models has 

shown that IFN-g signaling can act through both tumor cell intrinsic and extrinsic mechanisms, 

the role of IFN-g and its key target cells in ICB treatment response has not been completely 

defined (Alspach et al., 2019; Kammertoens et al., 2017; D. H. Kaplan et al., 1998). 

While previous work excluded IFN-g activity in tumor cells as having an essential role in 

treatment response in the MCB6C model, we had not previously evaluated its role in endothelial 

cells. Here, we establish endothelial cells as a key target of IFN-g activity and further show that 

loss of IFN-g signaling in endothelial cells impairs recruitment of IFN-g producing CD4+ T cells 

to the TME. Notably, Cxcl9, Cxcl10, Vcam1, and Icam1, which are mediators of T cell 

trafficking, were among the most upregulated IFN-g response genes in endothelial cells 

following ICB treatment, suggesting that a key role of IFN-g activity in endothelial cells may be 

to enable recruitment of T cells to the TME. 

We hypothesize a feedforward model in which ICB treatment induces IFN-g production 

from CD4+ T cells, which in turn leads to further recruitment of CD4+ T cells to the TME via 
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upregulation of chemoattractant molecules in endothelial cells. However, other roles of IFN-g 

signaling in endothelial cells could also contribute to treatment response. For example, IFN-g 

signaling in endothelial cells could induce tumor ischemia or impact vascular permeability, as 

shown by previous studies (Chrobak et al., 2013; Kammertoens et al., 2017; Ni & Lu, 2018). 

Ultimately, these results showed that IFN-g response in endothelial cells is a key mediator of 

treatment response and suggested that strategies which selectively induce IFN-g signaling in 

endothelial cells in the TME could favorably impact response to ICB treatment as well as other T 

cell based therapies. 

 

2.5.1 Limitations of the study 

While these findings support the role of IFN-g signaling in endothelial cells as a key node in 

treatment response, there are limitations to this analysis. In particular, effective treatment 

response involves a cascade of events which are still not fully defined. For example, the 

mechanisms by which T cells in the TME actually kill tumor cells are not elucidated in this 

system. Likewise, the mechanisms by which endothelial cells recruit T cells to the TME have not 

been fully explored. Additionally, the immune microenvironment arising from subcutaneous 

injection of a bladder cancer cell line could differ significantly from the immune 

microenvironment of a bladder cancer grown in bladder tissue. Ultimately, further analysis will 

be needed to verify and fully characterize the mechanisms underlying effective ICB treatment 

response. Nevertheless, these results underscore the power of scRNA-seq analysis to inform 

hypotheses that, when coupled with mouse modeling, can help identify cell-type specific 

signaling nodes that are key to generating an effective immune response. 
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2.6 STAR Methods 

Detailed STAR Methods are provided in the online version of this paper. 

 

2.6.1 Mice used for MCB6C experiments 

All animal experiments were carried out according to the guidelines of the American Association 

for Laboratory Animal Science under a protocol approved by the Institutional Animal Care and 

Use Committee at Washington University and performed in Association for Assessment and 

Accreditation of Laboratory Animal Care International (AAALAC)-accredited specific 

pathogen-free facilities at Washington University School of Medicine in St. Louis. Forty-five 5- 

to 6-week-old Black 6 (B6NTac) male mice were purchased from Taconic Biosciences and were 

allowed to acclimate for a week before in vivo experiments were performed. The maximal tumor 

size/burden permitted by our institutional review board is 15% of body weight (combined burden 

if more than one mass present) and mean tumor diameter = or >20 mm in adult mice (∼25 g). 

The maximal tumor size/burden permitted by our institutional review board was not exceeded. 

 

2.6.2 CDH5-ERT2-Cre+, IFNgR1 flox/flox (f/f) mice 

C57BL/6-Tg(Cdh5-cre/ERT2)1Rha mice were originally generated by Dr. Ralf H. Adams and 

purchased from Taconic Biosciences then bred with C57BL/6N-Ifngr1tm1.1Rds/J (IFNgR1flox/flox) 

mice that were obtained from Dr. Robert Schreiber at Washington University School of 

Medicine to generate CDH5-ERT2-Cre+/IFNgR1flox/flox offspring. 
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2.6.3 Bulk DNA sequencing, alignment, and analysis 

Whole genome sequencing (WGS) libraries were constructed from genomic DNA isolated from 

an MCB6C cell line sample and a black 6 (B6NTac) matched normal tail sample using 

Automated Kapa HYPER PCR free preparation kits (catalog #7962371001 – KK8505) and 

sequenced on the Illumina NovaSeq 6000 platform. WGS reads were aligned to the GRCm38 

reference genome using BWA-MEM. Copy number variant calling was performed using the 

CNVkit (v0.9.8) batch pipeline with a target bin size of 100,000 bp (Talevich et al., 2016). 

Whole exome sequencing (WES) libraries were constructed and sequenced similarly to the WGS 

experiment following hybrid capture selection with the hybrid reagent SureSelect DNA - Mouse 

All Exon V1 (Agilent). WES reads were aligned to the GRCm38 reference genome using BWA-

MEM. Somatic variant calling was performed using common workflow language pipelines 

provided by the McDonnell Genome Institute (https://github.com/genome/analysis-workflows). 

Somatic variants were called with Pindel, VarScan, Mutect, and Strelka and combined (Cibulskis 

et al., 2013; Griffith, Griffith, et al., 2015; Kim et al., 2018; Koboldt et al., 2012; K. Ye et al., 

2009). Variants were then filtered based on the criteria of being called by at least two variant 

callers, normal coverage > 30X, tumor coverage > 30X, normal VAF < 5%, and tumor VAF > 

5%. To explore clonality based on VAF distribution, variants were filtered more stringently 

based on the criteria of being called by at least two variant callers, having normal and tumor 

coverage >= 100X, normal VAF = 0%, tumor VAF > 5%, and no overlap with any regions of 

copy number alteration (i.e. any regions with abs(log2 copy ratio) > 0.32). Additionally, variants 

with VAF < 30% were manually reviewed to remove possible false variants caused by artifacts 

such as sequencing errors or misalignments. 
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2.6.4 Identifying possible driver mutations in WES 

After filtering somatic variants, a subset of possible driver mutation positions was determined by 

further filtering the set of somatic mutations down to mutations found in genes that have been 

previously reported to harbor driver mutations in human bladder cancer 

(https://www.intogen.org/search?cancer=BLCA). Human gene names were converted to 

homologous mouse gene names using the Mouse Genome Informatics human and mouse 

homology report with mammalian phenotype IDs 

(https://www.informatics.jax.org/homology.shtml). Each mutation was manually reviewed 

against mutations reported in ProteinPaint (https://proteinpaint.stjude.org/), IntOGen, and Cancer 

Hotspots (https://www.cancerhotspots.org/#/home). 

 

2.6.5 Mouse bladder organoid culture for injection 

One previously archived frozen vial of singly suspended MCB6C organoid was thawed at least 2 

weeks before mouse injection and expanded weekly in culture at least 2 times. For MCB6C 

organoid culture expansion, growth factor reduced Matrigel was thawed on ice for minimally 1.5 

hours. Pelleted MCB6C cells were washed and resuspended in 1 ml of Advanced 

DMEM/F12+++ medium (Advanced DMEM/F12 medium [Gibco, catalog #12634010] 

supplemented with 1% penicillin/streptomycin, 1% HEPEs, and Glutamax) and cell 

concentration was determined by automated cell counter. To establish organoid culture, 50 μl 

Matrigel tabs with 10,000 cells/tab were generated and plated on 6-well suspension culture 

plates, 6 tabs wells. Tabs were incubated at 37°C for 15 min until Matrigel was hardened, 

returned to tissue culture incubator, and cultured with mouse bladder organoid medium (MBO 

medium - Advanced DMEM/F12+++ medium supplemented with EGF, A-83-01, Noggin, R-
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Spondin, N-Acetly-L-cysteine, and Nicotinamide). Organoids were replenished with fresh MBO 

medium every 3–4 days and also one day before mouse injection. 

 

2.6.6 Mouse injection with MCB6C organoid cells 

A single cell suspension of MCB6C organoid was generated by TrypLE Express (Gibco, catalog 

#12605010) digestion organoid Matrigel tabs at 37°C for 15 min. After digestion, pelleted cells 

were washed and resuspended in PBS to determine cell concentration. After cell concentration 

was adjusted to 20 million/ml in PBS, organoid cells were mixed with growth factor reduced 

Matrigel at 1:1 ratio before being injected subcutaneously into the left flank of the mouse (1 

million/100 μl cells each mouse). Tumor development was monitored using digital calipers to 

assess the length, width, and depth of each tumor. For ICB, each mouse was injected 

intraperitoneally with 250 μg anti-PD1 (BioXcell, catalog #BE0146, clone #RMP1-14) and 200 

μg anti-CTLA-4 (BioXcell, catalog #BE0164, clone 9D9) day 9 and 12 after organoid 

implantation. For isotype controls, each mouse was injected with 250 μg rat IgG2a (BioXcell, 

catalog #BE0089, clone 2A3) and 200 μg IgG2b (BioXcell, catalog #BE0086, clone #MPC-11). 

For CD4+ T cell depletion, each mouse was injected with 250 μg anti-CD4 (BioXcell, catalog 

#BE0003-1, clone #GK1.5) day 0 and 7 after organoid depletion. Rat IgG2b (BioXcell, catalog 

#BE0090, clone #LTF-2) was used as an isotype control for anti-CD4. 

 

2.6.7 Harvesting tumors for scRNA-seq, BCR-seq, and TCR-seq 

Based on 10x Genomics Demonstrated Protocols, 14 days after organoid implantation, tumors 

were dissected from euthanized mice, cut into small pieces of ∼2–4 mm3, and further processed 

into dead-cell depleted single cell suspension following manufacturer’s protocol using Tumor 
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Dissociation Kit and MACS Dead Cell removal Kit (Miltenyi Biotec). Briefly, tumor tissue 

pieces were transferred to gentleMACS C tube containing enzyme mix before loading onto a 

gentleMACS Octo Dissociator with Heaters for tissue digestion at 37°C for 80 min. After tissue 

dissociation was completed, cell suspension was transferred to a new 50 ml conical tube, and 

supernatant was removed after centrifugation. Cell pellet was resuspended in RPMI 1640 

medium, filtered through a prewetted 70 μM cell filter, strained, pelleted, and resuspended in red 

cell lysis buffer and incubated on ice for 10 min. After adding the wash buffer, the cell 

suspension was pelted and resuspended in the wash buffer. To remove dead cells, Dead Cell 

Removal Microbeads were added to resuspend cell pellet (100 μl beads per 107 cells) using a 

wide-bore pipette tip. After incubation for 15 min at room temperature, the cell-microbead 

mixture was applied onto a MS column. Dead cells remained in the column and the effluent 

represented to the live cell fraction. The percentage of viable cells was determined by an 

automated cell counter. Dead cell removal was repeated if the percentage of viable cells did not 

reach above 90%. Two rounds of centrifugation/resuspension were carefully performed for two 

rounds in 1xPBS/0.04% BSA using a wide-bore tip. To submit cell samples for single-cell RNA-

seq analysis, cell concentration was determined accurately by sampling cell suspension twice and 

counting each sampling twice and adjusted to 1167 cells/μl. 40 μl of each cell suspension was 

submitted to the Genome Technology Access Center/McDonnell Genome Institute (GTAC/MGI) 

for single-cell RNA-seq analysis using the 5’v2 library kit (10x Genomics catalog #PN-1000263) 

with BCR and TCR V(D)J enrichment kits (10x Genomics catalog #PN-1000072 and #PN-

1000071, respectively). cDNA generation and TCR/BCR enrichment were performed according 

to the Chromium Single Cell V(D)J Reagent Kits User Guide (CG000086 Rev L). The libraries 
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were sequenced on the S4 300 cycle kit flow (2x151 paired end reads) using the XP workflow as 

outlined by Illumina. FASTQ outputs were generated. 

 

2.6.8 Alignment, filtering, and clustering of scRNA-seq 

Alignment and gene expression quantification were performed with CellRanger count (v5.0, 

default parameters). Gene-barcode matrices were then imported into Seurat for filtering cells, 

QC, clustering, etc (Hao et al., 2021). To filter suspected dying cells, cells were clustered before 

filtering to identify cells appearing to cluster based on high mitochondrial gene expression (i.e. 

the percentage of UMIs per cell mapping to mitochondrial genes). The cutoff for mitochondrial 

gene expression was based on the percentage that captured the majority of these cells. A cutoff 

of 12.5% was used across all replicates. Doublets were filtered based on high UMI expression 

and CellRanger’s reported doublet rate (0.9% per 1000 cells), with the top 0.9% of cells removed 

from each condition in each replicate. Cutoffs for filtering cells with low feature detection were 

determined by assigning cell types to each cell using the CellMatch method, identifying cells that 

did not have enough features for their cell type to be predicted, and calculating the average 

number of features detected in those “non-predicted” cells. CellMatch infers cell types by 

training a nearest-neighbors algorithm on published expression data. Spearman correlation is 

used as the distance metric. CellMatch’s cell typing inference is unsupervised and infers cell 

types in a marker free manner (Petti et al., 2019). After filtered cells were removed, gene 

expression values for each gene in the remaining cells were normalized and scaled and variable 

genes were selected using Seurat with default settings. Principal component (PC) analysis was 

then performed using the top 2,000 variable genes and npcs = 20. Clustering of cells was 

performed using 20 PCs and resolution = 0.7. Finally, dimensionality reduction and visualization 
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were performed using Seurat’s tSNE function. B cell and T cell receptors were assembled and 

identified using the 10x Genomics CellRanger V(D)J pipeline (v5.0, default parameters). 

