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Abstract of the Dissertation 

ABSTRACT OF THE DISSERTATION 

Multi-color Fluorescent Microscopy and Deep Learning for Studying Eukaryotic Organelles: 

Unveiling Cellular Growth in a System Biology Perspective  

by 

Shixing Wang 

Doctor of Philosophy in Physics 

Washington University in St. Louis, 2023 

Professor Shankar Mukherji, Chair 

 

Eukaryotic cells are building blocks to complex living systems, characterized by membrane-

bound organelles. Studying how eukaryotic organelles react to cellular growth and size increase 

is crucial, but it demands biochemical and biophysical manipulations, as well as quantitative 

observation tools in microscopy. We developed a multi-color yeast strain with tagged fluorescent 

proteins, enabling systematic measurements of 6 organelles inside each cell using spectral 

confocal microscopy. These measurements provided insights into how organelle biogenesis is 

coordinated with cellular size and growth rate regulation via different signaling pathways. To 

explore cellular growth under dynamic conditions, I utilized deep learning for organelle 

recognition using low-power bright field fluorescent microscopy. This technique maintains high 

spectral resolution while minimizing photodamage and enabling timelapse acquisition. Training 

output statistics demonstrated excellent fidelity to the target. The work in this thesis lays a 

foundation for capturing how organelle dynamics and cellular growth interrelate.
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Chapter 1: Introduction 

 

The hierarchy of biological organizations is a fundamental concept in the field of biology that 

describes the nested levels of complexity found in living systems. From the smallest building 

blocks of life to the intricate functioning of ecosystems, this hierarchical structure provides a 

framework for understanding the organization and interactions within biological systems. At the 

lowest level, molecules and macromolecules combine to form cells, which are the basic units of 

life. Cells then organize into tissues, which in turn form organs that carry out specific functions 

within organisms. Multiple organs working together comprise organ systems, enabling the 

coordination of complex physiological processes. At the next level, organisms, whether 

unicellular or multicellular, represent individual living entities capable of growth, reproduction, 

and adaptation. Populations consist of groups of organisms of the same species living in a 

defined area, while communities include various populations interacting within an ecosystem. 

Finally, ecosystems encompass all living organisms and their interactions with the physical 

environment, forming a dynamic and interconnected web of life [1].  

 

Eukaryotic cells are characterized by their compartmentalization into organelles, which are 

specialized structures that carry out specific functions. The coordinated biogenesis of organelles 

is essential for cell growth and differentiation  [1]. In recent years, there has been growing 

interest in understanding the mechanisms that regulate organelle biogenesis. 
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Figure 1 hierarchy of biological organizations 

Chan YH et. al reviews the various ways in which cells can sense and control the size of their 

organelles, such as stereotyped growth, allometric growth, and fixed-precursor recruitment [2]. 

Levy DL et. al discusses the mechanisms of intracellular scaling, which is the process by which 

cells adjust their size and shape in response to environmental and internal cues. Cell sizes are 

positively correlated to genome size. Nuclear size is coupled with the cell so that the ratio of 

nuclear over cytoplasm is maintained. This is achieved by nuclear import, contributed by nuclear 

pore complexes [3]. Goehring NW and Hyman AA investigate a group of mechanisms that 

regulate organelle growth by primarily utilizing the cytoplasm as a restricted reservoir of 

available material. The increase in the size of cytoplasm could provide more building units for 

cell components, while the decreased concentration of the units serves as negative feedback [4]. 

Jorgensen P and colleges also found the consistency of nuclear volume fraction to the cell. This 

nuclear size maintenance does not require continuous biogenesis of ribosome or its export into 

the cytoplasm [5]. Mukherjee RN et. al found that the perinuclear endoplasmic reticulum serves 
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as the limiting pool for nuclear surface growth [6]. Chan YH, and Marshall WF measured the 

vacuole size, and found that both its volume and surface area scale with the cell. They also 

proposed a model for the size scaling of vacuole given cell and vacuole growth rates  [7]. The 

size of mitochondrial network has also been found to scale with the size of the budding yeast [8, 

9]. New budding yeast cells get mitochondria of similar ratio, while aged mother cells keep 

decreasing their mitochondrion volume fraction [8]. This is achieved mainly through fission and 

fusion of mitochondria [9]. These researches provide important knowledge of the scaling of cells 

and organelles, but they are mainly with respect to pairs of organizations, and we still lack 

system level insights. 

 

The interaction between organelles is also of great interest, but such efforts are limited due to 

technical difficulties to measure multiple interactions simultaneously, historically 

disproportionate interest in cancer-related studies, the immerse scale of commitment, and 

complexity of biological models to understand them [10]. There have been heavily data-driven 

studies in omics, but to our knowledge, such analysis has not been applied on the interactions 

between organelles. 

 

This thesis investigates three aspects of organelle biogenesis in yeast cells: (1) the correlation 

structure of systems-level organelle biogenesis with cellular growth [11], (2) a quantitative 

model to explain the non-trivial observations and the experimental verification [12], and (3) the 

use of deep learning to segment and identify organelles. 
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The first project uses a strain of Saccharomyces cerevisiae called "rainbow yeast" that allows 

simultaneous visualization of the six major metabolically active organelles. Hyperspectral 

imaging of thousands of single rainbow yeast cells revealed that the systems-level organelle 

biogenesis program is composed of collective organelle modes activated by changes in nutrient 

availability. Chemical biological dissection suggests that the sensed growth rate and size of the 

cell specifically activate these distinct organelle modes, which combine to mount the cellular 

organelle-scale response to environmental cues. Mathematical modeling and synthetic biological 

control of cytoplasmic availability suggests that distinct organelle modes allow the cell to 

maintain robust growth homeostasis in constant environments while remaining responsive to 

changes across diverging environments [11].  

 

We developed a quantitative model where the cell detects changes in its volume and assigns 

excess volumes to vacuoles in order to maintain a consistent nucleocytoplasmic volume fraction. 

To test this hypothesis, a synthetic biological condensate called PopTag, derived from 

Caulobacter crescentus, was used to artificially increase cytoplasmic crowding. The results 

supported the concept that the cell differentiates the response of organelles to cell size and 

growth rate  [12]. 

 

The third project uses a deep learning model called U-Net to segment and identify organelles in 

yeast cells. The model was trained on a dataset of confocal microscopy images, and it was able 
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to accurately segment and identify peroxisomes and endoplasmic reticulum structures. However, 

the recognition of vacuoles was hindered by the limitations posed by the low signal-to-noise ratio 

in both the training inputs and targets. 

 

The findings of this thesis provide new insights into the mechanisms that regulate organelle 

biogenesis in yeast cells. The results of the first project suggest that the cell uses a complex 

regulatory network to coordinate the biogenesis of different organelles in response to changes in 

environmental conditions. The results of the second project demonstrate the potential of deep 

learning for segmenting and identifying organelles in yeast cells.  
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Chapter 2: Reaction of Eukaryotic 

Organelles to Cellular Growth And Size 

Increase 

2.1 Introduction 

The spatial compartmentalization of organelles is a prominent feature that distinguishes 

eukaryotic cells  [1]. A fundamental objective in cell biology is to comprehend the coordinated 

biogenesis of organelles on a systems scale, building upon the achievements in uncovering 

comparable "growth laws" in prokaryotic systems [2] [3] [4] [13]. However, our understanding 

of the physiological principles governing the quantitative management of organelle growth in 

cells remains limited. This limitation primarily arises from the challenge of ensuring sufficient 

statistical power to assess theoretical frameworks for interpreting such findings [4] [14] [15] 

[16].  

