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ABSTRACT OF THE DISSERTATION 
 

Investigating the relationship between smoking, genomics, and brain imaging 
By 

Yoonhoo Chang 
 

Doctor of Philosophy in Biology and Biomedical Sciences 
Human and Statistical Genetics 

Washington University in St. Louis, 2023 
Professor Laura J. Bierut, Chair 

 
Cigarette smoking has been linked to adverse health outcomes, including several forms of 

cancer, respiratory and cardiovascular disease, and dementia. Despite the public health 

campaigns aimed at reducing tobacco use, the behavior remains prevalent, and its association 

with various organs is an active area of research. Recent studies showed that smoking behaviors 

have strong genetic contributions. Through genome-wide association studies, the genetic risk 

score of individuals can be created and used as a basis for more effective and precise healthcare 

solutions. Chapter 2 explores the creation of a polygenic risk score (PRS) for smoking cessation 

and its utility in two clinical trials. PRS for the later age of smoking initiation, and the combined 

PRS of four smoking behaviors (later age of smoking initiation, persistent smoking, cigarettes 

per day, and ever smoking) predicted bio-verified smoking abstinence. With this information, 

chapter 3 examines the utility of PRS in a more general setting (UK Biobank) with healthy 

individuals. The PRS for persistent smoking significantly predicted smoking cessation in the UK 

Biobank population. Also, individuals were divided into 7 groups of different PRS for persistent 

smoking, and those with the risk score of bottom 10% and top 10% had 3 years difference in 

median age of smoking cessation.  

Chapter 4 extends the relationship between genetics and smoking behavior to an actual 

association with the relatively understudied organ in tobacco research: the brain. It is widely 

known that smoking adversely affects the lungs and heart, but studies on the relationship 
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between smoking and the brain are comparatively lacking. Using the smoking questionnaire data, 

brain imaging data, and genetic data from the UK Biobank, I found that the genetic risk for 

smoking is not associated with brain volume, while ever smoking was significantly negatively 

associated with the total brain volume. Furthermore, I also identified several regions more 

significantly associated with a history of daily smoking than the other regions.  

Chapter 5 explores the association of smoking with the structural and functional connectivity of 

the brain. The UK Biobank provides diffusion MRI-derived phenotypes that measure structural 

connectivity within and across the regions of the brain. I examined the inter/intra-regional tracts 

that are more affected by smoking than others. For the functional connectivity, I used the resting-

functional MRI-derived phenotypes and found that the functional connectivity within frontal 

lobe regions was modestly associated with ever smoking. Overall, this dissertation advances our 

understanding of the clinical utility of PRS for smoking behaviors, and the association of 

smoking behavior with the brain.  
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Chapter 1. Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

1.1 Genetics of smoking behavior 
 
Every year, cigarette smoking contributes to more than 8 million preventable deaths worldwide, 

with an additional 1.3 million deaths attributed to second-hand smoke [1]. Despite increased 

public awareness of its health impacts, less than 10% of the smoking population successfully quit 

annually [2]. Understanding the pivotal role genetics play in the challenge of quitting has led 

researchers to delve into the genetic underpinnings of smoking behaviors. 

 

The period following the completion of the Human Genome Project (1990-2003) marked a new 

era in genetic research [3]. Genome-wide association Studies (GWAS) leveraged millions of 

single-nucleotide polymorphisms (SNPs) to explore their association with various smoking traits 

[3]. This exploration included identifying SNPs linked to dichotomous traits, like ever versus 

never smoking, as well as quantitative traits, such as cigarettes smoked per day and lifetime 

number of pack years smoked (number of cigarette packs (one pack = 20 cigarettes) smoked per 

day times the number of years smoked). Over the years, GWAS studies unearthed genes linked 

to nicotine use disorder [4, 5] replicated findings on genes associated with smoking quantity [6, 

7], and further established connections between nicotine use disorder and specific genes [8]. 

Variation in nicotinic acetylcholine receptor subunits and nicotine metabolizing genes are the 

strongest findings and thousands of other variants of small effect are associated. These genetic 

determinants of smoking were identified as significant risk factors for lung cancer [9] and 

chronic obstructive pulmonary disease (COPD) [10], intensifying public awareness of smoking's 

detrimental health effects. 
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More recently, meta-analyses of over 3.4 million individuals (GSCAN) consolidated genetic 

variants associated with four smoking behaviors (smoking initiation, age of smoking initiation, 

cigarettes per day, persistent smoking/smoking cessation) and drinks per week [11]. The high-

powered summary statistics enable the creation of polygenic risk scores (PRSs) [12]. A PRS is 

made by combining the effects of many genetic signals from a GWAS into a single risk variable, 

which can be used to estimate an individual’s genetic propensity to develop a disease or trait. 

Ultimately, the goal of precision medicine is to perform a genetically informed intervention that 

motivates people to quit smoking [13-15]. The return of the polygenic risk scores that are 

categorized, and interpreted is an important step toward this goal [13-15].  
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1.2 Neuroimaging and smoking behavior 
 

While smoking affects various organs of the human body, its connection with the brain remains 

relatively underexplored. Studies have shown that cognitive decline and dementia are associated 

with cigarette smoking [16-18]. However, understanding the direct relationship between smoking 

through neuroimaging has been hindered by small sample sizes, resulting in underpowered 

findings [19]. 

 

Recent biobank studies, particularly utilizing data from the UK Biobank, have provided a critical 

opportunity to examine the impact of smoking on a larger and healthier populations.  These 

investigations have delved into the correlation between smoking behaviors and brain-related 

changes [20-23], revealing a noticeable decrease in brain volume associated with smoking. 

Unraveling the neurobiology of substance use has been complex, but throughout the years, 

researchers have identified the specific brain regions involved in addiction, shaping the behavior 

changes in individuals during substance use [24, 25]. Still, an ongoing area of debate and 

research revolves around the scope of smoking's effect on the brain—whether it manifests 

globally or within specific regions—and whether this effect is reversible [26-29]. 
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1.3 Scope of dissertation 
 
In summary, the genetic studies of smoking provided many opportunities to expand precision 

medicine and motivate people to reduce/quit smoking. Building on genetic discovery in large 

scale genome wide association studies, I focused on validating the potential clinical utility of 

using genetic predictors in a clinical setting and a general population setting.  Then I combined 

genetic predictors to further examine the relationship between smoking behaviors and 

neuroimaging measures.  

 

Chapter 2 assesses the use of polygenic risk scores and a novel combined polygenic risk score 

to predict smoking cessation in two clinical trials. The summary statistics used to create the 

individual PRSs come from GWAS & Sequencing Consortium of Alcohol and Nicotine use 

(GSCAN), and the participant data is from the Genetically Informed Smoking Cessation Trial 

(GISC) and the Transdisciplinary Tobacco Use Research Centers (TTURC). Our findings show 

that the genetic risk scores of smoking behaviors predict smoking cessation in a clinical setting 

and potentially we can use a combined polygenic risk score to further improve smoking cessation 

success. This chapter has been published in the Journal Nicotine & Tobacco Research.  

 

Chapter 3 assesses the use of polygenic risk scores to predict smoking cessation in a general 

population setting. The summary statistics used to create the PRS come from GSCAN2, and the 

UK Biobank provides the participant data. We have identified that the addition of genetic 

predictors (PRS) significantly improves the model beyond clinical predictors and found that the 

median age of smoking cessation increases as the genetic risk of persistent smoking increases by 
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3 years in the highest decile of genetic risk compared lowest decile of genetic risk. At the time of 

dissertation defense, this chapter was in preparation for submission.  

 

Chapter 4 examines the association between smoking, the brain, and the genetic background of 

an individual in the UK Biobank dataset. Using summary statistics from the largest genome wide 

association study of smoking behaviors at the time, polygenic risk scores were developed for 

each participant in UK Biobank.  Our findings in this study showed that smoking behavior is 

strongly associated with a decrease in global brain volume and a decrease in structural/functional 

connectivity. We have also identified the negative association between pack years of smoking 

and the brain volume and there is no evidence for recovery after smoking cessation. 

Additionally, we provided evidence that genetics influence smoking behavior, and smoking 

behavior in turn influences the brain imaging. The major findings of this chapter have been 

published in the journal Biological Psychiatry: Global Open Science. 

 

Collectively, this Thesis shares representative work from my PhD and explores the fields of 

substance use, genomics, and neuroimaging.  
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Chapter 2. The promise of polygenic risk 
prediction in smoking cessation: Evidence 
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2.1 Abstract 
 

Introduction: Tobacco use disorder is a complex behavior with a strong genetic component. 

Genome-wide association studies (GWAS) on smoking behaviors allow for the creation of 

polygenic risk scores (PRSs) to approximate genetic vulnerability. However, the utility of 

smoking-related PRSs in predicting smoking cessation in clinical trials remains unknown. 

 

Aims and methods: We evaluated the association between polygenic risk scores and bioverified 

smoking abstinence in a meta-analysis of two randomized, placebo-controlled smoking cessation 

trials. PRSs of smoking behaviors were created using the GWAS and Sequencing Consortium of 

Alcohol and Nicotine use (GSCAN) consortium summary statistics. We evaluated the utility of 

using individual PRS of specific smoking behavior versus a combined genetic risk that combines 

PRS of all four smoking behaviors. Study participants came from the Transdisciplinary Tobacco 

Use Research Centers (TTURCs) Study (1091 smokers of European descent), and the 

Genetically Informed Smoking Cessation Trial (GISC) Study (501 smokers of European 

descent). 

 

Results: PRS of later age of smoking initiation (OR [95% CI]: 1.20, [1.04-1.37], p = .0097) was 

significantly associated with bioverified smoking abstinence at end of treatment. In addition, the 

combined PRS of smoking behaviors also significantly predicted bioverified smoking abstinence 

(OR [95% CI] 0.71 [0.51-0.99], p = .045). 
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Conclusions: PRS of later age at smoking initiation may be useful in predicting smoking 

cessation at the end of treatment. A combined PRS may be a useful predictor for smoking 

abstinence by capturing the genetic propensity for multiple smoking behaviors. 

 

Implications: There is a potential for polygenic risk scores to inform future clinical medicine, 

and a great need for evidence on whether these scores predict clinically meaningful outcomes. 

Our meta-analysis provides early evidence for potential utility of using polygenic risk scores to 

predict smoking cessation amongst smokers undergoing quit attempts, informing further work to 

optimize the use of polygenic risk scores in clinical care. 
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2.2 Introduction  
 
Tobacco use disorder is the leading cause of preventable death worldwide [1]. In the United 

States, cigarette smoking contributes to approximately one in five deaths annually, which results 

in a 10-year reduced life expectancy [2]. However, successful smoking cessation can improve 

long-term health outcomes. For example, individuals who quit smoking before the age of 40 

reduce the risk of a smoking-related death by ~90% [2, 3]. Unfortunately, cigarette smoking is 

highly addictive and although 68% of adult smokers desire to quit, less than 10% of adult 

smokers successfully quit annually [4]. 

 

The ability to successfully quit smoking is heritable, with heritability estimates from twin studies 

explaining up to 54% of variance in smoking cessation outcomes [5]. However, the genetic 

influences of smoking cessation are complex [6]. Large genome-wide association studies 

(GWAS) of smoking cessation and other smoking-related behaviors highlighted two well-known 

and documented genetic loci. The first genetic locus is CHRNA5 on chromosomal region 15q25 

and is a nicotinic receptor [7]. Within CHRNA5, one SNP, rs16969968, in particular drives this 

association [7–10]. The rs16969968 risk allele (A) is associated with a lower likelihood of 

smoking cessation, and the high-risk genotype (AA) is associated with a four-year earlier median 

age of lung cancer diagnosis [11–13]. The second genetic loci is CYP2A6 on chromosomal 

region 19q13 [6, 7] and is the primary nicotine metabolizing gene [14]. CYP2A6 is highly 

polymorphic, and genetic variation within CYP2A6 is associated with changes with nicotine 

metabolism [15], which can affect rates of smoking cessation [16, 17]. 
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Recent well-powered genome-wide association studies (GWAS) have identified many genetic 

variants associated with various smoking behaviors [7, 18, 19]. Specifically, the GWAS and 

Sequencing Consortium of Alcohol and Nicotine use (GSCAN) discovered over 500 genetic 

variants associated with four key smoking behaviors: ever smoking, later age of smoking 

initiation, cigarettes smoked per day, and persistent smoking (failed smoking cessation), 

allowing for the opportunity to develop polygenic risk scores (PRSs) [7]. A PRS is made by 

combining the effects of many genetic signals from a GWAS into a single risk variable, which 

can be used to estimate an individual’s genetic propensity to develop a disease or trait. PRSs 

have been useful in predicting health outcomes including lung cancer, other cancers, and 

psychiatric disorders [20–24]. 

 

Existing research has demonstrated the utility of PRS in predicting smoking behaviors, 

indicating the potential use of PRSs in clinical care [25, 26]. For example, Belsky and colleagues 

(2013) [26] observed that individuals with high smoking-related polygenic risk scores were more 

likely to develop nicotine use disorder if they smoked and were less likely to quit smoking [26]. 

