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Initial observations of gravitational-waves (GW) from the mergers of compact binaries

have further solidified GR as an accurate model of gravity on large scales, as well as

provided novel insight into the populations of the compact objects from which they orig-

inate. Next-generation detectors such as LISA, Einstein Telescope, and Cosmic Explorer

are slated for operation in the next few decades and will bring with them vastly improved

sensitivities and orders of magnitude more GW events. It is therefore imperative that

model development and characterization of secondary effect—either smaller in magni-

tude in than current noise levels or too infrequent at current event rates for meaningful

statistical statements to be made—be in place before observational data from these de-

tectors becomes available. In this dissertation, we explore the observational prospects for

two promising candidates for future–or even current–detection: observation of the GW

middle-time-tail produced by off-axis massive perturbers, and measurement of quantum

effects on GW propagation under the polymer quantization scheme. We present the

waveform modifications that describe each of these phenomena, and provide the first

constraints on the parameters describing them from analysis of existing GW data.
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Chapter 1

Introduction

Einsteins General Theory of Relativity (GR) is one of the most successful physical the-

ories of all time. On large scales it’s strikingly accurate, describing myriad physical

phenomena from the motion of planets to the origins of black holes, the most extreme

physical systems in our Universe. Its success can be identified at its inception; Einstein

reimagined gravity as a consequence of the marriage of space and time, promoting it

from a simple force-mediated interaction between massive objects to a characteristic of

a fundamental backdrop upon which all natural phenomena occur.

The advent of GR resolved so many astrophysical mysteries with its arrival. The pre-

cession of Mercury’s orbit’s inconsistency with Newtonian gravity. The observation of

gravitational lensing further questioned the validity of classical physics, in which mass-

less photons experience no gravitational force. While Newton’s gravity fails to explain

observations of each of these perplexing phenomena, they are natural consequences of

GR. But perhaps the most interesting consequence of GR is one that has no Newtonian

counterpart: the emission of gravitational waves from accelerating massive objects.

Einstein’s GR predicts that, as a massive object moves through spacetime, informa-

tion about its motion travels throughout the universe at the speed of light, analogous to

the production of electromagnetic radiation from the acceleration objects charged un-

der the electromagnetic force. Unlike electromagnetic radiation, however, gravitational

1



waves are extremely weak and were long thought to be undetectable, to the extent that

even Einstein himself claimed we would never directly observe them. We now have the

good fortune to know he was mistaken. On September 14, 2015, the Laser Interfer-

ometer Gravitational-wave Observatory (LIGO), made the first direct observation of a

gravitational wave caused by the coalescence of two black holes [1]. Since then, LIGO,

joined by other GW observatories such as Virgo, have built up a growing catalog of 90+

gravitational wave detections, ushering in a new era of “gravitational-wave astronomy”.

And while the production and success of the instrument was in and of itself a major

scientific breakthrough, the analyses that follow a gravitational-wave detection are rich

with new physics.

Through the use of Bayesian statistical techniques, we’ve successfully extracted from

these spacetime perturbations the rich information they carry about their sources and

spacetime itself. It’s allowed us to peer into the interiors of neutron stars, infer char-

acteristics about our Universe’s populations of stellar remnants such as neutron stars

(NS) and black holes (BH), and even test GR itself. Next-generation detectors such

as Cosmic Explorer (CE) and Einstein Telescope (ET) will bring orders-of-magnitude

improvements in sensitivity and orders-of-magnitude more GW events which will in turn

likely bring definitive answers to the questions current detectors are just beginning to

probe. However, in addition to improving constraints on phenomena under active inves-

tigation by current GW observatories, future detectors will be able to confirm or deny

the existence of secondary effects: those either below the noise of current detectors or

highly unlikely to be observed at current event rates. Such secondary effects may be able

to probe the dark matter distribution on astrophysical scales or even quantum effects

of GW propagation. In this work we develop models, forecast detection prospects, and

provide the current-generation GW constraints for two such phenomenon: the middle-

time-tail (MTT) of GW signals scattering off of massive perturbers, and quantum effects

of GW propagation under the polymer quantization scheme.

This dissertation is organized as follows: In chapter II we’ll review the basics of

2



GR and the conditions that lead to GW production. Additionally, we’ll look at some

examples of sources of GWs. The anatomy and practical limitations of Michelson-like

GW observatories are discussed in chapter III, followed by an overview of the parameter

estimation techniques used to translate GW strain data into constraints on the source

properties of the compact binary. Chapter 5 comprises the first of two projects that

serve as the main material for this thesis: the search for GW MTT in confirmed LIGO

detections. This will involve discussing the conditions required to produce a detectable

glint, a model for the alteration it induces in the primary signal waveform, an injection

study to characterize the detector response across glint parameter space, and finally

the analysis of existing LIGO events. Chapter 6 outlines the second project which con-

sists of an effective model for quantum corrections to propagating GWs under polymer

quantization and the first empirical constraints placed on the characteristic scale of the

theory.

3



Chapter 2

Gravitational Wave Physics

A healthy understanding of the mathematical description of spacetime will be a nec-

essary prerequisite for understanding the search for extensions of GW models. In this

chapter, we briefly review the derivation of spacetime’s dynamical and constraint equa-

tions from first principles, known as the Einstein Field Equations (EFEs). From there,

we demonstrate how in the linear perturbative limit these EOMs show that spacetime

satisfies the familiar wave equation, which will set the groundwork for discussions of GW

sources and a derivation of the Newtonian approximated plus and cross polarized GW

waveform. Finally, we explore regimes in which the Newtonian approximation breaks

down and compare modern waveform families that address these limitations.

2.1 Overview of General Relativity

2.1.1 The metric tensor

The foundational mathematical object of GR is the metric tensor whose components

encode the relationship between spacetime basis vectors:

gµν = g(eµ, eν) = eµ · eν , (2.1)

4



where Greek indices such as µ and ν label the dimension of spacetime they are associated

with. Alternative theories of gravity can extend beyond four dimensions, but here we re-

strict ourselves to a spacetime comprised of one timelike and three spacelike dimensions,

thus µ, ν ∈ {0, 1, 2, 3}. The metric is symmetric, gµν = gνµ, leaving 10 independent

degrees of freedom. It should be noted that the metric components themselves do not

carry physical meaning. Indeed, we can always choose coordinates in which the metric

components are Minkowski and their first derivatives vanish. The second derivatives,

however, only vanish when the underlying spacetime is flat and therefore have direct

physical meaning.

In the absence of curvature, the basis vectors are strictly orthogonal, and thus the

metric tensor takes a form that defines special relativistic mechanics known as the

Minkowski metric,

gµν = ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (2.2)

where we’ve adopted the (−,+,+,+) metric convention. The information contained in

the metric can equivalently be expressed as a line element, which obviates its interpre-

tation as encoding the relationship between basis vectors

ds2 = gµνdx
µdxν (2.3)

ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2 (Minkowski). (2.4)

We also distinguish between vectors that transform with (covariant) and against (con-

travariant) the metric, denoted by subscripts and superscripts respectively1. To visually

1The indices of covariant and contravariant vectors are sometimes colloquially referred to as “down-
stairs” and “upstairs” , respectively.
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simplify the equations we will encounter in GR, we’ll adopt the familiar Einstein sum-

mation convention in which multiplication between contravariant and covariant vectors

imply summation over their components:

xµxµ ≡
3∑
0

xµxµ = x0x0 + x1x1 + x2x2 + x3x3. (2.5)

“Raising” and “lowering” indices–transformation between covariant and contravariant

vector forms–is also performed by contraction of vectors with the metric

xµ = gµνx
ν , (2.6)

while the inverse transformation from covariant to contravariant, is performed by con-

traction with the inverse metric gµν

xµ = gµνxν (2.7)

= gµνgναx
α (2.8)

= xµ (2.9)

We can further visually simplify our equations by employing defining shorthand notation

for derivatives with respect to covariant coordinates. That is, given covariant vector xµ,

and some function f(xµ), we express the derivative of f with respect to the coordinates

xµ as

∂f(xµ)

∂xµ
= ∂µf = f,µ. (2.10)

Note that the derivative of a function with respect to a contravariant vector transforms

covariantly and thus should be treated as a “downstairs” index for summation purposes.

6



2.1.2 The Einstein Field Equations

Contrary to Eq. 2.2, spacetime is not ubiquitously flat. The components of the metric

are not constant and evolve over time in interesting and non-trivial ways. And indeed

the evolution of the metric components in curved spacetime has fascinating consequences

that will lay the groundwork for the work presented here. The first of these consequences

is reflected in the geodesic equation:

d2xα

dτ 2
= −

{
1

2
gαβ

(
−dgβµ
dxν

+
dgβν
dxµ

+
dgµν
dxβ

)}
dxµ

dτ

dxν

dτ
(2.11)

= −Γαµν
dxµ

dτ

dxν

dτ
, (2.12)

where τ is the proper time according to an observer at position xα, and we’ve defined

Γαµν =
1

2
gαβ (−∂νgβµ + ∂µgβν + ∂βgµν) , (2.13)

known as the Christoffel coefficients. The geodesic equation communicates the first of

many profound consequences of the dynamics of curved spacetime: in the absence of any

external forces, a test particle whose spacetime location is given by xα will not remain

constant.

The geodesic equation does not describe the dynamics of the metric itself, though

the Christoffel symbols that they introduce do play a crucial role. Indeed, the object

that lays the foundation for the metric’s dynamical equations, the Riemann curvature

tensor, is defined in terms of the Christoffel coefficients and its derivatives,

Rµ
νδγ = Γµγν,δ − Γµδν,γ + ΓµδλΓ

λ
γν + ΓµγλΓ

λ
δν . (2.14)

which is related to a vector’s deviation from its original state when parallel transported

around a closed contour in spacetime. The Riemann tensor contains more curvature in-

formation than is required to describe the metrics dynamics. To eliminate redundancies,
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the Riemann tensor can be summed over its first and third indices to produce the Ricci

tensor:

Rµν = Rα
µαν . (2.15)

This summation eliminates some information about spacetime shear contained within

the Riemann tensor. The Ricci tensor can finally be further contracted with the metric

to produce a single scalar curvature

R = Rµ
µ. (2.16)

From here, we insert the scalar curvature into the action, making the profound

statement that the curvature of spacetime contributes to the energy content of the

Universe, producing the famous Einstein-Hilbert action defined on the manifold M,

SEH =
1

2

∫
M

√−g {αR + 2Lm} d4x, (2.17)

where Lm is the Lagrangian density for the matter content of the Universe which de-

scribes its energy content, α is a constant of proportionality (to be determined later on),

and g = gµνg
µν . Minimizing the Einstein-Hilbert action results in the following:

δSEH =
1

2

∫
M

√−g
{
−α

2
gµνR + αRµν + 2

∂Lm
∂gµν

− gµνLm
}
δgµνd4x

+
1

2

∫
M
α
√−ggµνδRµνd

4x = 0, (2.18)

where the second integral, present when the underlying spacetime manifold has a bound-

ary, can be expressed as a surface term after invoking Stokes’ theorem. Adding the
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Gibbons-Hawking-York term

SGHY =

∫
∂M

d3y
√
hK (2.19)

to Eq. 2.17 ensures the variational principle is well-defined. Eq. 2.19 is an integral over

the 3-dimensional boundary hypersurface ∂M parameterized by the coordinates ya,

h = det[hab] is the determinant of the induced metric on the boundary which satisfies

hab = gµνe
µ
ae
ν
b (2.20)

where the components of the basis vectors, eµa , encode the relationship between the

manifold and boundary coordinates,

eµa =

(
∂xµ

∂ya

)
∂M

, (2.21)

for a ∈ 1, 2, 3. Finally, K is the trace of the extrinsic curvature

K = hµν(nµ,ν − Γρµνnρ) (2.22)

where hµν ≡ gµν − nµnν and nµ is the unit normal to the hypersurface. Variation of the

sum of these two actions yields

δStotal = δSEH + δSGHY (2.23)

=
1

2

∫
M

√−g
{
−α

2
gµνR + αRµν + 2

∂Lm
∂gµν

− gµνLm
}
δgµνd4x (2.24)

where we recognize that setting the integrand equal to 0 is one solution of this equation.

This leaves us with the equations of motion for the metric:

α

[
Rµν −

1

2
gµνR

]
= gµνLm − 2

∂Lm
∂gµν

. (2.25)
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The left hand side of Eq. 2.1.2 is a rank 2 tensor known as the Einstein tensor, Gµν ,

and is related to the curvature of spacetime:

Gµν ≡ Rµν −
1

2
gµνR. (2.26)

From the righthand side, which contains information about the energy density contents

of the Universe not due to curvature (baryonic matter, radiation, etc), we define stress-

energy tensor :

Tµν ≡ gµνLm − 2
∂Lm
∂gµν

. (2.27)

Finally, we arrive at the Einstein Field Equations,

Gµν =
8πG

c4
Tµν , (2.28)

where we’ve chosen α = c4/8πG such that taking the non-relativistic limit gives the

Newtonian gravitational relation. Eq. 2.28 are known as the Einstein field equations

(EFE). The indices µ and ν both range from 0 to 3, for a possible 16 combinations.

The symmetry of the Ricci tensor eliminates 6 duplicate equations. Of the remaining

10 equations, only 6 are independent due to the four Bianchi identities, representing the

remaining gauge degrees of freedom.

The Einstein tensor contains only curvature information, being constructed strictly

from the metric and its first and second order derivatives. The stress-energy tensor on

the righthand side represents all other energy contributions: matter, radiation, dark

matter, etc. and has the following anatomy:

10



T µν =



energy ← energy flux →

density

↑ ↖ ↗

momentum stress

density tensor

↓ ↙ ↘



.

The components of the stress-energy tensor, shown above in its contravariant represen-

tation, are familiar for certain sources:

T 00 = ρ T 00 =
1

c2

(
ε0
2
E2 +

1

2µ0

B2

)
. (2.29)

(perfect fluid) (electromagnetic field) (2.30)

The mixed time-space indices are the momentum density (T i0) and energy flux (T 0i)

and the purely spatial components T ij, are known as the stress tensor. The stress

tensor diagonals T ii represent directional pressures, while its off-diagonal components

are shears.

