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ABSTRACT OF THE DISSERTATION 
 

A Test of the Pioneer Factor Hypothesis for Silent Gene Activation 

by 

Jeffrey L. Hansen 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational and Systems Biology 

Washington University in St. Louis, 2024 

Professor Barak A. Cohen, Chair 

 

Transcription factors (TFs) activate silent genes by binding to and opening 

heterochromatic instances of their motifs. While we rely on this process for cellular 

reprogramming, we have an incomplete understanding of which TFs are capable of recognizing 

inaccessible instance of their motifs and what parameters are important for this activity. My 

thesis work aimed to address these two questions. 

 The leading model for silent gene activation is the pioneer factor hypothesis (PFH). The 

PFH states that pioneer factors (PFs) are qualitatively unique TFs that can bind to and open DNA 

and subsequently recruit non-pioneer factors (nonPFs) to activate expression. We tested the 

predictions of the PFH by ectopically expressing a canonical PF FOXA1 and nonPF HNF4A in 

K562 blood cells. While we expected that only FOXA1 would bind inaccessible motifs and that 

neither TF would activate tissue-specific gene expression, we found that both TFs independently 

bound, opened, and activated tissue-specific loci. When we examined what may control such 

“pioneer activity,” we found that motif content, TF concentration, and TF binding strength were 

all important factors. 



 ix 
 

 Having shown that pioneer activity may not be a qualitative trait restricted to just a few 

TFs, we sought to develop a quantitative metric. Because pioneer activity is essentially “TF 

binding at hard-to-bind sites,” we suggest that a measure of pioneer activity should capture the 

relative difference in a TF’s ability to bind at accessible versus inaccessible DNA. We estimated 

a parameter related to a TF’s Kd by using doxycycline (dox) induction as a proxy for TF 

concentration. We call this term the TF’s dox50. We propose that the average difference of a TF’s 

dox50 between accessible and inaccessible binding sites is a measure of its pioneer activity. We 

call this term the TF’s Δdox50. The lower a TF’s Δdox50, the stronger its pioneer activity. To 

demonstrate the feasibility of this metric, we induced FOXA1 and HNF4A across a 1,000-fold 

range, measured binding, fit binding curves at tens of thousands of loci, and then extracted 

dox50s. We show that HNF4A has a smaller Δdox50 than FOXA1, which suggests it has stronger 

pioneer activity. We also show that FOXA1 has a smaller Δdox50 at sites that have more copies 

of its motif, which suggests that strong motif content can boost pioneer activity. 

Altogether we propose that every TF likely has some degree of pioneer activity that 

depends on its affinity for any given location, the concentration at which it is expressed, and the 

motif content at each target site. We hope that future work will characterize more TFs’ pioneer 

activity, making Δdox50 a useful quantitative metric to describe pioneer activity.  
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Chapter 1 – Introduction 
 

Every cell in the human body contains the same set of genetic instructions. Yet our brains think, 

and our hearts beat. Somehow our cells selectively read or ignore portions of the 3.2 billion base 

pair code to achieve specialization. We took a major step in understanding how when we 

assembled the first full sequence of the human genome in 2001 (Venter et al. 2001) but soon 

after realized that less than 2% of the sequence codes for the genes that make the proteins that 

make our cells (Elkon and Agami 2017). There are many outstanding questions related to how 

the rest of the “regulatory DNA” somehow ensures that each cell type has the appropriate genes 

turned on at the appropriate times. Some of these questions include: how is DNA arranged three-

dimensionally within the nucleus? How is specificity achieved from a repeating sequence of just 

four nucleotides? Or how might we predict disease occurrence or severity by examining the 

DNA sequence of key genes? My lab mates are actively performing experiments to answer these 

questions and have already begun to uncover important principles. Alongside them, I have 

designed my work to combine my interests in gene regulation and human disease, especially in 

the spirit of my dual MD-PhD training.  

 

One especially interesting application is the question of how to turn on genes that are not 

currently being used. We know that this occurs naturally through development as cells turn on 

new genes so that they can begin to differentiate into various specializations. But we also have 

discovered that we can turn on lineage genes in the wrong cell type through a process called 

cellular reprogramming. I became interested in reprogramming by way of my long interest in 

novel treatments or cures for type 1 diabetes. Early in my graduate training, I read about new 

https://paperpile.com/c/geHVnJ/Jvrr
https://paperpile.com/c/geHVnJ/LJAuB
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work that could convert pancreatic alpha cells (those that use glucagon to increase blood glucose 

levels) into pancreatic beta cells (those that use insulin to decrease blood glucose levels). I will 

later discuss the details for how this conversion works, but it relies on important proteins in the 

cell called transcription factors (TFs). TFs are normally responsible for tuning cell type-specific 

gene expression but it turns out that they are also capable of activating other lineage’s genes and 

inducing cellular conversions. I refer to this process as silent gene activation. The process is 

incompletely understood, leads to inefficient cellular conversions, and thus presents an exciting 

opportunity for meaningful progress. I hope that my contributions may allow us not only to 

better understand the mechanisms of gene regulation but also to ultimately develop even better 

therapies for type 1 diabetes in the near future.  

 

1.1 – Cell-type specific gene expression 
 

Only a small fraction of the 3.2 billion base pairs in the genome code for the ~20,000 genes that 

make the proteins that build our cells. It is estimated that 3,000-8,000 of these genes perform 

common jobs such as growth, division, or energy consumption that are important to all cell types 

(J. Zhu et al. 2008; Ramsköld et al. 2009), but this only leaves 15,000 or so to create the cell-type 

specialization that makes humans so complex. If there are approximately 200 cell types in the 

human body (Heintzman et al. 2009), this means that there are approximately 75 genes that are 

specific to each cell type. This simple calculation is supported by studies that have used gene 

expression across cell types to generate lists of cell type-specific genes. One such resource, the 

Human Protein Atlas, lists for example that there are 242 liver-specific genes and 120 intestine-

specific genes (Uhlén et al. 2015). The liver genes perform jobs related to energy metabolism or 

https://paperpile.com/c/geHVnJ/VoJG+k4bY
https://paperpile.com/c/geHVnJ/IxMGe
https://paperpile.com/c/geHVnJ/zJbz


 3 
 

blood detoxification and the intestine genes perform jobs related to digestion and food 

absorption. In cell types that do not perform these jobs, these genes are unnecessary and are 

stored away. 

 

The mechanism by which these genes are stored was first theorized by a German botanist named 

Emil Heitz when he observed compacted chromosomes, hypothesized that they may be related to 

genetic silencing, and coined the terms “heterochromatin” and “euchromatin” to describe the 

silent and active states, respectively (Heitz 1928). His hypothesis was soon verified when it was 

found that heterochromatin can silence nearby genes (Schultz 1936). Later work revealed that the 

building block of heterochromatin is approximately 150 base pairs of DNA wrapped around an 

octamer of histone proteins called a “nucleosome;” this structure has casually been referred to as 

“beads on a string” (Woodcock, Safer, and Stanchfield 1976; Kornberg 1974; Oudet, Gross-

Bellard, and Chambon 1975). Nucleosomes sequester DNA to sterically hinder access by other 

proteins. The structure can be compacted even further, making it even more silent, by packing 

nucleosomes into repeating arrays sometimes referred to as the “30 nanometer fiber.” 

 

Since these discoveries, we now know that heterochromatin is the result of competition between 

silencing and activation processes that upon establishment locks away unnecessary genes into a 

silent state (Elgin 1996). Importantly, it is not only the silent genes that are included within 

heterochromatin but also the proximal regulatory DNA. This regulatory DNA is the substrate to 

which TFs bind and then recruit transcriptional machinery to activate nearby genes. Thus 

heterochromatin effectively shields TFs from reaching their targets within regulatory DNA. 

Further studies have sub-classified heterochromatin into facultative and constitutive (Mayran et 

https://paperpile.com/c/geHVnJ/gx5a
https://paperpile.com/c/geHVnJ/H9V9
https://paperpile.com/c/geHVnJ/ShRQ+InRb+9zPB
https://paperpile.com/c/geHVnJ/ShRQ+InRb+9zPB
https://paperpile.com/c/geHVnJ/bkl4
https://paperpile.com/c/geHVnJ/JvGv
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al. 2018) and have identified myriad covalent modifications made to the histone proteins that 

may have functional consequences and are often used to predict activity of nearby genes (Ernst 

and Kellis 2012). New technologies have also been invented to study heterochromatin. These 

technologies treat nuclei with enzymes such as DNase (L. Song and Crawford 2010), MNase 

(Schones et al. 2008), or transposase (Buenrostro et al. 2015) and then use high-throughput 

sequencing to identify which parts of the genome were “accessible” or “inaccessible” to the 

enzymes. Thus the terms silent, inaccessible, nucleosomal, and heterochromatic are all used to 

describe DNA that has been packaged and stored away. 

 

In healthy cells, the steric hindrance that heterochromatin provides is robust and the division 

between euchromatin and heterochromatin is stable; liver cells continue to detoxify and intestine 

cells continue to absorb. Patterns of chromatin accessibility are so cell-type specific that they 

have recently been demonstrated to define cell types when measured at single cell resolution 

(Lareau et al. 2019). Despite the seeming permanence and stability of heterochromatic gene 

silencing, we know there are cases when TFs activate silent genes. In natural development, 

lineage-determining TFs must find their lineage-specific genes within heterochromatin and turn 

them on. And in disease, malignant states in cancer can disrupt heterochromatin and turn on 

previously silenced genes (Robson et al. 1981). Heterochromatin may not be as permanent or 

inaccessible as perhaps once thought. This realization and others have led to new strategies to 

specifically disrupt heterochromatin to turn on genes of different lineages.  

 

 

https://paperpile.com/c/geHVnJ/JvGv
https://paperpile.com/c/geHVnJ/Na8h
https://paperpile.com/c/geHVnJ/Na8h
https://paperpile.com/c/geHVnJ/LFMO
https://paperpile.com/c/geHVnJ/lwle
https://paperpile.com/c/geHVnJ/1vMX
https://paperpile.com/c/geHVnJ/cTgsR
https://paperpile.com/c/geHVnJ/38Jn
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1.2 – Reprogramming one cell type into another 
 

Gurdon et al. first demonstrated the potential of manipulating the plasticity of the genome when 

they successfully transplanted somatic gut frog nuclei into enucleated ova to grow healthy, adult 

frogs (Gurdon 1962). This work shows that even a fully differentiated gut cell has the potential 

to essentially go “back-in-time” to a pluripotent state (dedifferentiate) and then progress forward 

through new developmental trajectories (redifferentiate) into each necessary cell type of the adult 

frog. Researchers demonstrated that the same reprogramming strategy is feasible in mammals 

when they grew viable lamb offspring (Dolly) from differentiated adult tissue (Wilmut et al. 

1997). While these innovations were incredibly novel in the research setting, the process of 

dedifferentiation and redifferentiation occurs naturally in zebrafish, who are able to regenerate 

resected portions of their hearts (Jopling et al. 2010). 

 

26 years after Gurdon et al. showed that we could reprogram cells, Tapscott et al. showed that 

the expression of a single muscle-specific TF MYOD1 was sufficient to reprogram fibroblasts 

into myoblasts (Tapscott et al. 1988; Davis, Weintraub, and Lassar 1987). While TFs were 

traditionally known to be responsible for gene regulation in their native tissue, these experiments 

revealed a novel ability for TFs to somehow overcome heterochromatin’s steric hindrance and 

reactivate silent genes of other lineages. Since then, work to understand how TFs control 

dedifferentiation, redifferentiation, and transdifferentiation (reprogramming from one 

differentiated cell type to another without using a stem cell-like intermediary) has rapidly 

expanded. We now have cocktails of TFs that can convert adult fibroblasts backwards in time to 

https://paperpile.com/c/geHVnJ/GOJY
https://paperpile.com/c/geHVnJ/XvIVo
https://paperpile.com/c/geHVnJ/XvIVo
https://paperpile.com/c/geHVnJ/zDnw
https://paperpile.com/c/geHVnJ/CDfg+Vb2B
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induced pluripotent stem cells (Takahashi and Yamanaka 2006) as well as cocktails to convert 

fibroblasts into neuronal, hepatic, cardiac, and other lineages (Samantha A. Morris 2016).  

 

The innovation of these works and the potential for using reprogrammed cells for research and 

medical purposes earned John Gurdon (reprogrammed the frog) and Shinya Yamanaka (created 

induced pluripotent stem cells) the Nobel Prize in medicine in 2012. For use in the lab, 

reprogrammed cells offer researchers the ability to directly create cells that are often challenging 

or time-consuming to harvest. One good example is the ability to reprogram aged fibroblasts into 

aged neurons, allowing for the study of age-related neurodegenerative disease (Huh et al. 2016). 

And for use in the clinic, reprogrammed cells could replenish those lost to disease or damage; 

this is especially useful when healthy, actively dividing cells such as microglia or cardiac 

fibroblasts reside in proximity to diseased, post-mitotic cells such as neurons or cardiomyocytes. 

Following a heart attack, we could convert cardiac fibroblasts into cardiomyocytes (Chang et al. 

2019; Qian et al. 2012; K. Song et al. 2012; Jayawardena et al. 2015; Ieda et al. 2010). Following 

a stroke, we could convert microglia (Matsuda et al. 2018) or astrocytes (Su et al. 2014) into 

functional neurons. And when the autoimmune response driving type 1 diabetes depletes 

pancreatic beta cells, we can reprogram nearby alpha cells, which serendipitously exhibit hypo-

immunogenicity that allows some evasion of the autoimmune attack (Furuyama et al. 2019; 

Thorel et al. 2010; Pagliuca et al. 2014; Velazco-Cruz et al. 2018).  

 

 

https://paperpile.com/c/geHVnJ/tyOg
https://paperpile.com/c/geHVnJ/fB4T
https://paperpile.com/c/geHVnJ/gFLv
https://paperpile.com/c/geHVnJ/OUIn+9W3q+k2xI+MPhE+2aKt
https://paperpile.com/c/geHVnJ/OUIn+9W3q+k2xI+MPhE+2aKt
https://paperpile.com/c/geHVnJ/nmmo
https://paperpile.com/c/geHVnJ/Cv2e
https://paperpile.com/c/geHVnJ/ZXko+mGQL+kkHt+JaLv
https://paperpile.com/c/geHVnJ/ZXko+mGQL+kkHt+JaLv
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1.3 – Inefficiencies of reprogramming and challenges of 
binding at heterochromatic sites 
 

While it is remarkable that we can induce these conversions, there are two major impediments to 

realizing the full potential. First, few cells in the initial starting population make it to the desired 

end point. The conversion percentage depends on the reprogramming cocktail but hovers around 

10% across different tissue types (Ieda et al. 2010; Zhao et al. 2015; Vierbuchen et al. 2010). In 

fact the Nobel Prize winning Yamanaka TFs converted less than 0.1% of the initial fibroblasts to 

induced embryonic stem cells (Takahashi and Yamanaka 2006). And second, the cells that do 

make it through the conversion process are often either hybrid cells that express gene signatures 

common to both the starting and desired cell type (part fibroblast, part cardiomyocyte/neuron) 

(Ieda et al. 2010; Manandhar et al. 2017) or become stuck in a state that is developmentally 

immature to the desired cell type (Biddy et al. 2018).   

 

These shortcomings arise because the TFs in reprogramming cocktails incompletely activate the 

necessary genes. I speculate that this is not a reflection on the general ability of TFs to activate 

silent genes but rather a reflection of our inadequate understanding of which TFs to employ, how 

to employ them, and when to employ them. Instead of first understanding the mechanism by 

which TFs activate silent genes and then using this information to rationally design 

reprogramming cocktails from the bottom up, most cocktails are designed in large screening-

based techniques. Some strategies test many TFs in parallel for their ability to turn on lineage 

specific genes (Ng et al. 2021). Others start with a large set of TFs known to be important in a 

certain lineage and then drop one TF out at a time to find the smallest sufficient set (Sekiya and 

https://paperpile.com/c/geHVnJ/2aKt+THPT+gsve
https://paperpile.com/c/geHVnJ/tyOg
https://paperpile.com/c/geHVnJ/2aKt+7Ppx
https://paperpile.com/c/geHVnJ/CWVI
https://paperpile.com/c/geHVnJ/S1Sz
https://paperpile.com/c/geHVnJ/B8a5
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Suzuki 2011). Then, upon selection of the cocktail, the researchers will draw conclusions from 

genome-wide binding, accessibility, or other epigenetic data in an attempt to explain the TFs 

behavior (Horisawa et al. 2020). From these data, TFs are labeled as more or less important for 

the reprogramming cocktail. But rarely are the conclusions about these TFs directly tested in a 

one-by-one process and so our basic understanding of the mechanism underpinning cellular 

reprogramming remains incompletely understood.  

 

At this point I recognized multiple opportunities for how I could fit my work into these 

challenges. First, I could combine my interests in the human genome and cellular 

reprogramming. Second, I could leverage our lab’s expertise in gene regulation to further the 

field’s understanding of silent gene activation. And third, I could perhaps provide an example of 

a simple, effective way to test TFs for their ability to activate genes. The big question of my 

thesis work thus became: 

 

How do transcription factors activate silent genes? 

 

Alongside the problem of activating the necessary genes of the desired final cell type, there may 

also be a need to further understand how to shut off the transcriptional program of the initial cell 

population. Not only do we see that some genes from the target cell type are never activated, but 

we also see that some genes from the initial cell type are never silenced (Manandhar et al. 2017). 

And data suggests that strategies to ensure that these genes are silenced may improve cellular 

reprogramming (Zhao et al. 2015). That said, most of the work to date that focuses on inhibition 

of gene expression during reprogramming utilizes small molecules or microRNAs (Zhao et al. 

https://paperpile.com/c/geHVnJ/B8a5
https://paperpile.com/c/geHVnJ/T3sH
https://paperpile.com/c/geHVnJ/7Ppx
https://paperpile.com/c/geHVnJ/THPT
https://paperpile.com/c/geHVnJ/THPT+3g2RN+CjgY7
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2015; Yoo et al. 2011; Muraoka et al. 2014), not TFs. Less is known about the repressive 

capabilities of mammalian TFs. I also speculate that like the normal process of development, 

sufficient activation of one lineage’s genes may create enough positive feedback that inhibition 

may not be necessary. For these reasons I have limited the scope of my work solely to the 

question of silent gene activation. 

 

The challenge that TFs need to overcome in order to activate silent genes is that the short 

sequences to which they specifically bind (their “motifs”) are wrapped around histones and 

compacted into heterochromatin. As mentioned above, the mechanism by which silent genes are 

kept silent is by heterochromatic compaction of the sites to which TFs bind. Without the ability 

to bind, the TFs are unable to activate nearby genes. Multiple different methodologies have 

shown that TFs bind more weakly, or not at all, to inaccessible instances of their motifs. 

Electrophoresis mobility shift assays (EMSAs) in the presence or absence of nucleosomes 

showed that for nearly all of the TFs tested, the TFs had a larger Kd (weaker binding) when 

binding to nucleosomal DNA (Garcia et al. 2019). And in vitro nucleosome reconstitution assays 

where DNA is artificially compacted into heterochromatin showed that heterochromatin blocks 

the binding of some TFs (Lisa Ann Cirillo et al. 2002).  

 

The heterochromatin did not inhibit binding of all of the tested TFs, though. The authors found 

that some TFs, such as the liver TF FOXA1, could bind and decompact heterochromatin and 

fatefully coined the term “pioneer factors” to refer to the TFs that could “pioneer” unexplored 

regions of the genome (Lisa Ann Cirillo et al. 2002). Later, the TFs that had been classified as 

unable to bind heterochromatic motifs were called “settler TFs” in order to complete the perhaps 

https://paperpile.com/c/geHVnJ/THPT+3g2RN+CjgY7
https://paperpile.com/c/geHVnJ/X0mX
https://paperpile.com/c/geHVnJ/dmBH
https://paperpile.com/c/geHVnJ/dmBH


 10 
 

ill-fated metaphor (Sherwood et al. 2014). While this qualitative distinction may have been too 

simplistic given previous work that showed TFs may bind nucleosomal DNA in a non-specific, 

transient process (Polach and Widom 1995, 1996), the pioneer factor hypothesis (PFH) quickly 

became the leading model for how TFs activate silent genes (Lisa Ann Cirillo et al. 2002; 

Iwafuchi-Doi and Zaret 2014). 

 

1.4 – The Pioneer Factor Hypothesis of silent gene activation 
 

The PFH has two components. First, it establishes that there are qualitatively different types of 

TFs. Pioneer factors (PFs) can bind to their motifs within heterochromatin and non-pioneer 

factors (nonPFs) cannot. Cirillo et al. demonstrated this by showing that only some TFs (the PFs) 

could bind in vitro to a compacted sequence of regulatory DNA specific to the liver gene ALB 

(Lisa Ann Cirillo et al. 2002). And second, gene activation requires a sequential process where 

PFs bind first, create new local accessibility, and then recruit nonPFs to activate gene expression. 

This claim is supported by some data that show that genome-wide patterns of nonPFs are 

affected by PF binding (Horisawa et al. 2020) and other data that show that TF binding clusters 

at sites where PFs bind (Iwafuchi-Doi and Zaret 2014).  

 

The PFH’s second component likely relates to TFs’ involvement within the cascades of positive 

feedback during development. TFs activate batteries of genes necessary for development and 

combinations of TFs are thought of as one way to achieve tissue specificity. The earlier 

expressed TFs must then be the ones to initiate the cascade. The two most well-studied PFs are 

two such developmentally important TFs. FOXA1 is critical for liver bud development (Lee et 

https://paperpile.com/c/geHVnJ/HLye
https://paperpile.com/c/geHVnJ/1SlH+Wbk9
https://paperpile.com/c/geHVnJ/dmBH+B4F9
https://paperpile.com/c/geHVnJ/dmBH+B4F9
https://paperpile.com/c/geHVnJ/dmBH
https://paperpile.com/c/geHVnJ/T3sH
https://paperpile.com/c/geHVnJ/B4F9
https://paperpile.com/c/geHVnJ/mEn1
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al. 2005). And Zelda is necessary both for Drosophila zygotic genome activation (McDaniel et 

al. 2019) and for important transitions during the development of neuroblasts (Larson et al. 

2021). It is hard to know though whether the order of TF expression was set up because TFs such 

as FOXA1 and Zelda are the only ones capable of binding at heterochromatin, or for other non-

binding related reasons. I suspect that simply being expressed early in development may have 

contributed to some TFs being labeled as PFs. 

 

Since the first PF paper, others have designed similar experiments to classify more TFs. These 

experiments can generally be categorized as in vivo ectopic expression systems, in vivo synthetic 

screens, or in vitro synthetic screens. The in vivo ectopic expression systems express a TF, 

measure its genome-wide binding patterns, correlate the patterns with accessibility and 

chromatin modifications, and then classify the tested TF as a PF or nonPF (Donaghey et al. 2018; 

Wapinski et al. 2013). The in vivo synthetic screens integrate large numbers of synthetic 

regulatory elements into the genome, compact the elements within heterochromatin, and then 

observe which elements induce decompaction (Yan, Chen, and Bai 2018; Hammelman et al. 

2020; Sherwood et al. 2014). And the in vitro synthetic screens test large numbers of synthetic 

regulatory elements on artificial nucleosome arrays outside of the cellular environment (Yu and 

Buck 2019). 

 

Once there was a list of PFs and nonPFs, there became interest in understanding what endowed 

PFs the ability to bind heterochromatic instances of their motifs. The poster child is FOXA1. 

FOXA1 is a liver PF, was the first TF to be named a PF in the above study (Lisa Ann Cirillo et 

al. 2002), and has a winged-helix DNA-binding domain that is similar to the three-dimensional 

https://paperpile.com/c/geHVnJ/mEn1
https://paperpile.com/c/geHVnJ/wVImq
https://paperpile.com/c/geHVnJ/wVImq
https://paperpile.com/c/geHVnJ/4IMYa
https://paperpile.com/c/geHVnJ/4IMYa
https://paperpile.com/c/geHVnJ/Ld0L+lKQ2
https://paperpile.com/c/geHVnJ/Ld0L+lKQ2
https://paperpile.com/c/geHVnJ/KNIg+B7WZv+HLye
https://paperpile.com/c/geHVnJ/KNIg+B7WZv+HLye
https://paperpile.com/c/geHVnJ/joPU
https://paperpile.com/c/geHVnJ/joPU
https://paperpile.com/c/geHVnJ/dmBH
https://paperpile.com/c/geHVnJ/dmBH
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conformation of the linker histone protein H1 (Clark et al. 1993; Ramakrishnan et al. 1993). H1 

is one component of the nucleosome complex and is partially responsible for the further 

compaction of nucleosomes into the 30nm fiber. It was proposed that FOXA1 could outcompete 

nucleosomes for the underlying DNA better than other TFs because of its similar shape. 

Following this work, a larger scale study searched crystal structures of PFs and nonPFs for 

structural differences and claimed that the PF binding ability resides in a short alpha helix within 

the TF’s DNA-binding domain (Garcia et al. 2019). While some PFs in this study did contain 

this structural motif, some PFs did not and some nonPFs did; the motif was neither necessary nor 

sufficient. 

 

We have yet to find a single unifying structural motif to classify PFs from nonPFs. Instead each 

PF uses a different strategy to bind heterochromatic DNA. Each strategy relates to a unique type 

binding behavior between TF and nucleosomal DNA. First, some TFs such as P53 require that 

their motifs reside at the position where DNA enters or exits the nucleosome core; at these 

positions, DNA is more accessible to TF intrusion (Yu and Buck 2019). Second, TFs may 

collaborate (without physical interaction) to pull DNA away from the nucleosome (Mirny 2010). 

The optimal spacing appears to be ~74 base pairs so that one TF is positioned at the entry point 

into the nucleosome and the other TF is positioned on the same side of the nucleosome (Moyle-

Heyrman, Tims, and Widom 2011). Third, some TFs have DNA-binding domains that allow 

them to bind to partial motifs so that binding is still possible when part of the DNA strand is 

occluded by the nucleosome (Soufi et al. 2015). And fourth, some TFs rely on arrays of motifs 

that are found 10-15 base pairs apart from one another; this periodicity corresponds to 

consecutive major grooves of the DNA (Casey et al. 2018). A nice study aimed to measure these 

https://paperpile.com/c/geHVnJ/g6Rh+8BTW
https://paperpile.com/c/geHVnJ/X0mX
https://paperpile.com/c/geHVnJ/joPU
https://paperpile.com/c/geHVnJ/6oyH
https://paperpile.com/c/geHVnJ/6kx7x
https://paperpile.com/c/geHVnJ/6kx7x
https://paperpile.com/c/geHVnJ/YmpI
https://paperpile.com/c/geHVnJ/CdSzV
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binding modalities in parallel, queried 220 TFs, and identified five types: spanning the 2 

nucleosomal gyres, binding at the dyad, binding at the end, binding periodically, or having an 

orientation preference (F. Zhu et al. 2018).  