Other examples evaluate how PRS of nicotine metabolism markers can be used to predict 

smoking cessation [27, 28]. For example, research suggests the potential of using PRSs in 

predicting nicotine metabolism that could potentially inform treatment response. Although 

research is emerging with the use of PRSs in the prediction of smoking behaviors and health 

outcomes, there is still a gap of knowledge in whether PRSs of smoking behaviors derived from 

these large population studies predict clinical smoking cessation success among smokers making 

a quit attempt. 
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Previous research has shown that variation in individual genes such as CHRNA5 [8, 11, 12] and 

CYP2A6 [14, 15] can predict smoking cessation in both population studies and clinical trials. For 

example, evidence from University of Wisconsin Transdisciplinary Tobacco Use Research 

Center (UW-TTURC) trial suggested that CHRNA5 genotypes may moderate the responses to 

nicotine replacement [12] in individuals of European ancestry. More recent evidence from the 

Genetically Informed Smoking Cessation Trial (GISC) trial suggested that CHRNA5 genotypes 

may moderate the response to nicotine replacement and varenicline in individuals of African 

American ancestry [29]. However, the results of such individual gene prediction studies have not 

always been consistent [30–32]. Recent GWAS have identified PRSs that predict smoking 

behaviors in large cross-sectional population studies. To the extent that PRSs comprise multiple 

genetic variants which may enhance the prediction of cessation outcomes, their use should result 

in more accurate and consistent associations with such outcomes. We hypothesize that smokers 

with higher PRSs of problematic smoking behaviors (e.g. earlier onset, heavy smoking, or 

persistent smoking) are less likely to achieve smoking cessation in clinical trials. This hypothesis 

is based on the notion that characteristics, such as age of initiating regular smoking and smoking 

heaviness, have shown strong associations with tobacco use disorder and smoking cessation 

failure in previous research [33–35] Using meta-analyses of two randomized placebo-controlled 

smoking cessation trials, we examine the utility of PRSs of four key smoking behaviors (ever 

smoking, later age of smoking initiation, cigarettes per day, and persistent smoking) in predicting 

smoking cessation among smokers attempting to quit [2, 7]. 
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2.3 Methods 
 
 
2.3.1 Study Samples  
 
The Transdisciplinary Tobacco Use Research Centers (TTURCs) Study  

The TTURC study is a randomized, placebo-controlled smoking cessation clinical trial at the 

University of Wisconsin Center for Tobacco Research and Intervention focusing on the genetic 

association of time to relapse after quitting [13]. Each participant was randomly assigned to one 

of the six conditions: (1) placebo, (2) nicotine patch, (3) nicotine lozenge, (4) sustained-release 

bupropion, (5) nicotine patch and nicotine lozenge (combination nicotine replacement [C-NRT]), 

or (6) bupropion and nicotine lozenge. In addition, all participants received individual cessation 

counseling. For this study, 1091 smokers of European ancestry were included. 

 

At the end of treatment (8 weeks), bioverified smoking abstinence was verified by expired-

carbon monoxide level of less than 10 ppm, documenting abstinence at post treatment. 

 

The Genetically Informed Smoking Cessation Trial (GISC) Study  

The GISC is a prospective, randomized, placebo-controlled smoking cessation trial conducted at 

Washington University in St Louis [29]. Each participant was randomly assigned into one of the 

three groups stratified by genotypes of rs16969968: nicotine patch and nicotine lozenge (C-

NRT), varenicline tartrate, or placebo. All participants received cessation counseling. For this 

study, 501 smokers of European ancestry were included. 

The primary outcome is 7-day point prevalence bioverified smoking abstinence at end of 

treatment (week 12). All participants self-reported smoking status for the primary endpoint, 

verified by an expired carbon monoxide level of less than 8 ppm. 
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Ethical Review Board Both studies were approved by the appropriate institutional review boards 

and all participants provided informed consent. 

 
2.3.2 Genetic Data 
 
Genotyping  

TTURC participants were genotyped at the Center for Inherited Disease Research at Johns 

Hopkins University using the Illumina Omni2.5 microarray. Gene-Environment Association 

Studies (GENEVA) Coordinating Center at the University of Washington led the data cleaning 

process. GISC participants were genotyped using Illumina Global Microarray. 

 

Imputation  

Using PLINK software [36], standard GWAS QC was performed to TTURC and GISC datasets. 

Single nucleotide polymorphisms (SNPs) were aligned to the 1000 Genomes Reference (+strand, 

build 37) and imputed on the University of Michigan Imputation server using 1000 Genome 

Reference (build 37, phase 5) [9, 37]. Pre-imputed QC steps included: removing individuals with 

low genotyping efficiency (<95%), removing related subjects, removing subjects with discordant 

or inconsistency between reported and reported sex. We also removed SNPs with low 

genotyping efficiencies (<95%), SNPs with low minor allele frequencies (MAF) (<0.01), and 

SNPs with no chromosome location. Prior to genetic imputation, SNPs were aligned to the + 

strand of the 1,000 Genomes. Genotyped SNPs were imputed within the University of Michigan 

Imputation server using the 1000 Genomes build 37 phase 5 reference panel. Imputed SNPs that 

had an info score ≥0.9 and a minor allele frequency ≥1% were converted to hard calls. After 

imputation and QC, there were 47,109,470 SNPs in UW-TTURC and 47,109,465 SNPs in GISC. 
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Principal components (PCs) of genetic ancestry for GISC were created using EIGENTRAT [38]. 

Information on how PCs were generated for TTURC can be found in the database of Genotypes 

and Phenotypes (dbGAP) repository (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000404.v1.p1) under accession number (phs000404.v1.p1). 

 

Polygenic Risk Scores  

We generated PRSs of four smoking behavior phenotypes (ever smoking, later age of smoking 

initiation, cigarettes smoked per day, and persistent smoking [failed smoking cessation]) from 

GSCAN GWAS summary statistics using PRSice software [39]. SNPs in each data set were 

pruned by PRSice (version 1.23) using p-value–informed linkage disequilibrium clumping: R2 

<0.10 in a 500-kb window, collapsed to the most significant variant. For each of the four 

smoking-related summary statistics, we tested the predictability of PRSs that were generated 

from eight p-value thresholds (.5, .05, .005, .0005, 5 × 10−5, 5 × 10−6, 5 × 10−7, 5 × 10−8). In 

general, the inclusion of more SNPs led to more variance explained of the outcome and thus, all 

subsequent analyses involved PRSs generated using SNPs with p-value threshold of .5 or greater 

unless otherwise noted. For the GISC data set, there was a total of 136,874 SNPs for generating 

the later age of smoking initiation PRS, 136,689 SNPs for the cigarettes per day PRS, 135,124 

SNPs for the ever smoking PRS, and 135,609 SNPs for the persistent smoking PRS. For the 

TTURC data set, there was a total of 183,998 SNPs for generating the later age of smoking 

initiation PRS, 183,342 SNPs for the cigarettes per day PRS, 181,341 SNPs for the ever smoking 

PRS, and 181,362 SNPs for the persistent smoking PRS. To ensure the interpretability across 

PRSs of different traits, all PRSs were standardized to Z-scores. 

 
2.3.3. Combined Polygenic Risk Scores  
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In addition, we generated a combined PRS for risk smoking behaviors based on PRSs of four 

smoking behaviors (ever smoking, earlier initiation, higher cigarettes per day, persistent 

smoking) by taking the mean of all four z-transformed PRSs. We acknowledge the mean is an 

agnostic combination of these PRSs and have shown the correlation of these PRSs in the samples 

(Table S1). 

 
2.3.4 Statistical Analysis 
 
We modeled the association of each PRS to predict the outcome of bioverified smoking 

abstinence at end of treatment in both trials. Z-transformed PRSs were modeled as continuous 

variables. We examined the associations between PRSs and bioverified smoking abstinence at 

the end of the treatment in both trials using logistic regression models in R [40]. We included the 

following covariates: age, sex, PC1, and PC2. Additional covariates included cigarettes smoked 

per day (CPD) and treatment by FDA-approved medication (GISC: combination nicotine 

replacement therapy (nicotine patch, nicotine lozenge), varenicline; TTURC: combination 

nicotine replacement therapy, bupropion). PRSs were converted to quartiles for the ease of 

interpretation. In addition, meta-analysis of both trials was performed in R (metafor package) 

[40]. We reported both fixed and random effects models. In addition, we generated receiver 

operating characteristic curve (ROC) and estimated the area under the curve (AUC) for the 

prediction of smoking cessation using clinical predictors and genetic predictors (SAS 9.4). 
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2.4 Results  
 
 
2.4.1 Sample Characteristics  
 
We examined whether polygenic risk scores of smoking behaviors were associated with 

bioverified smoking abstinence in both smoking cessation trials, TTURC and GISC. The sample 

characteristics for these two trials are shown in Table 1. The samples from both studies are of 

European descent. The mean ages were 46.6 (GISC) and 44.5 (TTURC). The ratio of males and 

females was similar between the two trials (55.9% female for GISC and 58.1% female for 

TTURC). The mean baseline CPD was 19.1 for GISC and 21.8 for TTURC. Bioverified smoking 

abstinence at the end of treatment was 20.6% for GISC (N = 103) and 47.5% for TTURC (N = 

518) (Table 1). 

 
2.4.2. PRS of Specific Smoking Behaviors and Bioverified Smoking Abstinence 
 
We evaluated the association between each PRS (ever smoking, later age of smoking initiation, 

cigarettes per day, and persistent smoking) and end of treatment bioverified smoking abstinence 

using meta-analyses from the results of the two trials. In random effect meta-analysis models 

(Figure 1), the PRS of later age of smoking initiation was significantly associated with 

bioverified smoking abstinence at end of treatment (OR [95% CI]: 1.20, [1.04–1.37], p = .0097). 

Specifically, smokers with PRS-later age of smoking initiation in the highest quartile compared 

with those with the lowest quartile were more likely to quit successfully (45.1% vs. 32.8%, 

Figure 1, a). The PRSs of the other risk smoking behaviors were associated with reduced 

abstinence but did not reach statistical significance.  
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2.4.3. Combined PRS of Smoking Behaviors and Bioverified Smoking Abstinence 

We evaluated and meta-analyzed the association of the combined PRS of smoking behaviors and 

bioverified smoking abstinence. These four PRSs had low correlations (all ≤ 0.16) 

(Supplementary Table S1). Using an agnostic approach, we computed the combined PRS of 

smoking behaviors using the mean of these four PRSs. This combined PRS of smoking behavior 

was significantly associated with bioverified smoking abstinence (random effect model OR [95% 

CI]: 0.71 [0.51–0.99], p = .045) (Figure 2). Smokers with the highest quartile compared with 

those in the lowest quartile of the combined PRS were less likely to quit smoking (33.0% vs. 

48.5%, Figure 2). 

 

2.4.4. Prediction of Bioverified Smoking Abstinence 

We evaluated whether the addition of basic clinical predictors (cigarettes per day and treatment), 

additional clinical predictors (baseline Fagerstrom Test for Nicotine Dependence [FTND], 

baseline carbon monoxide [CO], age of smoking initiation, history of depression/anxiety, and the 

addition of genetic predictors (PRSs of smoking behaviors) beyond use of the demographic 

predictors increases the prediction of bioverified smoking abstinence at end of treatment (Figure 

3). In evaluating the utility of adding genetic predictors to clinical predictors, we have compared 

model prediction with the area under the curve (AUC). We found that adding basic clinical, 

additional clinical, and genetic predictors significantly increased the AUC (basic clinical 

predictors—0.64 to 0.69, p < .0001; additional clinical predictors—0.69 to 0.70, p = .019; 

genetic predictors—0.70 to 0.71, p = .034). 

 



22 
 

 
2.5 Discussion  
 

Our findings provide novel evidence for the utility of PRSs derived from smoking behaviors to 

predict smoking cessation in clinical trials. Meta-analysis of two trials revealed associations 

between PRSs and successful smoking cessation at the end of treatment. Specifically, the PRS of 

later age of initiation predicts an increase in successful smoking cessation, and the PRS of 

persistent smoking and number of cigarettes smoked per day trended toward predicted successful 

smoking cessation but did not reach statistical significance. In addition, a combined PRS, which 

summarizes the PRSs of multiple aspects of smoking behaviors, could be useful in predicting 

smoking cessation among smokers making a quit attempt. 

 

Most genetically informed research of smoking-related outcomes focus on single gene regions 

encompassing genes CHRNA5 [8, 11, 12] and CYP2A6 [14, 15, 17]. For example, meta-analyses 

show strong evidence of the associations between CHRNA5 on chromosome 15q25 with 

cigarettes smoked per day, smoking cessation, and lung cancer [8]. In addition, several studies 

have focused on the CYP2A6 region encompassing chromosome 19q13 [6, 14]. CYP2A6 encodes 

the enzyme that is the primary metabolizer of nicotine [14] and is, therefore, a proxy for the 

nicotine metabolite ratio (NMR), a biomarker of nicotine metabolism. There is substantial 

evidence that CYP2A6 is associated with smoking cessation. For instance, slow metabolism 

associated with this gene is associated with increased smoking cessation during adolescence 

[41]. In addition, NMR has been implicated in smoking cessation in a previous study by Lerman 

and colleagues (2015) [42]. These authors observed that amongst individuals taking varenicline, 

normal nicotine metabolizers were more likely to quit smoking than slow metabolizers [42]. 
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Thus, there is evidence that both CHRNA5 and CYP2A6 provide information regarding the risk 

of smoking cessation success. Our findings, however, present evidence that PRSs based on many 

variants across the genome that are derived from smoking behaviors such as smoking initiation, 

age of smoking initiation, cigarettes per day, and persistent smoking hold the potential for 

predicting smoking cessation success. This suggests that risk for smoking cessation failure is 

highly heterogeneous and can also be assessed using broad polygenic approaches. Such 

heterogeneity is consistent with multifactorial assessments of cigarette use disorder [33] and with 

the evidence of heterogeneity from motivational mechanisms linked with persistent smoking 

[42–49]. 

 

Our evidence suggests that a combined PRS, which captures the effects of different smoking 

behaviors, could be a more useful predictor than a PRS derived from a single trait. Another study 

has combined PRSs of lung imaging phenotypes and patterns of lung growth to test the power of 

a combined PRS to predict chronic obstructive pulmonary disease (COPD). This study has 

shown that the combined PRS was significantly associated with COPD [50]. A combined PRS, 

or composite PRS, can capture genetic risk from multiple risk behaviors. In addition, a combined 

PRS may create a biologically relevant score for clinical trials and improve the relevance of 

genetic risk scores. There is emerging research on methods to combine individual PRSs to 

improve predictive power. Our study took an agnostic approach in combining individual PRSs 

based on the observed low correlation among the individual PRSs. Future work to improve this 

methodology for combining individual PRSs has the potential to revolutionize how PRS are 

utilized. 
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Our study is based on two smoking cessation datasets investigating PRSs in clinical trials. Even 

so, some limitations exist. First, the power of this study was limited due to a modest sample size 

of 1592 individuals enrolled in trials. To counteract the sample size, we have analyzed two 

different datasets to reveal convergent results. For future studies, more replications are needed to 

confirm the associations between smoking behavior PRSs and smoking cessation. Future studies 

with larger sample sizes would be required for evaluating the interactive effects of polygenic risk 

scores and specific medications. Second, we are limiting our research to smokers with European 

ancestry. This is largely because the GWAS and Sequencing Consortium of Alcohol and 

Nicotine Use (GSCAN) summary statistics is based on 1.2 million smokers of European descent. 