 

2.6.9 Assigning cell types using SingleR 

Cell types for each cell were annotated with SingleR using expression profiles from the ImmGen 

dataset (https://www.immgen.org/) (Aran et al., 2019; Heng et al., 2008). Cell types were 

manually simplified to B cell (B), CD4+ T cell (CD4), naive CD4+ T cell (CD4.Naive), naive 

CD8+ T cell (CD8.Naive), CD8+ effector T cell (CD8.Eff), CD8+ memory T cell (CD8.Mem), 

dendritic cell, endothelial cell, epithelial cell, fibroblast, macrophage, monocyte, neutrophil, 

natural killer cell (NK), natural killer T cell (NKT), gamma delta T cell (Tgd), and regulatory T 

cell (Treg). 

 

2.6.10 Analysis of tumor cell subtypes 

To explore tumor cell subpopulations, we labeled tumor cells as either T1 or T2 based on cluster 

number. Cells that were assigned to the tumor clusters (i.e. clusters 10 and 14) on the left side of 

the tSNE projection were labeled as T1 tumor cells and cells assigned to the tumor cluster (i.e 

cluster 7) on the right side were labeled as T2 tumor cells. After assigning these labels, we 

separated the T1 and T2 cell populations from all other cell populations. We then scaled and 

normalized gene expression and selected variable genes using Seurat’s default methods. 

Principal component (PC) analysis was then performed using the top 2,000 variable genes and 

npcs = 20. Clustering of cells was performed using 20 PCs and resolution = 0.7. Finally, 

dimensionality reduction and visualization were performed using Seurat’s tSNE function. We 

then assigned differentiation scores to each cell using CytoTRACE 
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(https://cytotrace.stanford.edu/) and calculated the differentiation score as 1 - the CytoTRACE 

score (Gulati et al., 2020). 

 

2.6.11 DE, overrepresentation, and GSEA in scRNA-seq 

All differential expression analyses were performed using Seurat’s FindMarkers function with 

the Wilcoxon Rank Sum method. P-values were adjusted using Benjamini-Hochberg multiple 

test correction. All reference gene sets used for overrepresentation analysis and gene set 

enrichment analysis (GSEA) were from MSigDB with the exception of the basal and luminal 

marker gene sets, which were generated ad-hoc from published lists of basal and luminal bladder 

cancer markers (Liberzon et al., 2015; A. Subramanian et al., 2005). For all overrepresentation 

analysis, results were generated using the enricher function from the clusterProfiler package in R 

(Yu et al., 2012). For comparisons of conditions within each cell type, input gene lists for 

overrepresentation analysis were generated by taking all genes with adjusted p-value < 0.05 and 

fold change value > ∼1.2 (i.e. abs(log2FC) > 0.26). GSEA results were generated using UC San 

Diego and Broad Institute’s GSEA software to run GSEAPreranked with genes ranked by the 

average log2 fold changes reported by Seurat. 

 

2.6.12 Deletion of IFNgR1 in endothelium by tamoxifen 

Tamoxifen (Alfa Aesar, catalog #J63509) was dissolved in corn oil (MilliporeSigma, catalog 

#C8267) at the concentration of 20 mg/ml in a 37°C shaker overnight one day before the 

treatment began and kept at 4°C during the 5-day treatment. 
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2.6.13 Subcutaneous engraftment of MCB6C organoids 

Tumor experiments were performed following methods established previously with 

modifications (Sato et al., 2018). To improve the engraftment and growth of the organoid cells 

on mice, Matrigel with high protein concentration (Corning, catalog #354262) was used instead 

of growth factor reduced Matrigel (Corning, catalog #356231). After organoids were expanded 

in culture for > 2 weeks and subsequently harvested by TrypLE Express (Gibco, catalog 

#12605010) treatment, organoid cells were resuspended in 3:1 PBS/high protein concentration 

Matrigel (instead of 1:1 PBS/growth factor reduced Matrigel) at 10 million cells/ml. 1 

million/100 μl of cell/Matrigel mix was subcutaneously injected into the left flank of the mouse, 

which was performed one week after the completion of Tamoxifen treatment. Tumor growth was 

monitored twice a week using digital calipers. The mean of long and short diameters was used 

for tumor growth curves. For ICB treatment, mice were injected with 250 μg/mouse αPD-1 

(BioXcell, catalog #BE0146, clone RMP1-14) and 200 μg/mouse αCTLA-4 (BioXcell, catalog 

#BE0164, clone 9D9) i.p. every 3 days from day 15 to 18 after organoid implantation for short 

term studies, and from day 15 through day 21 from long term studies. 250 μg/mouse rat IgG2a 

(BioXcell, catalog #BE0089, clone 2A3) and 200 μg/mouse IgG2b (BioXcell, catalog #BE0086, 

clone MPC-11) were used as isotype controls. 

 

2.6.14 Antibodies 

The following antibodies were used for flow cytometry: Brilliant Violet 510™ anti-mouse CD45 

Antibody (BioLegend, catalog #103137, clone 30-F11), PE/Dazzle™ 594 anti-mouse CD3ε 

Antibody (BioLegend, catalog #100347, clone 145-2C11), FITC anti-mouse CD4 Antibody 

(BioLegend, catalog #116003, clone RM4-4), PerCP/Cyanine5.5 anti-mouse CD4 Antibody 
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(BioLegend, catalog #116011, clone RM4-4), PE/Cyanine7 anti-mouse CD8α Antibody 

(BioLegend, catalog #100721, clone 53-6.7), Alexa Fluor® 700 anti-mouse CD8α Antibody 

(BioLegend, catalog #100729, clone 53-6.7), Brilliant Violet 421™ anti-mouse CD19 Antibody 

(BioLegend, catalog #115537, clone 6D5), APC anti-mouse/human CD11b Antibody 

(BioLegend, catalog #101211, clone M1/70), PE/Cyanine7 anti-mouse CD11c Antibody 

(BioLegend, catalog #117317, clone N418), Alexa Fluor® 647 anti-mouse CD326 (Ep-CAM) 

Antibody (BioLegend, catalog #118211, clone G8.8), PerCP/Cyanine5.5 anti-mouse CD326 (Ep-

CAM) Antibody (BioLegend, catalog #118219, clone G8.8), Brilliant Violet 421™ anti-

mouse/human CD44 Antibody (BioLegend, catalog #103039, clone IM7), PE anti-mouse 

CD62L Antibody (BioLegend, catalog #104407, clone MEL-14), PE/Cyanine7 anti-mouse Ly-

6C Antibody (BioLegend, catalog #128015, clone HK1.4), PerCP/Cyanine5.5 anti-mouse Ly-6G 

Antibody (BioLegend, catalog #127615, clone 1A8), PE anti-mouse Siglec-F Antibody (BD 

Biosciences, catalog #552126, clone E50-2440), APC/Cyanine7 anti-mouse CD335 (NKp46) 

Antibody (BioLegend, catalog #137645, clone 29A1.4), Alexa Fluor™ 700 anti-Foxp3 Antibody 

(eBioscience, catalog #56-5773-80, clone FJK-16s), PE/Dazzle™ 594 anti-T-bet Antibody 

(BioLegend, catalog #644827, clone 4B10), APC/Cyanine7 anti-mouse IFN-γ Antibody 

(BioLegend, catalog #505849, clone XMG1.2), Alexa Fluor® 647 anti-Ki-67 Antibody (BD 

Biosciences, catalog #561126 clone B56), Biotin anti-mouse CD119 (IFN-γ R α chain) Antibody 

(BioLegend, catalog #112803, clone 2E2), PE Streptavidin (BioLegend, catalog #405203). 

 

2.6.15 Flow cytometry 

To determine the cellular composition of the tumor, tumors were isolated, minced into small 

pieces, and digested for 1 hour in DMEM media (MilliporeSigma, catalog #D5796) containing 
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100 μg/ml Collagenase type IA (Gibco, catalog #17101015), 100 μg/ml Dispase II 

(MilliporeSigma, catalog #D4693) and 50 U/ml of DNase I (Worthington Biochemical, catalog 

#LS002006). Cells were washed in ice-cold PBS with 3% FCS and 2 mM EDTA (FACS buffer) 

and filtered over 70-μm nylon mesh. After red blood cell lysis with ACK solution (Gibco, 

catalog #A1049201), cells were stained with a Zombie NIR Fixable Viability kit (BioLegend, 

catalog #423105) for dead cell exclusion followed by Fc-receptor blocking with purified mouse 

CD16/32 antibody (BioLegend, catalog #101301, clone 93). After cell surface marker staining 

with fluorescent-conjugated antibodies, cells were fixed and permeabilized using a 

Foxp3/transcription factor staining kit (eBioscience, catalog #00-5523-00) and intracellularly 

stained with fluorescent-conjugated antibodies. Flow cytometric data were acquired by Cytek-

upgraded 10-color FACScan cytometers at Washington University Siteman Cancer Center Cell 

Sorting Core facility and analyzed by FlowJo 10 (TreeStar). 

 

2.6.16 Quantification and statistical analysis 

Statistical analyses for IFNgR1 knockout experiments were performed using Prism 8.3.0 

(GraphPad). For all tumor growth curve comparisons, a 2-way ANOVA for repeated measures 

was used. For all other comparisons, an unpaired Student’s t test was used. All tests were 2-

tailed. P-values of less than 0.05 were considered significant. 
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Chapter 3: Copy number alterations are 

commonly seen in pediatric brain tumors and 

may have prognostic value 

3.1 Preamble 

The project presented here represents a work in progress and will be edited for journal 

submission and final publication. My role in this project was to perform copy number calling for 

a cohort of samples from the Children’s Brain Tumor Network (CBTN), explore the landscape of 

copy alteration for the CBTN cohort and a cohort of samples from Washington University 

(WashU), perform survival analysis exploring the relationship between CNVs and overall 

survival, generate figures, and prepare the manuscript for submission with the following 

proposed author list: 

Freshour SL, Fisk B, Miller CA, Dahiya S, Rubin JB, Griffith OL, Griffith M. 

 

3.2 Summary 

Brain and central nervous system tumors are the most common form of pediatric solid tumor 

cancers and the second most common cancer overall among children. Although advances have 

been made in understanding the genomics of pediatric brain tumors and copy number alteration 

has been explored in the context of molecular subtyping and in relation to other alterations (e.g. 

structural variants), the role of copy number alteration in pediatric brain tumors has not been 
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fully characterized (Shapiro et al., 2023; Y. Yang & Yang, 2023). To examine the landscape of 

copy number alteration further, we characterized copy number alteration across the genomes of 

almost 300 pediatric brain tumor samples across four diagnosis groups (ATRT, Ependymoma, 

High-Grade Glioma, and Medulloblastoma) and found that copy alterations were common and, 

in some cases, extensive across diagnosis groups. In addition to characterizing copy alteration 

burden (aka CNV burden), we also characterized the landscape of recurrent copy alterations 

across samples. Survival analysis of CNV burden and recurrent alterations suggested that both 

CNV burden and certain recurrent alterations could have prognostic value with respect to 

specific diagnosis groups. These results indicated that copy number alteration may play an 

important role in pediatric brain tumors and should be explored further. 

 

3.3 Introduction 

Pediatric brain and central nervous system tumors are the second most common cancer type, the 

most common solid tumor malignancy, and the leading cause of cancer related deaths in children 

(S. Subramanian & Ahmad, 2023). They encompass a range of tumor types and subtypes with 

distinct molecular profiles. Likewise, there is a large range in overall survival depending on the 

tumor type and subtype. For example, High-Grade Glioma (HGG) has one of the lowest 5-year 

survival rates (~33%) and many HGG patients do not survive more than two years after their 

diagnosis (Damodharan & Puccetti, 2023; Ostrom et al., 2022). In contrast, Ependymal tumors 

have been shown to have 5-year survival rates of ~75% (Ostrom et al., 2022). Even within broad 

tumor types, such as embryonal tumors, there can be great variability in survival rates. For 

example, the 5-year survival rate for Medulloblastoma, a common type of embryonal tumor, is 

over 70% (Medulloblastoma Diagnosis and Treatment, 2018). In contrast, the 5-year survival 
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rate for atypical teratoid/rhabdoid tumors (ATRTs), a rare type of embryonal tumor, is only 

about 33% (Damodharan & Puccetti, 2023). 

 While survival rates have improved for certain subsets of pediatric brain tumor types over 

time (e.g. Medulloblastoma and Low-Grade Glioma), survival rates for other types have not seen 

much improvement (e.g. High-Grade Glioma) (Kulubya et al., 2022). Understanding the 

molecular landscape of pediatric brain tumors through genomic profiling has been an important 

approach for improving accuracy of tumor diagnosis, uncovering possible targets for therapy, 

and formulating more personalized treatment plans. For example, identification of mutations 

within genes of the MAPK (mitogen-activated protein kinase) signaling pathway as a common 

driver of Low-Grade Glioma has led to multiple clinical trials looking at the potential utility of 

inhibitors targeting MAPK signaling related genes, e.g. MEK inhibitors and BRAF inhibitors 

(Barbato et al., 2023; Manoharan et al., 2023; Mueller et al., 2020). Nevertheless, there remains a 

need to continue elucidating the molecular biology and genomic landscape of pediatric brain 

tumors and their potential prognostic value. 

