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ABSTRACT OF THE DISSERTATION

Market Making in Limit Order Books with Latency and Running Inventory Control

by

Chang Liu

Doctor of Philosophy in Statistics
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Professor José E. Figueroa-López, Chair

In this thesis, we delve into the intricate optimization challenges of market making, the

concurrent provision of buy and sell prices in financial assets. The focus is particularly on

the complexities inherent in high-frequency trading scenarios, addressing optimal market

making in the presence of latency and incorporating a running inventory penalty.

The initial exploration involves the formulation of a stochastic control model that aptly

captures the actions of an electronic market maker navigating a trading environment

influenced by latency. The main objective of the market maker lies in the maximization

of expected terminal wealth. To systematically address and resolve this control problem,

we recast it into a finite-horizon Markov Decision Process, subsequently amenable to

numerical solutions.

A complementary avenue is explored by employing model-free Reinforcement Learning

algorithms to tackle the intricacies of market making in the presence of latency. This

approach signifies a departure from traditional model-centric methods, harnessing the

power of RL to adapt and optimize market-making strategies.

We finally propose an extension of the approach introduced in [12]. This extension

introduces a penalty mechanism linked to the running inventory across the entire trading

horizon. The incorporation of this running inventory penalty framework significantly

x



enhances the market maker’s risk management capabilities. By doing so, it establishes

a more resilient and effective framework for the evaluation of diverse trading strategies.

This augmentation is crucial for mitigating the market maker’s exposure to inventory

risk, thereby contributing to the robustness of the overall market-making process.
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Chapter 1

Introduction

1.1 Limit Order Book and Market Making

1.1.1 Limit Order Book

The financial markets are complex and dynamic ecosystems where various participants

engage in buying and selling securities. One crucial aspect of these markets is the trading

mechanism, which determines how orders are executed and securities are priced. Over

the years, technological advancements and the evolution of electronic trading platforms

have revolutionized the way securities are traded, leading to the emergence of new trading

strategies and instruments.

One such innovation that has gained significant importance in modern financial markets

is the Limit Order Book (LOB). The LOB is a critical component of electronic trading

platforms and serves as a transparent marketplace where market participants can submit

and execute their buy and sell orders. It provides a comprehensive view of the supply

and demand dynamics for a particular security at any given point in time.

The LOB consists of two main types of orders: limit orders (LOs) and market orders

(MOs). A LO is an order to buy or sell a security at a specified price or better. It

1



remains in the LOB until it is executed, canceled, or expires. On the other hand, a MO

is an order to buy or sell a security at the prevailing market price, executing immediately

against the best available prices in the LOB.

More specifically, LOs contain critical information such as a specified price, associated

volume, and a directional cue indicating either a buy or sell stance on the underlying

asset. Once an LO is entered, it takes residence in the LOB, where it abides until

encountering one of two outcomes: cancellation or fulfillment against a subsequent MO.

The cancellation or execution of an LO may be comprehensive, involving the removal of

the entire order volume, or partial, allowing a residual portion to linger within the LOB.

In instances where a subsequent LO is introduced at an identical price point, concurrent

existence within the LOB ensues, governed by the matching rules intrinsic to the ex-

change. The order of execution adheres to these rules, which we expound upon hereafter,

embodying a price-time priority schema. This schema engenders a queue formation for

LOs at each price level, with execution sequence determined by their position in this

queue—a precept colloquially recognized as the First-In-First-Out (FIFO) rule.

In the coexistence of diverse LO types (buy and sell) within the LOB, two distinctive

price levels emerge. The highest price among all buy LOs designates the best bid, while

the lowest price among all sell LOs designates the best ask. The structure of the LOB is

hierarchical, with buy orders sorted in descending order of price and sell orders sorted in

ascending order of price. This allows market participants to easily observe the best bid

and best ask in the LOB. Collectively, these levels delineate the bid-ask spread, defined

as the difference between the best bid and ask prices, represents the transaction cost for

market participants and serves as an important measure of liquidity. The arithmetic mean

of the best bid and best ask defines the midprice of the asset. The proposed graphical

2



representation in Figure 1.1 1 illuminates the state of the LOB at a specific temporal

juncture, followed by its transformation subsequent to the introduction of a singular LO.

Figure 1.1: Matching mechanism in LOB when a new LO is placed.

In Figure 1.1, the graphical representation delineates critical aspects of the LOB. Blue

bars symbolize buy LOs, and red bars represent sell LOs. In the left panel, the highest

price among all buy LOs and the lowest price among all sell LOs are denoted as the best

bid and best ask, respectively. This snapshot captures the prevailing market conditions

before any subsequent changes. Moving to the middle panel, a pivotal event unfolds as a

new LO is introduced at a price where orders already exist, positioning it at the back of

the queue. This scenario mirrors the dynamics of the LOB when new orders are placed

amid existing ones. The right panel extends this narrative by showcasing an adjustment in

volume at this specific price, highlighting the malleability of the LOB. It’s noteworthy that

analogous modifications could arise from order cancellations, underscoring the dynamic

nature of the LOB over time, even in the absence of actual trades.

A MO also contains a specified volume and an indicator signaling either the intent to buy

or sell the asset. Upon submission, an MO undergoes a matching process against resting

LOs of the opposing buy/sell type within the LOB. The price at which the transaction

occurs is contingent upon the cumulative price levels of all filled LOs, extending up to

the volume specified in the MO.

1Figure 1.1 and 1.2 are adapted from [23].
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Figure 1.2 illustrates the sequential filling of an MO against several LOs, providing a

depiction of how the MO’s volume, along with the volumes and prices of the individual

LOs, collectively determine the overarching transaction price of the trade. The left panel

provides a snapshot of the LOB immediately preceding the submission of a MO. In

the middle panel, a sell MO is introduced with a volume surpassing that of the best

bid, necessitating the MO to traverse through the order book, a phenomenon commonly

referred to as “walking the book”, until it finds the next best available price. The right

panel illustrates the aftermath of this MO execution, showing the depletion of volume at

the relevant prices due to the filled LOs.

Figure 1.2: Matching mechanism in LOB when a sell MO is submitted.

For a comprehensive exploration of LOB dynamics, readers are encouraged to delve into

the following: [3, 5, 9, 13, 15, 21, 22, 35, 42, 46]. These studies contribute to a nuanced

understanding of LOB behaviors, spanning empirical analyses, order flow dynamics, and

statistical approaches. For a more detailed examination of the operational intricacies of

LOBs within financial markets, including advanced order types, additional insights can

be gleaned from the works of [15,27].

4



1.1.2 Market Making

Market making has undergone significant development over the years, evolving into a cru-

cial aspect of financial markets. Market making, at its core, involves providing liquidity

to financial markets by continuously quoting bid and ask prices for securities. It serves to

bridge the gap between buyers and sellers, facilitating smooth transactions and enhancing

market efficiency. The practice of market making has witnessed substantial progress and

refinement through both theoretical research and practical implementation. Its founda-

tions can be traced back to the early work of [31]. Their influential paper introduced

a theoretical framework for analyzing market making activities and their impact on the

bid-ask spread, while also showing that the bid-ask spreads from the market makers were

influenced by factors such as inventory costs, adverse selection risk, and competition. In

subsequent studies, for example, in [26], the dynamics of bid-ask spreads generated by

the market makers were further explored as well as the impact of asymmetric information

on market making.

As technology advanced, electronic trading platforms emerged, revolutionizing market

making practices. The development of automated trading systems and algorithmic trad-

ing algorithms played a pivotal role in enhancing market liquidity and execution efficiency.

The rise of high-frequency trading (HFT) brought further advancements in market mak-

ing. Following the theory developed by [31], [4] proposed a novel model for market making

in an LOB where an agent simultaneously places buy and sell LOs and attempts to max-

imize profits. They introduced the idea of optimal inventory control models, aiming to

maximize profitability while mitigating risk. Their research contributed to the under-

standing of how market makers could optimize their positions and adapt to changing

market conditions. [30] and [10] explored the impact of HFT on market liquidity and

5



price discovery, finding that HFT contributes to more efficient price formation and im-

proved liquidity provision. In addition, the impact of MOs on the LOB and the associated

adverse selection risk have been examined by [16]. Risk measures for HFT were inves-

tigated by [14]. Another relevant study by [29] explored a market making model that

incorporated both LOs and MOs. For a comprehensive exploration of algorithmic and

high-frequency trading, readers can refer to Cartea’s book on the subject (cf. [15]).

1.2 Latency in Algorithmic Trading

The evolution of electronic trading platforms also brought new challenges and opportu-

nities for market makers. One of the critical factors that emerged as a significant concern

is latency, which, broadly, refers to “the time delay between an exchange sending mar-

ket data to a trader, the trader processing information and deciding to trade, and the

exchange receiving the order from the trader” (see [18]). Latency is inherent to elec-

tronic trading systems and can arise at various stages of the trading process, including

data transmission, order routing, and order execution. Indeed, the role of latency in

algorithmic trading and HFT has gained significant attention in the literature.

The impact of latency on trading strategies has been extensively explored in the context

of optimal execution in the literature. [39] focused on quantifying the cost of latency in the

context of HFT. They introduced a theoretical model that aimed to measure the impact

of latency on the trading performance. By analyzing the optimal execution problem, they

assessed the frictions arising from latency and its implications for trading strategies. [47]

examined the role of low-latency trading algorithms in their study on reducing transaction

costs. [17] addressed the optimal trade-off between missing trades and the costs associated

with walking the order book in the presence of latency in the marketplace. [18] focused
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specifically on liquidity taking orders in the foreign exchange market by examining how

traders can adjust the limit price of marketable order to target a fill ratio. [40] and [11]

explored impulse control problems in the case of deterministic delay, while [19] examined

an impulse control problem involving stochastic latency, where the trader has control

over the timing and price limits of marketable LOs submitted to the exchange.

While optimal execution and market making are closely related (see [27]), latency in

market making has only recently received attention in the academic literature. [24] in-

vestigated the optimal strategy for a market maker providing liquidity to the LOB of

large-tick assets. They considered a scenario where latency is fixed and deterministic

throughout the trading period.

1.3 Reinforcement Learning in Market Making

1.3.1 Overview of Reinforcement Learning

Reinforcement learning (RL), a foundational concept within the domain of machine learn-

ing, draws inspiration from the human learning process. The RL paradigm centers on

a trial-and-error framework where an agent interacts with an environment, discerns the

ramifications of its actions, and adapts its behaviors based on received rewards. This

learning approach, akin to human learning by exploration and feedback, aims to deter-

mine optimal actions that yield maximal cumulative rewards.

RL models, a powerful tool in machine learning, have been instrumental in various appli-

cations across diverse domains. Originating from the intersection of computational learn-

ing models and behavioral psychology, RL has exhibited significant potential for solving
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complex problems, ranging from optimizing decision-making processes in dynamic envi-

ronments to mastering strategic game play in artificial intelligence and robotics. RL’s

core principle involves learning a mapping from states to actions that maximize expected

rewards, thereby optimizing decision-making strategies within a given context [48].

The fusion of RL with deep learning (DL) techniques has propelled significant advance-

ments in recent years. This integration has facilitated the creation of more sophisticated

and efficient learning models. While initially utilized in areas such as credit assignment

and control problems [48], RL has since transcended these boundaries. For instance, RL

has been pivotal in the domain of robotics, enabling the training of robotic agents to

perform intricate tasks and navigate real world environments [33]. In recommendation

systems, RL algorithms have significantly enhanced personalization and user engagement

by optimizing content delivery based on user interactions [2]. Moreover, RL techniques

have been pivotal in advancing natural language processing, fostering the development

of conversational AI agents with enhanced dialogue generation and understanding capa-

bilities [50]. Within the healthcare domain, RL models have contributed to optimizing

treatment plans, clinical decision-making, and healthcare resource management [53]. Its

adaptive nature and capacity to learn complex behaviors through interaction with en-

vironments make it a compelling tool for addressing intricate problems across different

sectors.

Continuing our journey into the RL, we pivot to the core framework known as Markov

Decision Process, which is instrumental in unraveling the complex interplay between an

agent and its environment.
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Markov Decision Process

Markov Decision Processes (MDPs) offer a fundamental framework for learning and

decision-making within dynamic environments, encompassing the interactions between

an agent and its surrounding environment [41]. Here, an agent, as the decision-maker, in-

teracts with an external environment, engaging in a continual cycle of actions, responses,

and the consequent acquisition of rewards. The dynamics entail the agent’s actions trig-

gering reactions from the environment, presenting new scenarios and influencing future

states [7]. The goal of the agent within this structure is to make decisions that maximize

the cumulative reward obtained over time, encapsulating the essence of learning from the

interaction with the environment [48]. This section builds upon these established works

to explore the mechanisms and implications of MDPs in the realm of decision-making

and learning algorithms.

Precisely, according to [48], a MDP is defined as a tuple (S,A,P ,R, γ), where

• S denotes the set of states;

• A represents the set of actions;

• P : S ×A× S 7→ [0, 1] characterizes the state transition probabilities;

• R : S ×A 7→ R indicates the reward function;

• γ ∈ [0, 1] stands for the discount factor.

The agent and environment interact at discrete time steps, denoted as t = 0, 1, 2, . . ..

As shown in Figure 1.3, at each time step t, the agent observes the current state of the

environment St ∈ S and, using this information, chooses an action At ∈ A. Subsequently,
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Figure 1.3: The agent–environment interaction in a discrete time MDP.

one time step later, the agent obtains a reward Rt+1 = R(St, At) ∈ R contingent upon

the action At and find itself in a subsequent state St+1. This iterative process generates a

sequence (S0, A0, R1, . . . , St, At, Rt+1, . . .), which may extend infinitely. The environment

encompasses all variables beyond the agent’s direct influence. It’s noteworthy that the

action At typically does not uniquely determine the next state St+1, as the transition

matrix can exhibit stochastic characteristics. Notably, the next state St+1 depends solely

on the current state St and action At, rendering it conditionally independent of past

states and actions. This intrinsic property of the state transitions in a MDP aligns with

the Markov property, providing a rationale for its nomenclature.

In a finite MDP, the sets of states, actions, and rewards (S, A and R) all consist of

a finite number of elements. In this scenario, the random variables Rt and St exhibit

well-defined discrete probability distributions that depend solely on the preceding state

and action. Specifically, for specific values of these random variables, s′ ∈ S and r ∈ R,

there exists a probability of those values occurring at time t, given specific values of the

preceding state and action:

p(s′, r | s, a) := P(St = s′, Rt = r | St−1 = s, At−1 = a),
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for all s′, s ∈ S, r ∈ R and a ∈ A. The function p : S × R × S × A → [0, 1] defines the

dynamics of the MDP, and specifies a probability distribution for each s and a, that is,

∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1, for all s ∈ S, a ∈ A.

Let the sequence of rewards received after time step t be denoted by Rt+1, Rt+2, Rt+3, . . ..

The agent’s objective is to maximize the expected return. The return, donated Gt, is

formally expressed as follows

Gt := Rt+1 + γRt+2 + . . . =
∞∑
k=0

γkRt+k+1, (1.1)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate, which determines the present

value of future rewards. Gt in Eq. (1.1) is also referred to as the discounted return.

A policy of a MDP serves as the decision-making strategy of an agent. It’s a mapping

that guides the agent’s choices based on the observed state of the environment. Policies

can be stochastic π : A × S 7→ [0, 1], if the agent is following policy π at time t, then

π(a | s) is the probability that At = a if St = s; or deterministic π : S 7→ A, which

directly specifies a particular action for each state.

For a given policy π and a state s, the state value function serves as a pivotal metric,

denoting the expected return when starting from state s and adhering to policy π. It is

expressed as follows:

vπ(s) := Eπ[Gt | St = s],

where s ∈ S.
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Similarly, the action value function for a specific policy π, extends the evaluation to

encompass the expected return starting from state s upon executing action a and subse-

quently following policy π. Its formulation is:

qπ(s, a) = Eπ[Gt | St = s, At = a],

where s ∈ S, a ∈ A.

The objective of a MDP is to find a policy that maximizes the expected return:

max
π

Eπ[Gt].

The optimal policy, donated by π∗, is a policy that maximizes the expected return, i.e.,

π∗(s) = argmax
π

Eπ[Gt].

Note that while an optimal policy always exists, it may not be unique.

An essential concept in MDP is the comparison of policies. A policy π is deemed at least

as effective as another policy π′, if and only if, for all states s ∈ S,

vπ(s) ≥ vπ′(s).

All optimal policies converge to a shared optimal state-value function, denoted as

v∗(s) = max
π

vπ(s),

for all s ∈ S.
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Optimal policies also share the same optimal action-value function, and is denoted as

q∗(s, a) := max
π

qπ(s, a),

for all s ∈ S and a ∈ A. Furthermore, an optimal policy, can be determined by selecting

the action that maximizes the optimal action value function:

π∗(s) = argmax
a

q∗(s, a).

It is evident that the value function serves as a crucial tool figuring out the best strategies.

This concept enables the agent to assess the desirability of different states and actions,

guiding the learning process towards strategic decision-making that maximizes cumulative

rewards.

Dynamic Programming

While not conventionally classified as a RL technique, dynamic programming (DP), as

outlined in [6], holds significant theoretical relevance in the RL paradigm and is therefore

discussed here. DP methods are instrumental in the direct resolution of MDPs when the

underlying dynamics, such as transition probability functions and reward functions, are

known.

The state value function, a core component in MDP analysis, can be recursively expressed

through the Bellman equation:

vπ(s) = Eπ[Rt+1 + γvπ(St+1) | St = s], (1.2)
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where s ∈ S. This recursive formulation delineates the expected return for a given state

s under policy π. The equation considers the immediate reward Rt+1 and the discounted

value of the subsequent state St+1.

Furthermore, for the optimal value function v∗, the Bellman optimality equation takes

the form:

v∗(s) = max
a

E[Rt+1 + γv∗(St+1) | St = s, At = a],

where s ∈ S, a ∈ A. This equation extends the recursive logic to the optimal context,

where the state value function represents the maximum expected return under the optimal

policy.

Similarly, Bellman optimality equation for q∗ is

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′) | St = s, At = a],

for all s, s′ ∈ S, a ∈ A.

DP methods offer a foundational framework for solving MDPs by breaking down com-

plex problems through recursive transformations of Bellman equations. Among these,

Value Iteration stands out as a well-explored DP algorithm [48]. This, alongside Policy

Iteration, forms part of the broader family of Generalized Policy Iteration (GPI) ap-

proaches. Initiating with arbitrary policy values, Value Iteration systematically performs

recursive backward updates based on the Bellman optimality equation until convergence

is achieved. Notably, the convergence conditions align with those ensuring the existence

of the optimal state value function v∗.

Despite their theoretical significance, DP methods encounter limited practical applicabil-

ity due to the rarity of perfect knowledge regarding the model and their computational
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infeasibility when dealing with extensive state spaces. Their computational cost proves

prohibitive, hindering their use in practice. Nevertheless, DP retains profound theoretical

importance, as many RL methods approximate the Bellman optimality equation without

a complete understanding of underlying process dynamics. Instead, these RL methods

rely solely on data acquired through sampling, highlighting the enduring theoretical rel-

evance of DP in the broader landscape of RL research.

Value-Based Methods

Value-based methods, aiming to discover the optimal policy, often resort to approximat-

ing the optimal state–action value function q∗(s, a). In this realm, Temporal-Difference

(TD) methods play a vital role, leveraging bootstrapping from the current value function

estimate.

A prominent TD control algorithm is Q-learning [51], known for its simplicity and

effectiveness. Its one-step variant, defined by the following update rule:

q(St, At)← q(St, At) + α
[
Rt+1 + γmax

a
q(St+1, a)− q(St, At)

]
, (1.3)

where q(St, At) is the estimated state–action value, α is the learning rate, Rt+1 is the

immediate reward, γ is the discount factor, and St and St+1 are the current and next

states, respectively.

Another noteworthy TD algorithm is SARSA (State-Action-Reward-State-Action) [43],

where the update rule becomes:

q(St, At)← q(St, At) + α
[
Rt+1 + γq(St+1, At+1)− q(St, At)

]
. (1.4)
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Here, At+1 is the action taken in the next state. TD methods, being sample-based and

computationally more feasible, are crucial in practice, especially when dealing with large

state spaces.

In both SARSA and Q-learning, the algorithms are updated based on the temporal

difference between the predicted value of a state-action pair and the actual observed

value. This difference, multiplied by a learning rate, is used to adjust the estimate of the

state-action value. The key distinction lies in how these methods handle the update.

• Q-learning (Off-policy): Q-learning is an off-policy TD control algorithm. It up-

dates its Q-values based on the maximum estimated Q-value for the next state,

regardless of the action actually taken. This characteristic allows Q-learning to

learn an optimal policy while following a different, exploratory policy.

• SARSA (On-policy): SARSA, on the other hand, is an on-policy TD control algo-

rithm. It updates its Q-values based on the actual action taken in the next state.

This means that SARSA takes into account the policy it follows during exploration,

making it more cautious and ensuring that the learned policy is the one being fol-

lowed.

Alternative RL algorithms, such as Policy-Based Methods, take a distinct approach by

directly parametrizing the policy πθ with a parameter θ. One of the most significant

advancements in this category is the Policy Gradient (PG) methods [49]. Another note-

worthy approach is the Actor-Critic Methods (AC), strategically marrying the strengths

of actor-only (policy-based) and critic-only (value-based) methods. Algorithms falling un-

der this umbrella include Proximal Policy Optimization (PPO) [44] and the Deterministic

Policy Gradient (DPG) algorithm [45], etc. For a more comprehensive understanding,

interested readers are encouraged to delve into the references provided above.
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Value Function Approximation

The conventional approach to representing value functions, v(s) or q(s, a), employs tab-

ular structures where each state or state-action pair corresponds to a cell in the table.

However, this method becomes computationally infeasible when dealing with continu-

ous state spaces or a large number of states. Navigating all states or state-action pairs

for value function updates becomes impractical with limited computational resources.

Therefore, a scalable representation that offers an approximate yet effective solution is

imperative. Value function approximation (VFA) is one such approach that aims to

generalize learnings across states, enabling efficient learning in complex environments.

A widely used technique in VFA is tile coding [48], a method that discretizes the

continuous state space into a set of overlapping tiles. Each tile corresponds to a binary

feature, indicating whether a state falls within its boundaries. This method provides a

structured representation of the state space, enabling the generalization of learned values

across similar states. Tile coding is particularly advantageous in scenarios where state

transitions are smooth, and it significantly reduces the dimensionality of the state space.

Here’s how tile coding works:

1. Partitioning the State Space:

• Divide the continuous state space into a set of tiles or grids.

• Create multiple tilings with different offsets.

2. Binary Feature Activation:

• For each tile, create a binary feature indicating whether the current state falls

within that tile.
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• Repeat this process for each tiling.

3. Overlapping Tilings:

• Ensure that the tilings overlap to capture nuances in the state space.

• Adjust tile offsets to create different but partially overlapping representations.

4. Feature Vector:

• Combine the binary features from all tilings to create a feature vector that

represents the state.

In the context of TD methods, specifically SARSA, the incorporation of VFA becomes

crucial. The classic SARSA update rule is given by Eq. (1.4), while the tile-coded SARSA

update rule involves updating the weights associated with the features (tiles) in the Q-

function approximation. The update is based on the TD error, which is the difference

between the observed reward and the predicted Q-value.

The update rule for the weights associated with the features is defined as follows:

wi ← wi + αδxi. (1.5)

Here, wi is the weight associated with the i-th feature (tile), α is the learning rate, δ is

the TD error, xi is the binary feature (0 or 1) indicating whether the state belongs to the

i-th tile.

In the SARSA update rule, the TD error δ is given by

δ = Rt+1 + γq(St+1, At+1,w)− q(St, At,w). (1.6)
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In this expression, q(St+1, At+1,w) and q(St, At,w) represent the Q-values for the next

and current state-action pairs, respectively. These Q-values are the result of the linear

combination of weights and features:

q(St+1, At+1,w) =
∑
i

wixi(St+1, At+1),

q(St, At,w) =
∑
i

wixi(St, At).

Here, the weights w are implicitly present in the computation of Q-values through the

feature vectors, and the update rule adjusts these weights based on the TD error.

In Q-learning with VFA, the goal is to estimate the Q-values of state-action pairs using

a function approximator. The update rule for Q-learning with VFA and tile coding is

similar to SARSA, as shown in Eq. (1.5). The TD error δ for Q-learning with VFA is

expressed as

δ = Rt+1 + γmax
a

q(St+1, a,w)− q(St, At,w). (1.7)

Here, maxa q(St+1, a,w) represents the maximum Q-value over all possible actions in the

next state. The Q-values are calculated using the weights and feature vectors as follows

q(St+1, a,w) =
∑
i

wixi(St+1, a).

Similar to SARSA, the weights are adjusted based on the TD error, and tile coding

facilitates a concise representation of the state space.
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Exploration vs. Exploitation

The exploration-exploitation dilemma is a pivotal challenge faced by agents striving to

maximize cumulative rewards. These two strategies, exploration and exploitation, encap-

sulate the agent’s approach to decision-making within its environment.

Exploration refers to the agent’s strategy of trying new actions or visiting new states

that it has not yet extensively explored. The goal of exploration is to gather informa-

tion about the environment, discover unknown aspects, and potentially find actions that

lead to higher rewards. Exploration is inherently risky because the agent is venturing

into unknown territory, and there’s a chance that the chosen actions may lead to lower

immediate rewards.

On the flip side, exploitation involves the agent selecting actions that are believed to

yield the highest immediate reward based on the current knowledge. This strategy aims to

capitalize on known actions or states to achieve the highest short-term gains. Exploitation

is less risky than exploration since it relies on familiar territory, yet it carries the potential

downside of settling for suboptimal long-term performance if the environment undergoes

changes.

The delicate Exploration-Exploitation Dilemma arises in dynamic environments, where

the agent must strike a balance between these two strategies. Early on, exploration

takes precedence as the agent must traverse a breadth of actions and states to build a

foundational understanding of the environment. Later in the learning process, a shift

toward exploitation occurs, emphasizing the maximization of rewards based on acquired

knowledge. However, too much reliance on exploitation without occasional exploration

might lead to a suboptimal policy.
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One widely used algorithm embodying this trade-off is the epsilon-greedy algorithm

[48]. This approach introduces randomness by selecting a random action with a small

probability ϵ, promoting exploration. With probability 1 − ϵ, it exploits the current

knowledge by selecting the action with the highest estimated value.

In conclusion, the exploration-exploitation balance is a nuanced challenge in RL. Effective

strategies must judiciously manage the tension between exploration and exploitation,

adapting to the learning task’s characteristics and the dynamic nature of the environment.

1.3.2 Reinforcement Learning on Market Marking

RL has emerged as a promising tool in the field of market making, revolutionizing trading

strategies and reshaping the landscape of financial markets. Over the past few decades,

RL has undergone a remarkable evolution, evolving from theoretical concepts to practical

applications in various domains, including finance and trading. The application of RL

in market making traces back to the late 20th century. A pivotal contribution to RL-

based market making strategies was made by [20], presenting arguably the first model-free

RL approach to optimal market making. In this seminal work, the agent dynamically

sets bid/ask prices based on its inventory level, order imbalance, and market quality

measures. Grounded in the Glosten–Milgrom information-based model, the approach

considers distinct market participants: a monopolistic market maker, informed traders,

and uninformed traders. The market maker, by adjusting bid/ask prices, implicitly tracks

the underlying stock’s true value through a stochastic process not directly accessible to

it.

Building upon this foundation, [32] improved the RL-based market making approach by

incorporating order flow dynamics modeled as an input–output hidden Markov model.
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This introduced a more intricate, though noninformation-based, model by integrating

the order book dynamics into consideration. Their approach involved running an RL

algorithm based on likelihood ratios within the resulting partially observable environment.

[37] extended the work of [20] by introducing a risk-sensitive RL approach, drawing on

Mihatsch–Neuneier one-step temporal difference learning algorithms [38]. Their study

emphasized the significance of employing a Boltzmann softmax action-selection rule for

successful risk-averse market making, demonstrating that it leads to substantial profits

while keeping inventory levels low.

The early incorporation of RL into market making revealed its potential in capturing com-

plex market patterns. This technology empowered agents to learn from historical data,

continuously refining their strategies to adeptly navigate the complexities of financial

markets. RL-based market making systems demonstrated notable adaptability, showcas-

ing the ability to learn from evolving market conditions and maintaining robustness in

the face of uncertainty.