2.1.3 Consequences of linearized GR

Consider a small perturbation to the Minkowski metric (Eq. 2.2), hµν such that the

metric now looks like

gµν = ηµν + hµν (2.31)

In this section, we’ll derive the Riemann and Ricci tensors, scalar curvature, and ulti-

mately the EFEs that govern the evolution of the above metric tensor. Moving forward,

we’ll assume the metric perturbation is small, i.e. |hµν | � 1, which will allow us to
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ignore terms O(h2) and higher. Under this simplifying assumption, Eq. 2.31 has inverse

gµν = (ηµν + hµν)
−1 = ηµν − hµν +O(h2), (2.32)

where again ηµν is the Minkowski metric. Taking only linear terms in h, the Christoffel

coefficients are

Γαµν =
1

2
ηαβ [hβµ,ν + hβν,µ − hµν,β] . (2.33)

From the Christoffel symbols, the next step is to construct the Riemann tensor. Note

that the last two terms in Eq. 2.14 will produce only terms quadratic in h, making the

Riemann tensor

Rµ
νδγ = Γµγν,δ + Γµδν,γ. (2.34)

This yields the following linearized Riemann tensor:

Rµ
νδγ =

1

2
ηµβ(hβγ,νδ − hγν,βδ − hβδ,νγ + hδν,βγ). (2.35)

Summing over the first and third indices, we arrive at the Ricci tensor. With the

derivatives written out explicitly, this looks like

Rνγ = Rµ
νµγ =

1

2

{
∂2hµγ
∂xν∂xµ

− ηµβ ∂2hγν
∂xβ∂xµ

− ∂2hµµ
∂xν∂xγ

+
∂2hµν
∂xµ∂xγ

}
. (2.36)

Contracting the Ricci tensor with the inverse metric yields the last quantity needed for

the Einstein tensor. Again, many terms quadratic in h are spawned in the process which
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can be safely ignored for small h. The surviving terms of the scalar curvature are

R = gνγRνγ (2.37)

= (ηνγ − hνγ)1

2

{
∂2hµγ
∂xν∂xµ

− ηµβ ∂2hγν
∂xβ∂xµ

− ∂2hµµ
∂xν∂xγ

+
∂2hµν
∂xµ∂xγ

}
(2.38)

=
1

2

{
ηνγ

∂2hµγ
∂xν∂xµ

− ηνγηµβ ∂2hγν
∂xβ∂xµ

− ηνγ ∂
2hµµ

∂xν∂xγ
+ ηνγ

∂2hµν
∂xµ∂xγ

}
(2.39)

R =
∂2hµν

∂xµ∂xν
− ηµν ∂2h

∂xµ∂xν
, (2.40)

where h = ηµνhµν is the trace of the metric perturbation. Combining the Ricci tensor

and scalar curvature according to Eq. 2.26 gives us the Einstein tensor for a perturbed

Minkowski spacetime:

Gµν =
1

2

{
∂2hσν
∂xµ∂xσ

− ησβ ∂2hνµ
∂xβ∂xσ

− ∂2hσσ
∂xµ∂xν

+
∂2hσµ
∂xσ∂xν

}
− 1

2
(ηµν + hµν)

(
∂2hµν

∂xµ∂xν
− ηµν ∂2h

∂xµ∂xν

)
. (2.41)

In its current form, the significance of Eq. 2.41 is obfuscated by redundant gauge degrees

of freedom. To simplify, we define the the trace-reversed metric perturbation

h̄µν = hµν −
1

2
ηµνh

σ
σ, (2.42)

and partially fix the gauge according to the Lorenz condition

∂µh̄
µν = 0 (2.43)

in which the Einstein Field Equations reduce to

−ηαβ ∂2h̄µν
∂xα∂xβ

≈ 16πG

c4
Tµν . (2.44)
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We recognize ηαβ ∂2

∂xα∂xβ
≡ � as the d’Alembertian operator. Thus, for a small pertur-

bation to a flat Minkowski metric, the Einstein Field Equations take the form of a wave

equation sourced by Tµν :

−�h̄µν ≈
16πG

c4
Tµν , (2.45)

which describe gravitational wave solutions. For illustrative purposes let us consider the

special case of a vacuum in which Tµν vanishes, which should hold for cases in which the

GWs are propagating far from their source:

−�h̄µν ≈ 0. (2.46)

Aligning the direction of propagation with one of our basis vectors, such as the x3 (or ẑ)

direction, the only surviving components of h̄µν are h̄22 = −h̄11, and h̄12 = h̄21, the first of

which is a consequence of the tracelessness of h̄µν , and the second is required to preserve

the symmetry of the metric. All of these conditions amount to the Transverse-Traceless

(TT) gauge. Only two unique metric perturbations exist under these conditions in the

TT-gauge, corresponding to the diagonal elements and the off-diagonal elements of h̄µν .

Defining the two remaining degrees of freedom

h̄11(x0, x3) ≡ h+(x0, x3) (2.47)

h̄12(x0, x3) ≡ h×(x0, x3) (2.48)

the perturbed metric takes the form

gµν + h̄µν =



−1 0 0 0

0 1 + h+(x0, x3) h×(x0, x3) 0

0 h×(x0, x3) 1− h+(x0, x3) 0

0 0 0 1


. (2.49)
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Plus  
polarization

Cross  
polarization

0 1/4fGW 1/2fGW 3/4fGW 1/fGW

Figure 2.1: The effect of a plus-polarized (top) and cross-polarized (bottom) gravita-
tional wave on a ring of otherwise undisturbed test particles as a function of the GW
period τGW ≡ 1/fGW. In GR, these two polarizations form a basis for the set of all
possible gravitational-wave strains.

Fig. 2.1 illustrates the two distinct ways in which the plus and cross polarizations of the

gravitational wave alter physical distances. Note that despite restricting propagation of

the GWs to the x3 direction, the plus and cross polarizations still form a complete basis

for GW propagation in GR. In reality any GWs detected by a GW observatory will

not always be aligned orthogonally to the detector axis, but regardless of its orientation

relative to the detector, the GWs can always be decomposed into a linear combination

of plus and cross polarizations. The mathematical treatment for disentangling GWs into

their plus and cross polarizations involves taking into account the detector geometry and

orientation relative to the GWs known as an “antenna function”, which we will discuss

later on.

2.2 Sourcing Gravitational Waves2

GW signals encountered in this thesis are necessarily produced by some source with

an associated non-zero stress-energy tensor. Modeling their signals therefore requires

solving Eq. 2.45 and may even be inaccurate when terms O(h2) are ignored. A popular

2This section very closely follows reference [2]
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remedy is to define an effective stress-energy tensor which treats higher order perturba-

tions as additional effective sources,

�h̄µν = −16πG

c4
τµν (2.50)

where the effective stress-energy tensor is defined as

τµν = Tµν +
c4

16πG
Λµν(h, ∂h, ∂

2h), (2.51)

with Λµν being the source term for higher-order perturbations. Note that we’ve restored

the equality here as we’ve reintroduced the higher-order terms. Eq. 2.50 can be solved

with a Green’s function method

h̄µν(x
µ) =

4G

c4

∫
d3x

τµν(x
0 − |~x− ~x′|/c, ~x)

|~x− ~x′| (2.52)

Ultimately, we’re interested in a model for the signal as it appears in a GW observatory

on Earth, i.e. far from the source. We can therefore safely relax some of our assumptions

in order to simplify calculation. The relevant scales of the system are R, the charac-

teristic length scale of the GW source, λ, the wavelength of the produced gravitational

wave, and r, the distance from the source to the observer. In this context “far from the

source” implies R � λ � r. 3 Under these conditions assuming |~x − ~x′| ' r will not

introduce any significant errors.

Additionally, we’re interested only in the metric perturbations in the TT-gauge of

which the only non-vanishing components are spatial, hTT
ij . Fortunately, we can leverage

the following identity which is a consequence from conservation of the effective stress-

3We’ll see later on that GWs produced from inspirally compact object binaries have a character-
istically non-trivial frequency (and thus wavelength) evolution. Thankfully the range over which the
wavelengths vary for all sources we will consider still fall under the far-field limit.
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energy tensor ∂µτµν = 0:

τ ij =
1

2

∂2

∂(x0)2
(xixjτ 00) +

∂

∂xk
(
xiτ jk + xjτ ki

)
− 1

2

∂2

∂xk∂xl
(
xixjτ kl

)
, (2.53)

which can be substituted into Eq. 2.52. The only surviving term under the integral

will be the τ00 term since the remaining terms contain spatial derivatives which will

vanish on a boundary taken to be far from the source where spacetime is approximately

Minkowski. Finally, we’re left with

h̄ij(x
µ) ' 2G

c4r

∂2

∂(x0)2
Iij(x

0 − r/c) (2.54)

where

I(x0 − r/c) =

∫
d3x′x′ix

′
jτ00(x0 − r/c, ~x′) (2.55)

is the quadrupole tensor. We can write our final solution even more succinctly if we

denote derivatives with respect to x0 with an ˙ ≡ ∂/∂(x0):

h̄ij(x
µ) =' 2G

c4r
Ïij(x

0 − r/c) (2.56)

Defining the normal vector transverse to the plane of propagation n̂i = xi/r and its

associated projection operator Pij = δij − n̂in̂j, we can project our solution onto the

direction transverse to the plane of propagation and remove the trace of Iij:

ITT
ij = PikI

klPlj −
1

2
PijPklI

kl. (2.57)

The sourced transverse-traceless metric perturbation in the far-field limit is thus

hTT
ij (x0) ' 2G

c4r
ÏTT
ij (x0 − r/c). (2.58)
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Compact Binary Waveform in Newtonian Limit

Gravitational waves can be produced by many astrophysical (and even cosmological)

systems corresponding to different stress-energy tensors. The principle source of interest

for this work are mergers of compact objects such as black holes and neutron stars,

diagrammed in Fig. 2.2. In this case, the quadrupole tensor can be approximated as

the quadrupole tensor for two point particles4.

At low velocities, the rest frame reduced mass µ = m1m2

m1+m2
= m1m2

M
, where M ≡

m1 + m2 is the total mass, dominates the quadrupole’s mass dependence, meaning a

Newtonian approximation for the early stages of the inspiral is sufficient. When the

orbital plane of the binary is aligned with the x1 − x2 plane of a Cartesian coordinate

system, the Newtonian quadrupole moment is

Iij =
2∑
l=1

µ(xilxjl), (2.59)

where the sum goes only over the x1 and x2 coordinates since the quadrupole moment

does not change with x3. The four non-zero components are

I11 = µa2

(
1 + cos(2ϕ)

2

)
(2.60)

I12 = I21 = µa2 cosϕ sinϕ (2.61)

I22 = µa2

(
1− cos(2ϕ)

2

)
, (2.62)

where a = r1 + r2 is the orbital separation and ϕ = ω(t − D/c) ≡ ωtr is the phase in

terms of the retarded time. Note since ri is natural notation for radial coordinates of the

binary objects, we have changed the notation of the distance from the source to observer

4This is exactly true in the case of two uncharged, non-spinning black holes. Neutron stars on the
other hand have non-negligible waveform corrections from tidal deformation of their matter content,
but for demonstrative purposes this approximation will suffice.
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x1

x2

x3

r1

r2
m2

m1φ

Figure 2.2: Coordinate system for a binary of compact objects with masses m1 and m2

whose orbital axis is aligned with the x1 − x2 plane. The quantities r1 and r2 represent
the distances from the first and second component objects from the origin respectively.
The orbital phase of the binary is given by ϕ.
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r → D. Substituting the compact binary quadrupole moment into Eq. 2.58 yields

h̄ij = −4Gω2µa2

c4D


cos(2ϕ) sin(2ϕ) 0

sin(2ϕ) − cos(2ϕ) 0

0 0 0

 (2.63)

= − 4µ

c2D

(v
c

)2


cos(2ϕ) sin(2ϕ(v, t)) 0

sin(2ϕ) − cos(2ϕ(v, t)) 0

0 0 0

 , (2.64)

where we’ve recast in terms of v = aω. Additionally, we’ve made explicit the dependence

of ϕ on v and t since

ϕ = ωt =
(v
c

)3 c3t

GM
(2.65)

where ω = v3/GM as a consequence of Kepler’s third law GM = a3ω2. The above

waveform has no frequency evolution. However, we know that as the orbital separation

between the two objects decreases, energy is lost in the form of gravitational waves.

This energy loss is responsible for the frequency evolution that produces the familiar

gravitational wave “chirp”. The Newtonian energy and luminosity for a binary of point

particles are given by [2]

E(v) = −1

2
c2Mη

(v
c

)2

(2.66)

L(v) =
32

5

c5

G
η2
(v
c

)10

, (2.67)

where we’ve introduced the symmetric mass ratio η = µ/(m1 + m2). Leveraging the

relationship between the radiation’s luminosity and energy, L = −dE/dt, a differential

equation governing the relationship between the linear velocity and time:

dt

dv
=

dt

dE

dE

dv
= − 1

L

dE

dv
. (2.68)
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which also yields the analogous equation for ϕ,

dϕ

dv
=
dϕ

dt

dt

dv
= − v3

GM

1

L

dE

dv
, (2.69)

where in the second equality we’ve invoked Eq. 2.68.

We now have total derivatives for t(v) and ϕ(v) in terms of known analytic expressions

for E and L in terms of v. Thus, t(v) and φ(v) can be obtained via direct integration of

Eq. 2.68 and 2.69 from v to the time and phase at coalescence,

t(v) = tc +

∫ vc

v

1

L(v′)

dE

dv′
dv′ (2.70)

ϕ(v) = ϕc +

∫ vc

v

v′3

GM

1

L(v′)

dE

dv′
dv′. (2.71)

Using Eqs. 2.66 and 2.67 for the energy and luminosity and integrating directly,

t = tc +

∫ vc

v

(
− 5

32

GM

ηc3

v′−9

c−8

)
dv (2.72)

= tc +
5

256

GM

ηc3

(
v′

c

)−8
∣∣∣∣∣
vc

v

(2.73)

= tc +
5

256

GM

ηc3

[(vc

c

)−8

−
(v
c

)−8
]
. (2.74)

taking vc →∞5,

t(v) = tc −
5

256

GM

ηc3

(v
c

)−8

. (2.75)

5This reflects the fact that this waveform only covers the inspiral phase during which the orbit
is approximately circular. In reality, at the closure of the inspiral the binary enters the merger phase
where the point-particle picture of the binary components breaks down after which the ringdown begins
and continues until the post-merger remnant reaches spherical symmetry.
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The integration for ϕ(v) yields

ϕ = ϕc +

∫ vc

v

(
− 5

32

1

η

v′−6

c−5

)
dv′ (2.76)

= ϕc +
1

32η

(
v′

c

)−5
∣∣∣∣∣
vc

v

(2.77)

ϕ(v) = ϕc −
1

32η

(v
c

)−5

. (2.78)

t(v) is then inverted to obtain v(t) and ϕ(v(t)) = ϕ(t) after which both are substituted

into Eq. 2.64. For convenience, we define the chirp mass M = η3/5M . The resulting

plus and cross polarization waveforms can be read off from the components of Eq. 2.64:

h+(t) = −GM
c2D

[
c3(tc − t)

5GM

]−1/4

cos

(
2ϕc − 2

[
c3(tc − t)

5GM

]5/8
)

(2.79)

h×(t) = −GM
c2D

[
c3(tc − t)

5GM

]−1/4

sin

(
2ϕc − 2

[
c3(tc − t)

5GM

]5/8
)
. (2.80)

There are several important features of Eqs. 2.79 and 2.80 to note. First, this is

strictly a model of the inspiral phase of the waveform, where the binary is still in a

stable semi-circular orbit. This model does not describe the remaining two phases: the

merger phase when the two component objects begin to coalesce, and the ringdown

phase which describes the transition of the remnant object from the merger to spherical

symmetry. Additionally in both polarizations both the the amplitude and frequency

of waveform increase as t → tc. When the signal, depicted in Fig. 2.3, is mapped to

acoustic frequencies in the audible range, the rising frequency and amplitude over time

can be likened to a bird’s “chirp”, giving the signal its signature nickname. Lastly, the

two polarizations have a constant one quarter cycle phase difference for the entirety of

the signal.

For many of the analyses performed in this work, it is convenient to express the CBC
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Figure 2.3: An example of a Newtonian-approximated gravitational-wave strain in the
time domain decomposed onto “plus” and “cross” polarizations for an equal-mass 5 M�
binary at a distance of 500 Mpc. The difference between the two polarization strains
δh+,×(t) ≡ h+(t)− h×(t) is shown below.

waveform in the frequency domain:

h̃(f) =

√
5π

24

G2M2

c5D

[
πMGf

c3

]−7/6

exp[−iψ(f)], (2.81)

where the phase is

ψ(f) = 2πftc − 2ϕc − π/4 +
3

128

[
πMGf

c3

]−5/3

. (2.82)

It should be noted that the frequency f = fGW = 2forbital is the gravitational waveform

frequency which is twice the orbital frequency of the binary.

Newtonian limitations and modern waveforms

The Newtonian approximate models discussed thus far act well as toy models for the

radiation produced by compact binaries, but require several improvements before con-

sidered sufficient waveform models. These improvements fall into three categories:
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Masses m1, m2

Spins �1,x, �1,y, �1,z,
�2,x, �2,y, �2,z

Tidal e↵ects �1, �2
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Orientation ◆,  
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Intrinsic
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}
}

Figure 2.4: Many parameters affect the shape and evolution of a gravitational wave.
The parameters can be intrinsic properties of the system or extrinsic, resulting from sky
location, distance to the source, etc.

1. The signal derived here is dependent on four model parameters: the chirp massM,

the distance to the source D, the coalescence time tc, and the phase at coalescence

ϕc. In actuality, the waveform is dependent on a much larger parameter space,

including additional properties intrinsic to the system like the binary components’

spins, eccentricity of the orbit, and sometimes others.

2. Eqs. 2.66 and 2.67 are the Newtonian expressions for the binary system’s energy

and luminosity, which break down at large v/c.

3. The inspiral phase of the waveform, though the longest in most cases6, does not

describe the entire signal. The remaining two phases, the merger and ringdown,

cannot be accurately modeled with perturbative methods.

6For intermediate-mass black hole (IMBH) binaries with component masses 102−104M�, the merger
occurs at very low frequencies meaning the inspiral phase has very few cycles in the detector band.
Therefore it’s particularly important to have accurate merger and ringdown models for this class of
sources.
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(a) Newtonian inspiral and phenomenological TaylorF2 waveform models as a function of time
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(b) TaylorF2 and phenomenological inspiral-merger-ringdown waveform models (IMRPhe-
nomPv2) as a function of time to coalescence.