 

The breadth of strategies that different TFs use to bind nucleosomal DNA and the finding that 

motif positioning can either allow or prohibit pioneer activity seems to suggest that pioneer 

activity may be a characteristic of a certain state rather than certain TFs. In the same high-

throughput binding study mentioned above, the authors found that most of their 220 tested TFs 

had some ability to bind nucleosomal DNA (F. Zhu et al. 2018). Prior to the coining of the 

“pioneer factor” term, I believe that we were headed towards an alternative model in which 

competition between non-specific TF interactions and histones determined the DNA’s 

accessibility. If TFs win, the DNA is accessible and the nearby genes are active. If the histones 

win, the DNA is inaccessible and the nearby genes are silent. This model was termed 

“collaborative competition” and the authors argue that it can quantitatively explain nucleosomal 

binding (Miller and Widom 2003; Polach and Widom 1996). This model versus the PFH sets up 

a nice distinction between whether pioneer activity is a qualitative trait limited to a select few 

TFs or rather a quantitative one that any TF can exhibit given the right conditions. 

 

It may also be that TFs are unnecessary to decompact nucleosomal DNA. DNA may become 

transiently free from histones all on its own. One good example is that DNA is temporarily 

naked of nucleosomes at its replication fork. Cell replication has been shown to be required for 

some TFs to access their heterochromatic motifs (Ramachandran and Henikoff 2016; Yan, Chen, 

and Bai 2018), suggesting that TFs are probably capitalizing upon the transiently exposed DNA. 

https://paperpile.com/c/geHVnJ/sKc2
https://paperpile.com/c/geHVnJ/sKc2
https://paperpile.com/c/geHVnJ/8k03+Wbk9
https://paperpile.com/c/geHVnJ/Dwrv+KNIg
https://paperpile.com/c/geHVnJ/Dwrv+KNIg
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DNA is also known to transiently “breathe” away from nucleosomes (Polach and Widom 1995); 

this could be part of how P53 binds nucleosomes, as previously described (Yu and Buck 2019). 

And finally we know that there exist pervasive multivalent chromatin remodeling complexes that 

regularly rearrange nucleosomes and chromatin modifications that likely have effects on how 

TFs can access their motifs (Stephanie A. Morris et al. 2014). 

 

1.5 – Problems with the Pioneer Factor Hypothesis 
 

Assuming that the transient mechanisms mentioned above are not sufficient and that TFs alone 

are sometimes necessary to decompact chromatin, the simple binary classification that the PFH 

makes seems insufficient. My impression is that the PFH has maintained support because data 

has been selectively highlighted or ignored in order to preserve the neat subdivision of TFs into 

those that can and those that can’t bind nucleosomal DNA. While it is enticing to draw lines 

between sets of TFs, the oversimplification misses details, clouds our understanding, and will 

ultimately limit how we select TFs when we seek to ectopically activate silent genes. 

 

Often in the experimental design, other unmentioned factors may account for the behavior of the 

so-called PFs. The initial authors that coined the term compacted a piece of DNA encoding the 

ALB enhancer within an artificial nucleosome array (Lisa Ann Cirillo et al. 2002). They called 

the TFs that could bind to the heterochromatic DNA PFs (Lisa Ann Cirillo et al. 2002). The 

problem with this experimental design is that they did not mention controlling for the TF 

concentration nor the motif content of the enhancer. Both of these factors will impact the overall 

occupancy of the TFs at the enhancer. If the concentration of the PF and nonPF or the motif 

https://paperpile.com/c/geHVnJ/1SlH
https://paperpile.com/c/geHVnJ/joPU
https://paperpile.com/c/geHVnJ/nqVm
https://paperpile.com/c/geHVnJ/dmBH
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content at each TF’s binding site were not roughly equal, then it is unfair to compare the 

outcome of the binding experiment.  

 

In vivo experiments are also fraught with covariates. While in vitro experiments have their flaws 

as mentioned above, they do benefit from their simple design with few moving parts. In contrast, 

it is often possible to find every potential outcome in the data of an in vivo experiment because 

of the size of the genome and myriad co-factors and chromatin marks present. The classic in vivo 

PF experiment ectopically expresses multiple TFs, measures genome-wide binding, and then 

draws a distinction based on the degree to which each TF can bind inaccessible sites (Donaghey 

et al. 2018; Wapinski et al. 2013). But in these experiments there also exist at least some 

inaccessible sites where the nonPF can bind, even if these sites are not the majority. If these 

inaccessible binding sites happen to reside nearby genes that are important to the TF’s lineage, 

and these genes are activated, then it seems shortsighted to have labeled that TF a nonPF. 

 

Additionally, the data rarely conform to the strict definition of the PFH. The PFH states that PFs 

can bind to inaccessible motifs and so it would follow that PFs should bind to all of their motifs. 

While this is perhaps an unrealistic expectation, PFs bind to a small minority of their available 

motifs (Boller et al. 2016; Lupien et al. 2008), sometimes because of impermissive 

heterochromatin (Mayran et al. 2018) and other times because binding seems mostly limited to 

the sites at which a TF binds in its native cell type (Donaghey et al. 2018). There are also cases 

where PFs behave like nonPFs, and vice versa. Two interesting cases stand out. In the first, the 

canonical PF FOXA1 requires help from the supposed nonPF estrogen receptor or glucocorticoid 

receptor in order to bind (Swinstead et al. 2016; Zaret and Carroll 2011). And in the second, 

https://paperpile.com/c/geHVnJ/Ld0L+lKQ2
https://paperpile.com/c/geHVnJ/Ld0L+lKQ2
https://paperpile.com/c/geHVnJ/8x0o+sGDD
https://paperpile.com/c/geHVnJ/JvGv
https://paperpile.com/c/geHVnJ/Ld0L
https://paperpile.com/c/geHVnJ/drWO+LI09
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LEXA, a bacterial protein that has no need to evolve the ability to bind nucleosomes, can create 

new accessibility at heterochromatic sites (Miller and Widom 2003). 

 

Finally, it doesn’t make intuitive sense that there would be a requirement for the sequential 

process of binding, opening, and then recruitment of another factor in order to achieve gene 

activation. We have known for a long time that TFs can both bind DNA and also recruit the 

transcriptional machinery (i.e. RNA polymerase) necessary to activate expression. Therefore, if 

we observe TF binding, then we would expect that the TF could also activate expression of 

nearby genes. In fact some of the earliest reprogramming experiments relied on the activity of a 

single TF (MYOD1) to convert fibroblasts into myoblasts (Davis, Weintraub, and Lassar 1987; 

Choi et al. 1990). It could be possible that the opening (not activation) step requires multiple TFs 

to outcompete nucleosomes as suggested above (Miller and Widom 2003), but even in this case, 

it doesn’t seem necessary to have multiple unique TFs. Either a TF binding as a homodimer or 

multiple copies of the same TF binding to an array of spaced motifs could achieve the protein 

density at an enhancer that may be necessary to outcompete histones. 

 

1.6 – Scope of this dissertation 
 

After reading all of the literature cited above, my hypothesis was that there is nothing 

qualitatively different about PFs and nonPFs. I predicted that given the right circumstances, I 

could turn a PF into a nonPF, and vice versa. I initially proposed to test this prediction by 

integrating a library of regulatory elements into a heterochromatic region of the genome, waiting 

until those elements became inaccessible, and then expressing TFs whose motifs were in those 

https://paperpile.com/c/geHVnJ/8k03
https://paperpile.com/c/geHVnJ/Vb2B+khZ8B
https://paperpile.com/c/geHVnJ/Vb2B+khZ8B
https://paperpile.com/c/geHVnJ/8k03
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elements to see which motifs regained accessibility. My prediction was that low expression of a 

PF in combination with few or inappropriately spaced target motifs would cause the PF to act 

like a nonPF. Similarly, a highly expressed nonPF that targeted a sequence with high motif 

content would act like a PF. The problem that I encountered was that the gene expression readout 

of genomically silenced elements (i.e. no expression) looks identical to that of elements that were 

never actually integrated. While I thought that I had integrated elements that were subsequently 

silenced, I was in fact observing the absence of integrated elements. At that point, I had spent a 

couple of years trying to establish this method to no avail and decided that it was time to pivot. 

Coincidentally, around the same time a similar method was published that appeared to encounter 

similar issues with integrating sequences to be silenced (Hammelman et al. 2020). 

 

After these challenges, I conceded to use a simpler experimental design that would still allow me 

to study silent gene activation. I realized that the PFH makes clear and testable predictions about 

ectopically expressed TFs. I also realized that one of my committee members regularly uses PF 

FOXA1 and nonPF HNF4A to reprogram fibroblasts towards the liver lineage (Biddy et al. 

2018). By using FOXA1, I could test the most well studied PF (Lisa Ann Cirillo et al. 2002; 

Donaghey et al. 2018). By using HNF4A, I could test how a nonPF behaves individually as 

compared to when expressed with FOXA1 (Horisawa et al. 2020). And by using them together, I 

could compare my data to that generated from reprogramming experiments that employ the same 

TFs (Biddy et al. 2018). Finally, and perhaps best of all, none of the involved experiments–

lentiviral transduction, RNA-sequencing, ATAC-sequencing, or CUT&Tag–are notoriously 

challenging to conduct. I have detailed this work in the following two chapters.  

 

https://paperpile.com/c/geHVnJ/B7WZv
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I start in Chapter 2 with work that I designed to explicitly test the major predictions that the PFH 

makes about ectopically expressed PFs and nonPFs. As I mentioned above, the PFH states that: 

1) PFs can bind and open inaccessible instances of their motifs while nonPFs cannot, and 2) gene 

activation requires the sequential activity of a PF and a nonPF. Therefore, the PFH predicts that: 

1) ectopically expressed FOXA1 but not HNF4A will bind to inaccessible sites, and 2) neither 

TF will individually activate much tissue-specific gene expression. In order to test these 

predictions, we created lentiviral constructs that expressed inducible FOXA1 or HNF4A and 

then transduced K562 blood cells to create a FOXA1, HNF4A, and FOXA1-HNF4A double 

expression lines. We chose K562 cells because their epigenetic and protein binding profiles have 

been well characterized in published datasets, they are easy to transduce, culture, and handle, and 

because neither FOXA1 nor HNF4A are expressed within them. 

 

To test the above predictions, we induced each TF and then measured expression, binding, and 

accessibility. The data contradicted both of the PFHs predictions. Both FOXA1 and HNF4A 

could bind and open inaccessible sites and both FOXA1 and HNF4A independently activated 

significantly enriched sets of liver- and intestine-specific genes. We further showed that HNF4A 

binding sites have higher target motif content than FOXA1 binding sites. This finding, in 

conjunction with others’ data that shows that FOXA1 may bind more strongly than HNF4A 

(Garcia et al. 2019; Jiang, Lee, and Sladek 1997; Rufibach et al. 2006), led us to suggest that 

while HNF4A may have been labeled a nonPF due to its weak binding, given sufficient motif 

context, it can still exhibit “pioneer activity.” Finally we showed that we can predict with good 

accuracy each TF’s genome-wide binding patterns simply by using a motif count threshold. 

From these data we suggested that both TFs, and likely many more, can exhibit pioneer activity 

https://paperpile.com/c/geHVnJ/X0mX+PUsU+OWyi
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and that this activity depends on TF concentration, motif content, and a TF’s binding strength. 

These parameters suggest that pioneer activity could be captured in a quantitative metric. We 

published this work in January of 2022 under the title, “A test of the pioneer factor hypothesis 

using ectopic liver gene activation” (Hansen, Loell, and Cohen 2022). 

 

My work in Chapter 3 follows up on the clue that pioneer activity might be quantitative. Given 

that pioneer activity is essentially “binding at hard to bind sites,” we speculated that we could 

capture it by using a Kd-like metric to quantify binding strength at accessible and inaccessible 

genomic loci. Strong pioneer activity should lead to smaller differences in binding strength 

across these loci. To test the feasibility of this metric, we used our doxycycline-inducible (dox-

inducible) cell lines to induce each TF across a 1,000-fold range and then measured binding at 

tens of thousands of sites across the genome. We called the concentration of dox at which a 

single site is half-maximally bound the “dox50” of that site. We then compared the distribution of 

each TF’s dox50s across accessible and inaccessible loci, calculated the ratio of the mean dox50 of 

inaccessible over that of accessible loci, and called this term the TF’s  “Δdox50.” We showed that 

HNF4A had a smaller Δdox50 than FOXA1, suggesting that HNF4A has more potent pioneer 

activity than FOXA1. We also showed that sites at which FOXA1 targets more than 4 copies of 

its motif had a smaller Δdox50 than sites where FOXA1 targeted fewer motifs, suggesting that 

motif content can partially make up for weak pioneer activity. This finding is in line with our 

earlier discussion that pioneer activity can be summarized by whatever drives a high affinity 

interaction between TF and DNA. 

 

https://paperpile.com/c/geHVnJ/gomS
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Altogether I aimed to better understand how TFs activate silent genes. I tested the PFH, found 

that it did not predict the behavior of a canonical PF and nonPF, and then developed a 

quantitative metric for pioneer activity. I suggest that it is likely that many more TFs have some 

degree of pioneer activity and I encourage adoption of the Δdox50 or a similar metric as a way of 

quantifying it. Not only will these measurements add another quantitative way to explain TF 

behavior but will also provide us with information about how best to use TFs to ectopically 

activate silent genes. This information will ultimately inform rational design of future 

reprogramming cocktails and hopefully allow for more effective conversion processes. Then we 

may more fully realize the potential of establishing limitless supplies of new cells to replace 

those lost to damage or disease. 
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2.1 – Abstract 
 

The Pioneer Factor Hypothesis (PFH) states that pioneer factors (PFs) are a subclass of 

transcription factors (TFs) that bind to and open inaccessible sites and then recruit non-pioneer 

factors (nonPFs) that activate batteries of silent genes. The PFH predicts that ectopic gene 

activation requires the sequential activity of qualitatively different TFs. We tested the PFH by 

expressing the endodermal PF FOXA1 and nonPF HNF4A in K562 lymphoblast cells. While co-

expression of FOXA1 and HNF4A activated a burst of endoderm-specific gene expression, we 

found no evidence for a functional distinction between these two TFs. When expressed 

independently, both TFs bound and opened inaccessible sites, activated endodermal genes, and 

“pioneered” for each other, although FOXA1 required fewer copies of its motif for binding. A 

subset of targets required both TFs, but the predominant mode of action at these targets did not 

conform to the sequential activity predicted by the PFH. From these results we hypothesize an 

alternative to the PFH where “pioneer activity” depends not on categorically different TFs but 

rather on the affinity of interaction between TF and DNA. 
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2.2 – Introduction 
 

Transcription factors (TFs) face steric hindrance when instances of their motifs are occluded by 

nucleosomes(Kornberg 1974; Kaplan et al. 2009). This barrier prevents spurious transcription 

but must be overcome during development when TFs activate batteries of silent genes. The PFH 

describes how TFs recognize and activate nucleosome-occluded targets. According to the PFH, 

categorically different TFs cooperate sequentially to activate their targets. Pioneer factors (PFs) 

bind to and open inaccessible sites and then recruit non-pioneer factors (nonPFs) that are 

responsible for recruiting additional factors to initiate gene expression(McPherson et al. 1993; 

Shim, Woodcock, and Zaret 1998; L. A. Cirillo et al. 1998; Lisa Ann Cirillo et al. 2002).  

  

PFs also play a primary role in cellular reprogramming by first engaging silent regulatory sites of 

ectopic lineages(Iwafuchi-Doi and Zaret 2014). Continuous overexpression of PFs and nonPFs 

can lead to a variety of lineage conversions(Wapinski et al. 2013; Matsuda et al. 2018; Soufi et 

al. 2015; Soufi, Donahue, and Zaret 2012; Sekiya and Suzuki 2011; Samantha A. Morris et al. 

2014). The conversion from embryonic fibroblasts to induced endoderm progenitors offers one 

clear example(Sekiya and Suzuki 2011; Samantha A. Morris et al. 2014). This reprogramming 

cocktail combines the canonical PF FOXA1(Lisa Ann Cirillo et al. 2002) and nonPF 

HNF4A(Karagianni et al. 2020) and is suggested to rely upon sequential FOXA1 and then 

HNF4A behavior(Horisawa et al. 2020). 

  

The PFH makes strong predictions about the activities of ectopically expressed PFs and nonPFs. 

Because PFs are defined by their ability to bind nucleosome-occluded instances of their motifs, 
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the PFH predicts that PFs should bind to a large fraction of their motifs. However, similar to 

other TFs, PFs only bind a limited subset of their inaccessible motifs(Barozzi et al. 2014; 

Mayran et al. 2018; Donaghey et al. 2018; Manandhar et al. 2017). There are chromatin states 

that are prohibitive to PF binding(Mayran et al. 2018; Zaret and Mango 2016) and, in at least two 

cases, FOXA1 requires help from other TFs to bind at its sites(Donaghey et al. 2018; Swinstead 

et al. 2016). These examples suggest that PFs are not always sufficient to open inaccessible 

chromatin. The PFH also predicts that nonPFs should only bind at accessible sites, yet the 

bacterial protein LexA can pioneer inaccessible sites in mammalian cells(Miller and Widom 

2003). These observations, and the absence of direct genome-wide interrogations of the PFH, 

prompted us to design experiments to test major predictions made by the PFH using FOXA1 and 

HNF4A as a model PF and nonPF. 

  

To test these predictions, we expressed FOXA1 and HNF4A separately and together in K562 

lymphoblast cells and then measured their effects on DNA-binding, chromatin accessibility, and 

gene activation. In contrast to the predictions of the PFH, we found that both FOXA1 and 

HNF4A could independently bind to inaccessible instances of their motifs, induce chromatin 

accessibility, and activate endoderm-specific gene expression. The only notable distinction 

between the two factors was that HNF4A required more copies of its motif to bind. When 

expressed together, co-binding could only be explained in a minority of cases by sequential 

FOXA1 and HNF4A activity. Instead most co-bound sites required concurrent co-expression of 

both factors, which suggests cooperativity between these TFs at certain repressive genomic 

locations. We suggest that our findings  present an alternative to the PFH that eliminates the 

categorical distinction between PFs and nonPFs and instead posits that the energy required to 

https://paperpile.com/c/geHVnJ/7XhxB+JvGv+Ld0L+7Ppx
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pioneer occluded sites (“pioneer activity”) depends on the affinity of interaction between TFs 

and DNA. 

 

2.3 – Results 
 

Generation of FOXA1 and HNF4A clonal lines 

We tested predictions of the PFH using FOXA1 as a model endoderm PF and HNF4A as a 

model nonPF. Because PFs are defined by their behavior in ectopic settings, we expressed 

FOXA1 and HNF4A in mesoderm-derived K562 lymphoblast cells. These cells express neither 

FOXA1 nor HNF4A and present an entirely new complement of chromatin and co-factors. Thus 

any ectopic signature that we observe is due primarily to the TFs themselves. We focused only 

on the initial response to TF expression to capture primary mechanisms of TF behavior and not 

the secondary effects that can lead to cellular conversion and that may confound our analyses. 

  

To perform these experiments, we created lentiviruses that inducibly express either FOXA1 or 

HNF4A (Figure 2.1A). We created cassettes in which a doxycycline inducible promoter drives 

either FOXA1 or HNF4A and cloned these cassettes separately into a lentiviral vector(Meerbrey 

et al. 2011) that constitutively expresses Green Fluorescent Protein (GFP). Although PFs are 

typically expressed at supraphysiological levels(Ng et al. 2021; Davis, Weintraub, and Lassar 

1987), we infected K562 cells with each vector at a multiplicity of infection (MOI) of one to 

limit the degree of non-specific effects. We then used flow cytometry to sort single cells and 

selected FOXA1 and HNF4A clones that had similar GFP levels to ensure that our clones carried 

a similar transgene load. Finally, we performed both doxycycline titration induction and time 

https://paperpile.com/c/geHVnJ/a9pZX
https://paperpile.com/c/geHVnJ/a9pZX
https://paperpile.com/c/geHVnJ/S1Sz+Vb2B
https://paperpile.com/c/geHVnJ/S1Sz+Vb2B
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course experiments to identify the minimum doxycycline concentration and treatment time for 

robust TF activity. We observed that 0.5 µg/ml doxycycline for 24 hours was the minimal 

treatment condition that allowed FOXA1 and HNF4A, and their respective target genes ALB and 

APOB, to reach a plateau of expression (Figure 2.S1). At this concentration, both FOXA1 and 

HNF4A were induced approximately 1,000-fold (Figure 2.S1). We used these conditions in our 

subsequent experiments. 

  

Co-expression of FOXA1 and HNF4A in K562 cells conforms to the predictions of the PFH 

The first prediction of the PFH is that co-expression of FOXA1 and HNF4A should be sufficient 

to induce ectopic tissue-specific gene expression. We tested this prediction by infecting our 

FOXA1 clonal line with HNF4A-expressing lentivirus to generate a double expression clonal 

line, hereafter referred to as FOXA1-HNF4A. Upon co-induction in K562 cells we observed 

strong enrichment for both liver- and intestine-specific gene activation; FOXA1-HNF4A 

activated 91 liver-specific genes (18 expected, P < 10-38, cumulative hypergeometric) and 38 

intestinal genes (9 expected by chance, P < 10-13, cumulative hypergeometric) (Figure 2.1B). The 

dual liver and intestine enrichment that we observed is consistent with the finding that intestinal 

gene regulatory networks appear during reprogramming experiments that aim to use FOXA1-

HNF4A to convert embryonic fibroblasts to the liver lineage(Samantha A. Morris et al. 2014). 

We conclude that FOXA1 and HNF4A are sufficient to activate endoderm-specific gene 

expression in the ectopic K562 line. 

  

Where ectopic genes are activated in K562 cells, the PFH predicts co-binding of FOXA1 and 

HNF4A at inaccessible sites and induction of chromatin accessibility. Alternatively, FOXA1 and 

https://paperpile.com/c/geHVnJ/4tlBH
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HNF4A may not be able to overcome the K562 chromatin environment and instead activate gene 

expression by binding exclusively to accessible K562 sites. To distinguish between these 

possibilities, we measured FOXA1 and HNF4A binding by CUT&Tag(Kaya-Okur et al. 2019) 

after induction, and chromatin accessibility by ATAC-seq(Buenrostro et al. 2015) both before 

and after doxycycline induction. At the liver-specific locus ALB, FOXA1 and HNF4A co-bound 

at inaccessible sites and increased accessibility (Figure 2.1C). This pattern was consistent 

surrounding FOXA1-HNF4A activated liver genes: 43 of the 53 co-bound sites within 50 kb of a 

FOXA1-HNF4A activated gene were inaccessible prior to induction, and the accessibility signal 

at these co-bound sites increased substantially upon induction (Figure 2.1D-E).  

 

Although we focused on functional binding surrounding activated liver genes, these patterns 

were consistent across the genome. The vast majority of both FOXA1 and HNF4A binding sites 

fell within sites that were inaccessible prior to induction (-dox) (Figure 2.S2) and both FOXA1 

and HNF4A opened the majority of the inaccessible sites to which they bound (Figure 2.S2). 

These results show that despite an entirely ectopic complement of chromatin and co-factors 

within mesoderm-derived K562 cells, the endodermal TFs FOXA1 and HNF4A can find and 

activate the correct genes. Most individual binding by FOXA1 and HNF4A near their co-

activated genes occurred at the same sites bound in HepG2 liver cells(Partridge et al. 2020) 

(Figure 2.S2). Altogether we conclude that when co-expressed, FOXA1 and HNF4A conform to 

the predictions of the PFH and that cis-regulatory sequences are sufficient to guide their activity 

within an ectopic cell type. 

 

https://paperpile.com/c/geHVnJ/XroUc
https://paperpile.com/c/geHVnJ/1vMX
https://paperpile.com/c/geHVnJ/zYSCR
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Figure 2.1: FOXA1-HNF4A pioneers liver-specific loci in K562 cells. (A) Schematic of experimental design to 
infect K562 cells with FOXA1- or HNF4A-lentivirus and then perform functional assays on dox-induced cells. In 
CUT&Tag, a protein A-protein G fusion (pA/G) increases the binding spectrum for Fc-binding and allows Tn5 
recruitment to antibody-labeled TF binding sites. In ATAC-seq, Tn5 homes to any accessible site. And in RNA-seq, 
polyA RNA is captured and sequenced. (B) The number of tissue-specific genes predicted from the hypergeometric 
distribution to be activated by FOXA1-HNF4A compared to the number actually activated. Both liver- (P < 10-38) 
and intestinal-enrichment (P < 10-13) are significant. There are 242 total liver-enriched genes and 122 total 
intestine-enriched genes. (C) Genome browser view of a representative liver-specific locus (ALB) in FOXA1-
HNF4A clonal line that shows uninduced and induced accessibility, FOXA1 binding, and HNF4A binding. (D) 
Heatmap showing uninduced and induced accessibility at all FOXA1-HNF4A co-bound sites within 50 kb of each 
FOXA1-HNF4A activated liver-specific gene (n=53). (E) Meta plot showing average signal across each site from 
(d).  

 

Both FOXA1 and HNF4A individually activate many liver-specific genes 

We next sought to test whether ectopic tissue-specific gene expression in K562 cells results from 

the sequential activity of FOXA1 and HNF4A, as predicted by the PFH. Sequential activity 

predicts that HNF4A will not bind to its sites without FOXA1, and that FOXA1 won’t activate 

expression without HNF4A, such that neither FOXA1 nor HNF4A should activate tissue-specific 

gene expression when expressed alone. To test this prediction, we used the single expression 

K562 lines to induce either FOXA1 or HNF4A alone and measured mRNA expression by RNA-

seq. FOXA1 induction resulted in strong liver-specific enrichment (P < 10-4, cumulative 

Hypergeometric) and weak intestinal-specific enrichment (not significant) (Figure 2.2A), while 

HNF4A induction resulted in both strong liver-specific enrichment (P < 10-8, cumulative 

Hypergeometric) and strong intestinal-specific enrichment (P < 10-15, cumulative 

Hypergeometric) (Figure 2.2B). Importantly, neither FOXA1 nor HNF4A are expressed within 

K562 cells nor did they induce expression of the other TF, suggesting that the expression 

changes we observed were due to the independent effects of either FOXA1 or HNF4A. 