 

The coordination of organelle growth with overall cellular growth has predominantly been 

investigated through scaling relationships between organelle sizes and the sizes of their host 

cells. For instance, it is widely recognized that the volume of the nucleus exhibits linear scaling 

with the size of the host cell [5]. Similar scaling relationships have been observed for other 

organelles such as the endoplasmic reticulum [6], vacuoles/lysosomes [7, 17], and mitochondria 

[8, 9]. However, our knowledge regarding pairwise scaling relationships among organelles 

remains limited, and even [18] less characterized are the interactions among multiple organelles 

that play a crucial role in regulating cellular physiology at different scales. The obstacle against 
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such insights mainly lies in the difficulty to simultaneously measure multiple organelles within 

the same cell. 

 

To enable the visualization of the six primary organelles in budding yeast, we employed a 

strategy involving the transcriptional fusion of genes encoding fluorescent proteins to genes 

encoding organelle-resident proteins that have been well-established to localize specifically to a 

particular organelle [18, 19]. The rainbow yeast cells were cultured and imaged using a confocal 

laser-scanning microscope with a diffraction grating that has spectral resolvability. We applied 

straightforward data reduction methods that yielded profound insights into the coupling between 

organelle biogenesis and the interconnected variables of cell growth rate and cell size. 

 

2.2  Methods 

2.2.1 Construction of Multiple Fluorescence Labelled Yeast Strains 

“EYrainbow”  

 

To generate a diploid strain of Saccharomyces cerevisiae that labels six organelles, we employed 

a mating strategy between the two haploid strains, EY2795 and EY2796. Each haploid strain was 

consecutively tagged with three organelles by integrating a fluorescent protein gene before the 

stop codon of the gene localized to the respective organelle. The plasmids used for tagging 

contained the template sequence for the fluorescent protein and selection marker, the gene 

expressed in the organelle, and the haploid strain that the fluorescent protein gene was 
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transformed into. Table 1 provides detailed information on the template plasmids used for each 

organelle. 

 

To integrate mCherry-TRP and mtagBFP2-TRP into the yeast genome, we linearized the 

respective plasmids and transformed them into the yeast. The remaining fluorescent protein 

genes were obtained via PCR, using sequence-specific primers designed with a forward primer 

containing 40 bases upstream of the stop codon of the organelle-specific gene and the beginning 

20 bases of the fluorescent protein gene. The reverse primer contained the reversed 

complementary sequence of 20 bases of the marker stop codon on the template plasmid and 40 

base pairs downstream of the stop codon of the organelle-specific gene. The transformed cells 

were selected on dropout or antibiotic plates according to the selection markers. Furthermore, we 

custom synthesized the mTFP1 sequence and inserted it into a PKT backbone with a KAN 

marker. Then the customized plasmids were transformed into the corresponding haploid strains 

and selected according to the markers. After each haploid had been verified to have 3 fluorescent 

proteins, they were crossed on a SD-Ura+G418 selection plate. The survived colonies consisted 

of diploid strains with 6 fluorescent proteins. 

Haploid Organelle Localized Gene Fluorescent Protein Selection Marker Template Plasmid Addgene # 

EY2795 vacuole VPH1 mTFP1 KAN customized PKT n/a 

EY2795 Golgi apparatus SEC7 mCitrine HIS pKT0211 [20] #8734 

EY2795 lipid droplet ERG6 mCherry TRP ZJOM70 [21] #133658 

EY2796 peroxisome C-SKL mtagBFP2 TRP ZJOM160 [21] #133670 

EY2796 endoplasmic reticulum SEC61 superfolderGFP URA pFA6a-link-yoSuperfolderGFP-CaURA3 [22] #44873 

EY2796 mitochondrion TOM70 tdTomato HIS pFA6a-link-tdTomato-SpHis5 [22] #44640 

Table 1 In each yeast haploid strain, the correspondence across the tagged organelles, selected localized protein, 

fluorescent protein tags, selection markers, and template plasmids containing the fluorescent proteins and the 

markers. 

 

“EYrainbowWhi5Up”  



9 

 

In order to perturb the size of the yeast cells, we tuned up the expression level of Whi5, a known 

repressor of G1 transcription  [23]. Cells that express more Whi5 will stay longer during G1 

phase, producing more intracellular materials and grow bigger in size. The Whi5 overexpression 

plasmid went through PCR with forward and backward primers homologous to the designed 

insertion site. Then the PCR products were transformed into the EY2795 and EY2796 haploids 

that each has 3 fluorescent protein tags. Then the haploids were crossed on a selection plate to 

get the Whi5 overexpression diploids with 6 fluorescent proteins, namely the 

“EYrainbowWhi5Up” strain. 

  

2.2.2 Strain Storage, Cultivation, and Nutrition Perturbation 

Table 3 provides a list of the different media used in our experiments. Prior to each experiment, 

the yeast cells were transferred from the petri dish to 10 mL of SD complete media and allowed 

to grow overnight in a thermostatic shaker. 

 

For the Whi5 overexpression experiment, 10 µM of beta estradiol was added to the experimental 

group, and the cells were grown in the shaker overnight before microscopy imaging. 

 

For all other experiments, the overnight culture was diluted to an optical density of OD (600 nm) 

= 0.1 in SD complete media and grown in the shaker for 2 hours to resume exponential growth. 

The cells were then washed twice and transferred into the respective experimental media. After 
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three hours of growth in the experimental media, the cells were harvested and observed under the 

microscope. 

Organelles Excitation wavelength Detecting wavelength 
Spectral 

resolution 

peroxisome & vacuole 455 nm 460 nm – 510 nm 10 nm 

endoplasmic reticulum 488 nm 500 nm – 550 nm 50 nm 

Golgi apparatus 514 nm 520 nm – 558 nm 38 nm 

mitochondrion & lipid 

droplet 
561 nm 567 nm – 647 nm 10 nm 

Table 2 Optical configurations to observe different (combinations of) organelles with the spectral confocal 

fluorescent microscopy 

 

2.2.3 Fluorescent Hyperspectral Confocal Microscopy Imaging 

Harvested cells from the experimental media were used to prepare microscope slides for 

imaging, which were observed under a Nikon Ti2 microscope. Image acquisition began once the 

cells had stopped moving within the field of view. A bright field microscopy image of the focal 

plane was captured first. Subsequently, hyper-spectral confocal microscopy images were 

captured at four different optical configurations, as detailed in Table 3. Following the acquisition 

of the z-stack images, another single-z bright field microscopy image was captured slightly off 

focus to facilitate cell segmentation during image analysis. 
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Figure 2 Emission spectra of the 6 fluorescent proteins, normalized by the laser light sources in the 4 optical 

configurations. (A) peroxisome & vacuole (B) endoplasmic reticulum (C) Golgi apparatus (D) 

mitochondrion & lipid droplet. The sharp colored peak labels the laser light wavelengths. The grey boxes label 

the scanning wavelength range of the spectral detector in each optical configuration. The data are from FPbase [24].  