Several studies prove that the risk scores derived from European population underperform in 

non-European populations [7]. Third, even though 1000 genome reference panel is proven to 

provide valuable genomic resources that can augment the power of GWAS in groups with 

European ancestry [51], we acknowledge the limitation of using 1000 Genomes reference panel 

instead of more current reference panels (HRC or TopMed) for imputation [52, 53]. Finally, the 

participants in two studies received different medications for treatment, but we currently do not 

have enough power to evaluate how PRSs moderate response to specific medications. 

Furthermore, we observed variation in smoking cessation outcomes across the two trials due to 

heterogeneity in study design, outcome definitions, and time of the trial. Future studies involving 

increased number of trials and samples are needed to address this important question. 

 

Ultimately, the genetic studies on smoking behaviors aim to enhance the prevention of smoking 

and aide in successful smoking cessation. The use of PRSs in clinical trials may be a helpful tool 

by incorporating multiple genetic signals to assess the inherent ability to quit smoking amongst 
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smokers. This study is motivated by available GWAS results of smoking behaviors based on 

large general population studies, while GWAS for refined clinical outcomes such as smoking 

cessation in smoking cessation trials are not available due to limited sample sizes. Future 

research can explore different strategies for developing PRSs, including forming them on the 

basis of phenotypes that critically affect smoking cessation success such as withdrawal, craving, 

severity, and reward sensitivity. In addition, methods such as machine learning might suggest 

component weightings to use in future applications. Another future direction is using weighted 

genetic scores to approximate a biomarker or a mechanistic pathway. In a previous study by 

Buchwald and colleagues (2020), the authors observed that the CYP2A6 gene region explained 

up to ~36% of genetic variance of the nicotine metabolite ratio [50]. Existing research, including 

our prior work, showed the potential utility of PRS in predicting nicotine metabolism [17, 27]. It 

is probable that if a selected gene region could explain a substantial proportion of genetic 

variance of the nicotine metabolite ratio, then a regional PRS would be predictive of smoking 

cessation at the end of treatment as well. Furthermore, PRSs should permit the study of 

interactions between non-biological factors and treatments. For example, there is a strong 

association between CHRNA5 nicotine receptor gene variant and partner smoking, which is 

largely an environmental factor, but also represents the genetic factors of partner selection [12]. 

The genetic risk factor coupled with the environmental risk factor can result in a low rate of 

smoking reduction; PRSs should permit the exploration of other environmental factors that 

modulate smoking cessation success. 

 

This study presents evidence on the potential utility of smoking behavior PRSs in predicting 

smoking cessation success amongst smokers in treatment trials. Our evidence based on the meta-
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analysis of two trials suggest that the PRS of later age of smoking initiation and the PRS of 

persistent smoking may be useful in predicting smoking cessation at the end of treatment. A 

combined PRS may be a useful predictor of smoking cessation by capturing the genetic 

propensity for multiple smoking behaviors. These findings help answer important clinical 

questions about the utility of polygenic risk scores in clinical smoking cessation outcomes. 
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2.9 Tables  
 

Table 2.1. Descriptive Statistics for the samples from GISC and TTURC studies used for the 
analysis  

 GISC TTURC 
Total N 501 1091 
 
Age (Mean, SE) 

 
46.6, 0.51 

 
44.5, 0.34 

Sex (n, %)   
     Male 221, 44.1 457, 41.9 
     Female 280, 55.9 634, 58.1 
Baseline CPD (Mean, SE) 19.1, 0.34 21.8, 0.28 
Randomized to active 
pharmacotherapy (n, %) 

 
329, 65.7 

 
955, 87.5 

History of Anxiety/Depression (n, %) 129, 25.7 226, 20.7 
CO (Mean, SE) 28.9, 0.59 26.5, 0.38 
FTND (Mean, SE) 4.9, 0.1 5.3, 0.07 
Smoking Age of initiation (Mean, SE) 17.5, 0.19 17.3, 0.12 
Smoking Abstinence at EOT (n, %) 103, 20.6 518, 47.5 

 

SE, standard error. CPD is defined as cigarettes per day. EOT is defined as end of treatment. CO 
is carbon monoxide level, and FTND is Fagerstrom Test for Nicotine Dependence. TTURC2, 
The Transdisciplinary Tobacco Use Research Centers Study. GISC, The Genetically Informed 
Smoking Cessation Trial Study. Please note that TTURC is missing 2 CO, 14 FTND, 2 Smoking 
Age of initiation, 36 CPD values.  
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Table 2.2. Correlation of PRS of smoking behaviors in the study sample 

(A) GISC 

 PRS of ES PRS of DAI PRS of CPD PRS of PS 
PRS of ES     
PRS of DAI -0.094*    
PRS of CPD 0.11* -0.093*   
PRS of PS 0.13** 0.011 0.16***  

 

(B) TTURC 

 PRS of ES PRS of DAI PRS of CPD PRS of PS 
PRS of ES     
PRS of DAI -0.1***    
PRS of CPD 0.038 -0.067*   
PRS of PS 0.058* -0.014 0.076*  

*: P <0.05 

**: P <0.005 

***: P <0.0005 

ES: ever smoking 

DAI: delayed age of smoking initiation 

CPD: cigarettes per day 

PS: persistent smoking 
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2.10 Figures  
 

 

Figure 2.1. Polygenetic risk scores (PRS) of later age of smoking initiation, persistent smoking, 
ever smoking and cigarettes per day and bioverified end of treatment smoking abstinence: Meta-
Analysis of two treatment trials  
 



38 
 

 

Figure 2.2. Combined polygenetic risk score (PRS) and bioverified end of treatment smoking 
abstinence: Meta-analysis of two treatment trials  
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Model N=1543 R
2 AUC Compare with the 

prior model 
        X2 (df) P 
1 Base model Age, sex, and study 0.0724 0.643     
2 Add basic clinical Age, sex, study, treatment, and CPD 0.107 0.6917 19.6 (1) <0.0001 
3 Add additional 
clinical 

Age, sex, study, treatment, CPD, FTND, 
CO, history of anxiety/depression, and age 
of initiation 

0.117 0.703 5.48 (1) 0.019 

4 Add genetics age, sex, study, CPD, treatment, FTND, CO, 
anxiety/depression, age of initiation, PCs, 
PRS of ever smoking, PRS of delayed 
initiation, PRS of CPD, and PRS of 
persistent smoking, 

0.126 0.712 4.50 (1) 0.034 

 

Figure 2.3. Pooled analyses: Prediction of Smoking Abstinence. CPD: cigarettes per day. FTND: 
baseline Fagerstrom Test for Nicotine Dependence. CO: baseline carbon monoxide PCs: 
Principle components. ROC curve: Receiver Operating Characteristic Curve. PRS: polygenic 
risk scores. AUC: area under the curve. R2 is a statistical measure that represents the proportion 
of the variance for included covariates in the model. 
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Chapter 3. Use of polygenic risk score 
beyond clinical factors enhances prediction 
of smoking cessation 
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3.1. Abstract  
 
Introduction: Genetic factors play an important role in smoking behavior, with heritability 

estimates influencing cessation outcomes. The Genome-Wide Association Studies & Sequencing 

Consortium of Alcohol and Nicotine Use (GSCAN) provides valuable insights, including 

summary statistics for constructing Polygenic Risk Scores (PRS) for smoking cessation. This 

study uses the UK Biobank dataset to validate PRS in a large population, addressing the gap in 

population-based studies. 

 

Methods: Analyzing data from 200,000 UK Biobank participants with a history of daily 

smoking, we utilized GSCAN summary statistics to create PRS for persistent smoking for each 

participant. We used logistic regression to examine the association between PRS and smoking 

cessation, adjusting for relevant covariates such as age, sex, education, smoking in household, 

ever depressed, and ancestral principal components. We evaluated prediction accuracy through 

comparing the area under the ROC curve (AUC). Survival analyses assessed quit probability and 

median quit age across PRS risk groups.  

 

Results: PRS for smoking cessation exhibited a significant association with quit outcomes, with 

higher PRS linked to reduced success. Integration of genetic predictors significantly improved 

cessation prediction beyond clinical factors. Individuals in higher PRS risk groups showed lower 

cessation success rates, with a 3-year difference in median age of cessation between top and 

bottom 10% PRS groups. 
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Discussion: This study validates the use of PRS for smoking cessation, showcasing its potential 

beyond conventional predictors. The findings underscore the clinical utility of genetic 

information in predicting long-term smoking cessation outcomes. Despite limitations, the large-

scale UK Biobank dataset provides robust evidence supporting the integration of PRS into 

precision medicine approaches for smoking cessation. 

 

Conclusions: The study contributes to the translational effort in precision medicine, 

demonstrating the predictive capacity of PRS for smoking cessation in a healthier population. 

The results emphasize the potential of genetic information to enhance treatment decisions, 

motivating individuals to seek evidence-based interventions. This research bridges the gap 

between genetic discoveries and clinical application, paving the way for more effective and 

precise healthcare solutions in smoking cessation. 
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3.2. Introduction  
 
Cigarette smoking is a significant public health problem that results in more than 8 million 

preventable deaths worldwide [1]. It has been linked to various adverse health outcomes, 

including several forms of cancer, respiratory and cardiovascular diseases, and cognitive 

impairment [2-4]. Despite widespread awareness of the detrimental effects of smoking, quitting 

remains a challenging process for many people. Only 6-10% of adults who smoke succeed in 

quitting smoking each year, which calls for a need for more effective smoking cessation 

strategies [5]. Personalized approaches to smoking cessation may improve successful quit rates.  

 

Genetics plays a crucial role in smoking behaviors, with the heritability estimates from twin 

studies explaining up to 54% of variance in smoking cessation outcomes [6]. Large-scale 

genome-wide association studies (GWAS) were performed in recent years to unravel the genetic 

architecture of different smoking behaviors including smoking initiation, age of smoking 

initiation, number of cigarettes smoked per day, and successful smoking cessation [7-9]. GWAS 

& Sequencing Consortium of Alcohol and Nicotine Use (GSCAN), is the meta-analysis of such 

GWAS findings across studies, with accumulated samples of over 3.4 million individuals [10]. 

GSCAN provided comprehensive summary statistics that allowed the construction of polygenic 

risk scores (PRSs). PRS, the risk score made by combining the effects of many genetic signals 

into a single risk variable, can be used to estimate an individual’s genetic propensity to develop a 

disease or a trait [11]. PRSs have been utilized in predicting health outcomes such as obesity, 

cancers, and psychiatric disorders [12-14].  
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However, despite the availability of extensive summary statistics, there remains a lack of studies 

validating the use of PRS in large population-based samples. The UK Biobank, an unprecedented 

resource of genetic information and detailed questionnaires from approximately 500,000 

individuals, allows the investigation of genetics and smoking behavior in a vast population-based 

cohort [15]. The UK Biobank data can play an important role in validating the predictive 

capacity of PRS for smoking cessation outcomes. Moreover, this dataset offers a unique 

advantage for studying the distribution of PRS within the general population and addressing 

general population-specific questions that clinical trials’ limited sample sizes could not answer, 

such as the predictive capability, pattern, and significance of PRS in a larger and healthier 

population.  

 

The ultimate goal of precision medicine is to guide and support individuals in making lifestyle 

changes and treatment decisions based on their individual genetic and environmental risk 

profiles. Prediction of smoking cessation outcomes traditionally relied on clinical predictors, 

including age, sex, environmental factors, and socio-economic status [16-20]. However, PRS can 

potentially enhance the accuracy of prognosis prediction beyond these conventional predictors. 

By incorporating genetic information, PRS may improve the identification of individuals with 

later age of successful smoking cessation, enabling targeted interventions and support. In this 

study, we investigate the median age of smoking cessation as a clinically interpretable measure 

for smoking cessation prognosis. This study aims to contribute to this translational effort in 

precision medicine by validating the use of PRS to identify those at the highest risk for later 

smoking cessation. 
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3.3. Methods 
 

3.3.1. Study Samples 

UK Biobank  

UK Biobank is a long-term prospective epidemiological study of 500,000 participants [21]. The 

study includes information on smoking behaviors and genome-wide genotype data of the 

participants. UK Biobank also provides extensive demographic data including age, sex, smoking 

status, age started smoking, age stopped smoking, cigarettes smoked per day, pack-years of 

smoking, smoking in the household, socioeconomic status, and mental health status.  

Smoking Behaviors 

Smoking phenotypes were defined using data from self-report surveys obtained during in-person 

assessment center visits at baseline (‘instance 0’, 2006-2010). Current daily smoking was defined 

by the answer ‘Yes, on most or all days’ to the question ‘Do you smoke tobacco now?’ (Data-

field 1239). Former daily smoking was defined by the answer ‘Smoked on most or all days’ to 

the question ‘In the past, how often have you smoked tobacco?’ (Data-field 1249). Those with a 

history of occasional smoking, but not smoking daily, and those with no history of daily smoking 

were excluded from the analysis. 

GWAS & Sequencing Consortium of Alcohol and Nicotine use 

GSCAN is a meta-analysis of over 30 GWAS in over 3.4 million participants with European 

ancestry on substance use [10]. The study discovered genetic variants associated with a key 

smoking behavior: smoking cessation. The included GWAS are imputed using either 1000 

Genome or Haplotype Reference Consortium (HRC) or a combination of two reference panels 
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with more specific panels. The released dataset presents summary statistics of smoking cessation 

with and without UK Biobank samples.  

Ethical Review Board  

The UK Biobank study was approved by the National Health Service National Research Ethics 

Service (11/NW/0382). All the participants provided informed consent to participate in the UK 

Biobank study (Our study ID: 48123). 