One type of genomic alteration that remains under-explored in the context of pediatric 

brain tumors is copy number alteration. While there have been studies looking at copy number 

alteration in pediatric brain tumors, which have reported commonly seen alterations and some 

associations with overall survival, the extent of copy number alteration and its potential 

prognostic value has not been fully explored. Thus, the aim of this project was to explore the 

landscape of copy number alteration further and determine what relationship there may be 

between copy alteration burden and overall survival as well as what relationship there may be 

between specific copy alterations and overall survival.  
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3.4 Results 

3.4.1 Copy number alterations are common, sometimes extensive in pediatric 

Ependymoma, High-Grade Glioma, and Medulloblastoma 

To characterize the landscape of copy number alteration in pediatric brain tumors, we first 

analyzed a cohort of diagnostic tumor samples from patients at Washington University School of 

Medicine in St. Louis (WashU) using low pass (5x coverage) whole genome sequencing. 

Samples were obtained from 67 patients (median age: 7.09 years) across four different diagnosis 

groups (Table 3.1). As these patients did not have matched normal samples, a panel of 48 normal 

samples was used as the unmatched normal for copy number analysis (Methods). We performed 

copy number calling for each sample using CNVkit (Talevich et al., 2016). We then manually 

corrected CNVkit’s copy number calling results to rescue alterations that may have been missed 

by the initial copy number calling (Figures 3.1 - 3.3, Methods). 
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Figure 3.1: Workflow for generating and analyzing copy number calling results 
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Schematic of the steps involved in data collection, data processing to generate CNV and LOH 

calls, manual correction of CNV calls, and downstream analysis of CNVs and overall survival. 

 

 

Figure 3.2: Example of LOH and CNV plots generated for a patient with a quiet genome 

(A) Example of an LOH plot generated for an Ependymoma sample which does not exhibit LOH 

or copy number alteration. These LOH plots are used to inform manual copy number calling 

corrections based on regions exhibiting both copy alterations and loss-of-heterozygosity. LOH is 
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determined by calculating the b allele frequency (BAF) for a subset of heterozygous SNP 

positions across the genome. Green lines are smoothed lines of BAFs across the genome, 

including SNP positions with BAFs of 0% and 100%. Blue lines are smoothed lines of BAFs 

across the genome, excluding SNPs positions with BAFs of 0% and 100%. Lines are smoothed 

by applying the smooth.spline function in R, which uses cubic regression to estimate values in 

between the plotted BAFs. Purple dots represent BAFs of individual SNPs. (B) Example of a 

CNV plot generated from copy number calling results for an Ependymoma sample which does 

not exhibit LOH or copy number alteration. Copy number calling was performed using CNVkit 

with 100k bin size. Dots represent read count differences in bins. Solid lines represent segments 

identified by CNVkit using circular binary segmentation. The dotted red line at 0.5 marks the 

cutoff above which copy alterations are classified as gains. The dotted blue line at -0.5 marks the 

cutoff below which copy alterations are classified as losses. The yellow bars correspond to 

GRCh38 assembly gap positions in the genome (as reported in the UCSC Genome Browser gap 

track). 
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Figure 3.3: Example of LOH and CNV plots generated for a patient with copy alteration 

detected 

(A) Example of an LOH plot generated for an Ependymoma sample which does exhibit LOH and 

copy number alteration and had manual corrections applied to its copy number calling results. 

(B) Example of an uncorrected CNV plot generated for an Ependymoma sample which does 

exhibit LOH and copy number alteration and had manual corrections applied to its copy number 

calling results. (C) Example of a corrected CNV plot generated for an Ependymoma sample 

which does exhibit LOH and copy number alteration and had manual corrections applied to its 

copy number calling results. This sample had a recentering factor of 0.323 applied and the 

upper cutoff for calling a copy number gain lowered from 0.5 to 0.35. 

 

After copy number calling results were generated for all samples, we calculated the 

extent of copy alteration for each sample using two metrics: the percentage of copy altered base 

pairs detected across the genome (CNV%) and the total number of copy altered segments called 

across the genome (CNV segment count) (Methods). Both of these metrics indicated that copy 

number alteration was common and, in some cases, extensive in the WashU cohort (Figures 

3.4A, 3.4C). The majority of samples displayed some level of alteration (~90% samples had at 

least one copy-altered segment), with multiple samples (17 of 67) having more than 25% of their 

genomes altered (Figure 3.4A, 3.4C). While the CNV% and CNV segment count metrics were 

highly correlated, the extent of correlation varied by diagnosis group and was not a perfect 

correlation (Figure 3.5). Several samples appeared to have disparate extents of copy alteration 

per the two metrics, i.e. some samples had higher CNV segment count, but lower CNV% and 

vice versa. Therefore, we chose to include both metrics in our analysis. 
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Figure 3.4: Distributions of CNV% and CNV segment count within each cohort  

(A) Distribution of CNV% for all samples in the WashU cohort. (B) Distribution of CNV% for 

all samples in the CBTN cohort. CNV% is calculated as the number of copy altered base pairs 

divided by the approximate size of the human genome (i.e. 3.2 billion base pairs). Each point 

corresponds to a single sample. The value on the y-axis indicates the CNV%. The point color 

indicates the diagnosis group. The violin plot shows the overall distribution of CNV% for the 

given set of samples. (C) Distribution of CNV segment count for all samples in the WashU 

cohort. (D) Distribution of CNV segment count for all samples in the CBTN cohort. Each point 

corresponds to a single sample. The value on the y-axis indicates the CNV segment count. The 



72 

point color indicates the diagnosis group. The violin plot shows the overall distribution of CNV 

segment count for the given set of samples. 

 

 

Figure 3.5: CNV% versus CNV segment count with Spearman correlation values 

Scatter plot of CNV% versus CNV segment count for all diagnosis groups across both cohorts. 

Point shape indicates cohort. Point color indicates diagnosis group. The Spearman correlation 

value between CNV% and CNV segment count for the full dataset was ~0.925. Spearman 

correlation values within each diagnosis group are listed on the plot. 

 

To increase our sample size and expand on the observations seen in the WashU cohort, 

we obtained an additional cohort of samples from the Children’s Brain Tumor Network (CBTN) 

with whole genome sequencing available for both tumor and matched normal samples. In total, 
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we added 226 additional samples (median age: 7.47 years) across the same four diagnosis 

groups, bringing the grand total of samples to 293 tumors (Table 3.1, Methods). As with the 

WashU cohort, we generated copy number calling results for these samples using CNVkit and 

manual correction, then calculated the percentage of copy altered base pairs and the number of 

copy altered segments for each sample. Similar to the results seen in the WashU cohort, these 

metrics indicated that copy alteration was common (~84% of samples had at least one copy 

altered segment) and, in some cases, extensive (53 of 226 samples had over 25% of their 

genomes altered) in the CBTN cohort (Figures 3.4B, 3.4D). However, the extent of alteration 

observed varied by diagnosis group. In particular, ATRT samples generally had quiet genomes 

(with CNV% ranging from 0% to ~1.9% and CNV segment count ranging from 0 to 9), with the 

exception of one outlier which had ~38% alteration and 72 altered segments (Figures 3.6A - 

3.6C). 

Diagnosis Group WashU CBTN Total 

ATRT 5 (~7.5%) 24 (~10.6%) 29 

Ependymoma 17 (~25.4%) 60 (~26.5%) 77 

High-Grade Glioma 12 (~17.9%) 46 (~20.4%) 58 

Medulloblastoma 33 (~49.3%) 96 (~42.5%) 129 

Total 67 226 293 

Table 3.1: Number of samples for each diagnosis group within each cohort 

 

While all diagnosis groups had samples with quiet genomes, the Ependymoma, High-

Grade Glioma, and Medulloblastoma diagnosis groups had greater variety in the extent of 

alteration, from samples with no alteration detected to samples with alteration detected in only a 
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few chromosomes to samples with alteration detected across numerous chromosomes (Figure 

3.6C). Clustering of copy number alterations within diagnosis groups also revealed the presence 

of patterns of alteration within and across diagnosis groups (Figure 3.6C). For example, several 

distinct patterns within the Medulloblastoma group were chromosome 6 deletions (with little 

alteration in other chromosomes), 17p deletions paired with 17q gains, and chromosome X losses 

in female patients, all of which are previously reported patterns of alteration seen in certain types 

of pediatric Medulloblastoma (Doussouki et al., 2019; Kool et al., 2008). In contrast, other 

alterations appeared to be fairly common across diagnosis groups, such as 1q gains and 

chromosome 7 gains in Ependymoma, High-Grade Glioma, and Medulloblastoma. These results 

suggested that, although copy number alteration appears to be a common occurrence in pediatric 

brain tumors, extensive copy number alteration is more common in certain diagnosis groups (i.e. 

Ependymoma, High-Grade Glioma, and Medulloblastoma). Additionally, specific copy number 

alterations can be distinct to diagnosis groups or detectable across multiple diagnosis groups. 
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Figure 3.6: Landscape of copy number alteration within diagnosis groups 

(A) Distributions of CNV% for all samples across both cohorts faceted by diagnosis group. The 

value on the y-axis indicates the CNV%. (B) Distributions of CNV segment count for all samples 

across both cohorts faceted by diagnosis group. The value on the y-axis indicates the CNV 

segment count. Each point corresponds to a single sample. The point color indicates the 
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diagnosis group. The point shape indicates the cohort. The violin plots show the overall 

distribution for the given set of samples. (C) Heatmap of average log2 copy ratios across the 

genome, split into 1MB sections, for all samples across both cohorts faceted by diagnosis group. 

Rows correspond to samples. Columns correspond to genomic regions. Within each diagnosis 

group, samples were clustered by rows. Red indicates a copy number gain. Blue indicates a copy 

number loss. 

 

3.4.2 Recurrent alterations are detected across diagnosis groups and show 

patterns within diagnosis groups 

After exploring the full landscape of copy alteration, we next wanted to explore the landscape of 

recurrent copy number alterations. To identify recurrently altered regions across autosomal 

chromosomes, we ran GISTIC with the copy number calling results for the full dataset 

containing all diagnosis groups and with the copy number calling results for each diagnosis 

group separately (Methods). In the full dataset, 39 recurrently altered regions were identified, 18 

of which were classified as recurrent amplifications and 21 of which were classified as recurrent 

deletions (Figure 3.7).  

Clustering samples based on their amplification and deletion patterns in these recurrently 

altered regions revealed several interesting patterns. For example, across diagnosis groups there 

was a subset of samples which showed no presence of recurrent alterations (Figure 3.7). Some 

recurrent alterations appeared to be largely detected in specific diagnosis groups, such as 17q 

amplifications in Medulloblastoma samples and 22q deletions in ATRT samples, which were 

also seen in the clustering of all CNVs across the genome (Figures 3.6C, 3.7). Both these 

observations are consistent with previous reports of 17q amplifications (typically paired with 17p 
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losses) in Medulloblastoma and 22q deletions in ATRT (J. Y. Choi, 2023; Ho et al., 2020). These 

results suggested that while some recurrent alterations can be shared across diagnosis groups, 

certain recurrent alterations can still distinguish specific diagnosis groups. 

Figure 3.7: Heatmap of recurrent alterations across all diagnosis groups  

Heatmap of recurrently altered regions identified by GISTIC in the full dataset containing all 

diagnosis groups across both cohorts. Rows correspond to samples. Columns correspond to 

recurrent alterations. The color of the squares indicates “Actual Copy Change Given” as 

reported by GISTIC. Red indicates a copy gain. Blue indicates a copy loss. 

 

Within each individual diagnosis group, clustering samples based on recurrent 

amplifications and deletions revealed patterns within diagnosis groups as well. For example, a 
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subset of Ependymoma samples appeared to harbor 7q amplifications and 9q amplifications 

together, while another subset of samples had no 7q alterations, but some 9q deletions (Figure 

3.8B). In the Medulloblastoma dataset, there appeared to be two subsets of samples with 

recurrent 17q amplifications: one group which harbored multiple other recurrent alterations and 

one which appeared to primarily harbor recurrent 17q amplifications and few other recurrent 

alterations (Figure 3.8D). These samples likely represent group 3 and group 4 Medulloblastoma 

samples. Group 3 and group 4 Medulloblastomas have both been shown to frequently harbor 17q 

alterations (although they are more commonly seen in group 4), but have different rates of other 

alterations (e.g. group 3 is more likely to harbor losses in 10q) (Kijima & Kanemura, 2016; Kool 

et al., 2012; Thomas & Noël, 2019). The High-Grade Glioma group appeared to have few 

distinct patterns, with the exception of samples that appeared to harbor no recurrent alterations 

(Figure 3.8C). Overall, these patterns indicated that, within certain diagnosis groups, there can be 

distinct patterns of recurrent alteration detected. 
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Figure 3.8: Heatmaps of recurrent alterations within diagnosis groups  

(A) Heatmap of recurrently altered regions identified by GISTIC in the ATRT dataset across 

both cohorts. (B) Heatmap of recurrently altered regions identified by GISTIC in the 

Ependymoma dataset across both cohorts. (C) Heatmap of recurrently altered regions identified 

by GISTIC in the High-Grade Glioma dataset across both cohorts. (D) Heatmap of recurrently 

altered regions identified by GISTIC in the Medulloblastoma dataset across both cohorts. Rows 

correspond to samples. Columns correspond to recurrent alterations. The color of the squares 

indicates “Actual Copy Change Given” as reported by GISTIC. Red indicates a copy gain. Blue 

indicates a copy loss. 
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3.4.3 Correlation between CNV burden and overall survival appears to be 

dependent on diagnosis 

Before exploring the relationship between the extent of copy alteration in each sample and 

overall survival, we first verified differences in overall survival by diagnosis group (Figure 3.9). 