 

2.2.4 Image Processing 

We utilized scikit-image [25], a Python-based image processing package, alongside YeaZ [26], a 

convolutional neural network specifically designed for yeast cellular segmentation, to segment 

the cells. Bright field microscopy images were first registered from the bright field camera to the 

hyper-spectral detector, and then underwent histogram equalization filtering prior to being fed 

into YeaZ for segmentation. The resulting segmentations from the before- and after- images were 

manually compared, and cells that moved during image acquisition were subsequently excluded. 

In the experiment involving leucine, since bright field images were not taken, segmentation was 

instead performed on the average z-projection of the green channel 2 hyperspectral confocal 

microscopy images via manual thresholding and watershed using ImageJ [27].  

 

To obtain single-channel z-stack images of individual organelles, we demixed the blue and red 

channels of hyper-spectral confocal microscopy images using the Nikon Ti2 Analysis software. 

Spectral characteristics were manually extracted by selecting regions of interest, and the 

resulting single-organelle images were then passed through ilastik [28], an interactive machine 

learning software, for segmentation. Prior to inputting the images into ilastik, the yellow and red 

channel images underwent cleaning via the subtraction of the average pixel intensity of the 

surrounding neighborhood of each cell, followed by the application of a 3D Gaussian filter with 
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sigma=0.75 to all images. An ilastik project was then trained for each organelle using hand-

drawn foreground-background labels on a sample image. 

 

The binary images generated by ilastik were subsequently post-processed based on the type of 

organelle contained within. For small and globular organelles such as the peroxisome, the Golgi 

apparatus, and the lipid droplet, the binary images underwent watershed using the Gaussian 

images as references. For the endoplasmic reticulum, the binary images were skeletonized, while 

for mitochondria, the binary images were labeled by treating simply connected pixels as 

individuals. For the vacuole, the binary images were processed slice by slice over the z-stack, 

with each z-plane first being skeletonized, then having its background flood filled, and finally 

having its color reversed so that the foreground represents the cross-section of the vacuole in that 

plane. 

 

Figure 3 Schematic illustrating the sequential steps in image processing for cell and organelle segmentation.  
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Top row: the brightfield cell image segmentation process using the YeaZ method (REF). The left panel shows the 

raw brightfield image, while the right panel presents the mask of segmented cells identified by YeaZ. Bottom row: 

showcases the segmentation of fluorescent organelle images. The first step involves spectral unmixing of 

hyperspectral image data into individual organelle channels The second step entails training the ilastik tool to 

differentiate between background and fluorescence-containing pixels for automated pixel classification. Finally, the 

third step involves grouping neighboring pixels to form structures representing organelles. 

 

To obtain organelle statistics for different cells, we iterated over the cells in the segmented cell 

image for each field of view and labeled and measured the area of each cell. We then applied the 

cell mask to each organelle image across all z planes. For organelles other than the vacuole, we 

recorded the label and number of pixels for each label in the image. For the vacuole, we iterated 

over the z-planes, identified the disk with the largest cross-section area, and recorded its 

statistics. The volumes of cells and vacuoles were estimated by treating the organism as a 

cylinder with a height equal to its diameter, while non-organelle volumes were estimated by 

subtracting the six organelle volumes from the cellular volumes. 

 

2.2.5 Data Analysis 

Validation of the Spectral Unmix 

To validate the unmixing of the spectral confocal microscopy image, we selected the pixels from 

the machine-learning based segmentation images, and examined the spectra of the pixels in the 

corresponding spectral images.  

 

In the images that contain peroxisomes and vacuoles, and images containing mitochondria and 

lipid droplets, we picked regions of interest (ROIs) that belongs to the specific organelles 
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according to our knowledge of their morphology, and obtained the spectra in those pixels as the 

benchmark. Then we normalized the spectra with respect to the channel with the highest 

intensity. The normalized spectra were averaged over all pixels from the same experiment, and 

plotted along with the benchmark spectra. 

 

As for endoplasmic reticulum and Golgi apparatus, we took the non-spectral confocal 

microscopy images in our experiments. In order to validate that these two organelles would not 

show up in the images of the other organelle, we took the spectral confocal images over the same 

wavelength ranges, namely green and yellow ranges. The organelles were segmented with 

machine-learning based ilastik. Then we checked the spectra of the pixels that belong to both 

organelles in green and yellow spectral images. Both of the spectra in each image were 

normalized with respect to the maximum channel from the brighter spectra in that image. 

 

Error Analysis of the Organelle Segmentation 

To assess the error in organelle size resulting from segmentation, we utilized the "probability" 

output generated by ilastik. To perform the foreground-background segmentation, we identified 

pixels whose foreground probability exceeded 0.5 as belonging to organelles. We then extracted 

all unique values present in the probability tensor. The upper error pixels were defined as those 

with a probability equal to the lowest value greater than 0.5, while the lower pixels were those 

with a probability equal to the highest value less than 0.5. In the case of the peroxisome-vacuole 

images from the leucine experiment, we used a threshold of 0.33 for both channels. The ratios of 
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the upper and lower errors over the total volumes of different organelles are presented in Figure 

6. 

Correlation Coefficient of Organelle Properties 

We first grouped data by experiments. Within each experiment, we grouped the organelle 

property data by the cells to which they belonged and calculated the average volumes, total 

volumes, and counting numbers of organelles within each cell. For each cell, we also computed 

three statistics for the six organelles (excluding the counting number of the endoplasmic 

reticulum) and cellular properties, including the cross-section area, estimated volume, and 

characteristic length (i.e., the estimated radii of the cross-section). We then calculated the 

correlation coefficients between each pair of statistical variables. 

 

Log-log Regression of the Cell/Organelle Total Volume 

The organelle property data were collected and grouped by individual cells to obtain the total 

volume of each type of organelle. The cellular volumes, six organelle volumes, and non-

organelle volumes were then transformed by taking their logarithms. To reduce statistical 

fluctuations, we excluded the smallest 10% of volumes for each experiment. We performed a 

linear regression analysis for each pair of logarithms, and recorded the slope in an 8x8 matrix. 

We also created a scatter plot of the logarithms in an 8x8 grid, where each experiment condition 

was labeled with a different color. 

 

Principal Component Analysis and Projection of Condition Vectors 
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The data were grouped by experiments. Within each experiment, the individual cells were kept 

as the rows of the data table, while the volume fractions of the six organelles were kept as the 

columns. The principal component analysis (PCA) was performed using scikit-learn, a python-

based machine learning tool library. Conceptually PCA is the singular value decomposition of 

the cross-variance matrix of the original data table. The eigenvectors of the cross-variance matrix 

are the principal vectors, while the eigenvalues are proportional to the variance explained by the 

eigenvectors. 

 

The 6-dimensional volume fraction vectors of individual cells can be linearly expressed by the 

principal components. For the cells that appeared in each experimental condition, we averaged 

their coordinates in the PCA space to get a centroid. Then the centroids were regressed to a 

straight line. We compared the direction of this line with the principal components by calculating 

the inner product between the direction vector and the principal components. 