3.3.2. Genetic Data 

Polygenic Risk Scores 

We retrieved genome-wide data for all participants of European ancestry from the UK Biobank 

genetic dataset (dataset version/number = ukb48123). We used GSCAN summary statistics 

generated with the UK Biobank samples removed to create a polygenic risk score (PRS) for 

persistent smoking [failed smoking cessation]) with genetic variants using PRSice-2 [22, 23]. 

The PRS results have been pruned for sites with minor allele frequency (MAF) > 0.001, 

imputation quality (Effective N/N) > 0.3, and an effective sample size of at least 10% of the 

maximum sample size. Insertions and deletions were not included in GSCAN2 summary 

statistics or in the calculation of PRS. PRSice-2 uses a p-value selection threshold approach. 

Thus, according to the different p-value thresholds (.5, .05, .005, .0005, 5 × 10−5, 5 × 10−6, 5 × 

10−7, 5 × 10−8), we included SNPs with a GWAS association p-value below each threshold. To 

ensure the interpretability across PRSs, all PRSs were standardized to Z-scores.  

3.3.3. Statistical analysis 

We analyzed how each PRS was linked to predicting smoking cessation. The z-score 

transformed PRSs were treated as continuous factors in our analysis. We utilized logistic 

regression models in the R to explore the connections between PRSs and smoking cessation. 
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Covariates that might confound the association between smoking cessation data and genetic 

predisposition to smoking behaviors were included in the following analyses: age, sex, ancestral 

principal components (PCs), education, smoking in the household, and ever-depressed for a 

whole week. We generated a receiver operating characteristic curve (ROC) and estimated the 

area under the curve (AUC) for the prediction of smoking cessation using clinical predictors and 

genetic predictors (SAS 9.4). In addition, we created a survival analysis curve between quit 

probability and time to quit for 7 PRS risk groups (Bottom 10%, 10-20%, 20-40%, 40-60%, 60-

80%, 80-90%, Top 10%) and computed median age for each group. The survival analysis and 

median age calculation were done for the PRS of smoking cessation (p-value threshold 0.5), and 

the combined PRS.  
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3.4. Results  

3.4.1. Sample characteristics  

We examined the prediction ability and distribution of polygenic risk scores of smoking 

cessation in UK Biobank samples. The sample characteristics are shown in Table 1. All samples 

are of European descent. The mean age was 57.7, and the percentage of men and women was 

similar (Male: 51.9, Female: 48.1). There were 48,275 participants who is currently daily 

smoking, and 160,643 who formerly daily smoked. The mean of age started smoking was 17.4, 

and the mean of age stopped smoking was 44.5. On average, ever-smoked participants have 

smoked 17.8 cigarettes per day and had a 23.8 pack-year history. 31,222 (14.9%) participants 

had one or more household members who smoked. For the related covariates, 54,880 (28.2%) 

reported they have a college degree; 180,975 (86.6%) participants answered “yes” to the 

question asking if they were ever depressed for a whole week.  

3.4.2. PRS of smoking cessation and persistent smoking cessation 

We evaluated the association between PRS for smoking cessation and the participant’s smoking 

cessation in 8 different P-value thresholds. For the most stringent threshold (P < 5 x 10-8), OR 

was 0.95, and the P-value was 2.93 x 10-22. For the least stringent threshold (P < 0.5), OR was 

0.90 and P-value was 1.03 x 10-85. For the other 6 thresholds in between 0.5 and 5 x 10-8, OR 

steadily increased from 0.95 and the P-value steadily decreased from 2.93 x 10-22 as the p-value 

threshold became less stringent   (Figure 1).  

3.4.3. Prediction of smoking cessation using clinical predictors with genetic predictors  

We also evaluated the effect of the additional genetic predictors to 1) base model with age and 

sex, 2) model with clinical predictors added (age, sex, education, pack years, age of initiation of 
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smoking, smoking in household). We found that the model with genetic predictors added (age, 

sex, education, pack years, age of initiation, smoking in household, PC1-3, PRS for smoking 

cessation at 0.5 p-value threshold, and risk allele count for the SNP rs16969968) significantly 

increased the area under the curve (AUC) (clinical predictors—0.6229 to 0.7164, p = p < .0001; 

genetic predictors—0.7164 to 0.7178, p = p < .0001) as shown in Figure 2.   

3.4.4. Varying probability of smoking cessation success among individuals across smoking 

cessation PRS risk group  

 We found that individuals in the higher PRS risk groups were less likely to successfully quit 

compared to those in the bottom 10% PRS group). For example, individuals in the top 10% PRS 

are less like to quit successfully compared with those in the bottom 10% (OR=0.73, 95% 

CI=0.69-0.77, p<0.0001). Detailed results from the regression model are included in Table S2.  

The median age of smoking cessation for each 7 groups PRS for smoking cessation (P < 0.5) was 

divided into started from 45 (Bottom 10%) and increased to 47 (Top 10%) as shown in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
3.5. Discussion  
 
We validate the PRS of smoking cessation and present evidence to show the potential use of PRS 

for smoking cessation. PRS of smoking cessation is significantly associated with an individual’s 
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smoking cessation outcome. Second, PRS of smoking cessation can enhance the prediction of 

smoking cessation beyond the use of demographic and clinical predictors. Third, PRS may place 

individuals in different risk categories that are associated with a variable genetic underpinning 

for quit success that can vary by 3 years.  

Evidence is growing on the optimal use of PRS in clinical applications. Most of the current 

translational work focuses on how PRS can help enhance diagnoses [12-14, 24, 25]. Here we 

present an example of using PRS to identify the long-term prognosis of individuals who smoke 

and their potential quit outcomes based on their genetic markers. Knowledge of precision risk of 

smoking cessation difficulty based on personal biology may motivate individuals who smoke to 

seek treatment, given that most individuals who smoke do not use evidence-based treatment due 

to common barriers such as the belief that their personalized risk for smoking is lower than 

average or their personal ability to quit is higher than average.  

Our study is based on the UK Biobank dataset, which is large and provides ample statistical 

power. Even so, some limitations exist. First, we limited our research dataset to those with 

European ancestry. Most of the participants in both the UK Biobank and the GWAS and 

Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) summary statistics are of 

European descent. Many studies have shown that the polygenic risk scores created based on the 

European population dataset underperform in non-European populations. Second, the UK 

Biobank participants may not be representative of the general population; there is evidence of a 

“healthy volunteer” selection bias [26]. It is commonly known that the participants in health-

related studies are more health-conscious than those who do not [26, 27]. Second, we limited our 

research dataset to those with European ancestry. The majority of the participants in both the UK 

Biobank and the GWAS and Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) 
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summary statistics are of European descent. Many studies have shown that the polygenic risk 

scores created based on the European population dataset underperform in non-European 

populations. Third, there are several ways to generate polygenic risk scores, and we used 

PRSice2, the P-value-based clumping and thresholding (“P+T”) method [28]. Even though 

PRSice is based on the most commonly used method, the polygenic risk scores can be generated 

using different methods. Many alternative approaches assume that SNP effects are derived from 

combinations of different distributions, with the key parameters defining these architectures 

determined using Bayesian frameworks. (i.e. LDpred2, PRS-CS, SBayesR) [28, 29].  

The translation of genetic discoveries to clinical interventions requires multiple steps starting 

from validating results, identifying clinical utility, and establishing equitable pragmatic 

implementation strategies in clinical settings [30]. These findings are important to start 

identifying the potential utility of genetic associations for individuals who smoke. While the 

genetic vulnerabilities for many health traits are included in consumer genomics reports (e.g., 

motion sickness), the knowledge of their own genetic predispositions for quit success may be 

highly motivational for people to make health decisions such as finding a quit date or seeking 

tobacco treatment.   
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3.6. Conclusion  
 
To facilitate clinical translation, this study evaluated the predictive ability of PRS for smoking 

cessation in a large dataset of participants and demonstrated: a) its significant association with 

individual quit outcomes, b) its ability to improve cessation prediction beyond demographic and 

clinical factors, and c) its potential to categorize individuals into varying risk groups with up to a 

3-year difference in genetic-based quit success. The research cycle, encompassing discovery, 

validation, and clinical application, stands as the pivotal step in the field of precision medicine. 

From identifying disease-associated genetic variants to developing robust risk assessment 

methods, to rigorously validating their clinical utility in clinical trials, offers tangible benefits to 

individuals in need of targeted interventions. Our study provides compelling evidence for the 

robust clinical utility of the PRS for smoking cessation. Ultimately, the purpose of our research 

is to provide more effective and precise healthcare solutions, and these findings help bridge the 

gap between the research and the application. 
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3.8. Tables 
 
Table 3.1. Demographic and smoking variables  

Total N= 194,859 Mean ± SD 
Age* 57.9 ± 7.75 
Sex (n females, %) 

 

    Female (n, %) 94,123 (48.3) 
    Male (n, %) 100,736 (51.7) 
College  
    College of university degree (n, %) 54,880 (28.2) 
    Others (n, %) 139,979 (71.8) 
Ever depressed for a whole week 

 

    Yes (n, %) 169,237 (86.9) 
    No (n, %) 25,622 (13.1) 
Smoking status  
    Current daily smoking (n, %) 43,618 (22.4) 
    Former daily smoked (n, %) 151,241 (77.6) 
Age started smoking 17.4 ± 4.18 
Age stopped smoking 44.4 ± 12.8 
Cigarettes per day  17.9 ± 11.3 
Pack years 23.9 ± 20.5 
Smoking/smokers in the household 

 

    Yes, one or more household members (n, %) 28,804 (14.8) 
    No (n, %) 166,055 (85.2) 

*Age at recruitment 

Do not know, and prefer not to answer removed from the analysis 
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3.9. Figures 
 
 

 
 
Figure 3.1. PRS of different p-value thresholds and corresponding OR and P-value 
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Model* Covariates R2 AUC Comparison with the prior model 
 

      X2 P-value 

1 Base model Age, sex 0.0322 0.6229   

2 Add clinical 
predictors 

Age, sex, education, pack-years, age of 
initiation, smoker in household 0.0962 0.7150 4146.0210 <.0001 

3 Add 
genetics 

Age, sex, education, pack-years, age of 
initiation, smoker in household, PCs, PRS 
for smoking cessation (p: 0.5), 
rs16969968 

0.0974 0.7164 50.4377 <.0001 

*N=194859 

Figure 3.2. ROC curve of clinical predictors with added genetic predictors 
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PRS for  
smoking cessation Median time to quit Quit probability SE CI 5% CI 95% 

Bottom 10% 44 0.509595 0.002974 0.5038 0.515456 

10-20% 45 0.495998 0.002883 0.490379 0.501681 

20-40% 45 0.49892 0.002103 0.494815 0.503059 

40-60% 46 0.493077 0.002121 0.488937 0.497251 

60-80% 46 0.501348 0.002117 0.497215 0.505515 

80-90% 47 0.499644 0.002942 0.493911 0.505444 

Top 10% 47 0.507241 0.002808 0.501767 0.512775 
Figure 3.3. Survival analysis and median age for 7 different PRS risk groups. PRS for smoking 
cessation is at the p-value threshold 0.5.  
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Figure 3.4. Sample processing chart  
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Chapter 4. Investigating the relationship 
between smoking behavior and global brain 
volume 
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4.1. Abstract  

Introduction: Previous studies have shown that brain volume is negatively associated with 

cigarette smoking, but there is an ongoing debate whether smoking causes lowered brain volume 

or a lower brain volume is a risk factor for smoking. We address this debate through multiple 

methods that evaluate directionality: Bradford Hill’s Criteria that is commonly used to 

understand a causal relationship in epidemiological studies, and mediation analysis. 

Methods: In 32,094 participants of European descent from the UK Biobank dataset, we 

examined the relationship between a history of daily smoking and brain volumes, as well as 

association of genetic risk score to ever smoking with brain volume.  

Results: A history of daily smoking is strongly associated with decreased brain volume, and a 

history of heavier smoking is associated with a greater decrease in brain volume. The strongest 

association was between total grey matter volume and a history of daily smoking (Effect size = -

2964mm3 p-value = 2.04 x 10-16), and there was a dose response relationship with more pack 

years smoked associated with a greater decrease in brain volume. A polygenic risk score (PRS) 

for smoking initiation was strongly associated with a history of daily smoking (Effect size = 

0.05, p-value = 4.20 ×10-84), yet only modestly associated with total grey matter volume (Effect 

size = - 424mm3, p-value = 0.01). Mediation analysis indicated that a history of daily smoking is 

a mediator between smoking initiation PRS and total grey matter volume.  

Conclusions: A history of daily smoking is strongly associated with a decreased total brain 

volume. 
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4.2. Introduction  
 

Cigarette smoking is associated with numerous harmful health outcomes, including 

cardiovascular disease, respiratory disease, cancer, and diminished overall health [1-4]. The 

adverse effect of smoking extends into the brain, and this is shown by the association between 

smoking and dementia [5-7]. People who smoke are more likely to have deterioration in grey and 

white matter, which provides a possible explanation as to why 14% of global Alzheimer’s 

disease cases could be attributable to cigarette smoking [8, 9].  

Smoking-related behaviors are in part biologically driven. Twin studies firmly established the 

importance of genetic factors contributing to the onset of cigarette smoking, and smoking 

initiation has heritability estimates of 44% [10-12]. Recent large genome-wide association 

studies have identified thousands of genetic loci associated with smoking-related behaviors [13-

15]. Differences in responses to nicotinic receptors, nicotine metabolism, and many other genetic 

factors contribute to the development of smoking behaviors. Models of addiction posit that 

predisposing neurodevelopmental risk factors promote the onset of cigarette smoking and other 

addictive behaviors [16, 17].   