This analysis showed that the High-Grade Glioma and ATRT groups appeared to have 

significantly worse overall survival than the Ependymoma and Medulloblastoma groups, as has 

been previously reported (Ostrom et al., 2015; Pogorzala et al., 2014; Stanić et al., 2021). Since 

there were significant differences in overall survival by diagnosis group, we performed most of 

the following analysis within each diagnosis group separately.  
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Figure 3.9: Kaplan-Meier survival curves split by diagnosis group 

Kaplan-Meier survival curves split by diagnosis group (top) and the corresponding risk table 

(bottom) for the full dataset containing all diagnosis groups across both cohorts. Curves are 

colored by the diagnosis group. Boxes around the curves indicate the 95% confidence intervals. 

 

Next, we investigated whether there was any correlation between copy alteration burden 

(aka CNV burden) and overall survival. To do this, we looked at both CNV% and CNV segment 

count as two separate metrics of CNV burden and explored the relationship between each of 

these metrics and overall survival. We performed analysis using these two CNV burden metrics 

as continuous variables and also as categorical variables based on tertiles (i.e. high, mid, and low 

burden), based on the average value of each metric (i.e. high and low burden), and based on 

identifying the optimal cutpoint for each metric (i.e. high and low burden). 
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 For exploration of the relationship between overall survival and CNV burden as a 

continuous variable, we calculated the Spearman correlation values between CNV% and overall 

survival as well as CNV segment count and overall survival (Methods). These calculations were 

done within each diagnosis group separately. Although the correlation values varied by diagnosis 

group, the correlation values for both CNV% and CNV segment count were fairly low across 

diagnosis groups. The absolute values for correlation ranged from ~0.036 to ~0.111 for CNV% 

and from ~0.017 to ~0.157 for CNV segment count, indicating there was no strong correlation 

between continuous CNV burden and overall survival within any diagnosis group (Figures 3.10A 

- 3.10D, 3.11A - 3.11D). 
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Figure 3.10: CNV% versus overall survival within each diagnosis group 

(A) Scatter plot of CNV% versus overall survival for the ATRT group across both cohorts. (B) 

Scatter plot of CNV% versus overall survival for the Ependymoma group across both cohorts. 

(C) Scatter plot of CNV% versus overall survival for the High-Grade Glioma group across both 

cohorts. (D) Scatter plot of CNV% versus overall survival for the Medulloblastoma group across 

both cohorts. Point shape indicates cohort. Point color indicates diagnosis group. Spearman 

correlation values for each group are included in the corresponding plot titles. 
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Figure 3.11: CNV segment count versus overall survival within each diagnosis group 

(A) Scatter plot of CNV segment count versus overall survival for the ATRT group across both 

cohorts. (B) Scatter plot of CNV segment count versus overall survival for the Ependymoma 

group across both cohorts. (C) Scatter plot of CNV segment count versus overall survival for the 

High-Grade Glioma group across both cohorts. (D) Scatter plot of CNV segment count versus 

overall survival for the Medulloblastoma group across both cohorts. Point shape indicates 

cohort. Point color indicates diagnosis group. Spearman correlation values for each diagnosis 

group are included in the corresponding plot titles. 

 

 Next, we categorized CNV burden based on CNV% and CNV segment count separately 

and explored the relationship between overall survival and high/low or high/mid/low CNV 
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burden within each diagnosis group (with the exception of ATRT as only one sample in that 

group had high CNV% and CNV segment count). For each metric (i.e. CNV% and CNV 

segment count), we classified samples as high/low CNV burden based on two methods. The first 

was by calculating the average for each metric in each diagnosis group (Supplemental Table 

S3.1, Methods). The second was by identifying a single optimal cutpoint for each metric in each 

diagnosis group (Table 3.2, Methods). Additionally, for each metric, we classified samples as 

high/mid/low CNV burden based on identifying tertiles for each metric in each diagnosis group 

(Supplemental Table S3.2, Methods). 

Classifying CNV burden based on tertiles suggested there was no significant association 

between overall survival and high/mid/low CNV burden within any diagnosis group 

(Supplemental Figures S3.1 - S3.3, Supplemental Table S3.2). Similarly, classifying CNV 

burden as high/low based on averages indicated there was no significant association between 

high/low CNV burden and overall survival in any diagnosis group (Supplemental Figures S3.4 - 

S3.6, Supplemental Table S3.1). However, the association between high CNV burden based on 

average CNV segment count and worse overall survival in the High-Grade Glioma group 

approached significance (Supplemental Figure S3.5, Supplemental Table S3.1).   

 Classification of high/low CNV burden based on the optimal cut points of CNV% and 

CNV segment count indicated that the relationship between CNV burden and overall survival 

may be dependent on both the metric chosen for classification and the disease context. In the 

Ependymoma group, CNV burden based on CNV% suggested a significant correlation between 

high CNV burden and better overall survival, while CNV segment count showed no significant 

relationship between CNV burden and overall survival (Figure 3.12, Table 3.2). However, these 

results must be considered with the caveat that the Ependymoma group had a limited number of 
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high CNV burden samples (8 by CNV% and 11 by CNV segment count). In the High-Grade 

Glioma group, both metrics (CNV% and CNV segment count) indicated that high CNV burden 

was associated with worse overall survival (Figure 3.13, Table 3.2). Meanwhile, in the 

Medulloblastoma group, neither metric suggested there was any relationship between CNV 

burden and overall survival differences (Figure 3.14, Table 3.2). Together, these results indicated 

that potential associations between CNV burden and overall survival are dependent on disease 

context and classification metric.  

Diag. Metric Cutpoint KM Method KM Pval 
Ependymoma CNV% 40.038 Log-Rank 0.019 
Ependymoma CNV segment count 30 Gehan-Breslow 0.48 
HGG CNV% 6.187 Gehan-Breslow 0.032 
HGG CNV segment count 32 Gehan-Breslow 0.022 
Medullo CNV% 19.19 Gehan-Breslow 0.66 
Medullo CNV segment count 22 Log-Rank 0.17 
Table 3.2: Survival analysis results for categorizing CNV burden based on optimal 

cutpoints 

Table of survival analysis results for categorizing CNV burden based on optimal cutpoints for 

CNV% and CNV segment count within each diagnosis group across both cohorts. Samples with 

CNV% or CNV segment count below the corresponding cutpoint value were classified as “CNV 

Low”. Samples with CNV% or CNV segment count above the corresponding cutpoint value were 

classified as “CNV High”. KM Method indicates the statistical method used to test for 

significant differences in the Kaplan-Meier survival estimates. 

 

However, plotting the test statistics used in the selection of the optimal cutpoints for each 

metric within each diagnosis group suggested that the values selected for these cutpoints may be 

somewhat arbitrary, leading to arbitrary significance as well. For example, in the Ependymoma 
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group, the test statistics for CNV% appeared to generally increase as the values for CNV% 

increased until reaching the last value tested (Supplemental Figure S3.7). In the 

Medulloblastoma group, several different CNV% values seemed to produce similarly high test 

statistics (Supplemental Figure S3.9). CNV segment count in the High-Grade Glioma group 

appeared to have the clearest peak in its test statistics, suggesting a less arbitrary selection of the 

optimal cutpoint (Supplemental Figure S3.8). Regardless, follow-up analysis will be needed in 

larger, independent cohorts to validate the potential significance of the CNV burden cut points 

presented here and CNV burden in general. 
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Figure 3.12: Kaplan-Meier survival curves split by CNV burden based on optimal 

cutpoints for the Ependymoma group 
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(A) Kaplan-Meier survival curves split by CNV burden classification based on the CNV% 

optimal cutpoint (top) and the corresponding risk table (bottom) in the Ependymoma group 

across both cohorts. (B) Kaplan-Meier survival curves split by CNV burden classification based 

on the CNV segment count optimal cutpoint (top) and the corresponding risk table (bottom) in 

the Ependymoma group across both cohorts. Curves are colored by their CNV burden group. 

Boxes around the curves indicate the 95% confidence intervals. 
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Figure 3.13: Kaplan-Meier survival curves split by CNV burden based on optimal 

cutpoints for the High-Grade Glioma group 
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(A) Kaplan-Meier survival curves split by CNV burden classification based on the CNV% 

optimal cutpoint (top) and the corresponding risk table (bottom) in the High-Grade Glioma 

group across both cohorts. (B) Kaplan-Meier survival curves split by CNV burden classification 

based on the CNV segment count optimal cutpoint (top) and the corresponding risk table 

(bottom) in the High-Grade Glioma group across both cohorts. Curves are colored by their CNV 

burden group. Boxes around the curves indicate the 95% confidence intervals. 
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Figure 3.14: Kaplan-Meier survival curves split by CNV burden based on optimal 

cutpoints for the Medulloblastoma group 
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(A) Kaplan-Meier survival curves split by CNV burden classification based on the CNV% 

optimal cutpoint (top) and the corresponding risk table (bottom) in the Medulloblastoma group 

across both cohorts. (B) Kaplan-Meier survival curves split by CNV burden classification based 

on the CNV segment count optimal cutpoint (top) and the corresponding risk table (bottom) in 

the Medulloblastoma group across both cohorts. Curves are colored by their CNV burden group. 

Boxes around the curves indicate the 95% confidence intervals. 

 

3.4.4 Recurrent alterations may be associated with changes in survival 

Next, we explored the relationship between recurrent copy number alterations and overall 

survival. First, we used the results from GISTIC to more broadly classify the gain and loss 

statuses of recurrently altered chromosome arms (Methods). We chose this approach because we 

found that the results reported by GISTIC could be too focal in some cases, either splitting single 

copy alteration events into multiple events (e.g. 11p or 11q deletions) or only returning a 

subsection of larger events for some samples (e.g. 22q deletions). Therefore, instead of using the 

direct results from GISTIC for our analysis, we collapsed recurrent alterations reported on the 

same chromosome arm into single recurrent alteration events and classified the gain/loss status 

of each sample based on the presence of any gain or loss on each chromosome arm of interest 

(Methods).  

Furthermore, for our analysis of recurrent alterations and overall survival, we used 

samples from the CBTN cohort only. We chose to focus on the CBTN cohort because analysis of 

the relationship between overall survival and cohort alone indicated that the WashU cohort had 

significantly worse overall survival (Supplemental Figure S3.10). Additionally, multivariate 

analysis performed using a Cox model with diagnosis group and cohort as categorical variables 
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indicated that cohort was significantly associated with differences in overall survival, even when 

accounting for survival differences by diagnosis (p-value < 0.0001, HR ~2.17). To avoid 

confounding effects based on cohort, we performed the analysis below using only the larger 

CBTN cohort. Likewise, as mentioned previously, we separated our analysis by diagnosis group. 

After we classified the gain (or no gain) and loss (or no loss) statuses of each recurrently 

altered chromosome arm in each sample, we tested whether gains or losses on each chromosome 

arm were correlated with any significant changes in survival. To do this, we used both Kaplan-

Meier survival estimates and Cox proportional hazards models (Methods). For each recurrently 

altered arm, we tested gain status (versus everything else) and loss status (versus everything else) 

separately. In total, four recurrently amplified regions (one in High-Grade Glioma, three in 

Medulloblastoma) and one recurrently deleted region (in High-Grade Glioma) were reported to 

be significantly associated with changes in survival (Table 3.3). Four of these regions (7q, 11p in 

HGG and 8p, 8q in Medulloblastoma) were reported as significant by both the Kaplan-Meier and 

the Cox model testing (Table 3.3). The remaining region (1q in Medulloblastoma) was only 

reported as significant by the Cox model, but was near significant by the Kaplan-Meier testing as 

well (Table 3.3). 
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Diag. Arm Status 
Sig  
per  
KM 

Sig  
per 
Cox 

KM 
Pval 

Method 

KM 
Pval 

KM 
FDR 

Cox 
Pval 

Cox 
FDR 

Cox 
HR 

HGG 7q Gain Yes Yes 
Log- 
Rank 0.017 0.274 0.021 0.34 2.41 

HGG 11p Loss Yes Yes 
Log- 
Rank 0.01 0.151 0.012 0.163 2.71 

Medullo 1q Gain No Yes 
Log- 
Rank 0.061 0.034 0.046 0.23 2.52 

Medullo 8p Gain Yes Yes 
Log- 
Rank <0.0001 0 <0.0001 <0.0001 12.88 

Medullo 8q Gain Yes Yes 
Log- 
Rank <0.0001 0.00032 0.0002 0.001 5.46 

Table 3.3: Survival analysis results for testing gain and loss statuses of recurrently altered 

chromosome arms 

Table of results from Kaplan-Meier survival estimates and Cox proportional hazards models for 

recurrently altered regions reported to have significant correlation with changes in overall 

survival within specific diagnosis groups in the CBTN cohort. 