[36] proposed a straightforward tabular Q-learning-based approach, employing the con-

stant absolute risk aversion (CARA) utility. The study delved into the influence of the

CARA utility, concluding that the RL approach surpassed analytical Absolute Spread

approximations and the zero tick offset benchmark concerning cumulative profit and in-

ventory metrics. [8] crafted an market making agent utilizing temporal-difference RL. The

study explored various state representations and reward function formulations, amalga-

mating the best-performing elements into a single agent exhibiting superior risk-adjusted

performance. Notably, the optimal solution employed a linear combination of tile cod-

ings as a value function approximator and an asymmetrically dampened profit and loss

function as a reward function. These endeavors underline the diverse ways RL can be

22



harnessed to enhance market-making strategies, providing valuable insights into optimal

approaches and representations.

Advancements in RL techniques further enhanced the adaptive capabilities of market

making algorithms. The evolution of deep reinforcement learning (DRL) introduced more

sophisticated algorithms, leveraging deep neural networks to process vast amounts of data

and extract complex features for decision-making. [34] engineered an market making agent

grounded in a modified deep recurrent Q network (DRQN). This agent underwent training

in a highly realistic simulator of the LOB and demonstrated its prowess by outperform-

ing the benchmark proposed by [8]. [25] introduced a groundbreaking DRL framework

for market making incorporating signals, emphasizing the interpretability of the learned

controls. The DRL agent derived exhibited remarkable performance surpassing several

benchmark strategies, including the approximations proposed by [28].

The adoption of RL in market making has not been without challenges. The complexity

of financial markets, regulatory constraints, and the need to ensure the stability and

fairness of market operations have presented formidable hurdles. Nonetheless, ongoing

research and developments in RL continue to refine these algorithms, striving to address

these challenges and improve the efficacy of market making strategies.
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Chapter 2

Market Making with Latency

In this chapter, we adopt the frameworks in [12] and [24] to study a stochastic control

model designed to capture the behavior of an electronic market maker navigating a trading

environment in the presence of latency. The market maker’s primary objective is to

maximize her expected terminal wealth. To analyze and solve the control problem, we

will reformulate it as a finite-horizon MDP, which ultimately can be solved numerically. In

other words, the discrete time MDP serves as a framework to facilitate optimal decision-

making at every stage of the trading period. It takes into account various factors such as

market conditions, order book dynamics, latency effects, and inventory management.

2.1 Model Setup and Assumptions

2.1.1 Market Making with Latency

Latency, a characteristic inherent in electronic trading systems, arises due to various fac-

tors, including network communication time, system processing, and the time required

for the order to traverse the trading infrastructure. As a result, the market maker’s trad-

ing decisions, reflected in the submitted LOs, are not immediately reflected in the LOB’s

state. Instead, these LOs are only incorporated after a certain duration, corresponding
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to the latency period. This latency-induced delay introduces an element of uncertainty

and potential mismatch between the market maker’s intended order placement and the

actual placement of them. Market conditions can rapidly evolve during this latency pe-

riod, leading to changes in the order book state, price movements, and the arrival of

other market participants’ orders. Consequently, the market maker faces challenges in

accurately predicting the immediate market environment and optimizing her trading de-

cisions. Understanding and accounting for latency effects are crucial for electronic market

makers.

Given an asset, we assume that the market maker will implement her strategy from time

0 up to a fixed trading time horizon T , performing actions every ∆t time unit on the

LOB, specifically, at times 0 = t0 < t1 < . . . < tN , where tN < T . For simplicity, we

adopt a regular time design:

tk := k ·∆t, for k = 0, 1, . . . , N. (2.1)

Throughout, we set tN+1 = T and denote T = {t0, t1, . . . , tN+1}. All variables intro-

duced below are defined within the context of a probability space denoted as (Ω,P,F),

which is equipped with a filtration {Ft}t∈T . This filtration captures the evolving infor-

mation available to the market maker over time. Broadly, Ft consists of “all information”

available to the market maker up to time t.

As in [24, 39], we assume the market maker experiences a constant latency of size ∆τ ∈

[0,∆t]. Specifically, we assume the action submitted at time tk is registered by the LOB

at time

tk+ := tk +∆τ, for k = 0, 1, . . . , N. (2.2)
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Of particular importance is the unwinding of the market maker’s terminal inventory using

a MO. As the trading period progresses, the market maker accumulates inventory that

needs to be liquidated before the trading horizon concludes. To achieve this, the market

maker employs a final MO at time tN . The unwinding MO instruction arrives at the

exchange at time tN+ = tN +∆τ .

As mentioned above, latency introduces a delay in the registration of ask and bid LOs

into the LOB. Specifically, when a market maker submits an ask or bid LO at time tk, it

experiences a time lag until the order is actually recorded in the LOB, which we assume

occurs at time tk+ = tk +∆τ . Once the market maker’s ask and bid LOs are successfully

registered in the LOB, they are subject to full or partial execution, which can occur in

one of two ways:

(i) If the price of the submitted ask (bid) LO, when it is registered by the LOB, is less

(more) than or equal to the current best bid (ask) price in the market, the LO will

be fully executed instantly at the best bid (ask) price.

(ii) Otherwise, the order will be added to the LOB and may only be executed partially

or in full if a MO matches its limit price at a subsequent time.

Further discussion about the number of filled shares will be provided in the following

subsection.

2.1.2 State and Action Spaces and System Dynamics

At each time tk ∈ [0, T ], we denote Wtk and Stk the market maker’s wealth and the

fundamental price of the asset, respectively, and let Itk represent the market maker’s
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inventory. Throughout, best ask price is assumed to be Stk +
tick size

2
, while the best bid

price is assumed to be Stk − tick size
2

. In USA markets, tick size is usually 0.01. To control

the running inventory risk, we constrain Itk to lie between a lower bound I and an upper

bound I. We denote the number of outstanding ask and bid orders at time tk, which are

left unfilled during [tk−1, tk), by Q+
outtk

and Q−
outtk

, respectively. We restrict Q+
outtk

and

Q−
outtk

to be non-negative integers less than a constant Q±
max, which represents the volume

of each LO submitted by the market maker. We assume the volume Q±
max to be constant.

Additionally, the corresponding quotes of the outstanding LOs at time tk, relative to the

fundamental price Stk , are denoted by (r+tk , r
−
tk
). See Eqs. (2.13)-(2.14) below for precise

formulas for (Q+
outtk

, Q−
outtk

, r+tk , r
−
tk
). We adopt the convention that whenever r±tk =∞, it

means that there are no outstanding orders at time tk. The state variables of the system

then consist of Φtk := (Wtk , Stk , Itk , Q
+
outtk

, Q−
outtk

, r+tk , r
−
tk
), which take values in the state

space

Φ :=
{
(w, s, i, q+, q−, r+, r−) :w ∈ R, s ∈ R+, i ∈ Z, I ≤ i ≤ I, (q+, q−) ∈ Z2

+,

0 ≤ q± ≤ Q±
max, (r

+, r−) ∈ Z2

+

}
.

We now proceed to describe the set of admissible actions, denoted as A. At the beginning

of each time period, the market maker observes the LOB status and based on it, considers

multiple possible actions. These actions include cancelling existing LOs and placing new

bid and ask quotes, cancellation of existing orders without placing new orders, or adopting

a “doing nothing” approach. More precisely, her actions at time tk will be represented

by the pair (L+
tk
, L−

tk
), where L+

tk
, L−

tk
∈ Z+ ∪ {∞} ∪ {o} (hereafter, Z+ = {0, 1, 2 . . . }).

If L+
tk

takes on a value in Z+, the market maker will cancel any outstanding ask order,

and then proceed to quote a new ask order of volume Q+
max at the price Stk + L+

tk
. That

is, L+
tk

is the relative price of the asset when compared to the fundamental price Stk . If
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L+
tk
=∞, the market maker will cancel any outstanding ask orders without placing a new

one, while if L+
tk
= o, the market maker will take no action on the ask side, leaving intact

any outstanding LOs at time tk. Similar notation is used on the bid side.

We now show how the system transitions from time tk to tk+1 for k = 0, 1, · · · , N−1. Let

∆Stk := Stk+ − Stk and ∆Stk+ := Stk+1
− Stk+ denote the price changes on the intervals

[tk, tk+) and [tk+, tk+1), respectively. It becomes clear that the fundamental price satisfies

the relation

Stk+1
= Stk +∆Stk +∆Stk+ . (2.3)

The cash holding and inventory processes are given as

Wtk+1
= Wtk + Pfill+tk

Qfill+tk
− Pfill−tk

Qfill−tk
+ Pfill+tk+

Qfill+tk+
− Pfill−tk+

Qfill−tk+
, (2.4)

Itk+1
= Itk −Qfill+tk

+Qfill−tk
−Qfill+tk+

+Qfill+tk+
, (2.5)

where Pfill+tk
and Qfill+tk

respectively denote the execution price and the number of filled

shares of any outstanding ask LO on the interval [tk, tk+), while Pfill+tk+
and Qfill+tk+

denote

the execution price and the number of filled shares of ask LOs on the interval [tk+, tk+1).

Analogously, Pfill−tk
, Qfill−tk

, Pfill−tk+
, Qfill−tk+

represent the corresponding quantities on the

bid side. From the explanation at the end of Subsection 2.1.1 and recalling that r+tk and

r−tk are the prices of any outstanding ask and bid LO at time tk, respectively, it is clear
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that the execution prices are determined as follows:

Pfill±tk
=


Stk ± r±tk , if r±tk ∈ Z+,

0, if r±tk =∞,

(2.6)

Pfill±tk+
=


1{±∆Stk

≥L±
tk
} [Stk +∆Stk ] + 1{±∆Stk

<L±
tk
}
[
Stk ± L±

tk

]
, if L±

tk
∈ Z+,

Stk ± r±tk , if L±
tk
= o,

0, if L±
tk
=∞.

(2.7)

To describe the number of filled shares, it is important to separately consider the cases

L±
tk
∈ Z+ ∪ {∞} and L±

tk
= o. To model the number of filled shares from an outstanding

LO during a given time period, we adopt a more realistic version of the stochastic linear

model of [12]. Broadly, the number of filled shares will depend on whether there are

any MO arriving during that interval and the distance between the quoted price and the

fundamental price. More specifically, for the ask side, the number of filled shares during

[u, v) from a LO of size q placed at level Su + r is given by

1fill+c(p− r)+ ∧ q, (2.8)

where x+ = max(x, 0), a ∧ b = min{a, b}, and c, p are Fv-measurable r.v.’s, 1fill+ ∈ Fv

is 1 if there are any buy MOs arriving during [u, v) and 0, otherwise. The so-called

reservation price p is understood as the maximum price, relative to Su, achievable by all

buy MOs placed during the time interval [u, v). Meanwhile, the demand slope c measures

the rate of increase in the number of filled shares of the ask LO as its ask price approaches

the fundamental price Su within the same interval [u, v).
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Following the prescription above and recalling that Q±
outtk

denotes the volume of any

outstanding LO at time tk and Q±
max is the volume of submitted LOs, for L±

tk
∈ Z+, we

have

Qfill±tk
:= 1fill±k

c±tk
[
p±tk − r±tk

]
+
∧Q±

outtk
, (2.9)

Qfill±tk+
:= 1{±∆Stk

≥L±
tk
}Q

±
max + 1{±∆Stk

<L±
tk
}1fill±k+c

±
tk+

[p±tk+ − L±
tk
]+ ∧Q±

max, (2.10)

where c±tk , p
±
tk
∈ Ftk+ , c

±
tk+

, p±tk+ ∈ Ftk+1
, and

1fill+k
= 1{At least one buy MO arrives during [tk, tk+)},

1fill−k
= 1{At least one sell MO arrives during [tk, tk+)},

1fill+k+
= 1{At least one buy MO arrives during [tk+, tk+1)},

1fill−k+
= 1{At least one sell MO arrives during [tk+, tk+1)}.

The precise conditions on the variables above are given in Assumption 2.1.1 below.

We now consider the case L±
tk

= o (“doing nothing”). Note that this means that any

outstanding LOs at time tk remain untouched at time tk+. In that situation, Pfill±tk
=

Pfill±tk+
= Stk ± r±tk and the updated cash holding and inventory at time tk+1, Wtk+1

and

Itk+1
, only depend on the total demand Qfill±tk

+Qfill±tk+
over the whole interval [tk, tk+1)

out of Q±
outtk

. Then, it makes more sense to model such a demand jointly. That is, when

L±
tk
= o, we set

Q̃fill±tk
:= Qfill±tk

+Qfill±tk+
:= 1̃fill±k

c̃±tk
[
p̃±tk − r±tk

]
+
∧Q±

outtk
. (2.11)
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where

1̃fill+k
= 1{At least one buy MO arrives during [tk, tk+1)},

1̃fill−k
= 1{At least one sell MO arrives during [tk, tk+1)},

(2.12)

and c̃±tk , p̃
±
tk
∈ Ftk+1

.

We can now specify the number of outstanding shares for ask and bid orders at time tk+1,

for k = 0, 1, . . . , N − 1,

Q±
outtk+1

:=


Q±

max −Qfill±tk+
, if L±

tk
∈ Z+,

Q±
outtk
− Q̃fill±tk

, if L±
tk
= o,

0, if L±
tk
=∞,

(2.13)

and setting as initial value Q±
outt0

:= 0. Finally, the ask and bid outstanding quote pair

r±tk+1
is determined as

r±tk+1
:=


L±
tk
∓ (∆Stk +∆Stk+), if L±

tk
∈ Z+,

r±tk ∓ (∆Stk +∆Stk+), if L±
tk
= o,

(2.14)

and initial value r±t0 =∞.

Next, we outline the system dynamics from time tN to tN+, when the market maker does

not post new quotes and only unwinds her inventory position using a MO at time tN
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(though, this will be executed until time tN +∆τ). Specifically, we have

WtN+
= WtN + Pfill+tN

Qfill+tN
− Pfill−tN

Qfill−tN

= WtN + (StN + r+tN )(1fill+N
· c+tN

[
p+tN − r+tN

]
+
∧Q+

outtN
)

− (StN − r−tN )(1fill−N
· c−tN

[
p−tN − r−tN

]
+
∧Q−

outtN
),

StN+
= StN +∆StN ,

ItN+
= ItN −Qfill+tN

+Qfill−tN

= ItN − 1fill+N · c
+
tN

[
p+tN − r+tN

]
+
∧Q+

outtN
+ 1fill−N

· c−tN
[
p−tN − r−tN

]
+
∧Q−

outtN
.

We now turn our attention to the assumptions on the variables involved in the demand

formulas (these are similar to those given in [12]).

Assumption 2.1.1. For k = 0, 1, . . . , N , we have

1. 1fill±k
∈ Ftk+ and 1fill±k+

, 1̃fill±k
∈ Ftk+1

are such that

π±
tk
= P(1fill±k = 1 | Ftk), π

±
tk+

= P(1fill±k+ = 1 | Ftk), π̃
±
tk
= P(1̃fill±k = 1 | Ftk),

(2.15)

for some deterministic probabilities π±
tk
, π±

tk+
, and π̃±

tk
;

2. (1fill+k
,1fill+k+

) and (1fill−k
,1fill−k+

) are independent, conditional on Ftk ;

3. (c±tk , p
±
tk
) are Ftk+-measurable, while (c±tk+ , p

±
tk+

) and (c̃±tk , p̃
±
tk
) are Ftk+1

-measurable;

4. The conditional distribution of (c±tk , p
±
tk
) given (Ftk ,1fill±k

) is a function of only the

indicator 1fill±k
that does not depend on k;

5. The conditional distribution of (c±tk+ , p
±
tk+

) given (Ftk+ ,1fill±k+
) is a function of only

the indicator 1fill±k+
that does not depend on k;
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6. The conditional distribution of (c̃±tk , p̃
±
tk
) given (Ftk , 1̃fill±k

) is a function of only the

indicator 1̃fill±k
that does not depend on k;

7. (c+tk , p
+
tk
) and (c−tk , p

−
tk
) are conditionally independent given (Ftk ,1fill+k

,1fill−k
). Simi-

larly, (c+tk+ , p
+
tk+

) and (c−tk+ , p
−
tk+

) are conditionally independent given (Ftk+ ,1fill+k+
,1fill−k+

),

8. 1fill±k+
and (1fill±k

, c±tk , p
±
tk
) are conditional independent given Ftk .

Remark 2.1.1. Assumptions 2.1.1.4-2.1.1.6 above mean that there exist cdfs F±
∆τ : R2×

{0, 1} → [0, 1], F̌±
∆τ,∆t : R2 × {0, 1} → [0, 1], and F̃±

∆t : R2 × {0, 1} → [0, 1] such that, for

all k = 0, 1, . . . , N ,

P(c±tk ≤ x, p±tk ≤ y | Ftk ,1fill±k
) = F±

∆τ (x, y,1fill±k
),

P(c±tk+ ≤ x, p±tk+ ≤ y | Ftk+ ,1fill±k+
) = F̌±

∆τ,∆t(x, y,1fill±k+
),

P(c̃±tk ≤ x, p̃±tk ≤ y | Ftk , 1̃fill±k
) = F̃±

∆t(x, y, 1̃fill±k+
).

(2.16)

Next, we establish the assumptions on the fundamental price. Below, we use the short-

hand notation ∆S[u, v) := Sv − Su, for any times u < v

Assumption 2.1.2. For k = 0, 1, . . . , N , we have

1. The fundamental price {St}t is a martingale:

E[Sv | Fu] = Su, for all u < v;

2. ∆S[tk, tk+] and (1fill±k
, c±tk , p

±
tk
,1fill±k+

, c±tk+ , p
±
tk+

) are conditional independent given

Ftk ;

3. ∆S[tk, tk+1] and (1̃fill±k
, c̃±tk , p̃

±
tk
) are conditional independent given Ftk ;
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4. ∆S[tk+, tk+1] and (1fill±k+
, c±tk+ , p

±
tk+

) are conditional independent given Ftk+;

5. ∆S[tk, tk+] is independent of Ftk .

6. ∆S[tk, tk+]
D
= S∆τ .

2.2 Characterization of the Optimal Market Making

Strategy

Given the framework established in Section 2.1, we will proceed to reformulate the optimal

market making problem as a MDP with an immediate reward structure, which is explicitly

identified. In turn, this characterization will allow us to numerically find the optimal

strategy for the market maker.

The objective of the market maker is to maximize her expected terminal wealth at the

end of the trading period by performing an admissible action at the start of each time

interval. The market maker’s terminal Profit and Loss (P&L) is denoted as W , and it is

determined by the state of the market just before tN+, represented by (WtN+
, StN+

, ItN+
,

Q+
outtN+

, Q−
outtN+

, r+tN+
, r−tN+

). In our setting, the terminal P&L will be computed as

W := WtN+
+ StN+

ItN+
− λI2tN+

, (2.17)

whereWtN+
and ItN+

are the market maker’s cash holding and inventory at time tN+, StN+

is the fundamental price of the asset at tN+, and λ is a positive inventory penalization

constant. Our choice of the P&L function agrees with what is common in the literature

(see [1,12,14]). The last two terms in Eq. (2.17) can be expressed as (StN+
− λItN+

)ItN+
,

where the term StN+
− λItN+

can be understood as the average price per share that the
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market maker is expected to receive when liquidating her inventory ItN+
through a MO,

assuming a linear instantaneous price impact. For instance, if ItN+
> 0, the market maker

will place a sell MO, resulting in the execution of trades at prices that may gradually

“eat” into the bid side of the LOB. The same logic applies when ItN+
< 0. Thus, the

term (StN+
−λItN+

)ItN+
can be understood as the cash flow received by the market maker

when liquidating her inventory, taking into account the impact on the LOB due to the

execution of a MO.

We now describe the market maker’s optimization problem. Let Vt0 denote the value

function starting from the 0th period, defined as the maximum expected terminal P&L

at the end of the trading period under all Markovian admissible policies, given the initial

state. Specifically,

Vt0 := sup
(L±

t0
,...,L±

tN
)∈A0,N

E [W | Ft0 ] , (2.18)

where we say that (L±
t0 , . . . , L

±
tN
) ∈ A0,N if, for any k = 0, 1, . . . , N , L±

tk
∈ σ(Φtk) and

L±
tk

takes values in Z+ ∪ {∞} ∪ {o} (recall Φtk := (Wtk , Stk , Itk , Q
+
outtk

, Q−
outtk

, r+tk , r
−
tk
)).

Similarly, Vtk will represent the value function starting from the kth period, for k =

1, 2, . . . , N,N+. In this sense,

VtN+
:= WtN+

+ StN+
ItN+
− λI2tN+

,

while for k = 0, 1, . . . , N ,

Vtk := sup
(L±

tk
,...,L±

tN
)∈Ak,N

E [W | Ftk ] , (2.19)
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where we say that (L±
tk
, . . . , L±

tN
) ∈ Ak,N if, for any j = k, . . . , N , L±

tj ∈ σ(Φtj) and L±
tj

takes values in Z+ ∪ {∞} ∪ {o}.

Having formulated the market making problem, we can formally write the Bellman equa-

tion that governs the value functions. By applying standard arguments, we obtain the

following expressions:

Vtk =



WtN+
+ StN+

ItN+
− λI2tN+

, k = N+,

E
[
VtN+

| FtN

]
, k = N,

sup
(L+

tk
,L−

tk
)∈Ak

E
[
Vtk+1

| Ftk

]
, k = 0, . . . , N − 1,

(2.20)

where above we say (L+
tk
, L−

tk
) ∈ Ak if L±

tk
∈ σ(Φtk) and L±

tk
∈ Z+ ∪ {∞} ∪ {o}.

2.2.1 Value of the Order

In this section, we introduce the concept of order value, which holds significant importance

in our analysis of the optimal market making problem as a MDP. The order value serves

as a fundamental metric that guides our exploration and understanding of optimal market

making strategies.

Broadly, the “(intrinsic) value” of a LO is defined as its executed price relative to the

fundamental value of the asset at the time of execution, times the number of LO shares

that are executed or filled. More specifically, when L±
tk
∈ Z+, there are two active orders

during the time interval [tk, tk+1): any outstanding LO left from the previous interval and

the new LO which registers in the LOB at time tk+. The value of the first LO is then
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given by

V O±
1 (k) := (r±tk ∓∆Stk) · [1fill±k c

±
tk
(p±tk − r±tk)+ ∧Q±

outtk
], (2.21)

while the value of the second order is

V O±
2 (k) := 1{±∆Stk

<L±
tk
} · (L

±
tk
∓∆Stk ∓∆Stk+) · [1fill±k+c

±
tk+

(p±tk+ − L±
tk
)+ ∧Q±

max]

+ 1{±∆Stk
≥L±

tk
} · (∓∆Stk+) ·Q±

max.

(2.22)

When L±
tk
= o (“doing nothing”), there is in fact only one LO during the whole interval

[tk, tk+1) and its value is

V O±
3 (k) := (r±tk ∓∆Stk ∓∆Stk+) · [1̃fill±k c̃

±
tk
(p̃±tk − r±tk)+ ∧Q±

outtk
]. (2.23)

In the case that L±
tk

= ∞ (cancelling any outstanding LO and not submitting any new

LO), we have only one LO during [tk, tk+) and its value is the same as V O±
1 (k).

We provide an explanation of equations (2.21)-(2.23) for the ask side, noting that the

bid side follows a similar reasoning. Eq. (2.21) computes the value of an outstanding LO

during the latency period. The execution price of this ask order is determined by its limit

price, Stk + r+tk , which relative to the fundamental price Stk+ at time tk+, takes the form

Stk + r+tk − Stk+ = r+tk −∆Stk . Multiplying this quantity by the number of filled shares,

as defined in Eq. (2.9), yields the expression in Eq. (2.21). Eq. (2.22) refers to value

of LO for the non-latency period when L±
tk
∈ Z+. Order value can assume two distinct

values, depending on the price change, ∆Stk , experienced during the latency period. If

the price change during latency is less than the ask spread L+
tk
, the ask LO enters the

book with an execution price of Stk +L+
tk
, which relative to the fundamental price at time

tk+1, Stk+1
, is equal to Stk + L+

tk
− Stk+1

= L+
tk
−∆Stk −∆Stk+ , which multiplied by the
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number of filled shares, results in the first term of (2.22). However, if the price change

during the latency period is greater than or equal to the ask spread L+
tk
, the ask order

is executed immediately after being registered in the LOB at a price of Stk+ , with the

full quantity Q+
max, yielding the second term in Eq. (2.22). When L+

tk
= o, the market

maker takes no action, and the maximum number of filled shares during the whole period

[tk, tk+1) is constrained by Q+
outtk

and the execution price relative to Stk+1
is given by

Stk + r+tk − Stk+1
= r+tk − ∆Stk − ∆Stk+ . Multiplying these two quantities results in the

expression (2.23).

The expectations of the above intrinsic values will play an important role in the formu-

lation of the problem as a MDP. Specifically, with the state variables

Xtk := (Itk , Q
+
outtk

, Q−
outtk

, r+tk , r
−
tk
), k = 0, 1, . . . , N, (2.24)

for any x = (i, q+, q−, r+, r−) ∈ X , where

X :=
{
(i, q+, q−, r+, r−) : i ∈ Z, I ≤ i ≤ I, (q+, q−) ∈ Z2

+, 0 ≤ q± ≤ Q±
max, (r

+, r−) ∈ Z2

+

}
,

(2.25)

we define

H±
tk
(∆τ, r±, q±) := E

[
V O±

1 (k) | Xtk = x
]
, (2.26)

H±
tk+

(∆τ,∆t, l±) := E
[
V O±

2 (k) | Xtk = x
]
, (2.27)

H̃±
tk
(∆t, r±, q±) := E

[
V O±

3 (k) | Xtk = x
]
. (2.28)

The following proposition shows that conditioning on Xtk is equivalent to conditioning

on the entire filtration Ftk .
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Proposition 2.2.1. Under Assumptions 2.1.1 and 2.1.2, for any L±
tk
∈ σ(Xtk) and

k = 0, 1, . . . , N , we have

E[V O±
1 (k) | Ftk ] = E[V O±

1 (k) | Xtk ] = H±
tk
(∆τ, r±tk , Q

±
outtk

), (2.29)

E[V O±
2 (k) | Ftk ] = E[V O±

2 (k) | Xtk ] = H±
tk+

(∆τ,∆t, L±
tk
), (2.30)

E[V O±
3 (k) | Ftk ] = E[V O±

3 (k) | Xtk ] = H̃±
tk
(∆t, r±tk , Q

±
outtk

). (2.31)

Furthermore, the following explicit formulas hold:

H±
tk
(∆τ, r, q) = π±

tk
h±
∆τ (1, r, q),

H±
tk+

(∆τ,∆t, l) = π±
tk+

ȟ±
∆τ,∆t(1, l, Q

±
max)E[(l ∓ S∆τ )+],

H̃±
tk
(∆t, r, q) = π̃±

tk
h̃±
∆t(1, r, q),

where, using the cdfs in Eq. (2.16), for j ∈ {0, 1}, r ∈ R+, q ∈ Z+,

h±
∆τ (j, r, q) =

∫
[x(y − r)+ ∧ q]F±

∆τ (dx, dy, j),

ȟ±
∆τ,∆t(j, r, q) =

∫
[x(y − r)+ ∧ q] F̌±

∆τ,∆t(dx, dy, j),

h̃±
∆t(j, r, q) =

∫
[x(y − r)+ ∧ q] F̃±

∆t(dx, dy, j).

(2.32)
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2.2.2 Value Functions

The following result shows that the value function defined in Eq. (2.19) corresponds to

that of a MDP with a one-period reward during [tk, tk+1) given by

H±
acttk

(r±, l±, q±) :=


H±

tk
(∆τ, r±, q±) +H±

tk+
(∆τ,∆t, l±), if l± ∈ Z+,

H̃±
tk
(∆t, r±, q±), if l± = o,

H±
tk
(∆τ, r±, q±), if l± =∞.

(2.33)

This total value serves as a measure of the market maker’s performance and guides

the decision-making process by quantifying the immediate rewards associated with each

possible action at time tk.

Theorem 2.2.2. Let Xtk := (Itk , Q
+
outtk

, Q−
outtk

, r+tk , r
−
tk
) with dynamics determined by

Eqs. (2.5), (2.13), and (2.14). Then, under Assumptions 2.1.1 and 2.1.2, we have

VtN+
= WtN+

+ StN+
ItN+
− λI2tN+

,

and, for k = 0, 1, 2, . . . , N ,

Vtk = Wtk + StkItk + gk(Xtk), (2.34)

where, for x = (i, q+, q−, r+, r−) ∈ X , as defined in Eq. (2.25),
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gk(x) :=



H+
tN

(
∆τ, r+, q+

)
+H−

tN

(
∆τ, r−, q−

)
− λE

[
(i−Qfill+tN

+Qfill−tN
)2 | XtN = x

]
, k = N,

max
(l+,l−)∈Z+∪{∞}∪{o}

Gk(x, l
+, l−), k = 0, 1, . . . , N − 1,

(2.35)

and

Gk(x, l
+, l−) = E

[
gk+1(Xtk+1

) | Xtk = x, L+
tk
= l+, L−

tk
= l−

]
+H+

acttk
(r+, l+, q+) +H−

acttk
(r−, l−, q−).