It is known that there are associations of smoking behavior with lower total brain volume, and 

grey and white matter volumes [18]. However, a significant question remains whether these 

associations represent predisposing features for the risk of developing cigarette smoking or are 

consequences of cigarette smoking. The UK Biobank presents a unique opportunity to study the 

association between smoking behaviors and brain features with a large sample of individuals 

who have completed comprehensive assessments and to shed light on whether associations with 

brain volumes and smoking behaviors are predisposing factors, or adverse consequences of 

cigarette smoking. Currently, the UK Biobank provides surveys on health behaviors and imaging 
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derived measures from magnetic resonance imaging (MRI) on approximately 40,000 

participants. In addition, genetic data are available for UK Biobank participants. Our goal is to 

examine the associations between smoking behaviors, global brain volumes, and genetic 

variation to provide evidence for the direction of effect of the association between smoking 

behaviors and brain imaging measures by using traditional epidemiological methods and 

mediation analysis.  

Bradford Hill, an eminent epidemiologist, developed criteria for establishing evidence of 

causality [19].  Hill’s criteria of causation, originally developed to specify a causal relationship 

between smoking behavior and lung cancer, consists of 9 points: strength of association, 

consistency across sites and methods, specificity, temporality, biological gradient, plausibility, 

coherence, experimental evidence, and analogy (related evidence).  We can use the different 

smoking measures (history of daily smoking, number of cigarette pack years smoked, and time 

since smoking cessation) available in the UK Biobank dataset to examine Hill’s criteria and to 

build evidence as to whether observed brain differences represent predisposing factors that 

influence smoking behaviors or are consequences of the smoking exposure. We can study 1) the 

association between a history of daily smoking and global brain volumes, 2) whether there is a 

dose response relationship with greater cumulative exposure to smoking (measured by pack 

years) associated with changes in brain volumes; and 3) whether smoking cessation is associated 

with a reversal of changes in brain volumes, and 4) whether there are sub-regions of the brain 

that are more or less associated with smoking behaviors after correcting for the total brain 

volume changes. 

We can also incorporate genetic data to further establish the direction of effect of smoking 

behaviors and brain volume.  To test the association between genetic predisposition to smoking 
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behavior and brain volume differences, we can use summary statistics from the GWAS and 

Sequencing Consortium of Alcohol and Nicotine use (GSCAN) [15], a large genetic study of 

smoking behaviors, to create a polygenic risk score (PRS) for ever smoking, a summary score of 

an individual’s genetic predisposition. In UK Biobank participants, we can examine 1) the 

association between PRS for smoking with history of daily smoking in UK Biobank, and 2) the 

association between PRS for smoking with global brain volumes. Lack of a strong association 

between genetic predisposition to smoking and brain volume differences would add evidence 

that smoking is negatively related to brain volume rather than a decrease in brain volume 

influences smoking behavior. Finally, we can use mediation analysis as a tool to study the 

direction of causation and the strength of daily smoking as a mediator. Converging results from 

these different methodologies can provide evidence for the direction of effect of the association 

between smoking behaviors and imaging measures of brain volume. An overview of the study is 

presented in Figure 1. 
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4.3. Methods 
 

4.3.1. UK Biobank participants 

Our sample included the 2019 UK Biobank released data of participants with imaging data. The 

UK Biobank study was approved by the National Health Service National Research Ethics 

Service (11/NW/0382). All the participants provided informed consent to participate the UK 

Biobank study (Study ID: 47267, 48123).  

From the imaging dataset, we removed related individuals up to third degree (n=1,123), and 

individuals who withdrew consent following participation. We also excluded participants with 

neurological conditions (n=1,122), to eliminate potential confounding effects from these 

conditions (18). See supplementary figure 1 for the flow chart of sample processing, and 

supplementary table 1 for further details of participants with neurological conditions. This study 

follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

reporting guideline for cross-sectional studies. 

4.3.2. Smoking Behaviors 

Smoking phenotypes were defined using data from self-report surveys obtained during in-person 

assessment center visits at baseline (‘instance 0’, 2006-2010) and at the neuroimaging visit 

(‘instance 2’, 2012-2013). A history of daily smoking (n = 8,906) was defined by a consensus of 

reports of former or current daily smoking on surveys at both time points (visits). Never smoking 

(n = 23,188) was defined by a lifetime history of never smoking or smoking fewer than 100 

cigarettes on both surveys. Those with a history of occasional smoking, but not smoking daily, 

and those with conflicting smoking status reports on the two surveys were excluded from the 

analysis (n = 7,494) so that the distinction between a history of daily smoking and never smoking 
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would be clearer and the data are more reliable. See supplementary figure 2 for the sample size 

and questionnaire details for the imaging subset. See supplementary table 3 for the baseline and 

imaging visit comparison of reported smoking behaviors. 

Smoking pack years, (number of cigarette packs (one pack = 20 cigarettes) smoked per day times 

the number of years smoked) was derived for those with a history of daily smoking at the 

imaging survey.  If this value was missing, smoking pack years was taken from the baseline 

survey. See supplementary figure 3 for pack year distribution in categories.  

Age last smoked was obtained from the imaging survey; if this value was missing, it was taken 

from the baseline survey. Duration of smoking cessation was derived by subtracting the age last 

smoked from the participants’ age at the imaging assessment.   

Standardized imaging confound values (age, age2, sex, age*sex, head size, head motion rfMRI, 

head motion tfMRI, date, date2, site) were curated (21). Additional covariates that might 

confound the association between brain measures and smoking behaviors were included in 

analyses: Average household income, age completed full-time education, systolic blood pressure, 

diastolic blood pressure, body mass index, waist-hip ratio, weekly dose of alcohol (calculated by 

converting drink by type into an overall sum of drinks), stress, physical activity, diabetes, cancer, 

vascular/heart problems and other health conditions. Additional covariates included 10 ancestral 

principal components (PCs). See supplementary table 4 and supplementary text for further 

information on the selected covariates.  

Imputation of missing values for all covariates was first done using participants’ reports from the 

baseline survey. The additional missing values were imputed using R package MICE. 
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Supplemental text and supplementary table 4 give further details on missing data and data 

wrangling. 

4.3.3. Imaging Derived Measures 

T1 structural imaging-derived phenotypes 

Detailed information regarding the UK Biobank image acquisition parameters, preprocessing 

pipeline, and estimation of brain-imaging derived measures is available elsewhere 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf; (20)). Briefly, T1-weighted 

scans were acquired at 1mm isotropic resolution using a Siemens Magnetom Skyra 3T scanner. 

Following brain extraction and nonlinear registration to MNI space with BET and FNIRT tools, 

respectively, tissue-type segmentation was performed using the FAST tool (20). T1 images are 

also processed with Freesurfer. Cortical surface atlases for Freesurfer modelling are used to 

extract area, volume, and mean cortical thickness imaging-derived phenotypes (Freesurfer DKT). 

Freesurfer ASEG tools are used for the extraction of subcortical regions and total measures of 

the brain (volume of brain, volume of grey matter, volume of white matter, and volume of CSF). 

Variable IDs (brain measures, covariates) used in these analyses are provided in supplementary 

table 2.  

T2 susceptibility-weighted imaging-derived phenotypes 

The susceptibility-weighted MRI scan employs a 3D gradient echo acquisition with a resolution 

of 0.8x0.8x3mm and acquires two echo times (TE = 9.4 and 20 ms). The T2* decay times of the 

signals are calculated using the magnitude images obtained at two different echo times (TEs).  

Then, the resulting imaging-derived phenotypes are determined by taking the median T2* values 

of the different subcortical regions that were defined from the T1 processing.  
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Diffusion imaging-derived phenotypes 

The diffusion MRI data is obtained using two different b-values (b=1000 and 2000 s/mm2, b-

value measures the strength of the diffusion effects) at a spatial resolution of 2mm, with a 

multiband acceleration factor of 3. A total of 50 distinct diffusion-encoding directions were 

acquired for each diffusion-weighted shell, covering 100 distinct directions over the two b-

values. Diffusion tensor imaging (DTI) uses b=1000 s/mm2 data to generate fractional 

anisotrophy (FA), mean diffusivity (MD) and tensor mode (OD). Neurite orientation dispersion 

and density imaging (NODDI) modelling uses AMICO (Accelerated Microstructure Imaging via 

Convex Optimization) tool to generate voxelwise microstructural parameters such as intra-

cellular volume fraction (ICVF), isotropic or free water volume fraction (ISOVF), and 

orientation dispersion index (OD). Tractography is performed using a parametric approach to 

estimate fiber orientations, and a generalized ball & stick model is fit to the multi-shell data to 

estimate up to three crossing fiber orientations per voxel. To extract meaningful IDPs, cross-

subject alignment of white matter pathways is critical. Two complementary approaches are used, 

including tract-based spatial statistics (TBSS) and subject-specific probabilistic diffusion 

tractography to identify region of interests (ROIs) for 48 and 27 tracts, respectively. 

Resting-functional imaging-derived phenotypes 

Resting-state functional MRI used 2.4mm spatial resolution and TR=0.735s (repetition time). 

Imaging-derived phenotypes were obtained using independent component analysis (ICA) 

performed at two different dimensionalities (25 and 100), resulting in 21 and 55 signal networks, 

respectively. Dual regression was applied to calculate subject-specific BOLD time series for 

each network. The amplitude for each network (temporal standard deviation) and functional 

connectivity (full or partial correlation coefficients) between network pairs were calculated. 
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4.3.4. Genetic dataset 

We used the UK Biobank genetic dataset to retrieve genome wide data for all participants of 

European ancestry (dataset version/number = ukb48123). We used GSCAN summary statistics 

with the UK Biobank sample excluded to create a polygenic risk score (PRS) for ever smoking 

with variants using PRSice-2 (22, 23). The PRS results have been pruned for sites with minor 

allele frequency (MAF) > 0.001, imputation quality (Effective_N/N) > 0.3, and an effective 

sample size of at least 10% of the maximum sample size. . Insertions and deletions were not 

included in GSCAN summary statistics, and also not included in the calculation of PRS. PRSice-

2 utilizes p-value selection threshold approach, so according to the different thresholds, only 

those SNPs with a GWAS association p-value below a certain threshold are included in the 

calculation of the PRS. We tested the PRS for ever smoking to determine whether it predicted 

the history of daily smoking in UK Biobank as well as total brain measures in 1) the total 

sample; 2) the subset of participants who never smoked; and 3) the subset of participants who 

reported a lifetime history of daily smoking. See figure 1 for the overview of the study including 

genetic dataset. 

4.3.5. Statistical analysis 

We performed linear regression analysis using lm package from R for each question.  

 

Question 1) Is a history of daily smoking associated with global brain measures?  

Equation: Brain volume = History of daily smoking (dichotomous variable) + covariates  
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The following two analyses were undertaken only in those with a history of daily smoking. 

 

Question 2) Is there a dose-response relationship between the heaviness of smoking (defined by 

pack years smoked) and global brain measures?  

Equation: Brain volume = Pack years (continuous variable) + covariates 

 

Question 3) Is there evidence of positive association between brain volume and time since 

smoking cessation among those with history of daily smoking?  

Equation: Brain volume = Time since smoking cessation (continuous variable for those who 

smoked daily in the past) + pack years + covariates  

 

Question 4) Is the ever smoking PRS associated with the history of daily smoking?  

Equation: History of daily smoking = Ever Smoking PRS + covariates  

 

Question 5) Is the ever smoking initiation PRS associated with the global brain measures?  

Equation: Brain volume = Ever Smoking PRS + covariates  

 

Question 6) Are there regions of the brain more or less associated with daily smoking after 

correcting for the total brain volume in addition to head size? 
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Equation: Brain sub-region volume = History of daily smoking + total brain volume + covariates 

 

Question 7) Is a history of daily smoking associated with structural connectivity within 

(diffusion skeleton measures) or across (diffusion tract-based measures) the brain?  

Equation: Diffusion MRI measures = History of daily smoking + global diffusion measures (ex. 

average of all FA measures when calculating FA measures) + covariates  

 

Question 8) Is a history of daily smoking associated with resting functional connectivity in the 

brain?  

Equation: Resting-functional MRI measure groups = History of daily smoking + covariates 

 

For questions 1 to 5, a threshold of 0.05 was set as the level of significance. For question 6 to 8, 

705 sub-regions were examined, thus the threshold of significance was set at a Bonferroni 

correction of 0.05/705 = 7.09 x 10-5.  

4.3.6. Mediation analysis for history of daily smoking and total grey matter volume 

Mediation analysis was performed using ‘mediation’ package in R to measure the strength of the 

causal mediator (daily smoking) in the relationship between polygenic risk score for smoking 

initiation and the outcome (total brain volume) while adjusting for various confounding variables 

(age, age2, sex, age*sex, head size, head motion, date, date2, site, average household income, 

age completed full-time education, systolic blood pressure, diastolic blood pressure, body mass 

index, waist-hip ratio, weekly dose of alcohol). The average causal mediated effect (ACME), or 
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the statistical significance of the mediator, was calculated through this package. See 

supplementary figure 4 for the model for the mediation analysis. 
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4.4 Results 
 

4.4.1. History of daily smoking was associated with global brain measures  

A history of daily smoking was associated with a decrease in total brain volume, gray matter 

volume, white matter volume, and increased cerebral spinal fluid (CSF) volume (Table 2). 

Decreased volume of grey matter had a strong association with a history of daily smoking (Effect 

size = -2964mm3 p-value = 2.04 x 10-16), along with decreased volume of total brain (Effect size 

= -3360mm3, p-value = 2.85 x 10-8). Volume of white matter was modestly associated with a 

history of daily smoking (Effect size = -802mm3, P-value = 4.68 x 10-2).  

4.4.2. Evidence of a dose response relationship with pack years 

 Among participants with a history of daily smoking, there was evidence of a dose response 

relationship with increasing number of pack years smoked associated with a decrease in brain 

volume and gray matter and increased CSF volume (Table 2). Volume of grey matter had a 

strong association with pack years of smoking (Effect size = -84mm3, p-value = 3.25 x 10-5), as 

well as volume of total brain (Effect size = -129mm3, p-value = 1.23 x 10-4). A modest 

association was seen with volume of white matter (Effect size = -64mm3, p-value = 0.04). There 

was no significant association of pack years smoked with volume of CSF. 

4.4.3. Time since smoking cessation moderately associated with total grey matter volume 

There was no significant association between years since smoking cessation and total brain 

volume, total grey matter volume, white matter volume, and CSF volume. 