  

When expressed individually, FOXA1 and HNF4A activated largely independent sets of liver 

genes (Figure 2.2C) and intestinal genes (Figure 2.2D). FOXA1 activates liver genes enriched 
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for fibrinolysis and complement activation (Table 2.S1) whereas HNF4A activates liver genes 

enriched for cholesterol import and lipoprotein remodeling (Table 2.S2). Thus, in contrast to the 

predictions of the PFH, FOXA1 and HNF4A are each sufficient to induce separate and specific 

endodermal responses when expressed alone in K562 cells. 

 

 

Figure 2.2: FOXA1 and HNF4A activate independent liver- and intestine-specific genes. (A) The number of 
tissue-specific genes predicted from the hypergeometric distribution to be activated by FOXA1 compared to the 
number actually activated. Liver-enrichment (P < 10-4) is significant. There are 242 total liver-enriched genes. (B) 
The number of tissue-specific genes predicted from the hypergeometric distribution to be activated by HNF4A 
compared to the number actually activated. Liver- (P < 10-8) and intestine-enrichment (P < 10-15) are significant. 
There are 242 total liver-enriched genes and 122 total intestine-enriched genes. (C) 242 liver genes characterized as 
activated by Foxa1, HNF4A, both, or neither. (D) 122 intestine genes characterized as activated by FOXA1, 
HNF4A, both, or neither. 
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Both FOXA1 and HNF4A can independently bind and open inaccessible sites around liver 

genes 

Our results raised the possibility that both FOXA1 and HNF4A can bind and open inaccessible 

instances of their motifs. To test this, we induced FOXA1 and HNF4A expression individually 

and then measured each factor’s binding profile and their accessibility profiles before and after 

induction. FOXA1 induction resulted in FOXA1 binding and induced accessibility adjacent to 

ARG1, a liver-specific gene that is silent in K562 cells (Figure 2.3A), while HNF4A alone bound 

and induced accessibility at sites nearby the liver-specific gene APOC3 (Figure 2.3B). This 

pattern was consistent across liver-specific loci. 34 of the 59 FOXA1 binding sites within 50 kb 

of a FOXA1-activated liver gene were inaccessible and opened upon induction (Figure 2.3C,E) 

as was the case for 39 of the 76 HNF4A binding sites (Figure 2.3D,F). We observed similar 

patterns genome-wide. FOXA1 and HNF4A bound primarily to sites that were inaccessible prior 

to induction (-dox) (Figure 2.S3), opened them (Figure 2.S3), and in regions surrounding 

activated genes, most binding occurred at the same sites bound in HepG2 liver cells (Figure 

2.S3). We conclude that FOXA1 and HNF4A have roughly equivalent abilities to bind and open 

inaccessible sites. 

  

We sought to reconcile these findings with what the PFH had predicted. We first considered 

whether, in the absence of FOXA1, native K562 TFs were “pioneering” for HNF4A. A de novo 

motif discovery analysis of the 500 bp centered on inaccessible FOXA1 or HNF4A binding sites 

revealed strong enrichment for each TF’s motif, but no other strong signals. Similarly, we found 

no evidence for enrichment of predicted K562 PFs AP1 (FOS/JUN) (MA0099.2) (Biddie et al. 

2011), GATA1 (MA0035.4) (Iwafuchi-Doi and Zaret 2014), MYB (MA0100.1) (Lemma et al. 

https://paperpile.com/c/geHVnJ/DMxD5
https://paperpile.com/c/geHVnJ/DMxD5
https://paperpile.com/c/geHVnJ/B4F9
https://paperpile.com/c/geHVnJ/MzFD3
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2021), or SPI1 (PU.1) (MA0080.1) (Iwafuchi-Doi and Zaret 2014), either in inaccessible binding 

sites over randomly chosen sites, or in HNF4A over FOXA1 binding sites (Figure 2.S4). Thus, 

the similar activities of FOXA1 and HNF4A are not explained by pioneering activity provided 

by endogenous K562 TFs. 

 

We next considered whether differences in FOXA1 and HNF4A motif content could explain our 

results. We focused on binding sites surrounding activated liver genes and used FOXA1 and 

HNF4A position weight matrices (Figure 2.3G) to count occurrences in the 500 bp of sequence 

surrounding these sites. Sites independently pioneered by FOXA1 contained between 2-4 motifs, 

while sites pioneered by HNF4A contained 3-6 motifs (Figure 2.3H). This is despite the fact that 

the FOXA1 motif occurs more frequently across the genome than the HNF4A motif (Figure 

2.S5). This observation is consistent with data showing that FOXA1 has higher affinity for its 

binding site than HNF4A(Garcia et al. 2019; Rufibach et al. 2006; Jiang, Lee, and Sladek 1997) 

and suggests that there may not be anything categorically different about FOXA1 and HNF4A, 

but rather that “pioneer activity” may depend on the affinity of interaction between TF and 

DNA.  

 

Another possible explanation for our results could be that at the concentrations TFs are expressed 

in cellular reprogramming, the differences between PFs and nonPFs are no longer apparent. We 

took advantage of our doxycycline-inducible system to test this hypothesis by lowering the 

doxycycline concentration from 0.5 µg/ml to 0.05 µg/ml, thus dropping the TF concentration 

significantly (Figure 2.S1). We then re-measured binding and expression. We found that lower 

induction resulted in far fewer FOXA1 and HNF4A genome-wide binding events (Figure 2.S6). 

https://paperpile.com/c/geHVnJ/MzFD3
https://paperpile.com/c/geHVnJ/B4F9
https://paperpile.com/c/geHVnJ/X0mX+OWyi+PUsU
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This effect was even more pronounced when we subset the binding events into sites that were 

either accessible or inaccessible prior to induction. Both FOXA1 and HNF4A shifted from 

binding predominantly inaccessible sites to binding predominantly accessible sites (Figure 2.S6). 

Thus binding of both factors depends on a balance of TF concentration and accessibility state, 

and the results from expression profiling in the lower induction regime are consistent with this 

idea. Whereas FOXA1 and HNF4A previously activated 33 and 47 liver genes, at the lower 

induction rate they activated 8 and 30, respectively (Figure 2.S6). Thus, lowering the induction 

levels had strong effects on the activities of both FOXA1 and HNF4A, but did not reveal 

qualitative differences between the two TFs. These results suggest that the induction conditions 

in cellular reprogramming do not mask differences between the TFs, a result consistent with the 

fact that the PFH was developed to explain the properties of cellular reprogramming cocktails. 
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Figure 2.3: Both FOXA1 and HNF4A can pioneer liver-specific loci. (A) Genome browser view of a 
representative liver-specific locus (ARG1) in FOXA1 clonal line showing uninduced and induced accessibility and 
FOXA1 binding. (B) Genome browser view of a representative liver-specific locus (APOC3) in HNF4A clonal line 
showing uninduced and induced accessibility and HNF4A binding. (C) Heatmap of uninduced and induced 
accessibility at all FOXA1 binding sites within 50 kb of each FOXA1-activated liver-specific genes (n = 59). (D) 
Heatmap of uninduced and induced accessibility at all HNF4A binding sites within 50 kb of each HNF4A-activated 
liver-specific genes (n = 76). (E) Meta plot showing average signal across each site from (c). (F) Meta plot showing 
average signal across each site from (d). (G) Human FOXA1 and HNF4A sequence logo from JASPAR. (H) 
FOXA1 or HNF4A motif count within 500 bp centered upon FOXA1 or HNF4A binding sites within 50 kb of each 
FOXA1- or HNF4A-activated liver-specific genes, respectively. Motifs were called with FIMO using 1e-3 a p-value 
threshold. For each boxplot, the center line represents the median, the box represents the first to third quartiles, and 
the whiskers represent any points within 1.5 times the interquartile range. 

 

Some liver genes require cooperative FOXA1-HNF4A activity 

In addition to those genes independently activated by FOXA1 and HNF4A, there is an additional 

set of 31 liver genes that are not activated until both FOXA1 and HNF4A are present (Figure 

2.4A). We therefore asked whether these 31 liver genes are activated sequentially, as predicted 

by the PFH. If these genes conform to the PFH, then we would expect that at every gene, there 

are nearby sites where FOXA1 binds individually and where FOXA1 and HNF4A co-bind when 

expressed together. This would be evidence for FOXA1 “pioneering” sites for later HNF4A 

binding and so we have called these sites “FOXA1 Pioneered” (FP). Sites are “HNF4A 

Pioneered” (HP) if HNF4A binds individually and FOXA1 and HNF4A co-bind when expressed 

together and sites are “Cooperatively Bound” (CB) if neither TF binds individually but both do 

when expressed together.  

 

When there is sequential binding of the two TFs it will be apparent in comparisons of the single 

versus double expression clones, whereas obligate cooperativity between the TFs will result in 

binding that is observed only in the double expression clone.  There are examples of each 

modality surrounding AMDHD1, a liver-specific gene co-activated by FOXA1 and HNF4A 

(Figure 2.4B). When we examine all of the liver genes only activated by FOXA1-HNF4A co-
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expression, we find that in contradiction with the PFH, there are roughly equal numbers of FP, 

HP, and CB sites (Figure 2.4C). Therefore, in most cases, genes that require joint FOXA1-

HNF4A activity do not rely on sequential FOXA1-then-HNF4A behavior.  

  

The patterns of genome-wide co-binding and accessibility of FOXA1 and HNF4A follow similar 

trends. Of the 11,402 co-bound sites, 2,023 were FP, 3,398 were HP, and 2,192 were CB (Figure 

2.4D) and FOXA1-induced differentially accessible peaks explain a minority of the FOXA1-

HNF4A differentially accessible peaks (Figure 2.S7). Cooperative binding may be more 

important in less accessible parts of the region, as there are more CB sites in ChromHMM-

labeled(Ernst and Kellis 2012) heterochromatic and repressed regions, and there are more FP and 

HP sites in promoter and enhancer regions (Figure 2.4E).   

 

https://paperpile.com/c/geHVnJ/Na8h
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Figure 2.4: FOXA1 and HNF4A both pioneer and cooperate at liver-specific sites. (A) Venn diagram of all liver 
genes categorized as either activated by FOXA1, HNF4A, FOXA1-HNF4A, some combination, or by none of the 
three cocktails. (B) Genome browser view of a representative liver-specific locus (AMDHD1) showing examples of 
a co-bound site that is “FOXA1 Pioneered” (FP), “HNF4A Pioneered” (HP), and “Cooperatively Bound” (CB). The 
first two tracks are FOXA1 and HNF4A binding in the FOXA1-HNF4A co-expression clone and the last two tracks 
are FOXA1 and HNF4A binding in their individual expression clones. (C) List of the 31 liver genes that are only 
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activated by FOXA1-HNF4A co-expression. The columns indicate how many co-bound FP, HP, or CB peaks exist 
within 100 kb of the gene. (D) Venn diagram of all genome-wide co-bound peaks categorized as either bound by 
FOXA1 individually (FP), HNF4A individually (HP), by both, or by neither (CB). (E) Overlap of FP, HP, and CB 
sites from (D) with ChromHMM annotations showing the fraction of each co-binding site type in each chromatin 
region.  

 

Genome-wide motif analysis supports affinity model 

The correlation between TF binding and factors such as TF binding strength, motif content, TF 

concentration, and accessibility state have so far suggested that an affinity model may explain 

ectopic FOXA1 and HNF4A behavior. Thus we predicted that motif counts would explain 

genome-wide binding patterns. Because it requires more energy to bind at inaccessible sites than 

accessible sites, we predicted that there would be more motifs at inaccessible binding sites than 

at accessible sites, and that this motif distribution would be higher than that found in random 

genomic sequences. When we examined the 500 bp of sequence centered upon genome-wide TF 

binding sites, we found that for both FOXA1 and HNF4A, inaccessible binding sites had higher 

motif content than accessible binding sites and that these inaccessible binding sites had higher 

motif content than random inaccessible regions (Figure 2.5A-B). A simple motif threshold could 

predict binding , though only when predicting inaccessible sites (Figure 2.5C). 

 

We also predicted that if FOXA1 and HNF4A are not categorically different, then we would find 

similar trends between the motifs for the two TFs . We predicted that total FOXA1 and HNF4A 

motif count at inaccessible sites would be higher than at random sites, and that FP or HP sites 

would have more FOXA1 or HNF4A sites, respectively, than CB sites. When we examined the 

500 bp of sequence centered upon genome-wide co-bound sites, we found that there was higher 

total motif content at inaccessible binding sites as compared to random (Figure 2.5D) and that 

FOXA1 and HNF4A motif content was higher at FP or HP sites, respectively, than CB sites 
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(Figure 2.5E). And like individually bound sites, a motif threshold could only predict 

inaccessible binding behavior (Figure 2.5F, top panels). The motif threshold was somewhat 

effective at differentiating between FP or HP versus CB sites (Figure 2.5F, lower panel). 

Altogether these results further support our hypothesis that affinity better explains ectopic 

FOXA1 and HNF4a “pioneer activity” than the current formulation of the PFH. 
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Figure 2.5: Affinity model predicts binding events. (A) FOXA1 or HNF4A motif count at all genomic 
occurrences of the respective TF’s accessible or inaccessible binding sites. (B) FOXA1 or HNF4A motif count in 
genome-wide inaccessible binding sites versus length-matched random inaccessible DNA sequences. (C) Receiver 
operating characteristic (ROC) curves for predictive power of using sequence motif content to predict accessible 
(left panels) or inaccessible (right panels) binding sites from random sequence. (D) Total FOXA1 and HNF4A motif 
count at all genomic occurrences of inaccessible co-binding versus length-matched random inaccessible DNA 
sequences. (E) FOXA1 or HNF4A motif count in respective FOXA1 or HNF4A Pioneered sites versus in 
cooperative binding sites (where neither TF bound individually). (F) ROC curves for predictive power of using 
sequence motif content to predict accessible or inaccessible co-binding events from random sequence (top panels) or 
to predict FOXA1 or HNF4A pioneered events from cooperative binding events. All FIMO scans used 1e-3 as p-
value threshold and were conducted on 500bp of sequence centered upon the binding site. 

 

2.4 – Discussion 
 

In contrast to the predictions of the PFH, we found that both the canonical PF FOXA1 and 

nonPF HNF4A can independently bind inaccessible sites, increase accessibility, and activate 

nearby endodermal genes. Some endodermal genes require the joint activity of both TFs, but the 

predominant mode of action at these targets does not conform to the predicted sequential activity 

of FOXA1 followed by HNF4A. These observations suggest that we do not need to invoke the 

PFH to explain FOXA1 and HNF4A’s behavior in ectopic K562 cells and that instead we may 

use the affinity of interaction between each TF and its target sites to explain its behavior. 

 

An affinity model assumes that there is nothing categorically different between FOXA1 and 

HNF4A. We hypothesize that differences still exist between TFs’ abilities to bind at nucleosome-

occluded sites but that “pioneer activity” is a spectrum not a binary classifier. The probability of 

a binding event depends on the intrinsic binding ability of the TF and the motif count at a 

potential binding site. Previous measures of intrinsic binding strength that show FOXA1 binds 

more tightly than HNF4A (Garcia et al. 2019; Rufibach et al. 2006; Jiang, Lee, and Sladek 1997) 

may explain why in our assays FOXA1 requires fewer copies of its motif to bind. In fact FOXA1 

https://paperpile.com/c/geHVnJ/X0mX+OWyi+PUsU
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has a special three-dimensional, histone-like structure that may explain its superior binding 

strength(Clark et al. 1993). 

 

However, given the right sequence context, HNF4A also displays pioneer activity. We 

hypothesize that HNF4A was mis-classified because of both developmental timing and indirect 

assays of pioneer activity. FOXA1 precedes HNF4A during hepatic development (Lau et al. 

2018) and studies have traditionally established pioneer factor status by using endogenous 

binding or genome-wide chromatin marks. Perhaps sequential activity of FOXA1 and HNF4A is 

necessary during hepatic development, but our data show that both TFs are sufficient to 

independently activate silent genes. 

 

We further hypothesize that our findings may extend to other reprogramming cocktails that 

combine PFs and nonPFs. While our study is limited to two TFs at two concentrations in one cell 

line, other data support our hypothesis. Early reprogramming of fibroblasts to myoblasts relied 

solely upon the ectopic overexpression of MyoD, without an accompanying nonPF(Davis, 

Weintraub, and Lassar 1987; Choi et al. 1990) and new reprogramming cocktails have been 

tested and validated in a large-scale screen for single, cell autonomous reprogramming TFs(Ng et 

al. 2021). Increasing the efficiency of reprogramming cocktails that depend on multiple TFs will 

require distinguishing between the independent and cooperative effects of TFs. For example, our 

finding that HNF4A independently activates more intestine-specific genes than FOXA1 raises 

the possibility that titrating down HNF4A activity during reprogramming could result in a more 

liver-specific profile. Such fine-tuning of TF activities has been suggested as an option to 

https://paperpile.com/c/geHVnJ/g6Rh
https://paperpile.com/c/geHVnJ/AkhC
https://paperpile.com/c/geHVnJ/AkhC
https://paperpile.com/c/geHVnJ/Vb2B+khZ8B
https://paperpile.com/c/geHVnJ/Vb2B+khZ8B
https://paperpile.com/c/geHVnJ/S1Sz
https://paperpile.com/c/geHVnJ/S1Sz
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improve the success of other reprogramming cocktails(Ma et al. 2015; Wang et al. 2015; Vaseghi 

et al. 2016). 

  

Although we found clear instances of sites independently pioneered by either FOXA1 or 

HNF4A, not all sites containing multiple motifs were pioneered in K562 cells, which comports 

with studies showing that the sequence context in which motifs occur also plays an important 

role in determining whether sites will be pioneered or not. GAL4’s ability to bind nucleosomal 

DNA templates depends both on the number of copies of its motif(Workman, Schuetz, and 

Kingston 1991) and the positioning of the motif in the nucleosome(Vettese-Dadey et al. 1994). 

Precise nucleosome positioning also dictates TP53 and OCT4 pioneering behavior(Yu and Buck 

2019; Huertas et al. 2020). A TF’s motif affinity, motif count, and the presence of co-factor 

motifs are all strong predictors of pioneer activity(Yan, Chen, and Bai 2018; Manandhar et al. 

2017; Donaghey et al. 2018; Heinz et al. 2010; Boyes and Felsenfeld 1996; Minderjahn et al. 

2020; Meers, Janssens, and Henikoff 2019) and certain types of heterochromatic patterning have 

been labeled “pioneer resistant”(Mayran et al. 2018). Thus we hypothesize that general pioneer 

activity may best be summarized by the free energy balance between TFs, nucleosomes, and 

DNA(Polach and Widom 1996; Mirny 2010) rather than as a property of specific classes of TFs.  

 

2.5 – Materials and Methods 
 

Cell lines 

We grew K562 cells (ATCC CCL-243, Manassas, VA) in Iscove’s Modified Dulbecco Serum 

supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin and 1% non-essential 

https://paperpile.com/c/geHVnJ/XmS1t+oeDH9+dj2ol
https://paperpile.com/c/geHVnJ/XmS1t+oeDH9+dj2ol
https://paperpile.com/c/geHVnJ/RcEK2
https://paperpile.com/c/geHVnJ/RcEK2
https://paperpile.com/c/geHVnJ/8wb9Z
https://paperpile.com/c/geHVnJ/joPU+J4uzI
https://paperpile.com/c/geHVnJ/joPU+J4uzI
https://paperpile.com/c/geHVnJ/KNIg+7Ppx+Ld0L+S3QqD+oPyuH+Z3NF2+hgyo
https://paperpile.com/c/geHVnJ/KNIg+7Ppx+Ld0L+S3QqD+oPyuH+Z3NF2+hgyo
https://paperpile.com/c/geHVnJ/KNIg+7Ppx+Ld0L+S3QqD+oPyuH+Z3NF2+hgyo
https://paperpile.com/c/geHVnJ/JvGv
https://paperpile.com/c/geHVnJ/Wbk9+6oyH
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amino acids. We used these cells to generate our clonal lines (FOXA1, HNF4A, and FOXA1-

HNF4A) and we thank the Washington University in St. Louis Genome Engineering and iPSC 

Center for their help confirming K562 identity with STR profiling and testing for mycoplasma 

contamination. When it was time to conduct one of our functional assays, we split FOXA1-, 

HNF4A-, or FOXA1-HNF4A-expressing cells into replicate flasks and then treated with either 

+/- 0.5 µg/ml or 0.05 µg/ml doxycycline (Sigma #D9891-1G) for 24 hours.  

 

Cloning, production, and infection of viral vectors 

We used PCR to add V5 epitope tags to the 3’ end of FOXA1 (Addgene #120438, Watertown, 

MA) and HNF4A (Addgene #120450) constructs and then used HiFi DNA Assembly (NEB 

#E2621L, Ipswich, MA) to clone each construct into a pINDUCER21 doxycycline-inducible 

lentiviral vector (Addgene #46948). All primers are listed in Supplementary file 1. The Hope 

Center Viral Vector Core at Washington University in St. Louis then generated and titered high-

concentration virus. We infected human K562 cells at a multiplicity of infection of 1 by 

spinoculation at 800G for 30 minutes in the presence of 10 µg/ml polybrene (Sigma #TR1003G, 

St. Louis, MO), passaged the cells for 3 days, and then selected for positively-infected cells by 

single cell sorting on GFP+ into 96-well plates. Finally we used qPCR to select for clones that 

had high inducibility of TF and target gene expression (Figure 2.S1). 

  

RNA extractions, reverse transcription, and qPCR 

We extracted RNA from 1e6 cells/sample with the PureLink RNA Mini (Invitrogen #12183020, 

Waltham, MA) column extraction kit and completed on-column DNA digestion with PureLink 

DNase (Invitrogen #12185010). We quantified and assessed the quality of the RNA with an 
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Agilent 2200 Tapestation instrument and then either froze down pure RNA for later RNA-

sequencing library preparation or used ReadyScript cDNA Synthesis Mix (Sigma #RDRT-

100RXN) to produce cDNA for qPCR. We performed qPCR with SYBR Green PCR Master Mix 

(Applied Biosystems #4301955, Waltham, MA) and gene-specific and housekeeping primers 

(Supplementary File 1).  

  

RNA-sequencing and analysis 

We generated three replicates of +/- doxycycline-treated RNA-sequencing libraries with the 

NEBNext Ultra II Directional RNA Library Prep Kit (NEB #E7765S). We quantified and 

assessed the quality of the libraries with an Agilent 2200 Tapestation instrument, size selected 

with AMPure XP beads (Beckman Coulter #A63880, Brea, CA), and then sequenced the 

libraries with 75bp paired-end reads on an Illumina NextSeq 500 instrument.  

 

We quantified transcripts with Salmon(Patro et al. 2017), filtered out any with fewer than 10 

reads, and then called differentially expressed transcripts with DESeq2(Love, Huber, and Anders 

2014). A gene was called differentially upregulated if it had a log2fold change of at least 1 and 

was called “activated” if it had fewer than 50 normalized reads in the uninduced control. A gene 

was called “tissue-specific” according to the Human Protein Atlas definition of tissue 

enrichment(Uhlén et al. 2015), which is if a gene is at least 4-fold higher expressed in the tissue-

of-interest than in any other tissue as measured by deep sequencing of RNA from the tissue-of-

interest. 

  

ATAC-sequencing and analysis 

https://paperpile.com/c/geHVnJ/VfUHp
https://paperpile.com/c/geHVnJ/i98m6
https://paperpile.com/c/geHVnJ/i98m6
https://paperpile.com/c/geHVnJ/zJbz
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We followed the Omni-ATAC protocol(Ryan Corces et al. 2017) to generate two replicates of 

+/- doxycycline-treated low-background ATAC-sequencing libraries. We isolated 2e5 

cells/sample and then extracted 5e4 nuclei/sample for tagmentation and library preparation. We 

quantified and assessed the quality of the libraries with an Agilent 2200 Tapestation instrument, 

size selected with AMPure XP beads, and then sequenced the libraries with 75bp paired-end 

reads on an Illumina NextSeq 500 instrument.  

  

We aligned transcripts with bowtie2(Langmead and Salzberg 2012) with the parameters: --local -

X2000, generated RPKM normalized BigWig files for visualization with DeepTools 

bamCoverage(Ramírez et al. 2016), and then called peaks at low stringency with macs2 (p = 

0.01)(Y. Zhang et al. 2008). With these peaks, we either called reproducible peaks with IDR 

(FDR of 0.05)(Li et al. 2011) or used DiffBind(Stark, Brown, and Others 2011) to call 

differential peaks. We calculated the Fraction of Reads in Peaks (FRiP) with the Subread 

featureCounts tool (Liao, Smyth, and Shi 2014), counting reads for each replicate in the IDR-

merged peak list (Table 2.S3). 

  

CUT&Tag and analysis 

We followed the CUTANA Direct-to-PCR CUT&Tag protocol (EpiCypher, Chapel Hill, NC) to 

generate two replicates of low-background CUT&Tag libraries. We isolated 1e5 cells/sample, 

extracted nuclei with Concanavalin A paramagnetic beads (Epicypher #21-1401), and then either 

used rabbit anti-human FOXA1 monoclonal antibody (Cell Signaling #53528, Danvers, MA), 

mouse anti-human HNF4A monoclonal antibody (Invitrogen #MA1-199), or rabbit anti-human 

histone H3K4me3 polyclonal antibody (Epicypher #13-0041) as a positive control. We amplified 

https://paperpile.com/c/geHVnJ/ZYyQb
https://paperpile.com/c/geHVnJ/yiyDy
https://paperpile.com/c/geHVnJ/22M2b
https://paperpile.com/c/geHVnJ/4LKOx
https://paperpile.com/c/geHVnJ/K7Nid
https://paperpile.com/c/geHVnJ/lOQmD
https://paperpile.com/c/geHVnJ/KIyJz
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this signal with either goat anti-rabbit (Epicypher #13-0047) or goat anti-mouse (Epicypher #13-

0048) polyclonal secondary antibodies. For a negative control, we omitted the primary antibody 

and checked for any non-specific pull-down. Finally, we used CUTANA pAG-Tn5 (Epicypher 

#15-1017) to tagment the genomic regions surrounding each bound antibody complex. We 

quantified and assessed the quality of the libraries with an Agilent 2200 Tapestation instrument, 

size selected with AMPure XP beads, and then sequenced the libraries with 150bp paired-end 

reads on an Illumina NextSeq 500 instrument. 