(2.36)

In particular, the optimal strategies are given by

(L+,∗
tk

, L−,∗
tk

) = argmax
(l+,l−)∈Z+∪{∞}∪{o}

Gk(Xtk , l
+, l−). (2.37)

Theorem 2.2.2 provides a reduction in the computational complexity of the value function

by reducing the number of state variables from seven to five, specifically (i, q+, q−, r+, r−),

in the backward recursion outlined in (2.35). By examining Eq. (2.34), we observe that

the value function Vtk can be decomposed into three distinct components:

1. Wtk represents the current wealth of the market maker,

2. StkItk denotes the value of the inventory marked to the market at the mid-price,

3. gk(Xtk) captures the additional value resulting from following the optimal strategy,

which is contingent upon the market maker’s outstanding orders and inventory.

The backward recursion and maximization problem presented in Eq. (2.35) and (2.36)

establish a trade-off between the value of orders, encompassing both outstanding orders
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and newly placed orders, in the current period, and the anticipated extra value gk+1 in

the subsequent period.

Remark 2.2.1. In Theorem 2.2.2, we don’t impose any constrains on the set of admissible

placements Ak, which, in particular, may result in inventories Itk exceeding the boundaries

(I, I). However, we can restrict Ak to guarantee the desired boundaries. Recall that

Itk+1
= Itk −Qfill+tk

+Qfill−tk
−Qfill+tk+

+Qfill+tk+
,

and Qfill±tk
, Qfill±tk+

≤ Q±
max. Then, if Itk > I − Q+

max, we fix L−
tk

= ∞ (no more buying)

and Itk < I + Q−
max, we fix L+

tk
= ∞ (no more selling). Then, in (2.35), we take

(l+, l−) ∈ A(x), where

A(x) = {(l+, l−) : l± ∈ Z+ ∪ {∞} ∪ {o} if i ∈ [I +Q−
max, I −Q+

max],

l+ =∞ if i < I +Q−
max, and l− =∞ if i > I −Q+

max}.

2.3 Variations in the Market Making Model: Special

Cases Analysis

For ease of simplicity, we introduce some notation related to (c±tk , c
±
tk+

, p±tk , p
±
tk+

, c̃±tk , p̃
±
tk
).

For a, b ∈ {0, 1, 2},

µ±
capb

:= E
[
(c±tk)

a(p±tk)
b | Ftk ,1fill±k

= 1
]
,

µ±
capb+

:= E
[
(c±tk+)

a(p±tk+)
b | Ftk+ ,1fill±k+

= 1
]
,

µ̃±
capb

:= E
[
(c̃±tk)

a(p̃±tk)
b | Ftk , 1̃fill±k

= 1
]
.

(2.38)
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2.3.1 Simplified Model with Latency

In this section, a simplified model is presented, which makes the assumption that p±−r±

and p± − l± are always positive, and that the number of filled shares will not exceed the

bounds Q±
max or Q±

out.

Under these assumptions, the value of LO given in Eq. (2.21) can be written as

V O±
1 (k) := (r±tk ∓∆Stk) · 1fill±k c

±
tk
(p±tk − r±tk), (2.39)

while the value of the second order defined in Eq. (2.22) becomes

V O±
2 (k) := 1{±∆Stk

<L±
tk
} · (L

±
tk
∓∆Stk ∓∆Stk+) · [1fill±k+c

±
tk+

(p±tk+ − L±
tk
)]

+ 1{±∆Stk
≥L±

tk
} · (∓∆Stk+) ·Q±

max.

(2.40)

When L±
tk
= o, Eq. (2.23) simplifies to

V O±
3 (k) := (r±tk ∓∆Stk ∓∆Stk+) · 1̃fill±k c̃

±
tk
(p̃±tk − r±tk). (2.41)

In the case that L±
tk

= ∞, the LO value is the same as V O±
1 (k) given in Eq. (2.39).

H±
tk
(∆τ, r±, q±), H±

tk+
(∆τ,∆t, l±) and H̃±

tk
(∆t, r±, q±) are defined similarly as Eqs. (2.26)-

(2.28).
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Proposition 2.3.1. Under Assumptions 2.1.1 and 2.1.2, and the simplified conditions

mentioned above, for k = 0, 1, . . . , N ,

H±
tk
(∆τ, r) = π±

tk
r±(µ±

cp − µ±
c r

±), (2.42)

H±
tk+

(∆τ,∆t, l) = π±
tk+

(µ±
cp+
− µ±

c+
l±)E[(l± ∓ S∆τ )+], (2.43)

H̃±
tk
(∆t, r) = π̃±

tk
r±(µ̃±

cp − µ̃±
c r

±). (2.44)

Without Q±
out in state space, we introduce the notation X ′ to refer to the tuple (I, r+, r−).

Specifically, for k = 0, 1, ..., N , we define

X ′
tk
:= (Itk , r

+
tk
, r−tk).

Remark 2.3.1. Similar to Proposition 2.2.1, we can show that for the simplified model

defined above, conditioning on X ′
tk

is same as conditioning on Ftk .

We can compute an approximate optimal placing strategy using Theorem 2.2.2. First,

we compute gN(x
′), for x′ in a constrained finite domain Ψ′. Recall Eq. (2.35) and the
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simplified model assumptions mentioned above, we have

gN(x
′) = H+

tN
(∆τ, r+) +H−

tN
(∆τ, r−)

− λE
[
(i− 1fill+N · c

+
tN
(p+tN − r+) + 1fill−N

· c−tN (p
−
tN
− r−))2 | X ′

tN
= x′]

= H+
tN
(∆τ, r+) +H−

tN
(∆τ, r−)

− λE
[
i2 + 1fill+N

· (c+tN )
2(p+tN − r+)2 + 1fill−N

· (c−tN )
2(p−tN − r−)2

− 2i · 1fill+N · (c
+
tN
p+tN − c+tN r

+) + 2i · 1fill−N · (c
−
tN
p−tN − c−tN r

−)

− 2 · 1fill+N (c
+
tN
p+tN − c+tN r

+) · 1fill−N (c
−
tN
p−tN − c−tN r

−) | X ′
tN

= x′]
= r+π+

tN
(µ+

cp − µ+
c r

+) + r−π−
tN
(µ−

cp − µ−
c r

−)

− λ
[
i2 + π+

tN
µ+
c2(µ

+
p2 − 2µ+

p r
+ + (r+)2) + π−

tN
µ−
c2(µ

−
p2 − 2µ−

p r
− + (r−)2)

− 2iπ+
tN
(µ+

cp − µ+
c r

+) + 2iπ−
tN
(µ−

cp − µ−
c r

−)

− 2 · π+
tN
(µ+

cp − µ+
c r

+) · π−
tN
(µ−

cp − µ−
c r

−)
]
.

For the recursive step in Eq. (2.35), for x′ ∈ Ψ′, we have

gN−1(x
′) = max

(l,l)∈Z+∪{∞}∪{o}
GN−1(x

′, l+, l−)

= max
(l,l)∈Z+∪{∞}∪{o}

{
E
[
gN(X

′
tN
) | X ′

tN−1
= x′, L+

tN−1
= l+, L−

tN−1
= l−

]
+H+

acttN−1
(r+, l+) +H−

acttN−1
(r−, l−)

}
,

where

H±
acttN−1

(r±, l±) =


H±

tN−1
(∆τ, r±) +H±

tN−1
(∆τ,∆t, l±), if l± ∈ Z+,

H̃±
tN−1

(∆t, r±), if l± = o,

H±
tN−1

(∆τ, r±), if l± =∞.

(2.45)
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2.3.2 Market Making without Latency

This section is devoted to a specific scenario within our proposed model, where the market

making activity takes place without any latency. This scenario assumes that the market

maker has immediate access to all available information and can execute trades without

any delay. We start by presenting the system dynamics, a structure similar to that

described in Section 2.1.2.

System Dynamics

Now, we present the system dynamics (W,S, I,Q+
out, Q

−
out, r

+, r−) from time tk to tk+1 for

k = 0, 1, · · · , N , under the assumption of zero latency. To allow for a slight abuse of

notation, let ∆Stk+ := Stk+1
− Stk denote the price change on the interval [tk, tk+1). It is

clear that the fundamental price follows the relationship

Stk+1
= Stk +∆Stk+ . (2.46)

The cash holding and inventory processes are defined as follows:

Wtk+1
= Wtk + Pfill+tk+

Qfill+tk+
− Pfill−tk+

Qfill−tk+
, (2.47)

Itk+1
= Itk −Qfill+tk+

+Qfill+tk+
, (2.48)

where Pfill+tk+
and Qfill+tk+

respectively denote the execution price and the number of filled

shares of ask LOs during [tk, tk+1). Analogously, Pfill−k+
, Qfill−k+

are the corresponding
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quantities on the bid side. These quantities follow

Pfill±tk+
=


Stk ± L±

tk
, if L±

tk
∈ Z+,

Stk ± r±tk , if L±
tk
= o,

0, if L±
tk
=∞,

(2.49)

Qfill±tk+
=


1fill±k+

c±tk+(p
±
tk+
− L±

tk
)+ ∧Q±

max, if L±
tk
∈ Z+,

1fill±k+
c±tk+(p

±
tk+
− r±tk)+ ∧Q±

outtk
, if L±

tk
= o,

(2.50)

where

1fill+k+
= 1{At least one buy MO arrives during [tk, tk+1)},

1fill−k+
= 1{At least one sell MO arrives during [tk, tk+1)}.

In a manner similar to Section 2.2, we make the assumption that 1fill±k+
∈ Ftk+1

, and we

introduce the notation π±
tk+

:= P(1fill±k+ = 1 | Ftk). Additionally, we define the random

variables c±tk+ and p±tk+ in a manner similar to Section 2.2, but now specifically within the

interval [tk, tk+1).

Also, the number of outstanding shares for ask and bid orders at time tk+1 follow the

relation

Q±
outtk+1

=


Q±

max −Qfill±tk+
, if L±

tk
∈ Z+,

Q±
outtk
−Qfill±tk+

, if L±
tk
= o,

0, if L±
tk
=∞.

(2.51)
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Finally, the ask and bid outstanding quote pair is determined as

r±tk+1
=


L±
tk
∓∆Stk+ , if L±

tk
∈ Z+,

r±tk ∓∆Stk+ , if L±
tk
= o.

(2.52)

We make analogous assumptions about c±. and p±. to those presented in Assumption 2.1.1.

Note that Assumption 2.3.1, although sharing some notation with a part of Assump-

tion 2.1.1, holds distinct implications in this context.

Assumption 2.3.1. For k = 0, 1, . . . , N , we have

1. (c±tk+ , p
±
tk+

) are Ftk+1
-measurable;

2. The conditional distribution of (c±tk+ , p
±
tk+

) given (Ftk+ ,1fill±k+
) is a function of only

the indicator 1fill±k+
that does not depend on k;

3. (c+tk+ , p
+
tk+

) and (c−tk+ , p
−
tk+

) are conditionally independent given (Ftk+ ,1fill+k+
,1fill−k+

).

Furthermore, we introduce assumptions about the fundamental price, mirroring the struc-

ture of Assumption 2.1.2.

Assumption 2.3.2. For k = 0, 1, . . . , N , we have

1. The fundamental price Stk ∈ Ftk is a martingale:

E[Stk+1
| Ftk ] = Stk ;

2. Stk+ − Stk and (1fill±k+
, c±tk+ , p

±
tk+

) are conditional independent given Ftk .
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Optimal Market Making Strategy

Given the outlined system dynamics, we will now proceed to reframe the optimal market

making problem without latency as a MDP. Same as Section 2.2, the market maker

takes an admissible action at the beginning of each time interval aiming to maximize her

expected P&L at the termination of the trading interval. It is worth noting that, due to

the absence of latency, the final action of unwinding using MOs occurs at the terminal

time tN+1, which differs from the case with latency where the final unwinding inventory

action occurs at time tN+.

Denote the market maker’s terminal P&L as W . Assuming at terminal time tN+1, the

state ΦtN+1
is (WtN+1

, StN+1
, ItN+1

, Q+
outtN+1

, Q−
outtN+1

, r+tN+1
, r−tN+1

). Then, we have

W := WtN+1
+ StN+1

ItN+1
− λI2tN+1

, (2.53)

where λ > 0 is a inventory penalization constant.

Following the notation introduced in Equation (2.24), we can now present the market

maker’s optimization problem. Recall from Eq. (2.18) that

Vt0 := sup
(L±

t0
,...,L±

tN
)∈A0,N

E [W | Ft0 ] ,

and from Eq. (2.19), for k = 1, 2, . . . , N , we have

Vtk := sup
(L±

tk
,...,L±

tN
)∈Ak,N

E [W | Ftk ] .
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Now, in the absence of latency, for k = N + 1, we have

VtN+1
:= WtN+1

+ StN+1
ItN+1

− λI2tN+1
.

With standard arguments, bellman equation for above value functions is given as follows:

Vtk =


WtN+1

+ StN+1
ItN+1

− λI2tN+1
, k = N + 1,

sup
(L+

tk
,L−

tk
)∈Ak

E
[
Vtk+1

| Ftk

]
, k = 0, 1, . . . , N,

(2.54)

where above we say (L+
tk
, L−

tk
) ∈ Ak if L±

tk
∈ σ(Φtk) and L±

tk
∈ Z+ ∪ {∞} ∪ {o}.

Value of the Order

Now, we expand the concept of the order value, as defined in Section 2.2.1, to the current

scenario without latency. In the absence of latency, the expression for H±
tk
(∆τ, r±, q±)

given in Eq. (2.26) is not applicable, and Eq. (2.27) can be simplified. Note that when

there is no latency, Eq. (2.22) simplifies to

V O±
2 (k) = (L±

tk
∓∆Stk+) · [1fill±k+c

±
tk+

(p±tk+ − L±
tk
)+ ∧Q±

max], (2.55)

and Eq. (2.23) becomes

V O±
3 (k) = (r±tk ∓∆Stk+) · [1̃fill±k c̃

±
tk
(p̃±tk − r±tk)+ ∧Q±

outtk
]. (2.56)

Then, the definitions of H±
tk+

(∆t, l±) and H̃±
tk
(∆t, r±, q±) mirror those introduced in

Eq. (2.27)-(2.28). H±
acttk

(r±, l±, q±) are also defined in the same manner as in Eq. (2.33).
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Similar to the Theorem 2.2.2, we have the following result.

Theorem 2.3.2. Let Xtk = (Itk , Q
+
outtk

, Q−
outtk

, r+tk , r
−
tk
) with dynamics determined by

Eqs. (2.48), (2.51), and (2.52). Then under Assumptions 2.3.1 and 2.3.2, we have

VtN+1
= WtN+1

+ StN+1
ItN+1

− λI2tN+1

and, for k = 0, 1, 2, . . . , N ,

Vtk = Wtk + StkItk + gk(Xtk),

where, for x = (i, q+, q−, r+, r−) ∈ X , as defined in Eq. (2.25),

gk (x) :=



max
(l+,l−)∈Z+∪{∞}∪{o}

{
H+

acttk
(r+, l+, q+) +H−

acttk
(r−, l−, q−)

− λE
[
(i−Qfill+tN+

+Qfill−tN+

)2 | XtN = x, L+
tk
= l+, L−

tk
= l−

]}
, k = N,

max
(l+,l−)∈Z+∪{∞}∪{o}

Gk(x, l
+, l−), k = 0, . . . , N − 1,

(2.57)

and

Gk(x, l
+, l−) = E

[
gk+1(Xtk+1

) | Xtk = x, L+
tk
= l+, L−

tk
= l−

]
+H+

acttk
(r+, l+, q+) +H−

acttk
(r−, l−, q−).

In particular, the optimal strategies are given by

(L+,∗
tk

, L−,∗
tk

) = argmax
(l+,l−)∈Z+∪{∞}∪{o}

Gk(Xtk , l
+, l−).
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2.3.3 Simplified Market Making without Latency

In this section, we consider a setting where the market maker is not allowed to take the

actions of “doing nothing” or cancellation. Specifically, the market maker places ask and

bid LOs at the beginning of every second, which is consistent with the setup in [12].

Under this arrangement, there are no outstanding orders or spreads to consider. Hence,

the state variable is just Itk itself, for k = 0, 1, . . . , N .

Using Theorem 2.3.2, we can compute an approximate optimal strategy. We start with

the calculation of gN(i), for i ∈ [I, I],

gN(i) = max
(l+,l−)∈A

{
H+

act(l
+) +H−

act(l
−)

− λE
[
i2 + 1fill+N+

· (c+tN+
)2(p+tN+

− l+)2 + 1fill−N+
· (c−tN+

)2(p−tN+
− l−)2

− 2i · 1fill+N+
· (c+tN+

p+tN+
− c+tN+

l+) + 2i · 1fill−N+
· (c−tN+

p−tN+
− c−tN+

l−)

− 2 · 1fill+N+
(c+tN+

p+tN+
− c+tN+

l+)1fill−N+
(c−tN+

p−tN+
− c−tN+

l−) | ItN = i
]}

= max
(l+,l−)∈A

{
l+π+

tN+
(µ+

cp+
− µ+

c+
l+) + l−π−

tN+
(µ−

cp+
− µ−

c+
l−)

− λ
[
i2 + π+

tN+
µ+
c2+
(µ+

p2+
− 2µ+

p+
l+ + (l+)2)

+ π−
tN+

µ−
c2+
(µ−

p2+
− 2µ−

p+
l− + (l−)2)− 2iπ+

tN+
(µ+

cp+
− µ+

c+
l+)

+ 2iπ−
tN+

(µ−
cp+
− µ−

c+
l−)− 2 · π+

tN+
(µ+

cp+
− µ+

c+
l+) · π−

tN+
(µ−

cp+
− µ−

c+
l−)

]}
.

For the recursive step in Eq. (2.57), we have

gN−1(i) = max
(l+,l−)∈Z+∪{∞}∪{o}

{
H+

act(l
+)+H−

act(l
−)+E

[
gN(ItN ) | ItN−1

= i, L+
tN−1

= l+, L−
tN−1

= l−
]}

,

where

H±
act(l

±) = H±
tN−1

(∆t, l±).
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2.4 Implementation and Empirical Performance

In this section, we empirically evaluate the effectiveness of the optimal order placement

strategy formulated based on Theorem 2.2.2. This evaluation is conducted using authen-

tic transaction data sourced from the stock market and corresponding LOB records. We

utilized LOB data of three prominent companies, namely Apple Inc. (AAPL), Ama-

zon.com Inc. (AMZN), and Microsoft Corporation (MSFT), over the course of the year

2019. The dataset encompasses 252 trading days, during which we recorded the activity

of the LOB from 10am to 4pm each day. Our data is composed of two principal com-

ponents: books and orders. The books component provides us with a comprehensive

snapshot of the top 20 best ask and bid prices in the LOB along with their corresponding

volume for each timestamp during the trading hours from 10am to 4pm each day, where

a timestamp denotes every time that there is a change in any of the top levels at either

side of the book. The orders component, on the other hand, records all actions submitted

by market participants in LOB, including LOs, MOs, and cancellations, throughout the

trading day.

We assume that the mid-price {St}t≥0 follows a compound Poisson process, following

St = S0 + δ
Nt∑
i=0

Di, (2.58)

where {Nt}t≥0 is a homogeneous Poisson process with price change rate ν and δ is the

tick size. Additionally, (Di)i=1,2,... denote a sequence of independent and identically dis-

tributed random variables. These random variables take on values of either +1 or -1,

each with a probability of 0.5.
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Table 2.1 presents the fundamental parameter settings for our implementation and per-

formance analysis. Note that the values in Upper/Lower Inventory Boundaries, Out-

standing/New Order Size are presented in units of hundred shares. Also, integer values

in Outstanding/New Order Spread are presented in units of 1 tick.

Table 2.1: Default values of the parameters in simulation in Section 2.4.

Parameter Value(s)

Upper Inventory Boundary I 11
Lower Inventory Boundary I -11
Outstanding Order Spread r± 0, 1, 2, 3, ∞
Outstanding Order Size Q±

out 0, 1, 2, 3, 4, 5
New Order Spread/Action L± 0, 1, 2, 3, o(“doing nothing”), ∞(“cancellation”)
New Order Size Q±

max 5
Tick Size δ $0.01

2.4.1 Parameter Estimation

Rate of Price Changes ν. To estimate the rate at which the price changes, we con-

sidered two steps. First, a preprocessing step, where we trimmed the data to exclude

the first and last 30 minutes of each trading day in order to avoid the high volatility of

the opening and closing periods. Second, we performed a computational step where we

tracked the mid-price, defined as the average of the best ask price and best bid price,

between the trading hours of 10:00am to 3:30pm. To estimate the rate of price changes,

we counted the number of times the mid-price changed over the course of the trading

day and divided this amount by the total number of seconds between 10:00:00am and

3:30:00pm. Table 2.2 provides the mean of these estimated daily mid-price change rates

averaged over all the year.
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Table 2.2: Average rate (per second) of price changes over 252 trading days in 2019.

Stock Upward Rate Downward Rate

AAPL 2.213405 2.215102
AMZN 1.264078 1.267465
MSFT 1.034977 1.034514

Arrival Probability of MOs. We discuss now the estimation of the arrival probability

of MOs, focusing on the case of buy MOs during the latency period. The arrival proba-

bilities for other periods can be computed similarly. We set the latency to 0.02 seconds,

which is consistent with the setup employed in other studies. (see, e.g., [24]).

For computational simplicity, we make the assumption that the arrival probability of MOs

remain constant across all time instances tk. Consequently, we will henceforth denote π±
tk
,

π±
tk+

and π̃±
tk

as π±
∆τ , π

±
∆τ,∆t and π̃±

∆t, respectively. To determine the arrival probability

of at least one buy MO within the latency period for a given trading day, we tally the

number of seconds from 10:00am to 3:30pm during which at least one buy MO appears

within the first 0.02 seconds of each 1-second subinterval. This count is then divided by

19800, which is the total number of seconds between 10:00am and 3:30pm, and repeat

this procedure for every trading day. The mean of these estimated probabilities over 252

trading days is reported in Table 2.3, along with the estimates of the arrival probabilities

for other time periods.

Table 2.3: Average arrival probability of market orders over 252 trading days in 2019.
∆τ = 0.02 seconds and ∆t = 1 second.

Stock π̂+
∆τ π̂−

∆τ π̂+
∆τ,∆t π̂−

∆τ,∆t
̂̃π+

∆t
̂̃π−
∆t

AAPL 0.009769 0.009936 0.258041 0.262947 0.263407 0.268212
AMZN 0.003435 0.003514 0.097630 0.100175 0.099906 0.102493
MSFT 0.007425 0.007499 0.201744 0.204104 0.206397 0.208745
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Demand Function. To estimate the demand function for the ask and bid sides, on both

the latency and non-latency periods, within a 1-second sub-interval, we fit a weighted

linear regression to the empirical demand function obtained from the data. The slope

and intercept of the fitted line are then used to estimate c and p as described below.

For example, consider the ask side during the latency period. We begin by de-

termining the demand during a given interval [tk, tk + ∆τ) for different price levels

Pl ∈ {0.005, 0.015, 0.025, . . .} relative to Stk . That is, for a given Pl, the demand will

be the number of shares sold during [tk, tk+∆τ) if the market maker had a LO placed at

level Pl, at time tk. To this end, when a buy MO (MOm) with a volume of VMOm enters

the market at time tm ∈ [tk, tk+∆τ), we first record the volume of existing ask LOs with

prices lower than Pl, at that precise moment. This recorded volume is denoted as VLOm .

Next, we compute (VMOm − VLOm) ∨ 0, which is the number of shares from the market

maker’s LO that would be executed by this buy MO. This process is repeated for all buy

MOs occurring within the interval [tk, tk +∆τ). The cumulative quantity, represented as∑
m

(
(VMOm − VLOm) ∨ 0

)
, serves as a proxy of the actual demand at the price level Pl

during this time frame. We use the same procedure to compute the demand function for

the bid side, as well as during non-latency periods.

The above procedure enables us to estimate the actual demand within a ∆τ subinterval

for a given day. Subsequently, for each price level Pl, we average the estimated demands

across all seconds during which at least one MO arrives on that particular day, and

obtain the daily average demand Dl. Then, we fit a linear model via weighted least

squares estimation. Specifically, we employ the average demand Dl at each price level as

the response variable, with the price level Pl serving as the predictor variable. We assign

higher weights to price levels closer to the mid-price and lower weights to price levels
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deeper in the LOB. The slope and intercept of the fitted line are used to estimate c and

cp, from where we estimate the parameters c and p for that day.

This procedure is repeated for all 252 trading days in the year 2019, yielding 252 daily

estimates of c and p. The annual sample averages and second moments of these daily

estimates are presented in Table 2.4.

Table 2.4: Average values of µ̂±
{c,p} over 252 trading days for 2019 AAPL. ∆τ = 0.02

seconds and ∆t = 1 second.

Figure 2.1a provides a comparison between the average actual demands Dl and the es-

timated linear demand for the latency period on the trading day of January 2nd, 2019.

Analogously, Figure 2.1b shows a comparable analysis, focusing on non-latency periods,

while Figure 2.1c encompasses the entire 1-second interval. These figures show that our

linear demand assumption in Eq. (2.8) is reasonable.
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Figure 2.1: Average demand vs. estimated linear demand during a 1-second trading
interval on January 2, 2019, for AAPL. ∆τ = 0.02 seconds and ∆t = 1 second.

Value Functions. To compute the optimal strategy, we need to evaluate the func-

tions gk(·) and Gk(·) defined in Eq. (2.35). To this end, we need to evaluate the rel-

evant quantities. We employed a Monte Carlo based approach for the computation of

H±
acttk

(r±, L±, q±), as defined in Eq. (2.33). For illustration purpose, we will focus on

the calculation of H+
tk
(∆τ, r+, q+), noting that the computation of the other involved

quantities follows a similar method. Recall from Eq. (2.26) that

H+
tk
(∆τ, r+, q+) = E

[
(r+ −∆Stk) · [1fill+k c

+
tk
(p+tk − r+)+ ∧ q+] | Xtk = x

]
.
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Under the assumption of constant arrival probabilities of MOs and time-invariant distri-

bution for the demand parameters c and p across all time instances tk, we can simplify

H+
tk
(∆τ, r+, q+) as follows:

H+(∆τ, r+, q+) = E
[
(r+ − S∆τ ) · [1fill+∆τ

c+∆τ (p
+
∆τ − r+)+ ∧ q+]

]
. (2.59)

To obtain these estimates, we conducted 1,000,000 simulation trials for each admissible

combination of (r+, q+) in a finite domain. In our numerical experiments, we take r+ ∈

{0, 1, 2, 3,∞} and q+ ∈ {0, 1, . . . , 5}. For each trial, we generated all the random variables

therein according the following procedure:

• S∆τ was simulated according to the price process specified in Eq (2.58). Specifically,

the Poisson rate ν was set to 4.428507, which results from the sum of the upward

and downward rates detailed in Table 2.2.

• 1fill+∆τ
follows a Bernoulli distribution with parameter π+

∆τ (see Table 2.3 for the

estimate of π+
∆τ ).

• c+∆τ and p+∆τ were drawn from independent Gamma distributions. We used the

Method of Moments to find the shape and scale parameters so that so recover the

sample moments given in Table 2.4. The values of the estimated gamma parameters

are outlined in Table 2.5.

2.4.2 Inventory and Optimal Spread Process

Utilizing Theorem 2.2.2, we can compute an approximate optimal placing strategy as

illustrated in this subsection. We start with the calculation of gN(x), for x in a constrained
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Table 2.5: Parameter values for c and p in simulation for 2019 AAPL. ∆τ = 0.02 seconds
and ∆t = 1 second.