Figure 2.5: Comparison between detector response of phenomenological waveform IM-
RPhenomPv2, Newtonian-approximate, and TaylorF2 waveforms. Figures on the left
show the inspiral phase up until coalescence time, while figures on the right show the
merger and ringdown phases on a smaller timescale. The Newtonian amplitude in eqs.
2.79 and 2.80 goes to infinity at high fGW, causing the Newtonian waveform to break
down at high v/c. Phenomenological waveforms such as IMRPhenomPv2 combine post-
Newtonian inspirals with numerical-relativity calibrated merger and ringdown models.
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An ideal resolution to the second item would be to solve the EFEs numerically with-

out assuming the perturbations to the metric are small. This is both computationally

expensive and unnecessary for describing signals observed so far from the source. A more

appropriate solution is to add higher order corrections to the Newtonian expressions for

energy and luminosity. Formally, the expressions for energy and luminosity distance

become

E(x) = −1

2
c2Mηx[1 + δEPP] (2.83)

L(x) =
32

5

c5

G
η2x5[1 + δLPP]. (2.84)

where, expanded in x = (πGMfgw/c
3)2/3 = (v/c)2, the post-Newtonian (PN) corrections

[3–5] that lead to the waveform improvements [6] are

δEPP = −
(

3

4
+

1

12
η

)
x−

(
27

8
− 19

8
η +

1

24
η2

)
x2

−
(

675

64
−
(

34445

576
− 205

96
π2

)
η +

155

96
η2 +

35

5184
η3

)
x3 (2.85)

δLPP = −
(

1247

336
+

35

12
η

)
x+ 4πx3/2

−
(

44711

9072
− 9271

504
η − 65

18
η2

)
x2 −

(
8191

672
+

583

24
η

)
πx5/2

+

(
6643739519

69854400
+

16

3
π2 − 1712

105
e− 856

105
ln(16x)

+

(
41

48
π2 − 134543

7776

)
η − 94403

3024
η2 − 775

324
η3

)
x3

−
(

16285

504
− 214745

1728
η − 193385

3024
η2

)
πx7/2. (2.86)

The corrections here are of order 7/2, referred to as “3.5 PN”. Fig. 2.5a displays an

example of a typical GW observatory’s detector response under the Newtonian approx-
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imation and a member of the post-Newtonian waveform family, TaylorF2 [7].

The third item is significantly more tricky to tackle. One approach is to recast

the system into an Effective One Body (EOB) formulation [8–11], which still require

numerical integration of the EOB equations of motion, but are significantly simpler

relative to the full EFEs. Ultimately, we would like to use these models in conjunction

with Bayesian Markov-chain Monte Carlo (MCMC) and nested sampling algorithms

to infer the source parameters of GW observations. This requires O(106) waveform

generations, and thus EOB waveforms are sometime computationally disfavored.

Another, more resource-conservative solution involves combining post-Newtonian in-

spiral models and NR-calibrated phenomenological models of the merger and ringdown

phases, known as “IMRPhenom” models [12–15]. This provides many of the benefits of

the EOB waveform family while maintaining a waveform computation time suitable for

parameter estimation. Fig. 2.5b shows a comparison between the IMRPhenomPv2 and

TaylorF2 waveform models for a signal with the same model parameters as 2.5a.
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Chapter 3

Gravitational Wave Astronomy

Looking at Fig. 2.5a, 2.5b, the magnitude of the GW strain is O(h) = 10−22. As we’ll

see later, strain measures the distortion of lengths relative to their undisturbed value.

As an example, a gravitational wave with strain h ∼ 10−22 would alter the distance

between Earth and our nearest exosolar star, Alpha Centauri (undisturbed 4 ly) by

4µm–approximately the size of a typical red blood cell. With this in mind, it would be

understandable to conclude the direct detection of GWs is an impossibility and indeed

even Einstein himself resigned the prospect. Lo and behold, as of 2023, time series strain

data is publicly available for more than 90 confident GW observations [16–18]. In this

chapter, we’ll cover the anatomy of the instruments that made these detections possible

and practical limitations that will serve as crucial context for analysis of GW strain

data.

3.1 The Michelson Interferometer

The objective of GW observatories is not only to identify when GWs have passed through

them, but also to characterize the observed signal so that its source properties may be

inferred. And while the source waveform models we have cover a sufficiently large
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Figure 3.1: Length distortions in the arms of a Michelson interferometer result in optical
path length differences that produce interference patterns captured by a photosensor.

parameter space of source characteristics1, there are additional observer effects that will

alter the signal received on Earth. GW observatories must therefore be designed to

resolve GW signals from anywhere in the sky and for any relative orientation to the

source binary.

Michelson interferometers satisfy these requirements by mimicking the ring of test

particles shown in Fig. 2.1 through interference patterns of light [19]. These instruments

are configured in an “L” shape (shown in Fig. 3.1) with equal-length arms such that any

relative length change between the arms produces an interference pattern which depends

on the magnitude of the length distortions. Schematically, they operate as follows:

1. Highly collimated light is emitted from a laser and shone onto a beam-splitter that

1There still exist some CBC configurations for which our most sophisticated waveform models break-
down. Many of these cases–extreme mass ratios, high-spin and precessing CBCs–are the subject of
current research.
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divides into two orthogonal beams in a 50-50 intensity split.

2. Each beam travels down its respective arm at the end of which a mirror is situated

perpendicular to the direction of propagation of the light.

3. After reflecting off of the mirror, each beam travels back towards the beam splitter.

4. As with their outgoing encounter with the beamsplitter, 1/2 of each beam (now

1/4 of the initial intensity) is reflected, while the other half is transmitted result-

ing in 1/2 of the initial intensity returning to laser and the other half traveling

perpendicular and arriving at a photosensor.

The relative phase of returning beams depends on the difference between their travel

distance. Thus for an undisturbed interferometer with equal-length arms, the two beams

will be exactly in-phase resulting in the maximum intensity at the detector. Any non-

conformal distortions in the physical lengths of the arms will therefore result in a re-

duction in intensity at the photosensor. Specifically the change in the intensity of light

at the detector will be the difference in changes from the proper length of each arm

∆l = ∆l1 −∆l2.

Consider an interferometer with one arm aligned with the x1 axis and the other

aligned with the x2 axis. A plus-polarized gravitational wave propagating in the x3

direction has the associated line element

gµνdx
µdxν = −c2dt2 +

[
1 + h11(x3, t)

]
d(x1)2 +

[
1− h11(x3, t)

]
d(x2)2 + d(x3)2.
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Integrating the line element gives the spacetime interval between two spacetime events:

l =

∫ √
gµνdxµdxν .

The proper distance between the x1 mirror located at l0 when unperturbed and the

origin is

l1 =

∫ l0

0

√
1 + h11(x3, t)dx1

=
√

1 + h11(x3, t)

∫ l0

0

dx1

l1 = l0
√

1 + h11(x3, t).

Similarly, the proper length of the x2-aligned detector arm is

l2 =
l0
2

√
1− h11(z, t).

Given h� 1, the changes in proper length can be estimated as

∆l1 = l0
√

1 + h11(x3, t)− l0

≈ l0

(
1 +

1

2
h11(x3, t)

)
− l0

=
l0
2
h11(x3, t)

∆l2 = l0
√

1− h11(x3, t)− l0

≈ l0

(
1− 1

2
h11(x3, t)

)
− l0

= − l0
2
h11(x3, t)

As discussed above, the relative phase difference at the photosensor is given by ∆l/l0
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which in this case is

∆l

l0
=

1

l0

(
l0
2
h11(x3, t) +

l0
2
h11(x3, t)

)
= h11(x3, t)

Here we’ve shown that for a plus-polarized wave aligned with the axes of a Michelson

interferometer, the intensity change measured at the photodetector is precisely the strain

of the GW signal. Later on, we will briefly discuss how to generalize the detector response

to include effects due to extrinsic parameters such as sky location, inclination angle to

the source binary, and generic polarization angle.

3.1.1 Detector sensitivity

The global GW observatory network consists of three ground-based Michelson inter-

ferometers, shown in Fig. 3.2. The two LIGO detectors, LIGO Livingston and LIGO

Hanford, each have 4 km-long arms while Virgo has 3 km-long arms. The smallest de-

tectable length change in these detectors would be of the order of the laser light. For an

infrared laser of λ = 10−6m in a detector with O(103m) arm lengths would be sensitive

to a strain of

∆l

l
∼ 10−6m

103m
∼ 10−9 ≡ h.

As we found in the previous chapter, for GWs produced in distant mergers of compact

objects, the signal strain when it reaches Earth will be O(10−22), many orders of mag-

nitude smaller than the estimated sensitivity for a detector with kilometer-long arms.

Modern GW observatories can improve their sensitivity significantly while avoiding the

practical limitations of increasing the physical arm lengths of the detector by increas-

ing its effective arm length. This is done by inserting reflective cavities between the

beamsplitter and mirrors of each arm which trap the light as it travels back and forth in
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the chamber. These Fabry-Perot cavities radically increase the effective arm length of

the detector and thus its sensitivity. The only limitation arises when the effective arm

length is comparable to the GW wavelength, in which case the evolution of the GW

signal becomes non-negligible over the course of a photon’s trip from the laser, through

cavity, and arrival at the photosensor. This improvement achieves a strain sensitivity of

∼ 10−12, which is still several orders of magnitude away from the required sensitivity.

In order to further improve sensitivity, a purely wave-picture of light does not suffice.

Specifically, shot noise becomes an important consideration. The arrival rate of pho-

tons at the photosensor follows a Poisson distribution meaning the observed number of

photons will fluctuate with time as ∆Nphotons ∼ N
1/2
photons. In order to distinguish be-

tween changes in the light caused by natural Poisson fluctuations and changes induced

by GWs, we need the optical path length to change by

∆l ∼ ∆Nphotonsλlaser.

In order to resolve individual cycles of the GW signal, the maximum amount of time al-

lowed for photon collection is 1/fGW. The number of photons collected on that timescale

is

Nphotons = Eγ/fGW ∼
Plaserλlaser

hcfGW

= 5.4× 1016,

for a laser with power Plaser. With Plaser = 4 W, λlaser = 808 nm. The smallest optical

path detectable is therefore

h ≡ ∆l

leff

= N
−1/2
photons

λlaser

λGW

= 3.5× 10−21,
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(a) LIGO Livingston, Livingston, LA,
USA

(b) LIGO Hanford, Hanford, WA,
USA

(c) Virgo, Santo Stefano a Macerata,
Cascina, Italy

Figure 3.2: The three instruments comprising the LVC GW observatory network. Each
observatory has two perpendicular arms 4km in length with the exception of Virgo which
has 3km-long arms. Image credit: Refs. [23–25]

which is nearly the expected strain magnitude of a CBC waveform. The remaining

sensitivity improvements involve advanced techniques such as signal recycling [20, 21]

and quantum squeezing [22], but extend beyond the necessary context for this thesis.

3.1.2 Detector response

GWs passing through a Michelson interferometer will in general not be propagating

perfectly perpendicular to the detector axis. Additionally, the instrument is not immune

from other effects that can cause changes in the photosensor interference patter, any

and all of which we categorize as noise. Assuming a single signal present, the detector

response is therefore a combination of GW strain data masked by orientation effects and
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time-varying noise,

d(t) = F+(α, δ, ψ)

(
1 + cos2 ι

2

)
h+(t; ~θ) + F×(α, δ, ψ)(cos ι)h×(t; ~θ) + n(t), (3.1)

where hGW(t; ~θ) is the strain contribution from the gravitational wave, n(t) is the noise

contaminating the strain data, ι is the inclination angle between the orbital plane of the

binary and the observer, and the antenna function [26], F{+,×},

F+(α, δ, ψ) =
1

2
(1 + sin δ) cos 2α cos 2ψ − sin δ sin 2α sin 2ψ (3.2)

F+(α, δ, ψ) =
1

2
(1 + sin δ) cos 2α sin 2ψ + sin δ sin 2α cos 2ψ, (3.3)

encode observer effects due to the source’s sky location and relative orientation to the

detector for each polarization. The right ascension, α, and declination, δ, parameterize

the celestial sphere, and ψ is the polarization angle counter-clockwise about the direction

of propagation. The dependence of the antenna function on the sky location parameters

for both plus- and cross-polarized GWs is shown in Fig. 3.3.

The sensitivity of a GW is empirically quantified by the power spectral density (PSD)

of the detector data in the absence of a gravitational wave, i.e. the PSD of the noise,

Sn(f):

Sn(|f |)1

2
δ(f − f ′) = 〈ñ∗(f ′)ñ(f)〉, (3.4)

where ñ(f) are the Fourier modes of the time-series noise and 〈·〉 denotes an ensemble

average. The amplitude spectral density (ASD) ASD(f) =
√
Sn(f) is often used for

direct comparison of detector noise level and GW strain amplitude.

Fig. 3.4 shows the ASDs of LIGO Livingston, LIGO Hanford, and Virgo estimated

from strain data surrounding GW2003222, the last confident event detected in the LVC’s

2Strain data used to estimate the detector PSDs can be found at https://gwosc.org/eventapi/

html/GWTC-3-confident/GW200322_091133/v1
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Figure 3.3: Dependence of the antenna functions on right ascension α and declination δ
for ψ = 0.
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Figure 3.4: Amplitude spectral densities from L1, H1, and V1 estimated from a 1000s
data segment around GW200322, the most recent public event from O3b. Seismic activ-
ity dominates the noise ASDs for all three detectors at frequencies below 10 Hz, while
Brownian motion in the mirror suspension lines and shot noise dominate at mid-to-high
range frequencies (100 Hz - 10 kHz). Dashed lines are detector responses for a signal
with Mchirp ≈ 31M� at dL ≈ 45Mpc. A CBC with such a chirp mass is unrealistic at
such a close distance, and is displayed for comparison and visual clarity.
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most recent observing run, O3b. Below 10 Hz, the noise ASD is heavily dominated by

seismic activity such as nearby pedestrian activity and even distant earthquakes. This

noise wall effectively defines the in-band signal time for most GW targets and is a

fundamental limitation of all ground-based GW observatories. Despite the quadruple

pendulum systems suspending each of the end station mirrors, Brownian motion in the

suspension wires still dominates the mid-to-high-frequency range (100 Hz to 10 kHz),

as well as shot noise limitations discussed earlier. Additionally, the suspension system

harmonics introduce spectral peaks in the ASD, though the seismic noise reduction they

provide is well worth the trade-off.
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Chapter 4

Parameter Estimation

4.1 Bayesian Statistics

Estimation of GW source parameters is not conducive to frequentist methods. Typically,

repeated measurements of a randomly distributed variable can be used to reconstruct

its probability distribution from which statements can be made about the likelihood of

the variable’s true value. In the case of GW observations, only one signal is produced by

each binary merger and therefore only one measurement can be made by each detector

per one source.

Bayesian statistics recasts the notion of probability as a degree of belief rather than

an expected outcome from many repeated experiments. Bayes’ theorem,

P (A|B) =
P (B|A)P (A)

P (B)
, (4.1)

which is derived purely from classical conditional probability, relates the posterior prob-

ability P (A|B) to the product of the likelihood and prior P (B|A)P (A) divided by the

evidence P (B). The quantities in Eq. 4.1 can be promoted to apply to probability den-

sities as well. This is particularly applicable to GW parameter estimation. Given some

strain data d(t) containing a GW signal, we’re interested in the joint posterior density
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distribution (PDF) p(~θ|d,m) on the parameters ~θ describing model m. Applying Eq.

4.1, the PDF on ~θ can be computed from

p(~θ|d,m) =
p(d|~θ,m)p(~θ|m)

Z , (4.2)

where again p(d|~θ,m) is the likelihood distribution, p(~θ|m) is the prior distribution, and

the denominator

Z ≡ p(d|m) =

∫
p(d|~θ,m)p(~θ|m)d~θ (4.3)

is the Bayesian evidence. The likelihood function quantifies how well a given set of

model parameters matches the signal data. A robust choice of likelihood function for

GW analysis [27, 28] is proportional to the integrated square of the difference between

the frequency domain data and model weighted by the PSD of the noise,

p(d|~θ,m) ≡ L ∝ exp

[
−2

∫ ∞
0

|d(f)− h̃(f ; ~θ)|2
Sn(f)

df

]
, (4.4)

where Sn(f) is the one-sided power spectral density of the noise. The likelihood has a

maximum when d(f)− h̃(f ; ~θ) = 0, i.e. when the model exactly matches the data for a

set of specific set of parameters.