  

When we assessed our libraries with the Agilent Tapestation instrument, we found that our 

negative controls had minimal signal. This is expected in the protocol and as such sequencing the 

sample is recommended as optional(Kaya-Okur et al. 2020). For this reason, we sequenced only 

our positive samples. We aligned our samples with Bowtie2(Langmead and Salzberg 2012) 

using recommended parameters(Kaya-Okur et al. 2020): --very-sensitive --end-to-end --no-

mixed --no-discordant -I 10 -X700, created RPKM normalized BigWig files with DeepTools 

bamCoverage(Ramírez et al. 2016), and called peaks with macs2 (p = 1e-5)(Y. Zhang et al. 

2008) with recommended parameters(Kaya-Okur et al. 2019). We calculated the Fraction of 

Reads in Peaks (FRiP) with Subread featureCounts tool (Liao, Smyth, and Shi 2014) (Table 

2.S4). We then combined overlapping peaks from replicate samples using BEDTools 

intersect(Quinlan and Hall 2010). We attributed binding sites to genes if they were within 50 kb 

(25 kb up- and 25 kb downstream) of the gene’s TSS. Because co-binding occurred less 

frequently, we attributed co-binding sites to genes if they were within 100 kb of the gene’s TSS. 

“FOXA1 Pioneered” sites were those where we identified overlapping FOXA1 and HNF4A 

binding peaks within 100 kb of a gene that was only activated by FOXA1 and HNF4A and 

https://paperpile.com/c/geHVnJ/aMp2R
https://paperpile.com/c/geHVnJ/yiyDy
https://paperpile.com/c/geHVnJ/aMp2R
https://paperpile.com/c/geHVnJ/22M2b
https://paperpile.com/c/geHVnJ/4LKOx
https://paperpile.com/c/geHVnJ/4LKOx
https://paperpile.com/c/geHVnJ/XroUc
https://paperpile.com/c/geHVnJ/KIyJz
https://paperpile.com/c/geHVnJ/mujsc
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where there was also an overlapping FOXA1 binding peak, when FOXA1 was expressed alone. 

“HNF4A Pioneered” sites were those where we identified overlapping FOXA1 and HNF4A 

binding peaks within 100 kb of a gene that was only activated by FOXA1 and HNF4A and 

where was also an overlapping HNF4A binding peak, when HNF4A was expressed alone. And 

“Cooperatively Bound” sites were those where we identified overlapping FOXA1 and HNF4A 

binding peaks within 100 kb of a gene that was only activated by FOXA1 and HNF4A and 

where there was neither a FOXA1 nor HNF4A binding peak. 

  

Tissue- and biological process-specific expression analysis  

We generated lists of tissue-specific genes for each tissue by extracting “enriched genes” from 

the Human Protein Atlas, as detailed above. We then computed hypergeometric assays to 

determine if our activated genes were enriched in any tissue-specific gene set. Finally, we used 

Panther gene ontology analysis to identify enriched biological processes. 

  

Genome tracks and profile plot analysis 

We visualized the signal from our functional assays by loading each file into the Integrated 

Genome Viewer(Robinson et al. 2011), using hg19 as reference. We then used the 

computeMatrix function in reference-point mode and plotProfile function, both with default 

parameters, in the DeepTools suite(Ramírez et al. 2016) to display aggregated CUT&Tag and 

ATAC-sequencing signals across indicated genomic regions.  

 

Motif and chromatin segmentation analysis 

https://paperpile.com/c/geHVnJ/xd6Ur
https://paperpile.com/c/geHVnJ/22M2b
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Before running motif scans, we extracted 500bp of sequence centered on the binding sites of 

interest. Then we used STREME (Bailey 2021) for de novo motif discovery and FIMO (Grant, 

Bailey, and Noble 2011) for specific motif occurrence counting. We used 1e-3 as a p-value 

threshold and JASPAR (Fornes et al. 2020) PWMs for FOXA1 (MA0148.1) and HNF4A 

(MA0114.2). To use motif content to predict binding, we lowered the p-value threshold to 0 to 

allow for weak motif contributions and then summed the motif content for each sequence. A 

simple threshold on this aggregate score was used as a classifier, with the ROC curves generated 

by sweeping this threshold and plotting the resulting true positive rates against false positive 

rates. We used ChromHMM annotations(Ernst and Kellis 2012) to characterize the epigenetic 

profile of FOXA1 and HNF4A binding sites.  

  

Data Availability  

All genomic sequencing data have been deposited on Gene Expression Omnibus (GEO) under 

accession number GSE182191.  
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https://paperpile.com/c/geHVnJ/6iMcT
https://paperpile.com/c/geHVnJ/BBCzY
https://paperpile.com/c/geHVnJ/BBCzY
https://paperpile.com/c/geHVnJ/lrn5e
https://paperpile.com/c/geHVnJ/Na8h
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2.7 – Supplementary Information 
 

Supplementary Figures 
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Figure 2.S1: Titration of doxycycline concentration and treatment time for TF and target gene induction. 
qPCR measurements made from RNA extracted from either the FOXA1 clonal line (A-D) or the HNF4A clonal line 
(E-H) that was treated with either increasing doxycycline concentrations or longer time periods. Expression is 
displayed as log10 fold induction over either 0 µg/ml doxycycline control (for concentration titration) or time 0 (for 
time titration). Each sample primer was normalized to the HPRT housekeeping gene. Doxycycline concentration 
titration measurements were made at 0, 0.01, 0.05, 0.1, 0.5, 2, and 5 µg/ml. Doxycycline treatment time 
measurements were made at 0, 6, 12, 24, 48, 72, and 96 hours. 
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Figure 2.S2: Characterization of FOXA1 and HNF4A binding patterns in FOXA1-HNF4A clone. (A) The 
number of genome-wide FOXA1 or HNF4A transcription factor binding sites (TFBS) in the induced (+dox) cells 
that overlap with an ATAC-seq peak in the uninduced (-dox) cells (“Accessible binding site”) or that do not overlap 
with an ATAC-seq peak in the uninduced (-dox) cells (“Inaccessible binding site”). (B) The number of inaccessible 
binding sites from (A) that overlap with an ATAC-seq peak in the induced (+dox) cells (“Opened”) or that do not 
overlap with an ATAC-seq peak (“Remained closed”). (C) The number of FOXA1 or HNF4A binding sites within 
50 kb of each FOXA1-HNF4A co-activated gene characterized as either a “HepG2 binding site,” where the TFBS 
overlaps a TFBS of FOXA1 or HNF4A in HepG2 liver cells, or as a “Novel K562 binding site,” where the TFBS 
does not overlap with a HepG2 binding site. 
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Figure 2.S3: Characterization of FOXA1 and HNF4A binding patterns in FOXA1 or HNF4A individual 
clones. (A) The number of genome-wide FOXA1 or HNF4A transcription factor binding sites (TFBS) in the 
induced (+dox) cells that overlap with an ATAC-seq peak in the uninduced (-dox) cells (“Accessible binding site”) 
or that do not overlap with an ATAC-seq peak in the uninduced (-dox) cells (“Inaccessible binding site”). (B) The 
number of inaccessible binding sites from (A) that overlap with an ATAC-seq peak in the induced (+dox) cells 
(“Opened”) or that do not overlap with an ATAC-seq peak (“Remained closed”). (C) The number of FOXA1 or 
HNF4A binding sites within 50 kb of each FOXA1- or HNF4A-activated gene characterized as either a “HepG2 
binding site,” where the TFBS overlaps a TFBS of FOXA1 or HNF4A in HepG2 liver cells, or as a “Novel K562 
binding site,” where the TFBS does not overlap with a HepG2 binding site. 
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Figure 2.S4: K562 TF motif content in binding sites. (A) FIMO scans at p-value threshold 1e-3 for four most 
common proposed K562 PFs in either FoxA1 inaccessible binding sites (red), Hnf4a inaccessible binding sites 
(blue), or random equally-lengthed binding sites (gray).   
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Figure 2.S5: FOXA1 and HNF4A motif scanning. (A) 1,000 random 200 bp fragments were generated using 
Bedtools and then scanned for FOXA1 and HNF4A motifs with FIMO using 1e-3 a p-value threshold. Total motif 
count was divided by the number of non-N containing random sequences (924) to identify motifs per random 200bp 
fragment. 
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Figure 2.S6: Expression and binding at lower doxycycline induction. (A) The number of tissue-specific genes 
predicted from the hypergeometric distribution to be activated by FOXA1 at a lower doxycycline concentration 
(0.05 µg/ml) compared to the number actually activated. There are 242 total liver-enriched genes. (B) The number 
of tissue-specific genes predicted from the hypergeometric distribution to be activated by HNF4A at a lower 
doxycycline concentration (0.05 µg/ml) compared to the number actually activated. Liver- (P < 10-5) and intestine-
enrichment (P < 10-14) are significant. There are 242 total liver-enriched genes and 122 total intestine-enriched 
genes. (C-D) Genome-wide FOXA1 (C) or HNF4A (D) binding sites classified as either events that occurred at sites 
that were accessible or inaccessible in the uninduced (-dox) state at 0.5 and 0.05 µg/ml doxycycline induction. 
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Figure 2.S7: Characterization of FOXA1-HNF4A differential accessibility. (A) Venn diagram of all FOXA1-
HNF4A induced differentially accessible peaks categorized by whether the peak was also induced in the FOXA1 
clone, HNF4A clone, neither, or both. 
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Supplementary Tables 

Table 2.S1: FOXA1 Gene Ontology Analysis. 

FOXA1 overrepresented biological 

process 

Representative genes FDR 

Fibrinolysis SERPINF2, SERPING1, FGB, FGG, 

F2 

9.48e-

07 

Negative regulation of complement 

activation 

SERPINF2, VTN, F2 4.36e-

02 

Regulation of heterotypic cell-cell adhesion APOA1, FGB, FGG 6.24e-

03 

Acute phase response ITIH4, F2, SERPINF2 5.75e-

04 

Platelet degranulation ALB, FGB, FGG, SERPINF2 4.00e-

06 
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Table 2.S2: HNF4A Gene Ontology Analysis. 

HNF4A overrepresented biological process Representative genes FDR 

Negative regulation of cholesterol import APOC3, APOA2 5.92e-

03 

Negative regulation of VLDL particle 

remodeling/clearance 

APOA1, APOC3, APOA2 1.97e-

04 

Chylomicron assembly/remodeling APOC2, APOC3, APOA1, 

APOA2 

2.22e-

05 

Tyrosine catabolic process HGD, HPD 1.61e-

02 

Phospholipid efflux APOC2, APOC3, APOA1, 

APOA2 

4.14e-

05 
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Table 2.S3: ATAC-sequencing quality summary statistics.  

TF Treatment Replicate Run Type # Reads # Peaks FRIP 

FOXA1 -dox 1 2x75 44,743,030 95,990 0.314 

FOXA1 -dox 2 2x75 52,055,353 95,990 0.282 

FOXA1 +dox 1 2x75 48,185,142 109,307 0.243 

FOXA1 +dox 2 2x75 54,274,296 109,307 0.233 

HNF4A -dox 1 2x75 54,010,114 101,013 0.361 

HNF4A -dox 2 2x75 66,516,188 101,013 0.319 

HNF4A +dox 1 2x75 89,510,323 137,042 0.326 

HNF4A +dox 2 2x75 79,799,450 137,042 0.329 

FOXA1-HNF4A -dox 1 2x75 93,547,030 43,269 0.252 

FOXA1-HNF4A -dox 2 2x75 116,103,754 43,269 0.277 

FOXA1-HNF4A +dox 1 2x75 110,957,971 66,716 0.34 

FOXA1-HNF4A +dox 2 2x75 101,240,257 66,716  0.341 
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Table 2.S4: CUT&Tag sequencing quality summary statistics.  

TF Treatment Antibody Replicate Run 

Type 

# Reads # 

Peaks 

FRIP 

FOXA1 +dox FOXA1 1 2x150 19,489,387 42,734 0.369 

FOXA1 +dox FOXA1 2 2x150 23,025,631 51,994 0.377 

HNF4A +dox HNF4A 1 2x150 15,154,729 37,233 0.331 

HNF4A +dox HNF4A 2 2x150 15,615,127 31,864 0.269 

FOXA1-

HNF4A 

+dox FOXA1 1 

2x150 22,946,339 33,819 0.386 

FOXA1-

HNF4A 

+dox FOXA1 2 

2x150 22,739,194 34,145 0.37 

FOXA1-

HNF4A 

+dox HNF4A 1 

2x150 18,242,414 41,187 0.313 

FOXA1-

HNF4A 

+dox HNF4A 2 

2x150 16,269,780 26,193 0.222 

FOXA1 +0.05dox FOXA1 1 2x150 46,090,492 6,039 0.095 

FOXA1 +0.05dox FOXA1 2 2x150 24,625,780 3,218 0.075 

HNF4A +0.05dox HNF4A 1 2x150 43,839,229 14,301 0.109 
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HNF4A +0.05dox HNF4A 2 2x150 44,493,248 13,552 0.109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 64 
 

Table 2.S5: Oligonucleotide sequences. 
Name Sequence 

foxa1-v5-step1-R agagggttagggataggcttaccacttgtattcaaaactggtcg 

hnf4a-v5-step1-R agagggttagggataggcttaccagcaacttgcccaaagcggc 

v5-step2-F ctacgtagaatcgagaccgaggagagggttagggataggctt 

foxa1-pinducer-F ccagcctccgcggccccgaaatgttgggcaccgtgaag 

foxa1-pinducer-R tgggacgtcgtatgggtattctacgtagaatcgagaccg 

hnf4a-pinducer-F ccagcctccgcggccccgaaatgcgactctccaaaacc 

hnf4a-pinducer-R tgggacgtcgtatgggtattctacgtagaatcgagacc 

foxa1-qpcr-F catgagacaagcgactggaa 

foxa1-qpcr-R tattaaaggaggccggtgtc 

alb-qpcr-F ctgcctgcctgttgccaaagc 

alb-qpcr-R ggcaaggtccgccctgtcatc 

hnf4a-qpcr-F aatgacacgtccccatcaga 

hnf4a-qpcr-R ggagtacatgtggttcttcc 

apob-qpcr-F agaggacagagccttggtggat 

apob-qpcr-R ctggacaaggtcatactctgcc 

hprt-qpcr-F tgacactggcaaaacaatgca 

hprt-qpcr-R ggtccttttcaccagcaagct 
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3.1 – Abstract 
 

We and others have suggested that pioneer activity–a transcription factor’s (TF’s) ability to bind 

and open inaccessible loci–is not a qualitative trait limited to a select class of pioneer TFs. We 

hypothesize that most TFs display pioneering activity that depends on the TF concentration and 

the motif content at their target loci. Here we present a quantitative measure of pioneer activity 

that captures the relative difference in a TF’s ability to bind accessible versus inaccessible DNA. 

The metric is based on experiments that use CUT&Tag to measure binding of doxycycline (dox) 

inducible TFs. For each location across the genome we determine a “dox50,” the concentration of 

dox required for a TF to reach half-maximal occupancy. We propose that the ratio of a TF’s 

average dox50 between ATAC-seq labeled inaccessible and accessible binding sites, its Δdox50, is 

a measure of its pioneer activity. We measured Δdox50’s for the endodermal TFs FOXA1 and 

HNF4A and show that HNF4A has a smaller Δdox50 than FOXA1, suggesting that HNF4A has 

stronger pioneer activity than FOXA1. We further show that FOXA1 binding sites with more 

copies of its motif have a lower Δdox50, suggesting that strong motif content may compensate for 

weak pioneer activity. Our results suggest that Δdox50s, or other similar measures that assess the 

difference in TF affinity for inaccessible and accessible DNA, are reasonable measures of 

pioneer activity. 
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3.2 – Introduction 
 

Activating silent genes requires transcription factors (TFs) to bind and open DNA when their 

motifs are occluded by nucleosomes. Activating silent genes is postulated to involve two 

qualitatively different classes of TFs, pioneer factors (PFs) and non-pioneer factors (nonPFs) 

(Lisa Ann Cirillo et al. 2002; Iwafuchi-Doi and Zaret 2014).  According to this hypothesis PFs 

bind to nucleosome-occluded DNA and make it accessible to nonPFs, which then recruit the 

cofactors required to activate transcription. However, we recently showed that both a canonical 

PF, FOXA1, and a nonPF, HNF4A, can independently bind, open, and then activate nearby 

genes (Hansen, Loell, and Cohen 2022), and many TFs possess unique ways of binding and 

opening nucleosomal DNA (F. Zhu et al. 2018; Swinstead et al. 2016; Miller and Widom 2003; 

Soufi et al. 2015; Yu and Buck 2019). From these data we propose that most TFs have 

quantifiable pioneer activity that depends on their nuclear concentrations and the motif content at 

their target loci. Here we present a metric that quantifies the pioneer activity of TFs at loci across 

the genome. 

 

3.3 – Results 
 

Definition of “Δdox50” parameter for pioneer activity  

An appropriate measure of pioneer activity should capture the relative difference of TF binding 

between inaccessible and accessible sites in the genome. In principle, we could compare the 

dissociation constant (Kd) of a TF at inaccessible and accessible sites as a measure of pioneer 

activity, since the Kd is the concentration of TF required to reach half maximal binding. In 

https://paperpile.com/c/geHVnJ/dmBH+B4F9
https://paperpile.com/c/geHVnJ/gomS
https://paperpile.com/c/geHVnJ/sKc2+drWO+8k03+YmpI+joPU
https://paperpile.com/c/geHVnJ/sKc2+drWO+8k03+YmpI+joPU
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practice, computing a Kd inside cells is impractical because it requires measuring the absolute 

concentration of a TF in the nucleus, in its proper post-translationally modified state. We propose 

a related measure that uses doxycycline-inducible (dox-inducible) TFs to compute the dox50, the 

dox concentration required to reach half-maximal binding inside cells. By inducing TF levels 

over a wide range of dox concentrations and measuring the resulting binding by CUT&Tag 

(Kaya-Okur et al. 2019), we determine a dox50 for every location in the genome in parallel. The 

ratio of the average dox50 at inaccessible versus accessible sites, its Δdox50, is a quantitative 

measure of a TF’s pioneering activity. The smaller a TF’s Δdox50, the less its binding is reduced 

at inaccessible DNA (Figure 3.1A). Because the measurements at inaccessible and accessible 

sites are made at the same time in the same nucleus, the dox concentrations (or TF 

concentrations) cancel out, allowing us to compare the Δdox50s of different TFs to each 

other  (Man and Stormo 2001). This strategy allows us to circumvent the challenge of measuring 

effective nuclear TF concentration while maintaining the physiological relevance of our in vivo 

pioneer activity measurements. 

 

https://paperpile.com/c/geHVnJ/XroUc
https://paperpile.com/c/geHVnJ/JKUZM
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Figure 3.1. Experimental design to calculate TF dox50 values across the genome. (A) Strong pioneer activity 
leads to smaller differences in the dox concentration needed to achieve binding at inaccessible versus accessible 
sites, and vice versa. (B) We induced FOXA1 or HNF4A across a 1,000-fold dox range, measured binding, collected 
binding signal at a reproducible set of binding sites and then extracted a dox50 for each site. (C) Number of total 
peaks for each TF across each dox induction level. (D) Replicate RPKM binding signal at two example genomic 
sites. (E) Replicate fitted lines at two example genomic sites. (F) Full distribution of dox50 values for each TF. 

 

Measurement of dox50 for FOXA1 and HNF4A   
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FOXA1 and HNF4A are liver TFs that are commonly used to reprogram embryonic fibroblasts 

to endoderm progenitor cells (Biddy et al. 2018; Sekiya and Suzuki 2011). FOXA1 is a canonical 

PF and HNF4A a nonPF, and the two are suggested to work in a collaborative and sequential 

fashion to activate their target genes (Horisawa et al. 2020; Lisa Ann Cirillo et al. 2002). We 

previously tested FOXA1 and HNF4A’s behavior in an ectopic setting by expressing them 

within K562 blood cells, a lineage in which neither TF is expressed and that should present the 

TFs with unique complements of chromatin and cofactors. We created clonal K562 lines that 

expressed either inducible FOXA1 or HNF4A and showed that both TFs could independently 

bind and open inaccessible chromatin and activate nearby genes (Hansen, Loell, and Cohen 

2022). 

 

Based on the ability of FOXA1 and HNF4A to independently bind, open, and activate in an 

ectopic cell line, we expected both TFs would have similar pioneer activity. To test this 

prediction we attempted to measure each TF’s Δdox50 using the same dox-inducible FOXA1 or 

HNF4A K562 lines as in our previous work (Hansen, Loell, and Cohen 2022) (Figure 3.1B). We 

first treated each TF line with a 1,000-fold range of dox (0.005, 0.05, 0.25, 0.1, 0.5, and 

5.0µg/ml) and measured resultant binding. Read normalized binding signal (RPKM) was highly 

correlated between replicates (Figure 3.S1). FOXA1 and HNF4A appear to be expressed at 

reasonably similar levels at each dox level as each TF bound to similar numbers of sites in each 

condition (Figure 3.1C). We then collected the overlapping set of binding sites between each 

TF’s replicates in the 5.0µg/ml sample and at each site plotted the read normalized signal 

(RPKM) from the other induction levels (Figure 3.1D). Generally the binding patterns follow 

https://paperpile.com/c/geHVnJ/CWVI+B8a5
https://paperpile.com/c/geHVnJ/T3sH+dmBH
https://paperpile.com/c/geHVnJ/gomS
https://paperpile.com/c/geHVnJ/gomS
https://paperpile.com/c/geHVnJ/gomS
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predicted saturation binding kinetics (Figure 3.S2). We then fit Equation 3.1 to these 

distributions. 

 

 

 

In order to fit Equation 3.1, we normalized each site’s RPKM signal to the signal in the 5.0µg/ml 

sample to convert our measurements into fractional binding (Figure 3.1E). We found that at 

some sites the binding signal peaked prior to the 5.0µg/ml sample (fraction bound > 1 in any of 

the first five induction levels). We removed these sites to prevent poor fitting. This left us with 

11,557 FOXA1 binding curves and 5,940 HNF4A binding curves with highly similar fitted lines 

across replicates (Figure 3.1F, Fig. 3.S3). We extracted dox50 values from these lines and found 

similar results between replicates (Figure 3.S4) and so we averaged each site’s replicate dox50 

value for the remaining analyses. The resulting distributions of each TF’s genome-wide dox50 

values show that FOXA1 has a much larger variance in dox50 values than HNF4A (Figure 3.1F), 

suggesting that FOXA1 binding generally depends more on the genomic environment than 

HNF4A.  

 

Measurement of Δdox50 for FOXA1 and HNF4A 

The dox50 distributions in Figure 3.1 suggest that HNF4A may bind more consistently across the 

genome but do not explicitly measure their pioneer activities, the difference in each TFs ability 

to bind at inaccessible versus accessible sites. We therefore classified each site as either 

inaccessible or accessible based on ATAC-seq (Buenrostro et al. 2015) peaks collected in these 

https://paperpile.com/c/geHVnJ/1vMX
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cell lines before induction. Of FOXA1’s 11,557 peaks, 1,930 were in accessible regions and 

9,627 were in inaccessible regions (10,120 accessible before filtering, 17,644 inaccessible before 

filtering). Of HNF4A’s 5,940 peaks, 2,135 were in accessible regions and 3,805 were in 

inaccessible regions (16,137 accessible before filtering, 16,507 after filtering). Comparing the 

dox50 distributions between inaccessible and accessible sites revealed that the binding of HNF4A 

is less affected by inaccessible DNA than FOXA1 (Figure 3.2A). We then computed a Δdox50 

for each TF by dividing the average dox50 for inaccessible sites by the average dox50 for 

accessible sites. This analysis showed that HNF4A has a lower Δdox50 than FOXA1 (Table 3.1). 

This result holds when we include those sites that were filtered out because they peaked at lower 

concentrations (Table 3.1, Fig. S5). 

 

We next considered whether the motif content at each binding site affected the Δdox50. We 

showed previously that both TF concentration and motif content affect FOXA1 and HNF4A’s 

pioneer activity and speculated that any parameter that affects occupancy will be important 

(Hansen, Loell, and Cohen 2022). Therefore, we further subset our binding sites into those that 

had less than 2, between 2-4, or more than 4 motifs and re-plotted the dox50 distributions and re-

calculated Δdox50s. Higher motif content allowed FOXA1 to bind more consistently between 

inaccessible and accessible sites and thus lowered FOXA1’s Δdox50 (Figure 3.2D, Table 3.1). In 

contrast, motif count had little effect on HNF4A (Figure 3.2D, Table 3.1). We conclude that 

HNF4A has stronger pioneer activity in K562 cells and that weaker pioneer activity can be 

compensated by strong motif content. 

 

https://paperpile.com/c/geHVnJ/gomS
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Figure 3.2. HNF4A has a smaller Δdox50 than FOXA1. (A) Distributions of dox50 estimates extracted from 
binding curves at FOXA1 accessible binding sites (n = 1,930), FOXA1 inaccessible binding sites (n = 9,627), 
HNF4A accessible binding sites (n = 2,135), and HNF4A inaccessible binding sites (n = 3,805). (B-C) Distributions 
from FOXA1 (B) and HNF4A (C) shown in histogram form. (D) Same plot as (A) but each genomic binding site is 
binned by whether the site has < 2, >= 2 but < 4, or >= 4 motifs as called by FIMO (p = 1e-3).  

Table 3.1. Δdox50s for FOXA1 and HNF4A across different types of binding sites.  

 

 

Chromatin modifications explain some dox50 variance 

We built a linear model (Equation 3.2) to try to explain the variance in dox50s for FOXA1 and 

HNF4A where C(Accessibility) is each binding site’s accessibility prior to TF induction. 
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Accessibility explained 17% of the variance in FOXA1’s dox50s but only 4% of HNF4A’s. 

While these data further underscore the greater role that accessibility plays on FOXA1 binding 

than HNF4A, they also reveal that most of the variance in dox50 values between genomic loci 

must be explained by some other variable.  

 

 

 

We hypothesized that some of the remaining variance may be explained by the different 

chromatin modifications present at different target loci and predicted that binding sites with 

active marks would have lower dox50 distributions (easier binding) and binding sites with silent 

marks would have higher dox50 distributions (harder binding). We further subset each TF’s 

accessible or inaccessible binding sites into those that overlap common K562 marks (Zhang et al. 