 

Figure 4 Schematic depiction of the condition vector in the PCA space. 
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2.3  Results 

2.3.1 Validation on Spectral Unmix 

The emission spectra of mtagBFP tagged to peroxisome, and mTFP1 tagged to vacuole were 

plotted in Figure 5-A. The emission spectra of tdTomato tagged to mitochondrion and mCherry  

tagged to lipid droplets were plotted in Figure 5-B. The emission spectra from the experiments 

showed clear separations from the other fluorescent proteins, and good agreements with the 

benchmark spectra used to unmix the spectra. The detailed difference between the benchmark 

and the bulk experiment spectra should result from the colocalization of the corresponding 

organelles. 

 

In the preliminary experiments, the fluorescent proteins tagged to endoplasm reticulum 

(superfolderGFP) and Golgi apparatus (yemCitrine) showed well separated emission spectra 

under corresponding excitation lasers. (Figure 5-C, Figure 5-D) Therefore, we used non-spectral 

confocal microscopy in the perturbation experiments to image these organelles to shorten the 

acquisition time.  
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Figure 5 Separation of the emission spectra of the fluorescent proteins under corresponding optical configurations in 

table 2.  

In (A) peroxisome (mtagBFP) and vacuole (mTFP1), (B) mitochondrion (tdTomato) and lipid droplets (mCherry), 

the colored lines are benchmark spectra used to unmix the spectral microscopy images. The gray lines are the 

averaged emission spectra in each perturbation experiment. (C,D) endoplasm reticulum (superfolderGFP, blue line) 

and Golgi apparatus (yemCitrine, red line) were shown to have more separated emission spectra given 

corresponding excitation laser in the preliminary experiment. 

 

2.3.2 Error Analysis on Image Segmentation 

By utilizing the pixel-level posterior probabilities, which determine the likelihood of assigning a 

specific pixel to a particular organelle type, we were able to estimate the errors associated with 

our volume fraction measurements. Based on our analysis, we found that the range of errors in 

these measurements falls between 5% and 10% (Figure 6). 
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Figure 6 The estimated error of the total volume of 6 organelles across different perturbation experiments.  

 

2.3.3 Cellular Growth Rate and Organelle Property Data 

 

Experiment 
Base 

Medium 
Change/Addition Condition Alias Name N (cells) Growth rate (hr-1) 

glucose YNB+CSM glucose 0 glu-0 1520 0.010 

   
0.01% 

m/v 
glu-0-5 868 0.147 

   0.1% m/v glu-5 1191 0.310 

   1% m/v glu-50 555 0.461 

   2% m/v glu-100 861 0.427 
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   4% m/v glu-200 790 0.480 

leucine SD-leucine leucine 0 leu-0 1012 0.101 

   25 mg/L leu-25 736 0.166 

   50 mg/L leu-50 1666 0.224 

   75 mg/L leu-75 1080 0.435 

   100 mg/L leu-100 1505 0.516 

cell size SD complete Whi5 overexpression 0 Whi5Up-0 651 n/a 

  beta-estradiol 10 µM Whi5Up-10 353 n/a 

PKA 

pathway 
SD complete 1-nm-pp1 0 1nmpp1-0 1640 0.515 

   500 nM 
1nmpp1-

500 
1554 0.436 

   1.5 µM 
1nmpp1-

1000 
1173 0.396 

   3 µM 
1nmpp1-

3000 
1682 0.101 

TOR 

pathway 
SD complete rapamycin 0 rpmc-0 1278 0.509 

   
100 

ng/mL 
rpmc-100 1297 0.430 

   
200 

ng/mL 
rpmc-200 772 0.421 

   
400 

ng/mL 
rpmc-400 1760 0.207 

   
1000 

ng/mL 
rpmc-1000 1963 0.201 

Table 3 Summary of the perturbation experiments, including the base media, the perturbed biochemical processes, 

the number of cells in each condition group, and the growth rate measured by OD (600nm) 

 

2.3.4 Correlation Coefficient between Organelle Properties 

To validate our data, we performed an analysis utilizing a pairwise correlation coefficient matrix 

encompassing various properties of the organelles under investigation. Furthermore, we 

meticulously compared the entries within this matrix with findings from prior studies, as 

illustrated in Figure 7. In every instance we explored, we observed a notable concurrence 
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between the outcomes obtained from our comprehensive organelle imaging at the systems level 

and the previously reported results. For instance, when investigating the association between the 

overall size of the organelles and the dimensions of their respective host cells, we successfully 

replicated the positive correlation previously documented for the endoplasmic reticulum (ER), 

vacuole/lysosome, and mitochondria (Figure 7). 

 

Figure 7 Heatmap depicting the correlation coefficients between organelle properties and cellular characteristics for 

each individual cell in the glucose perturbation experiments. 
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Figure 8 Heatmap depicting the correlation coefficients between organelle properties and cellular characteristics for 

each individual cell upon different perturbation experiments. (A) leucine (B) cell size (C) PKA pathway (D) TOR 

pathway. 

 

2.3.5 Power Law between Organelle Volume Fractions 

Armed with a validated dataset, our primary objective was to differentiate among several models 

that strive to comprehend the primary limitations imposed by cellular compartments on cell size 

and growth. For this purpose, we derived volume scaling exponents for each combination of 

structures we examined, in addition to the cell's volume and an approximation of the 

nucleocytoplasmic volume (Figure 10). 
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Certain exponents exhibited congruity with established cell biological associations, notably the 

positive scaling observed between endomembrane organelles such as the Golgi, peroxisome, and 

lipid droplet, in relation to the endoplasmic reticulum (ER). 

 

Nonetheless, our comprehension of the role organelle allocation plays in governing cell growth 

was confronted by two specific sets of exponents. Firstly, the scaling exponents pertaining to the 

vacuole indicated a disconnection between vacuole biogenesis and the other organelles under 

investigation. Secondly, the exponents that linked the volume of the cell to the volume of the 

vacuole and nucleocytoplasm presented further challenges, suggesting intricate relationships yet 

to be fully elucidated. 

 

Theoretical predictions of the scaling exponent exhibit disagreements based on the proposed 

mechanisms for limiting cell size. When cell size is limited by bulk protein synthesis, scaling 

exponents of 1 are favored. Conversely, when cell size regulation is influenced by transport 

limitations, scaling exponents of 2/3 are favored (Figure 9). 

 

In our study, we made observations within different glucose environments. We found that the 

volume of the cell obeyed scaling exponents of 0.24 ± 0.01 and 0.60 ± 0.01 for the vacuole and 

nucleocytoplasm, respectively (see Figure 10). And similar relationships can be observed in 

other perturbation experiments. 
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Considering the strong correlation between cell size and growth rate, the sublinear scaling 

exponent predicts that the volume fraction of the cell allocated to vacuole and nucleocytoplasm 

should increase as the growth rate increases. This is indeed observed for the nucleocytoplasm, as 

shown in Fig. 1f. The relationship between increasing nucleocytoplasmic volume fraction and 

growth rate resembles the "growth law" observed in prokaryotes, leading us to hypothesize that 

growth is limited by nucleocytoplasmic availability. 