The posterior distribution is the n-dimensional joint probability density function on

the entire model parameter space, where n = dim(~θ). It’s often useful to look at the 1-

dimensional marginal PDFs on individual parameters, accomplished by integrating out

all other parameters:

p(θi|d,m) =

∫
p(~θ|d,m)

(∏
k 6=i

dθk

)
. (4.5)

The evidence, which is calculated by integration of the posterior over the entire param-

eter space, contains no dependence on the model parameters but changes depending on
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the model used. This makes it desirable for model selection since it represents the overall

probability that the data d is described by the chosen model m. Therefore, a useful way

to evaluate how well two models describe the data relative to one another is to compare

their evidences:

B ≡
∫
p(d|~θ1,m1)p(~θ1|m1)d~θ1∫
p(d|~θ2,m2)p(~θ2|m2)d~θ2

=
Z1

Z2

, (4.6)

known as the Bayes factor.

Direct computation of the posterior from eq. 4.1 is computationally intractable

when estimating the full GW model parameter space. As a conservative estimate, sup-

pose we computed the posterior for just 10 samples {~θ1, . . . , ~θ10} where each sample

~θi is n-dimensional. After computing the prior and likelihood for the sample points,

computation of the evidence would require numerical integration over 10n points, where

n is between 12 and 15 for most GW models. Faithful reconstruction of the posterior

requires far more than 10 sample points, and thus direct computation becomes pro-

hibitively resource-intensive very quickly. In the following sections, we’ll discuss two

independent methods, Markov-chain Monte Carlo (MCMC) and nested sampling (NS),

which while still computationally expensive in many cases, makes computation of the

posterior and evidence distributions feasible.

4.2 Markov-chain Monte Carlo Methods

MCMC methods [29–34] offer a way to draw samples from the posterior distribution

without requiring computation of the evidence. This is accomplished by generating a

set of prior points sometimes known as “walkers” that traverse the posterior distribution.

The direction each walker takes is determined by the relative improvement in posterior

between adjacent points in the Markov-chain. The core loop of the routine is summarized

in Fig. 4.1 and can be described as follows:
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1. A starting sample ~θ0 is drawn from the prior distribution.

2. As defined in eq. 4.1, the posterior, p(~θ0|d,m) for the resulting waveform is calcu-
lated.

3. A new sample ~θ1 is proposed by drawing new parameters from a chosen distribu-
tion q(~θ|~θ0) centered around the previous sample ~θ0

4. The posterior p(~θ1|d,m) is calculated for the new sample.

5. The Metropolis-Hastings (MH) ratio [35, 36] given by

p(~θi+1|d,m)

p(~θi|d,m)
=
p(d|~θi+1,m)p(~θi+1|m)

p(d|~θi,m)p(~θi|m)

q(~θi|~θi+1)

q(~θi+1|~θi)
, (4.7)

is calculated between the posterior values for points ~θ0 and ~θ1 (i=0), weighted by
the ratio of jump proposal probabilities which becomes important when the chosen
jump proposals are asymmetric.

6. The value of the MH ratio is compared to a random number r between 0 and 1. If
greater than r, the point is “accepted” and added to the Markov chain. Otherwise,
the point is rejected and the algorithm restarts from step 3.

Steps 3-6 repeat until a termination condition is reached. As there is no natural

stopping condition for the MCMC algorithm, typically termination occurs when the

total number of accepted points reaches a user-defined value.

Note that comparison of Eq. 6 to a random number implies that points with lower

posterior values will sometimes be accepted as well. This may seem unintuitive at first,

but upon closer inspection this is a crucial choice. If our initial sample is chosen near

a maximum, only accepting points of greater posterior value would trend towards the

maximum posterior sample after which point no new samples could be accepted. Since

our objective is to produce a representative array of posterior samples, sometimes al-

lowing lower posterior-valued points to be accepted ensures the sampler can continue

producing posterior samples even once it’s found the maximum. Moreover, if the poste-

rior distribution sampled is multi-modal, only accepting points of higher posterior may
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not even yield the true maximum posterior point and instead stall on a local maxi-

mum. Many implementations of MCMC samplers also dynamically adjust the scale of

the proposal distribution to allow for more distant points to be proposed. Adjustments

typically widen the distribution upon sample acceptance and narrow upon rejection.

This is a fairly tricky tuning problem as too narrow a proposal distribution can result

in high correlation between samples while too wide a distribution results in a very low

acceptance rate, increasing simulation times. All of these subtleties prove crucial to

efficiently producing a representative set of posterior samples.

Propose Point

Calculate 
Hastings ratio

Compare to random 
number

Less than random 
number

Greater than random 
number

Store new and adopt 
as currentStore current

Figure 4.1: Diagrammatic representation of Bayesian MCMC algorithm.

4.2.1 Parallel Tempering

The inherent sequential nature of Markov-chains makes a MCMC routines a poor candi-

date for parallelization. However, a modification known as parallel tempering [37], can

be used to generate more complete reconstructed posteriors and is naturally conducive

to parallelization. Parallel tempering introduces the notion of the “temperature” of the
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MCMC chain, which modifies the weighting of the likelihood function in Eq. 6,

pT (~θ|d,m) ∝ p(~θ,m)p(d|~θ,m)1/T ,

where T is the aforementioned temperature. For T = 1, the true posterior is sampled

while higher temperature values sample distributions that approach the prior. While

an individual MCMC with T 6= 1 will not produce valid samples for the true posterior,

the value of tempered MCMCs arises when many chains with different temperatures

are evolved simultaneously and allowed to communicate. Specifically, adjacent chains

occasionally swap current parameter locations at a rate of

rswap = min

1,

(
L(~θi)

L(~θj)

) 1
Ti
− 1
Tj

 . (4.8)

for Ti < Tj. This ultimately allows the T = 1 chain to occasionally swap places with

chains that have identified high-posterior regions. In the absence of parallel tempering,

the scale of the jump proposal would need to be significantly widened to sufficiently

sample the posterior, which comes at the heavy cost of a significant reduction in sample

acceptance ratio which drastically increases the amount of time required to achieve a

given number of posterior samples.

As direct integration of the posterior is extremely computationally inefficient [38],

the most widely used method for estimating the evidence from MCMC posterior sam-

ples, thermodynamic integration [39], relies on samples from higher temperature chains.

However, nested sampling routines, discussed in the following section, designed to com-

pute the evidence can also be used to produce posterior samples and thus are often

preferred when the Bayesian evidence is desired in addition to posterior samples.
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4.3 Nested Sampling

Nested sampling algorithms [40, 41] are another class of techniques aimed at sampling

Bayesian probability density functions. MCMC methods sample the Bayesian posterior

directly and use additional techniques, such as thermodynamic integration, to integrate

over the joint posterior leaving the evidence. Nested sampling routines, on the other

hand, specialize in computing the Bayesian evidence, from which the posterior can be

sampled. The evidence is the integral of the posterior over Ωθ, the entire parameter

domain,

Z =

∫
Ωθ

p(~θ|d,m)d~θ =

∫
Ωθ

p(d|~θ,m)p(~θ|m)d~θ, (4.9)

where we’ve invoked Bayes’ theorem in the second equality. For the rest of this deriva-

tion, we’ll suppress the dependence on the model m for conciseness. Rather than inte-

grating the product of the likelihood and prior, both functions of the parameters, the

above expression can be recast into an integral over prior volumes defined by a region

which is in turn defined by a likelihood constraint,

Z =

∫
Ωθ

p(d|~θ,m)p(~θ|m)d~θ =

∫ 1

0

L(X)dX, (4.10)

where X is a prior volume defined by the region Ωλ = {~θ : L(~θ) ≥ λ},

X =

∫
Ωλ

p(~θ)d~θ. (4.11)

Since the prior distribution is normalized, X = 1 represents integration over the entire

prior space, which therefore corresponds to λ = 0, since all points in parameter space

will satisfy L(~θ) ≥ 0. Likewise, when X = 0 the infinitesimally small prior volume

which is achieved when λ→∞, which implies the empty set of points {~θ ≥ ∞}. Thus

Eq. 4.10 can be interpreted as a likelihood integration over smaller and smaller prior
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volumes defined by larger and larger values of λ.

4.3.1 Generation of samples

The core challenge of NS algorithms is drawing samples from the prior volume subject to

the likelihood restriction Ωλ = {~θ : L(~θ) ≥ λ}. Simply drawing from the full prior space

and rejecting points not satisfying this criterion is extremely inefficient. Thus, a method

for producing samples already satisfying this requirement is highly preferred. While

many exist, we will focus on the approach adopted in the dynesty [42] implementation

of NS since this is the sampler used to perform all of the NS routines in this work. In

the dynesty approach the constrained prior

pλ(~θ) =


p(~θ)/X(λ) L(~θ) ≥ λ

0 L(~θ) < λ,

(4.12)

is replaced by a transformed prior uniform in its parameter space:

pTλ (~Φ) =


1/X(λ) L(~θ ≡ T (~Φ)) ≥ λ

0 otherwise,

(4.13)

where T (~θ) maps the original parameter space (which p(~θ) is not necessarily uniform in)

to a space in which pTλ (~Φ) is uniform in ~Φ. Once this transformation function has been

determined, the problem of sampling pλ(~θ) has been reduced to producing samples from

the uniform distribution pTλ (~Φ).

Step-by-step, the basic nested sampling routine can be summarized as follows:

1. Draw K live points {~θ1, . . . , ~θK} from the prior distribution.

2. Among the current set of live points find ~θmin such that Lmin ≡ L(~θmin) < L(~θ ∈
{~θ1, . . . , ~θK}).
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3. Add ~θmin to the set of dead points.

4. Draw a new point ~Φ from the uniform transformed prior pTλ (~Φ), which satisfies

L(~θ′ ≡ T (~Φ)) ≤ Lmin

5. Add ~θ′ to the set of live points.

This repeats until a stopping condition is met at which point the final set of live

points is converted into dead points. This process is nearly identical to the algorithm

above except that once ~θmin has been added to the set of dead points and removed from

the set of live points, no new point is drawn from the transformed prior. Instead, this

removal process continues until no live points remain.

The nested sampling routine is typically considered to be complete when the esti-

mated remaining evidence to be integrated over will contribute a negligible amount to

the total evidence estimate. Mathematically, the sampling terminates when

∆ ln Ẑi < ε, (4.14)

where ∆ ln Ẑi is the estimated remaining evidence contribution and ε quantifies our

tolerance for what is considered a “negligible” contribution. Since ∆ ln Ẑi cannot be

known exactly, it is typically estimated from the rough upper bound ∆ ln Ẑi < Lmax
i X̂i

where Lmax
i is the maximum likelihood value among the set of live points at iteration i

and X̂i is the estimate for the remaining prior volume.

The result is a set of N dead points and the final set of K live points from which we

can numerically integrate Eq. 4.10 using the trapezoid rule:

Z =

∫ 1

0

L(X)dX (4.15)

≈
N+K∑
i=1

1

2

[
L(~θi−1) + L(~θi)

]
×
[
X̂i−1 − X̂i

]
≡ Ẑ, (4.16)
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where the quantity being summed over are the importance weights,

p̂i(~θi) ≡
1

2

[
L(~θi−1) + L(~θi)

]
×
[
X̂i−1 − X̂i

]
. (4.17)

The posterior can then be estimated from the importance weights and the evidence

estimate:

p(~θ|d,m) ≈
∑N+K

i=1 p̂i(~θi)δ(~θ − ~θi)
Ẑ

. (4.18)

What’s been described here is not precisely the procedure used in dynesty. During

each loop of the sampler, the number of live points remains constant. As the name

suggests, dynamic nested sampling allows for the number of live points to vary over

the course of the analysis. Variation of the number of active live points allows for finer

sampling of regions of higher posterior mass as quantified by a posterior “importance

function”, effectively prioritizing posterior estimation over expedited integration of the

evidence. A more detailed description of dynamic nested sampling can be found in Ref.

[42], but crudely the standard NS algorithm is modified as follows:

1. A standard “static” nested sampling routine is performed to produce a baseline
distribution.

2. An importance function is evaluated on the samples produced which identifies re-
gions of high posterior mass.

3. Additional live points with parameter values restricted to the identified areas of
interest are allocated.

4. The new samples produced from the added live points are then “merged” with the
previous sample set according to [42].

Fig. 4.2 shows the results of two Bayesian parameter estimation routines–one MCMC

and one dynamic NS–applied to simulated GW data containing a signal produced with
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Figure 4.2: Comparison of Bayesian MCMC and Nested Sampling routines applied to
a simulated GW signal with restricted model parameters using the bilby Bayesian
inference software package. Black lines indicate the injected values for each of the
parameters.

waveform model IMRPhenomPv2, discussed in Chapter 2.
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Chapter 5

Gravitational Glint

The search for “new physics” typically implies looking for evidence of inadequacies in

our current models of natural phenomena. Often times such searches are motivated by

observations that are ostensibly inconsistent with existing models of physics however

this is not always the case. Theories don’t always advertise their consequences, and

sometimes it takes anomalous data to encourage their reexamination to reveal fascinating

subtleties. In this chapter, we’ll explore on subtlety of GWs that has the potential to

provide us with valuable insight into the astrophysical objects that generate them, and

even perhaps uncover the existence of more exotic objects.

5.1 Theory review

In GR, GWs are thought to propagate at the speed of light, i.e. on the null cone. While

this is true in Minkowski geometry, it’s less commonly known that when propagating

through curved spacetime, GWs have a component that propagates on the interior of

the lightcone [43]. Because this additional signal contribution arrives after the nullcone

contribution, it is referred to as the GW “tail”. In this work we consider tail-producing

spacetime inhomogeneities from massive perturbers. There are three distinct epochs of

the GW tail: an early and late-time tail which correspond to the first and last times the
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null cone signal could travel from the source to the perturber to the observer, and the

middle-time tail, which depends on interactions between the null cone signal and the

curved geometry introduced by the mass distribution of the perturber. It’s been shown

[44] that the middle-time tail (MTT) is significantly stronger than both the early and

late time tails and under certain circumstances, an optimistic candidate for detection.

Shown in Fig. 5.1 is a diagrammatic representation of a tail- or “glint”-producing system.

tlate

tearly

DPS

DOS

DOP

b

a

Figure 5.1: A source distance DOS from an observer with a perturber a distance b� a
from the midpoint of the line-of sight axis between GW source and observer. The
presence of a perturber causes propagation of GW on the interior of the null cone
producing a GW “tail”. Contributions to the tail can be divided into early-, middle-,
and late-time with the middle-time tail providing a significantly stronger contribution.

GWs are emitted from a source a distance DOS from an observer. A massive perturber

of radius a is situated some distance b from the line of sight (LOS) between the primary

GW source and the observer. Assuming a perturber with spherically symmetric density

profile

ρ(r) =


ρcentral

(
1− r2

a2

)p
, r ≤ a

0, r > a

(5.1)

the MTT GW strain can be calculated under the following assumptions:

1. The density profile of the perturber is sufficiently smooth (p ≥ 4).
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2. The perturber is sufficiently diffuse, i.e. the Schwarzschild radius of the perturber
is much less than its radius rS = 2GNMP/c

2 � a.

3. The distance to the perturber along the LOS to be ` ≡ DOS/2.

4. The distance of the perturber to the LOS b� `.

5. The GWs are long-wavelength, f−1
GW � τmiddle ≡ (tlate − tearly).

Let’s briefly discuss the reasoning for each of these assumptions. The first assumption

is required to ensure the calculation of the strain of the MTT yields meaningful results.

The spacetime geometries of overly compact perturbers are too extreme to produce

interesting scattering which necessitates the second item. While the third assumption is

not necessarily a firm requirement1, we will adopt it to ensure validity of results. As we’ll

see later, the relative amplitude of the MTT to the primary signal scales with `/b2 which

implies if b � `, the effect will be too small to observe. And finally, long-wavelength

GWs ensure the MTT retains the spectral morphology of the primary GW waveform.