2020). H3K4me1 marks enhancers (Heintzman et al. 2007), H3K27Ac marks activity 

(Creyghton et al. 2010), and H3K9me3 and H3K27me3 are two modifications shown previously 

to suppress pioneer activity (Mayran et al. 2018). The accessible sites overlapped much more 

often with active marks than silencing marks, and vice versa, and we found that no FOXA1 or 

HNF4A accessible sites were marked with H3K9me3 (Figure 3.3). 

 

As we predicted, FOXA1 or HNF4A binding sites that overlapped H3K27Ac or H3K4me1 

chromatin modifications had lower dox50 distributions than those that overlapped H3K9me3 or 

H3K27me3 (Figure 3.3). These effects were present even after we subset binding sites by 

accessibility, suggesting that the chromatin modifications can affect binding in ways that are 

separable from the effects of accessibility. However, when we individually added each chromatin 

https://paperpile.com/c/Ms3aOH/EbI2
https://paperpile.com/c/Ms3aOH/EbI2
https://paperpile.com/c/Ms3aOH/bbq7B
https://paperpile.com/c/Ms3aOH/UIrCA
https://paperpile.com/c/Ms3aOH/j37s2
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modification (plus an interaction term) to the model in Equation 3.2, we found that accounting 

for these marks did not have large effects on the ability of the model to predict dox50 values for 

either TF. H3K27ac levels explained 2% of FOXA1’s dox50 variance, H3K4me1 explained 1%, 

and H3K27me3 explained <1%. For HNF4A, H3K27ac explained 2%, H3K4me1 explained 2%, 

and H3K27me3 explained <1%. All interaction terms were negligible. Together these data 

suggest that something besides the epigenetic landscape of loci is having a large effect on the 

pioneering activity of TFs. 

 

 

Figure 3.3. Dox50 distributions across different chromatin modifications. (A) Dox50 values for FOXA1 
accessible binding sites that overlapped H3K27AC (n = 1,288), H3K4me1 (n = 755), H3K9me3 (n = 0), and 
H3K27me3 (n = 21). (B) Dox50 values for FOXA1 inaccessible binding sites that overlapped H3K27AC (n = 203), 
H3K4me1 (n = 352), H3K9me3 (n = 12), and H3K27me3 (n = 277). (C) Dox50 values for HNF4A accessible 
binding sites that overlapped H3K27AC (n = 1,147), H3K4me1 (n = 1,111), H3K9me3 (n = 0), and H3K27me3 (n 
= 17). (D) Dox50 values for HNF4A inaccessible binding sites that overlapped H3K27AC (n = 140), H3K4me1 (n = 
416), H3K9me3 (n = 4), and H3K27me3 (n = 135). 
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FOXA1 behaves anti-cooperatively at a subset of accessible binding sites 

While examining individual binding sites and their fitted curves, we observed a repeating pattern 

at a subset of genomic locations where the binding signal increased to a peak at the third 

(0.1µg/ml) or fourth (0.25µg/ml) induction level and then decreased at the highest dox 

concentration, suggesting anti-cooperative behavior (Figure 3.4A, Figure 3.S6). To quantify the 

prevalence of anti-cooperative binding, we sampled 10,000 peaks from FOXA1 or HNF4A 

inaccessible or accessible binding sites and then counted how many displayed saturation 

behavior (peak at 5µg/ml, Figure 3.S2) and how many displayed anti-cooperative behavior (peak 

at 0.1µg/ml or 0.25µg/ml, Figure 3.S6). We found that the anti-cooperative behavior occurs most 

often at accessible FOXA1 binding sites (Figure 3.4B-C). Anti-cooperative behavior does not 

appear to depend on the number of motifs at each peak (Figure 3.4D) or the length of each peak 

(Figure 3.4E).   

 

We considered whether another TF might be contributing to anti-cooperative behavior by 

searching for enriched motifs in either saturation-type accessible FOXA1 binding sites or anti 

cooperative-type sites. While FOXA1 sites were enriched in both types of loci (Figure 3.4F), the 

AP1 motif was only enriched at anti-cooperative sites (Figure 3.4G). AP1 is an important K562 

TF that exhibits some pioneer activity (Biddie et al. 2011). The results suggest that a genetic 

interaction between FOXA1 and AP1 underlies anti-cooperative behavior at accessible loci.  

 

https://paperpile.com/c/geHVnJ/DMxD5
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Figure 3.4. Characterization of anti-cooperative binding behavior. (A) Example binding curve at a single 
genomic site that exhibits anti-cooperative behavior. (B-C) A sample of 10,000 FOXA1 (B) or HNF4A (C) 
accessible (left bar) or inaccessible (right bar) binding sites colored by if they display saturation binding behavior 
(gray) or anti-cooperative binding behavior (red, see). (D) FOXA1 motif count between the accessible binding sites 
from (B) that display either saturation or anti-cooperative binding behavior. Motifs were called from FIMO with a p-
value threshold of 1e-3. (E) Binding peak length between the accessible binding sites from (B) that display either 
saturation or anti-cooperative binding behavior. (F) The most enriched motif discovered in FOXA1 accessible 
saturation and anti-cooperative peaks was FOXA1 (JASPAR MA0148.1). It is significantly enriched for both the 
saturation behavior (p = 2.19e-001) and anti-cooperative behavior (p = 1.23e-01). (G) The second most enriched 
motif discovered in FOXA1 accessible anti-cooperative peaks was AP1 (JASPAR MA1141.1). It was not 
discovered in the saturation behavior peaks. It is significantly enriched for only the anti-cooperative behavior (p = 
1e-008).  

 

3.4 – Discussion 
 

Given a definition of pioneer activity that is a TF’s ability to bind at inaccessible genomic 

locations, we suggest that the Δdox50 is a quantitative measure of this activity. We measured the 

Δdox50 of FOXA1 and HNF4A in K562 cells and showed that HNF4A has stronger pioneer 

activity in this cell type than FOXA1. However, both TFs showed a range of dox50 values across 
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the genome, which demonstrates that a TFs pioneer activity may depend on accessibility, native 

chromatin marks, and other factors. Some of these differences are explained by the motif content 

at different locations, suggesting that low pioneer activity can be overcome by strong motif 

content. While our work shows that the pioneering activity of a TF can vary across the genome, 

what accounts for this variation across sites remains mostly unexplained. DNA accessibility had 

the largest effect on pioneer activity but only explained 17% of the variance in dox50 values.  We 

speculate that much of the remaining variance in dox50 values might be explained by interactions 

with other specific TFs or with the general transcription machinery that can differ across the 

genome. 

 

Our work supports the hypothesis that pioneer activity is not a qualitative trait limited to a few 

TFs, but rather a quantitative property of TFs that manifests differently depending on the TF and 

the genomic environment (Garcia et al. 2019; F. Zhu et al. 2018; Hansen, Loell, and Cohen 

2022; Lisa Ann Cirillo et al. 2002; Soufi et al. 2015; Yu and Buck 2019). Pioneer activity as a 

quantitative trait fits with data showing that TFs can gain pioneer activity when expressed at high 

levels or when cells are forced into replication (Yan, Chen, and Bai 2018) and that TFs can lose 

pioneer activity when expressed at lower levels (Hansen, Loell, and Cohen 2022).  

 

In vitro, FOXA1 has higher affinity (a lower Kd) for naked DNA than HNF4A (Jiang, Lee, and 

Sladek 1997; Garcia et al. 2019; Rufibach et al. 2006), and yet HNF4A has stronger pioneer 

activity (a lower Δdox50) than FOXA1 in K562 cells. These results demonstrate that pioneer 

activity is not solely a function of the affinity of a TF’s DNA-binding domain for its cognate 

motif. Inside cells, pioneer activity likely depends on the interactions a TF makes with other TFs 

https://paperpile.com/c/geHVnJ/X0mX+sKc2+gomS+dmBH+YmpI+joPU
https://paperpile.com/c/geHVnJ/X0mX+sKc2+gomS+dmBH+YmpI+joPU
https://paperpile.com/c/geHVnJ/KNIg
https://paperpile.com/c/geHVnJ/gomS
https://paperpile.com/c/geHVnJ/PUsU+X0mX+OWyi
https://paperpile.com/c/geHVnJ/PUsU+X0mX+OWyi
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and with cofactors. Because these interactions will differ in different cell types, a TF’s 

pioneering activity is also likely to depend on the cell type in which it is expressed and the co-

bound TFs present at certain locations.  

 

At some locations in the genome, an interaction between FOXA1 and AP1 appears to have a 

dramatic effect on FOXA1 activity. In the presence of AP1 sites, FOXA1 displays anti-

cooperative binding dynamics where occupancy decreases at the highest levels of FOXA1 

expression. We speculate that at these sites monomers of FOXA1 interact with AP1 to potentiate 

binding, whereas dimers of FOXA1 cannot cobind with AP1. In this model, high concentrations 

of FOXA1 favor its dimeric form which accounts for the loss of binding at these sites when 

FOXA1 is expressed at high levels. Regardless of the mechanism underlying anti-cooperative 

behavior, our results show that pioneer activity can be modified by the interactions a TF makes 

inside cells. Thus, pioneer activity is contingent on many properties of a TF including its levels, 

its intrinsic affinity for its motif, the motif content at its targets, and the different interactions it 

makes with other proteins when bound at different locations. Given these contingencies we 

suggest that most TFs will display some degree of pioneer activity and that the Δdox50, or a 

related metric, will be a useful metric to quantify it. 

 

3.5 – Materials and Methods 
 

Cell lines 

We grew K562 cells (ATCC CCL-243, Manassas, VA) in Iscove’s Modified Dulbecco Serum 

supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin and 1% non-essential 
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amino acids. We used these cell types to generate clonal FOXA1 and HNF4A lines, as described 

below. For each of our functional assays, we split each line into replicate flasks, treated with 

doxycycline (dox) (Sigma #D9891-1G), and then waited 24 hours to extract RNA or nuclei. We 

used doses of 0.005µg/ml, 0.05µg/ml, 0.1µg/ml, 0.25µg/ml, 0.5µg/ml, and 5µg/ml for our dox50 

experiments. 

 

Cloning, production, and infection of viral vectors 

We used FOXA1 and HNF4A K562 clonal lines and lentiviral vectors carrying inducible 

FOXA1 and HNF4A ORFs as described previously (Hansen, Loell, and Cohen 2022).  

  

Sequencing library preparations and analysis 

We prepared sequencing libraries and analyzed the two replicates of CUT&Tag as described 

previously (Hansen et al. 2022). In our previous work we already used ATAC-seq to measure the 

uninduced (-dox) accessibility in the FOXA1 and HNF4A K562 lines (Hansen et al. 2022). 

Because we used the same clones to perform these experiments, we re-used these data as 

uninduced accessibility. We also had already sequenced CUT&Tag libraries for the 0.5ug/ml and 

0.05ug/ml doxycycline induction levels and re-used these data as well. 

 

Binding curve analysis 

We first established a set of all possible binding sites for each TF by creating a list of binding 

sites in the sample with the highest dox induction concentration (5µg/ml). We subset this list into 

those accessible binding sites (called accessible peak in the -dox uninduced condition) and 

inaccessible binding sites (absence of called accessible peak). Then we used the 

https://paperpile.com/c/geHVnJ/gomS
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multiBigwigSummary from the deepTools suite (Ramírez et al. 2016) to count the normalized 

read intensity at each peak from each induction level. We normalized each induction level to the 

read intensity at the highest induction level in order to convert read intensity into fraction bound. 

 

With these data, we fit a binding curve using SciPy curvefit (Virtanen et al. 2020) to the equation 

(Equation 3.1) where dox50 is unknown and represents a binding affinity parameter similar to Kd 

and where [dox] is the concentration of dox used to induce TF expression. When we plotted 

examples of randomly selected genomic sites and examined the binding curves, we noticed that 

at some sites, binding peaked (fraction bound >= 1) prior to the highest concentration. In these 

cases, the fit line estimated a negative dox50. For this reason, we filtered out any site that peaked 

prior to the sample with the highest dox concentration. We also estimated dox50 distributions 

without this filtering step and found similar distributions. (Figure 3.S2).  

 

In order to quantify the early peak, or “anti-cooperative” behavior that we observed, we 

classified a binding site as exhibiting a “saturation binding” modality if only the highest dox 

concentration had a fraction bound of 1, and then each subsequent lower concentration had a 

lower fraction bound. We classified a binding site as exhibiting an “anti-cooperative” modality if 

the site peaked at either the third (0.1µg/ml) or fourth (0.25µg/ml) dox concentrations and then 

declined in each direction. 

 

We calculated reproducibility in three ways. We first showed that the binding signal was 

reproducible by plotting the RPKM signal from each replicate for each of the concentrations at 

all of the binding sites collected as described above. We then showed that the lines fit similarly 

https://paperpile.com/c/geHVnJ/22M2b
https://paperpile.com/c/geHVnJ/QsdKU
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between replicates by both replicates’ binding signal and fit binding curves at many different 

randomly chosen genomic sites and showing that the lines look similar. And finally we showed 

that the distributions of dox50s from each replicate were highly overlapping. After showing these, 

we averaged the dox50 from each replicate at each site and used the average value moving 

forward. 

 

Motif analysis 

To discover or count motifs in binding sites, we extracted the sequence from each CUT&Tag 

binding peak and then used XSTREME (Grant and Bailey 2021) for de novo motif discovery and 

FIMO (Grant, Bailey, and Noble 2011) for specific motif occurrence counting. We used 1e-3 as 

a p-value threshold and JASPAR (Fornes et al. 2020) PWMs for FOXA1 (MA0148.1), HNF4A 

(MA0114.2), and AP-1 (MA1141.1). We used these motif counts to subset the FOXA1/HNF4A 

accessible/inaccessible peaks into those with less than 2 motifs, more than 2 but less than 4, or 4 

or more, and then re-ran the analysis (Figure 3.S4). 

 

Chromatin modifications analysis and modeling 

We used previously published datasets of histone ChIP-seq (J. Zhang et al. 2020) to identify 

patterns of H3K27Ac, H3K4me1, H3K9me3, and H3K27me3 marks. We used BEDTools 

(Quinlan and Hall 2010) to overlap FOXA1 or HNF4A’s binding sites with these marks. We 

then used python’s statsmodels to run ANOVA analyses on ordinary least squares linear 

regressions. Each reported variance is the parameter’s sum of squares contribution divided by the 

total sum of squares.  

 

https://paperpile.com/c/geHVnJ/nZEpj
https://paperpile.com/c/geHVnJ/BBCzY
https://paperpile.com/c/geHVnJ/lrn5e
https://paperpile.com/c/geHVnJ/vkqAY
https://paperpile.com/c/geHVnJ/mujsc


 83 
 

Data Availability 

All genomic sequencing data have been deposited on Gene Expression Omnibus (GEO) under 

accession number GSE204726. 
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3.7 – Supplementary Information 
  

Supplementary Figures 

 

 

Figure 3.S1. Reproducibility of binding signal. RPKM signal from each replicate of CUT&Tag data across each 
TF across each dox induction concentration. Pearson’s R correlation displayed on each graph. 
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Figure 3.S2. Common saturation behavior binding pattern. 16 examples from different genomic sites showing 
saturating binding signal as dox induction increases. Signal is first read normalized (RPKM) and then normalized to 
the signal at the highest concentration. These sites were sampled from FOXA1 accessible binding sites but are 
common across inaccessible and HNF4A binding sites as well. 
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Figure 3.S3. Sample of replicate fit binding curves. RPKM binding signal and fitted lines for each CUT&Tag 
replicate at 16 representative genomic loci 
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Figure 3.S4. Replicate dox50 distributions. Dox50 distributions extracted from fitted lines from each CUT&Tag 
replicate across each TF and each type of chromatin. 
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Figure 3.S5. Dox50 distributions without filtering out early saturation peaks. Dox50 distributions from all of the 
FOXA1 accessible binding sites (n = 10,118), FOXA1 inaccessible binding sites (n = 17,644), HNF4A accessible 
binding sites (n = 16,137), and HNF4A inaccessible binding sites (n = 16,507), without filtering out those peaks 
where binding signal peaked prior to the 5ug/ml dox sample. 
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Figure 3.S6. Common “anti-cooperative'' binding pattern. 16 examples from different genomic sites showing a 
pattern of increasing and then decreasing binding signal as dox induction increases. Signal is first read normalized 
(RPKM) and then normalized to the signal at the highest concentration. These sites were sampled from FOXA1 
accessible binding sites. 
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Chapter 4 – Discussion 
 

I designed the experiments and analyses throughout my thesis work to try to better understand 

how transcription factors (TFs) activate silent genes. I find this question interesting because of 

how it relates to complexity and diversity of human life. Skin cells look and behave differently 

from liver cells despite the fact that the two cell types contain nearly identical sets of genetic 

instructions. Seldom do skin cells spontaneously convert into liver cells. I discussed in Chapter 1 

that cells prevent such spontaneous conversions by storing away genes from other lineages in a 

stable, inaccessible structure called heterochromatin. The heterochromatin sterically hinders TFs 

from accessing their regulatory targets. 

 

And yet we discovered that we could reverse heterochromatic silencing and turn back on silent 

genes from other lineages by treating cells with a single TF from the desired ectopic lineage 

(Tapscott et al. 1988). Somehow the TF can find its targets within compacted DNA, decompact 

it, and then turn on nearby genes. We later developed strategies to leverage this phenomenon to 

convert cells back-in-time into their stem cell progenitors (Takahashi and Yamanaka 2006) and 

to convert cells directly across lineages into new cell types (Samantha A. Morris 2016). Despite 

these progresses though, each of these conversions is inefficient. Cells from the starting 

population often end up in “dead-end” states (Biddy et al. 2018), many genes necessary to the 

desired final cell type are never activated (Manandhar et al. 2017), and the final cells are often 

stuck in developmentally immature states (Biddy et al. 2018). While we know that TFs are 

capable of inducing these conversions, we do not fully understand how they are inducing these 

https://paperpile.com/c/geHVnJ/CDfg
https://paperpile.com/c/geHVnJ/tyOg
https://paperpile.com/c/geHVnJ/fB4T
https://paperpile.com/c/geHVnJ/CWVI
https://paperpile.com/c/geHVnJ/7Ppx
https://paperpile.com/c/geHVnJ/CWVI
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conversions. I speculate that our incomplete understanding of silent gene activation is limiting 

our ability to realize cellular reprogramming’s full potential. 

 

The pioneer factor hypothesis (PFH) is currently the leading model for how TFs activate silent 

genes. It makes two claims. First, there are qualitatively different subsets of TFs: pioneer factors 

(PFs) can bind and open inaccessible chromatin and non-pioneer factors (nonPFs) cannot (Lisa 

Ann Cirillo et al. 2002; Iwafuchi-Doi and Zaret 2014). And second, activation of silent genes 

requires a two-step process in which PFs bind and open and then nonPFs are recruited to activate 

transcription (Lisa Ann Cirillo et al. 2002; Iwafuchi-Doi and Zaret 2014). Despite widespread 

adoption of the terminology, there is not a lot of direct evidence to support these two claims. 

This is especially true for the perhaps over-simplistic claim that there is a qualitative binary 

distinction between PFs and nonPFs.  

 

One stark example in contradiction with this claim is the pioneer activity of the bacterial TF 

LEXA (Miller and Widom 2003). Bacteria do not contain nucleosomes and so LEXA never 

faced evolutionary pressure to develop the ability to bind heterochromatin. Maybe pioneer 

activity then is just an extension of how TFs bind to DNA. In another stark example, genome-

wide binding analyses of canonical PFs PAX7 and FOXA1 showed many cases where the TFs 

did not bind to heterochromatic instances of their motifs (Donaghey et al. 2018; Mayran et al. 

2018). Shouldn’t the PFH have been scrapped at this point? Maybe we are waiting for more 

direct tests that provide us with more direct evidence. Many works that I have cited expressed 

multiple TFs at once, measured phenotypes in a genome-wide and correlation-based approach, or 

were limited to in vitro settings. Expressing multiple TFs complicates drawing conclusions about 

https://paperpile.com/c/geHVnJ/dmBH+B4F9
https://paperpile.com/c/geHVnJ/dmBH+B4F9
https://paperpile.com/c/geHVnJ/dmBH+B4F9
https://paperpile.com/c/geHVnJ/8k03
https://paperpile.com/c/geHVnJ/Ld0L+JvGv
https://paperpile.com/c/geHVnJ/Ld0L+JvGv
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single TFs, studying genome-wide phenotypes adds noise to the signal, and in vitro assays miss 

the complexity of the nucleus. Therefore in my work I aimed to design simple and direct tests of 

the PFH so that we could directly show whether the PFH’s two claims are supported by the 

behavior of one canonical PF/nonPF pair. Once I showed that the claims were not supported, I 

used the same straightforward experimental design to propose an alternative model for silent 

gene activation. 

 

4.1 – FOXA1 and HNF4A do not exhibit qualitatively 
different behavior 
 

We chose FOXA1 and HNF4A as a canonical pair of PF and nonPF. FOXA1 is the most well 

studied PF (Lisa Ann Cirillo et al. 2002; Clark et al. 1993; Ramakrishnan et al. 1993; Donaghey 

et al. 2018) and FOXA1 and HNF4A have been suggested to behave as PF and nonPF in a 

reprogramming cocktail that converts fibroblasts into induced endoderm progenitors (Horisawa 

et al. 2020; Sekiya and Suzuki 2011; Biddy et al. 2018). Thus the PFH predicts that if we 

ectopically express FOXA1 and HNF4A, only FOXA1 will bind at inaccessible sites and neither 

TF will activate much tissue-specific gene expression. When we tested these predictions by 

individually expressing FOXA1 or HNF4A in K562 blood cells, we found that in fact both TFs 

bound and opened inaccessible sites and both TFs independently activated tissue-specific gene 

expression. In fact HNF4A activated more tissue-specific gene expression than FOXA1! We 

were surprised that these findings so starkly contradicted the PFH and so we searched for a 

distinction between the TFs’ binding ability. While we found evidence suggesting that FOXA1 

may be a stronger binder to naked DNA than HNF4A (Garcia et al. 2019; Jiang, Lee, and Sladek 

https://paperpile.com/c/geHVnJ/dmBH+g6Rh+8BTW+Ld0L
https://paperpile.com/c/geHVnJ/dmBH+g6Rh+8BTW+Ld0L
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1997; Rufibach et al. 2006), we showed in our data that HNF4A bound to more copies of its 

motif than FOXA1. This suggests that while HNF4A may bind more weakly to its site on naked 

DNA, it can nevertheless still achieve pioneer activity given the right sequence context. From 

these data we concluded that there is nothing qualitatively different about the pioneer activities 

of FOXA1 and HNF4A. Further, we suggested that pioneer activity is likely a general, 

quantitative quality of all TFs that depends on TF concentration, binding strength, and motif 

content at each target site. My work is only the latest to begin blurring the line between PFs and 

nonPFs: FOXA1 has been shown to rely on other TFs for pioneer activity (Swinstead et al. 2016) 

and HNF4A very recently has been shown to pioneer for the glucocorticoid receptor (Hunter et 

al. 2022). 

 

As accumulating data further blur the line between PFs and nonPFs, there has been an 

accompanying unsuccessful attempt to identify some TF characteristic that could clearly 

distinguish the two types of TFs. If pioneer activity were a special trait limited to a subset of TFs, 

then there should be something structurally that we can find to be unique to these TFs. For 

example, proteins that can participate in phase separation are uniquely intrinsically disordered 

(Posey, Holehouse, and Pappu 2018). Semi-successful efforts have identified some helical motifs 

in the DNA-binding domains of some PFs, though the helical motifs seem neither necessary or 

sufficient for pioneer activity (Garcia et al. 2019). Instead, each TF uses a different strategy to 

achieve pioneer activity. Some bind exclusively at the entry/exit point of the histone core (Yu 

and Buck 2019) and others use partial motifs to access nucleosome-bound DNA (Soufi et al. 

2015). These two behaviors alone suggest quite different mechanisms. In the former, the TF 

cannot bind to nucleosomal DNA and must capture its motif when it “breathes” away from the 

https://paperpile.com/c/geHVnJ/X0mX+PUsU+OWyi
https://paperpile.com/c/geHVnJ/drWO
https://paperpile.com/c/geHVnJ/TYKd
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https://paperpile.com/c/geHVnJ/X0mX
https://paperpile.com/c/geHVnJ/joPU
https://paperpile.com/c/geHVnJ/joPU
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https://paperpile.com/c/geHVnJ/YmpI
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nucleosomal edge (Polach and Widom 1995). In the latter, the TF has some structural binding 

domain that can still recognize its motif when the other side of the DNA is occluded by the 

nucleosomal core. And these are just two of the many other mechanisms used to bind to 

nucleosomes (F. Zhu et al. 2018), suggesting that many TFs independently evolved varying 

abilities to access their motifs within heterochromatin. 

 

4.2 – HNF4A exhibits stronger quantitative pioneer activity 
than FOXA1 
 

Having shown that FOXA1 and HNF4A do not behave qualitatively differently, we next aimed 

to establish a metric that could capture each TF’s quantitative pioneer activity. The metric should 

capture a TF’s binding strength at inaccessible DNA. We speculated that in vivo relative binding 

strengths would be appropriate. In vivo measurements provide physiological relevance and 

relative binding strength measurements control for any differences between our TF-expression 

lines. To capture binding strength, we used our doxycycline (dox) induction system to make a 

Kd-like measurement that we called dox50. A TF’s dox50 is the concentration of dox required for 

the TF to half-maximally bind a certain genomic site. And to capture a TF’s relative binding 

strength between inaccessible and accessible sites, we took the average difference between a 

TF’s inaccessible and accessible dox50s. We called this a TF’s Δdox50. A low Δdox50 indicates 

strong pioneer activity. When we induced each TF across a 1,000-fold range of dox, measured 

binding, fit curves, and extracted dox50s, we found that HNF4A has a lower Δdox50 and thus 

stronger pioneer activity than FOXA1. We also found that FOXA1 had stronger pioneer activity 

at sites where it could target more copies of its motif, suggesting that strong motif content could 

https://paperpile.com/c/geHVnJ/1SlH
https://paperpile.com/c/geHVnJ/sKc2
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somewhat make up for lower pioneer activity. From these data we propose that all TFs likely 

have some degree of pioneer activity and that a TF’s Δdox50 (or some related metric) could 

eventually become just another way of quantifying TF behavior.  