 

Figure 9 Log-log relationship between the volumes of the cells and the cytoplasm. The inlet is the benchmark 

shuffled from the data in the 2.0% glucose experiment. The black line is the exponent 1 line, while the red line is the 

linear regression form the log-log data. 
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Figure 10 Log-log plots of total volumes of 6 organelles, total volume of the cell, and estimate of 

nucleocytoplasmic volume in the glucose perturbation experiments 
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Figure 11 Log-log plots of total volumes of 6 organelles, total volume of the cell, and estimate of 

nucleocytoplasmic volume from different perturbation experiments: (A) leucine (B) cell size (C) PKA pathway (D) 

TOR pathway. Lines are the linear regression within each condition. 

 

However, we encountered a contradiction when examining the vacuole. To investigate further, 

we measured how organelle allocations are adjusted in various growth contexts to match the 

supply of each compartment with the demands of growth. 
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2.3.6 Entropy and Mutual Information between Cellular Growth Rate and 

Organelle Properties 

In order to assess the degree of organization in the process of organelle biogenesis at the systems 

level, we conducted an analysis to examine the consistency of changes in organelle profiles when 

exposed to variations in glucose concentration. To gain insights into how cells distribute their 

limited resources and energy, our investigation primarily focused on the fractions of organelle 

volumes. 

 

To quantify the magnitude of change, we employed the Kullback-Leibler divergence [29] to 

compare the distributions of organelle volume fractions among cell populations cultivated under 

different glucose concentrations. Specifically, we utilized 2% glucose as the reference 

concentration against which measurements were taken. To evaluate the coherence of any 

observed changes, we calculated the Shannon entropy of the organelle volume fraction 

distributions for each population. By comparing the relative changes in Shannon entropy and KL 

divergence as cells were subjected to varying glucose concentrations, we made the noteworthy 

observation that the KL divergence exhibited an increase of 200-400% compared to the reference 

population. This indicates that cells do indeed modify their allocation of organelles in response 

to fluctuations in glucose. In contrast, the Shannon entropy only experienced a 10% change 

(Figure 12), suggesting that the organelle profiles of cells remain comparably constrained under 

both low and high glucose levels. 
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Figure 12 Comparison of Shannon entropy and Kullback-Leibler divergence of the organelle volume fraction 

distribution (A) under different glucose concentrations with respect to 2% glucose (B)  

 

2.3.7 Principal Component Analysis on Organelle Volume Fractions 

Based on our information theoretic analysis, which indicated that cells exhibit a relatively 

consistent pattern of changes in organelle volume fractions, our objective was to identify these 

changes. To accomplish this, we employed hyperspectral imaging of rainbow yeast and subjected 

the obtained results to principal components analysis. From this analysis, we computed a vector 

referred to as the "condition vector," connecting the centroids of the data from each experimental 

condition (Figure 4). Upon examining the first three principal components, we observed a 

significant correlation between the position of an individual cell in this space and the glucose 

environment in which it was cultured (Figure 13-A). 

 

In order to gain a deeper understanding of the cell biology implications inherent in the data's 

structure along its principal components, we represented the principal components in terms of the 
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changes in organelle volume fractions along these components (Figure 13-B). Furthermore, we 

evaluated the degree of co-linearity between these principal components and the condition 

vector, averaged across multiple glucose conditions. When expressed in this manner, the first 

principal component revealed a decrease in volume fractions for all organelles except the 

vacuole with increasing glucose concentration in the environment (Figure 13-B). The second 

principal component demonstrated a decrease in vacuole volume fraction. As for the third 

principal component, it primarily exhibited a combination of decreasing mitochondrial and lipid 

droplet volume fractions alongside increasing peroxisomal and Golgi volume fractions (Figure 

13-B). 

 

Rather than acting in isolation, our systems-level perspective uncovered patterns of 

interconnected organelle biogenesis in response to glucose availability. Notably, our data-driven 

identification of organelle changes, which was independent of the glucose environment in which 

the cells were cultured, aligns with previous findings in yeast physiology. For instance, earlier 

studies have shown that decreasing glucose concentrations lead to a shift towards respiration 

over fermentation and reduced membrane demand due to diminished growth. This concurs with 

our observed coupling of upregulated mitochondrial and lipid droplet volume fractions with 

downregulated peroxisome and Golgi volume fractions upon decreasing glucose levels (Figure 

13). 

 

The limitation of nutrients, as observed in natural settings, such as glucose scarcity, typically 

leads to reductions in both cell size and growth rate. [30, 31, 32, 33, 34, 35, 36, 37] This 
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correlation poses a challenge to identifying the specific physiological signals driving the 

observed patterns of organelle biogenesis. Therefore, our objective was to distinguish how cell 

size and growth rate can independently activate the identified organelle modes. To investigate 

these possibilities, we conducted two additional analyses on our rainbow yeast cells. 

 

To examine the effects of nutrient-independent cell size control, we introduced a plasmid 

containing a copy of the Whi5 gene under the control of an inducible promoter responsive to 

beta-estradiol [38, 39]. Although the exact mechanism by which Whi5 expression levels alter 

cell size is still under investigation, our experiments revealed an approximate 2.4-fold increase in 

cell size upon exposure to saturating levels of -estradiol. 

 

To investigate the effects of non-natural growth rate dependence, we took advantage of the fact 

that rainbow yeast cells were genetically modified to be auxotrophic for the amino acid leucine. 

This artificial leucine autotrophy disrupts the natural connection between cell size and growth 

rate (Figure 14). By modulating the levels of leucine in the growth medium, we were able to 

manipulate the growth rate accordingly [40]. Subsequently, we conducted hyperspectral imaging 

on rainbow yeast cells cultivated under various concentrations of leucine and -estradiol in the 

culture medium. 
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Figure 13 The principal component analysis result on the normalized organelle volume fractions in the glucose 

perturbation experiment. (A) The projection of organelle volume fraction data onto 3 principal components that are 

most aligned with the condition vector. (B) Heatmap of the principal components of normalized organelle volume 

fractions and their corresponding constituent organelles. (C) The cosine of the angle between the condition vector 

and various principal components, sorted in descending order. 

 

Figure 14 The principal component analysis result on the normalized organelle volume fractions in the leucine 

perturbation experiment. (A) The projection of organelle volume fraction data onto 2 principal components that are 

most aligned with the condition vector. (B) Heatmap of the principal components of normalized organelle volume 

fractions and their corresponding constituent organelles. (C) The cosine of the angle between the condition vector 

and various principal components, sorted in descending order. 

 

Figure 15 The principal component analysis result on the normalized organelle volume fractions in the cell size 

perturbation experiment. (A) The projection of organelle volume fraction data onto 2 principal components that are 
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most aligned with the condition vector. (B) Heatmap of the principal components of normalized organelle volume 

fractions and their corresponding constituent organelles. (C) The cosine of the angle between the condition vector 

and various principal components, sorted in descending order. 