Parameter Value Unit

Slope of demand function c+∆τ Γ(shape = 12.32, scale = 2.411) share/tick
Slope of demand function c−∆τ Γ(shape = 15.23, scale = 2.120) share/tick
Slope of demand function c+∆τ,∆t Γ(shape = 45.38, scale = 1.059) share/tick
Slope of demand function c−∆τ,∆t Γ(shape = 38.57, scale = 1.388) share/tick
Slope of demand function c̃+∆t Γ(shape = 45.55, scale = 1.062) share/tick
Slope of demand function c̃−∆t Γ(shape = 39.01, scale = 1.381) share/tick
Reservation price p+∆τ Γ(shape = 28.17, scale = 0.141) tick
Reservation price p−∆τ Γ(shape = 28.20, scale = 0.140) tick
Reservation price p+∆τ,∆t Γ(shape = 106.95, scale = 0.030) tick
Reservation price p−∆τ,∆t Γ(shape = 98.19, scale = 0.033) tick
Reservation price p̃+∆t Γ(shape = 109.99, scale = 0.029) tick
Reservation price p̃−∆t Γ(shape = 100.96, scale = 0.032) tick

finite domain Ψ. In our numerical experiments, we take Ψ := {(i, q+, q−, r+, r−) : i ∈

{−11,−10, . . . , 11}, q± ∈ {0, 1, . . . , 5}, r± ∈ {0, 1, 2, 3,∞}}. Recall from Eq. (2.35) that

gN(x) = H+
tN
(∆τ, r+, q+) +H−

tN
(∆τ, r−, q−)− λE

[
(i−Qfill+tN

+Qfill−tN
)2 | XtN = x

]
.

Here, H+
tN
(∆τ, r+, q+) and H−

tN
(∆τ, r−, q−) are obtained from our Monte Carlo estimates

as described after Eq. (2.59).

Under the same time-invariant assumptions applied in the derivation of Eq. (2.59),

E[(i−Qfill+∆τ
+Qfill−∆τ

)2 | X = x]

= E[(i− 1fill+∆τ
c+∆τ (p

+
∆τ − r+)+ ∧ q+ + 1fill−∆τ

c−∆τ (p
−
∆τ − r−)+ ∧ q−].

We then carried out a Monte Carlo estimation to compute the above quantity with

1,000,000 simulation trials for all x ∈ Ψ, generating the random variables 1fill±∆τ
, c±∆τ and

p±∆τ as outlined after Eq. (2.59).
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For the recursive step in Eq. (2.35), for x ∈ Ψ, we have

gN−1(x) = max
(l+,l−)∈Z+∪{∞}∪{o}

GN−1(x, l
+, l−)

= max
(l+,l−)∈Z+∪{∞}∪{o}

{
E
[
gN(XtN ) | XtN−1

= x, L+
tN−1

= l+, L−
tN−1

= l−
]

+H+
acttN−1

(r+, l+, q+) +H−
acttN−1

(r−, l−, q−)
}
.

(2.60)

To compute E
[
gN(XtN ) | XtN−1

= x, L+
tN−1

= l+, L−
tN−1

= l−
]
, we rewrite it as

∑
gN(x

′) · P(XtN = x′ | XtN−1
= x, L+

tN−1
= l+, L−

tN−1
= l−), (2.61)

where the summation in (2.61) is over all x′ ∈ Ψ. Since the distribution of XtN depends

on XtN−1
, L±

tN−1
, Qfill±tN−1

, Qfill±t(N−1)+

and ∆StN−1
, for each L±

tN−1
∈ {0, 1, 2, 3}, we have

that

P(XtN = x′ | XtN−1
= x, L+

tN−1
= l+, L−

tN−1
= l−)

=
∑

P
(
Qfill±tN−1

= q±∆τ , Qfill±t(N−1)+

= q±∆τ,∆t, S∆t = s | XtN−1
= x, L+

tN−1
= l+, L−

tN−1
= l−

)
,

(2.62)

where the summation is over all q±∆τ ∈ {0, 1, . . . , 5}, q
±
∆τ,∆t ∈ {0, 1, . . . , 5} and s ∈ {−0.02,

− 0.015, . . . , 0.02} such that XtN = x′.

To compute the probability in the right-hand side of Eq. (2.62), we resort, once more, to

Monte Carlo, conducting 1,000,000 simulation trials for each admissible combination of

(x, l+, l−), where x ∈ Ψ and l± ∈ {0, 1, 2, 3, o,∞}. In each trial, we simulated the number

of filled shares for both the ask and bid sides over three time intervals: latency, nonlatency,

and the entire 1-second period. The simulation methodology for determining the number

of filled shares aligns with the approach utilized in the computation of the value functions,

as detailed in the paragraph after Eq. (2.59). The parameters used for generating the
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values of (c±tk , c
±
tk+

, p±tk , p
±
tk+

, c̃±tk , p̃
±
tk
) can be found in Table 2.5. A precautionary measure

was taken to ensure that the number of filled shares during the latency periods did not

exceed the outstanding shares, if such outstanding shares existed.

2.4.3 Results

In this subsection, we assess the performance of the optimal strategy by applying it to

the AAPL stock during the year 2019. To quantify the effectiveness of the strategy,

we execute it against observed market data, which allows us to compute the terminal

cash flow WT and inventory IT for each trading day. Considering the dynamic nature

of the market and the wide variation in the arrival probabilities of MOs throughout

the day, we analyze the terminal P&L value WT + S̄T IT at different time points. Here,

S̄T represents the average price per share that the market maker would obtain when

liquidating inventory IT through a MO at time T , taking into account the state of the

LOB at time T . Therefore, S̄T IT is the cash flow generated by the liquidation of the

inventory IT using a MO at time T . It is important to note that, due to the high

computational burden (see section 2.4.4), our trading horizon is set to only 1 minute.

Table 2.7 presents the outcomes of our analysis for a specific trading scenario, where It0 =

0, ∆τ = 0.02 seconds and the inventory penalty parameter λ, is 0.01. The “overall mean”

reflects the average terminal P&L value obtained across all 252 trading days for that

particular minute of trading. Observe that the overall means of the terminal P&L values

are all negative across different trading times. This outcome can be attributed to the fact

that the rate of arrival of MOs is time-dependent, which can significantly differ from the

constant value that was estimated and used in the computation of the optimal strategy.

When the actual prevailing arrival rate deviates significantly from our estimations, it is
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expected our placement strategy won’t be suitable, leading to unfavorable outcomes and

resulting in negative terminal P&L values. As an example, Table 2.6 shows the actual

arrival probabilities of MOs at different time instances tk.

Table 2.6: Average arrival probability of market orders during half-hour intervals at
different times of day averaged over 252 trading days in 2019 for AAPL. ∆τ = 0.02
seconds and ∆t = 1 second.

Time π̂+
∆τ π̂−

∆τ π̂+
∆τ,∆t π̂−

∆τ,∆t
̂̃π+

∆t
̂̃π−
∆t

10:00am-10:30am 0.016158 0.016387 0.388880 0.386192 0.395843 0.393124
12:00pm-12:30pm 0.009143 0.009199 0.236026 0.245169 0.241600 0.250398
14:30pm-15:00pm 0.008059 0.008287 0.227097 0.233576 0.231792 0.238209

To improve the suitability of our trading strategy, we implement a pre-screening process

that takes into account the recently observed arrival probabilities of MOs. Specifically,

prior to initiating our trading process and placing LOs, we estimate the arrival proba-

bilities of MOs using the 5-minute window immediately preceding the potential trading

period. Then, we proceed with our optimal strategies, but only if the arrival probabilities

of both, buy and sell MOs, fall within a certain margin of error (MOE) from the average

arrival probabilities displayed in Table 2.3.

The filtered trading days, which are the subset of trading days that passed the pre-

screening process, demonstrate much more favorable results as they consistently yield

positive terminal P&L values.

The “Filtered Days” column in the terminal P&L table provide the count of filtered

trading days corresponding to different margin of error thresholds across various trading

times. To further explore the dynamics of the inventory management, we introduce the

mean of the absolute value of the final trading inventory. This measure provides insights

into the magnitude of the inventory levels at the conclusion of each trading period.
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The findings presented in Table 2.7 show the importance of the pre-screening process in

improving the reliability and profitability of our trading strategy. By incorporating real-

time estimations of MO arrival rates, we are able to adapt to current market conditions

and achieve more favorable outcomes.

Subsequently, we present the outcomes of the terminal P&L values analysis for various

combinations of latency and inventory penalty parameter.

Table 2.7: Terminal P&L for AAPL stock in 2019 across different trading times. The
model parameters are: I = −11, I = 11, It0 = 0, ∆τ = 0.02 seconds, ∆t = 1 second and
λ = 0.01.

Trading

Time

Overall

Mean
MOE

Filtered

Days

Filtered

Mean

Filtered Abs.

Inv. Mean

11:00-01am -186105.47
10% 25 156911.60 2.76
20% 72 113662.01 2.41

12:00-01pm -61237.04
10% 19 458.09 2.28
20% 54 440.44 2.44

13:00-01pm -6357.26
10% 12 541.66 1.50
20% 41 424.39 1.68

14:00-01pm -7089.52
10% 11 80.83 2.18
20% 40 163185.56 2.81

15:00-01pm -93871.98
10% 11 127.27 3.09
20% 51 77216.41 2.30

Latency

In this section, we investigate the impact of latency on the trading outcomes, by con-

sidering additional latency value, namely 0.2s, in addition to the previously discussed

0.02s case. Detailed information regarding the estimated parameters associated with the

latency value 0.2s can be found in the appendix. We present the results of our analysis

in Tables 2.8.
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When considering a latency of 0.2 seconds, we observe that the mean terminal P&L values,

even for the filtered trading days, are consistently negative, indicating the difficulty of

generating profits under such latency conditions. This outcome might be attributed to

the fact that a latency of 0.2 seconds is excessively large for a one-second trading interval.

Consequently, the market maker faces significant challenges in cancelling unfavorable LOs

in a timely manner. The delayed cancellation process exacerbates the impact of adverse

placements, leading to further negative outcomes.

From the numerical results of optimal actions taken, we can see when latency gets larger,

we see more aggressive placements. One of the potential reasons is that the increase in

latency appears to influence the risk perception of market makers. With delays in order

execution, market maker might prefer more aggressive placements to offset potential losses

or capitalize on favorable market movements. Another potential reason is that market

maker who faces higher latency might feel pressured to secure her positions swiftly due

to the risk of market changes during the delay in execution. This pressure could lead to

more assertive order placements.

These findings signal that latency might be an important factor in market making and

display the difficulties associated with trading under prolonged latency periods. The

results demonstrate the adverse effects of increased latency on profitability and emphasize

the importance of minimizing latency to enhance trading performance.

Inventory Penalty Parameter λ

Here, we analyze the P&L obtained when setting the inventory penalty parameter λ, to

0.1 and 1. By referring to Table 2.9 and 2.10, we can compare these outcomes with the

results presented in Table 2.7 where λ = 0.01.
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Table 2.8: Terminal P&L for AAPL stock in 2019 across different trading times. The
model parameters are: I = −11, I = 11, It0 = 0, ∆τ = 0.20 seconds, ∆t = 1 second and
λ = 0.01.

Trading

Time

Overall

Mean
MOE

Filtered

Days

Filtered

Mean

Filtered Abs.

Inv. Mean

11:00-01am -335916.46
10% 22 365030.62 3.16
20% 64 33493.35 3.20

12:00-01pm -149763.88
10% 23 -257235.0 2.66
20% 54 -110954.46 3.00

13:00-01pm -211093.51
10% 8 -875.62 4.25
20% 33 -800243.15 3.65

14:00-01pm -39949.52
10% 11 -683701.36 3.18
20% 36 -209331.94 2.91

15:00-01pm -161078.49
10% 12 -187377.69 3.15
20% 49 285476.12 2.48

When a higher inventory penalty is applied, the terminal inventory is reduced while

also the terminal P&L values decrease because the market maker aims to minimize her

inventory holdings throughout the trading horizon. While maintaining lower terminal in-

ventory levels mitigates the risk of unwinding the inventory at unfavorable prices through

MOs, it also means that the market maker will likely miss out on potential trading op-

portunities to generate greater profits when favorable market conditions arise.

The trade-off between inventory penalty and potential profit demonstrates the importance

of striking a balance between risk mitigation and capitalizing on advantageous trading

situations. By adjusting the inventory penalty parameter, market maker can tailor her

trading strategies to align with her risk tolerance and profit objectives.
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Table 2.9: Terminal P&L for AAPL stock in 2019 across different trading times. The
model parameters are: I = −11, I = 11, It0 = 0, ∆τ = 0.02 seconds, ∆t = 1 second and
λ = 0.1.

Trading

Time

Overall

Mean
MOE

Filtered

Days

Filtered

Mean

Filtered Abs.

Inv. Mean

11:00-01am -260323.13
10% 25 78537.0 2.76
20% 72 27264.02 2.34

12:00-01pm -53448.31
10% 19 610.47 2.04
20% 54 420.80 2.23

13:00-01pm -3115.83
10% 12 458.33 1.33
20% 41 439.02 1.46

14:00-01pm -59233.03
10% 11 606.36 1.72
20% 40 163300.79 2.63

15:00-01pm -29997.14
10% 11 625.0 2.7
20% 51 461.42 2.02

Table 2.10: Terminal P&L for AAPL stock in 2019 across different trading times. The
model parameters are: I = −11, I = 11, It0 = 0, ∆τ = 0.02 seconds, ∆t = 1 second and
λ = 1.

Trading

Time

Overall

Mean
MOE

Filtered

Days

Filtered

Mean

Filtered Abs.

Inv. Mean

11:00-01am -243442.95
10% 25 78275.00 1.20
20% 72 27128.61 0.80

12:00-01pm -61488.19
10% 19 239.04 0.80
20% 54 55.62 0.83

13:00-01pm -37329.46
10% 12 135.76 0.07
20% 41 -134188.88 0.55

14:00-01pm -71551.15
10% 11 -281.66 1.16
20% 40 163237.61 1.02

15:00-01pm -33537.46
10% 11 77.27 0.63
20% 51 -351.32 0.83

“Doing Nothing” Action

We now investigate the significance of the “doing nothing” action in our trading strategy.

Table 2.11 presents the results obtained when the market maker has to place new LOs

at each time interval.
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The results demonstrate that the model that allows the market maker to “do nothing”,

outperforms the model that forces the market maker to place new LOs at the beginning

to each period. This outcome can be attributed to the potential drawbacks associated

with sending new orders, particularly in the presence of latency. When the market price

experiences fluctuations within the latency window, the newly placed orders from the

market maker may inadvertently enter the LOB at undesirable price levels. Also, when

the market maker already has outstanding orders at favorable prices, opting for the

“doing nothing” action can yield better outcomes. By refraining from cancelling the

current position and sending additional orders, the market maker avoids entering the

market at worse prices due to the latency-induced price movements.

Table 2.11: Terminal P&L for AAPL stock in 2019 across different trading times when
placing new LOs only at all time intervals. The model parameters are: I = −11, I = 11,
It0 = 0, ∆τ = 0.02 seconds, ∆t = 1 second and λ = 0.1.

Trading

Time

Overall

Mean
MOE

Filtered

Days

Filtered

Mean

Filtered Abs.

Inv. Mean

11:00-01am -289923.55
10% 25 156602.0 3.16
20% 72 77802.43 3.09

12:00-01pm -82806.68
10% 19 -137386.66 3.09
20% 54 -51481.33 2.83

13:00-01pm -77844.98
10% 12 363.33 2.00
20% 41 365.36 2.09

14:00-01pm -3875.69
10% 11 -348.33 2.58
20% 40 127365.56 3.04

15:00-01pm -86349.96
10% 11 160.0 3.90
20% 51 6139.71 3.16

Compared with Gao’s Method

[24] focuses on market making strategies specifically tailored for large-tick assets in the

presence of latency, where only a single unit of filled shares is allowed. In contrast, our
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research extends the scope by enabling partial fills for LOs. In this section, we illustrate

the advantages these partial fulfillments offer in improving the final P&L outcomes.

The results from [24] are presented in Table 2.12, which illustrates a distinct characteristic

where LOs are executed either in full quantity or not at all. This method results in fewer

instances of order fulfillment. Consequently, the recorded terminal inventory exhibits

significant size differences compared to those outlined in Table 2.7. The substantially

larger terminal inventory could plausibly contribute to the markedly negative terminal

P&L. Such negative results may arise due to the necessity for the market maker to unwind

the substantial inventory employing MOs, which could potentially execute at unfavorable

prices.

Table 2.12: Terminal P&L for AAPL Stock in 2019 across different trading times when
LOs can only be filled at full quantity. The model parameters are: I = −11, I = 11,
It0 = 0, ∆τ = 0.02 seconds, ∆t = 1 second and λ = 0.01.

Trading

Time

Overall

Mean
MOE

Filtered

Days

Filtered

Mean

Filtered Abs.

Inv. Mean

11:00-01am -530579.28
10% 25 -394.20 7.00
20% 72 -54.23 6.80

12:00-01pm -164860.0
10% 19 -290902.14 6.71
20% 54 -108943.30 6.35

13:00-01pm -95249.34
10% 12 -616091.15 7.38
20% 41 -177579.11 6.91

14:00-01pm -315684.94
10% 11 -912.08 7.08
20% 40 -94.77 7.15

15:00-01pm -56337.55
10% 11 3003.18 8.18
20% 51 -115092.54 7.18
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2.4.4 Computational Challenge

During our simulation process, we encountered some computational difficulties stemming

from the exhaustive search required in (2.35), particularly when trading over longer time

horizons. To obtain the optimal spreads, we needed to consider all admissible combina-

tions of (i, q+, q−, r+, r−, l+, l−) for each time step. Specifically, inventory levels i ranged

from -11 to 11, while outstanding shares q± ranged from {0, 1, 2, 3, 4, 5}. Outstanding

spreads r± could take values from {0, 1, 2, 3, 99}, where 99 represented no outstanding

orders, and new actions l± could take values from {0, 1, 2, 3, 10, 99}, where 10 and 99

denoted “doing nothing” and “canceling the LO (if any)”, respectively. This resulted in

a total of 745,200 possible combinations that we had to search for optimal spreads for

each time step. Even for a modest 1-hour trading window (3600 seconds), this calculation

could take about 40 hours to complete due to limited computational resources.

Consequently, we turned to a sub-optimal solution, opting for a local search with cer-

tain assumptions instead of an exhaustive search. When calculating the function gk(i)

backward in time, we proceed as follows.

gk−1(x) = max
(l+,l−)∈Ns

Gk−1

(
x, l+, l−

)
= max

(l+,l−)∈Ns

{
E
[
gk(XtN ) | Xtk−1

= x, (L+
tk−1

, L−
tk−1

) = (l+, l−)
]

+H+
act

(
r+, l+, q+

)
+H−

act

(
r−, l−, q−

) }
.

(2.63)

Here, we introduce the concept of the neighborhood Ns, which is defined as the “neigh-

bor” of previous sub-optimal spreads. To address the computational difficulties arising

from the exhaustive search required to identify the optimal spreads at each time step,

we assume that the optimal spreads from time tk to tk−1 for a given inventory level i,

outstanding ask and bid orders (q+, q−), and outstanding ask and bid spreads (r+, r−),
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should not differ significantly. Based on this assumption, we perform a local search for

the optimal spreads at time tk−1 within the neighborhood of the optimal spreads at time

tk. This approach reduces the computational complexity significantly, allowing us to ob-

tain sub-optimal solutions in a feasible amount of time and with limited computational

resources.

Our proposed approach involves an initial exhaustive search over a specified number

of iterations to determine a set of optimal spreads. Subsequently, we proceed with the

neighborhood search strategy to refine sub-optimal spreads. The optimal balance between

the number of full searches and neighborhood searches, as well as the performance of this

method, could be a subject for future investigation.

71



Chapter 3

Reinforcement Learning in Market

Making with Latency

In this chapter, our focus lies on evaluating the efficacy of RL algorithms in addressing

the market making problem with a unique distinction from existing literature. Our model

not only incorporates the crucial element of latency but also allows for partial fills of LOs.

Unlike conventional approaches, our framework acknowledges the possibility of unfilled

LOs that can later be filled. This becomes particularly important when opting for the “do

nothing” action. This nuanced consideration of partial fills and the temporal dynamics

of unfilled orders adds a layer of realism to our model, capturing the intricate nature of

market dynamics and enhancing the representational capacity of the RL algorithms in

the context of latency-infused market making.

3.1 Simulation Study

In this section, we train a market making agent using RL methods in an artificial market

crafted based on the model delineated in Section 2.1.1. Our objective is to assess the

performance of the RL-driven strategy and draw comparisons with the analytical optimal

control outlined in Section 2.2.
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3.1.1 RL Settings

Simulator. We establish a simulated trading environment based on the market-making

with latency model described in Section 2.1.1 to facilitate the training of the RL agent

in making strategic decisions.

Each episode, representing a temporal trading segment, unfolds from t0 to the terminal

time T . The configuration of T in Table 3.1 designates each episode as equivalent to 1

minute, aligning with the setup detailed in Section 2.4.3. Within this episode, the RL

agent executes actions on the LOB at discrete time 0 = t0 < t1 < . . . < tN < tN+1 = T .

These action times adhere to a regular interval of dt. Due to the constant latency ∆τ ∈

[0, dt], the LOB registers the submitted actions only at time tk+, as defined in Eq. (2.2).

The starting fundamental price, setting the initial reference point for the market, is

randomly drawn from a uniform distribution. The price process Stk is delineated in

Eq. (2.58). The slopes of the demand functions, reservation prices, and MO arrival

probabilities can be referenced in the provided tables.

Table 3.1: Default values of the parameters in simulation in Section 3.1.

Parameter Value(s) Unit

Terminal time T 60 second
Time interval dt 1 second
Latency ∆τ 0.02 second
Initial Price S0 uniform(1.4× 104, 2.2× 104) tick
Price Process Stk See Eq. (2.58), ν = 4.43 tick
Slopes of demand functions c±∆τ , c

±
∆τ,∆t, c̃

±
∆t See Table 2.5 share/tick

Reservation prices p±∆τ , p
±
∆τ,∆t, p̃

±
∆t See Table 2.5 tick

MO arrival probabilities π±
∆τ , π

±
∆τ,∆t, π̃

±
∆t See Table 2.3

State Space. The state space of the environment consists of the following variables:

• Inventory level Itk of the RL agent;

73



• Remaining time till the end the trading horizon T − tk;

• Ask/bid outstanding order sizes Q±
outtk

and its quote pairs r±tk .

Refer to Table 2.1 for the potential values that each state variable could take.

Action Space. The RL agent adheres to the strategy outlined in Section 2.1, executing

actions on the LOB at specific times 0 = t0 < t1 < . . . < tN , where tN < T . In

the expansive action space, the RL agent’s choices L±
tk

range from 0 to 3, o, and ∞

on each side of the market. A choice of 0 to 3 prompts the RL agent to cancel any

existing outstanding LOs and replace them with new ones at the corresponding quote.

An action of o signifies a moment of inactivity, while ∞ prompts the cancellation of

existing outstanding LOs without placing any new ones. This nuanced strategy unfolds

through 36 distinct actions in the RL agent’s action space.

Immediate reward function. We adopt the immediate reward function employed in

[52],

Rtk = (Wtk+1
−Wtk) + (Stk+1

Itk+1
− StkItk)− [(e−

T−tk+1
2000 )λI2tk+1

− (e−
T−tk
2000 )λI2tk ], (3.1)

where Wtk+1
, Stk+1

, Itk+1
are defined in Eq. (2.4), (2.3), (2.5), respectively.

It quantifies alterations in the agent’s cash holdings and inventory value, coupled with

a penalty term on the agent’s inventory level at time tk. This penalty term, initially

negligible, gains prominence as the trading period progresses, reaching its zenith as time

converges towards T . As in [52], we also opt for a discount rate, γ in Eq. (1.1), of 1,
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resulting in an aggregated reward scheme that is formulated as follows:

R =
N∑
k=0

Rtk = WT + ST IT − λI2T .

Hence, the goal to be maximized by the RL agent aligns with the objective in the control

problem of Section 2.2.

Action-value function approximation. We apply tile coding scheme to the state-

action space, which includes state variables (Itk , T − tk, Q
+
outtk

, Q−
outtk

, r+tk , r
−
tk
) and action

variables (L+
tk
, L−

tk
). Continuous state variables, I and t, spanning distinct ranges, are

finely divided into intervals. For Itk , ranging from -11 to 11, and tk, ranging from 0 to

60, a resolution of 1
256

is recommended to capture subtle variations. This resolution is

derived from the reciprocal of the product of the number of intervals per variable in each

tiling (set to 8) and the number of layers of tilings (32).

In contrast, categorical variables, such as Q+
outtk

, Q−
outtk

, r+tk , r
−
tk
, L+

tk
, L−

tk
, are treated as

discrete tiles, with each unique value representing a distinct category. This configuration

aims to strike a balance between granularity and computational efficiency, applying a

finer resolution to continuous variables and a category-based approach for discrete ones.

RL algorithms. We train the RL agent employing SARSA and Q-learning, leveraging

tile coding for the approximation of the action-value function. The SARSA and Q-

learning algorithms for the simulation study are delineated in Algorithm 1 and 2. The

default parameters used in the learning algorithms are given in Table 3.2.
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Algorithm 1 SARSA Algorithm with Tile Coding

Input: Initialize action-value function weights: wi = 0 for all tile i
Output: Learned policy π

1: for each episode do
2: Initialize the environment: generate fundamental price St0

3: Initialize state St0 : inventory It0 = 0, remaining time T − t0 = T , outstanding
order sizes Q±

outtk
= 0 and outstanding quote pairs r±tk =∞

4: Choose action A (e.g., ϵ-greedy)
5: for each step tk of the episode do
6: Take action A
7: Update the environment:
8: Generate slopes of demand functions c±∆τ , c

±
∆τ,∆t, c̃

±
∆t

9: Generate reservation prices p±∆τ , p
±
∆τ,∆t, p̃

±
∆t

10: Generate Price change Stk+1
− Stk

11: Observe reward R and new state Snew

12: Choose Anew from Snew using q(Snew, a) (e.g., ϵ-greedy)
13: for each tile j that covers the state-action pair (S, A) do
14: wj ← wj + α[R + γq̂(Snew, Anew)− q̂(S,A)]
15: end for
16: S ← Snew

17: A← Anew

18: end for
19: end for
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Algorithm 2 Q-Learning Algorithm with Tile Coding

Input: Initialize action-value function weights: wi = 0 for all tile i
Output: Learned policy π

1: for each episode do
2: Initialize the environment: generate fundamental price St0

3: Initialize state St0 : inventory It0 = 0, remaining time T − t0 = T , outstanding
order sizes Q±

outtk
= 0 and outstanding quote pairs r±tk =∞

4: Choose action A (e.g., ϵ-greedy)
5: for each step tk of the episode do
6: Take action A
7: Update the environment:
8: Generate slopes of demand functions c±∆τ , c

±
∆τ,∆t, c̃

±
∆t

9: Generate reservation prices p±∆τ , p
±
∆τ,∆t, p̃

±
∆t

10: Generate Price change Stk+1
− Stk

11: Observe reward R and new state Snew

12: Choose Anew from Snew using q(Snew, a) (e.g., ϵ-greedy)
13: for each tile j that covers the state-action pair (S, A) do
14: wj ← wj + α[R + γmaxa q̂(Snew, a)− q̂(S,A)]
15: end for
16: S ← Snew

17: A← Anew

18: end for
19: end for
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Table 3.2: Default parameters for RL algorithms in Section 3.1.

Parameter Value

Number of tilings 32
Tile resolution 8
Learning rate 10−5/(Number of tilings)
Discount factor 1
Exploration rate 0.8

3.1.2 Simulation Results

Simulations were performed with different configurations of training and testing episodes,

as detailed in Table 3.3. Specifically, we considered combinations such as 2000 training

episodes and 500 testing episodes, 1000 training episodes and 250 testing episodes, and

120 training episodes with 30 testing episodes. In each testing episode, the objective

value is computed as follows

WT + ST IT − λI2T ,

serving as the performance criterion. A comparative analysis is then performed, contrast-

ing the performance of RL with that of a random strategy. The random strategy involves

the random selection of actions from the RL action space at each step.

Constrained by computational resources2, the duration of each training and testing

episode is approximately 5 minutes. This temporal constraint restricts our ability to

obtain outcomes from a more comprehensive set of training and testing episodes. The

comparative results are delineated in Table 3.3, which reveal the superior performance

2The experiments were conducted on a 2019 MacBook Pro with a 2.6 GHz 6-Core Intel Core i7
processor, 16 GB of 2667 MHz DDR4 RAM, and a 512 GB SSD. The operating system used was macOS
Ventura. The program was implemented in Python 3.7 and executed using VS Code. The experiments
were run without parallelization.
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of both RL algorithms over the random strategy. Evidently, an increase in the num-

ber of training episodes of RL algorithms correlates with improved performance. This

improvement is reflected in a larger terminal value and reduced standard deviation, in-

dicating greater robustness. The observed trend also suggests that the RL algorithms

have not reached convergence yet. However, constrained by temporal and computational

limitations, this represents the extent of our current findings. The prospect of conducting

further training and testing episodes stands as a potential avenue for future exploration

in this section.