 

Like our data refuting qualitative pioneer activity, this data is not altogether unexpected. If 

pioneer activity is quantitative, then there should be dials that can be turned in order to increase 

or decrease it. These dials are likely the parameters that drive high TF occupancy: TF 

concentration, binding strength, and motif content. There is good evidence that shows that these 

dials are important. In one study, a group was able to endow nonPFs with pioneer activity by 

increasing the concentration of the nonPFs (Yan, Chen, and Bai 2018). Similarly, when we 

reduced the concentration of FOXA1 by reducing the dox induction level, we found that while its 

overall binding signal dropped genome-wide, this decrease was much more pronounced at 

inaccessible binding sites (Hansen, Loell, and Cohen 2022). Motif content also appears 

important. In one study, the quality of the motif impacted whether or not the same TF behaved as 

a PF or nonPF (Meers, Janssens, and Henikoff 2019). And in my work, HNF4A used more 

motifs than FOXA1 in order to achieve pioneer activity (Hansen, Loell, and Cohen 2022). 

Perhaps our traditional PFs were all classified this way within regimes where they were highly 

expressed or where they targeted sites with strong motif content. If we expand our view to 

assume that all TFs have some pioneer activity, then we can more holistically study how TFs 

interact with nucleosomal DNA and more widely select TFs for use in future ectopic gene 

activation assays. 

 

https://paperpile.com/c/geHVnJ/KNIg
https://paperpile.com/c/geHVnJ/gomS
https://paperpile.com/c/geHVnJ/hgyo
https://paperpile.com/c/geHVnJ/gomS
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4.3 – Why did the PFH have it wrong? 
 

We were initially surprised by our first qPCR experiments that showed that ectopically expressed 

HNF4A strongly activated a couple of liver genes in K562 blood cells. It is striking alone that 

any TF could turn on heterochromatically-silenced liver genes in a blood cancer line. It is further 

striking that a nonPF could do it. Perhaps though these genes had enhancers in accessible regions 

of the K562 genome, making them easier for HNF4A to access. But then we showed that like 

FOXA1, HNF4A activated many liver- and intestine-specific genes in K562 blood cells and did 

so by binding to many genome-wide inaccessible sites. Collectively these data made us question 

why a binary distinction was ever drawn between FOXA1 and HNF4A. The data also made us 

question what it really means when we label DNA as “accessible” or “inaccessible.” 

 

The first reason a distinction may have been drawn between FOXA1 and HNF4A is that there is 

some evidence that FOXA1 binds more strongly to naked DNA than HNF4A (Garcia et al. 2019; 

Jiang, Lee, and Sladek 1997; Rufibach et al. 2006). It is unclear whether this sort of measured 

binding strength can be appropriately applied to in vivo chromatin contexts, but it would suggest 

that if each TF were presented with a motif, FOXA1 could bind it more easily. Further, FOXA1 

is known to have a DNA-binding domain with a similar three-dimensional structure to the linker 

histone protein H1, more evidence that FOXA1 may be more proficient at in vivo DNA binding 

(Clark et al. 1993; Ramakrishnan et al. 1993). On the other hand, HNF4A may be able to 

compensate for weaker binding by forming dimers with other HNF4A molecules. HNF4A is 

known to bind either as a homodimer or as a heterodimer with isomers of itself. (Jiang et al. 

1995; Ko, Zhuo, and Ren 2019) and we find that HNF4A has multiple copies of its motifs at sites 

https://paperpile.com/c/geHVnJ/X0mX+PUsU+OWyi
https://paperpile.com/c/geHVnJ/X0mX+PUsU+OWyi
https://paperpile.com/c/geHVnJ/g6Rh+8BTW
https://paperpile.com/c/geHVnJ/FSoRP+TaorK
https://paperpile.com/c/geHVnJ/FSoRP+TaorK
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where it binds inaccessible DNA (Hansen, Loell, and Cohen 2022). Dimerized proteins are larger 

protein complexes that recognize twice as much DNA sequence and therefore may use their size 

and specificity to outcompete histones. CAS9 is similarly large, recognizes a long RNA-guided 

recognition sequence, and has been shown to exhibit pioneer activity (Barkal et al. 2016). 

HNF4A’s reliance on dimerization for pioneer activity could be tested further by manipulating 

its dimerization domain and then re-measuring its ability to bind at inaccessible motifs. 

 

Developmental importance may also have contributed to FOXA1 and HNF4A’s classification, 

though in my opinion each TF’s role and timing through development are not entirely clear. 

While it does appear that FOXA1 is critical for the development of the liver bud (Lee et al. 2005) 

and that HNF4A is critical for gastrulation (Chen et al. 1994), knocking out HNF4A in fetal mice 

disrupts liver architecture (Parviz et al. 2003). This suggests that HNF4A may also play an 

important role in liver development. It’s also possible that HNF4A may actually precede FOXA1 

in embryonic liver development by half a day (Lau et al. 2018). If this is true, then perhaps we 

should have labeled HNF4A as the PF and expressed it prior to FOXA1 during reprogramming 

experiments. 

 

And finally I caution over-interpreting the label of “inaccessible DNA.” The most common 

technique used these days to measure DNA accessibility is ATAC-sequencing (Buenrostro et al. 

2015), in which DNA is exposed to a sequencing primer-laden transposase enzyme so that only 

DNA that was “attacked” by the enzyme is sequenced. The regions where the transposase can 

access are thus “accessible,” and vice versa. But just because a region is inaccessible to 

transposase doesn’t mean that it is inaccessible to a TF. A transposase is an enzyme with no 

https://paperpile.com/c/geHVnJ/gomS
https://paperpile.com/c/geHVnJ/pIUTo
https://paperpile.com/c/geHVnJ/mEn1
https://paperpile.com/c/geHVnJ/y22E
https://paperpile.com/c/geHVnJ/5asq
https://paperpile.com/c/geHVnJ/AkhC
https://paperpile.com/c/geHVnJ/1vMX
https://paperpile.com/c/geHVnJ/1vMX
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sequence specificity whereas a TF is guided to its targets by strong protein-DNA interactions; the 

latter event seems more likely to occur than the former. And even if we assume that transposases 

and TFs have similar binding abilities, we know that nucleosomal DNA is not static but rather 

can “breathe” away from the histones and create transiently free DNA (Polach and Widom 

1995). Perhaps we should consider the follow-up question “to what?” when DNA is classified as 

inaccessible. 

 

4.4 – Incomplete silent gene activation limits cellular 
reprogramming 
 

Our incomplete understanding of how HNF4A behaves when individually expressed in an 

ectopic setting suggests that we may not have been using it correctly in reprogramming 

experiments. This may be one factor that explains why the FOXA1-HNF4A reprogramming 

cocktail produces either “dead-end cells” or developmentally immature endoderm progenitors 

(Biddy et al. 2018). I suspect that other cocktails too are limited by an incomplete understanding 

of how the individual TFs behave. There are several ways that we could use what I’ve learned 

about HNF4A to improve the conversion to a more purely liver-life final state. The first is the 

order of expression and the second is the level of expression.  

 

As mentioned earlier, there may be a specific sequence of TF activities in the developing 

endoderm that requires first the activity of one TF and then the activity of another. Currently the 

FOXA1-HNF4A reprogramming cocktail simultaneously expresses both TFs. Perhaps HNF4A 

needs to set up an endoderm-specific nucleus after which FOXA1 can push the cell towards the 

https://paperpile.com/c/geHVnJ/1SlH
https://paperpile.com/c/geHVnJ/1SlH
https://paperpile.com/c/geHVnJ/CWVI
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liver lineage. In this case we should use constitutive HNF4A expression and inducible FOXA1. 

Or perhaps FOXA1 needs to lock the converting cells into the liver lineage after which HNF4A 

can help turn on some additional liver-specific genes. In this case we would use constitutive 

FOXA1 and inducible HNF4A.  

 

The current cocktail also might be combining two PFs for different lineages to produce a 

monster hybrid cell. FOXA1 is pioneering liver genes and HNF4A is pioneering intestine genes 

and when neither wins out, the resultant cells either end up in a developmentally immature 

endoderm cell or just lack the appropriate feedback signals to proceed. Currently the two TFs are 

expressed at essentially identical levels. It would be interesting to use an inducible HNF4A 

construct to test a dose-response curve to see if there is an optimal HNF4A concentration at 

which the intestine lineage disappears but where HNF4A still turns on some liver genes. I 

intended to test both timing and dosage of the two TFs and cloned a construct with constitutive 

FOXA1 and inducible HNF4A, but unfortunately ran out of time. I passed the construct to the 

Morris lab, who regularly performs these conversions and who perhaps may incorporate this new 

construct and/or other modifications into future reprograming cocktails (Biddy et al. 2018). 

 

I would have also liked to test additional PF/nonPF pairs. I think it would be valuable to dissect 

other reprogramming cocktails as I have dissected the FOXA1-HNF4A cocktail to better 

understand what each TF can do individually. Ideally, we could test many TFs from many 

lineages in order to build a catalog of reprogramming TFs (see below) but a good start would 

include those TFs from prominent cocktails. The next cocktail that I had in mind combines PF 

ASCL1 and nonPF MYT1L to convert fibroblasts into neurons  (Vierbuchen et al. 2010; 

https://paperpile.com/c/geHVnJ/CWVI
https://paperpile.com/c/geHVnJ/gsve+lKQ2+br3C
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Wapinski et al. 2013; Treutlein et al. 2016). As I mentioned in Chapter 1, this sort of 

reprogramming could someday be used to replace neurons lost to stroke or other brain damage. 

But if we hope to use the converted neurons in humans, then we need to be certain that we are 

generating the intended cell type and thus must turn on the appropriate genes. In my final section 

I recommend a gene regulation-based strategy for designing future reprogramming cocktails. 

 

4.5 – Rational design of new reprogramming cocktails 
 

To date our reprogramming cocktails have mostly been built by testing many TFs for their ability 

to create some sort of meaningful phenotype like colony formation (Biddy et al. 2018) or drug 

oxidation (Sekiya and Suzuki 2011). We expect TFs do this by activating silent genes but we 

rarely measure the silent gene activation itself. This approach has led to the misclassification of 

some TFs as incapable of governing conversion processes and in doing so may have slowed our 

progress towards more successful reprogramming. There is quite exciting potential if we are able 

to efficiently produce new cardiomyocytes to replace those lost in a heart attack but we need to 

ensure that the process of creating them is fully understood and carefully controlled. I hope that 

my work could serve as one example for how a reprogramming cocktail could be tested or 

conceived. Based on my experiments I recommend two steps. 

 

First, we should develop TF induction systems across multiple (or many) cell types and then 

measure which genes are activated. I speculate that the overlap in activated genes between 

repeated experiments will inform on the “true targets” of a given TF. I predict that the stronger a 

TF’s activity, the fewer cell types will need to be tested to find this set. Once we have lists of 

https://paperpile.com/c/geHVnJ/gsve+lKQ2+br3C
https://paperpile.com/c/geHVnJ/CWVI
https://paperpile.com/c/geHVnJ/B8a5
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gene targets for each TF, then whenever down the road we encounter a need to activate an 

individual or set of genes, we would know the appropriate TF(s). I imagine that we could 

similarly collect a set of true binding sites for different TFs. In experiments where TFs are 

ectopically activated, conclusions are often drawn from the genome-wide patterns of tens of 

thousands of binding events (Donaghey et al. 2018). If we consider that the main role TFs play is 

activating genes by binding to enhancers, and there are approximately 200 tissue-specific genes 

per lineage (Uhlén et al. 2015), and between 5-10 enhancers per gene (Fishilevich et al. 2017; 

Andersson et al. 2014), then we would expect on the order of 1000-2000 functional binding sites, 

not tens of thousands. If we were able to limit our analysis of TF binding to this smaller set of 

sites, then perhaps we could use a higher signal to noise ratio to identify important sequence 

features for binding. 

 

Once we have a set of targets for each TF, then I would recommend that we measure a Δdox50 

(or similar metric) for each TF to understand the TF’s pioneer activity. This information as well 

as knowing the concentration at which the TF is expressed and the motifs surrounding each of 

the targets would provide us the three aforementioned dials that we can turn to control pioneer 

activity. For instance, if we find that a TF has a high Δdox50 (or weak pioneer activity), then we 

could induce the TF at higher concentrations to make sure that its target genes are activated. And 

if this is not possible, then we could at least predict that perhaps only the targets that have strong 

nearby motif content would be activated, in line with our finding that strong motif content could 

boost pioneer activity. Finally, having this metric would allow us to conduct a more thorough 

analysis of what structural motifs might relate to pioneer activity by correlating TFs’ Δdox50 with 

other quantitative metrics, like size.  

https://paperpile.com/c/geHVnJ/Ld0L
https://paperpile.com/c/geHVnJ/zJbz
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4.6 – Conclusion 
 

I hope that my work added a little bit of clarity to how we think about the mechanism by which 

TFs activate silent genes. Many of the experiments that I cited had complicated designs and used 

complicated figures to argue that there is a binary classification between PFs and nonPFs. I too 

initially designed and tried to implement a complicated experimental system to study which 

sequences could direct pioneer activity. Sometimes these complex experiments can be effective 

at allowing us to test many elements in parallel or in ultra-controlled environments and so we 

should not abandon them. But we should also remember that if we can simplify the question that 

we are asking into a hypothesis and straightforward predictions, then a simple experimental 

system may be sufficient.  

 

After my initial experiments did not pan out (and I was desperate for the subsequent ones to 

work) I went back to the PFH and realized that it made two predictions that I was entirely 

capable of testing. First, ectopic HNF4A should not bind inaccessible sites. And second, neither 

FOXA1 nor HNF4A should activate much liver- or intestine-specific gene expression. It was 

easy to learn how to perform lentiviral transductions, RNA-sequencing, ATAC-sequencing, and 

CUT&Tag; these are all broadly utilized techniques. Upon implementing them, I showed that 

both predictions of the PFH were wrong. At least for FOXA1 and HNF4A, these data should kill 

the PFH! I was then able to extend the same experimental system to induce FOXA1 and HNF4A 

across a wide dynamic range and develop a quantitative metric for pioneer activity. 
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There are a lot of experiments that I wish that I had remaining time to perform. I would like to 

test various time courses and dose responses of FOXA1 and HNF4A in an attempt to better 

reprogram fibroblasts, I would like to dissect additional reprogramming cocktails to study the 

individual TFs’ pioneer activities, I would like to express FOXA1 and HNF4A in another cell 

line to move closer to each TF’s list of “true gene targets,” and I would like to further test how 

HNF4A might be exhibiting pioneer activity, perhaps by manipulating its dimerization domain. 

Maybe lab mates of mine or readers of my work will seize the torch! In any case, I’m excited to 

see how my data and whatever comes next may allow us to build more efficient reprogramming 

cocktails from a stronger foundation of silent gene activation. And I’m eager to learn how the 

collective work of my lab, myself, and the field move us closer to understanding how the 

enormously complex sequence of the human genome can encode for such a cool thing as life.  

 

 

 

 

 

 

 

 

 



 104 
 

References 
Andersson, Robin, Claudia Gebhard, Irene Miguel-Escalada, Ilka Hoof, Jette Bornholdt, Mette 

Boyd, Yun Chen, et al. 2014. “An Atlas of Active Enhancers across Human Cell Types 
and Tissues.” Nature 507 (7493): 455–61. 

Bailey, Timothy L. 2021. “STREME: Accurate and Versatile Sequence Motif Discovery.” 
Bioinformatics , March. https://doi.org/10.1093/bioinformatics/btab203. 

Barkal, Amira A., Sharanya Srinivasan, Tatsunori Hashimoto, David K. Gifford, and Richard I. 
Sherwood. 2016. “Cas9 Functionally Opens Chromatin.” PloS One 11 (3): e0152683. 

Barozzi, Iros, Marta Simonatto, Silvia Bonifacio, Lin Yang, Remo Rohs, Serena Ghisletti, and 
Gioacchino Natoli. 2014. “Coregulation of Transcription Factor Binding and Nucleosome 
Occupancy through DNA Features of Mammalian Enhancers.” Molecular Cell 54 (5): 
844–57. 

Biddie, Simon C., Sam John, Pete J. Sabo, Robert E. Thurman, Thomas A. Johnson, R. Louis 
Schiltz, Tina B. Miranda, et al. 2011. “Transcription Factor AP1 Potentiates Chromatin 
Accessibility and Glucocorticoid Receptor Binding.” Molecular Cell 43 (1): 145–55. 

Biddy, Brent A., Wenjun Kong, Kenji Kamimoto, Chuner Guo, Sarah E. Waye, Tao Sun, and 
Samantha A. Morris. 2018. “Single-Cell Mapping of Lineage and Identity in Direct 
Reprogramming.” Nature 564 (7735): 219–24. 

Boller, Sören, Senthilkumar Ramamoorthy, Duygu Akbas, Robert Nechanitzky, Lukas Burger, 
Rabih Murr, Dirk Schübeler, and Rudolf Grosschedl. 2016. “Pioneering Activity of the 
C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell 
Programming.” Immunity 44 (3): 527–41. 

Boyes, Joan, and Gary Felsenfeld. 1996. “Tissue-Specific Factors Additively Increase the 
Probability of the All-or-None Formation of a Hypersensitive Site.” The EMBO Journal 
15 (10): 2496–2507. 

Buenrostro, Jason D., Beijing Wu, Howard Y. Chang, and William J. Greenleaf. 2015. “ATAC-
Seq: A Method for Assaying Chromatin Accessibility Genome-Wide.” Current Protocols 
in Molecular Biology / Edited by Frederick M. Ausubel ... [et Al.] 109 (January): 
21.29.1–9. 

Casey, Bradford H., Rahul K. Kollipara, Karine Pozo, and Jane E. Johnson. 2018. “Intrinsic 
DNA Binding Properties Demonstrated for Lineage-Specifying Basic Helix-Loop-Helix 
Transcription Factors.” Genome Research 28 (4): 484–96. 

http://paperpile.com/b/geHVnJ/RUzYd
http://paperpile.com/b/geHVnJ/RUzYd
http://paperpile.com/b/geHVnJ/RUzYd
http://paperpile.com/b/geHVnJ/6iMcT
http://paperpile.com/b/geHVnJ/6iMcT
http://dx.doi.org/10.1093/bioinformatics/btab203
http://paperpile.com/b/geHVnJ/6iMcT
http://paperpile.com/b/geHVnJ/pIUTo
http://paperpile.com/b/geHVnJ/pIUTo
http://paperpile.com/b/geHVnJ/7XhxB
http://paperpile.com/b/geHVnJ/7XhxB
http://paperpile.com/b/geHVnJ/7XhxB
http://paperpile.com/b/geHVnJ/7XhxB
http://paperpile.com/b/geHVnJ/DMxD5
http://paperpile.com/b/geHVnJ/DMxD5
http://paperpile.com/b/geHVnJ/DMxD5
http://paperpile.com/b/geHVnJ/CWVI
http://paperpile.com/b/geHVnJ/CWVI
http://paperpile.com/b/geHVnJ/CWVI
http://paperpile.com/b/geHVnJ/8x0o
http://paperpile.com/b/geHVnJ/8x0o
http://paperpile.com/b/geHVnJ/8x0o
http://paperpile.com/b/geHVnJ/8x0o
http://paperpile.com/b/geHVnJ/oPyuH
http://paperpile.com/b/geHVnJ/oPyuH
http://paperpile.com/b/geHVnJ/oPyuH
http://paperpile.com/b/geHVnJ/1vMX
http://paperpile.com/b/geHVnJ/1vMX
http://paperpile.com/b/geHVnJ/1vMX
http://paperpile.com/b/geHVnJ/1vMX
http://paperpile.com/b/geHVnJ/CdSzV
http://paperpile.com/b/geHVnJ/CdSzV
http://paperpile.com/b/geHVnJ/CdSzV


 105 
 

Chang, Yujung, Euiyeon Lee, Junyeop Kim, Yoo-Wook Kwon, Youngeun Kwon, and Jongpil 
Kim. 2019. “Efficient in Vivo Direct Conversion of Fibroblasts into Cardiomyocytes 
Using a Nanoparticle-Based Gene Carrier.” Biomaterials 192 (February): 500–509. 

Chen, W. S., K. Manova, D. C. Weinstein, S. A. Duncan, A. S. Plump, V. R. Prezioso, R. F. 
Bachvarova, and J. E. Darnell Jr. 1994. “Disruption of the HNF-4 Gene, Expressed in 
Visceral Endoderm, Leads to Cell Death in Embryonic Ectoderm and Impaired 
Gastrulation of Mouse Embryos.” Genes & Development 8 (20): 2466–77. 

Choi, J., M. L. Costa, C. S. Mermelstein, C. Chagas, S. Holtzer, and H. Holtzer. 1990. “MyoD 
Converts Primary Dermal Fibroblasts, Chondroblasts, Smooth Muscle, and Retinal 
Pigmented Epithelial Cells into Striated Mononucleated Myoblasts and Multinucleated 
Myotubes.” Proceedings of the National Academy of Sciences 87 (20): 7988–92. 

Cirillo, L. A., C. E. McPherson, P. Bossard, K. Stevens, S. Cherian, E. Y. Shim, K. L. Clark, S. 
K. Burley, and K. S. Zaret. 1998. “Binding of the Winged-Helix Transcription Factor 
HNF3 to a Linker Histone Site on the Nucleosome.” The EMBO Journal 17 (1): 244–54. 

Cirillo, Lisa Ann, Frank Robert Lin, Isabel Cuesta, Dara Friedman, Michal Jarnik, and Kenneth 
S. Zaret. 2002. “Opening of Compacted Chromatin by Early Developmental 
Transcription Factors HNF3 (FoxA) and GATA-4.” Molecular Cell 9 (2): 279–89. 

Clark, K. L., E. D. Halay, E. Lai, and S. K. Burley. 1993. “Co-Crystal Structure of the HNF-
3/fork Head DNA-Recognition Motif Resembles Histone H5.” Nature 364 (6436): 412–
20. 

Creyghton, Menno P., Albert W. Cheng, G. Grant Welstead, Tristan Kooistra, Bryce W. Carey, 
Eveline J. Steine, Jacob Hanna, et al. 2010. “Histone H3K27ac Separates Active from 
Poised Enhancers and Predicts Developmental State.” Proceedings of the National 
Academy of Sciences of the United States of America 107 (50): 21931–36. 

Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. “Expression of a Single Transfected cDNA 
Converts Fibroblasts to Myoblasts.” Cell 51 (6): 987–1000. 

Donaghey, Julie, Sudhir Thakurela, Jocelyn Charlton, Jennifer S. Chen, Zachary D. Smith, 
Hongcang Gu, Ramona Pop, et al. 2018. “Genetic Determinants and Epigenetic Effects of 
Pioneer-Factor Occupancy.” Nature Genetics 50 (2): 250–58. 

Elgin, S. C. 1996. “Heterochromatin and Gene Regulation in Drosophila.” Current Opinion in 
Genetics & Development 6 (2): 193–202. 

Elkon, Ran, and Reuven Agami. 2017. “Characterization of Noncoding Regulatory DNA in the 
Human Genome.” Nature Biotechnology 35 (8): 732–46. 

Ernst, Jason, and Manolis Kellis. 2012. “ChromHMM: Automating Chromatin-State Discovery 
and Characterization.” Nature Methods 9 (February): 215. 

http://paperpile.com/b/geHVnJ/OUIn
http://paperpile.com/b/geHVnJ/OUIn
http://paperpile.com/b/geHVnJ/OUIn
http://paperpile.com/b/geHVnJ/y22E
http://paperpile.com/b/geHVnJ/y22E
http://paperpile.com/b/geHVnJ/y22E
http://paperpile.com/b/geHVnJ/y22E
http://paperpile.com/b/geHVnJ/khZ8B
http://paperpile.com/b/geHVnJ/khZ8B
http://paperpile.com/b/geHVnJ/khZ8B
http://paperpile.com/b/geHVnJ/khZ8B
http://paperpile.com/b/geHVnJ/6n8vH
http://paperpile.com/b/geHVnJ/6n8vH
http://paperpile.com/b/geHVnJ/6n8vH
http://paperpile.com/b/geHVnJ/dmBH
http://paperpile.com/b/geHVnJ/dmBH
http://paperpile.com/b/geHVnJ/dmBH
http://paperpile.com/b/geHVnJ/g6Rh
http://paperpile.com/b/geHVnJ/g6Rh
http://paperpile.com/b/geHVnJ/g6Rh
http://paperpile.com/b/geHVnJ/wRWqx
http://paperpile.com/b/geHVnJ/wRWqx
http://paperpile.com/b/geHVnJ/wRWqx
http://paperpile.com/b/geHVnJ/wRWqx
http://paperpile.com/b/geHVnJ/Vb2B
http://paperpile.com/b/geHVnJ/Vb2B
http://paperpile.com/b/geHVnJ/Ld0L
http://paperpile.com/b/geHVnJ/Ld0L
http://paperpile.com/b/geHVnJ/Ld0L
http://paperpile.com/b/geHVnJ/bkl4
http://paperpile.com/b/geHVnJ/bkl4
http://paperpile.com/b/geHVnJ/LJAuB
http://paperpile.com/b/geHVnJ/LJAuB
http://paperpile.com/b/geHVnJ/Na8h
http://paperpile.com/b/geHVnJ/Na8h


 106 
 

Fishilevich, Simon, Ron Nudel, Noa Rappaport, Rotem Hadar, Inbar Plaschkes, Tsippi Iny Stein, 
Naomi Rosen, et al. 2017. “GeneHancer: Genome-Wide Integration of Enhancers and 
Target Genes in GeneCards.” Database: The Journal of Biological Databases and 
Curation 2017 (January). https://doi.org/10.1093/database/bax028. 

Fornes, Oriol, Jaime A. Castro-Mondragon, Aziz Khan, Robin van der Lee, Xi Zhang, Phillip A. 
Richmond, Bhavi P. Modi, et al. 2020. “JASPAR 2020: Update of the Open-Access 
Database of Transcription Factor Binding Profiles.” Nucleic Acids Research 48 (D1): 
D87–92. 

Furuyama, Kenichiro, Simona Chera, Léon van Gurp, Daniel Oropeza, Luiza Ghila, Nicolas 
Damond, Heidrun Vethe, et al. 2019. “Diabetes Relief in Mice by Glucose-Sensing 
Insulin-Secreting Human α-Cells.” Nature, February. https://doi.org/10.1038/s41586-
019-0942-8. 

Garcia, Meilin Fernandez, Cedric D. Moore, Katharine N. Schulz, Oscar Alberto, Greg Donague, 
Melissa M. Harrison, Heng Zhu, and Kenneth S. Zaret. 2019. “Structural Features of 
Transcription Factors Associating with Nucleosome Binding.” Molecular Cell. 
https://doi.org/10.1016/j.molcel.2019.06.009. 

Grant, Charles E., and Timothy L. Bailey. 2021. “XSTREME: Comprehensive Motif Analysis of 
Biological Sequence Datasets.” bioRxiv. https://doi.org/10.1101/2021.09.02.458722. 