 

While the role of copy number alterations has not been fully characterized in the context 

of pediatric brain tumors for all recurrent alterations identified in our analysis, most of the 

significant associations we detected between recurrent alterations and overall survival have been 

previously reported. In High-Grade Glioma, 7q gains have been previously reported in pediatric 

tumors (Barrow et al., 2011; Warren et al., 2012). Furthermore, gains on chromosome 7 have 

been shown to be associated with High-Grade Glioma subtypes that have worse overall survival 

(Phillips et al., 2006). Similarly, our analysis suggested that 7q gains are associated with worse 

overall survival (Figure 3.15A, Table 3.3). While 11p losses have been previously reported in 

adult High-Grade Glioma, they do not appear to have been previously reported in pediatric High-

Grade Glioma (Fults et al., 1992; Wemmert et al., 2005). Furthermore, no association between 
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11p losses and overall survival seems to have been reported in either adult or pediatric High-

Grade Glioma. Our results suggested that 11p losses can occur in pediatric cases and may be 

associated with worse overall survival (Figure 3.15B, Table 3.3). However, one caveat to these 

results is that the associations seen between recurrent alterations and overall survival in the High-

Grade Glioma group no longer reached significance (at a cutoff of 0.05) after multiple testing 

correction was applied (Table 3.3). 
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Figure 3.15: Kaplan-Meier survival curves split by alteration status for recurrently altered 

arms that were significantly associated with changes in survival in the High-Grade Glioma 
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group 

(A) Kaplan-Meier survival curves split by the gain status of 7q (top) and the corresponding risk 

table (bottom) in the High-Grade Glioma dataset within the CBTN cohort. (B) Kaplan-Meier 

survival curves split by the loss status of 11p (top) and the corresponding risk table (bottom) in 

the High-Grade Glioma dataset within the CBTN cohort. Curves are colored by their gain or 

loss status, respectively. Boxes around the curves indicate the 95% confidence intervals. 

 

In Medulloblastoma, both 1q and 8q gains have been previously reported to be detected 

in pediatric brain tumors (J. Y. Choi, 2023; Doussouki et al., 2019; Williamson et al., 2022). 

Moreover, gains of 1q and 8q have been found to be associated with worse overall survival (de 

Bont et al., 2008; De Bortoli et al., 2006; Lo et al., 2007). Likewise, our results suggested that 

both 1q and 8q gains are significantly correlated with worse overall survival (Figures 3.16A, 

3.16C). 8p gains and their association with overall survival do not appear to have been 

previously reported in pediatric brain tumors. Our analysis seemed to suggest that 8p gains are 

also associated with worse overall survival (Figure 3.16B). However, further exploration of this 

result suggested it may have been confounded by the relationship between 8q gains and overall 

survival, as these 8p gains always co-occurred with 8q gains in our dataset. Ultimately, our 

analysis of recurrent alterations confirmed the presence of several previously reported alterations 

and their associations with changes in overall survival (i.e. 7q gains in High-Grade Glioma, 1q 

and 8q gains in Medulloblastoma). Furthermore, it suggested that 11p losses in High-Grade 

Glioma, which seem to be previously unreported in the context of pediatric brain tumors, may be 

relevant to pediatric cases. 
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Figure 3.16: Kaplan-Meier survival curves split by alteration status for recurrently altered 

arms that were significantly associated with changes in survival in the Medulloblastoma 
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group 

(A) Kaplan-Meier survival curves split by the gain status of 1q (top) and the corresponding risk 

table (bottom) in the Medulloblastoma dataset within the CBTN cohort. (B) Kaplan-Meier 

survival curves split by the gain status of 8p (top) and the corresponding risk table (bottom) in 

the Medulloblastoma dataset within the CBTN cohort. (C) Kaplan-Meier survival curves split by 

the gain status of 8q (top) and the corresponding risk table (bottom) in the Medulloblastoma 

dataset within the CBTN cohort. Curves are colored by their gain status. Boxes around the 

curves indicate the 95% confidence intervals. 

 

In addition to testing recurrently altered arms identified within each diagnosis group, we 

also used multivariate Cox models (with variables for arm alteration status, cohort, diagnosis 

group, and sex) to test each recurrently altered region identified in the full dataset and assess 

whether any recurrent alterations may be significantly associated with changes in survival across 

diagnosis groups. This testing indicated that gains in three regions (2q, 4p, 11q) may be 

significantly associated with worse overall survival and losses in two regions (1p, 11q) may be 

significantly associated with better overall survival across the full dataset (Supplemental Table 

S3.3). However, the results also indicated that diagnosis group and cohort still had a strong effect 

on survival differences for all these regions. Furthermore, the variables for diagnosis group and 

cohort appeared to fail the proportional hazards assumption for the Cox model (Supplemental 

Figure S3.11, Supplemental Table S3.4). Thus, the associations reported between arm gains or 

losses and overall survival in the full dataset containing all diagnosis groups may not be reliable 

and would require additional validation. 
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3.5 Discussion 

To investigate the landscape of copy number alteration in pediatric brain tumors and examine the 

relationship between CNVs and overall survival, we characterized copy number variations for 

more than 250 pediatric brain tumor samples across four diagnosis groups (ATRT, 

Ependymoma, High-Grade Glioma, and Medulloblastoma), calculated CNV burden using two 

metrics (CNV% and CNV segment count), identified recurrent copy number alterations, and 

analyzed their associations with overall survival. The results of this analysis suggested that both 

CNV burden and specific copy number alterations may have prognostic value within particular 

diagnosis groups.  

For example, high CNV burden appeared to be associated with worse overall survival 

within the High-Grade Glioma group. Furthermore, gains of 7q and losses of 11p in High-Grade 

Glioma and gains of 1q and 8q in Medulloblastoma seemed to be associated with worse overall 

survival. While most of these observations have been previously reported in other pediatric brain 

tumor studies, the association between 11p losses and worse overall survival appeared to be 

previously unreported in pediatric High-Grade Glioma.  

One caveat to the results presented here, particularly those reported within individual 

diagnosis groups, is that the sample size for our analysis was fairly low, with the largest 

diagnosis group (Medulloblastoma) having only 129 samples analyzed at most. Nevertheless, the 

ability to detect known events and associations (as well as seemingly unreported events and 

associations) within our dataset indicates the approaches utilized for this analysis can be 

expanded to larger cohorts and may lead to additional detection of previously unknown events 

and associations, which in turn could be used to inform the diagnosis and treatment of pediatric 

brain tumors. 
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Moreover, the common occurrence of CNVs also raises several questions about the role 

of CNVs in pediatric brain tumors. Namely, with regard to the role copy alteration events play in 

the initiation and progression of pediatric cancers and how alteration events might be related to 

treatment responses. For example, can copy number alterations be a driving mechanism of 

pediatric brain tumor development? Are these copy alteration events typically clonal or 

subclonal? And how might clonality of copy alterations impact susceptibility or response to 

treatment? The observations presented here, and the subsequent questions raised, provide an 

avenue for further exploration of the full impact of copy number alterations in pediatric brain 

tumors.  

In addition, several other topics for exploration include analysis of CNVs in the context 

of molecular subtypes within diagnosis groups, exploration of potential driver genes and 

mutations located in regions of recurrent alteration, looking at the presence of co-occurring or 

mutually exclusive copy alteration events and their correlation with overall survival, examining 

the relationship between specific gene mutations, tumor mutation burden, and copy number 

alteration, and exploring patterns of LOH (particularly copy neutral LOH) and their relationship 

with survival. 

 

3.6 Methods 

3.6.1 Selection of pediatric brain tumor samples 

For both the Washington University (WashU) and Children’s Brain Tumor Network (CBTN) 

cohorts, tumor samples obtained from patients with ATRT, Ependymoma, High-Grade Glioma, 

or Medulloblastoma diagnoses were included in the analysis. The High-Grade Glioma group 

included patients with a diagnosis of Glioblastoma, Anaplastic Astrocytoma, or DIPG. For the 
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WashU cohort, tumor samples were obtained from a bank of diagnostic pediatric brain tumor 

samples from patients initially diagnosed and treated at St. Louis Children’s Hospital. Permission 

to access CBTN data as a satellite consortia member was obtained from the Children’s Brain 

Tumor Network (formerly the Children’s Brain Tumor Tissue Consortium). Samples for 

inclusion in the CBTN cohort used for this analysis were identified using the Kids First Data 

Resource Portal. Only patients with whole genome sequencing (WGS) of initial tumor samples 

available were included. Aligned WGS reads for tumor and matched normal samples were 

downloaded in cram format from the Seven Bridges Genomics Cavatica platform. To access and 

download alignment files from Cavatica, membership access was obtained for the PBTA-CBTN 

dataset. Once downloaded, cram files were converted to bam files using samtools view -b.  

 

3.6.2 Whole genome sequencing and alignment 

Whole genome sequencing (WGS) libraries for the tumor samples from the WashU cohort were 

constructed using Automated Kapa Hyper PCR Free preparation kits for frozen samples (N=59) 

and Swift Accel-NGS 2S DNA Library preparation kits for FFPE samples (N=8). These libraries 

were sequenced on the Illumina NovaSeq 6000 to a target depth of 5x (i.e. low pass WGS). This 

sequencing was performed by the McDonnell Genome Institute (MGI) at Washington University 

School of Medicine in St. Louis. Details of library construction and sequencing methods utilized 

by MGI have been previously reported (Griffith, Miller, et al., 2015). Samples used to generate 

the panel of normals for the WashU cohort were isolated from matched normal adjacent breast 

tissue from 48 breast cancer patients. WGS libraries were constructed using Automated TruSeq 

Nano preparation kits and sequenced on the HiSeqX to a target depth of 30x. For the CBTN 

samples, tumor samples were sequenced to a target depth of 60x, while matched normal samples 
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were sequenced to a target depth of either 30x or 60x. Normal samples for each patient in the 

CBTN cohort consisted of peripheral whole blood samples for all samples except two, which had 

saliva samples that served as the normal. Full details of CBTN sequencing methods have been 

previously reported (Shapiro et al., 2023). For all samples from both cohorts, WGS reads were 

aligned to the GRCh38 reference genome using BWA-MEM (H. Li, 2013). 

 

3.6.3 CNV calling, LOH calling, and manual correction 

Copy number variant calling was performed using the CNVkit (v0.9.8) batch pipeline with the 

WGS method and a target bin size of 100,000 bp (Talevich et al., 2016). CNVkit’s segment 

command was then run with the CNR files generated from this initial copy number variant 

calling to produce updated CNS files with outliers and low coverage segments dropped 

(parameters: -t 1e-31 --drop-low-coverage --drop-outliers 10). The filtered CNS files and the 

original CNR files were used to generate CNV plots across the genome for each sample. LOH 

calling was performed using a subset of SNP positions reported in GNOMAD (v3.0) (S. Chen et 

al., 2022). Bam-readcount was run to get reference and alternate allele read counts to calculate b-

allele frequencies (BAFs) at each of the selected SNP positions in each tumor sample (Khanna et 

al., 2021). LOH plots were generated for each sample using these BAFs. The smooth.spline 

function in R was used to generate smoothed lines connecting the calculated BAFs. The CNV 

and LOH plots were then used to perform manual correction and rescue any missed copy number 

variant calls. Correction metrics could include a recentering factor, an adjusted upper cutoff for 

calling gains, an adjusted lower cutoff for calling losses, and adjustment of X and Y copy 

number values based on the reported sex of a sample. Segments flanking reported gap regions 

from the UCSC Genome Browser gap track for GRCh38 were filtered as well. These gap types 
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included short arm, heterochromatin, telomere, contig, and scaffold gaps, as defined by UCSC 

(Gap Track Settings).  

 

3.6.4 Calculation of CNV burden 

Total genome-wide CNV burden was summarized by two metrics: CNV% and CNV segment 

count. CNV% was calculated by taking the total number of altered base pairs and dividing it by 

the approximate size of the human genome (3.2 billion base pairs). For each sample, the total 

number of altered base pairs was calculated by subtracting the start position from the end 

position for each segment remaining after filtering and correction to determine the size of each 

segment, then summing the sizes of all segments across the genome. For each sample, the CNV 

segment count was calculated by summing the total number of altered segments remaining after 

filtering and correction across the genome. CNV burden was categorized separately for each 

metric (i.e. CNV% and CNV segment count) using three different methods: averages, optimal 

cutpoints, and tertiles. Averages for CNV% and CNV segment count were calculated within each 

diagnosis group separately using the mean function in R. Optimal cutpoints for CNV% and CNV 

segment count were identified within each diagnosis group separately using the surv_cutpoint 

function (which is a wrapper for the maxstat function) within the survival package in R. Tertile 

cutoffs for CNV% and CNV segment count were calculated within each diagnosis group using 

the quantiles function in R with probabilities 1/3, 2/3, and 1. 

 

3.6.5 Identification of recurrent alterations 

Recurrently altered genomic regions were identified using GISTIC 2.0 with default parameters 

(Mermel et al., 2011). Recurrently altered regions with FDR q-values of 0.25 or less were 
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reported. Input segmentation files were generated for the full dataset and within each diagnosis 

group using CNVkit’s export seg command. For testing recurrently altered genomic regions for 

correlation with changes in survival, focal regions reported by GISTIC were collapsed into single 

regions based on chromosome arms. For each arm, the gain/no gain and loss/no loss statuses 

were determined in each sample. The p arm for a given recurrently altered chromosome was 

classified as harboring a gain in a sample if any portion of a gain segment was detected more 

than 500kb upstream of the centromere region on the corresponding chromosome in that sample. 