 

 

Figure 16 The principal component analysis result on the normalized organelle volume fractions in the PKA 

pathway perturbation experiment. (A) The projection of organelle volume fraction data onto 2 principal components 

that are most aligned with the condition vector. (B) Heatmap of the principal components of normalized organelle 

volume fractions and their corresponding constituent organelles. (C) The cosine of the angle between the condition 

vector and various principal components, sorted in descending order. 

 

Figure 17 The principal component analysis result on the normalized organelle volume fractions in the TOR 

pathway perturbation experiment. (A) The projection of organelle volume fraction data onto 3 principal components 

that are most aligned with the condition vector. (B) Heatmap of the principal components of normalized organelle 

volume fractions and their corresponding constituent organelles. (C) The cosine of the angle between the condition 

vector and various principal components, sorted in descending order. 

 

2.3.8 Condition Vectors and theirs Projections in PCA Space 

To gain a mechanistic understanding of whether the observed patterns of systems-level organelle 

biogenesis are driven by physical constraints arising from cell size and nutrient availability, or if 
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they can be provoked solely by information from growth-regulating signaling pathways, we 

employed chemical biology tools to manipulate growth signaling. In budding yeast, the two 

major growth signaling pathways are the target-of-rapamycin (TOR) and protein kinase A (PKA) 

pathways [41, 42]. Our aim was to characterize the systems-level organelle biogenesis profile in 

terms of organelle fractions, as influenced by TOR activity (specifically TORC1) and PKA 

signaling strengths.  

 

For the TOR pathway, we utilized the small molecule inhibitor rapamycin to modulate TORC1 

activity. In the case of the PKA pathway, we engineered rainbow yeast with mutations in the 

PKA pathway genes TPK1, TPK2, and TPK3, rendering these enzymes responsive to inhibition 

by the small molecule 1-nm-pp1 [8, 43]. We then exposed rainbow yeast to varying 

concentrations of rapamycin and 1-nm-pp1, conducted hyperspectral imaging, and plotted the 

principal components in the space defined by organelle volume fractions (Figure 16, Figure 17) 

[11].  

 

Our observations indicate that the first principal component, associated with TOR signaling, 

closely aligns with the organelle modes responsive to leucine deprivation (Figure 14-B, Figure 

17-B). This finding is consistent with TOR signaling being sensitive to leucine levels [43]. On 

the other hand, the organelle mode primarily influenced by PKA pathway activity (Figure 15-B) 

demonstrates a significant co-linearity with the mode responsive to cell size (Figure 16-B). These 

results suggest that TOR and PKA signaling pathways establish connections between cell growth 

rate and cell size, respectively, and systems-level organelle biogenesis [11]. 
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Figure 18 The similarities of condition vectors’ projection onto principal components between each pair of 

experiments 

2.4  Discussions 

The organelles within cells exhibit a fascinating combination of interactivity and modularity. 

Their intricate structure and functions pose a significant challenge in comprehending the 

fundamental principles that govern their biogenesis. By employing a top-down, data-driven 

approach, we shed light on the underlying mechanisms that regulate organelle biogenesis in 

response to physiological cues. This novel perspective allows us to delve deeper into the intricate 

connections established among organelles, despite the intricate and multiscale processes that 

govern their formation and functionality. Through this comprehensive approach, we unraveled 

the mechanisms that orchestrate the intricate dance of organelles within the cellular environment.  

 

Our research endeavors have involved meticulous analysis of the pairwise correlations between 

organelle volume fractions and the size of host cells, yielding intriguing findings. Remarkably, 

our data reveals a compelling inverse correlation between the volume fractions of organelles and 
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the size of the host cell. In other words, as cells grow larger, organelles occupy a relatively 

smaller fraction of the cellular space. This observation has led us to delve deeper into the growth 

patterns of organelles, particularly focusing on size scaling exponents below 1. By investigating 

these patterns, we have uncovered a fascinating phenomenon. It appears that by promoting the 

growth of organelles with size scaling exponents less than 1, a greater proportion of the cell can 

be allocated to nucleocytoplasm, which in turn facilitates increased organelle volumes required 

to accommodate the rapid growth observed in certain cellular contexts [11].  

 

In addition to uncovering the intriguing dynamics of organelle biogenesis, our research has shed 

light on the intricate coordination between system-level organelle growth and the host cell itself. 

Contrary to the prevailing notion of fixed fraction allocation, our data suggests that the growth 

rates of both organelles and the host cell are closely intertwined. This coordination ensures that 

the biogenesis of organelles occurs in harmony with the overall growth of the cell, thereby 

fostering efficient cellular functioning. By establishing a delicate balance between organelle 

growth rates and the host cell's development, the cellular environment maintains a robust and 

optimized state conducive to the demands of various physiological processes [11].  

 

One of the crucial insights arising from our research is the mechanistic role played by PKA and 

TOR signaling activity in linking the growth rate and cell size to the process of organelle 

biogenesis. This significant conclusion would have been elusive without adopting a systems-

level perspective. Our measurement strategy, designed to effectively capture the intricate 

dynamics of systems-level organelle biogenesis, possesses a remarkable degree of 
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generalizability. It can be readily applied to investigate the impact of disruptions in the organelle 

contact network on organelle biogenesis under diverse physiological conditions. For instance, 

our approach holds promise in unraveling the intricate dynamics of organelle biogenesis in aging 

cells or within the complex multicellular tissues. In such contexts, organelle biogenesis must 

simultaneously fulfill the universal cell biological requirements and the unique metabolic 

demands specific to each cell type. By adopting our comprehensive measurement strategy, 

researchers can gain valuable insights into the intricate interplay between organelle biogenesis 

and the diverse physiological states encountered in complex biological systems [11].  

Chapter 3: Quantitative Model of Organelle 

Resource Allocation and Experimental 

Validation with Biomolecular Condensate  
 

3.1 Introduction 

Given the system-level experimental observations and the phenomenological analysis of 

organelle biogenesis data, we seek to deepen our understanding of how cells distribute resources 

among organelles to achieve growth goals with quantitative models. Specifically, we would like 

to explain the seemingly contradictive observations in our previous experiments. The system 

organelle experiments showed this allocation process is influenced by specific signals derived 

from the sensed size and growth rate of the cell, which are indicated by the activity levels of the 

PKA and TOR signaling pathways. However, the increase in TOR and PKA signaling, both of 

which are associated with cell size enhancement in response to natural stimuli, leads to opposite 

effects on the volume fraction of the cell occupied by the vacuole [11].  
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In our model, the cell detects variations in cell volume, and assigns volumes beyond necessary to 

vacuoles, to maintain the nucleocytoplasmic volume fraction. This principle in the design 

directly results in a consistent nucleocytoplasmic volume fraction, while the volume fractions of 

other organelles decrease as the cell expands in constant growth conditions. To verify this 

hypothesis, we utilized a newly engineered synthetic biological condensate called PopTag, 

derived from Caulobacter crescentus. The PopTag was employed to artificially increase the 

crowding effect within the cytoplasm. The outcome aligns with our proposed concept that the 

cell separates the responsiveness of organelle modes to cell size and growth rate [12].  