Grant, Charles E., Timothy L. Bailey, and William Stafford Noble. 2011. “FIMO: Scanning for 
Occurrences of a given Motif.” Bioinformatics  27 (7): 1017–18. 

Gurdon, J. B. 1962. “Adult Frogs Derived from the Nuclei of Single Somatic Cells.” 
Developmental Biology 4 (April): 256–73. 

Hammelman, Jennifer, Konstantin Krismer, Budhaditya Banerjee, David K. Gifford, and Richard 
I. Sherwood. 2020. “Identification of Determinants of Differential Chromatin 
Accessibility through a Massively Parallel Genome-Integrated Reporter Assay.” Genome 
Research 30 (10): 1468–80. 

Hansen, Jeffrey L., Kaiser J. Loell, and Barak A. Cohen. 2022. “The Pioneer Factor Hypothesis 
Is Not Necessary to Explain Ectopic Liver Gene Activation.” eLife 11 (January). 
https://doi.org/10.7554/eLife.73358. 

Heintzman, Nathaniel D., Gary C. Hon, R. David Hawkins, Pouya Kheradpour, Alexander Stark, 
Lindsey F. Harp, Zhen Ye, et al. 2009. “Histone Modifications at Human Enhancers 
Reflect Global Cell-Type-Specific Gene Expression.” Nature 459 (7243): 108–12. 

Heintzman, Nathaniel D., Rhona K. Stuart, Gary Hon, Yutao Fu, Christina W. Ching, R. David 
Hawkins, Leah O. Barrera, et al. 2007. “Distinct and Predictive Chromatin Signatures of 
Transcriptional Promoters and Enhancers in the Human Genome.” Nature Genetics 39 
(3): 311–18. 

http://paperpile.com/b/geHVnJ/QulAg
http://paperpile.com/b/geHVnJ/QulAg
http://paperpile.com/b/geHVnJ/QulAg
http://paperpile.com/b/geHVnJ/QulAg
http://dx.doi.org/10.1093/database/bax028
http://paperpile.com/b/geHVnJ/QulAg
http://paperpile.com/b/geHVnJ/lrn5e
http://paperpile.com/b/geHVnJ/lrn5e
http://paperpile.com/b/geHVnJ/lrn5e
http://paperpile.com/b/geHVnJ/lrn5e
http://paperpile.com/b/geHVnJ/ZXko
http://paperpile.com/b/geHVnJ/ZXko
http://paperpile.com/b/geHVnJ/ZXko
http://dx.doi.org/10.1038/s41586-019-0942-8
http://dx.doi.org/10.1038/s41586-019-0942-8
http://paperpile.com/b/geHVnJ/ZXko
http://paperpile.com/b/geHVnJ/X0mX
http://paperpile.com/b/geHVnJ/X0mX
http://paperpile.com/b/geHVnJ/X0mX
http://paperpile.com/b/geHVnJ/X0mX
http://dx.doi.org/10.1016/j.molcel.2019.06.009
http://paperpile.com/b/geHVnJ/X0mX
http://paperpile.com/b/geHVnJ/nZEpj
http://paperpile.com/b/geHVnJ/nZEpj
http://dx.doi.org/10.1101/2021.09.02.458722
http://paperpile.com/b/geHVnJ/nZEpj
http://paperpile.com/b/geHVnJ/BBCzY
http://paperpile.com/b/geHVnJ/BBCzY
http://paperpile.com/b/geHVnJ/GOJY
http://paperpile.com/b/geHVnJ/GOJY
http://paperpile.com/b/geHVnJ/B7WZv
http://paperpile.com/b/geHVnJ/B7WZv
http://paperpile.com/b/geHVnJ/B7WZv
http://paperpile.com/b/geHVnJ/B7WZv
http://paperpile.com/b/geHVnJ/gomS
http://paperpile.com/b/geHVnJ/gomS
http://paperpile.com/b/geHVnJ/gomS
http://dx.doi.org/10.7554/eLife.73358
http://paperpile.com/b/geHVnJ/gomS
http://paperpile.com/b/geHVnJ/IxMGe
http://paperpile.com/b/geHVnJ/IxMGe
http://paperpile.com/b/geHVnJ/IxMGe
http://paperpile.com/b/geHVnJ/d3jYf
http://paperpile.com/b/geHVnJ/d3jYf
http://paperpile.com/b/geHVnJ/d3jYf
http://paperpile.com/b/geHVnJ/d3jYf


 107 
 

Heinz, Sven, Christopher Benner, Nathanael Spann, Eric Bertolino, Yin C. Lin, Peter Laslo, 
Jason X. Cheng, Cornelis Murre, Harinder Singh, and Christopher K. Glass. 2010. 
“Simple Combinations of Lineage-Determining Transcription Factors Prime Cis-
Regulatory Elements Required for Macrophage and B Cell Identities.” Molecular Cell 38 
(4): 576–89. 

Heitz, Emil. 1928. Das Heterochromatin Der Moose. Bornträger. 

Horisawa, Kenichi, Miyako Udono, Kazuko Ueno, Yasuyuki Ohkawa, Masao Nagasaki, Sayaka 
Sekiya, and Atsushi Suzuki. 2020. “The Dynamics of Transcriptional Activation by 
Hepatic Reprogramming Factors.” Molecular Cell 79 (4): 660–76.e8. 

Huertas, Jan, Caitlin M. MacCarthy, Hans R. Schöler, and Vlad Cojocaru. 2020. “Nucleosomal 
DNA Dynamics Mediate Oct4 Pioneer Factor Binding.” Biophysical Journal, January. 
https://doi.org/10.1016/j.bpj.2019.12.038. 

Huh, Christine J., Bo Zhang, Matheus B. Victor, Sonika Dahiya, Luis Fz Batista, Steve Horvath, 
and Andrew S. Yoo. 2016. “Maintenance of Age in Human Neurons Generated by 
microRNA-Based Neuronal Conversion of Fibroblasts.” eLife 5 (September). 
https://doi.org/10.7554/eLife.18648. 

Hunter, A. Louise, Toryn M. Poolman, Donghwan Kim, Frank J. Gonzalez, David A. Bechtold, 
Andrew S. I. Loudon, Mudassar Iqbal, and David W. Ray. 2022. “HNF4A Modulates 
Glucocorticoid Action in the Liver.” Cell Reports 39 (3): 110697. 

Ieda, Masaki, Ji-Dong Fu, Paul Delgado-Olguin, Vasanth Vedantham, Yohei Hayashi, Benoit G. 
Bruneau, and Deepak Srivastava. 2010. “Direct Reprogramming of Fibroblasts into 
Functional Cardiomyocytes by Defined Factors.” Cell 142 (3): 375–86. 

Iwafuchi-Doi, Makiko, and Kenneth S. Zaret. 2014. “Pioneer Transcription Factors in Cell 
Reprogramming.” Genes & Development 28 (24): 2679–92. 

Jayawardena, Tilanthi M., Elizabeth A. Finch, Lunan Zhang, Hengtao Zhang, Conrad P. 
Hodgkinson, Richard E. Pratt, Paul B. Rosenberg, Maria Mirotsou, and Victor J. Dzau. 
2015. “MicroRNA Induced Cardiac Reprogramming in Vivo: Evidence for Mature 
Cardiac Myocytes and Improved Cardiac Function.” Circulation Research 116 (3): 418–
24. 

Jiang, G., U. Lee, and F. M. Sladek. 1997. “Proposed Mechanism for the Stabilization of Nuclear 
Receptor DNA Binding via Protein Dimerization.” Molecular and Cellular Biology 17 
(11): 6546–54. 

Jiang, G., L. Nepomuceno, K. Hopkins, and F. M. Sladek. 1995. “Exclusive Homodimerization 
of the Orphan Receptor Hepatocyte Nuclear Factor 4 Defines a New Subclass of Nuclear 
Receptors.” Molecular and Cellular Biology 15 (9): 5131–43. 

http://paperpile.com/b/geHVnJ/S3QqD
http://paperpile.com/b/geHVnJ/S3QqD
http://paperpile.com/b/geHVnJ/S3QqD
http://paperpile.com/b/geHVnJ/S3QqD
http://paperpile.com/b/geHVnJ/S3QqD
http://paperpile.com/b/geHVnJ/gx5a
http://paperpile.com/b/geHVnJ/T3sH
http://paperpile.com/b/geHVnJ/T3sH
http://paperpile.com/b/geHVnJ/T3sH
http://paperpile.com/b/geHVnJ/J4uzI
http://paperpile.com/b/geHVnJ/J4uzI
http://paperpile.com/b/geHVnJ/J4uzI
http://dx.doi.org/10.1016/j.bpj.2019.12.038
http://paperpile.com/b/geHVnJ/J4uzI
http://paperpile.com/b/geHVnJ/gFLv
http://paperpile.com/b/geHVnJ/gFLv
http://paperpile.com/b/geHVnJ/gFLv
http://paperpile.com/b/geHVnJ/gFLv
http://dx.doi.org/10.7554/eLife.18648
http://paperpile.com/b/geHVnJ/gFLv
http://paperpile.com/b/geHVnJ/TYKd
http://paperpile.com/b/geHVnJ/TYKd
http://paperpile.com/b/geHVnJ/TYKd
http://paperpile.com/b/geHVnJ/2aKt
http://paperpile.com/b/geHVnJ/2aKt
http://paperpile.com/b/geHVnJ/2aKt
http://paperpile.com/b/geHVnJ/B4F9
http://paperpile.com/b/geHVnJ/B4F9
http://paperpile.com/b/geHVnJ/MPhE
http://paperpile.com/b/geHVnJ/MPhE
http://paperpile.com/b/geHVnJ/MPhE
http://paperpile.com/b/geHVnJ/MPhE
http://paperpile.com/b/geHVnJ/MPhE
http://paperpile.com/b/geHVnJ/PUsU
http://paperpile.com/b/geHVnJ/PUsU
http://paperpile.com/b/geHVnJ/PUsU
http://paperpile.com/b/geHVnJ/FSoRP
http://paperpile.com/b/geHVnJ/FSoRP
http://paperpile.com/b/geHVnJ/FSoRP


 108 
 

Jopling, Chris, Eduard Sleep, Marina Raya, Mercè Martí, Angel Raya, and Juan Carlos Izpisúa 
Belmonte. 2010. “Zebrafish Heart Regeneration Occurs by Cardiomyocyte 
Dedifferentiation and Proliferation.” Nature 464 (7288): 606–9. 

Kaplan, Noam, Irene K. Moore, Yvonne Fondufe-Mittendorf, Andrea J. Gossett, Desiree Tillo, 
Yair Field, Emily M. LeProust, et al. 2009. “The DNA-Encoded Nucleosome 
Organization of a Eukaryotic Genome.” Nature 458 (7236): 362–66. 

Karagianni, Panagiota, Panagiotis Moulos, Dominic Schmidt, Duncan T. Odom, and Iannis 
Talianidis. 2020. “Bookmarking by Non-Pioneer Transcription Factors during Liver 
Development Establishes Competence for Future Gene Activation.” Cell Reports 30 (5): 
1319–28.e6. 

Kaya-Okur, Hatice S., Derek H. Janssens, Jorja G. Henikoff, Kami Ahmad, and Steven Henikoff. 
2020. “Efficient Low-Cost Chromatin Profiling with CUT&Tag.” Nature Protocols 15 
(10): 3264–83. 

Kaya-Okur, Hatice S., Steven J. Wu, Christine A. Codomo, Erica S. Pledger, Terri D. Bryson, 
Jorja G. Henikoff, Kami Ahmad, and Steven Henikoff. 2019. “CUT&Tag for Efficient 
Epigenomic Profiling of Small Samples and Single Cells.” Nature Communications 10 
(1): 1930. 

Ko, Hui Ling, Ziyi Zhuo, and Ee Chee Ren. 2019. “HNF4α Combinatorial Isoform Heterodimers 
Activate Distinct Gene Targets That Differ from Their Corresponding Homodimers.” 
Cell Reports 26 (10): 2549–57.e3. 

Kornberg, R. D. 1974. “Chromatin Structure: A Repeating Unit of Histones and DNA.” Science 
184 (4139): 868–71. 

Langmead, Ben, and Steven L. Salzberg. 2012. “Fast Gapped-Read Alignment with Bowtie 2.” 
Nature Methods 9 (4): 357–59. 

Lareau, Caleb A., Fabiana M. Duarte, Jennifer G. Chew, Vinay K. Kartha, Zach D. Burkett, 
Andrew S. Kohlway, Dmitry Pokholok, et al. 2019. “Droplet-Based Combinatorial 
Indexing for Massive-Scale Single-Cell Chromatin Accessibility.” Nature Biotechnology 
37 (8): 916–24. 

Larson, Elizabeth D., Hideyuki Komori, Tyler J. Gibson, Cyrina M. Ostgaard, Danielle C. 
Hamm, Jack M. Schnell, Cheng-Yu Lee, and Melissa M. Harrison. 2021. “Cell-Type-
Specific Chromatin Occupancy by the Pioneer Factor Zelda Drives Key Developmental 
Transitions in Drosophila.” Nature Communications 12 (1): 7153. 

Lau, Hwee Hui, Natasha Hui Jin Ng, Larry Sai Weng Loo, Joanita Binte Jasmen, and Adrian 
Kee Keong Teo. 2018. “The Molecular Functions of Hepatocyte Nuclear Factors – In and 
beyond the Liver.” Journal of Hepatology 68 (5): 1033–48. 

http://paperpile.com/b/geHVnJ/zDnw
http://paperpile.com/b/geHVnJ/zDnw
http://paperpile.com/b/geHVnJ/zDnw
http://paperpile.com/b/geHVnJ/NSMfd
http://paperpile.com/b/geHVnJ/NSMfd
http://paperpile.com/b/geHVnJ/NSMfd
http://paperpile.com/b/geHVnJ/wlLvv
http://paperpile.com/b/geHVnJ/wlLvv
http://paperpile.com/b/geHVnJ/wlLvv
http://paperpile.com/b/geHVnJ/wlLvv
http://paperpile.com/b/geHVnJ/aMp2R
http://paperpile.com/b/geHVnJ/aMp2R
http://paperpile.com/b/geHVnJ/aMp2R
http://paperpile.com/b/geHVnJ/XroUc
http://paperpile.com/b/geHVnJ/XroUc
http://paperpile.com/b/geHVnJ/XroUc
http://paperpile.com/b/geHVnJ/XroUc
http://paperpile.com/b/geHVnJ/TaorK
http://paperpile.com/b/geHVnJ/TaorK
http://paperpile.com/b/geHVnJ/TaorK
http://paperpile.com/b/geHVnJ/InRb
http://paperpile.com/b/geHVnJ/InRb
http://paperpile.com/b/geHVnJ/yiyDy
http://paperpile.com/b/geHVnJ/yiyDy
http://paperpile.com/b/geHVnJ/cTgsR
http://paperpile.com/b/geHVnJ/cTgsR
http://paperpile.com/b/geHVnJ/cTgsR
http://paperpile.com/b/geHVnJ/cTgsR
http://paperpile.com/b/geHVnJ/4IMYa
http://paperpile.com/b/geHVnJ/4IMYa
http://paperpile.com/b/geHVnJ/4IMYa
http://paperpile.com/b/geHVnJ/4IMYa
http://paperpile.com/b/geHVnJ/AkhC
http://paperpile.com/b/geHVnJ/AkhC
http://paperpile.com/b/geHVnJ/AkhC


 109 
 

Lee, Catherine S., Joshua R. Friedman, James T. Fulmer, and Klaus H. Kaestner. 2005. “The 
Initiation of Liver Development Is Dependent on Foxa Transcription Factors.” Nature 
435 (7044): 944–47. 

Lemma, Roza B., Marit Ledsaak, Bettina M. Fuglerud, Geir Kjetil Sandve, Ragnhild Eskeland, 
and Odd S. Gabrielsen. 2021. “Chromatin Occupancy and Target Genes of the 
Haematopoietic Master Transcription Factor MYB.” Scientific Reports 11 (1): 9008. 

Liao, Yang, Gordon K. Smyth, and Wei Shi. 2014. “featureCounts: An Efficient General 
Purpose Program for Assigning Sequence Reads to Genomic Features.” 
Bioinformatics  30 (7): 923–30. 

Li, Qunhua, James B. Brown, Haiyan Huang, and Peter J. Bickel. 2011. “Measuring 
Reproducibility of High-Throughput Experiments.” The Annals of Applied Statistics 5 
(3): 1752–79. 

Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold 
Change and Dispersion for RNA-Seq Data with DESeq2.” Genome Biology 15 (12): 550. 

Lupien, Mathieu, Jérôme Eeckhoute, Clifford A. Meyer, Qianben Wang, Yong Zhang, Wei Li, 
Jason S. Carroll, X. Shirley Liu, and Myles Brown. 2008. “FoxA1 Translates Epigenetic 
Signatures into Enhancer-Driven Lineage-Specific Transcription.” Cell 132 (6): 958–70. 

Ma, Hong, Li Wang, Chaoying Yin, Jiandong Liu, and Li Qian. 2015. “In Vivo Cardiac 
Reprogramming Using an Optimal Single Polycistronic Construct.” Cardiovascular 
Research 108 (2): 217–19. 

Manandhar, Dinesh, Lingyun Song, Ami Kabadi, Jennifer B. Kwon, Lee E. Edsall, Melanie 
Ehrlich, Koji Tsumagari, Charles A. Gersbach, Gregory E. Crawford, and Raluca 
Gordân. 2017. “Incomplete MyoD-Induced Transdifferentiation Is Associated with 
Chromatin Remodeling Deficiencies.” Nucleic Acids Research 45 (20): 11684–99. 

Man, T. K., and G. D. Stormo. 2001. “Non-Independence of Mnt Repressor-Operator Interaction 
Determined by a New Quantitative Multiple Fluorescence Relative Affinity (QuMFRA) 
Assay.” Nucleic Acids Research 29 (12): 2471–78. 

Matsuda, Taito, Takashi Irie, Shutaro Katsurabayashi, Yoshinori Hayashi, Tatsuya Nagai, 
Nobuhiko Hamazaki, Aliya Mari D. Adefuin, et al. 2018. “Pioneer Factor NeuroD1 
Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron 
Conversion.” Neuron, December. https://doi.org/10.1016/j.neuron.2018.12.010. 

Mayran, Alexandre, Konstantin Khetchoumian, Fadi Hariri, Tomi Pastinen, Yves Gauthier, 
Aurelio Balsalobre, and Jacques Drouin. 2018. “Pioneer Factor Pax7 Deploys a Stable 
Enhancer Repertoire for Specification of Cell Fate.” Nature Genetics 50 (2): 259–69. 

McDaniel, Stephen L., Tyler J. Gibson, Katharine N. Schulz, Meilin Fernandez Garcia, Markus 
Nevil, Siddhant U. Jain, Peter W. Lewis, Kenneth S. Zaret, and Melissa M. Harrison. 

http://paperpile.com/b/geHVnJ/mEn1
http://paperpile.com/b/geHVnJ/mEn1
http://paperpile.com/b/geHVnJ/mEn1
http://paperpile.com/b/geHVnJ/MzFD3
http://paperpile.com/b/geHVnJ/MzFD3
http://paperpile.com/b/geHVnJ/MzFD3
http://paperpile.com/b/geHVnJ/KIyJz
http://paperpile.com/b/geHVnJ/KIyJz
http://paperpile.com/b/geHVnJ/KIyJz
http://paperpile.com/b/geHVnJ/K7Nid
http://paperpile.com/b/geHVnJ/K7Nid
http://paperpile.com/b/geHVnJ/K7Nid
http://paperpile.com/b/geHVnJ/i98m6
http://paperpile.com/b/geHVnJ/i98m6
http://paperpile.com/b/geHVnJ/sGDD
http://paperpile.com/b/geHVnJ/sGDD
http://paperpile.com/b/geHVnJ/sGDD
http://paperpile.com/b/geHVnJ/XmS1t
http://paperpile.com/b/geHVnJ/XmS1t
http://paperpile.com/b/geHVnJ/XmS1t
http://paperpile.com/b/geHVnJ/7Ppx
http://paperpile.com/b/geHVnJ/7Ppx
http://paperpile.com/b/geHVnJ/7Ppx
http://paperpile.com/b/geHVnJ/7Ppx
http://paperpile.com/b/geHVnJ/JKUZM
http://paperpile.com/b/geHVnJ/JKUZM
http://paperpile.com/b/geHVnJ/JKUZM
http://paperpile.com/b/geHVnJ/nmmo
http://paperpile.com/b/geHVnJ/nmmo
http://paperpile.com/b/geHVnJ/nmmo
http://paperpile.com/b/geHVnJ/nmmo
http://dx.doi.org/10.1016/j.neuron.2018.12.010
http://paperpile.com/b/geHVnJ/nmmo
http://paperpile.com/b/geHVnJ/JvGv
http://paperpile.com/b/geHVnJ/JvGv
http://paperpile.com/b/geHVnJ/JvGv
http://paperpile.com/b/geHVnJ/wVImq
http://paperpile.com/b/geHVnJ/wVImq


 110 
 

2019. “Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic 
Genome Activation.” Molecular Cell, February. 
https://doi.org/10.1016/j.molcel.2019.01.014. 

McPherson, C. E., E. Y. Shim, D. S. Friedman, and K. S. Zaret. 1993. “An Active Tissue-
Specific Enhancer and Bound Transcription Factors Existing in a Precisely Positioned 
Nucleosomal Array.” Cell 75 (2): 387–98. 

Meerbrey, Kristen L., Guang Hu, Jessica D. Kessler, Kevin Roarty, Mamie Z. Li, Justin E. Fang, 
Jason I. Herschkowitz, et al. 2011. “The pINDUCER Lentiviral Toolkit for Inducible 
RNA Interference in Vitro and in Vivo.” Proceedings of the National Academy of 
Sciences of the United States of America 108 (9): 3665–70. 

Meers, Michael P., Derek H. Janssens, and Steven Henikoff. 2019. “Pioneer Factor-Nucleosome 
Binding Events during Differentiation Are Motif Encoded.” Molecular Cell, June. 
https://doi.org/10.1016/j.molcel.2019.05.025. 

Miller, Joanna A., and Jonathan Widom. 2003. “Collaborative Competition Mechanism for Gene 
Activation in Vivo.” Molecular and Cellular Biology 23 (5): 1623–32. 

Minderjahn, Julia, Andreas Schmidt, Andreas Fuchs, Rudolf Schill, Johanna Raithel, Magda 
Babina, Christian Schmidl, et al. 2020. “Mechanisms Governing the Pioneering and 
Redistribution Capabilities of the Non-Classical Pioneer PU.1.” Nature Communications 
11 (1): 402. 

Mirny, Leonid A. 2010. “Nucleosome-Mediated Cooperativity between Transcription Factors.” 
Proceedings of the National Academy of Sciences of the United States of America 107 
(52): 22534–39. 

Morris, Samantha A. 2016. “Direct Lineage Reprogramming via Pioneer Factors; a Detour 
through Developmental Gene Regulatory Networks.” Development  143 (15): 2696–
2705. 

Morris, Samantha A., Patrick Cahan, Hu Li, Anna M. Zhao, Adrianna K. San Roman, Ramesh 
A. Shivdasani, James J. Collins, and George Q. Daley. 2014. “Dissecting Engineered Cell 
Types and Enhancing Cell Fate Conversion via CellNet.” Cell 158 (4): 889–902. 

Morris, Stephanie A., Songjoon Baek, Myong-Hee Sung, Sam John, Malgorzata Wiench, 
Thomas A. Johnson, R. Louis Schiltz, and Gordon L. Hager. 2014. “Overlapping 
Chromatin-Remodeling Systems Collaborate Genome Wide at Dynamic Chromatin 
Transitions.” Nature Structural & Molecular Biology 21 (1): 73–81. 

Moyle-Heyrman, Georgette, Hannah S. Tims, and Jonathan Widom. 2011. “Structural 
Constraints in Collaborative Competition of Transcription Factors against the 
Nucleosome.” Journal of Molecular Biology 412 (4): 634–46. 

http://paperpile.com/b/geHVnJ/wVImq
http://paperpile.com/b/geHVnJ/wVImq
http://paperpile.com/b/geHVnJ/wVImq
http://dx.doi.org/10.1016/j.molcel.2019.01.014
http://paperpile.com/b/geHVnJ/wVImq
http://paperpile.com/b/geHVnJ/hQ9zS
http://paperpile.com/b/geHVnJ/hQ9zS
http://paperpile.com/b/geHVnJ/hQ9zS
http://paperpile.com/b/geHVnJ/a9pZX
http://paperpile.com/b/geHVnJ/a9pZX
http://paperpile.com/b/geHVnJ/a9pZX
http://paperpile.com/b/geHVnJ/a9pZX
http://paperpile.com/b/geHVnJ/hgyo
http://paperpile.com/b/geHVnJ/hgyo
http://paperpile.com/b/geHVnJ/hgyo
http://dx.doi.org/10.1016/j.molcel.2019.05.025
http://paperpile.com/b/geHVnJ/hgyo
http://paperpile.com/b/geHVnJ/8k03
http://paperpile.com/b/geHVnJ/8k03
http://paperpile.com/b/geHVnJ/Z3NF2
http://paperpile.com/b/geHVnJ/Z3NF2
http://paperpile.com/b/geHVnJ/Z3NF2
http://paperpile.com/b/geHVnJ/Z3NF2
http://paperpile.com/b/geHVnJ/6oyH
http://paperpile.com/b/geHVnJ/6oyH
http://paperpile.com/b/geHVnJ/6oyH
http://paperpile.com/b/geHVnJ/fB4T
http://paperpile.com/b/geHVnJ/fB4T
http://paperpile.com/b/geHVnJ/fB4T
http://paperpile.com/b/geHVnJ/4tlBH
http://paperpile.com/b/geHVnJ/4tlBH
http://paperpile.com/b/geHVnJ/4tlBH
http://paperpile.com/b/geHVnJ/nqVm
http://paperpile.com/b/geHVnJ/nqVm
http://paperpile.com/b/geHVnJ/nqVm
http://paperpile.com/b/geHVnJ/nqVm
http://paperpile.com/b/geHVnJ/6kx7x
http://paperpile.com/b/geHVnJ/6kx7x
http://paperpile.com/b/geHVnJ/6kx7x


 111 
 

Muraoka, Naoto, Hiroyuki Yamakawa, Kazutaka Miyamoto, Taketaro Sadahiro, Tomohiko 
Umei, Mari Isomi, Hanae Nakashima, et al. 2014. “MiR-133 Promotes Cardiac 
Reprogramming by Directly Repressing Snai1 and Silencing Fibroblast Signatures.” The 
EMBO Journal 33 (14): 1565–81. 