These assumptions permit an analytic expression for the amplitude of the MTT,

|ḧTT;middle
ij | = 32G2

NmbMPfPR
2
bΩ4

b

b2c2
, (5.2)

where mb are the component masses of the equal-mass binary that produces the primary

signal, Rb is the orbital radius, Ωb =
√

2GNmb/R3
b is the angular frequency of the binary,

MP is the mass of the perturber, and fP is a parameter describing the density profile of

the perturber (fP = 1 for p = 4 in Eq. 5.1). The perturber must also be a few factors

of the Einstein radius xE away from the LOS between the source and observer:

nE ≡
b√

4GNMP

c2
DOPDPS

DOS

=
b√

2GNMP `
c2

& O(1). (5.3)

1Cursory investigations into the robustness of results with respect to this assumption indicate validity
to leading order in ∆`/`, but a careful analysis has not yet been performed.
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Finally the ratio of the null cone signal strain,
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Mp = 46.42M�
Mp = 100.0M�

Figure 5.2: Dependence of relative amplitude of glint signal to the null cone signal as a
function of line-of-sight distance between the source and observer for different perturber
masses.

|ḧTT;null
ij | = 32GNmbR

2
bΩ4

b

`c2
, (5.4)

to the MTT signal reduces to

|Rmid/null| ≡
|ḧTT;middle
ij |
|ḧTT;null
ij |

=
GNMPfP `

b2c2
=
fP
n2
E

. (5.5)

The MTT arrives after the primary signal with a time delay of ∆tearly given by

fGW∆tearly ' 10−3n2
E

MP

M�

fGW

100Hz
. (5.6)

In the long wavelength regime, the MTT has minimal spectral distortion with respect to

the primary signal and is therefore its near-perfect echo described by just two parameters:

{∆tearly,Rmid/null}. As a rough estimate, we can assume the perturbers are uniformly
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(b) Compact dark matter perturbers with ΩP = ΩcDM = 0.03

Figure 5.3: Number of uniformly distributed perturbers found within nE > 1 Einstein
radii from the LOS axis between an observer and a source at distance `.
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distributed between the observer and the source. The expected number of perturbers of

mass MP positioned within nE > 1 Einstein radii of the LOS between the source and

observer can be estimated as

NP (nE) =
3

4
ΩP (H0`/c)

2 ∆`

`
(n2

E − 1) (5.7)

=
3

4
ΩP (H0`/c)

2 ∆`

`

(
fP

Rmid/null
− 1

)
, (5.8)

where ΩP is the fractional energy density of the Universe made up by perturbers, H0 is

the value of the Hubble parameter today, ∆`/` quantifies the perturber’s deviation along

the LOS from the midpoint, and we’ve used Eq. 5.5 to relate n2
E and Rmid/null. Applying

our assumptions earlier, we set ∆`/` = 1.. Therefore, the rate at which we expect glints

of a given relative amplitude is largely determined by the abundance of glint-producing

perturbers in the Universe and the distance between the source and observer dL = 2`.

Fig. 5.3 shows the dependence of NP (nE) on the source-observer separation for two

cases of perturbers: standard stellar objects which have Ωstar & 0.003 and sub-solar-

mass compact dark matter objects with masses between MP ∈ [10−11, 1]M�, whose

fractional energy density has been constrained to ΩcDM . 0.03. Figs. 5.3a and 5.3b

should be interpreted as lower and upper bounds on NP (nE), respectively.

Phenomenological parameterization

Gravitational-wave tails result in a relatively simple alteration to existing models for

GW’s from mergers of compact binaries. For a given GW with associated strain hs(t)

and Fourier transform F{hs(t)} ≡ h̃s(f), the primary signal will be modified simply by

the addition of an attenuated, spectrally equivalent copy, arriving at some time ∆t after

the primary signal

h(t) = hs(t) + εhs(t−∆t), (5.9)
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where ε is the fractional amplitude of the primary signal, and ∆t is the arrival time

difference between the primary signal and the tail. and its Fourier modes will be altered

by

h̃(f) = h̃s(f)[1 + ε exp(2πi∆t)]. (5.10)

Note that the correction is frequency-independent, which implies in turn that the addi-

tion of GW tails does not depend on the specific waveform model chosen for the primary

signal. While this is a parameterization is phenomenological, it can be mapped back to

the geometric and physical parameters of the system.
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Figure 5.4: Glint-induced frequency domain alteration to the null cone signal
as a function of ∆tglint. From bottom to top the glint time delays shown are
∆tglint in{0.004, 0.008, 0.02, 0.05, 0.1, 1} s.
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shown was generated with the IMRPhenomXPHM using bilby and lalsimulation.
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Figure 5.5: Time and frequency domain alterations to BBH null cone GW as observed
in the LIGO Livingston detector. The glint signal shown has parameters εglint = 0.5 and
∆tglint = 0.3s.
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It should be mentioned that strong lensing of GWs produces a similar time-delayed

echo of GWs which may raise concerns of the distinguishability of these two effects.

Thankfully, however, secondary images produced from strong lensing and echoes pro-

duced from glint effects described above predict vastly different time delays. Images from

strong lensing are expected to appear between hours to weeks after the primary signal

is detected, while time delays for glints are expected to arrive between just milliseconds

to at most several seconds after the primary signal arrives [45].

Moving forward, we will also operate under the assumption that any GW signals

accompanied by a glint will have only one glint appearing after the primary signal. If

multiple perturbers appear just off of the line of sight between the source and observer,

this may not strictly be true. However, multiple perturbers placed at different locations

off of the LOS will produce glints with different time delays from the primary signal. As

we’ll see later, even when signals are separated by very small time delays (i.e. fractions

of a GW cycle at its highest frequency), we are still able to resolve the individual signals

with high precision.

Finally, while this model is agnostic to the frequency range of the primary GW signal,

and therefore glints could be observable in GW observatories that target signals in any

frequency band. However, observatories like LISA will be sensitive only to the inspiral

phase of CBC events, which introduce challenges when detecting glints. In particular,

the frequency of a GW during the inspiral phase evolves significantly slower than the

last few seconds to merger. This means that a primary signal accompanied by a glint

detected in LISA data would resemble two identical near-monochromatic signals with

a small phase shift introduced. While this may well be detectible, it would be much

more difficult to confirm its origin as a glint without the merger or any remarkable

frequency evolution present in the data. Other techniques for GW observation such as

pulsar timing arrays (PTA) have the same issue when considering glint detection from

continuous-wave sources.
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5.2 Injection Study

Typically, detection of GWs is characterized by a search pipeline in which some search

algorithm is applied to GW strain data which identifies areas of interest. For example,

matched filter searches compare GW model templates of various parameters to data

segments, effectively filtering the data over each template. When a signal is present, a

template will match the data segment, indicating the presence of a signal. The nature

of gravitational glints however, motivate a different method for detection2.

Gravitational glint signals will always have an amplitude strictly less than the pri-

mary signal. This makes a scenario in which a glint signal is identified by a GW search

pipeline without an accompanied primary signal highly unlikely, meaning only data

segments containing preexisting confirmed GW signals need to be reanalyzed for the

presence of a glint. We therefore define our detection criterion based on the ratio of

Bayesian evidences between the two models. More specifically, given a model describ-

ing the detector response for only the null cone signal, H0 and a second model Hglint

including the modifications from the MTT signal as described above, we evaluate the

probability of the presence of a glint by the Bayes factor between the two models:

K = lnB = ln
Zglint

Z0

, (5.11)

where Zi is the Bayesian evidence associated with model Hi. We adopt Ref. [46]’s

interpretation of the Bayes factor, displayed in Table 5.1, with the sign of K indicated

which model is preferred.

We begin with an injection study to forecast the prospect of glint detection using this

model selection-inspired detection definition and characterize its dependence on the glint

parameter space {εglint,∆tglint}. The Bayesian evidences and posteriors are estimated

2If a gravitational glint is present in LVC data, there is a possibility that matched filter searches
would fail to identify it if glint-modified waveforms are not included in the bank of templates used in the
search. Characterizing the effect of glint models on matched-filter searches is actively being researched
by collaborators and will be published alongside the work presented in this chapter.
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|K| Strength of evidence
0 < |K| < 1 Weak
1 < |K| < 3 Positive
3 < |K| < 5 Strong
|K| > 5 Very strong

Table 5.1: Interpretation of Bayes factor as strength of preference for one model over
another. Bayes factor between MTT+Null and Null signal models are used to evaluate
detection confidence.

for a total of 46 injected signals using the dynesty3 implementation of dynamic nested

sampling within the Bilby software package4, a Bayesian inference software designed for

GW parameter estimation. By “injected”, we mean a waveform was produced according

to a specific waveform model with some set of model parameters, and then “injected”

into GW strain data simulated according to a PSD estimated from a long (O(103) s)

segment of LIGO strain data known to be absent of any GW signal. All waveform models

are generated using IMRPhenomPv2 (discussed in Chapter 2) waveform model through

the lalsimulation code5.

The standard null cone GW signal parameters are held fixed, chosen to represent a

typical BBH signal6 of SNR ∼ 12, while the glint signal parameters are varied in the

ranges εglint ∈ [0.01, 1] and ∆tglint ∈ [1/4fGW, 1] s. A summary of all injection parameters

and their values is shown in Table. 5.2. Each simulated signal is analyzed twice: once

using the standard null cone GW waveform which does not include glint effects, and

once again with the glint modifications included producing posterior samples and the

evidences for each. The priors used are as follows:

• Masses: Uniform in {M, q} ∈ [25, 100]M�.

• Luminosity distance: Uniform in source frame distance dL ∈ [100, 5000] Mpc as-
suming ΛCDM cosmology with Planck 2015 cosmological parameters [47].

3https://github.com/joshspeagle/dynesty
4https://git.ligo.org/lscsoft/bilby
5https://git.ligo.org/lscsoft/lalsuite/-/tree/master/lalsimulation
6The null cone signals will all have the same SNR. However, since the addition of the glint signal

adds additional signal power, the SNR does vary with εglint.
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• The angle between the total angular momentum of the binary and line of site vec-
tor: θjn is sampled sinusoidally in the range [0, π].

• The remaining parameters {α, δ, φc, ψ, a1, a2, θ1, θ2, φ12, φjl} are all fixed to their
injection values.

The fixed parameters describe the sky location, orientation of the binary relative to

the detector, and the spins of the binary components. We performed several additional

simulations to ensure that fixing the above parameters and sampling in the restricted

parameter space did not significantly affect the results of the injection study.

Signals were injected into zero-noise strain data, though the PSD used in the like-

lihood evaluation (Eq. 4.4) was estimated from public detector data for L1 and H1.

This is equivalent to averaging over repeated analyses for different noise realizations

drawn from the PSD. We performed several more simulations investigating the effect of

injecting into specific noise realizations and found results consistent with a zero-noise

injection. Finally, the evidences for the two analyses are used to compute the Bayes

factor according to Eq. 5.11.

The first 36 simulations served as a course sampling over the entire glint parameter

space to identify key transition points in the dependence of the Bayes factors on the

glint parameters:

εglint ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 1}

∆tglint ∈ {1/4fGW, 1/3fGW, 1/2fGW, 1/2fGW, 1/fGW, 0.5, 1} s

The relative glint amplitude has natural upper and lower limits: the glint signal can at

most be equal in amplitude to the primary signal and at minimum have 0 amplitude

(non-existent). The time delay from the primary signal however, is slightly less straight

forward. We postulate the ∆tglint parameter space can be divided into three regimes:
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Parameter Injected value Parameter Injected value
m1 36 M� δ -1.211
m2 29 M� θ1 0.5
dL 2000 Mpc θ2 1.0
a1 0.4 φ12 1.7
a2 0.3 φjl 0.3
εglint [0.01, 1] θjn 0.4

∆tglint [1/4fGW, 1] s ψ 2.659
α 1.375

Table 5.2: Parameters for the injected signals analyzed for characterization of detec-
tion using the Bayes factor model selection method. All parameters null cone signal
parameters are constant for all injected signals while εglint and ∆tglint are varied for each
injection. The frequency used to determine the time delay from the primary signal is
taken to be fGW ≈ 66 Hz.

1. The glint is well separated from the primary signal ∆tglint ∼ O(1) s.

2. The glint is overlapping, but separated by several GW periods.

3. The glint is separated by within one GW cycle ∆tglint ∼ τGW ≡ 1/fGW, where we
take fGW ≈ 66Hz.

As we anticipated the two signals would be most difficult to resolve in the third

case, ∆tglint is more finely tested in this region, making up four of the 6 injections.

∆tglint = 0.5s and ∆tglint = 1s cover cases 2) and 1) respectively. The Bayes factors for

each of the 36 εglint-∆tglint pairs are reported in Table 5.3 and an example comparison

between recovery with and without glint parameters is shown in Fig. 5.6 for a time

delay of ∆tglint = τGW ≈ 0.015s and relative amplitude εglint = 0.6. The natural log

Bayes factors are largely independent of the time delay between the primary and glint

signals, even in the case of ∆tglint ≤ τGW. As expected, the primary dependence is

on the relative amplitude to the primary signal. While it’s clear from Table 5.3 that

for the injection parameters chosen, the glint-supplemented model becomes preferred

somewhere between εglint = 0.2 and εglint = 0.4, it cannot be determined where precisely

this transition happens at this resolution in εglint. To do so, we perform a follow-up “fine-

combed” analysis of an additional 10 injections with evenly spaced εglint ∈ [0.218, 0.381]
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0.01 0.2 0.4 0.6 0.8 1.0
1/4fmerger -2.64 -2.83 2.01 21.49 47.98 80.56
1/3fmerger -2.59 -2.65 2.96 20.60 46.60 79.18
1/2fmerger -2.48 -2.56 2.76 21.22 46.69 82.01
1/fmerger -2.68 -2.51 5.56 27.36 57.23 89.40

0.5s -2.56 -2.30 6.77 27.63 60.51 100.07
1.0s -2.79 -2.74 7.11 28.40 60.62 100.19

Table 5.3: Natural logarithm of the Bayes factors between Null cone model and
Null+MTT model as a function of glint amplitude relative to the primary signal ampli-
tude (rows) and time delay from primary signal (columns). Analyses were performed for
reduced model space in standard GW parameters. Results were verified to not change
significantly when sampling in the full parameter space. See Table 5.1.

at a fixed separation from the primary signal ∆tglint = 1/fGW. The dependence of the

Bayes factor on the glint amplitude in this range is shown in Fig. 5.7. We find the

logarithm of the evidence ratio turns positive just after εglint ≈ 0.3, reaches “positive”

preference around εglint ≈ 0.33, and finally produces “strong” preference for the glint

model at εglint ≈ 0.355. We emphasize that since εglint is defined as the relative amplitude

of the glint waveform, the is not general to all GWs of all SNRs. This serves simply as

verification that a typical GW of unremarkable SNR does indeed have an identifiable

point at which the glint model becomes preferred. Additionally, these results confirm

that, assuming a sufficiently loud signal, the presence of a glint has a significant effect

on the Bayesian evidence even for closely overlapping signals of ∆tglint ≤ τGW.

5.3 Analysis of O1-O3 GW Events

5.3.1 Overview of events analyzed

We analyze strain data for 47 events from the first, second, and third Gravitational-

Wave Transient Catalogs (GWTC) [16–18] subject to the constraint SNRNull ≥ 12

containing 44 with component masses consistent with black holes, two, GW170817

[48] and GW190425 [49], with component masses consistent with neutron stars, and

one, GW190814 [50], with component masses consistent with a neutron-star black-hole
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GW cycle ∆tglint = τGW ≈ 0.015s and relative amplitude εglint = 0.6 with BBH injection
parameters outlined in Table 5.2. True parameter values are indicated with black lines.
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Figure 5.7: Dependence of Bayes factor on glint amplitude relative to the primary signal
for ∆tglint = τGW ≈ 0.015s. Null cone signal parameters can be found in Table 5.2.

(NSBH) merger. Of the two BNS events, GW170817 was accompanied by a coinci-

dent gamma-ray burst (GRB), GRB170817A, and there is thus strong consensus that

GW170817 and GRB170817A originated from the same merger of two neutron stars.

Waveform corrections due to tidal deformation in neutron star matter were also de-

tected in GW170817, further solidifying its classification as a BNS merger. GW190425,

on the other hand, had no observed electromagnetic (EM) counterpart and very little

information tidal information was recovered, making the recovered component masses

the primary evidence for its origin as a BNS merger.

The remaining 44 BBH events have masses ranging from 5.9M� to 95.3M� at dis-

tances ranging between 240Mpc and 4420Mpc, summarized in Fig. 5.8. Four of the

these 44 events are “marginal” candidates, meaning they do not meet the threshold on

the LVC’s criterion for probability of astrophysical origin, pastro, however these events

are still included in our analysis in case the absence of glint effects in the computation
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of pastro introduce a bias that lowers its value below the threshold. For more detailed

discussion of pastro and all existing GW detections, defer to Refs. [16–18].