4.4.4. Effect of genetic predisposition to smoking on total grey matter volume among 

smoking population 
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The ever smoking PRS was strongly associated with the history of daily smoking in UK Biobank 

(Effect size = 0.05, p-value = 4.20 ×10-84) corroborating that these genetic variants collectively 

predict this smoking behavior. There was a modest association of the ever smoking PRS with 

reduced total grey matter volume (Effect size = - 424mm3, p-value = 0.01) and increased white 

matter volume (Effect size = 367mm3, p-value = 0.04) in the total sample (n=30,973) (Table 3). 

There is no evidence of a PRS-brain volume association in the subsets including only those who 

have a history of daily smoking. Additionally, there was a modest evidence of PRS-white matter 

volume association in the subset including only those who have never smoked (Effect size = 

438mm3, p-value = 0.04). 

4.4.5. Mediation analysis between total grey matter volume, smoking initiation PRS, and 

history of daily smoking  

Because total grey matter volume was modestly associated with PRS for smoking initiation, we 

performed a mediation analysis between ever smoking PRS, total grey matter volume (outcome), 

and the history of daily smoking (mediator). The association between the PRS for ever smoking 

and total grey matter volume became non-significant (Effect size: 0.04, p-value = 0.21) when the 

mediator, a history of daily smoking, was added (total/indirect causal mediation effect size 

(ACME): 0.005, p-value: < 2 x 10-16, total direct causal mediation effect size (ADE): 0.00, p-

value: 1).  

4.4.6. History of daily smoking was associated with cortical volume and thickness measures 

The purpose of the subregion analyses is to determine if certain regions of the brain are more or 

less associated with a history of daily smoking after adjusting for head size and total brain 

volume. The correlation between head size and total brain volume was 0.7. In these sub-region 
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analyses, a significance level of 7.09 x 10-5 was selected based on a Bonferroni correction for 

705 tests.   

Of the 186 Freesurfer DKT measures based on white matter parcellation, 33 subregions were 

significantly associated with a history of daily smoking and only 5 (3%) remained significantly 

associated after correcting for the total brain volume. Mean thickness of superior frontal cortex 

(both hemispheres), volume of superiorfrontal (left hemisphere), volume of rostral middle frontal 

cortex (left hemisphere), and volume of medial orbital frontal cortex (left hemisphere) were all 

negatively associated with a history of daily smoking after correcting for total brain volume 

(Table 4).  None of the other cortical regions passed the threshold of significance based on 

multiple testing and demonstrated a significant association with a history of daily smoking. 

4.4.7. History of daily smoking was associated with increased ventricle sizes, and decreased 

cerebellum and subcortical volume measures  

Of the 49 Freesurfer ASEG measures, 14 (29%) were significantly associated with a history of 

daily smoking after correcting for the total brain volume (before correction, 22 measures were 

significantly associated). Volume of white matter hypointensities, choroid-plexus in both 

hemispheres, ventricle choroid, and 3rd ventricle in the whole brain, volume of interior lateral 

ventricle (left hemisphere), volume of lateral ventricle (right hemisphere), were positively 

associated with a history of daily smoking after correcting for total brain volume. An increase in 

volume of all these regions is an adverse effect. Volume of cerebellum-white-matter, volume of 

ventral diencephalon (all both hemispheres), amygdala (left hemisphere), volume of corpus 

callosum central in the whole brain, were negatively associated with a history of daily smoking 

after correcting for total brain volume (Table 5). 
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4.4.8. Susceptibility-weighted MRI measures of putamen, caudate and pallidum associated 

with a history of daily smoking  

Of the 14 Median T2star measures, 6 (43%) passed the stringent threshold of P-value = 7.09 x 

10-5 and remained significantly associated with a history of daily smoking after correcting for the 

total volume of the brain. The 6 measures are: Median T2star measures in putamen, caudate and 

pallium in both hemispheres of the brain. All 6 measures had region-specific negative association 

with a history of daily smoking (Table 6). 

4.4.9. Diffusion MRI measures within and across the brain associated with a history of 

daily smoking  

Diffusion skeleton 

Of the 288 diffusion skeleton measures, 53 (18%) passed the threshold of P-value = 7.09 x 10-5 

and remained significantly associated with a history of daily smoking after correcting for the 

total global diffusion measures (89, before correction). Several tracts within the regions were 

found to be significant. Fornix cres+stria terminalis (mean FA in both hemispheres negatively 

associated; OD in left hemisphere positively associated), superior corona radiata (MD in both 

hemisphere positively associated; ICVF in both hemispheres negatively associated), posterior 

corona radiata (OD in both hemisphere negatively associated, ICVF in left hemisphere 

negatively associated), corticospinal tract (MD and ISOVF in right hemisphere negatively 

associated), superior fronto-occipital fasciculus (ICVF in right hemisphere, negative), cerebral 

peduncle (ICVF, OD in both hemispheres positively associated), pontine crossing tract (ISOVF, 

negative), uncinate fasciculus (FA in both hemispheres positively associated, OD in left 
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hemisphere negatively associated), and posterior thalamic radiation (ICVF in left hemisphere, 

negative) (Supplementary Figure 8).  

Diffusion tract-based 

Of the 162 diffusion tract-based measures, 10 (6%) remained to be significantly associated with 

a history of daily smoking after correcting for the total brain volume (28, before correction). 

Tract middle cerebellar peduncle (Weighted-mean MD, ISOVF positively associated), tract 

superior thalamic radiation (MD in left hemisphere positively associated, ICVF in right 

hemisphere negatively associated), and anterior thalamic radiation (ISOVF in right hemisphere 

positively associated) were significantly associated with a history of daily smoking 

(Supplementary Figure 9).  

4.4.10. Resting-functional MRI measures of frontal lobe areas moderately associated with a 

history of daily smoking  

Of the 6 Resting-functional MRI groups that are dimension-reduced from the original measures, 

1 group showed moderate negative association with a history of daily smoking (Effect size: -

0.05, P-value: 1.6 x 10-4). The group mainly consisted of frontal lobe and Wernicke’s area 

(Supplementary figure 10).  
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4.5. Discussion  

We systematically examined the relationship between a history of daily smoking and global 

brain volume, and the preponderance of evidence supports an adverse association of smoking 

with brain volume. Daily smoking is associated with a decrease in total brain volume. Using the 

Hill criteria as a guide to study causation, we found a strong association between a history of 

daily smoking and brain imaging phenotypes as reported in previous studies. Several studies 

using different datasets and various analytical methods have identified a strong association 

between a history of daily smoking and global brain volume, grey matter volume, and white 

matter volume [18, 25-27]. We also found a significant biological gradient, with a dose-response 

effect of a history of more pack years of smoking associated with greater differences in brain 

volume. In addition, there is evidence of biological plausibility. Daily smoking is associated with 

many adverse health effects across multiple organ systems and adding the brain to the list of 

organs adversely affected by smoking is biologically plausible. There is similar evidence of 

alcohol causing adverse consequences on the brain which provides analogical evidence of the 

harms of smoking [28, 29]. A recent study investigated the causal relationship between smoking 

and alcohol and subcortical brain volume variations and concluded that smoking and heavy 

alcohol consumption can causally reduce subcortical brain volume [30]. Additionally, another 

recent study performed Mendelian Randomization and found a significant association between 

genetic liability to ever smoking and decreased gray matter volume [31]. 

We used genetics as a tool to provide further evidence that a history of daily smoking may be 

negatively related to brain volume. Mediation analysis provides convergent evidence 

highlighting the plausibility of smoking associated with decreases in brain volume. We found 

that a polygenic risk score for ever smoking was strongly associated with history of daily 
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smoking in UK Biobank, but minimally associated with total grey and white matter volume. 

With the additional mediation analysis on the PRS for ever smoking and the total grey matter 

volume using history of daily smoking as a mediator, we found that the mediator effect was 

strong, and the association between the PRS and brain volume disappeared. Through this, we 

have additional support that smoking is negatively associated with the differences in brain 

volume.   

The complexity of the relationship between smoking history and brain imaging phenotypes 

underscores the debate regarding causation: are brain differences predisposing to smoking 

behavior, or are the brain differences a consequence of smoking behaviors? There are studies 

suggesting that brain differences are a predisposing factor for alcohol consumption, rather than 

reflecting alcohol-induced atrophy [17, 32]. There is evidence that greater volume or thickness in 

brain regions (pars opercularis, cuneus) and lower volume in brain regions (basal forebrain, 

insular grey matter volume, right dorsolateral prefrontal cortex) may contribute to the 

development of problematic alcohol use [17, 32]. It is likely that there are also differences in 

brain measures that are predisposing factors for the initiation of smoking behaviors [33]. While 

we acknowledge that there are studies supporting the notion that regional brain differences may 

be a predisposing factor for alcohol consumption, we focused our investigation on the 

relationship between smoking behavior and global brain volume. The evidence presented in this 

study suggests that the changes in total brain volume, total grey matter volume, total white 

matter volume, and subcortical/cortical regional volumes more likely reflect adverse 

consequences of a history of daily smoking behavior. In addition, hippocampal volume, an 

important brain region effected by Alzheimer’s disease, is negatively associated with a history of 

daily smoking. This finding is consistent with smoking, which has been identified as a 
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modifiable risk factor for Alzheimer’s disease, accelerating the development of this illness [7]. 

These brain changes seem to be long-lasting and we identified no evidence of an increase in 

brain volume after smoking cessation. 

In addition to studying the total brain measures, we examined whether sub-regions of the brain 

are more or less associated with daily smoking after correcting for the total brain volume. For 

cortical regions, we found that the thickness of superior frontal cortex is negatively associated 

with daily smoking, which is consistent with the evidence found in the recent studies that 

smoking is associated with cortical thinning [34, 35]. Additionally, we identified that the volume 

of superior frontal cortex, rostral middle frontal cortex, and precentral gyrus were more 

negatively associated with daily smoking, beyond the overall decrease total brain volume 

associated with a history of daily smoking. For cerebellum, the volume of cerebellum white 

matter in the left hemisphere was negatively associated with daily smoking, and volume of 

corpus callosum also showed negative association, as shown in the previous studies [36, 37]. 

Volume of thalamus and amygdala were more negatively associated with daily smoking, as 

shown from the previous studies [27, 38-40]. We found that the volume of choroid plexus, lateral 

ventricle, and 3rd ventricle were positively associated with daily smoking than the other regions. 

These areas are the essential parts or paths of the cerebrospinal fluid system [41, 42], and these 

findings are consistent with a compensatory increase in CSF volume as total brain volume 

decreases.  

Finally, we examined the association of daily smoking with structural and functional 

connectivity. We found that increased mean diffusivity (MD), a generally a negative sign for 

white matter integrity, in superior thalamic radiation tract was associated with daily smoking, 

which is consistent with the previous findings [18]. Increased MD was also found in superior 
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corona radiata and cerebellar peduncle, as shown in the previous studies [18, 43]. Additionally, 

decreased fractional anisotropy (FA), also a negative sign for white matter integrity, in fornix 

was associated with daily smoking. It is not surprising that the structural connectivity of fornix, a 

pathway that connects several subcortical structures, was identified to be associated with 

smoking. With the susceptibility-weighted imaging measures, we additionally identified the 

strong negative association between caudate, putamen, and pallidum with daily smoking, 

consistent with the previous findings [44, 45]. We also found one modest association with the 

resting functional MRI measure group mainly associated with frontal lobe, suggesting the 

negative impact of smoking on functional connectivity, as well as structural connectivity.  

The best way to address causation is through triangulation of data and convergent evidence 

including cross-sectional association, longitudinal data, and experimental paradigms UK 

Biobank dataset is large and provides ample statistical power, we examined cross-sectional data 

of brain imaging.  Longitudinal data from UK Biobank neuroimaging is growing, but it remains 

limited at this time. Importantly, almost all participants in UK Biobank who smoked had quit 

smoking by the time of the first assessment, which limits longitudinal analyses of the effect of 

current smoking on subsequent brain imaging measures. There is also the need for prospective 

development data to better understand the complex interplay between behavior and brain 

structure. The Adolescent Brain Cognitive Development study (ABCD), the largest 

neuroimaging study of brain development in the U.S. will best be able to disentangle what brain 

measures represent predisposing factors to substance use and adverse consequences from 

substance use.  
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4.6. Conclusion  

We examined the nature of the relationship between daily smoking and brain imaging 

phenotypes using traditional epidemiological criteria (Hill’s criteria), and genetics tools (PRS 

and mediation analysis) in a large dataset of participants. There was a dose effect with a history 

of heavier smoking being associated with more severe adverse effects. We found minimal 

evidence that a genetic predisposition to smoking is associated with total brain volume, and this 

association became insignificant when a history of daily smoking was set as a mediator variable. 

Thus, mediation analysis further supports the effect of smoking leading to decreases in brain 

volume. We found that a history of smoking was strongly associated with adverse changes in 

total brain volumes and certain cortical, cerebellar, and subcortical regional volumes. Finally, 

there was no evidence of in an increase in brain volume following smoking cessation. In totality, 

these findings provide additional evidence that a history of daily smoking is strongly associated 

with long-term global adverse consequences in the brain. 
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4.9. Tables 

Table 4.1. Demographic, smoking and health related variables (Total N= 32,094) 

 Daily smoked  
(N = 8,906) 

Never smoked  
(N = 23,188)  

Mean ± SD Mean ± SD 
Age 65.14 ± 7.53 63.21 ± 7.65 
Sex (n females, %) 

 
 

    Female (n, %) 3,967 (44.5) 13,049 (56.3) 
    Male (n, %) 4,939 (55.5) 10,139 (43.7) 
Income (£) 

 
 

    Less than 18,000 (n, %) 1,283 (14.4) 2,692 (11.6) 
    18,000 to 30,999 (n, %) 2,699 (30.3) 6,057 (26.1) 
    31,000 to 51,999 (n, %) 2,646 (29.7) 7,039 (30.4) 
    52,000 to 100,000 (n, %) 1,790 (20.1) 5,579 (24.1) 
    Greater than 100,000 (n, %) 488 (5.5) 1,821 (7.9) 
Age completed full time education 19.20 ±3.53 20.10 ±3.33 
Diabetes   
    Yes (n, %) 353 (4.0) 468 (2.0) 
Cancer   
    Yes (n, %) 552 (6.2) 1,182 (5.1) 
Vascular/heart problems   
    Heart attack, angina (n, %) 2,292 (25.7) 4,353 (18.8) 
Other health conditions*   
    Yes (n, %) 1,595 (17.9) 3,266 (14.1) 
Stress, illness, bereavement   
    Illness, injury, bereavement, stress (n, %) 3,819 (42.9) 9,451 (40.8) 
    None of the above (n, %) 5,087 (57.1) 13,737 (59.2) 
Body Mass Index 27.29 ±4.28 26.25 ±4.20 
Waist/hip ratio  0.89±0.09 0.86±0.09 
Systolic blood pressure (mmHg) 141.38 ±20.06 139.65±19.64 
Diastolic blood pressure (mmHg) 79.38±10.59 79.31±10.68 
Weekly drinks of alcohol 12.66 ± 10.86 8.21±7.73 
Non-vigorous physical activity** 3.44±2.30 3.43±2.26 
Vigorous physical activity** 1.81±1.86 1.86±1.81 

*Answer to the question: Has a doctor ever told you that you have had any other serious medical 
conditions or disabilities? 