The p arm for a given recurrently altered chromosome was classified as harboring a loss in a 

sample if any portion of a loss segment was detected more than 500kb upstream of the 

centromere region on the corresponding chromosome in that sample. The q arm for a given 

recurrently altered chromosome was classified as harboring a gain in a sample if any portion of a 

gain segment was detected more than 500kb downstream of the centromere region on the 

corresponding chromosome in that sample. The q arm for a given recurrently altered 

chromosome was classified as harboring a loss in a sample if any portion of a loss segment was 

detected more than 500kb downstream of the centromere region on the corresponding 

chromosome in that sample. 

 

3.6.6 Statistical analyses  

Spearman correlation values for comparing continuous variables were calculated using the cor 

function in R with complete observations. Kaplan-Meier curves were generated using the survfit 

function in R. The choice of statistical tests used to check for significant differences in Kaplan-

Meier survival curves was determined based on crossing of the curves. For crossing curves, the 

Gehan-Breslow (aka the generalized Wilcoxon) method was used. For non-crossing curves, the 



107 

log-rank method was used. Cox models were run using the coxph function in R. Tests of the 

proportional hazards assumption were run using the cox.zph function in R. For testing recurrently 

altered arms within each diagnosis group, Cox models for gains and losses were run separately 

for each arm. The models included categorical variables for arm (gain/no gain or loss/no loss) 

and sex. Sex was not significantly associated with changes in survival in any of the models. 

Samples with no sex reported (N = 8 for the full dataset) were excluded. False discovery rate 

(FDR) multiple testing correction was done for both the Kaplan-Meier and the Cox model p-

values reported within each diagnosis group for testing the relationship between survival and 

chromosome arm gains or losses. 

 

3.7 Supplemental Tables 

Diag. Metric Avg. KM Method KM Pval 
Ependymoma CNV% 12.55 Gehan-Breslow 0.41 
Ependymoma CNV segment count 18.48 Gehan-Breslow 0.39 
HGG CNV% 19.56 Gehan-Breslow 0.19 
HGG CNV segment count 36.14 Gehan-Breslow 0.059 
Medullo CNV% 18.52 Gehan-Breslow 0.59 
Medullo CNV segment count 23.31 Log-Rank 0.17 
Table S3.1: Survival analysis results for categorizing CNV burden based on averages 

Table of survival analysis results for categorizing CNV burden based on averages for CNV% 

and CNV segment count within each diagnosis group across both cohorts. Samples with CNV% 

or CNV segment count below the corresponding average were classified as “CNV Low”. 

Samples with CNV% or CNV segment count above the corresponding average were classified as 

“CNV High”. KM Method indicates the statistical method used to test for significant 

differences in the Kaplan-Meier survival estimates.  
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Diag. Metric 
Tertile 
Low 

Tertile 
Mid 

Tertile 
High KM Method KM Pval 

Ependymoma CNV% 0.758 11.373 71.295 Gehan-Breslow 0.56 

Ependymoma CNV segment count 1 15 162 Gehan-Breslow 0.19 

HGG CNV% 10.616 24.87 66.826 Gehan-Breslow 0.16 

HGG CNV segment count 9 43 237 Gehan-Breslow 0.2 

Medullo CNV% 6.967 19.297 66.04 Gehan-Breslow 0.86 

Medullo CNV segment count 6 22.667 126 Gehan-Breslow 0.38 
Table S3.2: Survival analysis results for categorizing CNV burden based on tertiles 

Table of survival analysis results for categorizing CNV burden based on tertiles for CNV% and 

CNV segment count within each diagnosis group across both cohorts. Samples with CNV% or 

CNV segment count below the corresponding low tertile cutoff value were classified as “CNV 

Low”. Samples with CNV% or CNV segment count between the corresponding low and mid 

tertile cutoff values were classified as “CNV Mid”. Samples with CNV% or CNV segment count 

above the corresponding middle tertile cutoff value were classified as “CNV High”. KM 

Method indicates the statistical method used to test for significant differences in the Kaplan-

Meier survival estimates. 

 

Arm Status Arm 
Pval 

Arm 
HR 

ATRT 
Pval 

ATRT 
HR 

HGG 
Pval 

HGG 
HR 

Med 
Pval 

Med 
HR 

Cohort 
Pval 

Cohort 
HR 

Sex 
Pval 

Sex 
HR 

2q Gain 0.006 2.01 3E-7 5.23 1E-8 4.76 0.065 1.62 2E-5 2.15 0.051 1.42 

4p Gain 0.037 1.77 2E-7 5.3 4E-9 4.95 0.072 1.60 2E-5 2.15 0.025 1.51 

11q Gain 0.026 2.05 2E-7 5.39 9E-10 5.26 0.027 1.78 3E-5 2.09 0.032 1.47 

1p Loss 0.007 0.43 8E-7 4.85 0 6.15 0.037 1.72 4E-6 2.33 0.096 1.35 

11q Loss 0.016 0.56 2E-6 4.57 1E-9 5.15 0.045 1.68 6E-5 2.04 0.114 1.34 

Table S3.3: Survival analysis results for testing gain and loss statuses of recurrently altered 

chromosome arms 
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Table of Cox model results for recurrently altered arms that were significantly associated with 

changes in overall survival using Cox models with arm status (gain/no gain or loss/no loss), 

diagnosis group, cohort, and sex as variables in the full dataset containing all diagnosis groups 

across both cohorts. 

 

Arm Status Diag Pval Cohort Pval Sex Pval Arm Pval Global Pval 

2q Gain 0.00386 0.00947 0.21076 0.12406 0.00022 

4p Gain 0.00384 0.00737 0.34976 0.12168 0.0003 

11q Gain 0.00243 0.00937 0.62483 0.13525 0.00035 

1p Loss 0.0021 0.02848 0.60712 0.17884 0.00111 

11q Loss 0.00228 0.01183 0.13428 0.14814 0.00024 

Table S3.4: Results for checking the proportional hazards assumption for testing gain and 

loss statuses of recurrently altered chromosome arms  

Table of results for checking the proportional hazards assumption of the Cox model (using the 

cox.zph function in R) for diagnosis group, cohort, sex, arm alteration status, and the model as a 

whole (global) when testing gain and loss statuses of recurrently altered chromosome arms in 

the full dataset containing all diagnosis groups across both cohorts. P-values less than 0.05 

indicate that the corresponding variable fails the proportional hazards assumption of the Cox 

model, meaning that the hazard functions of the given variable are not proportional over time. 
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3.8 Supplemental Figures 
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Figure S3.1: Kaplan-Meier survival curves split by CNV burden based on tertiles for the 

Ependymoma group 

(A) Kaplan-Meier survival curves split by CNV burden classification based on CNV% tertiles 

(top) and the corresponding risk table (bottom) in the Ependymoma group across both cohorts. 

(B) Kaplan-Meier survival curves split by CNV burden classification based on CNV segment 

count tertiles (top) and the corresponding risk table (bottom) in the Ependymoma group across 

both cohorts. Curves are colored by their CNV burden group. Boxes around the curves indicate 

the 95% confidence intervals. 
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Figure S3.2: Kaplan-Meier survival curves split by CNV burden based on tertiles for the 

High-Grade Glioma group 



113 

(A) Kaplan-Meier survival curves split by CNV burden classification based on CNV% tertiles 

(top) and the corresponding risk table (bottom) in the High-Grade Glioma group across both 

cohorts. (B) Kaplan-Meier survival curves split by CNV burden classification based on CNV 

segment count tertiles (top) and the corresponding risk table (bottom) in the High-Grade Glioma 

group across both cohorts. Curves are colored by their CNV burden group. Boxes around the 

curves indicate the 95% confidence intervals. 
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Figure S3.3: Kaplan-Meier survival curves split by CNV burden based on tertiles for the 

Medulloblastoma group 
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(A) Kaplan-Meier survival curves split by CNV burden classification based on CNV% tertiles 

(top) and the corresponding risk table (bottom) in the Medulloblastoma group across both 

cohorts. (B) Kaplan-Meier survival curves split by CNV burden classification based on CNV 

segment count tertiles (top) and the corresponding risk table (bottom) in the Medulloblastoma 

group across both cohorts. Curves are colored by their CNV burden group. Boxes around the 

curves indicate the 95% confidence intervals. 
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Figure S3.4: Kaplan-Meier survival curves split by CNV burden based on averages for the 

Ependymoma group 
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(A) Kaplan-Meier survival curves split by CNV burden classification based on CNV% average 

(top) and the corresponding risk table (bottom) in the Ependymoma group across both cohorts. 

(B) Kaplan-Meier survival curves split by CNV burden classification based on CNV segment 

count average (top) and the corresponding risk table (bottom) in the Ependymoma group across 

both cohorts. Curves are colored by their CNV burden group. Boxes around the curves indicate 

the 95% confidence intervals. 
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Figure S3.5: Kaplan-Meier survival curves split by CNV burden based on averages for the 

High-Grade Glioma group 
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(A) Kaplan-Meier survival curves split by CNV burden classification based on CNV% average 

(top) and the corresponding risk table (bottom) in the High-Grade Glioma group across both 

cohorts. (B) Kaplan-Meier survival curves split by CNV burden classification based on CNV 

segment count average (top) and the corresponding risk table (bottom) in the High-Grade 

Glioma group across both cohorts. Curves are colored by their CNV burden group. Boxes 

around the curves indicate the 95% confidence intervals. 
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Figure S3.6: Kaplan-Meier survival curves split by CNV burden based on averages for the 

Medulloblastoma group 
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(A) Kaplan-Meier survival curves split by CNV burden classification based on CNV% average 

(top) and the corresponding risk table (bottom) in the Medulloblastoma group across both 

cohorts. (B) Kaplan-Meier survival curves split by CNV burden classification based on CNV 

segment count average (top) and the corresponding risk table (bottom) in the Medulloblastoma 

group across both cohorts. Curves are colored by their CNV burden group. Boxes around the 

curves indicate the 95% confidence intervals. 
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Figure S3.7: Log-rank test statistics used to determine optimal cutpoints for CNV% and 

CNV segment count in the Ependymoma group 
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(A) Scatter plot of CNV% versus standardized log-rank test statistic values generated for testing 

potential optimal cutpoints, using the maxstat function in R, for the Ependymoma group across 

both cohorts. (B) Scatter plot of CNV segment count versus standardized log-rank test statistic 

values generated for testing potential optimal cutpoints, using the maxstat function in R, for the 

Ependymoma group across both cohorts. 
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Figure S3.8: Log-rank test statistics used to determine optimal cutpoints for CNV% and 

CNV segment count in the High-Grade Glioma group 
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(A) Scatter plot of CNV% versus standardized log-rank test statistic values generated for testing 

potential optimal cutpoints, using the maxstat function in R, for the High-Grade Glioma group 

across both cohorts. (B) Scatter plot of CNV segment count versus standardized log-rank test 

statistic values generated for testing potential optimal cutpoints, using the maxstat function in R, 

for the High-Grade Glioma group across both cohorts. 
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Figure S3.9: Log-rank test statistics used to determine optimal cutpoints for CNV% and 

CNV segment count in the Medulloblastoma group 
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(A) Scatter plot of CNV% versus standardized log-rank test statistic values generated for testing 

potential optimal cutpoints, using the maxstat function in R, for the Medulloblastoma group 

across both cohorts. (B) Scatter plot of CNV segment count versus standardized log-rank test 

statistic values generated for testing potential optimal cutpoints, using the maxstat function in R, 

for the Medulloblastoma group across both cohorts. 

 

 

Figure S3.10: Kaplan-Meier survival curves split by cohort 

Kaplan-Meier survival curves split by cohort (top) and the corresponding risk table (bottom). 

Curves are colored by the cohort. Boxes around the curves indicate the 95% confidence 

intervals. 
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Figure S3.11: Schoenfeld residual plots for cohort and diagnosis variables  

(A) Plot of scaled Schoenfeld residuals for the diagnosis group variable for the Cox model 

testing arm alteration status in the full dataset containing all diagnosis groups across both 

cohorts. (B) Plot of scaled Schoenfeld residuals for the cohort variable for the Cox model testing 

arm alteration status in the full dataset containing all diagnosis groups across both cohorts. The 

red points show the residual values. The solid line is a smoothing spline fitted to the residual 

values. The dotted lines represent the confidence interval of 2 standard deviations. A plot of the 

Schoenfeld residuals for a variable that fails the proportional hazards assumption of the Cox 

model will show patterns that vary over time (as opposed to a flat horizontal line that does not 

vary over time). 
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Chapter 4: Integration of the Drug–Gene 

Interaction Database (DGIdb 4.0) with open 

crowdsource efforts 

4.1 Preamble 

The following chapter has been published as a peer reviewed manuscript with the following 

citation: 

Freshour SL*, Kiwala S*, Cotto KC*, Coffman AC, McMichael JM, Song JJ, Griffith M, 

Griffith OL, Wagner AH. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with 

open crowdsource efforts. 2021. Nucleic Acids Research. DOI: 10.1093/nar/gkaa1084 

* denotes co-first authors 

 

As an author of the published manuscript, and in compliance with the editorial policies at 

Nucleic Acids Research, the cited publication is included in full in the following chapter. As a 

co-first author of this manuscript, I assisted with identifying new drug and gene data sources to 

add and existing sources to update in DGIdb 4.0, contributed to the development of new features 

to support the concept of interaction directionality, contributed to figure generation, drafting the 

manuscript, and addressing reviewer comments for resubmission and publication. 
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4.2 Summary 

The Drug-Gene Interaction Database (DGIdb, www.dgidb.org) is a web resource that provides 

information on drug-gene interactions and druggable genes from publications, databases, and 

other web-based sources. Drug, gene, and interaction data are normalized and merged into 

conceptual groups. The information contained in this resource is available to users through a 

straightforward search interface, an application programming interface (API), and TSV data 

downloads. DGIdb 4.0 is the latest major version release of this database. A primary focus of this 

update was integration with crowdsourced efforts, leveraging the Drug Target Commons for 

community-contributed interaction data, Wikidata to facilitate term normalization, and export to 

NDEx for drug-gene interaction network representations. Seven new sources have been added 

since the last major version release, bringing the total number of sources included to 41. Of the 

previously aggregated sources, 15 have been updated. DGIdb 4.0 also includes improvements to 

the process of drug normalization and grouping of imported sources. Other notable updates 

include the introduction of a more sophisticated Query Score for interaction search results, an 

updated Interaction Score, the inclusion of interaction directionality, and several additional 

improvements to search features, data releases, licensing documentation and the application 

framework. 