3.2 Methods 

3.2.1 Mathematical model of organelle resource allocation 

When there is a fluctuation in cell volume 𝑉𝑐𝑒𝑙𝑙, the cell could allocate the fluctuation 𝛿𝑉 to 

either the cytoplasm, or maintain the volume fraction of cytoplasm and send the extra volume to 

vacuoles. 
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Figure 19 illustration of organelle allocation model, which utilizes the architecture of organelle modes to enable 

fluctuations in cell size to be absorbed by corresponding fluctuations in vacuole size. 

 

Volume fluctuation allocated to cytoplasm 

The volume fraction of cytoplasm will be modified: 

𝜙𝑐𝑦𝑡𝑜 =
𝑉𝑐𝑦𝑡𝑜

𝑉𝑐𝑒𝑙𝑙
→

𝑉𝑐𝑦𝑡𝑜 + 𝛿𝑉

𝑉𝑐𝑒𝑙𝑙 + 𝛿𝑉
 

Taylor expand and neglect the terms higher than the second order: 

𝜙𝑐𝑦𝑡𝑜 =
1

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑦𝑡𝑜 + 𝛿𝑉

1 +
𝛿𝑉

𝑉𝑐𝑒𝑙𝑙

≈
1

𝑉𝑐𝑒𝑙𝑙
(𝑉𝑐𝑦𝑡𝑜 + 𝛿𝑉)(1 −

𝛿𝑉

𝑉𝑐𝑒𝑙𝑙
)

≈ 𝜙𝑐𝑦𝑡𝑜 + (1 − 𝜙𝑐𝑦𝑡𝑜)
𝛿𝑉

𝑉𝑐𝑒𝑙𝑙
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The second term means the fluctuation of cell volume could result in an increase in 

nucleocytoplasmic volume fraction, even in the constant growth phase. As a consequence, there 

could be a discrepancy between the supply of nucleocytoplasmic volume fraction and the 

demands of growth.  

 

Volume fluctuation maintains cytoplasm fraction, with extra volume allocated to vacuoles 

𝜙𝑣𝑎𝑐 − 𝜙0 = (1 − 𝜙𝑐𝑦𝑡𝑜)
𝛿𝑉

𝑉𝑐𝑒𝑙𝑙
 

where 𝜙0 is the minimum apparent vacuole size. 

𝜙𝑣𝑎𝑐 − 𝜙0 = (1 − 𝛼𝜆)
𝛿𝑉

𝑉𝑐𝑒𝑙𝑙
 

The volume fraction of cytoplasm 𝜙𝑐𝑦𝑡𝑜 is linearly correlated with the growth rate 𝜆: 

Upon examining this equation, we observe two important trends. First, we observe a positive 

correlation between the volume fraction of the vacuole and the variability in cell volume under 

constant conditions (constant growth rate λ; PKA organelle mode). Second, we observe a 

decrease in the overall average vacuole volume fraction as the growth rate increases across 

different conditions (TOR organelle mode).  

To generate experimentally verifiable hypothesis from this framework, we consider a situation 

when introducing a biomolecular condensate. Based on our model, we hypothesized that the 

presence of the biomolecular condensate would lead to corresponding modifications in the 

vacuole volume fraction: 
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𝜙𝑣𝑎𝑐 − 𝜙0 = (1 − 𝛼𝜆)
𝛿𝑉

𝑉𝑐𝑒𝑙𝑙
− 𝜙𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 

3.2.2 Experiment validation with biomolecular condensates 

 

Figure 20  (Left) example image of cells expressing Vph1-mCerulean3 to visualize vacuoles in the absence of 

PopTag-YFP constituted biomolecular condensates. (Right) example image in the presence of PopTag-YFP 

constituted biomolecular condensates. 

The above model presents a robust prediction: when the nucleocytoplasmic compartment is 

artificially constrained under constant growth conditions, the vacuole should respond by 

reducing the extent to which its volume fraction increases with cell size. To verify this 

prediction, we utilized the PopTag, a synthetic biological condensate derived from Caulobacter 

crescentus, to induce crowding within the cytoplasm. We attached monomeric Citrine to the C- 

terminal end of the PopTag and relied on inherent stochastic fluctuations in PopTag expression 
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(Figure 19-A). This experimental setup allowed us to monitor the response of each organelle to 

this spatial perturbation (Figure 19- B) 

3.3 Results and Discussion 

 

Figure 21 Change in vacuole volume fraction in response to variability in cell volume in the 2% glucose 

environment. In the absence of the biomolecular condensate (blue dots), the vacuole volume fraction exhibits a 

certain pattern. However, in the presence of the biomolecular condensate (green dots), the vacuole volume fraction 

shows a different trend, as illustrated in the inset (red dots). The black dashed line represents the predicted change in 

the vacuole volume fraction when the biomolecular condensate is present. 

Our observations indicate that as cells increase in size, the volume fractions of PopTag-YFP also 

increase (Figure 20, inset). However, in the same cells, the volume fraction of the vacuole 

decreases compared to its non-crowded counterpart (Figure 20). Remarkably, our mathematical 

model enables us to predict the change in the slope that describes the relationship between the 

vacuole volume fraction and cell size (Figure 20, black dashed line) [41].  
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This finding supports our concept that the cell separates the responsiveness of organelle modes to 

cell size and growth rate, allowing the vacuole to play a pivotal role in buffering the cell against 

fluctuations in cytoplasmic availability. Consequently, the cell can adjust the allocation of 

compartments to align with its growth environment. 

  



44 

 

Chapter 4: Organelle Recognition from 

Bright Field Fluorescent Microscopy 

Empowered by Deep Learning  
 

4.1 Introduction 

In the research covered in the previous chapter, the organelle data were collected 3 hours after 

the switch of culture from replete media. At that time the cells are in the exponential growth 

stage, which means their growth rate is steady. The extracted statistics are able to reveal cell’s 

different long-lasting responses to various perturbed environments, in terms of different modes 

in organelle size and population. However, this cannot capture the dynamic process in which 

cells switch to new organelle modes when the environment changes. The temporal data of the 

population and sizes of different organelles in individual cells, could offer hints about the 

mechanisms cell use to regulate different organelles, in order to achieve their growth goals.   

 

An imaging system maps objects in the physical world into data of the same or lower 

dimensional image space [44]. An optical imaging system achieves this by collecting the photons 

emitted from the objects during the imaging time onto a sensor of a limited size [45]. Imaging 

goals include but are not limited to: high spatial resolution, high spectral color resolution, high 

temporal frame rate, wide field of view, and low photodamage to samples. Different imaging 

techniques have different trade-offs between the goals, because of the imperfection of imaging 

components, limited sensor size, and limited exposure time [44] [45].  
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An optical microscope is a diffraction-limited system, giving the spatial resolution an upper limit 

at the order of the wavelength of the emitted photons. Mathematically, the image vector is 

considered as the convolution between the object and the point spread function (PSF) of the 

imaging system. The point spread function is measures by taking the image of a single point at 

the size of the diffraction limit. The intensity of a given pixel in the image is the sum of the 

diffraction patterns of all points in the object [44].  

 

4.1.1 Confocal Microscopy 

Confocal microscopy minimizes the effect of diffraction at the image acquisition stage. It has 

pinholes on the light path in front of and behind the lens, so that at any time only one point of 

object is lit up and only photons from that point are collected by the sensor. The point spread 

function is approximately a unit vector. This method can achieve the spatial resolution near the 

diffraction limit [46].  