**Number of days/week of non-vigorous or vigorous physical activity 10+ minutes 
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Table 4.2. Effect size and p-value for total brain measures with the smoking phenotypes 

History of daily smoking (N=32,094) 

Brain measures Effect size  SE t P-value 
Volume of brain -3,360.95 605.39 -5.55 2.85 x 10-8 
Volume of grey matter -2,964.18 360.42 -8.22 2.04 x 10-16 
Volume of white matter -801.74 403.24 -1.99 4.68 x 10-2 
Volume of cerebrospinal fluid 4.93 3.03 1.63 0.10 

 

Pack years of smoking (N=8,622)  

Brain measures Effect size  SE t P-value 
Volume of brain  -128.75 33.52 -3.84 1.23 x 10-4 
Volume of grey matter  -83.87 20.17 -4.16 3.25 x 10-5 
Volume of white matter  -63.61 22.28 -2.85 4.32 x 10-3 
Volume of cerebrospinal fluid 0.29 0.17 1.68 0.09 

 

Time since smoking cessation (N=8,111) 

Brain measures Effect size SE t P-value 
Volume of brain  -5.01 57.08 -0.09 0.93 
Volume of grey matter  9.86 34.39 0.29 0.77 
Volume of white matter  15.64 38.04 0.41 0.68 
Volume of cerebrospinal fluid -0.55 0.29 -1.89 0.06 

Covariates: Weekly alcohol use, diastolic and systolic blood pressure, Body Mass Index, waist-
hip ratio, income, age completed full time education, diabetes, vascular/heart problems, other 
health conditions/disabilities, physical activity, stress, and imaging confounds (age, age2, sex, 
age*sex, head size, head motion rfMRI, head motion tfMRI, date, date2, site) 

Effect sizes are in mm3 
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Table 4.3. Effect size and p-value for total brain measures associated with the smoking initiation 
Polygenic Risk Score (PRS) 

Smoking Initiation PRS (Total population, N=30,973*) 

Brain measures Effect size SE t P-value 
Volume of brain -36.61 277.32 -0.13 0.89 
Volume of grey matter -424.48 165.33 -2.57 0.01 
Volume of white matter 366.99 184.92 1.98 0.04 
Volume of cerebrospinal fluid -1.23 1.39 -0.89 0.38 

 

Smoking Initiation PRS (Never smoked population, N=22,298) 

Brain measures Effect size SE t P-value 
Volume of brain 157.46 323.90 0.49 0.63 
Volume of grey matter -315.65 192.13 -1.64 0.10 
Volume of white matter 437.84 216.52 2.02 0.04 
Volume of cerebrospinal fluid -0.34 1.61 -0.21 0.83 

 

Smoking Initiation PRS (Daily smoked population, N=8,675) 

Brain measures Effect size SE t P-value 
Volume of brain -124.13 531.72 -0.23 0.82 
Volume of grey matter -327.46 320.51 -1.02 0.31 
Volume of white matter 262.91 353.07 0.74 0.46 
Volume of cerebrospinal fluid -4.16 2.72 -1.53 0.13 

Other PRS thresholds (0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 1x10-3, 1x10-4, 1x10-5, 1x10-6, 1x10-7, 5x10-8) 
are included in supplementary table 6 

*Sample size is after filtering for robust genetic information  

Effect sizes are in mm3 
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Table 4.4. Effect size and p-value for total brain measures associated with the Freesurfer DKT 
measures 

Brain measures Hemisphere Effect size SE t P-value 
Mean thickness of 
superiorfrontal  

Left -5.26 x 10-3 1.01 x 10-3 -5.23 1.67 x 10-7 
Right -4.07 x 10-3 9.33 x 10-4 -4.36 1.29 x 10-5 

Volume of superiorfrontal Left -122.14 25.17 -4.85 1.22 x 10-6 
Volume of 
rostralmiddlefrontal  Left -116.07 28.53 -4.07 4.75 x 10-5 

Volume of 
medialorbitofrontal  Left -27.66 6.27 -4.41 1.02 x 10-5 

Covariates: Weekly alcohol use, diastolic and systolic blood pressure, Body Mass Index, waist-
hip ratio, income, age completed full time education, diabetes, vascular/heart problems, other 
health conditions/disabilities, physical activity, stress, and imaging confounds (age, age2, sex, 
age*sex, head size, head motion rfMRI, head motion tfMRI, date, date2, site) 

Effect sizes are in mm3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

Table 4.5. Effect size and p-value for total brain measures associated with the Freesurfer ASEG 
measures 

Brain measures Hemisphere Effect size SE t P-value 

Volume of choroid-plexus 
Left 26.45 2.66 9.95 2.68 x 10-23 
Right 31.02 2.54 12.20 3.71 x 10-34 

Volume of Inf-Lat-Vent 
(Inferior-lateral-ventricle) Left 13.86 3.40 4.07 4.63 x 10-5 

Volume of 3rd-Ventricle  Whole 26.32 5.76 4.57 4.86 x 10-6 
Volume of Lateral-Ventricle  Right 304.82 75.44 4.04 5.34 x 10-5 
Volume of 
VentricleChoroid  Whole 703.66 164.11 4.29 1.81 x 10-5 

Volume of WM-
hypointensities Whole 152.49 33.18 4.60 4.32 x 10-6 

Volume of Cerebellum-
White-Matter  

Left -128.20 22.38 -5.73 1.03 x 10-8 
Right -120.73 24.60 -4.91 9.23 x 10-7 

Volume of VentralDC 
(Ventral diencephalon) 

Left -15.02 3.49 -4.31 1.65 x 10-5 
Right -16.76 3.37 -4.98 6.41 x 10-7 

Volume of Amygdala Left -11.30 2.29 -4.93 8.43 x 10-7 
Volume of CC-Central 
(Corpus callosum-central) Whole -6.56 1.45 -4.54 5.74 x 10-6 

Covariates: Weekly alcohol use, diastolic and systolic blood pressure, Body Mass Index, waist-
hip ratio, income, age completed full time education, diabetes, vascular/heart problems, other 
health conditions/disabilities, physical activity, stress, and imaging confounds (age, age2, sex, 
age*sex, head size, head motion rfMRI, head motion tfMRI, date, date2, site 

Effect sizes are in mm3 
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Table 4.6. Effect size and p-value for total brain measures associated with the Median T2 star 
measures (susceptibility-weighted IDPs) 

Brain measures Hemisphere Effect size SE t P-value 

Median T2 star in putamen  
Left -0.92 0.06 -14.85 1.08 x 10-49 
Right -0.88 0.06 -14.56 7.27 x 10-48 

Median T2 star in caudate 
Left -0.66 0.06 -11.72 1.25 x 10-31 
Right -0.58 0.06 -10.36 4.17 x 10-25 

Median T2 star in pallidum 
Left -0.49 0.05 -9.98 1.99 x 10-23 
Right -0.49 0.05 -10.18 2.61 x 10-24 

Covariates: Weekly alcohol use, diastolic and systolic blood pressure, Body Mass Index, waist-
hip ratio, income, age completed full time education, diabetes, vascular/heart problems, other 
health conditions/disabilities, physical activity, stress, and imaging confounds (age, age2, sex, 
age*sex, head size, head motion rfMRI, head motion tfMRI, date, date2, site 

Effect sizes are in mm3 
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4.10. Figures 
 

 

Figure 4.1: Overview of the study. We examined: 

1) the predictive ability of the smoking initiation PRS for smoking for a history of daily smoking 

2) the association between the smoking initiation PRS for smoking initiation and brain measures.  

2) the association between smoking behaviors and brain measures  

(Created with BioRender.com) 
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4.11. Supplementary Text 

Covariates were selected to account for potentially confounding variables (1-13). Covariates 

include weekly alcohol use, diastolic and systolic blood pressure, body mass index (BMI), waist-

hip ratio, income, age completed full time education, socioeconomic status (SES), stress, 

physical activity, diabetes, cancer, vascular/heart problems, other health conditions, and imaging 

confounds. Imaging confounds were age, age2, sex, age*sex, head size, head motion rfMRI, head 

motion tfMRI, date, date2, site.  

Imaging covariates were processed according to UK Biobank-recommended scripts from Alfaro 

Almagro 2021 (9). UK Biobank imaging data were collected at three different sites. Every 

imaging covariate excluding sex was split into three sites to account for the potential 

confounding effect of the imaging site. Then the covariates were normalized using the median 

and median absolute deviation * 1.48 (one SD). The variable names were converted to 

site#_variable (ex. site1_age).  

For non-imaging covariates, we first acquired the answers from the questionnaire completed 

during imaging visit (the participants were given the same touchscreen questionnaire as the 

baseline visit). If the answer was missing for the imaging visit, then we used the answers from 

the baseline visit to “backfill” the missing answers. Percent missing in supplementary table 4 

indicates the missing data right after backfilling, and before imputation using MICE (10). Waist-

hip ratio was acquired from waist circumference and hip circumference. Also, the only two 

education-related variables were age completed full time education and education qualifications. 

Age completed full time education was originally missing 19% of the answers after backfilling, 

but we used education qualifications to additionally fill in the missing data. Education 

qualification is a categorical variable which indicate the degree, professional qualifications, or 
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tests such as GCSE and A levels. We found the average age of completing such qualifications 

and added this age into age completed full time education variable. After doing this, the missing 

percentage decreased to 0.39.  

Then we performed MICE to ensure that we had no missing data in our covariates. We did an 

approach with seed = 103, and 5 iterations. Sex was skipped since it did not have a missing 

value, but was used as a predictor. For all the continuous variables, we used norm method, for 

categorical income variable we used polyreg, and for binomial variables we used logreg. After 

MICE, the missing percentage for our non-imaging covariates was 0. (see 

UKB_sample_processing.R script in https://github.com/yoonhoochang/UKB_Global_Smoking 

for code details) 
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4.12. Supplemental Tables 

Supplementary table 4.1. Neurological condition diagnosis codes and number of participants 
removed for those conditions (N = 1122) 

Neurological disease/trauma/conditions Diagnosis code Sample N Percent 
Stroke or ischaemic stroke  1081 318 0.78 
Transient ischemic attack  1082 220 0.54 
Epilepsy  1264 163 0.40 
Meningitis  1247 112 0.27 
Multiple sclerosis  1261 107 0.26 
Parkinsons  1262 71 0.17 
Head injury  1266 42 0.10 
Encephalitis  1246 18 0.04 
Brain hemorrhage  1491 16 0.04 
Subarachnoid hemorrhage  1086 15 0.04 
Guillan-Barre syndrome  1256 14 0.03 
Meningioma  1659 13 0.03 
Dementia 1263 13 0.03 
Ischaemic stroke  1583 12 0.03 
Subdural hematoma  1083 10 0.02 
Spina bifida  1524 7 0.02 
Cerebral aneurysm  1425 6 0.01 
Neurological disease / trauma  1240 4 0.01 
Motor neuron disease  1259 4 0.01 
Other demyelinating disease  1397 4 0.01 
Brain / intracranial abscess  1245 3 0.01 
Chronic degenerative neurological  1258 1 2.50 x 10-3 

Cerebral palsy  1433 1 2.50 x 10-3 
Diagnosis code from UK Biobank data-field 20002 (baseline visit, primary and additional 
diagnoses). There are multiple diagnosis columns for this data-field. Some participants have 
more than one neurological condition.  
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Supplementary table 4.2. Variables and corresponding UK Biobank data-field ID 

Variable Data-field ID 
Age 21003 
Age completed full-time education 845, 6138 
Body Mass Index 21001 
Current tobacco smoking 1239 
Date 53 
Diabetes, cancer, other health conditions 2443, 2453, 2473 
Diastolic blood pressure 4079 
Head size 25000 
Hip circumference 49 
Imaging site 54 
Income 738 
Neurological conditions  20002 
Past tobacco smoking 1249 
Physical Activity 884, 904 
rfMRI motion 25741 
Sex 31 
Stress, illness, bereavement 6145 
Systolic blood pressure 4080 
tfMRI motion 25742 
Vascular/heart problems 6150 
Waist circumference 48 
Weekly dose of alcohol 1558, 4407, 4418, 4429, 4451, 4462 
Volume of Brain  26514 
Volume of Gray Matter 26518 
Volume of White Matter 26553, 26584 
Volume of CSF 26527 
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Supplementary table 4.3. Smoking history at baseline vs. imaging visit (starting from 
N=39,588) 

Baseline/ 
Imaging 

Daily 
current 

Daily 
former 

More than 
100 Cigs 

Less than 
100 Cigs 

Never 
smoked 

Daily current 630 784 89 3 0 
Daily former 109 7383 1027 44 69 
More than 100 39 671 3081 585 229 
Less than 100 0 10 263 4150 2263 
Never smoked 2 18 56 1115 15660 

Bold letters are baseline visits.  

Green shades indicate those with a consistent history of daily smoking. 