 

4.3 Introduction 

Originally released in 2013, the Drug–Gene Interaction database (DGIdb) serves as a central 

aggregator of information on drug-gene interactions and druggability from multiple diverse 

sources (Griffith et al., 2013). The subsequent major updates to DGIdb 2.0 (in 2016) and 3.0 (in 
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2018) included improvements to the user interface and search response times, the addition of an 

API, the introduction and improvement of gene and drug grouping methods, and the expansion 

of source content through the inclusion of new sources and updates of existing sources (Cotto et 

al., 2018; Wagner et al., 2016). Since the release of DGIdb 3.0, many of the existing sources 

have been substantially updated and new sources have become available. Here we describe 

changes made for our most recent major version release, DGIdb 4.0. In this release, we have 

made an effort to integrate crowdsourced data and sources in several areas, including the 

addition of the crowdsourced Drug Target Commons as a drug-gene interaction source, and the 

use of the open, community-curated Wikidata resource for drug normalization (Tanoli et al., 

2018; Vrandečić & Krötzsch, 2014). We also illustrate the value of our integration efforts in 

downstream community tools, through the incorporation of our data into NDEx (Pratt et al., 

2017). To keep content offered by DGIdb current, we have developed additional automatic 

update routines for multiple sources and implemented a new background job management 

system (Sidekiq, sidekiq.org) for routine job scheduling. Finally, DGIdb 4.0 focuses on 

numerous improvements of search results, including new and updated scores for interaction 

search results and improved drug normalization routines. 

 

4.4 Results 

4.4.1 Integration with crowdsourced efforts 

A primary focus of the DGIdb 4.0 release is the inclusion and utilization of crowdsourced efforts 

in several aspects of our database. The utility of our database begins with importing relevant 

drug, gene, and drug-gene interaction records (called claims) from outside resources. We 

normalize and sort these claims into conceptual groups, and make these concepts searchable via 



132 

a web application and API. We also export data for bulk download and use with external 

resources (Figure 4.1). In this update, we extend these features by integration with crowdsourced 

drug-gene interaction claims, normalizing drug terms, and integrating with external resources. 

For drug–gene interaction claims, we have added Drug Target Commons as a new source 

in DGIdb 4.0 (Figure 4.1). Drug Target Commons provides an extensive curated database of 

crowdsourced drug-gene interactions, from which we added a total of 23,879 interaction claims. 

This represents ∼24% (23,879/100,273) of the total interaction claims in DGIdb. 

For drug normalization, we now use a Wikidata normalizer in addition to a ChEMBL 

normalizer from the thera-py python package (Figure 4.1; additional detail in ‘Drug grouping 

improvements’ section) (Mendez et al., 2019). Wikidata serves as a source of collaborative, 

crowdsourced drug concepts, and has allowed us to improve normalization in cases where 

ChEMBL normalization failed. For example, concepts representing the terms annamycin, N-

methyl scopolamine and Debio 1347 are all found in Wikidata but not ChEMBL. 

Finally, we have integrated DGIdb with the Network Data Exchange (NDEx), a 

community resource that allows sharing and publishing of biological data in a network-based 

format (Pratt et al., 2017). For DGIdb, export of DGIdb data to the NDEx platform provides a 

resource for the visual representation of relationships and interactions between drugs and genes 

present in our database, allowing users to visually explore a global network of drugs and gene 

interactions of interest. NDEx TSVs are generated monthly and automatically uploaded to the 

NDEx server to keep the DGIdb network in NDEx up-to-date (Figure 4.1). NDex is the latest in 

a number of community resources that have integrated DGIdb. Existing data clients include 

GeneCards, BioGPS, CancerTracer, Gene4Denovo, SL-BioDP, TargetDB and OncoGemini, 
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among others (De Cesco et al., 2020; Deng et al., 2019; Nicholas et al., 2020; Stelzer et al., 2016; 

C. Wang et al., 2020; Wu et al., 2016; Zhao et al., 2020). 

 

Figure 4.1: Overview of main components of DGIdb 

Data sources are imported from outside resources (over 40 as of DGIdb 4.0), normalized and 

grouped with internal processes to prepare records to be displayed in DGIdb, and exported to 

TSV for download and integration with other resources. Process management is handled by 
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Sidekiq for automation of importing, normalization and grouping, and exporting. A subset of new 

data sources are highlighted in green, a subset of updated pre-existing data sources are 

highlighted in blue. The updated sources highlighted in this figure are some of the sources that 

have been updated through manual curation. Information on additional sources and their status 

in DGIdb 4.0 can be found in Figure 4.2 and Supplementary Table S1. New features and 

technologies from DGIdb 4.0 are indicated with green dots, pre-existing features and 

technologies that have been updated are indicated with blue dots. The drug-gene network graph 

shown in the bottom right is an example of the data visualizations available on NDEx. 

Abbreviations: CMI = Caris Molecular Intelligence, FO = Foundation One, DTC = Drug 

Target Commons and HPA = Human Protein Atlas. 

 

4.4.2 New and updated sources 

In an effort to ensure that DGIdb offers diverse and contemporary information, we have updated 

and added several sources to DGIdb 4.0. In addition to the previously mentioned Drug Target 

Commons, we now also include COSMIC as a new source of drug-gene interaction data 

(Supplementary Table S1) (Tanoli et al., 2018; Tate et al., 2019). COSMIC also serves as an 

additional source of curated Drug Resistance gene category claims. Other new gene category 

sources include the Tempus xT panel of actionable cancer therapy target genes, a list of the top 

priority genes from the Illuminating the Druggable Genome (IDG) Initiative, the Human Protein 

Atlas, the Oncomine clinical cancer biomarker assay, and understudied targets of the IDG 

program from Pharos (Supplementary Table S1) (Beaubier et al., 2019; Nguyen et al., 2017; 

Rodgers et al., 2018; Uhlen et al., 2017; Williams et al., 2018). From these new sources, we have 

added 23,916 new drug-gene interaction claims and 8,478 new druggable gene category claims 
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(Figure 4.2). In total, we have added two new sources of drug-gene interactions and five new 

sources of druggable gene category claims. DGIdb 4.0 now has 100,273 interaction claims and 

33,577 druggable gene category claims. In total, there are now 10,606 druggable genes and 

54,591 drug–gene interactions, which cover 41,102 genes and 14,449 drugs, within the DGIdb. 

 

Figure 4.2: DGIdb 4.0 content by source 

The number of drug-gene interaction claims (first panel) and druggable gene categories (second 

panel) are separated into three categories: sources that are new, sources that existed in the 

DGIdb previously but have been updated for 4.0, or sources that existed previously but have not 

been updated. Abbreviations: CF = Clearity Foundation, CGI = Cancer Genome Interpreter, 

CMI = Caris Molecular Intelligence, DTC = Drug Target Commons, FO = Foundation One, 

GO = Gene Ontology, GTP = Guide to Pharmacology, HPA = Human Protein Atlas, IDG = 

Illuminating the Druggable Genome, JAX-CKB = JAX-Clinical Knowledgebase, MCG = My 

Cancer Genome, MSK = Memorial Sloan Kettering, OncoKB = Precision Oncology Knowledge 

Base, TALC = Targeted Agents in Lung Cancer, TDG = The Druggable Genome, TEND = 

Trends in the Exploration of Novel Drug targets and TTD = Therapeutic Target Database. 
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We have also updated multiple sources including large, well-curated sources such as 

DrugBank, Guide to Pharmacology, Gene Ontology, OncoKB, PharmGKB, and the Therapeutic 

Target Database (Figure 4.2, Supplementary Table S1) (Armstrong et al., 2020; Ashburner et al., 

2000; Chakravarty et al., 2017; The Gene Ontology Consortium, 2019; Y. Wang et al., 2020; 

Whirl-Carrillo et al., 2012; Wishart et al., 2018). To facilitate routine updates, the importer for 

PharmGKB has been updated to an online importer that can be run periodically using DGIdb's 

new automated job scheduling system. Similarly, Pharos, one of our new sources, has been 

implemented as an online updater (Nguyen et al., 2017). Of the 41 sources in DGIdb, 12 sources 

are now imported using the online updater format, including Entrez, the core source of gene 

concepts for gene grouping in DGIdb, and Ensembl, a key source of gene aliases (Brown et al., 

2015; Yates et al., 2020). In DGIdb 4.0, the number of genes imported from Entrez has increased 

from 41,102 to 42,851 and Ensembl has been updated from version 90_38 to version 101_38. 

We have also migrated several older sources from our original domain-specific language (DSL) 

importers to the improved TSV importer style implemented in DGIdb 3.0. 

In DGIdb 4.0, the database structure and presentation model was updated to allow 

sources to be imported with multiple source types. This change enables merging of sources that 

were previously duplicated for each independent claim type (drug, gene, interaction, druggable 

gene category). For example, we previously imported both interaction claims and druggable gene 

category claims from Guide to Pharmacology with two separate importers which created two 

separate sources (GuideToPharmacologyInteractions and GuideToPharmacologyGenes, 

respectively) (Armstrong et al., 2020). With this update, the import of interaction claims and 

druggable gene category claims is now handled by one importer and only a single source 

(GuideToPharmacology) is created. This is intended to simplify and unify claim sources to aid in 
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downstream interpretation. Additionally, supporting sources that have multiple source types 

enables easy extension to collect more informative claim type information. For example, some 

claims from CIViC can be imported with the additional categories of drug resistance and 

clinically actionable (Griffith et al., 2017). This change results in an additional 150 druggable 

gene category claims being imported from CIViC. Overall, these changes will increase the 

efficiency and accuracy of the process of importing and updating sources in DGIdb 4.0 

compared to previous versions and will make it easier for users to evaluate individual sources. 

 

4.4.3 Drug grouping improvements 

Another notable change in the DGIdb 4.0 update is the improvement to drug grouping and 

normalization. Previously, we grouped drug claims using a rule-based pairwise association 

approach. This process was cumbersome, requiring a lengthy and complete re-grouping of all 

claims whenever we updated sources in order to generate consistent groupings. We revised this 

approach by creating a normalization component independent of the claims aggregated by 

DGIdb, that could be run on a per-source basis. When redesigning this part of DGIdb, we took 

steps to enable reuse of this normalizer as a modular component for other resources. To this end, 

we leveraged and contributed to a drug normalization service from the Variant Interpretation for 

Cancer Consortium (the ‘thera-py’ Python Package; source code online at 

https://github.com/cancervariants/therapy-normalization). Among our contributions to thera-py 

was a normalizer for the Wikidata resource, further enabling community contributions to assist in 

concept normalization both for DGIdb and other resources reliant upon the VICC normalization 

services (Vrandečić & Krötzsch, 2014). 



138 

Drug claims from DGIdb were normalized using the ChEMBL and Wikidata normalizers 

from thera-py. Rules were written to formalize grouper behavior based upon match 

characteristics of a query. Briefly, these rules prioritize matches to primary labels over aliases, 

exact case over case-insensitive, and ChEMBL over other normalizers. An algorithm for 

constructing a merged drug concept from normalizer results was specified, enabling a 

standardized set of aliases for a given concept identifier. Pseudocode for this algorithm is 

provided (see Supplementary Data), and all implemented code is available on our public 

repository (see Data Availability). 

 

4.4.4 New Query Score and updated Interaction Score 

One of the main features added in DGIdb 4.0 is the concept of a relative Query Score for 

interaction search results. Previously, interaction search results displayed only a static 

Interaction Score based on evidence of an interaction (i.e. the number of publications and 

sources supporting an interaction claim). This Interaction Score did not take into account 

whether the gene and drug involved in a given interaction were also part of a large number of 

other interactions and, thus, had a low specificity that should be penalized. In addition, when 

searching for a set of genes or drugs, the Interaction Score does not prioritize results with 

overlapping interacting drugs or genes, which might be of more interest to the user, particularly 

in drug discovery and pathway applications. 

DGIdb 4.0 now provides a Query Score that is relative to the search set and considers the 

overlap of interactions in the result set. For interaction searches using a gene list, the Query 

Score is calculated from the Evidence Scores (publications and sources), the number of genes 

from the search set that interact with the given drug, and the degree to which the drug has known 
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interactions with other genes (Figure 4.3). Similarly, for interaction searches using a drug list, the 

Query Score depends on the Evidence Scores (publications and sources), the number of drugs 

from the search set that interact with the given gene, and the degree to which the gene has known 

interactions with other drugs (Figure 4.3). In effect, this means that genes and drugs with many 

overlapping interactions in the search set will rank more highly, with the caveat that drugs or 

genes involved in many interactions, in general, will have lowered scores (Figure 4.3). 