Table 3.3: Mean and standard deviation of objective values WT + ST IT − λI2T (given in
units of 104), and average terminal inventory (given in unit of 1 share). λ = 0.0005.

Reinforcement Learning Random
Train / Test Algorithm P&L Terminal Inv. P&L Terminal Inv.

120 / 30
SARSA -9.5 (18.5) -1.93

-27.9 (15.9) -10.25
Q-Learning -3.6 (7.0) 2.42

1000 / 250
SARSA -1.1 (3.7) 1.66

-26.2 (16.4) -9.96
Q-Learning -1.4 (3.8) 1.51

2000 / 500
SARSA -0.6 (2.9) -1.33

-26.3 (16.6) -11.26
Q-Learning -0.5 (2.5) -1.37
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Chapter 4

Market Making with Running

Inventory Penalty

This chapter builds upon the work presented in [12], which offers a comprehensive anal-

ysis of the optimal policy for a HFM engaged in bid and ask LO placement. The authors

explore the strategic execution of these LOs at predetermined time intervals, aiming to

maximize profitability through efficient round trip transactions, while considering the

terminal inventory penalty. In this chapter, we extend the existing approach proposed

in [12] by incorporating a penalty associated with the running inventory throughout the

entire trading horizon. This novel approach allows for more effective management of the

market maker’s exposure to inventory risk. By integrating this running inventory penalty

framework, we enhance the market maker’s risk management capabilities and establish a

more robust framework for evaluating trading strategies.

4.1 Model Setup

For the sake of completeness and clarity, we include the following notation and details,

which are adapted from [12] and are similar to those in Chapter 2.
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As before, we assume that the market making strategy spans from time 0 to a predeter-

mined time point denoted as T > 0. Within this timeframe, the market maker strategi-

cally places bid and ask LOs simultaneously on both sides of the LOB for a specific asset.

These LOs are executed at prearranged time intervals 0 = t0 < t1 < · · · < tN < T , which

are defined in Eq. (2.1).

We also let tN+1 = T , and the set T is defined as {t0, t1, . . . , tN+1}. Adopting the

notation established in [12], all variables are defined within the context of a probability

space denoted as (Ω,P,F), which is equipped with a filtration {Ft}t∈T .

As outlined in [12], the dynamics of buy and sell MOs are captured using a framework

based on two Bernoulli processes. With a slight abuse of notation, we define 1±tk+1
to

be the same as 1̃fill±k
as defined in Eq. (2.12). Specifically, 1+tk+1

and 1−tk+1
are Bernoulli

random variables that indicate the presence or absence of at least one buy or sell MO,

respectively, within the time interval [tk, tk+1).

We make the assumption that 1+tk+1
,1−tk+1

∈ Ftk+1
, implying that these variables are mea-

surable with respect to the filtration Ftk+1
. Moreover, we consider the joint probability

distribution of 1+tk+1
and 1−tk+1

given Ftk+1
, denoted as πtk+1

(j+, j−),

P(1+tk+1
= j+,1−tk+1

= j− | Ftk+1
) = πtk+1

(j+, j−),

for j± ∈ {0, 1}, where πtk+1
: {0, 1} × {0, 1} → [0, 1]. This probability distribution πtk+1

characterizes the likelihood of specific combinations of buy and sell MOs occurring within

the time interval.
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To further explore the characteristics of its distribution, we introduce the notation π±
tk+1

to represent the marginal conditional probabilities. Specifically,

π±
tk+1

:= P(1±tk+1
= 1 | Ftk+1

).

Throughout our analysis, we assume that π+
tk+1

and π−
tk+1

are both strictly positive.

Remark 4.1.1. By definition of marginal probabilities, we have

π+
tk+1

= πtk+1
(1, 1) + πtk+1

(1, 0),

π−
tk+1

= πtk+1
(1, 1) + πtk+1

(0, 1).

The following relation between πtk+1
(1, 1) and π±

tk+1
holds for each tk+1:

(π+
tk+1

+ π−
tk+1
− 1) ∨ 0 ≤ πtk+1

(1, 1) ≤ π+
tk+1
∧ π−

tk+1
. (4.1)

The ask LO is strategically placed at time tk using the available information Ftk+1
at

the price level atk ∈ Ftk+1
. Similarly, the bid LO is placed at time tk at a price level

btk ∈ Ftk+1
. We reparameterize atk and btk as follows:

atk = Stk + L+
tk
, btk = Stk − L−

tk
.

Here, L±
tk
∈ Ftk+1

represent the market maker’s spreads, while Stk ∈ Ftk+1
denotes the

fundamental price of the asset at time tk. Further details regarding the assumptions

governing the fundamental price process {Stk}k=0,...,N+1 will be provided later in the

analysis.
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It is important to note that the LOs placed at time tk may experience full or partial

execution within the time interval [tk, tk+1) only if at least one MO arrives during that

specific period. Following [12], the number of filled shares on the bid side during the

interval [tk, tk+1) is assumed to be determined by

Q−
tk+1

≜ 1−tk+1
c−tk+1

[
btk − (Stk − p−tk+1

)
]
= 1−tk+1

c−tk+1
(p−tk+1

− L−
tk
).

The quantity of executed shares on the buy side during the interval [tk, tk+1) is influenced

by the positive random variables c−tk+1
and p−tk+1

, both of which belong to the information

set Ftk+1
. We will specify their distribution in Assumption 4.1.1.

When no sell MO arrives within the interval [tk, tk+1), the indicator variable 1−tk+1
takes

a value of 0, resulting in no executions on the buy side. Here, p−tk+1
is defined such that

Stk − p−tk+1
represents the lowest price at which all sell MOs arriving during [tk, tk+1) can

be executed. In other words, the bid LOs placed by the HFT will not be executed during

[tk, tk+1) if the price falls below Stk − p−tk+1
. We refer to p−tk+1

as the reservation price for

sellers.

The demand slope c−tk+1
quantifies the rate at which the number of executed shares on the

bid order increases as the bid price btk approaches the fundamental price Stk . It captures

the sensitivity of the HFM’s bid order to changes in price, reflecting the trading behavior

in response to the proximity to the fundamental value.

Similarly, the number of shares filled by the HFM’s ask LO during [tk, tk+1) is expressed

as

Q+
tk+1

≜ 1+tk+1
c+tk+1

[
(Stk + p+tk+1

)− atk
]
= 1+tk+1

c+tk+1
(p+tk+1

− L+
tk
).
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Next, we state the main assumptions on c±· and p±· .

Assumption 4.1.1 (General Properties of (c±· , p
±
· )). For k = 0, . . . , N , we have

1. (c±· , p
±
· ) are Ftk+1

−measurable,

2. the conditional distribution of (c+tk+1
, p+tk+1

, c−tk+1
, p−tk+1

) given (Ftk ,1
+
tk+1

,1−tk+1
) does

not depend on k and is nonrandom,

3. (c+tk+1
, p+tk+1

) and (c−tk+1
, p−tk+1

) are independent given (Ftk ,1
+
tk+1

,1−tk+1
).

Next, we introduce some further notation related to (c±· , p
±
· ). For a, b ∈ {0, 1, 2},

µ±
capb

:= E
[
(c±tk+1

)a(p±tk+1
)b | Ftk ,1

±
tk+1

= 1
]
. (4.2)

In order to incorporate the price impact resulting from liquidating a significant net po-

sition using MOs at the end of the trading horizon, we introduce a penalty term in the

objective function that accounts for both the running inventory and the terminal inven-

tory. This penalty term captures the adverse effects on the market caused by the HFM’s

efforts to unwind a substantial position.

The primary objective of the HFM is to maximize the following expression:

max
(L+

. ,L−
. )∈A

E
[
WT + ST IT − λI2T − ϕ

N+1∑
j=k+1

I2tj
]
, (4.3)

whereA represents the set of all F -adapted processes. Specifically, A is a set that includes

all processes whose values at each time are determined by the information available up

to that time, given by the sigma-algebra F ; and inventory penalty parameters λ, ϕ ≥ 0.

Within this context, WT signifies the cash holdings of the market maker, while IT denotes
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the inventory maintained by the market maker at the conclusion of the period [0, T ].

Additionally, Itj represents the running inventory at time tj, where tj is a specific point

within the trading horizon. This running inventory captures the evolving net position

held by the market maker throughout the course of trading.

In Equation (4.3), the term λI2T serves as the penalty for the terminal inventory. This

penalty component reflects the price impact or cost associated with liquidating a signifi-

cant net position using MOs at the end of the trading horizon.

Moreover, the term ϕ
∑N+1

j=k+1 I
2
tj
constitutes the penalty for the running inventory. This

penalty term captures the adverse effects arising from maintaining a running inventory

over the trading horizon. The parameter ϕ scales the running inventory penalty, influenc-

ing the weight assigned to the running inventory component in the overall objective. It is

crucial to recognize that holding inventory can introduce inherent risks and uncertainties.

The market maker is exposed to potential price fluctuations and market movements that

may adversely impact the profitability of her inventory holdings. Therefore, it becomes

imperative for the market maker to diligently assess the trade-off between holding inven-

tory and the associated risks it entails. By striking the right balance between minimizing

inventory and maximizing trading opportunities, the market maker can effectively navi-

gate the trade-offs and make informed decisions that align with her overarching goal of

maximizing expected terminal wealth.

By incorporating both the penalty for terminal inventory and the penalty for running in-

ventory within the objective function, the model appropriately accounts for the potential

price impact of liquidating a large net position at the end of the trading horizon, as well

as the ongoing impact of maintaining a running inventory throughout the trading period.
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Drawing from the established notation employed by [12], the cash holding and inventory

processes, {Wtk} and {Itk}, respectively, satisfy the following equations:

Wtk+1
= Wtk + atkQ

+
tk+1
− btkQ

−
tk+1

= Wtk + (Stk + L+
tk
)1+tk+1

c+tk+1
(p+tk+1

− L+
tk
)− (Stk − L−

tk
)1−tk+1

c−tk+1
(p−tk+1

− L−
tk
)

(4.4)

and

Itk+1
= Itk −Q+

tk+1
+Q−

tk+1

= Itk − 1+tk+1
c+tk+1

(p+tk+1
− L+

tk
) + 1−tk+1

c−tk+1
(p−tk+1

− L−
tk
),

(4.5)

where Wt0 = 0 and It0 = 0.

4.2 Analytical Optimal Control

At time tk, the value function of the control problem described in Eq. (4.3) is denoted

by Vtk . It is defined as the maximum expected value obtained by optimizing the control

variables (L+
. , L

−
. ) within the set A. The value function can be expressed as follows:

Vtk = sup
(L+

. ,L−
. )∈A

E
[
WT + ST IT − λI2T − ϕ

N+1∑
j=k+1

I2tj

]
,

By applying the dynamic programming principle, we can establish a recursive relationship

satisfied by the value function. This relationship, known as the Bellman equation, is

given by:

Vtk = sup
(L+

. ,L−
. )∈A

E
[
Vtk+1

− ϕI2tk+1
| Ftk

]
. (4.6)
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4.2.1 Optimal Strategy Under a Martingale Fundamental Price

Process

In this subsection, we assume that the fundamental price Stk ∈ Ftk of the asset is a

martingale:

E[Stk+1
| Ftk ] = Stk , k = 0, . . . , N. (4.7)

Furthermore, we assume conditional independence between Stk+1
− Stk and

(1+tk+1
,1−tk+1

, c+tk+1
, p+tk+1

, c−tk+1
, p−tk+1

), given Ftk .

We begin the analysis by introducing an ansatz for the value function Vtk .

Vtk = v (tk, Stk ,Wtk , Itk) = Wtk + αtkI
2
tk
+ StkItk + htkItk + gtk , (4.8)

where α : T → R, h : T → R, and g : T → R are deterministic functions defined on the

time grid T = {t0, t1, . . . , tN+1}. By plugging the ansatz into the Bellman equation (4.6),

we have the following iterative representation for the value function

Wtk + αtkI
2
tk
+ StkItk + htkItk + gtk

= sup
(L+

tk
,L−

tk
)∈A

E
[
Wtk+1

+ αtk+1
I2tk+1

+ Stk+1
Itk+1

+ htk+1
Itk+1

+ gtk+1
− ϕI2tk+1

| Ftk

]
.

(4.9)

Since VT = WT + ST IT − λI2T , we obtain the terminal conditions αT = −λ, gT = 0, and

hT = 0.

The optimal control can be determined by solving Eq. (4.9) in a backward fashion. The

proposition below provides the expression for the maximizing point (L+,∗
tk

, L−,∗
tk

). A similar

result was obtained in [12] in the absence of the running inventory penalization.
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Proposition 4.2.1 (Optimal Controls). The optimal controls that solve the optimization

problem (4.9) using the ansatz (4.8) and state dynamics (4.4)-(4.5) are given by

L+,∗
tk

= (1)A+
tk
Itk +

(2)A+
tk
+ (3)A+

tk
,

L−,∗
tk

= −(1)A−
tk
Itk −

(2)A−
tk
+ (3)A−

tk
,

(4.10)

for k = 0, . . . , N . The coefficients above are specified as

(1)A±
tk
=

β±
tk
(αtk+1

− ϕ)

γtk
, (2)A±

tk
=

β±
tk
htk+1

2γtk
,

(3)A±
tk
=

π∓
tk+1

2γtk

(
(αtk+1

− ϕ)µ∓
c2 − µ∓

c

) [
π±
tk+1

(µ±
cp − 2(αtk+1

− ϕ)µ±
c2p)

+ 2(αtk+1
− ϕ)πtk+1

(1, 1)µ±
c µ

∓
cp

]
+ πtk+1

(1, 1)
(αtk+1

− ϕ)

2γtk
µ+
c µ

−
c

[
π∓
tk+1

(µ∓
cp − 2(αtk+1

− ϕ)µ∓
c2p)

+ 2(αtk+1
− ϕ)πtk+1

(1, 1)µ∓
c µ

±
cp

]
,

(4.11)

and

γtk :=
[
πtk+1

(1, 1)(αtk+1
− ϕ)µ+

c µ
−
c

]2
− π+

tk+1
π−
tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

) (
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
, (4.12)

β±
tk
:= π+

tk+1
π−
tk+1

µ±
c

(
(αtk+1

− ϕ)µ∓
c2 − µ∓

c

)
− π∓

tk+1
πtk+1

(1, 1)(αtk+1
− ϕ)µ±

c

(
µ∓
c

)2
. (4.13)

In the expressions above, α : T → R and h : T → R are specified using the following

backward equations: αT = −λ, hT = 0 at T = tN+1 and, for k = 0, . . . , N :

αtk = αtk+1
− ϕ+

∑
δ=±

πδ
tk+1

[(
(αtk+1

− ϕ)µδ
c2 − µδ

c

) (
(1)Aδ

tk

)2
+ 2(αtk+1

− ϕ)µδ
c

(
(1)Aδ

tk

)]
+ 2(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c

(
(1)A+

tk
(1)A−

tk

)
(4.14)
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and

htk =htk+1
+
∑
δ=±

πδ
tk+1

{
2
(
(αtk+1

− ϕ)µδ
c2 − µδ

c

) [
(1)Aδ

tk

(
δ(3)Aδ

tk
+ (2)Aδ

tk

)]
+ 2(αtk+1

− ϕ)µδ
c

(
δ(3)Aδ

tk
+ (2)Aδ

tk

)
− 2(αtk+1

− ϕ)
(
δµδ

cp

)
+
(
δ(1)Aδ

tk

) (
µδ
cp + δhtk+1

µδ
c − 2(αtk+1

− ϕ)µδ
c2p

)}
− 2(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c

[
(1)A+

tk

(
(3)A−

tk
− (2)A−

tk

)
− (1)A−

tk

(
(2)A+

tk
+ (3)A+

tk

)
+

µ+
cp

µ+
c

(
(1)A−

tk

)
−

µ−
cp

µ−
c

(
(1)A+

tk

) ]
.

(4.15)

Upon comparing our findings with Proposition 1 in [12], we observe a similarity in the

structure of the optimal controls. However, a notable distinction arises due to the in-

corporation of the running inventory penalty. In our case, the presence of the penalty

parameter ϕ modifies the expression αtk+1
to αtk+1

− ϕ. This adjustment allows us to

effectively manage the running inventory by accounting for the penalty at each trading

interval when updating αtk . Consequently, our approach facilitates enhanced control over

the inventory dynamics. Lemma 4.2.2 shows the negativity of αtk . This characteristic of

αtk serves as a crucial element in the subsequent proofs of the following theorems and

propositions.

Lemma 4.2.2. The quantity αtk defined in Eq. (4.14) is negative for every tk.

In contrast to Lemma 1 presented in [12], we observe that the claim of strict decreasing

behavior of αtk with respect to tk does not hold. The monotonic behavior of the modified

αtk , as defined in Eq. (4.14), is contingent upon the value of the parameter ϕ, as illustraded

in Figure 4.1. Specifically, when ϕ takes on small values, αtk exhibits a strict decreasing

trend with tk. Conversely, for larger values of ϕ, αtk demonstrates a strict increasing

pattern with tk.
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Figure 4.1: Paths of αtk for different values of running inventory penalty ϕ under symmet-
ric market conditions. The agent acts every one second from 0 to 19800 seconds. Plots
are generated with the following parameters: λ = 0.0005, µ±

c = 100, µ±
p = 5, µ±

cp = 500,
µ±
c2 = 1× 104, µ±

c2p = 5× 104, π+
tk
= π−

tk
≡ 0.2 and πtk(1, 1) ≡ 0.1.

Remark 4.2.1. Through the solution of the Bellman Equation (4.9) following the ap-

proach outlined in Proposition 4.2.1, we are able to derive an explicit expression for the

coefficient gtk in the value function given by Eq. (4.8). This computation enables us to

obtain the value of gtk for each time step k = 0, 1, . . . , N by means of a backward iteration

process.

gtk = gtk+1
+
∑
δ=±

πδ
tk+1

[ (
(αtk+1

− ϕ)µδ
c2 − µδ

c

) (
(3)Aδ

tk
+
(
δ(2)Aδ

tk

))2
+ (αtk+1

− ϕ)µδ
c2p2 −

(
δhtk+1

)
µδ
cp

+
(
µδ
cp +

(
δhtk+1

)
µδ
c − 2(αtk+1

− ϕ)µδ
c2p

) (
(3)Aδ

tk
+
(
δ(2)Aδ

tk

)) ]
− 2(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c

[ (
(2)A+

tk
+ (3)A+

tk

) (
(3)A−

tk
− (2)A−

tk

)
+

µ+
cpµ

−
cp

µ−
c µ

+
c

−
µ+
cp

µ+
c

(
(3)A−

tk
− (2)A−

tk

)
−

µ−
cp

µ−
c

(
(2)A+

tk
+ (3)A+

tk

) ]
,

(4.16)

with gT = 0.

The admissibility of the control pair (L+,∗
tk

, L−,∗
tk

), as defined in Proposition 4.2.1, can

be formally established. This admissibility condition is ensured by the property that
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Itk ∈ Ftk , and by the deterministic nature of the functions (1)A±
tk
, (2)A±

tk
, (3)A±

tk
. Up to this

point, we have obtained a preliminary solution to the control problem (4.3) that satisfies

the necessary condition specified by the Bellman equation (4.9). However, in order to

establish its optimality, we present a verification theorem that rigorously confirms the

optimality of the control pair (L+,∗
tk

, L−,∗
tk

) as the solution to the original control problem.

Theorem 4.2.3 (Verification Theorem). The optimal value function Vtk for the control

problem (4.3) can be expressed as:

Vtk = v(tk, Stk ,Wtk , Itk),

where, for tk ∈ T ,

v (tk, s, w, i) = w + αtki
2 + si+ htki+ gtk ,

The coefficients αtk and htk are determined according to Proposition 4.2.1, while gtk fol-

lows the expression given by Eq. (4.16). The control pair (L+,∗
tk

, L−,∗
tk

) given in Proposition

4.2.1 represents an optimal control strategy for the control problem (4.3).

The proof of Theorem 4.2.3 closely mirrors the derivation presented in Appendix A.3 of

[12]. Interested readers are encouraged to consult that reference for further details.
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4.2.2 Optimal Strategy with a General Adapted Fundamental

Price Process

In this subsection, we relax the previous assumption of the fundamental price pro-

cess {Stk}tk∈T being a martingale and instead consider a more general adapted pro-

cess. Additionally, we introduce the assumption that, conditional on Ftk , the increments

{Stj+1
− Stj}j≥k and the variables (1+tk+1

,1−tk+1
, c+tk+1

, p+tk+1
, c−tk+1

, p−tk+1
) are independent.

To facilitate our analysis, we introduce the notations:

∆tk := E[Stk+1
− Stk | Ftk ].

and

∆tk
tj := E[∆tj | Ftk ] = E[Stj+1

− Stj | Ftk ], j ≥ k,

The quantity ∆tk represents the HFM’s forecast regarding the change in the asset price

during the interval [tk, tk+1), based on the available information at time tk, while ∆tk
tj

represents the conditional expectation of the future price change in [tj, tj+1).

The incorporation of these forecasted price changes significantly enhances the flexibility

of our model, enabling us to capture more realistic and diverse price dynamics. By consid-

ering both the HFM’s immediate forecast ∆tk and the conditional expectations ∆tk
tj over

different time intervals, our framework becomes more comprehensive and adaptable. This

broader perspective allows us to examine a wide range of scenarios and provides a robust

foundation for studying the optimal control problem in a dynamic market environment.

The following theorem presents the optimal control strategy for the control problem (4.3)

when considering a general fundamental price process. It highlights the impact of price
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jump forecasts on the optimal placement spreads, contrasting it with the solution derived

under the assumption of a martingale price process, as illustrated in Eq (4.10).

By relaxing the martingale price assumption, the theorem unveils the adjustments re-

quired in the optimal placement spreads to account for price jump forecasts. These

forecasts introduce additional information that significantly influences the control strat-

egy. Comparing the derived solution under the martingale assumption with the optimal

control obtained in the general case sheds light on the changes in optimal behavior re-

sulting from incorporating price jump forecasts into the model. The theorem provides

valuable insights into the dynamic nature of the optimal control problem, capturing the

impact of non-martingale price dynamics on the decision-making process.

Theorem 4.2.4 (Optimal Control with General Adapted Fundamental Price Process).

The solution to the Bellman equation (4.9) with a general adapted fundamental price

process are given, for k = 0, 1, . . . , N , by

L̃+,∗
tk

= L+,∗
tk

+
β+
tk

2γtk
∆tk +

(
β+
tk

2γtk

) N∑
j=k+1

j∏
ℓ=k+1

ξℓ∆
tk
tj ,

L̃−,∗
tk

= L−,∗
tk
−

β−
tk

2γtk
∆tk −

(
β−
tk

2γtk

) N∑
j=k+1

j∏
ℓ=k+1

ξℓ∆
tk
tj ,

(4.17)

where L±,∗
tk

is the optimal control with a martingale price process as derived in Proposition

4.2.1. β±
tk
and γtk are the deterministic sequences consistent with Eq.(4.13)-(4.12), and

the quantity ξk is defined as:

ξk = 1 +
αtk+1

− ϕ

γtk

∑
δ=±

πδ
tk+1

βδ
tk

[
βδ
tk

γtk

(
(αtk+1

− ϕ)µδ
c2 − µδ

c

)
+ 2µδ

c

]
+ 2

(αtk+1
− ϕ)2

γ2
tk

πtk+1
(1, 1)µ+

c µ
−
c β

+
tk
β−
tk
.

(4.18)
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Remark 4.2.2. In the Appendix B.1, we demonstrate that when the fundamental price

follows a general adapted process, the proposed ansatz for the value function Vtk is given

by:

Vtk = v (tk, Stk ,Wtk , Itk) := Wtk + αtkI
2
tk
+ StkItk + h̃tkItk + g̃tk . (4.19)

Here, α : T → R is a deterministic function, same as the case of the martingale price as-

sumption in (4.14). Additionally, {h̃tk}tk∈T and {g̃tk}tk∈T are dependent on {∆tk ,∆
tk
tj }j≥k

and adapted to the filtration {Ft}t∈T . The specific expressions for h̃ and g̃ can be found

in Eqs. (B.17)-(B.18), utilizing the notation provided in (B.2). The proof of the corre-

sponding verification theorem follows a similar approach to the proof of Theorem 4.2.3.

The optimal placement strategies at time tk, considering a non-martingale dynamics for

the fundamental price process, can be expressed as follows:

ã∗tk = Stk + L̃+,∗
tk

, b̃∗tk = Stk − L̃−,∗
tk

. (4.20)

Here, ã∗tk represents the price for the ask LO, while b̃∗tk represents the price for the bid LO.

Equation (4.17) emphasizes that we can decompose the task of determining the optimal

trading strategy into two subproblems.

First, we compute the recursive expressions (4.11)-(4.15). This computation is performed

“offline” at the onset of each trading day. In other words, all the parameters required to

calculate L±,∗
tk

are predetermined at the beginning of the day.

Second, we address the forecasting problem by determining {∆tk
tj }j=k,...,N and calculating

L̃+,∗
tk

using the expression for L+,∗
tk

as given in Eq. (4.17). This step is carried out “online”

at each time point tk. Consequently, under a general adapted fundamental price process,
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the optimal strategy L̃+,∗
tk

incorporates the perspectives of the HFM regarding changes in

the fundamental based on the information available to her at time tk.

Next proposition provides necessary conditions for a positive bid-ask spread of the HFM’s

optimal placement.

Proposition 4.2.5 (Conditions for a optimal Positive Spread). Under both martingale

and non-martingale price processes, the optimal placement strategy yields positive spreads

at all times (i.e., atk > btk , for all k = 0, . . . , N), provided that the following three

conditions hold:

1. The first and second conditional moments of c± defined in Eq. (4.2) satisfy

µc := µ+
c = µ−

c , µc2 := µ+
c2 = µ−

c2 . (4.21)

2. Buy and sell MOs arrive with the same probability:

π+
tk+1

= π−
tk+1

. (4.22)

3. The conditional expectations of (cp)± and (c2p)± defined in Eq. (4.2) satisfy

µ±
cp = µ±

c µ
±
p , µ±

c2p = µ±
c2µ

±
p . (4.23)

The conditions presented as (4.21) and (4.22) establish a symmetric market framework.

Specifically, under the condition (4.21), the mean and variance of the bid demand slope

are identical to those on the ask side. Furthermore, condition (4.22) posits that the

arrival probabilities of buy and sell MOs are equal within each time interval [ttk , tk+1).
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Additionally, condition (4.23) assumes that the demand slope and the reservation price

are uncorrelated. These assumptions are supported by empirical evidence.

4.3 Properties of the Optimal Placement Strategies

In this section, we will discuss the behavior of the optimal placement strategies and their

sensitivities to model parameters, such as the arrival rate πtk(1, 1), the inventory level I,

and the penalty λ on the terminal inventory.

4.3.1 Sensitivity to Simultaneous Arrival Probability

Case πtk(1, 1) ≡ 0. We first focus on the case of πtk(1, 1) ≡ 0, which means that

only one type of MOs, either buy or sell, would arrive during each subinterval [tk, tk+1).

Denote the optimal ask and bid price under this condition as ã∗,0tk
and b̃∗,0tk

, respectively.

Following from Eq.(4.20), ã∗,0tk
and b̃∗,0tk

are given by:

ã∗,0tk
= Stk +

L̃+,∗,0
tk︷ ︸︸ ︷

(α0
tk+1
− ϕ)µ+

c

µ+
c − (α0

tk+1
− ϕ)µ+

c2

Itk +
µ+
cp − 2(α0

tk+1
− ϕ)µ+

c2p

2[µ+
c − (α0

tk+1
− ϕ)µ+

c2 ]
+

(∆tk + h̃0
tk
)µ+

c

2[µ+
c − (α0

tk+1
− ϕ)µ+

c2 ]
,

(4.24)

b̃∗,0tk
= Stk +

−L̃−,∗,0
tk︷ ︸︸ ︷

(α0
tk+1
− ϕ)µ−

c

µ−
c − (α0

tk+1
− ϕ)µ−

c2

Itk −
µ−
cp − 2(α0

tk+1
− ϕ)µ−

c2p

2[µ−
c − (α0

tk+1
− ϕ)µ−

c2 ]
+

(∆tk + h̃0
tk
)µ−

c

2[µ−
c − (α0

tk+1
− ϕ)µ−

c2 ]
,

(4.25)
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where

α0
tk
= (α0

tk+1
− ϕ) +

∑
δ=±

πδ
tk+1

(
(α0

tk+1
− ϕ)µδ

c

)2
µδ
c − (α0

tk+1
− ϕ)µδ

c2

,

h̃0
tk
= h0

tk
+

N∑
j=k+1

j∏
ℓ=k+1

ξ0ℓ∆
tk
tj ,

and h0
tk
, ξ0k are given by Eq. (4.15) and Eq. (4.18) respectively, setting πtk+1

(1, 1) = 0

therein.