The last remaining event, GW190814 [50], has a roughly 23 M� black hole primary

component, however the nature of the 2.6 M� secondary component is unclear. The

maximum stable mass a neutron star can support has been constrained to Mmax =

(1.20+0.02
−0.05)MTOV where MTOV has in turn been constrained to the range 2.01+0.04

−0.04 ≤

MTOV/M� . 2.16+0.17
−0.15 [51]. Thus while the secondary mass is still consistent with the

bounds placed on the maximum sustainable neutron star mass, current estimates of the

mass distribution on GW-producing BNS systems [52] place it solidly as an outlier.
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Figure 5.8: Histogram of source component masses and luminosity distances for
GWTC1-3 events with SNR> 12.

5.3.2 Analysis details

As in the injection study, we use the bilby software package to perform integration of

the evidence integral and estimation of the posterior, choosing the dynesty package to

do so. Events are analyzed using public strain data from the Gravitational Wave Open

Science Center7 which is additionally used to estimate the PSD of the noise around the

GW event when officially published event PSDs are not explicitly available. As listing

7https://gwosc.org/eventapi/html/GWTC/
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all prior choices for all events would be cumbersome, we summarize our prior choices

as follows: officially published priors are used when available. When official priors are

unavailable, they are chosen to be either uniform in naturally bounded variables (sky

location parameters, etc.) or else match injection study parameters with ranges adjusted

to match the publicly available parameter estimates. Glint parameter priors match those

used in the injection study.

We use the IMRPhenomXPHM [53] waveform for most events in order to capture higher-

mode contributions to the waveform for events with high mass symmetry. We also use

this waveform for near equal-mass binaries as well for consistency. For the two BNS

candidate events, we use the IMRPhenomPv2_NRTidalv2 waveform to capture the effects

of tidal deformations on the waveform. We sample not in the component tidal deforma-

bilities, Λ1 and Λ2, but instead in the leading-order, Λ̃ [54], and next-to-leading order,

δΛ̃ [55], tidal contributions to the waveform in the post-Newtonian expansion [56, 57].

These are sampled uniformly in the ranges Λ̃ ∈ [0, 1000] and δΛ̃ ∈ [−5000, 5000] respec-

tively. Care is also taken when choosing the prior on the dimensionless spin magnitudes,

ai ≡ c|~Si|/(Gm2
i ), for event GW170817. Neutron stars with higher spins can support

higher masses while maintaining hydrostatic equilibrium due to neutron degeneracy pres-

sure, and thus restricting the spin prior to low spin values can have significant effects

on the recovered tidal and component mass posteriors. While artificially restricting the

spin prior may seem like introducing an unnecessary bias into the resulting posterior,

there are several considerations that motivate this decision. First, accuracy of existing

waveforms, including the ones used in this analysis, is known to degrade at high spins

[55]. Moreover, most models for the equation of state for neutron matter only admit

stable configurations with a < 0.7 [58]. Observational constraints of neutron star spin

are even more restrictive, with the fastest-spinning known neutron star having a dimen-

sionless spin constrained to a . 0.4 [59], and the fastest-spinning neutron star that will

merge within a Hubble time, PSR J0737-3039A [60], with a dimensionless spin that will

be a . 0.04 when it eventually merges. We therefore perform analysis of GW170817

66



with two spin priors: a low spin prior with the component dimensionless spins restricted

to ai ∈ [0, 0.05], and a high spin prior with ai ∈ [0, 0.89], consistent with Ref. [48].

The sole event with masses consistent with a neutron star-black hole (NSBH) merger,

GW190814 [50], is also analyzed with the IMRPhenomPv2_NRTidalv2 waveform however

we sample tidal deformability only in the secondary mass Λ2 ∈ [0, 5000] and fix the pri-

mary mass tidal deformability to be Λ1 = 0, though little tidal information is recovered

for the secondary mass [50].

5.3.3 Results

All Bayes factors for analyzed events are listed in Table 5.5 and are shown in histogram

form in Fig. 5.10. We find K < 0 for all but one event analyzed, with the sole positive

evidence ratio belonging to GW170817 under the high-spin prior. Table 5.4 lists the

Bayes factors for GW170817 between spin prior assumptions and whether or not glint

parameters were sampled. The glint model is preferred relative to the null cone model

when assuming the high spin prior with K = 0.63± 0.57 and the glint model with high

spins allowed is preferred over the glint model with restricted spins as well. However,

the high spin model is disfavored in all other cases, included comparison between the

null cone models.

Fig. 5.9 shows the joint and marginal posteriors on spin, tidal, and echo parameters

for GW170817. Three comparisons are shown: one comparison between the null cone

and glint models with the high spin prior, another between the null cone and glint

models with the low spin prior, and finally a comparison of the glint model under the

two spin prior assumptions. Aside from a slightly higher peak in the posterior for the

echo amplitude under the high spin prior, Fig. 5.9c shows a high degree of consistency in

the parameter posteriors between the two spin priors. The time delay posterior contains

a major and minor peak in both cases at the same locations, ∆tglint ≈ 0.015, 0.045 s.

For both spin prior choices, the non-glint signal parameter posteriors largely match
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LS LS+Glint HS HS+Glint

LS - −2.38± 0.56 −2.8± 0.54 −2.17± 0.56

LS+Glint 2.38± 0.56 - −0.41± 0.57 0.22± 0.59

HS 2.8± 0.54 0.41± 0.57 - 0.63± 0.57

HS+Glint 2.17± 0.56 −0.22± 0.59 −0.63± 0.57 -

Table 5.4: Natural logarithm of evidence ratios for GW170817 under two spin priors and when
recovering with glint parameters and without. Values are listed as the ratio of evidences with
the column label in the numerator.

those when recovering without glint parameters. However, we find that when sampling

in glint parameters, the dimensionless spin magnitude of the secondary component has

slightly less support for 0 spin for both choices of spin prior. The most noticeable dis-

crepancy from the non-glint posteriors arises in the PDF for δΛ̃ under the high spin

prior assumption. The glint model posterior pulls to higher values, while in the low spin

case, the posteriors are consistent with the prior, regardless of whether or not glint pa-

rameters are sampled. However, official analyses of GW170817 have shown significantly

more structure in the posterior of Λ̃, while δΛ̃ remains effectively unmeasured (see Fig.

12 of Ref. [61]). This indicates further investigation into our results for GW170817 is

required before they can be completely trusted.

The “best” BBH Bayes factor ofK = −0.05±0.43 belongs to event GW190708 232457,

a roughly 17+13 M� BBH merger with a network matched filter SNR of ≈ 13. Though

the error on the log Bayes factor values do include positive values, they do not extend

into the “positive” or higher evidence strength levels.

The published analyses of several of the events analyzed had component masses

consistent with intermediate mass black holes (IMBH). IMBH events with component

masses between 102 − 103 M� have significantly fewer cycles in-band as they merge

at significantly lower frequencies. We found that the Bayes factors for certain IMBH

events such as 200114 020818 were highly dependent on the minimum frequency at

which the waveform is generated during analysis. The standard choice of fmin = 20

Hz for IMBH-scale component masses in many cases results in only the merger and

post-merger ringdown phases of the signal being in-band. When performing parameter
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Figure 5.9: Comparison of echo amplitude (εglint) and time delay (∆tglint), dimensionless

tidal parameters’, and dimensionless spin parameters’ ai ≡ c|~Si|/(Gm2
i ) PDFs for event

GW170817 under two spin priors.
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Event ID PE SNR ln[Zglint/Z0] Event ID PE SNR ln[Bglint/B0]
GW170817 33 -2.38, 0.63† GW200105 162426 13.7 -
GW200129 26.7 -0.9 GW190728 064510 13.6 -1.3
GW190814 24.9 -47.9 GW190708 232457 13.4 -0.05

191225 215715 20.5 -1.9 GW190706 222641 13.4 -
GW200224 222234 20 -2.0 190924 232654 13.3 -

GW190412 19.8 -1.5 GW190924 021846 13.2 -
GW191226 213338 18.6 -0.2 GW190602 175927 13.2 -0.85
GW200311 115853 17.8 - GW151226 13.1 -
GW170814 103043 17.7 -1.2 GW190915 235702 13.1 -
GW191204 171526 17.5 - GW190707 093326 13.1 -
GW191109 010717 17.2 -1.4 GW191129 134029 13.1 -
GW190828 063405 16.6 -0.18 200214 224526 13.1 -
GW190519 153544 15.9 - GW170720 13 -
GW190630 185205 15.6 -1.1 GW170809 12.8 -

GW170608 15.4 -1.3 GW190512 180714 12.7 -
GW190408 181802 14.8 -0.59 GW190513 205428 12.5 -
GW190910 112807 14.5 -1.4 GW200225 060421 12.5 -0.55

200114 020818 14.5 -1.71 GW191222 033537 12.5 -0.69
GW190521 14.2 -2.23 GW190727 060333 12.3 -

GW190519 153544 14 -1.3 GW190503 185404 12.2 -
- - - GW170823 131358 12.1 -0.76
- - - GW190620 030421 12.1 -
- - - GW170818 022509 12 -1.1

Table 5.5: Table of analyzed events and ratios of their Bayesian evidences, otherwise
known as a Bayes factor. Events with the prefix “GW” are high-significance events
included in GWTCs. Those that lack the “GW” prefix are marginal events. The analysis
for GW170817 is dependent on the choice of spin prior and thus two evidence ratios are
reported for that event. Dashes indicate pending results.

estimation with this choice for fmin, we do in fact find a very slightly positive log Bayes

factor of K = 0.012, but this is highly unreliable given the in-band signal duration.

When lowering the minimum frequency to 10 Hz, the evidence ratio is significantly

lowered to K = −1.7.

5.3.4 Conclusions

In this work, we’ve forecasted the viability for detection of secondary GW signals from

the MTT produced by off-axis massive perturbers, a potential new probe of compact
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Figure 5.10: Distribution of Bayes factors between recovery with glint model and recov-
ery with standard BBH/BNS waveform. Dashed line indicates where the glint model
becomes preferred. The sole positive value of K = ln[Zglint/Z0] = 0.63 belongs to the
BNS event GW170817 under the high spin prior. The highest BBH value belongs to the
event GW190708 232457 with ln[Zglint/Z0] = −0.05.

dark matter objects and stellar populations. Using a Bayes factor detection criterion,

we confirm that for a typical BBH merger signal of SNR ≈ 13 accompanied by a glint,

inclusion of the glint model improves the Bayesian model evidence by a factor of e3,

corresponding to strong model preference, at a relative glint amplitude of εglint ≈ 3.55.

Importantly, even in signals where the glint has high overlap with the primary signal,

∆tglint . τGW, the glint-supplemented model is still strongly preferred provided the glint

amplitude satisfies the previous requirement.

We perform the first search for the presence of glints in existing GW strain data for

47 events belonging to the first three Gravitational Wave Transient Catalogs, GWTC1-3,

all with SNR> 12 and compute Bayes factors for each. We find no substantial evidence

for the presence of glints in any of the events analyzed with the highest measured Bayes

factor belonging to event GW170817 under the assumption all spin values are equally

likely. While the upper BF errors for some of the remaining events do include positive
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values, none included the possibility of strong preference for the glint model.

Currently, work is being done to use the computed Bayes’ factors to estimate the

rate at which glint-producing events can be expected given our null detection. This

involves determining the lowest glint amplitude which could be confidently detected for

each event analyzed. Knowledge of this cutoff on εglint can then be used to determine

whether or not a glint could have been observed in each signal given its null cone signal

parameters.

Our results are still consistent with the estimate of one glint with amplitude εglint =

0.3 for every 225 sources observed [44] when the perturbers are taken to be stars with

Ωstar & 0.003. With next-generation GW detectors such as Einstein Telescope and

Cosmic Explorer expected to produce O(103) BBH merger signals with SNR≥ 100 by

2050, glint detection may be inevitable, and prove an invaluable tool for constraining

the abundance of compact dark matter or other exotic compact objects.
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Chapter 6

Polymer Gravity

Inspired by loop quantum gravity, the polymer quantization scheme is an alternative

representation of the canonical commutation relations and has already been explored

as a possible alternative to the Schroëdinger quantization of the electromagnetic field

[62]. In polymer-quantized EM radiation, pulses resembling short gamma-ray bursts

(sGRB) incur a reduction of propagation speed dependent on the characteristic scale of

the polymer quantization, the pulse amplitude, pulse width, and the pulse frequency.

The authors of Ref. [62] use constraints on the traveling time differences between dif-

ferent frequencies of GRB090510 [63] to place bounds on the polymer scale describing

quantization of the EM sector. However, their results indicate that polymer quantization

is a poor alternative for quantization of the EM sector.

It is important to note that polymer EM theory and polymer GWs have differ-

ent foundations and the resulting constraints on the corresponding characteristic scales

therefore have different interpretations. In Ref. [62], the polymer quantization scheme

is applied to the electromagnetic four-potential in an exclusively Minkowski spacetime.

The characteristic polymer scale, µ, quantifies the discreteness of the electromagnetic

polymer fields. As we’ll discuss later on, when polymer quantization is applied to met-

ric perturbations, the quantity µ quantifies the discreteness of the metric perturbations

with the assumption that the background spacetime evolves classically.

73



While unlikely to be a replacement for quantum EM effects, possible connection with

Planck-scale physics has made the polymer quantization scheme an attractive candidate

for describe quantum gravitational effects [64–67]. Polymer corrections have been found

to violate the strong equivalence principle (SEP) under both quantization choices, how-

ever these violations have been estimated to be too small to measure with present-day

experiments [68]. More recently, its capacity to describe quantum effects of GW propa-

gation on a classical background [69, 70] have yielded other potentially observable effects

that will be the subject of this chapter.

6.1 Theory of polymer gravity

The derivation of polymer effects on GWs is subtle and involved, but serve only as

context (crucial context, but context nonetheless) for the work presented here. We will

briefly review the procedure for deriving polymer quantum corrections to GWs, but for

more detailed treatments of polymer gravity please see Refs. [69, 70].

In chapter II, we added a small perturbation to a Minkowski metric and demonstrated

that in the linear regime, the EFEs for those perturbations reduced to the familiar wave

equation. The EFEs are obtained by varying the Einstein-Hilbert action to obtain the

equations of motion (and constraint equation) for the dynamics of the spacetime metric.

An equally valid approach to obtaining the EOMs describing the metric perturbations is

to formulate a Hamiltonian describing the system to determine its dynamical equations.

Recall from chapter II, the Ricci scalar for the linear metric perturbations is

R = ∂µ∂νh
µν − ∂µ∂µh.

In terms of the transverse-traceless metric perturbation, hµν = hµν− 1
2
ηµνh, this simplifies
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to

R = ∂µ∂ν h̄
µν = �.

Substituting this into the Einstein-Hilbert action, we arrive at

SGW '
1

8κ2

∫
d4x
√−ηh̄ij�h̄ij (6.1)

(6.2)

From here, we can read off that the Lagrangian density at linear order for GWs is

L =
1

8κ2
h̄ij�h̄

ij. (6.3)

As a reminder, the transverse traceless perturbations in the Lorenz gauge propagating

in a given direction such as x3 can be decomposed into plus and cross polarizations,

h̄ij(x
0, x3) = h̄+(x0, x3)e+

ij + h̄×(x0, x3)e×ij. (6.4)

The Lagrangian density can then be rewritten as a sum over polarizations of the TT

perturbations:

L =
1

2

∑
λ∈{+,×}

ȟλ�ȟλ, (6.5)

where we’ve rescaled the metric perturbations ȟλ ≡ h̄λ/2κ. The conjugate momentum

for each polarization can be determined from 6.5:

π̌λ ≡
∂L
∂ȟλ

=
1

2

∑
λ

�ȟλ (6.6)

The metric perturbation and its conjugate momentum can be expressed in terms of its
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spatial Fourier modes and its conjugate momentum:

ȟλ(x
0, ~x) =

1

`3/2

∑
~k∈L

hλ,~k(x
0)ei

~k·~x (6.7)

π̌λ(x
0, ~x) =

1

`3/2

∑
~k∈L

Πλ,~k(x
0)ei

~k·~x. (6.8)

Here, the allowed values of the wavevector are assumed to be ~k = (k1, k2, k3) ∈ (2πZ/`)3

which span the discrete lattice space L , where ` is the characteristic length scale of the

corresponding configuration space.