Our static Interaction Score previously introduced in DGIdb 3.0 has been adjusted in 

DGIdb 4.0 (Cotto et al., 2018). The Interaction Score now mirrors the Query Score, except it is 

unaffected by the queried gene or drug sets, instead relying only on Evidence Scores and the 

degree to which both the gene and drug are involved in other interactions (Figure 4.3). 

Interaction Scores follow a long-tail distribution, indicative of many highly promiscuous drugs 

and genes, and relatively few well-supported, highly specific drug-gene interactions 

(Supplementary Figure S1) (Haupt et al., 2013). 

The introduction of the relative Query Score provides users with a score that gives a more 

intuitive ranking of drugs or genes based on the search set of interest, allowing the prioritization 

of drugs or genes that have overlapping, specific interactions with the search set. Similarly, the 

improvements to the static Interaction Score provide a more nuanced scoring system that takes 

into consideration the number of interactions for a drug-gene pair, in addition to the previous 

Evidence Scores, giving a more informative static Interaction Score. 

As sources are updated and additional interaction claims are added to DGIdb, Interaction 

Scores and Query Scores are subject to change as a result of the changing measure to which 

Drug and Gene concepts interact with one another. Query Scores are always variable, dependent 

upon the set genes or drugs searched. 
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Figure 4.3: Overview of DGIdb's new Query scores and Interaction scores  

(A) Schematic of how each of the new scores is calculated within DGIdb. Gene and drug queries 

both return a Query Score that is dependent on the search terms. Each interaction has an 

Interaction Score that is calculated independently of other search terms. (B) Example of a Query 

Score changing based on the terms searched. In the first panel, only MEK1 and MEK2 were 

searched and the Query Score for the interaction between MEK1 and Cobimetinib was 8.09. In 

the second panel, BRAF and KRAS were added to the search query. These both interact with 

Cobimetinib and thus raise the Query Score to 16.18. (C) Example of Interaction Score. The 

panel on the left shows the interaction between ZEB1 and Salinomycin. This is the only 

interaction for Salinomycin and thus it has a high Interaction Score. The panel on the right 

shows the interaction between ZEB1 and Doxorubicin. Doxorubicin is involved in 103 

interactions within DGIdb and thus has a much lower Interaction Score. Note that over time, as 

sources are updated and new claims are added, both Query Scores and Interaction Scores may 

change. 

 

4.4.5 Inclusion of interaction directionality 

We have also added information on the directionality of interaction types to the interaction 

search results. Each interaction type in DGIdb now has an indicated directionality of activating, 

meaning the interaction type mechanism has an overall activating effect; inhibitory, meaning the 

interaction type mechanism has an overall inhibitory effect; or n/a, meaning the directionality is 

unclear for the interaction type mechanism (Supplementary Table S2). Determination of the 

directionality for an interaction type was made from mechanistic definitions provided by drug–

gene interaction sources in which the interaction type was observed. Where these definitions 
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were not available, we instead relied upon community definitions of these interaction types. 

These interaction directionalities are included on the UI for interaction search results in 

parentheses next to the interaction type(s) listed for each interaction result (Supplementary 

Figure S2). While the directionality may be obvious for some interaction types (e.g. activators 

are activating), some interaction types are not immediately apparent (e.g. chaperones are 

activating) to those less familiar with mechanisms of drug–gene interactions. Inclusion of 

directionality can make it easier for users to distinguish interactions that are more relevant for 

their purposes. For example, a user interested in exploring drugs that inhibit a particular gene 

will look for drug-gene interactions with inhibitory directionality. Users are also able to limit 

their interaction search to only interaction types of a desired directionality. Detailed information 

on each interaction type, the definition of each interaction type, and the directionality of each 

interaction are also available on the DGIdb Interaction Types page 

(https://dgidb.org/interaction_types). 

 

4.4.6 Search feature improvements 

In DGIdb 4.0, we have introduced several updates related to searching, search results, and 

information available on the user interface. Among these are the addition of the option to search 

only cancer-specific sources (meaning sources that report claims relating to cancer only), or 

disease-agnostic sources (meaning sources that report claims relating to any disease, including 

cancer) for both interaction searches and druggable gene category searches. Cancer-related 

searches are a major use-case for DGIdb and cancer-specific sources are well-represented among 

all sources, with 13 cancer-specific drug-gene interaction sources and five cancer-specific 

druggable gene category sources. However, DGIdb is not a cancer-specific resource and is 
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intended to be utilized for non-cancer related research as well. For drug-gene interactions, there 

are 4,955 interactions supported by cancer-specific sources only, 48,341 interactions supported 

by disease-agnostic sources only, and 1,295 interactions are supported by both cancer-specific 

and disease-agnostic sources. Similarly, for druggable gene categories, 233 genes have 

categories supported by cancer-specific sources only, 17,168 genes have categories supported by 

disease-agnostic sources only and 2,804 genes have categories supported by both cancer-specific 

and disease-agnostic sources. These numbers show that although a sizable portion of the sources 

included in DGIdb are cancer-specific, those types of sources only represent a small proportion 

of the overall data. 

Other improvements to search result features include the addition of linkouts to specific 

interaction evidence, where available. These will allow users to browse to the primary source for 

an interaction claim which might provide additional information and context not captured by 

DGIdb. Also, while we introduced drug and gene filters to the interaction search view in the last 

major update, we have had several requests to define how these filters are implemented. To 

address this lack of transparency on the UI, we have now added a link to the FAQ page where 

these filters are now defined. 

 

4.4.7 Monthly data releases 

DGIdb 3.0 implemented online updaters that imported data from dynamic sources (such as 

CIViC, Guide to Pharmacology, OncoKB, etc.) periodically, usually monthly (Armstrong et al., 

2020; Chakravarty et al., 2017; Griffith et al., 2017). As a result, the static TSV data releases 

available on our Downloads page would quickly become outdated. For DGIdb 4.0, we have 

implemented monthly data releases of these TSVs to coincide with monthly runs of the online 
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updaters, to ensure that TSVs available for download reflect the most up to date information in 

our database. The Downloads page now makes available the current Gene, Drug, Interaction and 

Category TSVs as well as previous monthly TSVs since the release of DGIdb 4.0. These serve as 

de facto snapshots of the data in DGIdb over time. 

 

4.4.8 Improved transparency and details on licensing of sources 

In DGIdb 4.0, we have made a significant effort to update and improve the information we 

provide on licensing of sources imported into our database through manual curation of data 

license descriptions and references for every source. This information is now readily available on 

the sources page. Since DGIdb 3.0, several existing sources have made changes to their 

licensing, making data from some sources more broadly available and data from other sources 

more restricted. Notably, PharmGKB has moved to a more permissive Creative Commons 

Attribution-ShareAlike 4.0 International License and DrugBank has adopted a custom non-

commercial license (Whirl-Carrillo et al., 2012; Wishart et al., 2018). In contrast, OncoKB has 

restricted API access to registered/approved non-commercial research use only, and JAX-CKB 

has restricted API access to negotiated licenses only (Chakravarty et al., 2017; Patterson et al., 

2016). Both resources continue to provide access to a portion of their data for free through their 

respective web clients. 

 

4.4.9 Application framework updates 

To handle increased web traffic and integration with other tools, we have upgraded DGIdb to 

Rails 6 (from Rails 5), upgraded to Ruby 2.6.5 (from Ruby 2.3), upgraded to PostgreSQL 12 

(from PostgreSQL 9.6), and upgraded the server to the latest Ubuntu LTS release (20.04). In 
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addition to the new features and performance benefits these upgrades bring, they will ensure that 

we continue to remain on supported software versions that receive regular security updates. 

In order to keep DGIdb's underlying source data current, we had previously implemented 

an automated job scheduling framework using DelayedJob to schedule monthly runs of online 

updaters. In this release, we switched to using Sidekiq. In contrast to DelayedJob, Sidekiq offers 

a convenient user interface which makes identifying job failure reasons and rescheduling of 

failed jobs easier. Furthermore, the addition of Airbrake (https://airbrake.io/), an online tool for 

exception tracking, gives error reviews and notifies the development team of these errors in real-

time (for instance, via email). 

To ease future implementation of fixes and new features, we moved testing to a GitHub 

continuous integration (CI) workflow which allows us to continuously test newly committed 

code for errors against multiple versions of Ruby and PostgreSQL. 

 

4.5 Discussion 

With our most recent release, DGIdb has received significant improvements to source content, 

functionality such as searching and grouping, and underlying application technology. We have 

significantly expanded the number of records in our database through the addition of new 

sources and updates of existing sources. Furthermore, we have improved our ability to maintain 

regular content updates through the implementation of additional online importers for several 

sources and the use of Sidekiq for automatic job processing. We have revised our process for 

drug grouping and normalization to be batched by resource and to leverage continual 

improvement through community contributions to the VICC thera-py normalizers and the 

Wikidata public-domain crowdsourcing platform. Finally, several updates have been made to 
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inform users of the relevance of search results through information presented on the UI. We have 

implemented more sophisticated notations of relative and static interaction scores, improved the 

relevance of interaction source linkouts wherever possible, and included the concept of 

directionality for interaction results. 

Although the updates in DGIdb 4.0 have improved the usability and content of our 

resource, we expect there will still be a need for future improvements. One technology 

improvement on our roadmap is converging the public-facing API with the internal code that 

powers the web views. Ultimately, we want the APIs available for general use to be the same 

ones powering our HTML pages. This would provide an even more fully featured API to end 

users while reducing our overall maintenance burden by eliminating redundant code. We are also 

evaluating the addition of information on gene-gene relationships. As always, we plan to 

continue updating sources to online updaters where possible, and migrating TSV-based sources 

from the legacy DSL importers to the TSV importers introduced in DGIdb 3.0. 

 

4.6 Data Availability 

DGIdb is an open access database and web interface (www.dgidb.org) with open source code 

available on GitHub (https://github.com/griffithlab/dgi-db) under the MIT license. We also 

provide data downloads for drug claims, gene claims, and interaction claims on the website in 

addition to a SQL data dump (http://dgidb.org/downloads). Information about the API and its 

endpoints can also be found on the website (http://dgidb.org/api). 
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4.7 Supplementary Data 

Supplementary Data are available at NAR Online. 
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Chapter 5: Conclusion 

Understanding the genomic landscape of cancer and how it relates to the development and 

progression of disease is vitally important for understanding how to effectively target cancer 

cells and personalize treatments for individual patients. While the rise of next-generation 

sequencing and bioinformatic analysis of large omics datasets has been immeasurably useful for 

uncovering mechanisms that drive cancer as well as potential therapeutic targets, there is still 

much that remains unknown about cancer biology and how it relates to treatment response. Thus, 

the projects presented in this dissertation focused on the use of next-generation sequencing, 

bioinformatics, and database resources for furthering our understanding of cancer biology and 

treatment responses. 

The first project presented described the use of single-cell RNA-sequencing, whole 

genome sequencing, and whole exome sequencing to explore the genomic landscape of a mouse 

model of bladder cancer and characterize mechanisms of response to a combined PD-1/CTLA-4 

immune checkpoint blockade (ICB) treatment. This project revealed that IFN-g signaling in 

endothelial cells appears to be a key mechanism of effective response to ICB treatment. While 

the exact role that IFN-g signaling in endothelial cells plays in treatment response will need to be 

characterized and validated further, this finding suggests that therapeutic strategies that can 

induce IFN-g signaling in endothelial cells could present an avenue for improving response to 

ICB treatment in bladder cancer patients. 

The second project presented described the use of whole genome sequencing and survival 

analysis for elucidating the landscape of copy number alterations in pediatric brain tumors and 

exploring the relationship between copy number alteration and survival across four diagnosis 
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groups (ATRT, Ependymoma, High-Grade Glioma, and Medulloblastoma). This project revealed 

that copy number alteration was quite common across diagnosis groups and could be extensive in 

certain groups. In addition, survival analysis examining the relationship between CNV burden 

and overall survival suggested that high CNV burden was associated with worse overall survival 

in certain diagnosis groups and may have prognostic value within those groups. Likewise, certain 

recurrent alterations showed correlation with worse overall survival in specific diagnosis groups. 

These results suggested that copy number alteration could play an important role in the 

development and progression of pediatric brain cancers. Follow-up analysis will be necessary to 

fully understand the role copy number alteration may play as a driving mechanism of cancer 

initiation and progression and how those driving mechanisms may relate to treatment 

susceptibility. 

Finally, the third project presented described updates made to the Drug-Gene Interaction 

database (DGIdb) for the DGIdb 4.0 release to improve the content and usability of DGIdb. 

These improvements included the addition of several new drug, gene, and drug-gene interaction 

sources, integration with crowdsourced efforts to provide additional interaction information and 

refine drug term normalization, the inclusion of more sophisticated Query and Interaction scores, 

and updates to the user interface to improve functionality and ease of use. As of 2023, DGIdb 5.0 

was released, encompassing a major overhaul of the architecture of the database to further 

expand the content, access, and usability of the DGIdb resource, which continues to be updated 

and improved. Proposed future enhancements for DGIdb include support for the submission of 

user curated interaction claims and evidence items, improvements to the data model used to store 

interaction information to allow better integration with clinical and drug discovery pipelines, and 
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incorporation of tools to flag retracted interaction evidence to guard against inclusion of false 

claims. 

Together, the projects presented in this dissertation serve to further our understanding of 

cancer biology and treatment response and present several directions for future research to 

continue adding to our knowledge of the genomic landscape of cancer and how to develop 

effective treatment strategies. 
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