Remark 4.3.1 (A Weaker Condition For a Positive Spread (ã∗,0tk
> b̃∗,0tk

)). In the case of

πtk(1, 1) ≡ 0, only the first symmetry condition (4.21) in Proposition 4.2.5 is needed to

guarantee a positive spread:

ã∗,0tk
− b̃∗,0tk

= L̃+,∗,0
tk

+ L̃−,∗,0
tk

=
µ+
cp − 2(α0

tk+1
− ϕ)µ+

c2p

2
(
µ+
c − (α0

tk+1
− ϕ)µ+

c2

) +
µ−
cp − 2(α0

tk+1
− ϕ)µ−

c2p

2
(
µ−
c − (α0

tk+1
− ϕ)µ−

c2

) > 0.

It follows from α0
tk
< 0 as shown in Lemma 4.2.2.

The inventory level affects prices of the HFM’s LOs through the second terms in

Eqs.(4.24)-(4.25) (i.e.,
(α0

tk+1
−ϕ)µ±

c

µ±
c −(α0

tk+1
−ϕ)µ±

c2

Itk ). This term determines the shadow cost of

inventory at time tk. The coefficient of Itk can be written as

(α0
tk+1
− ϕ)µ±

c

µ±
c − (α0

tk+1
− ϕ)µ±

c2

=
(α0

tk+1
− ϕ)

1− (α0
tk+1
− ϕ)µ±

c − α0
tk+1

Var
(
c±tk+1

| Ftk

)
/µ±

c

.

Case πtk(1, 1) ̸≡ 0. The occurrence of simultaneous arrivals of buy and sell MOs during

a single time step, denoted as πtk(1, 1), is generally low in high-frequency trading settings,

such as intervals of 1 second or less. In our empirical analysis presented in a later section,

we have observed that πtk(1, 1) is approximately 0.05 for a trading period of 1 second.

However, this situation changes when the trading frequency is reduced, such as in the case

of intervals of 5 seconds or longer. In such scenarios, it becomes crucial to account for the
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possibility of joint arrivals. To further explore the behavior of optimal placement under

the conditions outlined in (4.21)-(4.23), along with additional conditions, we present the

following corollary, which provides valuable insights.

Corollary 4.3.1. Under Assumptions (4.21)-(4.22), the optimal spreads are

• invariant to the local drifts {∆tk}k=0,...,N ;

• independent on the inventory level.

Suppose that, in addition to (4.21)-(4.22), the condition (4.23) as well as the following

conditions hold:

µ2
c = µc2 , π±

tk
≡ π±, πtk(1, 1) ≡ π(1, 1), (4.26)

for some constants π± ∈ (0, 1) and π(1, 1) ∈ [(π+ + π− − 1) ∨ 0, π+ ∧ π−]. Then,

• the monotonicity of the optimal spreads over time is determined by the value of ϕ.

And if π(0, 1) = π(1, 0) = 0, the optimal spreads remain constant throughout the

trading horizon, exhibiting a flat behavior.

• the optimal spreads display a decreasing trend, when considering π(1, 1) at a specific

time point.

Although the HFM’s inventory level and price drift play a role in determining the optimal

bid and ask prices, it is interesting to note that the difference between the optimal ask

and bid prices, also known as the optimal spread, remains unaffected by these factors.

In other words, the spread does not depend on the specific inventory level or price drift

considered.
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The optimal spread exhibits distinct behavior depending on the value of the running

inventory penalty, ϕ, as depicted in Figure (4.2). When ϕ is small, resulting in a relatively

mild penalty for maintaining a running inventory, the optimal spread displays a non-

decreasing pattern over time, escalating notably towards the conclusion of the trading

horizon in response to penalties on terminal inventory. A broader spread empowers a

HFM to regulate her inventory by executing more pronounced trades on a specific side

of the LOB. The augmented spread accommodates the increased likelihood of round-trip

transactions between consecutive actions, particularly as π(1, 1) rises.

Conversely, when ϕ attains a large value, signifying a substantial penalty on running

inventory, the optimal spread demonstrates a non-increasing trend with time. Towards

the termination of the trading horizon, it experiences a marked decline. The HFM,

faced with a higher penalty for maintaining inventory positions, opts for a more risk-

averse stance, reflected in the larger the bid-ask spread from the beginning. As discussed

earlier, a wider spread empowers the HFM to exercise greater control over her inventory

level. While the bid-ask spread experiences a significant decrease towards the end of the

trading horizon, it remains notably larger compared to scenarios with a smaller ϕ.

4.3.2 Sensitivity to Inventory Level

In this section, we perform a sensitivity analysis to examine the impact of inventory levels

Itk on the optimal prices. Specifically, we consider the scenario where both buy and sell

MOs arrive simultaneously (i.e., π(1, 1) > 0). The following corollary investigates the

relationship between inventory levels and the monotonic behavior of the optimal prices.

It sheds light on how the prices respond to changes in inventory.
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Figure 4.2: Optimal bid-ask spread for different values of running inventory penalty
ϕ under symmetric market conditions. The agent’s actions are executed every second,
spanning from 0 to 19800 seconds. The plots are generated based on specific parameters
ensuring the fulfillment of Conditions (4.21)-(4.23) and (4.26). Specifically, we set λ =
0.0005, µ±

c = 100, µ±
p = 5, µ±

cp = 500, µ±
c2 = 1 × 104, µ±

c2p = 5 × 104, π+
tk

= π−
tk
≡ 0.2.

π(1, 1) ranges from 0 to π±.

Corollary 4.3.2. The optimal ask price ã∗tk and the bid price b̃∗tk as defined in Eq. (4.20),

are strictly decreasing with inventory Itk .

Corollary 4.3.2 underscores the persistence of the decreasing characteristic in optimal

prices concerning inventory, irrespective of the specific value assigned to ϕ. However, the

parameter ϕ does exert influence on the behavior of the ask/bid spread. In instances

where ϕ is negligible or equal to zero, and for a positive inventory level, both bid and ask

prices undergo a decremental adjustment, facilitating the orderly sale of the HFM shares.

Conversely, when the HFM holds a negative inventory, there is an inclination to elevate

bid and ask prices, a strategic move to procure additional shares.

Contrarily, in scenarios where ϕ assumes a relatively larger value, the observed behavior

is inverted. For a positive inventory, bid and ask prices experience an upward adjustment,

aimed at encouraging share sales. Similarly, in the case of a negative inventory, the HFM

opts to lower bid and ask prices, aligning with a strategy focused on accumulating more

shares.
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In Figure 4.3, the dynamics of optimal bid and ask spreads are illustrated over the final

500 seconds within a 5.5-hour trading interval, considering a spectrum of inventory levels

from -1000 to 1000. As in Figure 4.3(a)-(b), when ϕ is small or zero, in accordance with

Eqs. (4.24)-(4.25), both optimal ask and bid spreads consistently hover around µ+
p /2 and

µ−
p /2, respectively, for the majority of the trading period. This observation holds true

irrespective of the specific inventory level.

Nevertheless, as the terminal time approaches, the influence of inventory levels on the

optimal bid and ask spread becomes more pronounced. Figure 4.3 reveals two discernible

strategies contingent on varying inventory levels:

• For low inventory levels (e.g., between -250 to 250 shares), both ask and bid spreads

exhibit an increasing trend over time. Consequently, both selling and buying activ-

ities are subdued as the trading period concludes. This approach enables the HFM

to sustain a low inventory level until the closing moments.

• Conversely, in the scenario of highly positive inventory levels (e.g., surpassing 250

shares), the ask spread adopts a decreasing trajectory with time. This pattern

reflects the HFM’s heightened inclination to sell more shares as time progresses.

Similarly, if the inventory level is markedly negative (e.g., falling below -250 shares),

the bid spread decreases over time.

When ϕ assumes a large value, as illustrated in Figure 4.3(c), the following observations,

contrary to the earlier scenario, are noted:

• For low inventory levels (e.g., ranging from -250 to 250 shares), both ask and bid

spreads exhibit a decreasing trend over time. Notably, this decrease is from a

much higher spread compared to the low ϕ value case. Despite the continuous
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decrease, the spreads remain higher than those observed for the low ϕ value case.

Consequently, both selling and buying activities are restrained as the trading period

concludes, allowing the HFM to maintain a low inventory level until the closing

moments.

• Conversely, in the case of highly positive inventory levels (e.g., exceeding 250

shares), the ask spread follows an increasing trajectory with time. However, this

increase is from a much lower spread compared to the low ϕ value case. Even with

the overall increase, the spreads remain lower than those observed for the low ϕ

value case. This pattern signifies the HFM’s heightened inclination to sell more

shares as time progresses. Similarly, if the inventory level is significantly negative

(e.g., falling below -250 shares), the bid spread increases over time.
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Figure 4.3: Optimal spreads in the last 500-seconds with various inventory levels for
different values of ϕ. The agent’s actions are executed every second, spanning from 0
to 19800 seconds. The plots are generated based on specific parameters ensuring the
fulfillment of Conditions (4.21)-(4.23) and (4.26). Specifically, we set λ = 0.0005, µ±

c =
100, µ±

p = 5, µ±
cp = 500, µ±

c2 = 1 × 104, µ±
c2p = 5 × 104, π+

tk
= π−

tk
= 0.2, π(1, 1) = 0 and

∆tk = 0 for k = 0, . . . , N .
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(c) ϕ = 1× 10−3

Figure 4.3: Optimal spreads in the last 500-seconds with various inventory levels for
different values of ϕ. (cont.)
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4.3.3 Sensitivity to Terminal Inventory Penalty

In this section, we explore the relationship between the monotonicity of the optimal

bid and ask spread and the inventory level over time. Specifically, we examine how

the monotonic behavior changes as the inventory level varies. We provide an analytical

expression for the inventory threshold and investigate the impact of different terminal

inventory penalty levels and π(1, 1) values on the monotonicity of the optimal bid and

ask spread with time. The following corollary focuses on the scenario of πtk+1
(1, 1) and

provides further insights into the relationship. There are similar results in [12].

Corollary 4.3.3. Under the following assumptions:

• the market is symmetric, i.e., conditions (4.21)-(4.23) of the Proposition 4.2.5 hold

and that µp := µ+
p = µ−

p ,

• π(1, 1) = 0, i.e., only one type of MOs can arrive during each subinterval,

• the fundamental price is a martingale process,

there exists a threshold for the inventory level,

Ī± = ±µc2µp

2µc

,

such that the following statements hold for any penalty level λ > 0:

• When the inventory level Itk = Ī+(Ī−), the optimal ask (bid) spread stays at Stk +

µp/2(Stk − µp/2) as time goes to T ;

• When the inventory level Itk ∈ (Ī−, Ī+), the optimal ask and bid spreads increase

as time goes to T ;
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• When the inventory level Itk > Ī+(Itk < Ī−), the optimal ask (bid) spread decreases,

while the optimal bid (ask) spread increases as time goes to T .

When there is no terminal inventory penalty, the optimal bid and ask spreads maintain a

consistent level throughout the trading day, irrespective of the inventory level, as shown

in Figure 4.4.

As the terminal inventory penalty increases, a HFM with a positive inventory position

consistently positions bid LOs deeper to deter purchases. On the ask side, three strategies

are viable: (1) placing ask LOs deeper into the book, (2) positioning ask LOs closer to

Stk , and (3) maintaining the ask spread unchanged from its current value. According to

Corollary 4.3.3, the selection among these strategies hinges on the relationship between

the current inventory level Itk and the inventory threshold value Ī+.

The left panel of Figure 4.4 depicts optimal placements for positive inventory levels

with thresholds Ī± = ±250. For an inventory position below 250 shares, the HFM

strategically positions both bid and ask orders deeper into the book as time approaches

T to maintain the current inventory level. The magnitude of the penalty on the terminal

inventory dictates the depth of LO placement on both sides of the book. In the left

panel of the middle row in Figure 4.4, when the inventory level equals the threshold,

the optimal bid delves even deeper into the book at the next time step, while the ask

spread remains constant, regardless of the penalty’s magnitude. For inventory levels

surpassing the threshold, the HFM narrows the ask spread to execute more ask LOs

and, consequently, reduce the inventory level. The higher the inventory, the closer she

positions the ask quote to the price Stk . Analogous analyses are applicable to negative

inventory positions, as demonstrated in the right panel of Figure 4.4.
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Figure 4.4: Optimal trading strategies in the final 100 seconds: impact of inventory,
terminal inventory penalty λ, and running inventory penalty ϕ. The agent’s actions are
executed every second, spanning from 0 to 19800 seconds. The plots are generated based
on specific parameters ensuring the fulfillment of Conditions (4.21)-(4.23) and (4.26).
Specifically, µ±

c = 100, µ±
p = 5, µ±

cp = 500, µ±
c2 = 1× 104, µ±

c2p = 5× 104, π+
tk
= π−

tk
≡ 0.2.

π(1, 1) = 0 and ∆tk = 0 for k = 0, . . . , N .
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Figure 4.4: Optimal trading strategies in the final 100 seconds: impact of inventory,
terminal inventory penalty λ, and running inventory penalty ϕ. (cont.)
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Figure 4.4: Optimal trading strategies in the final 100 seconds: impact of inventory,
terminal inventory penalty λ, and running inventory penalty ϕ. (cont.)
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The optimal strategies exhibit significant differences when joint arrivals are permitted.

The insights from Figure 4.5 underscore that when πtk(1, 1) > 0, there exists no specific

inventory threshold yielding a constant optimal bid or ask spread across various penalty

levels, irrespective of the value of running inventory penalty ϕ. Moreover, at certain

intermediate inventory levels, the optimal spreads under a substantial terminal inventory

penalty λ deviate from a monotonic temporal pattern.

To elucidate the non-monotonicity observed, let’s consider the left panel of Figure 4.5.

When a higher penalty is imposed on the terminal inventory position, a logical response

is for the HFM tends to adopt a narrower ask spread. This adjustment aims to facilitate

more sales of her shares as the terminal time approaches, with the goal of attaining a

lower inventory position. However, as time approaches the very limit of the terminal time

T , a shift in strategy becomes apparent. It becomes more crucial to profit directly from

fewer but wider roundtrip transactions. This strategy helps compensate for losses from

the terminal inventory cost while simultaneously maintaining the current intermediate

inventory level. Such a strategic adaptation is deemed reasonable since πtk(1, 1) > 0,

indicating a higher likelihood of roundtrip transactions occurring.
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Figure 4.5: Optimal trading strategies in the final 100 seconds when πtk(1, 1) > 0 for
different values of ϕ. The agent’s actions are executed every second, spanning from 0 to
19800 seconds. λ ranges from 0 to 1. The plots are generated based on specific parameters
ensuring the fulfillment of Conditions (4.21)-(4.23) and (4.26). Specifically, µ±

c = 100,
µ±
p = 5, µ±

cp = 500, µ±
c2 = 1 × 104, µ±

c2p = 5 × 104, π+
tk

= π−
tk
≡ 0.2. π(1, 1) = 0.05 and

∆tk = 0 for k = 0, . . . , N .
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Chapter 5

Conclusion and Future Work

In this dissertation, we address the market making problem by incorporating consid-

erations of latency and running inventory control. Our approach involves leveraging the

optimal control framework alongside advanced RL techniques.

For the latency-inclusive market making scenario, we initially study a stochastic control

problem. Herein, we reformulate the problem into a finite MDP, providing explicit charac-

terizations of immediate rewards for each temporal period and subsequently numerically

solve the formulated problem. Our contributions extend to dimensionality reduction,

wherein we effectively diminish the number of state variables from 7 to 5. Furthermore,

we empirically assess the efficacy of optimal placement strategies. Throughout this in-

vestigation, we introduce and emphasize the significance of two concepts: the number of

filled shares and the value of order with partial fill. These concepts prove instrumental in

articulating demand functions and immediate rewards. As a complementary avenue, we

adopt RL techniques, systematically evaluating the performance of various algorithms.

In the realm of market making with running inventory, this work serves as an extension

of the study [12]. Our contribution builds upon the existing framework by introducing a

new dimension: running inventory penalties. This addition, extending beyond terminal
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inventory control, is strategically designed to enhance the management of inventory risk,

fostering greater efficiency in market making strategies.

Future research avenues within the optimal control framework for addressing market

making with latency include:

• Investigate a stochastic delay problem, introducing variability in latency values

rather than assuming constant latency.

• Extend beyond the confines of a random linear demand function and explore alter-

native forms of demand functions.

• Develop an analytical expression for the value function under specific assumptions,

potentially utilizing techniques like quadratic approximation.

• Explore the efficacy of neighborhood search method to derive suboptimal strategies,

offering insights into robustness and adaptability of market making algorithms.

For future investigations into the application of RL methods in addressing market making

with latency, the following pivotal areas could be explored:

• Increase training and testing episodes in the current simulation. The limitations

in time and computational resources have constrained the extent of agent training.

Expanding these episodes would allow for a more comprehensive exploration of the

agent’s learning capabilities and convergence patterns.

• Experiment with more sophisticated RL algorithms to assess their efficacy.

• Evaluate the performance of these RL methods using authentic LOB data.

• Implement nonlinear VFA techniques, particularly leveraging deep neural networks.
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[39] C. C. Moallemi and M. Sağlam. Or forum—the cost of latency in high-frequency
trading. Operations Research, 61(5):1070–1086, 2013.

[40] B. Øksendal and A. Sulem. Optimal stochastic impulse control with delayed reaction.
Applied Mathematics and Optimization, 58:243–255, 2008.

[41] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic program-
ming. 1994.

[42] A. Ranaldo. Order aggressiveness in limit order book markets. Journal of Financial
Markets, 7(1):53–74, 2004.

[43] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems,
volume 37. University of Cambridge, Department of Engineering Cambridge, UK,
1994.

116



[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[45] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Determin-
istic policy gradient algorithms. In International conference on machine learning,
pages 387–395. Pmlr, 2014.

[46] J. A. Sirignano. Deep learning for limit order books. Quantitative Finance,
19(4):549–570, 2019.

[47] S. Stoikov and R. Waeber. Reducing transaction costs with low-latency trading
algorithms. Quantitative Finance, 16(9):1445–1451, 2016.

[48] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[49] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[50] V. Uc-Cetina, N. Navarro-Guerrero, A. Martin-Gonzalez, C. Weber, and S. Wermter.
Survey on reinforcement learning for language processing. Artificial Intelligence
Review, 56(2):1543–1575, 2023.

[51] C. J. C. H. Watkins. Learning from delayed rewards. 1989.

[52] C. Yu. Market Making in a Limit Order Book: Classical Optimal Control and Re-
inforcement Learning Approaches. PhD thesis, Washington University in St. Louis,
2021.

[53] C. Yu, J. Liu, S. Nemati, and G. Yin. Reinforcement learning in healthcare: A
survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

117



Appendix A

Proofs and Simulation Configuration

of Chapter 2

A.1 Proof of Proposition 2.2.1

Proof. We begin by proving Eq. (2.29). Note that

E
[
V O±

1 (k) | Ftk

]
= r±tkE

[
1fill±k

c±tk(p
±
tk
− r±tk)+ ∧Q±

outtk
| Ftk

]
∓ E

[
∆Stk · 1fill±k c

±
tk
(p±tk − r±tk)+ ∧Q±

outtk
| Ftk

]
.

By Assumptions 2.1.2.1 and 2.1.2.2, the second term is 0. For the first term, by Assump-

tion 2.1.1.4, we have

E
[
1fill±k

c±tk(p
±
tk
− r±tk)+ ∧Q±

outtk
| Ftk

]
= E

[
1fill±k

E[c±tk(p
±
tk
− r±tk)+ ∧Q±

outtk
| Ftk ,1fill±k

] | Ftk

]
= E

[
1fill±k

h±
∆τ (1fill±k

, r±tk , Q
±
outtk

) | Ftk

]
= π±

tk
h±
∆τ (1, r

±
tk
, Q±

outtk
),

where we used the notation (2.32). We then conclude that

E
[
V O±

1 (k) | Ftk

]
= π±

tk
h±
∆τ (1, r

±
tk
, Q±

outtk
).
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In particular, we have

E
[
V O±

1 (k) | Xtk

]
= E

[
E[V O±

1 (k) | Ftk ] | Xtk

]
= E

[
π±
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]
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±
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) = E

[
V O±

1 (k) | Ftk

]
.

The proof of (2.29) is now complete.

Note that V O±
3 (k) takes the same form as V O±

1 (k) and, thus, using the same arguments

as above and Assumptions 2.1.2.1, 2.1.2.3, and 2.1.1.6, we can conclude that
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where π̃±
tk

is defined in Eq. (2.15) and we used the notation (2.32).

Next, we proceed to prove (2.30), for which we need to evaluate:
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For the first term of (A.1), using Assumptions 2.1.1.5 and 2.1.2.2, we have
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where we used (2.32). Similarly, for the second term of (A.1), by Assumption 2.1.2.2, we

have
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For the third term of (A.1), by Assumptions 2.1.2.1 and 2.1.2.4, we have
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For the last term of (A.1), again by Assumption 2.1.2.1,
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In summary, Eq. (A.1) becomes
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where, in the last equality, we used Assumption 2.1.2.5. Note that by Assumption 2.1.2.6,

E[(l ∓∆Stk)+] depends only on ∆τ and not k.
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A.2 Proof of Theorem 2.2.2

Proof. For k = N , by the Bellman equation (2.20), we have
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By Assumption 2.1.2.1, we have E[ItN∆StN | FtN ] = 0. It remains to demonstrate that

for all admissible values of (r+tN , r
−
tN
), the following expression holds:
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(A.2)

We prove the first equation in (A.2), the ask side of the market (the other equation is

proved similarly).

When r+tN =∞, there is no outstanding ask orders at time tN , therefore Qfill+tN
= 0, same
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tN
(∆τ, r+tN , Q

+
outtN

).

When r+tN ∈ Z+, by the definition (2.26) with k = N and Proposition 2.2.1, we have
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where in the last equality above, we used the dynamics in Eqs. (2.6) and (2.9). This

shows the first equation in (A.2).

Next, let us assume that, for some k < N , Vtk+1
= Wtk+1

+ Stk+1
Itk+1

+ gk+1(Xtk+1
) holds

and aim to show the corresponding equation for Vtk . By the Bellman equation (2.20) and

the dynamics of Wtk+1
, Stk+1

and Itk+1
in Eqs. (2.3), (2.4), and (2.5), we can write
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By Assumption 2.1.2.1, the second to last term, E[Itk(∆Stk +∆Stk+) | Ftk ], vanishes.

We consider all possible values for L+
tk

and L−
tk

(nine in total). For illustrations, we only

show the details for the cases (a) L+
tk
, L−

tk
∈ Z+, (b) L+

tk
= o, L−

tk
∈ Z+, (c) L+

tk
= ∞,

L−
tk
∈ Z+ (the other cases will then be clear).
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(a) By the definitions of the function Gk, and H±
acttk

(r±, L±, q±) in (2.33), the result will

follow from (A.3), if we have, for any admissible (r+tk , r
−
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We establish Eqs. (A.4) and (A.6) for the ask side, noting that the bid side can be

demonstrated analogously. In the case where r+tk = ∞, both sides in Eq. (A.4) vanish

and it follows directly. For r+tk ∈ Z+, by the definition of H+
tk
(∆τ, r+tk , Q

+
outtk

) in Eq. (2.26)

and Proposition 2.2.1,

H+
tk
(∆τ, r+tk , Q

+
outtk

) = E
[
(1fill+k

c+tk
[
p+tk − r+tk

]
+
∧Q+

outtk
)(r+tk −∆Stk) | Xtk

]
= E

[
(1fill+k

c+tk
[
p+tk − r+tk

]
+
∧Q+

outtk
)(r+tk −∆Stk) | Ftk

]
= E

[
Qfill+tk

(Pfill+tk
− Stk −∆Stk −∆Stk+) | Ftk

]
,

(A.8)

where the last equality follows from the dynamics of Pfill+tk
and Qfill+tk

in Eqs. (2.7) and

(2.9), and the fact that

E[Qfill+tk
∆Stk+ | Ftk ] = E[Qfill+tk

E∆Stk+ | Ftk+ ] | Ftk ] = 0,

because of Assumption 2.1.2.1.
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We proceed to establish the validity of (A.6) (the proof of (A.7) is similar). Recall that

we are assuming that L+
tk
∈ Z+. Then, using Eqs. (2.7) and (2.10), we have

E
[
Qfill+tk+

(Pfill+tk+
− Stk −∆Stk −∆Stk+) | Ftk

]
= E

[
(1{∆Stk

≥L+
tk
}Q

+
max + 1{∆Stk

<L+
tk
}1fill+k+c

+
tk+

[p+tk+ − L+
tk
]+ ∧Q+

max)

· (1{∆Stk
≥L+

tk
}[Stk +∆Stk ] + 1{∆Stk

<L+
tk
}[Stk + L+

tk
]− Stk −∆Stk −∆Stk+) | Ftk

]
= E

[
1{∆Stk

<L+
tk
} · (1fill+k+c

+
tk+

[p+tk+ − L+
tk
]+ ∧Q+

max)(L
+
tk
−∆Stk −∆Stk+)

+ 1{∆Stk
≥L+

tk
} ·Q

+
max(−∆Stk+) | Ftk

]
= E

[
V O+

2 (k) | Ftk

]
= H+

tk+
(∆τ,∆t, L+

tk
),

where in the last equality, we simply use (2.27) and Proposition 2.2.1.

(b) Now, we assume that L+
tk

= o and L−
tk
∈ Z+. Since L+

tk
= o, we have Pfill±tk

=

Pfill±tk+
= Stk ± r±tk and, thus, recalling that Q̃fill+tk

= Qfill+tk
+Qfill+tk+

, we can reorganize

(A.3) as follows:

Vtk = Wtk + StkItk + max
(L+

tk
,L−

tk
)∈Ak

E
[
Q̃fill+tk

(Pfill+tk
− Stk −∆Stk −∆Stk+)

+Qfill−tk
(Stk +∆Stk +∆Stk+ − Pfill−tk

)

+Qfill−tk+
(Stk +∆Stk +∆Stk+ − Pfill−tk+

)

+ Itk(∆Stk +∆Stk+) + gk+1(Xtk+1
) | Ftk

]
.

Since we already showed (A.5) and (A.7), it remains to prove that

E
[
Q̃fill+tk

(Pfill+tk
− Stk −∆Stk −∆Stk+) | Ftk

]
= H̃+

tk
(∆t, r+tk , Q

+
outtk

).

This is proved in the same way as (A.8).
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(c) Now, we assume that L+
tk
=∞ and L−

tk
∈ Z+. In that case, Qfill+tk+

= 0 and (A.3) is

written as

Vtk = Wtk + StkItk + max
(L+

tk
,L−

tk
)∈Ak

E
[
Qfill+tk

(Pfill+tk
− Stk −∆Stk −∆Stk+)

+Qfill−tk
(Stk +∆Stk +∆Stk+ − Pfill−tk

)

+Qfill−tk+
(Stk +∆Stk +∆Stk+ − Pfill−tk+

)

+ Itk(∆Stk +∆Stk+) + gk+1(Xtk+1
) | Ftk

]
.

The result then follows directly from (A.4), (A.5), and (A.7).

A.3 Proof of Proposition 2.3.1

Proof. We begin by proving Eq. (2.42). Note that, by Assumptions 2.1.2.1 and 2.1.2.2,

we have

H±
tk
(∆τ, r±tk) = E

[
(r±tk ∓∆Stk) · 1fill±k c

±
tk
(p±tk − r±tk) | Ftk

]
= E

[
r±tk ∓∆Stk | Ftk

]
· E

[
1fill±k

c±tk(p
±
tk
− r±tk) | Ftk

]
= r±tk · E

[
c±tk(p

±
tk
− r±) | Ftk ,1fill±k

= 1
]
P(1fill±k = 1 | Ftk)

= r±tkπ
±
tk
·
{
E
[
c±tkp

±
tk
| Ftk ,1fill±k

= 1
]
− r±E

[
c±tk | Ftk ,1fill±k

= 1
]}

= r±tkπ
±
tk
(µ±

cp − µ±
c r

±
tk
).