Red shades indicate those with a consistent history of never smoking at both baseline and 
imaging visit. 
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Supplementary table 4.4. Missing data and covariates 

Covariates N Missing (%) Processing Notes 
Body Mass Index 33 (0.10) Imaging visit answers, backfilled with 

baseline visit answers 

Diastolic blood pressure 479 (1.49) 
Systolic blood pressure 479 (1.49) 
Waist circumference 1 (3.12 x 10-3) 
Hip circumference 1 (3.12 x 10-3) 
Income 2556 (9.03) 
Stress, illness, bereavement 65 (0.20)  
Diabetes 38 (0.12)  
Cancer 53 (0.17)  
Vascular/heart problems 30 (0.09)  
Other diagnosis 400 (1.25)  
Non-vigorous physical activity 770 (2.40)  
Vigorous physical activity 533 (1.66)  
Age completed full-time 
education 

126 (0.39) Variable created from age completed full 
time education (Field ID 845) and 
educational qualification (Field ID 6138) 

Weekly dose of alcohol 4124 (12.85) Variable created from dose of different 
types of alcohol (Field ID 1558, 4407, 
4418, 4429, 4451, 4462) 

Age 0 Imaging visit answers, not backfilled 
Sex 0 

Total N = 32,094 for all covariates  
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Supplementary table 4.5. Demographic, smoking and health related variables compared 
between daily smoked, occasionally smoked, and never smoked population  

 Daily smoked  
(N = 8,906) 

Smoked 
occasionally 
(N = 4,907) 

Never 
smoked  

(N = 23,188)  
Mean ± SD Mean ± SD Mean ± SD 

Age 65.14 ± 7.53 63.74 ± 7.67 63.21 ± 7.65 
Sex (n females, %) 

 
  

    Female (n, %) 3,967 (44.5) 2,407 (49.1) 13,049 (56.3) 
    Male (n, %) 4,939 (55.5) 2,500 (50.9) 10,139 (43.7) 
Income (£) 

 
  

    Less than 18,000 (n, %) 1,283 (14.4) 575 (11.7) 2,692 (11.6) 
    18,000 to 30,999 (n, %) 2,699 (30.3) 1,249 (25.5) 6,057 (26.1) 
    31,000 to 51,999 (n, %) 2,646 (29.7) 1,508 (30.7) 7,039 (30.4) 
    52,000 to 100,000 (n, %) 1,790 (20.1) 1,157 (23.8) 5,579 (24.1) 
    Greater than 100,000 (n, %) 488 (5.5) 418 (8.5) 1,821 (7.9) 
Age completed full time education 19.20 ±3.53 19.81 ±3.46 20.10 ±3.33 
Diabetes    
    Yes (n, %) 353 (4.0) 111 (2.3) 468 (2.0) 
Cancer    
    Yes (n, %) 552 (6.2) 282 (5.7) 1,182 (5.1) 
Vascular/heart problems    
    Heart attack, angina (n, %) 2,292 (25.7) 1,015 (20.7) 4,353 (18.8) 
Other health conditions*    
    Yes (n, %) 1,595 (17.9) 715 (14.6) 3,266 (14.1) 
Stress, illness, bereavement    
    Illness, injury, bereavement, stress (n, %) 3,819 (42.9) 2,022 (41.2) 9,451 (40.8) 
    None of the above (n, %) 5,087 (57.1) 2,885 (58.8) 13,737 (59.2) 
Body Mass Index 27.29 ± 4.28 26.51 ± 3.99 26.25 ± 4.20 
Waist/hip ratio  0.89±0.09 0.87±0.08 0.86±0.09 
Systolic blood pressure (mmHg) 141.38 ±20.06 139.77±19.67 139.65±19.64 
Diastolic blood pressure (mmHg) 79.38±10.59 79.29±10.58 79.31±10.68 
Weekly drinks of alcohol 12.66 ± 10.86 11.28 ± 9.02 8.21±7.73 
Non-vigorous physical activity** 3.44±2.30 3.69±2.24 3.43±2.26 
Vigorous physical activity** 1.81±1.86 2.05±1.89 1.86±1.81 

*Answer to the question: Has a doctor ever told you that you have had any other serious medical 
conditions or disabilities? 

**Number of days/week of non-vigorous or vigorous physical activity 10+ minutes 
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Supplementary table 4.6. Demographic, smoking and health related variables compared 
between total UK Biobank sample and our study dataset (N = 32,094) 

 UKB total* 
(N = 502,366) 

Imaging subset 
(N = 32,094)  

Mean ± SD Mean ± SD 
Age 56.53 ± 8.10 54.81 ± 7.51 
Sex (n females, %) 

 
 

    Female (n, %) 273,298 (54.4) 17,016 (53.0) 
    Male (n, %) 229,068 (45.6) 15,078 (47.0) 
Income (£) 

 
 

    Less than 18,000 (n, %) 97,176 (22.9) 3,975 (12.4) 
    18,000 to 30,999 (n, %) 108,140 (25.4) 8,756 (27.3) 
    31,000 to 51,999 (n, %) 110,746 (26.0) 9,685 (30.2) 
    52,000 to 100,000 (n, %) 86,243 (20.3) 7,369 (22.9) 
    Greater than 100,000 (n, %) 22,923 (5.4) 2,309 (7.2) 
Age completed full time education 16.73 ±2.34 19.85 ±3.41 
Diabetes   
    Yes (n, %) 26,394 (5.3) 821 (2.6) 
Cancer   
    Yes (n, %) 38,607 (7.7) 1,734 (5.4) 
Vascular/heart problems   
    Heart attack, angina (n, %) 171,175 (32.7) 6,645 (20.7) 
Other health conditions**   
    Yes (n, %) 99,980 (19.9) 4,861 (15.1) 
Stress, illness, bereavement   
    Illness, injury, bereavement, stress (n, %) 295,001 (52.0) 13,270 (41.3) 
    None of the above (n, %) 272,234 (48.0) 18,824 (58.7) 
Body Mass Index 27.43 ±4.80 26.54 ±4.25 
Waist/hip ratio  0.88±0.10 0.87±0.09 
Systolic blood pressure (mmHg) 138.18 ±19.40 140.13±19.77 
Diastolic blood pressure (mmHg) 81.78±10.54 79.33±10.65 
Weekly drinks of alcohol 9.46 ± 10.24 9.44±8.94 
Non-vigorous physical activity*** 3.68±2.32 3.43±2.27 
Vigorous physical activity*** 1.83±1.96 1.85±1.83 

*Data mainly acquired from UK Biobank data descriptions (data-field) 

**Answer to the question: Has a doctor ever told you that you have had any other serious 
medical conditions or disabilities? 

***Number of days/week of non-vigorous or vigorous physical activity 10+ minutes 

We excluded “do not know” and “prefer not to answer” from the sample count. Some 
participants also didn’t give consent to answer certain questions.  

Age is from the first recruitment (2006-2010), not the imaging recruitment (2014+). Baseline 
answers are all from the first recruitment (2006-2010).  
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4.13. Supplemental Figures 

 

Supplementary figure 4.1. Consort chart of sample processing. Relatedness was from UK 
Biobank kinship file (ukb48123_kinship.txt provided from UK Biobank), which provides all 
pairs related up to third degree. We detected all the related pairs in our dataset and broke the 
pairs by removing one participant from each pair.      
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Supplementary figure 4.2. Smoking status extracted from the final subset of touchscreen 
questionnaire. Ever daily smoked is defined by green (Current daily smoking and Former daily 
smoking), and never smoked is defined by red (Never previously smoked and smoked less than 
100 cigarettes in lifetime). Note that we excluded the “Prefer not to answer” from the chart 
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Supplementary figure 4.3. Pack year distribution in categories  
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Supplementary figure 4.4. Model for Mediation analysis. Polygenic risk score (PRS) for 
smoking initiation is strongly associated with total grey matter volume through mediator (Daily 
smoking). Any statistical significance of the direct association between PRS and total grey 
matter volume disappears when the mediator is added to the model. 
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Supplementary figure 4.5. Different PRS thresholds with volume of grey matter (effect size and 
p-value). Z-score is the –z-score of the effect size. Log P-value is –log10 of P-value.  
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Supplementary figure 4.6. Log P-value of Freesurfer DKT measures in left and right 
hemisphere. We only included IDPs with left and right hemisphere values. A) Unadjusted DKT 
measures (mm3), B) Adjusted DKT measures (normalized) 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

 

Supplementary figure 4.7. Log P-value of Freesurfer ASEG measures in left and right 
hemisphere. We only included IDPs with left and right hemisphere values. A) Unadjusted DKT 
measures (mm3), B) Adjusted DKT measures (normalized).  
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Supplementary Figure 4.8. Diffusion skeleton measures associated with daily smoking.  

A) Log P-value of diffusion skeleton measures in left and right hemisphere. We only included 
IDPs with left and right hemisphere values. Adjusted for total measures. B) Z-scores of the 288 
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diffusion skeleton FA measures. Purple is positive association with daily smoking, while green is 
negative association. C) Names of the diffusion skeleton measures and their corresponding z-
scores.   
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Supplementary Figure 4.9. Diffusion tract measures associated with daily smoking.  
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A) Log P-value of diffusion tract measures in left and right hemisphere. We only included IDPs 
with left and right hemisphere values. Adjusted for total measures. B) Z-scores of the 162 
diffusion skeleton FA measures. Purple is positive association with daily smoking, while green is 
negative association. Right: horizontal slice of the brain, Left: Right saggital slice of the brain. 
C) Names of the diffusion skeleton measures and their corresponding z-scores.   
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Supplementary figure 4.10. Resting-functional MRI measure modestly associated with daily 
smoking. Yellow indicates strong, and red indicates weak association.  
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Supplementary figure 4.11. Total grey matter volume and Smoking initiation PRS. Scatter plot 
for PRS with grey matter volume. The fitted line is from linear regression results. Each dot 
represents an individual. PRS and total grey matter volume are normalized. 
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Supplementary figure 4.12. Daily smoking and smoking initiation PRS. Scatterplot for PRS 
and smoking. Since ever daily smoked has two groups (ever and never daily smoked), the line is 
the difference between the means of two groups. PRS is normalized. 
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Chapter 5. Conclusion  
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5.1 Summary of the Dissertation 
 
Overall, this dissertation illustrates the potential utility of polygenic risk scores in aiding 

smoking cessation in individuals and shows the brain changes associated with smoking behavior. 

First, I illustrate in Chapter 2 that polygenic risk scores, especially PRS for the later age of 

smoking initiation, and a combination of PRS for multiple smoking behaviors, are associated 

with smoking cessation outcomes in two clinical trials. In Chapter 3, I then conducted a study of 

PRS for smoking cessation in a larger general population sample. By testing the association 

between the PRS and the age of smoking cessation, I identify that those with a higher genetic 

risk for persistent smoking had a later age of smoking cessation compared to those with a lower 

genetic risk. This finding has clinical implications because we can identify those who will more 

likely smoke for a longer period of time and thus may benefit for more intensive smoking 

cessation interventions. In Chapter 4, I showed the significant association of smoking behavior in 

the brain structure and function, while also proving that the genetic risk for smoking is not 

associated with brain volume. These findings support the adverse effects of cigarette smoking on 

the brain, though I recognize that there are likely brain structure and function changes that 

predispose one to smoke and smoke more heavily. These findings add insight into the 

importance of targeted treatment for smoking cessation aided by genetic risk scores, to prevent 

the possible negative impact on the individual’s brain.  
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5.2 Future Directions 
 
 
5.2.1. UK Biobank longitudinal dataset 
 
The direction of effect between the brain and the smoking behavior is best addressed with the aid 

of a longitudinal dataset. Currently, the UK Biobank provides the repeat scan for a few thousand 

participants in the imaging cohort, and this sample size is continuously growing. For future 

studies, it will be worthwhile to identify the individuals who had daily smoked during the 

primary brain scan but stopped 5 years later, for the repeat scan. Examining the brain-imaging 

measures of these individuals will more definitively show the changes in the brain caused by the 

smoking behavior. Within the timeline of this dissertation, we could only identify less than a 

hundred such individuals who changed their smoking behavior, and so we were unable to 

undertake this analysis.   

 
5.2.2. The Adolescent Brain Cognitive Development (ABCD) study  
 
The prospective development data will also provide insight into the complex interplay between 

the brain and behavior. The Adolescent Brain Cognitive Development study (ABCD) is the 

largest neuroimaging study of brain development in the world, and the study will help determine 

the direction of effect between daily smoking and brain structure and function [1]. Future studies 

using this developmental dataset may identify that certain parts of the brain are negatively 

impacted by daily smoking, and other parts may be predisposing factors to smoking.  

 
5.2.3. Ancestry-weighted PRS  
 
The ongoing issue the genetic study faces is the lack of representation of diverse populations in 

genetic datasets and tools. The polygenic risk score effectively predicts the corresponding 

behavior in those with European ancestry but underperforms in other populations [2]. It is 
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important to start developing tools that are effective across all populations, and one of those is 

ancestry weighted PRS. This PRS, weighted using ancestral principal components (PCs) can be 

an effective prediction tool that can be used in precision medicine for the general population with 

diverse genetic ancestry. Future studies may utilize the robustly developed tools [3] to create 

ancestry PRS and validate its use in clinical settings.  

 
5.2.4. Brain aging and targeted treatments  
  
Many studies identified the association between substance use and dementia [4]. Recently, there 

was also an increase in the study of brain aging and substance use [5, 6]. It is known that using 

substances such as tobacco or alcohol prematurely age an individual’s brain, thus amplifying the 

risk of brain conditions connected to brain volume loss such as Alzheimer’s Disease. Developing 

a brain-aging model to identify the extent to which the brain ages as a result of behaviors such as 

smoking and other modifiable risk factors may have important public health implications.  

Public Health Implications 

Tobacco use has substantial public health implications in the US and worldwide. The 

development of prevention strategies and treatment plans that consider both genetic and 

environmental factors, as well as the public health message that the brain structure and function 

are negatively associated with daily smoking, may lead to more effective approaches for 

smoking control and cessation, ultimately reducing the burden of smoking-related disease and 

improving overall public health outcomes.  
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