As ȟλ and π̌λ are canonically conjugate, their Fourier modes are as well, and satisfy

the standard commutation relations {hλ,~k,Πλ,~k} = δ~k, ~−k. Additionally, since the metric

perturbation field must be real-valued, its Fourier coefficients must satisfy

 1

`3/2

∑
~k∈L

hλ,~k(x
0)ei

~k·~x

∗ =
1

`3/2

∑
~k∈L

hλ,~k(x
0)ei

~k·~x

⇒ h∗
λ,~k

(x0)e−i
~k·~x = hλ,~k(x

0)ei
~k·~x

⇒ h∗
λ,~k

(x0) = hλ,−~k(x
0),

where the Fourier modes of the conjugate momentum satisfy the analogous relations

Π∗
λ,~k

= Πλ,−~k. The reality condition of the field motivates the decomposition of the

Fourier components in terms of their real and imaginary components,

hλ,~k =
1√
2

(h
(1)

λ,~k
+ ih

(2)

λ,~k
), (6.9)

Πλ,~k =
1√
2

(Π
(1)

λ,~k
+ iΠ

(2)

λ,~k
), (6.10)

which naturally motivates the segmentation of the lattice L into positive and negative

sectors L+ and L− respectively. This effectively splits the summation over ~k in the

field decomposition into two summations over the positive and negative sectors of the

lattice. Leveraging the complex decomposition of the fields’ Fourier modes and the
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reality conditions placed on them, we define new dynamical field variables

Aλ,~k ≡


h

(1)

λ,~k
for ~k ∈ L+

h
(2)

λ,−~k for ~k ∈ L−,

(6.11a)

Eλ,~k ≡


Π

(1)

λ,~k
for ~k ∈ L+

Π
(2)

λ,−~k for ~k ∈ L−,

(6.11b)

which also satisfy canonical commutation relations {Aλ,~k, Eλ′,~k′} = δλλ′δ~k~k′ . With these

definitions and Eqs. 6.5 and 6.9, the time-dependent Hamiltonian for the dynamical

variables Aλ,~k and Eλ,~k are

H(x0) =
1

2

∑
λ∈{+,×}

∑
k∈L

[
E2
λ,~k

+ k2A2
λ,~k

]
. (6.12)

In order to introduce quantum mechanical effects into the dynamical variables Eλ,~k and

Aλ,~k, which represent the tensor metric perturbations and its conjugate momentum,

we naturally promote them to operators and impose commutation relations on them.

We consider two cases here, one in which Aλ,~k has discrete eigenvalues and Eλ,~k has no

infinitesimal operator, and the reverse in which Eλ,~k has discrete eigenvalues and Aλ,~k has

no infinitesimal operator. We will refer to these as “polymer Eλ,~k” and “polymer Aλ,~k”

respectively. Each polymer quantization scheme obeys its own commutation relations:

[
Ûλ,~k(µ), Âλ,~k

]
= ~µÛλ,~k(µ) (Polymer Eλ,~k ) (6.13)[

V̂λ,~k(ν), Êλ,~k
]

= −~νV̂λ,~k(ν), (Polymer Aλ,~k ) (6.14)

where Ûλ,~k(µ) is the generator of finite translations and V̂λ,~k(ν) is the generator for

transformations in Eλ,~k. The characteristic scales of each of the polymer quantizations

µ and ν describe the discreteness of the observables Aλ,~k and Eλ,~k respectively. In

the polymer Eλ,~k where Aλ,~k–the dynamical variable for the spacetime perturbations–is
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the quantum observable, the characteristic scale µ can be interpreted as describing the

quantum discreteness of spacetime. The Hamiltonians for the polymer fields now take

the form

H
(E)

λ,~k
=

2

µ2
sin2

(
µEλ,~k

2

)
+

1

2
~k2A2

λ,~k
(6.15)

H
(A)

λ,~k
=

1

2
E2
λ,~k

+
2

ν2
sin2

(
νAλ,~k

2

)
. (6.16)

The corresponding equations of motion for these Hamiltonians are

dAλ,~k
dt

= E+,~k,
dEλ,~k
dt

= −~k2

ν
sin
(ν
~
Aλ,~k

)
(Polymer A), (6.17)

dAλ,~k
dt

=
~
µ

sin
(µ
~
Eλ,~k
)
,

dEλ,~k
dt

= −k2Aλ,~k (Polymer E). (6.18)

To the leading order in both polymer A and polymer E cases, the plane-wave solutions

to Eqs. 6.16 for plus-polarized metric perturbations [71] are

h̄
(A)
+,k(t) ≈ h̄I

[(
1− h̄2

I ν̄
2

96 ~2

)
cos

(
kc

√
1− h̄2

I ν̄
2

8~2
t

)

− h̄2
I ν̄

2

192~2
cos

(
3kc

√
1− h̄2

I ν̄
2

8~2
t

)]
. (6.19)

and

h̄
(E)
+,k(t) ≈h̄I

[(
1− h̄2

I µ̄
2k2

32~2

)
cos

(
kc

√
1− h̄2

I µ̄
2k2

8~2
t

)

− h̄
2
I µ̄

2k2

64~2
cos

(
3kc

√
1− h̄2

I µ̄
2k2

8~2
t

)]
, (6.20)

where we’ve introduced the reduced polymer scales

ν̄ ≡ ν`3/2

2κ
(Polymer A) (6.21)

µ̄ ≡ µ`3/2

2κ
(Polymer E). (6.22)
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In geometric units (c = G = 1), ν̄ is dimensionless and µ̄ has dimensions of length. As

a reminder, ` is the length scale associated with the lattice L. Also to linear order, the

associated group velocities in each polymer case [71] are

v(A) ≈ vEM

(
1− h̄2

I ν̄
2

16~2

)
, (6.23)

v(E) ≈ vEM

(
1− 3h̄2

I µ̄
2

16~2
k2

)
. (6.24)

Fascinatingly, under the polymer quantization, GWs have a reduced velocity relative

to the propagation speed of the speed of light. Note that when examining travel times

over a specific distance for GWs, this is an accumulated effect. For GWs traveling over

a large distance, as is the case with all GW observations, even a small deviation in

the propagation speed could yield observable travel time differences relative to those

expected in the classically predicted case. This is a promising observable of polymer-

corrected GWs. Methods for constraining the polymer-induced deviation in propagation

speed of GWs will be the subject of the remainder of the chapter.

6.1.1 Constraining the polymer scale

In this section we outline the procedure for leveraging polymer scale dependent depar-

tures from the classical GW propagation speed to place constraints on the polymer scale.

The deviation can be inferred from the equations for the group velocity Eqs. 6.23 and

6.24,

∆vA ≈ − h̄
2
I ν̄

2

16~2
(6.25)

∆vE ≈ −3h̄2
I µ̄

2

16~2
k2. (6.26)

Eqs. 6.25 and 6.26 imply any measurements of ∆vg can be used to infer constraints

on the polymer scale. While GWs produced from mergers of compact objects are not

plane waves, this is an appropriate enough approximation by the time they reach a GW
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observatory on Earth.

Formally, the extracted probability distribution on the propagation speed is related

to the distribution of polymer scales via a Jacobian transformation. Defining U ∈ {ν̄, µ̄}

The relationship between p{A,E}(U) and p(∆vg) becomes

p{A,E}(U) =

∣∣∣∣ ∂∆vg
∂U{A,E}

∣∣∣∣ p(∆vg). (6.27)

Invoking Eqs. 6.25 and 6.26 to evaluate Eq. 6.27, we arrive at a set of simple relations

between p{A,E} and p(∆vg):

pA(ν̄) =
h̄2
I ν̄

8~2
p(∆vg), pE(µ̄) =

3h̄2
I µ̄

8~2
k2 p(∆vg) (6.28)

for the probability distribution for two polymer quantization schemes.

In the following sections, we use constraints on ∆vg from two independent ap-

proaches: The first relies on inter-detector arrival time differences for signals detected

in multiple GW observatories, while the second compares the arrival time difference be-

tween multimessenger GW signals and their electromagntic counterpart. We apply this

procedure to event GW170817 and its associated gamma ray burst (GRB), GRB170817A

[72], as this is so far the only existing confident multimessenger detection.

6.1.2 Pure GW constraints

The constraints in this section rely on the posterior samples for ∆vg generously provided

by the authors of [73]. We will first briefly review the method used in their work to

obtain the posterior samples on ∆vg before discussing how these samples can be used to

estimate pA(ν̄) and pE(µ̄).

Gravitational wave signals detected in multiple GW observatories separated from

each other by some distance will appear in each observatory at different times. With

precise knowledge of the distance between detectors and measurements of the signal
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arrival time in each detector, one can estimate the average propagation velocity of the

GW between the detectors. As we’ve discussed, the Bayesian posterior of the coalescence

time of the GW, along with that of all other model parameters, can be estimated using

the techniques discussed in Chapters 4 and 5. Typically, tc samples are generated in the

geocenter frame and then used to compute a detector-specific arrival time by assuming

a fixed propagation speed of vg = vEM. In [73], however, vg is incorporated as an

additional sampled parameter. Analysis of the eleven events in GWTC1, which were all

observed in at least two detectors, yield posterior samples representing 11 independent

measurements of vg, or equivalently ∆vg ≡ vg − vEM. Assuming all GWs propagate at

the same speed (which is not necessarily vEM, the PDFs can be combined according to

p(∆vg|d1, d2, . . .) ∝ p(∆vg|d1)p(∆vg|d2) . . . p(∆vg|dn), (6.29)

where di is the data associated with the ith GW observation. From this point, the

resulting PDFs on polymer scales ν̄ and µ̄ can be computed using Eqs. 6.28.

Results

Fig. 6.1 shows the PDF for ∆vg for all events in GWTC1 [16] composed of 10 BBH

events as well as GW170817, the lone BNS event. We combine information constraining

∆vg from all events and apply the methods outlined in section 6.1.1. The resulting

combined as well as per-event constraints on the polymer scale for each of the two

polymer quantization choices in Figs. 6.2, 6.3.

As the polymer scales in both cases must be real, a hard cut prior is placed on

all ∆vg samples greater than 0, and remove any events with too few posterior samples

to produce reliable PDFs. While Eqs. 6.28 are general for any PDF p(∆vg), by only

allowing for negative values of ∆vg, we estimate the conditional PDFs pA(ν̄|∆vg < 0)

and pE(µ̄|∆vg < 0). We combine information from the kernel-density-estimated (KDE)

PDFs on ∆vg for each event using Eq. 6.29. The shape of the resulting combined PDF
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(a) Posterior density functions on parameter vg estimated for each event in GWTC1 as well
as combined measurement from all events. Combined measurement assumes sky location for
GW170817 is estimated without calibration from GRB170817A.
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(b) Posterior density functions on parameter vg estimated for each event in GWTC1 as well
as combined measurement from all events. Combined measurement assumes sky location for
GW170817 is calibrated to its associated gamma-ray burst GRB170817A.

Figure 6.1: KDE-estimated combined and individual-event PDFs on ∆vg from posterior
samples for all GWTC1 events provided by Ref. [73]. Fig. 6.1a fixes the sky loca-
tion parameters, α and δ, to be those inferred from the associated gamma-ray burst
GRB170817A while Fig. 6.1b relies on information from the GW signal only.
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on ∆vg is highly dependent on the most informative event, GW170817, whose PDF is in

turn also dependent on what sky localization information is assumed. The sky location of

GRB170817A, the gamma-ray burst associated with GW170817, is much more precisely

measured than the sky location inferred purely from the GW signal and has a significant

effect on the shape of the PDF of ∆vg for that event. We therefore show the combined

∆vg posterior for two cases: one in which the sky location for GW170817 is fixed to the

GRB170817A-inferred values during analysis of the GW signal (Fig. 6.1a), and one in

which the right ascension and declination, α and δ, are allowed to vary and are inferred

purely from information contained in the GW signal. The probability that ∆vg is less

than 0 as measured from the combined PDF under each of these two assumptions are

as follows:

Pfix(∆vg < 0) =

∫ 0

−∞
d∆vg pfix(∆vg) = 0.63 (GW170817 α, δ fixed) (6.30)

Pvary(∆vg < 0) =

∫ 0

−∞
d∆vg pvary(∆vg) = 0.33 (GW170817 α, δ varied). (6.31)

Therefore when the sky location parameters for GW170817 are fixed to more precise

values, it becomes nearly twice as likely that GWs travel slower than speed of light.

Eqs. 6.28 require as inputs the initial GW amplitude, h̄I for both cases and the grav-

itational wavenumber k for polymer E . While the dependence of ∆vg on the wavenum-

ber is fascinating and could potentially improve constraints when spectral information

is taken into account, we leave this to future work. For now, we take k to be the

wavenumber at merger.

To estimate the quantities h̄I and k, we take the maximum posterior point associated

with each model parameter, evaluate the waveform model IMRPhenomPv2 at these points,

and inject the signal into simulated GW detectors with PSDs estimated from public

strain data near the coalescence time of–but not overlapping with–each GW event. We

then record the maximum strain value at merger and estimate the frequency at merger

from the last waveform cycle before merger. The wavenumber is then calculated from the
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(a) Constraints on polymer scale ν̄ from gravitational-wave detections from LIGO’s first and
second observing runs.
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(b) Constraints on polymer scale ν̄ from gravitational-wave detections from LIGO’s first and
second observing runs. Sky localization parameters were fixed to the GRB170817A-inferred
values during parameter inference of GW170817.

Figure 6.2: Posterior probability density functions on polymer parameter µ̄. All events
used for analysis are from the LVC’s first gravitational-wave transient catalog paper
(GWTC1). In Fig. 6.3b the sky localization parameters for event GW170817 were fixed
to the GRB170817A-inferred values during parameter inference.
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(a) Constraints on polymer scale µ̄ from gravitational-wave detections from LIGO’s first and
second observing runs.
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(b) Constraints on polymer scale µ̄ from gravitational-wave detections from LIGO’s first and
second observing runs. Sky localization parameters were fixed to the GRB170817A-inferred
values during parameter inference of GW170817.

Figure 6.3: Posterior probability density functions on polymer parameter µ̄. All events
used for analysis are from the LVC’s first gravitational-wave transient catalog paper
(GWTC1). In Fig. 6.3b the sky localization parameters for event GW170817 were fixed
to the GRB170817A-inferred values during parameter inference.
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Events max(∆vg) ν̄(/10−17)
kg ·m2/s

ν(/10−53)

kg1/2
µ̄(/10−12)
kg ·m2

µ(/10−48)

kg1/2 · s
GW strain
at Peak

frequency
at peak Hz

SNR

GW150914 −0.39+0.48
−0.16 0.99+0.16

−0.45 0.9+0.15
−0.41 1.50+0.25

−0.68 1.37+0.23
−0.62 1.6×10−21 181 24.4

GW170104 0.23+1.90
−0.54 2.60+0.64

−1.56 2.37+0.58
−1.42 6.63+1.63

−0.40 6.05+1.49
−3.63 5.9×10−22 108 13.0

GW170608 0.88+2.40
−1.50× 10−1 1.45+1.19

−0.70 1.32+1.09
−0.63 0.57+0.47

−0.27 0.52+0.43
−0.25 4.4×10−22 702 14.9

GW170729 3.13+1.35
−2.00 3.26+1.05

−1.73 2.97+0.96
−1.58 8.95+2.89

−4.76 8.15+2.64
−4.34 4.1×10−22 100 10.8

GW170809 −0.79+0.45
−5.61×10−1 3.72+0.17

−2.47 3.39+0.16
−2.24 7.28+0.34

−4.85 6.64+0.31
−4.42 5.0×10−22 141 12.4

GW170814 0.17+0.51
−1.25× 10−1 0.55+0.99

−0.26 0.50+0.90
−0.24 0.72+1.30

−0.35 0.66+1.17
−0.32 9.6×10−22 210 15.9

GW170817 1.88+2.68
−5.53× 10−2 0.68+0.0.53

−0.33 0.62+0.48
−0.30 0.07+0.06

−0.03 0.07+0.05
−0.03 5.3×10−22 2582 33.0

GW170818 0.51+0.89
−4.20× 10−1 2.04+1.23

−1.06 1.86+1.12
−0.96 3.69+2.22

−1.91 3.36+2.03
−1.74 4.9×10−22 152 11.3

GW170823 1.96+8.73
−1.41 2.35+0.54

−1.24 2.14+0.50
−1.13 8.76+2.02

−4.64 7.99+1.84
−4.23 6.6×10−22 74 11.5

Combined
(BBH)

0.09+5.73
−5.45× 10−2 1.06+0.17

−0.23 0.96+0.15
−0.21 1.03+0.82

−0.21 0.94+0.75
−0.20

Combined 1.30+2.76
−3.63× 10−2 0.99+0.18

−0.22 0.90+0.16
−0.20 0.27+0.05

−0.17 0.25+0.05
−0.15

Table 6.1: Locations of maximum a posteriori values of ∆vg, ν̄ and µ̄ for all the events and
calculated corresponding polymer parameters in their reduced form ν and µ. Uncertainties
listed are calculated to the 90% credible level. To have a better upper bound estimates for
the polymer parameters, we use the frequency and strain of the peak of inspiral phase. The
required length scale ` for the binary system is set to 1010m, larger wavelengths are ignored
and could be absorbed in the homogeneous background, because we assume our system is
localized.

classical dispersion relation where any non-zero graviton mass is taken to be negligible.