The proof of (2.42) is now complete.

Note that V O±
3 (k) in Eq. (2.41) takes the same form as V O±

1 (k) in Eq. (2.39) and, thus,

using the same arguments as above and Assumptions 2.1.2.1, 2.1.2.3, and 2.1.1.6, we can
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conclude that

H̃±
tk
(∆t, r±tk) = π̃±

tk
r±tk(µ̃

±
cp − µ̃±

c r
±
tk
).

Next, we proceed to show Eq. (2.43), for which we need to evaluate the following term:

E
[
1{±∆Stk

<L±
tk
} · (L

±
tk
∓∆Stk ∓∆Stk+) · 1fill±k+c

±
tk+

(p±tk+ − L±
tk
)

+ 1{±∆Stk
≥L±

tk
} · (∓∆Stk+) ·Q±

max | Ftk

]
.

(A.9)

For the first term of (A.9), by Assumptions 2.1.1.5 and 2.1.2.2, we have

E
[
1{±∆Stk

<L±
tk
}L

±
tk
· [1fill±k+c

±
tk+

(p±tk+ − L±
tk
)] | Ftk

]
= L±

tk
P(±∆Stk < L±

tk
| Ftk)E

[
1fill±k+

c±tk+(p
±
tk+
− L±

tk
) | Ftk

]
= L±

tk
P(±∆Stk < L±

tk
| Ftk)E

[
E[1fill±k+c

±
tk+

(p±tk+ − L±
tk
) | Ftk+ ] | Ftk

]
= L±

tk
P(±∆Stk < L±

tk
| Ftk)E

[
P(1fill±k+ = 1 | Ftk+)E[c

±
tk+

(p±tk+ − L±
tk
) | Ftk+ ,1fill±k+

= 1] | Ftk

]
= L±

tk
P(±∆Stk < L±

tk
| Ftk)E

[
P(1fill±k+ = 1 | Ftk+) | Ftk

]
E
[
E[c±tk+(p

±
tk+
− L±

tk
) | Ftk+ ,1fill±k+

= 1] | Ftk

]
= L±

tk
P(±∆Stk < L±

tk
| Ftk)π

±
tk+

(µ±
cp+
− µ±

c+
L±
tk
).

Similarly, for the second term of (A.9), by Assumption 2.1.2.2, we have

∓ E
[
1{±∆Stk

<L±
tk
}∆Stk · [1fill±k+c

±
tk+

(p±tk+ − L±
tk
)] | Ftk

]
= ∓E

[
1{±∆Stk

<L±
tk
}∆Stk | Ftk

]
· E

[
1fill±k+

c±tk+(p
±
tk+
− L±

tk
) | Ftk

]
= ∓E

[
1{±∆Stk

<L±
tk
}∆Stk | Ftk

]
π±
tk+

(µ±
cp+
− µ±

c+
L±
tk
).

The sum of the first and second terms of (A.9) is π±
tk+

(µ±
cp+
−µ±

c+
L±
tk
)E[(L±

tk
∓∆Stk)+ | Ftk ].
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For the third term of (A.9), by Assumptions 2.1.2.1 and 2.1.2.4, we have

∓ E
[
1{±∆Stk

<L±
tk
}∆Stk+[1fill±k+

c±tk+(p
±
tk+
− L±

tk
)] | Ftk

]
= ∓E

[
1{±∆Stk

<L±
tk
}E[∆Stk+[1fill±k+

c±tk+(p
±
tk+
− L±

tk
)] | Ftk+ ] | Ftk

]
= ∓E

[
1{±∆Stk

<L±
tk
}E[∆Stk+ | Ftk+ ]E[1fill±k+c

±
tk+

(p±tk+ − L±
tk
) | Ftk+ ] | Ftk

]
= 0.

For the last term of (A.9), by Assumption 2.1.2.1, we have

E
[
1{±∆Stk

≥L±
tk
}(∓∆Stk+)Q

±
max | Ftk

]
= Q±

maxE
[
1{±∆Stk

≥L±
tk
}E[∓∆Stk+ | Ftk+ ] | Ftk

]
= 0.

In summary, by Assumptions 2.1.2.5 and 2.1.2.6, Eq. (A.9) becomes

π±
tk+

(µ±
cp+
− µ±

c+
L±
tk
)E[(L±

tk
∓∆Stk)+ | Ftk ] = π±

tk+
(µ±

cp+
− µ±

c+
L±
tk
) E[(l ∓∆Stk)+]|l=L±

tk

.
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A.4 Proof of Theorem 2.3.2

Proof. For k = N , by the Bellman equation (2.54), we have

VtN = max
(L+

tN
,L−

tN
)∈AN

E
[
WtN + Pfill+tN+

Qfill+tN+

− Pfill−tN+

Qfill−tN+

+ (StN +∆StN+
)(ItN −Qfill+tN+

+Qfill−tN+

)

− λ(ItN −Qfill+tN+

+Qfill−tN+

)2 | FtN

]
= WtN + StN ItN + max

(L+
tN

,L−
tN

)∈AN

E
[
Qfill+tN+

(Pfill+tN+

− StN −∆StN+
)

+Qfill−tN+

(StN +∆SN+ − Pfill−tN+

)

+ ItN∆SN+ − λ(ItN −Qfill+tN+

+Qfill−tN+

)2 | FtN

]
.

By Assumption 2.3.2.1, it follows that

E
[
ItN∆SN+ | FtN

]
= 0.

To complete the proof, it is necessary to demonstrate that for all admissible values of

(r+tN , r
−
tN
, L+

tN
, L−

tN
), the following expression holds.

H+
act(r

+
tN
, L+

tN
, Q+

outtN
) = E

[
Qfill+tN+

(Pfill+tN+

− StN −∆StN+
) | FtN

]
, (A.10)

H−
act(r

−
tN
, L−

tN
, Q−

outtN
) = E

[
Qfill−tN+

(StN +∆SN+ − Pfill−tN+

) | FtN

]
. (A.11)
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We provide a proof for Eq. (A.10), the ask side of the market (the other equation is

proved similarly). When L+
tN
∈ Z+, we have

H+
act(r

+
tN
, L+

tN
, Q+

outtN
) = E

[
(1fill+N+

c+tN+
(p+tN+

− L+
tN
)+ ∧Q+

max)(L
+
tN
−∆StN+

) | XtN

]
= E

[
(1fill+N+

c+tN+
(p+tN+

− L+
tN
)+ ∧Q+

max)(L
+
tN
−∆StN+

) | FtN

]
= E

[
Qfill+tN+

(Pfill+tN+

− StN −∆StN+
) | FtN

]
,

where in the last equality above, we used the dynamics in Eqs. (2.49) and (2.50).

When L+
tN

= o, again, by the dynamics in Eqs. (2.49) and (2.50), we have

H+
act(r

+
tN
, L+

tN
, Q+

outtN
) = E

[
(1fill+N+

c+tN+
(p+tN+

− r+tN )+ ∧Q+
outtN

)(r+tN+
−∆StN+

) | XtN

]
= E

[
(1fill+N+

c+tN+
(p+tN+

− r+tN )+ ∧Q+
outtN

)(r+tN+
−∆StN+

) | FtN

]
= E

[
Qfill+tN+

(Pfill+tN+

− StN −∆StN+
) | FtN

]
.

When L+
tN

=∞, the result is trivial because both sides of Eq. (A.10) are equal to 0. This

shows the Eq. (A.10).

Next, for some k < N , let us assume that Vtk+1
= Wtk+1

+ Stk+1
Itk+1

+ gk+1(Xtk+1
) holds

and aim to show the corresponding equation for Vtk . Indeed, by the Bellman equation

(2.54) and the dynamics of Wtk+1
, Stk+1

and Itk+1
in Eqs. (2.47), (2.46) and (2.48), we
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have

Vtk = max
(L+

tk
,L−

tk
)∈Ak

E
[
Vtk+1

| Ftk

]
= max

(L+
tk
,L−

tk
)∈Ak

E
[
Wtk + Pfill+tk+

Qfill+tk+
− Pfill−tk+

Qfill−tk+
+ gk+1(Xtk+1

)

+ (Stk +∆Stk+)(Itk −Qfill+tk+
+Qfill−tk+

) | Ftk

]
= Wtk + StkItk + max

(L+
tk
,L−

tk
)∈Ak

E
[
Itk∆Stk+ + gk+1(Xtk+1

) +Qfill+tk+
(Pfill+tk+

− Stk −∆Stk+)

+Qfill−tk+
(Stk +∆Stk+ − Pfill−tk+

) | Ftk

]
.

Similar to our approach for the k = N scenario and the reasoning in proof of Theo-

rem 2.2.2, we can employ the same logic to the current case. Therefore, we have

Vtk = Wtk + StkItk + max
(L+

tk
,L−

tk
)∈Ak

{
H+

act(r
+
tk
, L+

tk
, Q+

outtk
) +H−

act(r
−
tk
, L−

tk
, Q−

outtk
)

+ E
[
gk+1(Xtk+1

) | Ftk

]}
.

Similar arguments follow for the bid side.
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A.5 Parameters under 0.20 seconds Latency

Table A.1: Average arrival probability of market orders over 252 trading days in 2019.
∆τ = 0.20 seconds and ∆t = 1 second.

Stock π̂+
∆τ π̂−

∆τ π̂+
∆τ,∆t π̂−

∆τ,∆t

AAPL 0.072558 0.072784 0.215578 0.221396
AMZN 0.024995 0.025629 0.080353 0.082441
MSFT 0.054371 0.054845 0.167368 0.169665

Table A.2: Average values of µ̂±
{c,p} over 252 trading days for 2019 AAPL. ∆τ = 0.20

seconds and ∆t = 1 second.

Table A.3: Parameter values for c and p in simulation for 2019 AAPL. ∆τ = 0.20 seconds
and ∆t = 1 second.

Parameter Value Unit

Slope of demand function c+∆τ Γ(shape = 30.81, scale = 1.245) share/tick
Slope of demand function c−∆τ Γ(shape = 27.24, scale = 1.564) share/tick
Slope of demand function c+∆τ,∆t Γ(shape = 42.54, scale = 1.075) share/tick
Slope of demand function c−∆τ,∆t Γ(shape = 35.74, scale = 1.430) share/tick
Reservation price p+∆τ Γ(shape = 69.62, scale = 0.049) tick
Reservation price p−∆τ Γ(shape = 63.66, scale = 0.055) tick
Reservation price p+∆τ,∆t Γ(shape = 92.48, scale = 0.036) tick
Reservation price p−∆τ,∆t Γ(shape = 85.79, scale = 0.039) tick
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Appendix B

Proofs of Chapter 4

The subsequent proofs follow a similar framework as presented in [12], and is included

herein for the sake of completeness. Readers familiar with [12] will recognize the under-

lying structure and can refer to that work for further details.

B.1 Proof of Proposition 4.2.1 and Theorem 4.2.4

Proof. We prove Proposition 4.2.1 and Theorem 4.2.4 by conducting a four-step approach.

Step 1. To begin, we put forth a proposed ansatz for the value function Vtk :

Vtk = ṽ (tk, Stk ,Wtk , Itk) := Wtk + αtkI
2
tk
+ StkItk + h̃tkItk + g̃tk . (B.1)

The function α : T → R is a deterministic function defined on the time set T =

{t0, t1, . . . , tN+1}. Additionally, we introduce the processes {h̃t}t∈T , {g̃t}t∈T , which

are adapted to the filtration {Ft}t∈T . By considering the terminal conditions VT =

WT + ST IT − λI2T , we can deduce that αT = −λ, g̃T = 0, and h̃T = 0. To facilitate our

subsequent discussions, we introduce the following notation:

h̃tk
tk+1

:= E[h̃tk+1
| Ftk ], g̃tktk+1

:= E[g̃tk+1
| Ftk ]. (B.2)
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By substituting the expressions given in Eq. (4.4), (4.5), and (B.1) into the right-hand

side of the Bellman equation (4.6), we obtain the following expression:

Vtk = sup
(L+

tk
,L−

tk
)∈A

E[Vtk+1
− ϕI2tk+1

| Ftk ]

= sup
(L+

tk
,L−

tk
)∈A

E[Wtk+1
+ αtk+1

I2tk+1
+ Stk+1

Itk+1
+ h̃tk+1

Itk+1
+ g̃tk+1

− ϕI2tk+1
| Ftk ]

= sup
(L+

tk
,L−

tk
)∈A

E
{
Wtk +

∑
δ=±

(Stk + δLδ
tk
)δ1δtk+1

cδtk+1
(pδtk+1

− Lδ
tk
)

+ αtk+1

[
Itk −

∑
δ=±

δ1δtk+1
cδtk+1

(pδtk+1
− Lδ

tk
)
]2

+ Stk+1

[
Itk −

∑
δ=±

δ1δtk+1
cδtk+1

(pδtk+1
− Lδ

tk
)
]

+ h̃tk+1

[
Itk −

∑
δ=±

δ1δtk+1
cδtk+1

(pδtk+1
− Lδ

tk
)
]

+ g̃tk+1
− ϕI2tk+1

| Ftk

}
.

(B.3)

Expanding the squares, we have

Wtk +
∑
δ=±

1δtk+1

[
− cδtk+1

(Lδ
tk
)2 + (cδtk+1

pδtk+1
− δcδtk+1

Stk)L
δ
tk
+ δcδtk+1

pδtk+1
Stk

]
(B.4)

+ (αtk+1
− ϕ)

{
I2tk +

∑
δ=±

1δtk+1

{
(cδtk+1

)2(Lδ
tk
)2 +

[
2δItkc

δ
tk+1
− 2(cδtk+1

)2pδtk+1

]
Lδ
tk

+ (cδtk+1
pδtk+1

)2 − 2δItkc
δ
tk+1

pδtk+1

}
(B.5)

+ 21+tk+1
1−tk+1

c+tk+1
c−tk+1

(−L+
tk
L−
tk
+ p+tk+1

L−
tk
+ p−tk+1

L+
tk
− p+tk+1

p−tk+1
)

}
+ Stk+1

[
Itk +

∑
δ=±

1δtk+1
(−δcδtk+1

pδtk+1
+ δcδtk+1

Lδ
tk
)
]

(B.6)

+ h̃tk+1
Itk +

∑
δ=±

1δtk+1
(−δh̃tk+1

cδtk+1
pδtk+1

+ δh̃tk+1
cδtk+1

Lδ
tk
) + g̃tk+1

. (B.7)
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The computation of the conditional expectations for most of the terms above is straight-

forward, utilizing the conditions stated in Assumption 4.1.1 and the adaptability of the

controls
{
L±
tk

}
, {Stk}, and {Itk}. For instance,

E[1+tk+1
1−tk+1

c+tk+1
c−tk+1

p+tk+1
p−tk+1

| Ftk ]

= E
[
1+tk+1

1−tk+1
E[c+tk+1

p+tk+1
| Ftk ,1

+
tk+1
1−tk+1

]E[c−tk+1
p−tk+1

| Ftk ,1
+
tk+1
1−tk+1

] | Ftk

]
= µ+

cpµ
−
cpE[1+tk+1

1−tk+1
| Ftk ]

= µ+
cpµ

−
cpπtk+1

(1, 1).

For the terms in (B.6), using the conditional independence of Stk+1
− Stk and

(1+tk+1
,1−tk+1

, c+tk+1
, p+tk+1

, c−tk+1
, p−tk+1

), given Ftk , we have:

E
[
(Stk+1

− Stk)1
δ
tk+1

cδtk+1
pδtk+1

| Ftk

]
= E[Stk+1

− Stk | Ftk ]E[1
δ
tk+1

cδtk+1
pδtk+1

| Ftk ]

= ∆tkπ
δ
tk+1

µδ
cp,

(B.8)

and, thus, E[Stk+1
1δtk+1

cδtk+1
pδtk+1

| Ftk ] = (Stk + ∆tk)π
δ
tk+1

µδ
cp. Likewise, we have

E[Stk+1
1δtk+1

cδtk+1
| Ftk ] = (Stk + ∆tk)π

δ
tk+1

µδ
c. For the expressions in (B.7), let’s, for

the time being, assume that:

E[h̃tk+1
1δtk+1

cδtk+1
| Ftk ] = h̃tk

tk+1
E[1δtk+1

cδtk+1
| Ftk ], (B.9)

E[h̃tk+1
1δtk+1

cδtk+1
pδtk+1

| Ftk ] = h̃tk
tk+1

E[1δtk+1
cδtk+1

pδtk+1
| Ftk ]. (B.10)

The above identities will be established in detail in Step 4. Building upon the preceding

arguments, we can evaluate the conditional expectation E[· | Ftk ] for the terms appearing

in Eqs. (B.4)-(B.7). Subsequently, we substitute these conditional expectations into the
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right-hand side of Eq. (B.3), yielding the following expression:

αtkI
2
tk
+ StkItk + h̃tkItk + g̃tk

= sup
(L+

tk
,L−

tk
)∈A

∑
δ=±

πδ
tk+1

{(
(αtk+1

− ϕ)µδ
c2 − µδ

c

)
(Lδ

tk
)2

+
[
µδ
cp + δh̃tk

tk+1
µδ
c + (αtk+1

− ϕ)(2δµδ
cItk − 2µδ

c2p) + δµδ
c∆tk

]
Lδ
tk

+ (αtk+1
− ϕ)(µδ

c2p2 − 2δµδ
cpItk)− δh̃tk

tk+1
µδ
cp − δµδ

cp∆tk

}
+ 2(αtk+1

− ϕ)πtk+1
(1, 1)(−µ+

c µ
−
c L

+
tk
L−
tk
+ µ+

cpµ
−
c L

−
tk
+ µ+

c µ
−
cpL

+
tk
− µ+

cpµ
−
cp)

+ (αtk+1
− ϕ)I2tk + Itk(Stk +∆tk) + h̃tk

tk+1
Itk + g̃tktk+1

.

(B.11)

Let us denote the right-hand side of the above equation as sup(L+
tk
,L−

tk
)∈A f̃

(
L+
tk
, L−

tk

)
. It

is evident that f̃
(
L+
tk
, L−

tk

)
represents a quadratic function with respect to L+

tk
and L−

tk
.

By setting the partial derivatives with respect to L+
tk

and L−
tk

equal to zero, we obtain

the following system of equations:

∂L+
tk

f̃ = 2π+
tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

)
L+
tk

+ π+
tk+1

[
µ+
cp + h̃tk

tk+1
µ+
c + (αtk+1

− ϕ)(2µ+
c Itk − 2µ+

c2p) + µ+
c ∆tk

]
− 2(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c L

−
tk
+ 2(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
cp = 0,

∂L−
tk

f̃ = 2π−
tk+1

(
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
L−
tk

+ π−
tk+1

[
µ−
cp − h̃tk

tk+1
µ−
c + (αtk+1

− ϕ)(−2µ−
c Itk − 2µ−

c2p)− µ−
c ∆tk

]
− 2(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c L

+
tk
+ 2(αtk+1

− ϕ)πtk+1
(1, 1)µ−

c µ
+
cp = 0.

(B.12)

By solving for L+
tk
and L−

tk
, we obtain

L̃+,∗
tk

= (1)A+
tk
Itk +

(2)

Ã+
tk
+

(3)

Ã+
tk
, L̃−,∗

tk
= −(1)A−

tk
Itk −

(2)

Ã−
tk
+

(3)

Ã−
tk
, (B.13)
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where

(1)A±
tk
=

β±
tk
(αtk+1

− ϕ)

γtk
,

(2)

Ã±
tk
=

β±
tk
h̃tk
tk+1

2γtk
, (B.14)

(3)

Ã±
tk
=

π∓
tk+1

2γtk

(
(αtk+1

− ϕ)µ∓
c2 − µ∓

c

)[
π±
tk+1

(
µ±
cp − 2(αtk+1

− ϕ)µ±
c2p

)
+ 2(αtk+1

− ϕ)πtk+1
(1, 1)µ±

c µ
∓
cp ± π±

tk+1
∆tkµ

±
c

]
+ πtk+1

(1, 1)
(αtk+1

− ϕ)

2γtk
µ+
c µ

−
c

[
π∓
tk+1

(
µ∓
cp − 2(αtk+1

− ϕ)µ∓
c2p

)
+ 2(αtk+1

− ϕ)πtk+1
(1, 1)µ∓

c µ
±
cp ∓ π∓

tk+1
∆tkµ

∓
c

]
.

(B.15)

Upon substituting L̃±,∗
tk

into Eq. (B.11) and equating terms with respect to Itk , we derive

the following recursive expressions for αtk , h̃tk , and g̃tk :

αtk = αtk+1
− ϕ+

∑
δ=±

πδ
tk+1

[(
(αtk+1

− ϕ)µδ
c2 − µδ

c

)
((1)Aδ

tk
)2 + 2(αtk+1

− ϕ)µδ
c(

(1)Aδ
tk
)
]

+ 2(αtk+1
− ϕ)πtk+1

(1, 1)µ+
c µ

−
c (

(1)A+
tk

(1)A−
tk
),

(B.16)
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h̃tk =h̃tk
tk+1

+
∑
δ=±

πδ
tk+1

{
2
(
(αtk+1

− ϕ)µδ
c2 − µδ

c

)[
(1)Aδ

tk

(
(δ

(3)

Ãδ
tk
) +

(2)

Ãδ
tk

)]
+ 2(αtk+1

− ϕ)µδ
c

(
(δ

(3)

Ãδ
tk
) +

(2)

Ãδ
tk

)
− 2(αtk+1

− ϕ)(δµδ
cp)

+ (δ(1)Aδ
tk
)
(
µδ
cp + (δh̃tk

tk+1
)µδ

c − 2(αtk+1
− ϕ)µδ

c2p

)}
− 2(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c

[
(1)A+

tk
(
(3)

Ã−
tk
−

(2)

Ã−
tk
)− (1)A−

tk
(
(2)

Ã+
tk
+

(3)

Ã+
tk
)

+
µ+
cp

µ+
c

((1)A−
tk
)−

µ−
cp

µ−
c

((1)A+
tk
)
]

+∆tk

[
(1)A+

tk
π+
tk+1

µ+
c + (1)A−

tk
π−
tk+1

µ−
c + 1

]
,

(B.17)

g̃tk =g̃tktk+1
+
∑
δ=±

πδ
tk+1

[(
(αtk+1

− ϕ)µδ
c2 − µδ

c

)((3)

Ãδ
tk
+ (δ

(2)

Ãδ
tk
)
)2

+ (αtk+1
− ϕ)µδ

c2p2 − (δh̃tk
tk+1

)µδ
cp

+
(
µδ
cp + (δh̃tk

tk+1
)µδ

c − 2(αtk+1
− ϕ)µδ

c2p

)((3)

Ãδ
tk
+ (δ

(2)

Ãδ
tk
)
)]

− 2(αtk+1
− ϕ)πtk+1

(1, 1)µ+
c µ

−
c

[
(
(2)

Ã+
tk
+

(3)

Ã+
tk
)(

(3)

Ã−
tk
−

(2)

Ã−
tk
)

−
µ+
cp

µ+
c

(
(3)

Ã−
tk
−

(2)

Ã−
tk
)−

µ−
cp

µ−
c

(
(2)

Ã+
tk
+

(3)

Ã+
tk
) +

µ+
cpµ

−
cp

µ−
c µ

+
c

]
+∆tk

[
(
(3)

Ãδ
tk
+

(2)

Ãδ
tk
)π+

tk+1
µ+
c − (

(3)

Ãδ
tk
−

(2)

Ãδ
tk
)π−

tk+1
µ−
c − π+

tk+1
µ+
cp + π−

tk+1
µ−
cp

]
.

(B.18)

Step 2. We proceed to establish the optimality of L̃±,∗
tk

as the maximum points of the

function f̃
(
L+
tk
, L−

tk

)
. To accomplish this, we will rely on the utilization of Lemma 4.2.2,

which asserts that αtk < 0. Specifically, for any given tk, we can demonstrate the following
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inequality:

D = (∂2
L+
tk

f̃)(∂2
L−
tk

f̃)− (∂L+
tk
L−
tk

f̃)2

= 4π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

)(
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
− 4

[
πtk+1

(1, 1)(αtk+1
− ϕ)µ+

c µ
−
c

]2
> 0,

∂2
L+
tk

f̃ = (αtk+1
− ϕ)µ+

c2 − µ+
c < 0.

(B.19)

Applying the second derivative test, we find that f̃
(
L+
tk
, L−

tk

)
reaches its maximum value

at L̃±,∗
tk

.

Step 3. Now, we proceed to show that (4.17) holds. Plugging the expressions of
(2)

Ã±
tk

and
(3)

Ã±
tk

given in (B.14)-(B.15) into (B.17), we have

h̃tk = dk + ξk(h̃
tk
tk+1

+∆tk), (B.20)

for some deterministic constant dk and

ξk = 1 +
αtk+1

− ϕ

γtk

∑
δ=±

πδ
tk+1

βδ
tk

[
βδ
tk

γtk

(
(αtk+1

− ϕ)µδ
c2 − µδ

c

)
+ 2µδ

c

]
+ 2

(αtk+1
− ϕ)2

γ2
tk

πtk+1
(1, 1)µ+

c µ
−
c β

+
tk
β−
tk
.

Also, htk in Eq. (4.15) can be written as

htk = dk + ξkhtk+1
, (B.21)
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where dk, ξk are the same as those in (B.20). Since htN+1
= 0 and h̃tN+1

= 0, we have

that h̃tN = dN + ξN∆tN and htN = dN at time tN . By induction, we get

htk =
N∑
j=k

j−1∏
ℓ=k

ξℓdj,

where
∏k−1

ℓ=k ξℓ := 1, and

h̃tk =
N∑
j=k

j−1∏
ℓ=k

ξℓ(dj + ξj∆
tk
tj ) = htk +

N∑
j=k

j∏
ℓ=k

ξℓ∆
tk
tj . (B.22)

In particular,

h̃tk
tk+1

= E
[
htk+1

+
N∑

j=k+1

j∏
ℓ=k+1

ξℓ∆
tk+1

tj ) | Ftk

]
= htk+1

+
N∑

j=k+1

j∏
ℓ=k+1

ξℓ∆
tk
tj .

Substituting the above expression into
(2)

Ã±
tk

as defined in (B.14), and subsequently re-

placing (1)Atk
±Itk ,

(2)

Ã±
tk
,
(3)

Ã±
tk

into (B.13), we conclude that

L̃+,∗
tk

= L+,∗
tk

+
β+
tk

2γtk
∆tk +

(
β+
tk

2γtk

) N∑
j=k+1

j∏
ℓ=k+1

ξℓ∆
tk
tj ,

L̃−,∗
tk

= L−,∗
tk
−

β−
tk

2γtk
∆tk −

(
β−
tk

2γtk

) N∑
j=k+1

j∏
ℓ=k+1

ξℓ∆
tk
tj .

(B.23)

This establishes both Proposition 4.2.1 and Theorem 4.2.4 simultaneously.

Step 4. The verification of the identities (B.9) - (B.10) is the final step. It is important

to observe that (B.22) can be obtained directly from Eq. (B.14) - (B.17), irrespective of

whether (B.13) holds. Utilizing (B.22), we get:
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E
[
h̃tk+1

1δtk+1
pδtk+1

| Ftk

]
= E

[(
htk+1

+
N∑

j=k+1

j∏
ℓ=k+1

ξℓ∆
tk+1

tj

)
1δtk+1

cδtk+1
| Ftk

]

= htk+1
πδ
tk+1

µδ
c +

N∑
j=k+1

j∏
ℓ=k+1

ξℓE
[
∆

tk+1

tj 1δtk+1
cδtk+1

| Ftk

]
.

(B.24)

Then, with the conditional independence assumption of (1±tk+1
, c±tk+1

, p±tk+1
) and {Stj+1

−

Stj}j≥k given Ftk , for j ≥ k, we have

E
[
∆

tk+1

tj 1δtk+1
cδtk+1

| Ftk

]
= E

[
(Stj+1

− Stj)1
δ
tk+1

cδtk+1
| Ftk

]
= E

[
Stj+1

− Stj | Ftk

]
E
[
1δtk+1

cδtk+1
| Ftk

]
= ∆tk

tj π
δ
tk+1

µδ
c.

(B.25)

Finally, we have E
[
h̃tk+1

1δtk+1
cδtk+1

| Ftk

]
= h̃tk

tk+1
E
[
1δtk+1

cδtk+1
| Ftk

]
. The proof of (B.10)

follows a similar reasoning.

B.2 Proof of Lemma 4.2.2

Proof. From the terminal condition, we have αT = −λ < 0. Therefore, we only need to

show that 0 <
αtk

αtk+1
−ϕ

< 1 whenever αtk+1
< 0. Substituting (1)A±

tk
in Eq. (4.11) into Eq.