Ng, Alex H. M., Parastoo Khoshakhlagh, Jesus Eduardo Rojo Arias, Giovanni Pasquini, Kai 
Wang, Anka Swiersy, Seth L. Shipman, et al. 2021. “A Comprehensive Library of 
Human Transcription Factors for Cell Fate Engineering.” Nature Biotechnology 39 (4): 
510–19. 

Oudet, P., M. Gross-Bellard, and P. Chambon. 1975. “Electron Microscopic and Biochemical 
Evidence That Chromatin Structure Is a Repeating Unit.” Cell 4 (4): 281–300. 

Pagliuca, Felicia W., Jeffrey R. Millman, Mads Gürtler, Michael Segel, Alana Van Dervort, 
Jennifer Hyoje Ryu, Quinn P. Peterson, Dale Greiner, and Douglas A. Melton. 2014. 
“Generation of Functional Human Pancreatic β Cells In Vitro.” Cell 159 (2): 428–39. 

Partridge, E. Christopher, Surya B. Chhetri, Jeremy W. Prokop, Ryne C. Ramaker, Camden S. 
Jansen, Say-Tar Goh, Mark Mackiewicz, et al. 2020. “Occupancy Maps of 208 
Chromatin-Associated Proteins in One Human Cell Type.” Nature 583 (7818): 720–28. 

Parviz, Fereshteh, Christine Matullo, Wendy D. Garrison, Laura Savatski, John W. Adamson, 
Gang Ning, Klaus H. Kaestner, Jennifer M. Rossi, Kenneth S. Zaret, and Stephen A. 
Duncan. 2003. “Hepatocyte Nuclear Factor 4α Controls the Development of a Hepatic 
Epithelium and Liver Morphogenesis.” Nature Genetics 34 (3): 292–96. 

Patro, Rob, Geet Duggal, Michael I. Love, Rafael A. Irizarry, and Carl Kingsford. 2017. 
“Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression.” Nature 
Methods 14 (4): 417–19. 

Polach, K. J., and J. Widom. 1995. “Mechanism of Protein Access to Specific DNA Sequences 
in Chromatin: A Dynamic Equilibrium Model for Gene Regulation.” Journal of 
Molecular Biology 254 (2): 130–49. 

———. 1996. “A Model for the Cooperative Binding of Eukaryotic Regulatory Proteins to 
Nucleosomal Target Sites.” Journal of Molecular Biology 258 (5): 800–812. 

Posey, Ammon E., Alex S. Holehouse, and Rohit V. Pappu. 2018. “Chapter One - Phase 
Separation of Intrinsically Disordered Proteins.” In Methods in Enzymology, edited by 
Elizabeth Rhoades, 611:1–30. Academic Press. 

Qian, Li, Yu Huang, C. Ian Spencer, Amy Foley, Vasanth Vedantham, Lei Liu, Simon J. 
Conway, Ji-Dong Fu, and Deepak Srivastava. 2012. “In Vivo Reprogramming of Murine 
Cardiac Fibroblasts into Induced Cardiomyocytes.” Nature 485 (7400): 593–98. 

Quinlan, Aaron R., and Ira M. Hall. 2010. “BEDTools: A Flexible Suite of Utilities for 
Comparing Genomic Features.” Bioinformatics  26 (6): 841–42. 

http://paperpile.com/b/geHVnJ/CjgY7
http://paperpile.com/b/geHVnJ/CjgY7
http://paperpile.com/b/geHVnJ/CjgY7
http://paperpile.com/b/geHVnJ/CjgY7
http://paperpile.com/b/geHVnJ/S1Sz
http://paperpile.com/b/geHVnJ/S1Sz
http://paperpile.com/b/geHVnJ/S1Sz
http://paperpile.com/b/geHVnJ/S1Sz
http://paperpile.com/b/geHVnJ/9zPB
http://paperpile.com/b/geHVnJ/9zPB
http://paperpile.com/b/geHVnJ/kkHt
http://paperpile.com/b/geHVnJ/kkHt
http://paperpile.com/b/geHVnJ/kkHt
http://paperpile.com/b/geHVnJ/zYSCR
http://paperpile.com/b/geHVnJ/zYSCR
http://paperpile.com/b/geHVnJ/zYSCR
http://paperpile.com/b/geHVnJ/5asq
http://paperpile.com/b/geHVnJ/5asq
http://paperpile.com/b/geHVnJ/5asq
http://paperpile.com/b/geHVnJ/5asq
http://paperpile.com/b/geHVnJ/VfUHp
http://paperpile.com/b/geHVnJ/VfUHp
http://paperpile.com/b/geHVnJ/VfUHp
http://paperpile.com/b/geHVnJ/1SlH
http://paperpile.com/b/geHVnJ/1SlH
http://paperpile.com/b/geHVnJ/1SlH
http://paperpile.com/b/geHVnJ/Wbk9
http://paperpile.com/b/geHVnJ/Wbk9
http://paperpile.com/b/geHVnJ/TZPqN
http://paperpile.com/b/geHVnJ/TZPqN
http://paperpile.com/b/geHVnJ/TZPqN
http://paperpile.com/b/geHVnJ/9W3q
http://paperpile.com/b/geHVnJ/9W3q
http://paperpile.com/b/geHVnJ/9W3q
http://paperpile.com/b/geHVnJ/mujsc
http://paperpile.com/b/geHVnJ/mujsc


 112 
 

Ramachandran, Srinivas, and Steven Henikoff. 2016. “Transcriptional Regulators Compete with 
Nucleosomes Post-Replication.” Cell 165 (3): 580–92. 

Ramakrishnan, V., J. T. Finch, V. Graziano, P. L. Lee, and R. M. Sweet. 1993. “Crystal 
Structure of Globular Domain of Histone H5 and Its Implications for Nucleosome 
Binding.” Nature 362 (6417): 219–23. 

Ramírez, Fidel, Devon P. Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert, Andreas S. 
Richter, Steffen Heyne, Friederike Dündar, and Thomas Manke. 2016. “deepTools2: A 
next Generation Web Server for Deep-Sequencing Data Analysis.” Nucleic Acids 
Research 44 (W1): W160–65. 

Ramsköld, Daniel, Eric T. Wang, Christopher B. Burge, and Rickard Sandberg. 2009. “An 
Abundance of Ubiquitously Expressed Genes Revealed by Tissue Transcriptome 
Sequence Data.” PLoS Computational Biology 5 (12): e1000598. 

Robinson, James T., Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, 
Gad Getz, and Jill P. Mesirov. 2011. “Integrative Genomics Viewer.” Nature 
Biotechnology 29 (1): 24–26. 

Robson, M. K., J. M. Anderson, O. M. Garson, J. P. Matthews, and T. F. Sandeman. 1981. 
“Constitutive Heterochromatin (C-Banding) Studies in Patients with Testicular 
Malignancies.” Cancer Genetics and Cytogenetics 4 (4): 319–23. 

Rufibach, Laura E., Stephen A. Duncan, Michele Battle, and Samir S. Deeb. 2006. 
“Transcriptional Regulation of the Human Hepatic Lipase (LIPC) Gene Promoter.” 
Journal of Lipid Research 47 (7): 1463–77. 

Ryan Corces, M., Alexandro E. Trevino, Emily G. Hamilton, Peyton G. Greenside, Nicholas A. 
Sinnott-Armstrong, Sam Vesuna, Ansuman T. Satpathy, et al. 2017. “An Improved 
ATAC-Seq Protocol Reduces Background and Enables Interrogation of Frozen Tissues.” 
Nature Methods 14 (10): 959–62. 

Schones, Dustin E., Kairong Cui, Suresh Cuddapah, Tae-Young Roh, Artem Barski, Zhibin 
Wang, Gang Wei, and Keji Zhao. 2008. “Dynamic Regulation of Nucleosome 
Positioning in the Human Genome.” Cell 132 (5): 887–98. 

Schultz, J. 1936. “Variegation in Drosophila and the Inert Chromosome Regions.” Proceedings 
of the National Academy of Sciences of the United States of America 22 (1): 27–33. 

Sekiya, Sayaka, and Atsushi Suzuki. 2011. “Direct Conversion of Mouse Fibroblasts to 
Hepatocyte-like Cells by Defined Factors.” Nature 475 (7356): 390–93. 

Sherwood, Richard I., Tatsunori Hashimoto, Charles W. O’Donnell, Sophia Lewis, Amira A. 
Barkal, John Peter van Hoff, Vivek Karun, Tommi Jaakkola, and David K. Gifford. 2014. 
“Discovery of Directional and Nondirectional Pioneer Transcription Factors by Modeling 
DNase Profile Magnitude and Shape.” Nature Biotechnology 32 (2): 171–78. 

http://paperpile.com/b/geHVnJ/Dwrv
http://paperpile.com/b/geHVnJ/Dwrv
http://paperpile.com/b/geHVnJ/8BTW
http://paperpile.com/b/geHVnJ/8BTW
http://paperpile.com/b/geHVnJ/8BTW
http://paperpile.com/b/geHVnJ/22M2b
http://paperpile.com/b/geHVnJ/22M2b
http://paperpile.com/b/geHVnJ/22M2b
http://paperpile.com/b/geHVnJ/22M2b
http://paperpile.com/b/geHVnJ/k4bY
http://paperpile.com/b/geHVnJ/k4bY
http://paperpile.com/b/geHVnJ/k4bY
http://paperpile.com/b/geHVnJ/xd6Ur
http://paperpile.com/b/geHVnJ/xd6Ur
http://paperpile.com/b/geHVnJ/xd6Ur
http://paperpile.com/b/geHVnJ/38Jn
http://paperpile.com/b/geHVnJ/38Jn
http://paperpile.com/b/geHVnJ/38Jn
http://paperpile.com/b/geHVnJ/OWyi
http://paperpile.com/b/geHVnJ/OWyi
http://paperpile.com/b/geHVnJ/OWyi
http://paperpile.com/b/geHVnJ/ZYyQb
http://paperpile.com/b/geHVnJ/ZYyQb
http://paperpile.com/b/geHVnJ/ZYyQb
http://paperpile.com/b/geHVnJ/ZYyQb
http://paperpile.com/b/geHVnJ/lwle
http://paperpile.com/b/geHVnJ/lwle
http://paperpile.com/b/geHVnJ/lwle
http://paperpile.com/b/geHVnJ/H9V9
http://paperpile.com/b/geHVnJ/H9V9
http://paperpile.com/b/geHVnJ/B8a5
http://paperpile.com/b/geHVnJ/B8a5
http://paperpile.com/b/geHVnJ/HLye
http://paperpile.com/b/geHVnJ/HLye
http://paperpile.com/b/geHVnJ/HLye
http://paperpile.com/b/geHVnJ/HLye


 113 
 

Shim, E. Y., C. Woodcock, and K. S. Zaret. 1998. “Nucleosome Positioning by the Winged 
Helix Transcription Factor HNF3.” Genes & Development 12 (1): 5–10. 

Song, Kunhua, Young-Jae Nam, Xiang Luo, Xiaoxia Qi, Wei Tan, Guo N. Huang, Asha 
Acharya, et al. 2012. “Heart Repair by Reprogramming Non-Myocytes with Cardiac 
Transcription Factors.” Nature 485 (7400): 599–604. 

Song, Lingyun, and Gregory E. Crawford. 2010. “DNase-Seq: A High-Resolution Technique for 
Mapping Active Gene Regulatory Elements across the Genome from Mammalian Cells.” 
Cold Spring Harbor Protocols 2010 (2): db.prot5384. 

Soufi, Abdenour, Greg Donahue, and Kenneth S. Zaret. 2012. “Facilitators and Impediments of 
the Pluripotency Reprogramming Factors’ Initial Engagement with the Genome.” Cell 
151 (5): 994–1004. 

Soufi, Abdenour, Meilin Fernandez Garcia, Artur Jaroszewicz, Nebiyu Osman, Matteo 
Pellegrini, and Kenneth S. Zaret. 2015. “Pioneer Transcription Factors Target Partial 
DNA Motifs on Nucleosomes to Initiate Reprogramming.” Cell 161 (3): 555–68. 

Stark, Rory, Gordon Brown, and Others. 2011. “DiffBind: Differential Binding Analysis of 
ChIP-Seq Peak Data.” R Package Version 100 (4.3). https://bioconductor.statistik.tu-
dortmund.de/packages/2.13/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf. 

Su, Zhida, Wenze Niu, Meng-Lu Liu, Yuhua Zou, and Chun-Li Zhang. 2014. “In Vivo 
Conversion of Astrocytes to Neurons in the Injured Adult Spinal Cord.” Nature 
Communications 5 (February): 3338. 

Swinstead, Erin E., Tina B. Miranda, Ville Paakinaho, Songjoon Baek, Ido Goldstein, Mary 
Hawkins, Tatiana S. Karpova, et al. 2016. “Steroid Receptors Reprogram FoxA1 
Occupancy through Dynamic Chromatin Transitions.” Cell 165 (3): 593–605. 

Takahashi, Kazutoshi, and Shinya Yamanaka. 2006. “Induction of Pluripotent Stem Cells from 
Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors.” Cell 126 (4): 663–
76. 

Tapscott, S. J., R. L. Davis, M. J. Thayer, P. F. Cheng, H. Weintraub, and A. B. Lassar. 1988. 
“MyoD1: A Nuclear Phosphoprotein Requiring a Myc Homology Region to Convert 
Fibroblasts to Myoblasts.” Science 242 (4877): 405–11. 

Thorel, Fabrizio, Virginie Népote, Isabelle Avril, Kenji Kohno, Renaud Desgraz, Simona Chera, 
and Pedro L. Herrera. 2010. “Conversion of Adult Pancreatic Alpha-Cells to Beta-Cells 
after Extreme Beta-Cell Loss.” Nature 464 (7292): 1149–54. 

Treutlein, Barbara, Qian Yi Lee, J. Gray Camp, Moritz Mall, Winston Koh, Seyed Ali 
Mohammad Shariati, Sopheak Sim, et al. 2016. “Dissecting Direct Reprogramming from 
Fibroblast to Neuron Using Single-Cell RNA-Seq.” Nature 534 (7607): 391–95. 

http://paperpile.com/b/geHVnJ/ghWwr
http://paperpile.com/b/geHVnJ/ghWwr
http://paperpile.com/b/geHVnJ/k2xI
http://paperpile.com/b/geHVnJ/k2xI
http://paperpile.com/b/geHVnJ/k2xI
http://paperpile.com/b/geHVnJ/LFMO
http://paperpile.com/b/geHVnJ/LFMO
http://paperpile.com/b/geHVnJ/LFMO
http://paperpile.com/b/geHVnJ/MG76P
http://paperpile.com/b/geHVnJ/MG76P
http://paperpile.com/b/geHVnJ/MG76P
http://paperpile.com/b/geHVnJ/YmpI
http://paperpile.com/b/geHVnJ/YmpI
http://paperpile.com/b/geHVnJ/YmpI
http://paperpile.com/b/geHVnJ/lOQmD
http://paperpile.com/b/geHVnJ/lOQmD
https://bioconductor.statistik.tu-dortmund.de/packages/2.13/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf
https://bioconductor.statistik.tu-dortmund.de/packages/2.13/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf
http://paperpile.com/b/geHVnJ/lOQmD
http://paperpile.com/b/geHVnJ/Cv2e
http://paperpile.com/b/geHVnJ/Cv2e
http://paperpile.com/b/geHVnJ/Cv2e
http://paperpile.com/b/geHVnJ/drWO
http://paperpile.com/b/geHVnJ/drWO
http://paperpile.com/b/geHVnJ/drWO
http://paperpile.com/b/geHVnJ/tyOg
http://paperpile.com/b/geHVnJ/tyOg
http://paperpile.com/b/geHVnJ/tyOg
http://paperpile.com/b/geHVnJ/CDfg
http://paperpile.com/b/geHVnJ/CDfg
http://paperpile.com/b/geHVnJ/CDfg
http://paperpile.com/b/geHVnJ/mGQL
http://paperpile.com/b/geHVnJ/mGQL
http://paperpile.com/b/geHVnJ/mGQL
http://paperpile.com/b/geHVnJ/br3C
http://paperpile.com/b/geHVnJ/br3C
http://paperpile.com/b/geHVnJ/br3C


 114 
 

Uhlén, Mathias, Linn Fagerberg, Björn M. Hallström, Cecilia Lindskog, Per Oksvold, Adil 
Mardinoglu, Åsa Sivertsson, et al. 2015. “Proteomics. Tissue-Based Map of the Human 
Proteome.” Science 347 (6220): 1260419. 

Vaseghi, Haley Ruth, Chaoying Yin, Yang Zhou, Li Wang, Jiandong Liu, and Li Qian. 2016. 
“Generation of an Inducible Fibroblast Cell Line for Studying Direct Cardiac 
Reprogramming.” Genesis  54 (7): 398–406. 

Velazco-Cruz, Leonardo, Jiwon Song, Kristina G. Maxwell, Madeleine M. Goedegebuure, Punn 
Augsornworawat, Nathaniel J. Hogrebe, and Jeffrey R. Millman. 2018. “Acquisition of 
Dynamic Function in Human Stem Cell-Derived β Cells.” Stem Cell Reports, December. 
https://doi.org/10.1016/j.stemcr.2018.12.012. 

Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, et al. 
2001. “The Sequence of the Human Genome.” Science 291 (5507): 1304–51. 

Vettese-Dadey, M., P. Walter, H. Chen, L. J. Juan, and J. L. Workman. 1994. “Role of the 
Histone Amino Termini in Facilitated Binding of a Transcription Factor, GAL4-AH, to 
Nucleosome Cores.” Molecular and Cellular Biology 14 (2): 970–81. 

Vierbuchen, Thomas, Austin Ostermeier, Zhiping P. Pang, Yuko Kokubu, Thomas C. Südhof, 
and Marius Wernig. 2010. “Direct Conversion of Fibroblasts to Functional Neurons by 
Defined Factors.” Nature 463 (7284): 1035–41. 

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David 
Cournapeau, Evgeni Burovski, et al. 2020. “SciPy 1.0: Fundamental Algorithms for 
Scientific Computing in Python.” Nature Methods 17 (3): 261–72. 

Wang, Li, Ziqing Liu, Chaoying Yin, Huda Asfour, Olivia Chen, Yanzhen Li, Nenad Bursac, 
Jiandong Liu, and Li Qian. 2015. “Stoichiometry of Gata4, Mef2c, and Tbx5 Influences 
the Efficiency and Quality of Induced Cardiac Myocyte Reprogramming.” Circulation 
Research 116 (2): 237–44. 

Wapinski, Orly L., Thomas Vierbuchen, Kun Qu, Qian Yi Lee, Soham Chanda, Daniel R. 
Fuentes, Paul G. Giresi, et al. 2013. “Hierarchical Mechanisms for Direct 
Reprogramming of Fibroblasts to Neurons.” Cell 155 (3): 621–35. 

Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, and K. H. Campbell. 1997. “Viable Offspring 
Derived from Fetal and Adult Mammalian Cells.” Nature 385 (6619): 810–13. 

Woodcock, C. L., J. P. Safer, and J. E. Stanchfield. 1976. “Structural Repeating Units in 
Chromatin. I. Evidence for Their General Occurrence.” Experimental Cell Research 97 
(January): 101–10. 

Workman, J. L., T. J. Schuetz, and R. E. Kingston. 1991. “Facilitated Binding of GAL4 and Heat 
Shock Factor to Nucleosomal Templates: Differential Function of DNA-Binding 
Domains.” Genes. http://genesdev.cshlp.org/content/5/7/1285.short. 

http://paperpile.com/b/geHVnJ/zJbz
http://paperpile.com/b/geHVnJ/zJbz
http://paperpile.com/b/geHVnJ/zJbz
http://paperpile.com/b/geHVnJ/dj2ol
http://paperpile.com/b/geHVnJ/dj2ol
http://paperpile.com/b/geHVnJ/dj2ol
http://paperpile.com/b/geHVnJ/JaLv
http://paperpile.com/b/geHVnJ/JaLv
http://paperpile.com/b/geHVnJ/JaLv
http://paperpile.com/b/geHVnJ/JaLv
http://dx.doi.org/10.1016/j.stemcr.2018.12.012
http://paperpile.com/b/geHVnJ/JaLv
http://paperpile.com/b/geHVnJ/Jvrr
http://paperpile.com/b/geHVnJ/Jvrr
http://paperpile.com/b/geHVnJ/8wb9Z
http://paperpile.com/b/geHVnJ/8wb9Z
http://paperpile.com/b/geHVnJ/8wb9Z
http://paperpile.com/b/geHVnJ/gsve
http://paperpile.com/b/geHVnJ/gsve
http://paperpile.com/b/geHVnJ/gsve
http://paperpile.com/b/geHVnJ/QsdKU
http://paperpile.com/b/geHVnJ/QsdKU
http://paperpile.com/b/geHVnJ/QsdKU
http://paperpile.com/b/geHVnJ/oeDH9
http://paperpile.com/b/geHVnJ/oeDH9
http://paperpile.com/b/geHVnJ/oeDH9
http://paperpile.com/b/geHVnJ/oeDH9
http://paperpile.com/b/geHVnJ/lKQ2
http://paperpile.com/b/geHVnJ/lKQ2
http://paperpile.com/b/geHVnJ/lKQ2
http://paperpile.com/b/geHVnJ/XvIVo
http://paperpile.com/b/geHVnJ/XvIVo
http://paperpile.com/b/geHVnJ/ShRQ
http://paperpile.com/b/geHVnJ/ShRQ
http://paperpile.com/b/geHVnJ/ShRQ
http://paperpile.com/b/geHVnJ/RcEK2
http://paperpile.com/b/geHVnJ/RcEK2
http://paperpile.com/b/geHVnJ/RcEK2
http://genesdev.cshlp.org/content/5/7/1285.short
http://paperpile.com/b/geHVnJ/RcEK2


 115 
 

Yan, Chao, Hengye Chen, and Lu Bai. 2018. “Systematic Study of Nucleosome-Displacing 
Factors in Budding Yeast.” Molecular Cell 71 (2): 294–305.e4. 

Yoo, Andrew S., Alfred X. Sun, Li Li, Aleksandr Shcheglovitov, Thomas Portmann, Yulong Li, 
Chris Lee-Messer, Ricardo E. Dolmetsch, Richard W. Tsien, and Gerald R. Crabtree. 
2011. “MicroRNA-Mediated Conversion of Human Fibroblasts to Neurons.” Nature 476 
(7359): 228–31. 

Yu, Xinyang, and Michael J. Buck. 2019. “Defining TP53 Pioneering Capabilities with 
Competitive Nucleosome Binding Assays.” Genome Research 29 (1): 107–15. 

Zaret, Kenneth S., and Jason S. Carroll. 2011. “Pioneer Transcription Factors: Establishing 
Competence for Gene Expression.” Genes & Development 25 (21): 2227–41. 

Zaret, Kenneth S., and Susan E. Mango. 2016. “Pioneer Transcription Factors, Chromatin 
Dynamics, and Cell Fate Control.” Current Opinion in Genetics & Development 37 
(April): 76–81. 

Zhang, Jing, Donghoon Lee, Vineet Dhiman, Peng Jiang, Jie Xu, Patrick McGillivray, Hongbo 
Yang, et al. 2020. “An Integrative ENCODE Resource for Cancer Genomics.” Nature 
Communications 11 (1): 3696. 

Zhang, Yong, Tao Liu, Clifford A. Meyer, Jérôme Eeckhoute, David S. Johnson, Bradley E. 
Bernstein, Chad Nusbaum, et al. 2008. “Model-Based Analysis of ChIP-Seq (MACS).” 
Genome Biology 9 (9): 1–9. 

Zhao, Yuanbiao, Pilar Londono, Yingqiong Cao, Emily J. Sharpe, Catherine Proenza, Rebecca 
O’Rourke, Kenneth L. Jones, et al. 2015. “High-Efficiency Reprogramming of 
Fibroblasts into Cardiomyocytes Requires Suppression of pro-Fibrotic Signalling.” 
Nature Communications 6 (September): 8243. 

Zhu, Fangjie, Lucas Farnung, Eevi Kaasinen, Biswajyoti Sahu, Yimeng Yin, Bei Wei, Svetlana 
O. Dodonova, et al. 2018. “The Interaction Landscape between Transcription Factors and 
the Nucleosome.” Nature 562 (7725): 76–81. 

Zhu, Jiang, Fuhong He, Shuhui Song, Jing Wang, and Jun Yu. 2008. “How Many Human Genes 
Can Be Defined as Housekeeping with Current Expression Data?” BMC Genomics 9 
(April): 172. 

http://paperpile.com/b/geHVnJ/KNIg
http://paperpile.com/b/geHVnJ/KNIg
http://paperpile.com/b/geHVnJ/3g2RN
http://paperpile.com/b/geHVnJ/3g2RN
http://paperpile.com/b/geHVnJ/3g2RN
http://paperpile.com/b/geHVnJ/3g2RN
http://paperpile.com/b/geHVnJ/joPU
http://paperpile.com/b/geHVnJ/joPU
http://paperpile.com/b/geHVnJ/LI09
http://paperpile.com/b/geHVnJ/LI09
http://paperpile.com/b/geHVnJ/1FMKW
http://paperpile.com/b/geHVnJ/1FMKW
http://paperpile.com/b/geHVnJ/1FMKW
http://paperpile.com/b/geHVnJ/vkqAY
http://paperpile.com/b/geHVnJ/vkqAY
http://paperpile.com/b/geHVnJ/vkqAY
http://paperpile.com/b/geHVnJ/4LKOx
http://paperpile.com/b/geHVnJ/4LKOx
http://paperpile.com/b/geHVnJ/4LKOx
http://paperpile.com/b/geHVnJ/THPT
http://paperpile.com/b/geHVnJ/THPT
http://paperpile.com/b/geHVnJ/THPT
http://paperpile.com/b/geHVnJ/THPT
http://paperpile.com/b/geHVnJ/sKc2
http://paperpile.com/b/geHVnJ/sKc2
http://paperpile.com/b/geHVnJ/sKc2
http://paperpile.com/b/geHVnJ/VoJG
http://paperpile.com/b/geHVnJ/VoJG
http://paperpile.com/b/geHVnJ/VoJG

	A Test of the Pioneer Factor Hypothesis for Silent Gene Activation
	Recommended Citation

	tmp.1726159683.pdf.4I08d