When evaluating Eq. 6.28, h̄I and k are averaged over the observatories in which the

signals were detected. The values for h̄I and k for each of the events are listed in Table

6.1.

The posterior density functions on the polymer scales ν̄ and µ̄ for all events are dis-

played in Figs. 6.2 and 6.3. The combined posterior is computed for both GW170817 sky

localization cases discussed above. In addition to the estimations for maximum strain

and frequency at merger, the maximum posterior values for ∆vg, the reduced-form poly-

mer scales ν̄, µ̄ and their standard forms ν and µ, are listed in Table 6.1 along with

upper and lower bounds at the 90% credible level. Virtually all PDFs of ν̄ differ from

those of µ̄ by 3-4 orders of magnitude, reflecting the impact of Eq. 6.26’s dependence

on the wavenumber k of the GW. As expected, we find the combined measurement is

dominated by the contribution from GW170817 regardless of the choice of sky localiza-

tion prior, especially so when the fixed α, δ priors are chosen. In this case, the combined
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measurement on ν̄ and µ̄ were

ˆ̄ν∆vg<0 = 1.44+0.27
−0.30× 10−13 (6.32)

ˆ̄µ∆vg<0 = 0.14+0.03
−0.06× 10−8. (6.33)

6.1.3 Multimessenger Constraints

The coincident detection of GWs produced by the merger of two neutron stars, GW170817,

and its accompanied gamma-ray burst, GRB170817A, provide another opportunity to

constrain the propagation speed of GWs relative to that of EM radiation. Any observed

difference between the arrival times of the two signals, with knowledge of the distance to

the common source, can be used to infer the average propagation speed over the distance

traveled. Given previous discussion about the polymer-quantized EM sector, a natural

question arises: If both EM and GW radiation are polymer-quantized, why should we

expect a relative propagation speed difference between a GW and GRB emitted from

the same source? Thankfully, the polymer-induced time delay is not the same in both

cases, as reflected in Eqs. 6.23, 6.24 and Eq. 21 of Ref. [62]. While both have quadratic

dependencies on the polymer scale at first order, their dependencies on the frequencies

and amplitudes of the signals take on distinct forms.

Following the procedure of [72], deviations from the classically predicted group ve-

locity of GWs can be derived from measurements of the time delay between coincident

GW and electromagnetic signals,

∆vg
vEM

≈ vEM
∆t

dL
, (6.34)

where ∆t is the time delay between the two signals, and dL is the luminosity distance

to the source.

For a typical BBH signal, dL is roughly 19 orders of magnitude larger than the

distance between LIGO Livingston and LIGO Hanford. This means any discrepancy be-
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tween the GW and EM propagation speeds has a significantly larger distance over which

to accumulate a time delay ∆t. The result is a significantly more precise measurement

of ∆vg than when considering only intra-network time delays, and thus a more precise

measurement of the polymer scales. Unfortunately, it’s currently unclear whether or not

the GW and EM signals are emitted at the same time at the source. This means the

observed time delay ∆tobs is really a sum of the time delay associated with the polymer-

induced propagation speed deviation and the “lag” time between the emission of the

signals at source,

∆tobs = ∆tpoly + ∆tlag (6.35)

=
∆vg
vEM

dL
vEM

+ ∆tlag, (6.36)

where we’ve used Eq. 6.34 in the second line, attributing the entire physical time delay

to polymer effects.

The primary drawback of this approach is the model-dependence introduced by ∆tlag.

For their lower bound estimate, Ref. [72] assumes a 10s lag between the emission of the

source’s gravitational radiation and its associated GRB, though other models suggest

significantly longer lags [74, 75] that can extend out to ∼ 1000s. Therefore the preci-

sion gained by measuring over a larger distance is washed out by the systematic error

introduced by ∆tlag. Initially, we assume ∆tlag is perfectly known and adopt a specific

value, however later on we will explore our results’ dependence on this assumption.

We take both dL and ∆tobs to be random variates, where p(dL) is approximated

from the publicly available posterior samples produced from LIGO parameter estimation

analysis. The distribution p(∆t) is instead assumed to be normally distributed with

expectation value E[∆t] = 1.74 s and standard deviation σ = 0.05 s in accordance with

[72]. We adopt ∆tlag = 3.48 s , which is equivalent to simultaneous signal emission with

polymer effects inducing a 1.74 s lag in the GW arrival time over the distance traveled

by both signals. The resulting distribution on ∆vg can then be computed by integrating
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over the joint probability density function on the two variables,

p (∆vg) =

∫ ∞
−∞
|dL|p∆t (∆vgdL) pdL(dL)d(dL), (6.37)

where vEM has been set to 1, and p∆t(∆tpoly) is the distribution describing a newly

defined random variate ∆tpoly = ∆tobs − ∆tlag. Since we take the lag to be known

precisely, the distribution describing ∆tpoly is identical to that describing ∆tobs shifted

by a factor of ∆tlag. The polymer scale distribution is then calculated from p(∆vg)

according to section 6.1.1.

Results

The PDF on the luminosity distance to the source of GW170817 is estimated from

posterior samples provided in the LVC’s public data release1. Assuming a normally

distributed ∆tobs as described above with ∆tlag = 3.48 s, the posterior distribution on

∆vg is computed from the ratio distribution according to Eq. 6.37 and is displayed in

Fig. 6.4. It should be noted that for this event, the choice of spin prior is particularly

important. Higher spin values allow for the component neutron stars to sustain higher

masses, a parameter which is degenerate with luminosity distance at the level of the

gravitational waveform. However, even the most highly spinning neutron stars detected

have modest dimensionless spin magnitudes and those that will merge in a Hubble time

will have dimensionless spin magnitudes a . 0.04. Consistent with the analysis presented

in the previous chapter, we analyze GW170817 under two spin priors. Fig. 6.4 shows

two posterior density functions on ∆vg, corresponding to two choices of spin prior: one

which restricts the spin parameters to low values, and one which assumes all values of

the spin parameters are equally likely. For more details on these prior choices, please

see the previous chapter and Ref. [48]. Finally, the resulting PDF on the dimensionless

polymer scale under the two polymer quantization schemes is computed following the

1Official posterior samples for all source parameters, including dL, can be found on the GW170817
GWOSC page.
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Figure 6.4: Constraints on departure from classically predicted propagation speed of
gravitational waves. Calculated based on estimates of luminosity distance to the source
and time delay between GW170817 and GRB170817A.

Spin prior ∆vg(/10−16)ν̄(/10−13) ν(/10−34)
m−1/2

µ̄(/10−8) µ(/10−30)
m1/2

GW strain
at Peak

frequency
at peak Hz

SNR

High spin 3.93+1.53
−0.27 2.91+0.55

−0.10 2.92+0.52
−0.10 3.03+0.57

−0.11 3.03+0.54
−0.11 5.3×10−22 2582 33

Low spin 4.02+2.20
−0.35 2.92+0.68

−0.11 2.94+0.73
−0.12 3.11+0.73

−0.11 3.13+0.77
−0.13 5.4×10−22 2652 33

Table 6.2: Locations of maximum a posteriori values of ∆vg, ν̄ and µ̄ for GW170817 and
corresponding polymer parameters in their reduced form ν and µ. Uncertainties listed are
calculated to the 90% credible level.

methods described in sections 6.1.1 and 6.1.3, displayed in Figs. 6.5. When converting

from ∆vg → {ν̄, µ̄}, we use the estimates for the merger strain and frequency at merger

from the previous section for GW170817 without fixing the sky location parameters. For

details on this process please see the previous section.

The dependence of polymer constraints on the assumption of time delay between

GW signal emission and GRB emission is displayed in Figs. 6.6a, 6.6b for both polymer

quantization schemes and both choices for the spin prior on dL. The point statistic es-

timates for the ∆vg and the polymer scales (analogous to Table 6.1 for multimessenger

constraints) are listed in Table 6.2. As with Figs. 6.2 and 6.3, the measurement for

µ̄ is roughly four orders of magnitude larger than that of ν̄, reflecting the dependence
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(a) Constraints on the polymer scale ν̄ inferred from the time delay between GRB170817A and
GW170817.
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(b) Constraints on the polymer scale µ̄ inferred from the time delay between GRB170817A
and GW170817.

Figure 6.5: Constraints on dimensionless polymer scale from coincident detections of
GW170817 and GRB 170817A. The time delay between emission of the two signals is
assumed to be Gaussian distributed with expectation value E[∆t] = 1.74 s and standard
deviation σ = 0.05 s. The results for two priors on the neutron stars’ spins are shown:
one which disallows high spin values, and one which assumes all spin values are equally
likely.
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(a) Dependence of pA(ν̄) on the lag between signal emission, ∆tlag ≡ t0,GW − t0,EM.

−15.6 −15.4 −15.2 −15.0 −14.8 −14.6 −14.4

log 10(µ̄)

∆
t l

ag

0.0

Low spin prior

High spin prior

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

(b) Dependence of pE(µ̄) on the lag between signal emission, ∆tlag ≡ t0,GW − t0,EM.

Figure 6.6: Dependence of polymer scale PDFs as a function of the lag time between
emissions of GW signal GW170817 and gamma-ray burst signal GRB170817A.
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of ∆vg on the wavenumber in the polymer E case. The overall scale of the polymer

parameters in both polymer quantization schemes is roughly ∼ 7 orders of magnitude

smaller than those from the inter-detector time delay constraints. This difference is al-

most entirely a function of the systematic uncertainty in ∆tlag. While the PDFs inferred

from inter-detector time delays will likely see improvements in accuracy with additional

GW detections, the constraints presented here from the multimessenger observations of

GW170817 and GRB170817A may not improve in accuracy with additional detections

until ∆tlag is modeled accurately. To explore how multimessenger estimates of the poly-

mer scale are affected by ∆tlag, we compute the PDFs on the polymer scale for 20 values

of the lag, displayed in Figs. 6.6a and 6.6b.

In both cases, the means of the PDFs stay roughly within one order of magnitude of

each other for lags ranging over 100s. However, it should be noted that the dependence

of the PDFs on ∆tlag is not asymptotic. This can be seen analytically by inverting Eqs.

6.23 and 6.24,

ν̄(∆vg) =
4~
h̄I

√
−∆vg (6.38)

µ̄(∆vg) =
4~√
3h̄Ik

√
−∆vg, (6.39)

we see that with

∆vg =
∆tpoly

dL
=

∆tobs −∆tlag

dL
, (6.40)

the dependence of the polymer scales on the lag time is ν̄, µ̄ ∼
√

∆tlag. Therefore

increasing the lag time will continue to increase the location of the polymer scale PDF.

Conclusion

In this chapter, we present the first constraints on the scales describing quantum correc-

tions to GWs under the polymer quantization scheme. The constraints are computed
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from PDFs on the propagation speed of GWs as inferred from GW observations and the

observation of GRB170817 using two independent techniques. In the first, differences

in arrival times of GWs in multiple detectors are used to infer the average velocity of

the GWs over the distance between GW observatories. While the computed PDFs on

the polymer scales are conditional on the GWs propagating slower than EM radiation,

the associated probability of this occurring under the the GW-inferred PDF on ∆vg

is roughly 63%. This method is largely model independent and can be improved with

additional high-SNR events which are currently available–a subject of future work.

The second approach uses the arrival time delay between GW170817 and its associ-

ated gamma-ray burst GRB170817A. While the PDFs under these two methods disagree

by roughly ∼ 7 orders of magnitude, this is largely due to systematic uncertainty in the

knowledge of the lag time between emission of the GW and EM signals. We explore this

dependency and conclude that improved models of GRB emission are needed before a

conclusive measurement of ∆vg is achieved using this method.

Most literature surrounding polymer quantization assumes the EM and gravity sec-

tors are consistently quantized, however evidence to support this assumption is difficult

to come by given quantum gravity remains largely a mystery. As the results reported

here are the first empirical constraints on the polymer scale for GWs, we are forced

to adopt this assumption in order to compare with previous results, which have only

probed the polymer nature of the EM sector.

Ref. [62] quotes bounds on the dimensionless polymer scale of µ̃ ≡ µ/Λ2
c < 10−35,

where Λc is the energy cutoff scale introduced to maintain a countable number of polymer

field Fourier modes. In natural units, the analogous dimensionless polymer scale is the

quantity µ/`1/2, where as a reminder, ` is the intrinsic length scale of the quantization,

chosen to be 1010 m. The inter-detector delay constraints yield µ/`1/2 ∼ O(10−24).

When using time delays between GW170817 and its GRB counterpart, we find µ/`1/2 ∼

O(10−28). Both of the constraints on the polymer scale in the gravitational sector

suggest higher values than those from GRB090510 under the EM polymer quantization.
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We stress though that this comparison only holds in the case where both sectors are

equivalently quantized, even though there is no empirical evidence to support such a

claim.

In the future we plan to use the polymer corrections to the GW waveform in Eqs. 6.20

and 6.19 to perform a full Bayesian analysis on the existing confirmed GW detections to

estimate the PDFs on the polymer scales, similar to the study presented in the previous

chapter.

95



Chapter 7

Conclusions

It has already been well-established in recent years that gravitational-wave observations

open up an exciting new window into the Universe. The GWs produced by mergers of

compact objects throughout the Universe carry with them information of their sources.

Such properties can be–and have been–inferred, with sufficient modeling and proper

statistical treatment, from the strain they place on GW observatories here on Earth.

Analysis of the existing 90+ confident GW signals already observed has yielded novel

insight into the characteristics and populations of the most extreme astrophysical objects

in our Universe.

The GW models used are reflections of a sophisticated understanding of gravity on

large scales. We’ve seen here that extending these models to include subtleties of GR,

such as the detection of propagation of GWs on the interior of the null cone, could fur-

ther solidify its success as a theory of gravity. Much like the first detection of GWs [76],

further support for GR is not the only exciting prospect of the detection of gravitational

glints. Their confirmation could also provide evidence for compact dark matter objects

and even characterize their distribution on astrophysical scales. In this work, we’ve de-

termined a model for the modification to the null cone GW signal and its manifestation

in GW detectors. Additionally, we’ve forecasted the prospect of their detection as a

function of the parameters introduced by the model modifications and characterized the
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expected level of precision to which the glint parameters can be inferred. We finally

present the first search for gravitational glints through reanalysis of 47 GW events from

the first three gravitational-wave transient catalogs, and present the Bayes factors for

each. While we find no evidence for glints in the data analyzed, non-detection is con-

sistent with rate estimates for detectable glints, leaving the potential for detection open

as more GW data becomes public.

Direct detection of GWs also open the door to discovery of extensions of GR as well.

Quantum effects of gravitational radiation represents one of the most elusive intersections

of physical phenomena, and could potentially be demystified by GW data. Any quantum

effects on gravitational waveforms are almost certainly too small to detect at the scales

accessible to GW observatories, but accumulated effects such as deviations from the

classically predicted propagation speed of GWs can result in observable time delays

that become large over the vast distances between Earth and GW sources. Adopting

the polymer quantization of gravitational radiation, we compute the first constraints

on the scales describing polymer quantum effects from measurements of the deviation

from classical propagation speed using two techniques. While each of these methods has

drawbacks that affect their accuracy, like in the case of gravitational glints, additional

observations will alleviate this uncertainty and could yield profound insights into the

quantum nature of gravity.

Secondary effects present in GW data will be a focus of scientific endeavor as next-

generation GW observatories arrive and bring with them improved detector sensitivities

and an ever-growing catalog of GW events. Thus the machinery developed and tested

in this work represents an exciting part of the preparation for the next era of GW

astronomy.
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