(4.14), we have
αtk

αtk+1
−ϕ

= 1 + Nk

Dk
, where

Nk =π+
tk+1

π−
tk+1

(αtk+1
− ϕ)

[
(µ+

c )
2π+

tk+1

(
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
+ (µ−

c )
2π−

tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

) ]
− 2π+

tk+1
π−
tk+1

πtk+1
(1, 1)(αtk+1

− ϕ)2(µ+
c µ

−
c )

2,

Dk =
[
πtk+1

(1, 1)(αtk+1
− ϕ)µ+

c µ
−
c

]2 − π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

) (
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
.
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Hence, it is adequate to demonstrate that Nk/Dk ∈ (−1, 0) whenever αtk+1
< 0. Initially,

we establish that Dk < 0 and Nk > 0.

With the fact that πtk+1
(1, 1) ≤ π+

tk+1
∧π−

tk+1
and µ±

c2 ≥ (µ±
c )

2
, the first term in Dk satisfies

[
πtk+1

(1, 1)(αtk+1
− ϕ)µ+

c µ
−
c

]2 ≤ α2
tk+1

π+
tk+1

π−
tk+1

(
µ+
c µ

−
c

)2 ≤ (αtk+1
− ϕ)2π+

tk+1
π−
tk+1

µ+
c2µ

−
c2 .

Moreover, when combined with the second term in Dk, and considering the assumption

αtk+1
< 0 along with µ±

. ≥ 0, we obtain

Dk ≤ π+
tk+1

π−
tk+1

[
(αtk+1

− ϕ)
(
µ+
c2µ

−
c + µ+

c µ
−
c2

)
− µ+

c µ
−
c

]
< 0. (B.26)

Now, we proceed to prove that Nk > 0. Given αtk+1
< 0 and πtk+1

(1, 1) ≤ π+
tk+1
∧ π−

tk+1
,

the first term in Nk satisfies

π+
tk+1

π−
tk+1

(αtk+1
− ϕ)

[
(µ+

c )
2π+

tk+1

(
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
+ (µ−

c )
2π−

tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

)]
≥ π+

tk+1
π−
tk+1

πtk+1
(1, 1)(αtk+1

− ϕ)
[
(µ+

c )
2
(
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
+ (µ−

c )
2
(
(αtk+1

− ϕ)µ+
c2 − µ+

c

)]
.

Combining with the second term in Nk, we have

Nk ≥ (αtk+1
− ϕ)π+

tk+1
π−
tk+1

πtk+1
(1, 1)

{
(αtk+1

− ϕ)(µ+
c )

2
[
µ−
c2 − (µ−

c )
2
]
− µ+

c µ
−
c (µ

+
c + µ−

c )

+ (αtk+1
− ϕ)(µ−

c )
2
[
µ+
c2 − (µ+

c )
2
] }

≥ −(αtk+1
− ϕ)π+

tk+1
π−
tk+1

πtk+1
(1, 1)µ+

c µ
−
c (µ

+
c + µ−

c ) > 0.

The second inequality holds because µ±
c2 ≥ (µ±

c )
2
and αtk+1

< 0. Therefore, Nk/Dk < 0.

Next, we show whenever αtk+1
< 0, Nk/Dk > −1 or, equivalently, Dk + Nk < 0. Note
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that

Dk +Nk = πtk+1
(1, 1)

(
(αtk+1

− ϕ)µ+
c µ

−
c

)2
(π(1, 1)− 2π+

tk+1
π−
tk+1

)

+ (αtk+1
− ϕ)(π+

tk+1
)2π−

tk+1
(µ+

c )
2
(
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
+ (αtk+1

− ϕ)π+
tk+1

(π−
tk+1

)2(µ−
c )

2
(
(αtk+1

− ϕ)µ+
c2 − µ+

c

)
− π+

tk+1
π−
tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

) (
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
.

(B.27)

First, consider Nk +Dk as a linear function of µ+
c2 , we have

∂µ+

c2
(Nk +Dk) = π+

tk+1
(π−

tk+1
)2(αtk+1

− ϕ)2(µ−
c )

2 − π+
tk+1

π−
tk+1

(αtk+1
− ϕ)2µ−

c2

+ π+
tk+1

π−
tk+1

(αtk+1
− ϕ)µ−

c

≤ π+
tk+1

(π−
tk+1

)2(αtk+1
− ϕ)2µ−

c2 − π+
tk+1

π−
tk+1

(αtk+1
− ϕ)2µ−

c2

+ π+
tk+1

π−
tk+1

(αtk+1
− ϕ)µ−

c (B.28)

= π+
tk+1

π−
tk+1

(αtk+1
− ϕ)2µ−

c2(π
−
tk+1
− 1) + π+

tk+1
π−
tk+1

(αtk+1
− ϕ)µ−

c < 0,

(B.29)

where (B.28) holds due to µ−
c2 ≥ (µ−

c )
2
, and (B.29) holds since π−

tk+1
< 1 and αtk+1

< 0.

Thus Nk +Dk decrease with µ+
c2 . Since µ

+
c2 ≥ (µ+

c )
2
, substituting µ+

c2 with (µ+
c )

2
, we have

Dk +Nk

≤ π+
tk+1

π−
tk+1

(αtk+1
− ϕ)(µ+

c )
2
[
π+
tk+1

(
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
− πtk+1

(1, 1)(αtk+1
− ϕ)(µ−

c )
2
]

+ π+
tk+1

π−
tk+1

(αtk+1
− ϕ)(µ−

c )
2
[
π−
tk+1

(
(αtk+1

− ϕ)(µ+
c )

2 − µ+
c

)
− πtk+1

(1, 1)(αtk+1
− ϕ)

(
µ+
c

)2 ]
+
[
πtk+1

(1, 1)(αtk+1
− ϕ)µ+

c µ
−
c

]2 − π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)(µ+
c )

2 − µ+
c

) (
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
.

(B.30)
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Similarly, the RHS of (B.30) can be regarded as a linear decreasing function of µ−
c2 since

the coefficient of µ−
c2 is

π+
tk+1

π−
tk+1

(αtk+1
− ϕ)2(µ+

c )
2(π+

tk+1
− 1) + π+

tk+1
π−
tk+1

(αtk+1
− ϕ)µ+

c < 0.

Given the fact that µ−
c2 ≥ (µ−

c )
2, substituting µ−

c2 with (µ−
c )

2 in the RHS of (B.30), we

obtain

Dk +Nk

≤ π+
tk+1

π−
tk+1

(αtk+1
− ϕ)(µ+

c )
2
[
π+
tk+1

(
(αtk+1

− ϕ)(µ−
c )

2 − µ−
c

)
− πtk+1

(1, 1)αtk+1
(µ−

c )
2
]

+ π+
tk+1

π−
tk+1

(αtk+1
− ϕ)(µ−

c )
2
[
π−
tk+1

(
(αtk+1

− ϕ)(µ+
c )

2 − µ+
c

)
− πtk+1

(1, 1)(αtk+1
− ϕ)(µ+

c )
2
]

+
[
πtk+1

(1, 1)(αtk+1
− ϕ)µ+

c µ
−
c

]2
− π+

tk+1
π−
tk+1

[
(αtk+1

− ϕ)(µ+
c )

2 − µ+
c

] [
(αtk+1

− ϕ)(µ−
c )

2 − µ−
c

]
= µ+

c µ
−
c

[
(π+

tk+1
)2π−

tk+1
(αtk+1

− ϕ)µ+
c

(
(αtk+1

− ϕ)µ−
c − 1

)
− 2π+

tk+1
π−
tk+1

πtk+1
(1, 1)(αtk+1

− ϕ)2µ+
c µ

−
c

+ π+
tk+1

(π−
tk+1

)2(αtk+1
− ϕ)µ−

c

(
(αtk+1

− ϕ)µ+
c − 1

)
+ π2

tk+1
(1, 1)(αtk+1

− ϕ)2µ+
c µ

−
c

− π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)µ+
c − 1

) (
(αtk+1

− ϕ)µ−
c − 1

) ]
≜ µ+

c µ
−
c ℓ(µ

+
c , µ

−
c ).

(B.31)

To prove Dk+Nk < 0, it suffices to demonstrate that ℓ(µ+
c , µ

−
c ) < 0. Note that ℓ(µ+

c , µ
−
c )

is a linear function in µ+
c , and the coefficient of µ+

c is given by

∂µ+
c
ℓ(µ+

c , µ
−
c ) = m

(
πtk+1

(1, 1)
)
(αtk+1

− ϕ)2µ−
c + (αtk+1

− ϕ)π+
tk+1

π−
tk+1

(1− π+
tk+1

),
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where

m
(
πtk+1

(1, 1)
)
:= (π+

tk+1
)2π−

tk+1
−2π+

tk+1
π−
tk+1

πtk+1
(1, 1)+π+

tk+1
(π−

tk+1
)2+π2

tk+1
(1, 1)−π+

tk+1
π−
tk+1

.

We temporarily assume the validity of m
(
πtk+1

(1, 1)
)
≤ 0 for any πtk+1

(1, 1) in Eq. (4.1),

and we will provide the proof subsequently. Given µ−
c ≥ 0, substituting 0 into µ−

c yields

∂µ+
c
ℓ (µ+

c , µ
−
c ) ≤ (αtk+1

− ϕ)π+
tk+1

π−
tk+1

(
1− π+

tk+1

)
< 0. Consequently, ℓ (µ+

c , µ
−
c ) decreases

with µ+
c . Since µ+

c ≥ 0, we have that

ℓ
(
µ+
c , µ

−
c

)
≤ ℓ

(
0, µ−

c

)
= −π+

tk+1
π−
tk+1

(
1− (αtk+1

− ϕ)µ−
c

)
− π+

tk+1
(π−

tk+1
)2(αtk+1

− ϕ)µ−
c

= −π+
tk+1

π−
tk+1

+ π+
tk+1

π−
tk+1

(αtk+1
− ϕ)µ−

c (1− π−
tk+1

) < 0.

Therefore, ℓ (µ+
c , µ

−
c ) < 0 for any µ±

c ≥ 0. We then have Dk + Nk < 0 from Eq. (B.31),

which implies that Nk/Dk > −1.

It remains to show that m
(
πtk+1

(1, 1)
)
≤ 0 holds for any πtk+1

(1, 1) in Eq. (4.1). From

Eq. (4.1), we know that (π+
tk+1

+ π−
tk+1
− 1) ∨ 0 ≤ πtk+1

(1, 1) ≤ π+
tk+1
∧ π−

tk+1
. Recognizing

that m
(
πtk+1

(1, 1)
)
is a quadratic function of πtk+1

(1, 1) opening upwards, we focus on

confirming that the values of m
(
πtk+1

(1, 1)
)
at the two endpoints (π+

tk+1
+ π−

tk+1
− 1) ∨ 0

and π+
tk+1
∧ π−

tk+1
are non-positive. Without loss of generality, we assume π−

tk+1
≤ π+

tk+1
.

Initially, we examine m
(
π−
tk+1

)
≤ 0:

m(π−
tk+1

) = (π−
tk+1

)2 − 2π+
tk+1

(π−
tk+1

)2 + π+
tk+1

π−
tk+1

(π+
tk+1

+ π−
tk+1
− 1)

= (π+
tk+1
− π−

tk+1
)π−

tk+1
(π+

tk+1
− 1) ≤ 0.

Continuing our examination, we proceed to verify m
(
(π+

tk+1
+ π−

tk+1
− 1) ∨ 0

)
≤ 0. In the

case where π+
tk+1

+π−
tk+1
− 1 < 0, we immediately ascertain that m(0) = π+

tk+1
π−
tk+1

(π+
tk+1

+
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π−
tk+1
− 1) ≤ 0. On the other hand, if π+

tk+1
+ π−

tk+1
− 1 ≥ 0,

m(π+
tk+1

+ π−
tk+1
− 1) = (π+

tk+1
+ π−

tk+1
− 1)2 − π+

tk+1
π−
tk+1

(π+
tk+1

+ π−
tk+1
− 1)

= (1− π−
tk+1

)(π+
tk+1

)2 + (1− π−
tk+1

)(π−
tk+1
− 2)π+

tk+1
+ (π−

tk+1
− 1)2

≜ n(π+
tk+1

).

Considering n(π+
tk+1

), a quadratic function with an upward opening, we note that, under

the assumption π−
tk+1
≤ π+

tk+1
≤ 1 and π+

tk+1
+ π−

tk+1
− 1 ≥ 0, the feasible range for π+

tk+1
is

given by 
1− π−

tk+1
≤ π+

tk+1
≤ 1, when 0 ≤ π−

tk+1
≤ 0.5,

π−
tk+1
≤ π+

tk+1
≤ 1, when 0.5 ≤ π−

tk+1
≤ 1.

It suffices to examine the non-positivity of n(π+
tk+1

) at the boundary:

n(1) = (1− π−
tk+1

) + (1− π−
tk+1

)(π−
tk+1
− 2) + (π−

tk+1
− 1)2 = 0.

When 0 ≤ π−
tk+1
≤ 0.5,

n(1− π−
tk+1

) = (1− π−
tk+1

)3 + (1− π−
tk+1

)2(π−
tk+1
− 2) + (π−

tk+1
− 1)2 = 0.

When 0.5 ≤ π−
tk+1
≤ 1,

n(π−
tk+1

) = (1− π−
tk+1

)(π−
tk+1

)2 + (1− π−
tk+1

)(π−
tk+1
− 2)π−

tk+1
+ (π−

tk+1
− 1)2 ≤ 0.

Consequently, m(π+
tk+1

+ π−
tk+1
− 1) ≤ 0 when π+

tk+1
+ π−

tk+1
− 1 ≥ 0. This concludes the

verification of the assertion that m
(
πtk+1

(1, 1)
)
≤ 0 holds for any πtk+1

(1, 1) in Eq. (4.1).
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B.3 Proof of Proposition 4.2.5

Proof. Initially, we establish the result under the martingale condition (4.7). Utilizing

Eq. (4.10), our objective is to demonstrate that

L+,∗
tk

+ L−,∗
tk

= ((1)A+
tk
− (1)A−

tk
)Itk + ((2)A+

tk
− (2)A−

tk
) + ((3)A+

tk
+ (3)A−

tk
) > 0.

Given the conditions (4.21)-(4.22) in Proposition 4.2.5, it is evident that

β+
tk
− β−

tk
= π+

tk+1
π−
tk+1

(αtk+1
− ϕ)(µ+

c µ
−
c2 − µ−

c µ
+
c2)

− πtk+1
(1, 1)(αtk+1

− ϕ)µ−
c µ

+
c (π

−
tk+1

µ−
c − π+

tk+1
µ+
c ) = 0

This implies that (1)A+
tk
− (1)A−

tk
= 0 and (2)A+

tk
− (2)A−

tk
= 0. The subsequent demonstration

focuses on establishing (3)A+
tk
− (3)A−

tk
> 0. To achieve this, it is essential to note, as

indicated in Eq. (B.26), that γtk (i.e., Dk), the denominator of (3)A+
tk
− (3)A−

tk
, is negative.

Consequently, our task is now to confirm that the numerator of (3)A+
tk
+ (3)A−

tk
is also

negative. According to condition (4.23) in Proposition 4.2.5, the numerator of (3)A+
tk
+(3)A−

tk

can be expressed as

N
(
(3)A+

tk
+ (3)A−

tk

)
=

{
π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)µ−
c2 − µ−

c

) (
µ+
c − 2(αtk+1

− ϕ)µ+
c2

)
+ 2

[
(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c

]2
− π+

tk+1
πtk+1

(1, 1)(αtk+1
− ϕ)(µ+

c )
2µ−

c

}
µ+
p

+
{
π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

) (
µ−
c − 2(αtk+1

− ϕ)µ−
c2

)
+ 2

[
(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c

]2
− π−

tk+1
πtk+1

(1, 1)(αtk+1
− ϕ)(µ−

c )
2µ+

c

}
µ−
p .
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Next, we can demonstrate that the coefficients of µ+
p is negative. Specifically, let’s denote

the coefficients of µ+
p as r(µ+

c2 , µ
−
c2), constituting a linear function of µ−

c2 with a coefficient

π+
tk+1

π−
tk+1

(αtk+1
− ϕ)

(
µ+
c − 2(αtk+1

− ϕ)µ+
c2

)
< 0. Given that µ−

c2 ≥ (µ−
c )

2, it follows that:

r(µ+
c2 , µ

−
c2) ≤ r

(
µ+
c2 , (µ

−
c )

2
)

= π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)(µ−
c )

2 − µ−
c

) (
µ+
c − 2(αtk+1

− ϕ)µ+
c2

)
+ 2

[
(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c

]2 − π+
tk+1

πtk+1
(1, 1)(αtk+1

− ϕ)(µ+
c )

2µ−
c .

Similarly, r
(
µ+
c2 , (µ

−
c )

2
)

is a linear function of µ+
c2 with a coefficient −2(αtk+1

−

ϕ)π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ) (µ−
c )

2 − µ−
c

)
< 0. Therefore,

r
(
µ+
c2 , (µ

−
c )

2
)
≤ r

(
(µ+

c )
2, (µ−

c )
2
)

= π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)(µ−
c )

2 − µ−
c

)(
µ+
c − 2(αtk+1

− ϕ)(µ+
c )

2
)

+ 2
[
(αtk+1

− ϕ)πtk+1
(1, 1)µ+

c µ
−
c

]2 − π+
tk+1

πtk+1
(1, 1)(αtk+1

− ϕ)(µ+
c )

2µ−
c

= µ+
c µ

−
c

{[
2(αtk+1

− ϕ)2π2
tk+1

(1, 1)− 2(αtk+1
− ϕ)2π+

tk+1
π−
tk+1

]
µ+
c µ

−
c

+ 2(αtk+1
− ϕ)π+

tk+1
π−
tk+1

µ+
c + π+

tk+1
(αtk+1

− ϕ)
[
π−
tk+1

µ−
c − πtk+1

(1, 1)µ+
c

]
− π+

tk+1
π−
tk+1

}
.

According to Eq. (4.1), πtk+1
(1, 1) ≤ π+

tk+1
π−
tk+1

. Additionally, as indicated by

Lemma 4.2.2, αtk+1
< 0. Consequently, the sum of the first two terms within the curly

brackets, denoted as
[
2(αtk+1

− ϕ)2π2
tk+1

(1, 1)− 2(αtk+1
− ϕ)2π+

tk+1
π−
tk+1

]
µ+
c µ

−
c + 2(αtk+1

−

ϕ)π+
tk+1

π−
tk+1

µ+
c , is negative.

Under the Condition (4.21), the third term within the curly brackets, namely π+
tk+1

(αtk+1
−

ϕ)
[
π−
tk+1

µ−
c −πtk+1

(1, 1)µ+
c

]
, can be expressed as π+

tk+1
(αtk+1

−ϕ)
(
π−
tk+1
−πtk+1

(1, 1)
)
µc < 0.

Consequently, the coefficient of µ+
p in N((3)A+

tk
+ (3)A−

tk
), represented by r(µ+

c2 , µ
−
c2), is
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negative. Similarly, the coefficient of µ−
p is also negative. Thus, N((3)A+

tk
+ (3)A−

tk
) < 0 and

(3)A+
tk
+ (3)A−

tk
> 0.

The demonstration for the non-martingale case is straightforward. As highlighted earlier,

conditions (4.21)-(4.22) ascertain β+
tk
−β−

tk
= 0. Moreover, according to (4.17), we obtain

L̃+,∗
tk

+ L̃−,∗
tk

= L+,∗
tk

+ L−,∗
tk

.

B.4 Proof of Corollary 4.3.1

Proof. Under the Conditions (4.21)-(4.22), a straightforward verification reveals β+
tk

=

β−
tk
. Subsequently, based on (4.17), it becomes evident that the optimal spreads,

hereinafter denoted as Sprdtk , remain consistent across both the martingale and non-

martingale mid-price scenarios. Furthermore,

Sprdtk = L̃+,∗
tk

+ L̃−,∗
tk

= L+,∗
tk

+ L−,∗
tk

= (3)A+
tk
+ (3)A−

tk
, (B.32)

which establishes the independence of optimal spreads from both inventory levels and

local drifts, denoted as {∆tk}k=0,...,N . With additional assumptions of Condition (4.23)

and Condition (4.26), the optimal spread assumes the form

Sprdtk =

[
π
(
µc − 2(αtk+1

− ϕ)µc2
)
+ 2(αtk+1

− ϕ)π(1, 1)µ2
c

] (
µ+
p + µ−

p

)
2
[
π(1, 1)(αtk+1

− ϕ)µ2
c − π

(
(αtk+1

− ϕ)µc2 − µc

)] , (B.33)

where π = π±.
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We check the difference between Sprdtk and Spdtk−1
here.

Sprdtk − Sprdtk−1
=

µ+
p + µ−

p

2
·

(αtk+1
− αtk)πµc

(
π(1, 1)µ2

c − πµc2
)∏

ℓ=k,k+1

[
π(1, 1)(αtℓ − ϕ)µ2

c − π
(
(αtℓ − ϕ)µc2 − µc

)] .
(B.34)

Initially, we establish the positivity of the denominator. Given the negativity of αtk and

by definition 0 ≤ π(1, 1) ≤ π and 0 < µ2
c ≤ µc2 , we have

π(1, 1)αtℓµ
2
c − π (αtℓµc2 − µc) ≥ παtℓµc2 − π (αtℓµc2 − µc) = πµc > 0.

This demonstrates the positivity of the denominator.

Regarding the numerator, we observe that π(1, 1)µ2
c ≤ πµc2 . Therefore, the positivity of

the numerator relies on the positivity of αtk+1
− αtk , which is determined by the value of

ϕ according to the paragraph right after the Lemma 4.2.2.

Particularly, if π(1, 1)µ2
c = πµc2 , Sprdtk − Sprdtk−1

= 0.

To demonstrate the optimal spreads decrease with π(1, 1) at a given time instance, we

have

∂π(1,1)Sprdtk =
(αtk+1

− ϕ)µ2
c(µ

+
p + µ−

p )
[
π(1, 1)(αtk+1

− ϕ)µ2
c − π

(
(αtk+1

− ϕ)µc2 − µc

)][
π(1, 1)(αtk+1

− ϕ)µ2
c − π

(
(αtk+1

− ϕ)µc2 − µc

)]2
−

(αtk+1
− ϕ)µ2

c

[
π
(
µc − 2(αtk+1

− ϕ)µc2
)
+ 2(αtk+1

− ϕ)π(1, 1)µ2
c

]
(µ+

p + µ−
p )

2
[
π(1, 1)αtk+1

µ2
c − π

(
(αtk+1

− ϕ)µc2 − µc

)]2
=

(αtk+1
− ϕ)µ3

c

(
µ+
p + µ−

p

)
2
[
π(1, 1)αtk+1

µ2
c − π

(
(αtk+1

− ϕ)µc2 − µc

)]2 < 0.

The proof of corollary 4.3.1 is now concluded.
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B.5 Proof of Corollary 4.3.2

Proof. Recall

ã∗tk = Stk +
(1)A+

tk
Itk +

(2)

Ã+
tk
+

(3)

Ã+
tk
,

b̃∗tk = Stk −
(1)A−

tk
Itk −

(2)

Ã−
tk
+

(3)

Ã−
tk
.

To establish the strictly decreasing monotonicity of ã∗tk and b̃∗tk with respect to Itk , we

need to demonstrate that (1)A±
tk
< 0. According to Proposition 4.2.1, we have that (1)A±

tk
=

β±
tk
(αtk+1

−ϕ)

γtk
and

γtk =
[
πtk+1

(1, 1)(αtk+1
− ϕ)µ+

c µ
−
c

]2 − π+
tk+1

π−
tk+1

(
(αtk+1

− ϕ)µ+
c2 − µ+

c

) (
(αtk+1

− ϕ)µ−
c2 − µ−

c

)
,

β±
tk
= π+

tk+1
π−
tk+1

µ±
c

(
(αtk+1

− ϕ)µ∓
c2 − µ∓

c

)
− π∓

tk+1
πtk+1

(1, 1)(αtk+1
− ϕ)µ±

c

(
µ∓
c

)2
.

Given that πtk+1
(1, 1) ≤ π+

tk+1
∧ π−

tk+1
, along with (µ±

c )
2 ≤ µ±

c2 and the negativity of αtk+1

as established in Lemma 4.2.2,

γtk ≤ π+
tk+1

π−
tk+1

{
(αtk+1

− ϕ)2
[
(µ+

c )
2(µ−

c )
2 − µ+

c2µ
−
c2

]
+ (αtk+1

− ϕ)(µ+
c2µ

−
c + µ+

c µ
−
c2)− µ+

c µ
−
c

}
≤ π+

tk+1
π−
tk+1

[
(αtk+1

− ϕ)(µ+
c2µ

−
c + µ+

c µ
−
c2)− µ+

c µ
−
c

]
< 0,

β±
tk
≤ π+

tk+1
π−
tk+1

[
(αtk+1

− ϕ)µ∓
c2µ

±
c − µ±

c µ
∓
c − (αtk+1

− ϕ)µ±
c (µ

∓
c )

2
]

= π+
tk+1

π−
tk+1

{
(αtk+1

− ϕ)µ±
c [µ

∓
c2 − (µ∓

c )
2]− µ±

c µ
∓
c

}
< 0,

Therefore, it follows that (1)A±
tk
< 0 for any tk.
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B.6 Proof of Corollary 4.3.3

Proof. Given the assumptions in Corollary 4.3.3, the expressions for the optimal strategies

can be formulated as follows

a∗tk = Stk +

L+,∗
tk︷ ︸︸ ︷

(αtk+1
− ϕ)µc

µc − αtk+1
µc2

Itk +
µc − 2(αtk+1

− ϕ)µc2

2
[
µc − (αtk+1

− ϕ)µc2
]µp +

htk+1
µc

2
[
µc − (αtk+1

− ϕ)µc2
] ,
(B.35)

b∗tk = Stk +

−L−,∗
tk︷ ︸︸ ︷

(αtk+1
− ϕ)µc

µc − (αtk+1
− ϕ)µc2

Itk −
µc − 2(αtk+1

− ϕ)µc2

2
[
µc − (αtk+1

− ϕ)µc2
]µp +

htk+1
µc

2
[
µc − (αtk+1

− ϕ)µc2
] ,

(B.36)

where

αtk = (αtk+1
− ϕ) +

2πtk+1

(
(αtk+1

− ϕ)µc

)2
µc − (αtk+1

− ϕ)µc2
, htk = htk+1

+
2πtk+1

(αtk+1
− ϕ)µ2

chtk+1

µc − (αtk+1
− ϕ)µc2

,

and πtk+1
:= π±

tk+1
. Given that hT = 0, it follows that htk remains zero throughout

the trading horizon. Upon closer examination, it becomes evident that regardless of the

specific time tk and the penalty levels leading to distinct values of αtk , the optimal ask

price can be expressed as a∗tk = Stk + µp

2
when the inventory level Itk = Ī+ =

µc2µp

2µc
.

Similarly, the optimal bid price is given by b∗tk = Stk −
µp

2
when Itk = Ī− = −µc2µp

2µc
.

First, let us examine the case where the inventory level is non-negative. Specifically, when

Itk = 0, we can deduce from Eq. (B.36) that the optimal bid price is as follows:

Stk −
µc − 2(αtk+1

− ϕ)µc2

2
[
µc − (αtk+1

− ϕ)µc2
]µp = Stk −

µp

2
+

(αtk+1
− ϕ)µc2

2
[
µc − (αtk+1

− ϕ)µc2
]µp < Stk −

µp

2
,
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since αtk+1
< 0. As indicated in Corollary 4.3.2, the optimal bid price exhibits a strict

decreasing trend with respect to the inventory level. Consequently, when Itk ≥ 0, it can

be concluded that the optimal bid price is consistently lower than Stk −
µp

2
.

As mentioned in Corollary 4.3.2, the optimal ask price exhibits a strict decreasing re-

lationship with the inventory level. Building upon the previous discussion, it can be

inferred that the optimal ask price has the following characteristics:

a∗tk = Stk +
µp

2
when Itk = Ī+ =

µc2µp

2µc

.

Therefore, when considering the range of inventory levels Itk ∈ [0, Ī+), it is evident that

the optimal ask price consistently surpasses the threshold of Stk + µp

2
. Conversely, for

inventory levels exceeding Ī+, the optimal ask price consistently falls below Stk + µp

2
.

The symmetric nature of the proof holds true in the case of non-positive inventory levels.

Thus, the proof of Corollary 4.3.3 is substantiated.
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