 

The scanning of the pinholes gives confocal microscopy a lower time resolution than traditional 

microscopy, and requires precise micro-controlling. The high proportion of rejected photons 

requires a stronger light source, which can be photodamaging to the fluorescent proteins. The 

optical configuration in the previous chapter suffered from a spatial resolution of 0.4 um in pixel 

size, and a low frame rate of ~5 minutes per field of view [11].  
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4.1.2 Spectral Imaging 

One defining novelty of the research project in the previous chapter is the simultaneous 

measurements of several organelles in individual cells. The requires a high spectral resolution to 

separate the signals from different fluorescent proteins having overlapping emission spectra. This 

was enabled by a diffraction gating that separates photons of different wavelengths onto a linear 

multi-anode array detector downstream of the confocal pinhole. The photons of various 

wavelengths are diffracted at different distances in higher-index diffraction peaks, thus decoding 

spectral information into spatial information. Counting the number of photons in corresponding 

sensor channels yields the emission spectra of the sample. Comparison and linear decomposition 

with the emit spectra of known fluorescent proteins gives the relative intensity of corresponding 

fluorescent proteins [47].  

 

The disadvantage of this technique is that the number of photons into each spectral channel is 

reciprocal to the number of channels, leading to a low signal to noise ratio. A higher light source 

power and longer acquisition time are used to compensate this shortcoming. This further lowers 

the temporal resolution of the data. 

 

4.1.3 sCMOS Camera 

sCMOS (scientific Complementary Metal-Oxide-Semiconductor) is the default alternative to 

spectral detector in microscopy. It enables low noise, high frame rate, and wide field of view. It 

allows LCD rather than the high-power laser to be used as the light source, thus avoids 
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photodamage to the sample and allows timelapse acquisition. [48] In our current hardware 

setting, the Hamamatsu ORCA-Flash4.0 camera has a frame rate of ~10 frames per second per 

field of view, and a pixel size down to 0.1 um [11]. 

 

However, although the lack of confocal pinhole could increase the light flux and avoid 

photobleaching, the out-of-focus light blurs the image of the object due to diffraction. Moreover, 

without the diffraction grating to resolve the wavelength of the emitted photons, the spectral 

resolution of the system depends on the emission filter. The allowing wavelength range of most 

commercially available emission filters are between 50 nm and 100 nm. This is not enough to 

distinguish the overlapping fluorescent proteins in our rainbow yeast strain, leaving more than 

one organelle in each channel of images [11].  

 

4.1.4 Deep Learning in Biological Imaging and U-Net 

Capturing the dynamics of the organelles requires the imaging system to do continuous 

timelapse, at a non-photodamaging light intensity, in a high frame rate, with a high spectral 

resolution. This is not achievable by either the spectral confocal microscopy or the filter cube-

based widefield fluorescence microscopy. Therefore, we seek post-acquisition processing 

methods that take in images from one imaging system, and output images that also enjoy the 

advantages of the other system. 
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Figure 22 Illustration of the rationale of neural network training to combine the advantages of fluorescent 

microscopy and spectral confocal microscopy. 

Machine learning is a class of algorithms that attempt to find the relationship between given 

input and output data  [49]. Among them deep learning models use data structure and algorithms 

inspired from biological neural systems, and show great promises in image processing tasks [50]. 

U-Net is a deep learning network that was first developed to perform image segmentation [51]. 

Later studies have shown that the network can perform various other tasks by mutating network 

size and loss metrics [52].  

 

To train a U-Net to perform our task, we need to take the images of the same rainbow yeast cells 

with both the sCMOS filtered fluorescent microscopy and the spectral confocal microscopy. The 

sCMOS filtered fluorescent microscopy serve as the training input. The training targets are either 

the raw images of the spectral confocal microscopy images, or images processed downstream of 

our previous image process workflow. When the training finishes, we have a model that can 
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segment different organelles into different color channels from the timelapse images taken by the 

sCMOS filtered fluorescent microscopy. 

 

4.2 Methods 

4.2.1 Image Acquisition 

Both strains (EYrainbow wildtype) with and without a plasmid encoding a WHI5 overexpression 

construct (EYrainbow-Whi5up) were imaged. One day before imaging, the cells were transferred 

from petri dish colonies into 10 mL synthetic complete liquid medium and grew overnight. On 

the morning of imaging, the cells were diluted into OD (600 nm) = 0.1 and grew for another 3 

hours to resume exponential growth. Then the cells were harvested with a centrifuge and made 

into a live microscope slide. 

 

The microscope slide was observed under the Nikon Ti2 inverted microscope. After finding a 

field of view where the cells were dense but not overcrowded, the microscope was manually 

focused and locked in its Z position. Images were taken only at this Z position. The sCMOS 

camera images with proper fluorescent filters were taken before the spectral confocal microscopy 

images, in order to avoid photobleaching. 
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4.2.2 Image Registration 

To register the fields of view between the sCMOS camera and the spectral detector, 0.1 µm 

TetraSpeck™ microspheres were imaged. The suspension beads were diluted 100 times in 

distilled water and thoroughly centrifuged. 2 uL diluted suspension was spread onto the 

microscope slide with a pipet tip and was left alone until the liquid dried out. Then we applied 2 

uL synthetic complete media onto the bead area and covered it with covering glass. The slide 

was observed and focused under the microscope. Images of both the sCMOS camera and the 

spectral detector were taken. 

 

After the image acquisition, we used ilastik to segment the beads from the background in the 

images. The correspondence between images of the same beads in different images were 

identified manually. The position of each bead is calculated from the coordinates of the 

segmented pixels, weighted by the pixel intensity in the original images. The affine 

transformations were calculated with the python scikit-image package [25]. 
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Figure 23 The comparison of the fields of view between the sCMOS camera and the spectral confocal detector. The 

dots are intensity weighted centroids of the microspheres. 

 

The spectral images were transformed to align with the sCMOS camera images. This is because 

we want to keep the widefield microscopy images untransformed, so that the neural network 

could learn the unchanged morphology of organelles from the sCMOS camera images.  

 

For a given 2-D coordinate �⃑� in the source image, its destiny coordinate �⃑� after an affine 

transformation can be expressed as �⃑� = 𝐴�⃑� + �⃑⃑�, where 𝐴 is a similarity transform matrix, and �⃑⃑� 

is a translation vector. Alternatively, it can be expressed with a 3-D matrix by appending 

coordinates with a 1: 
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[�⃑�
1

] = [ 𝐴 �⃑⃑�
0    0 1

] [�⃑�
1

] 

The 3-D affine transformation matrix from the spectral detector to the sCMOS camera with the 

cyan filter is: 

[
1.009527 0.04239949 224.4792

−0.04500528 0.9778522 270.2124
0 0 1

] 

The 3-D affine transformation matrix from the spectral detector to the sCMOS camera with the 

green filter is: 

[
1.009807 0.04264218 224.3990

−0.04946186 0.9781828 270.6104
0 0 1

] 

To apply the affine transformation from the spectral detector to the sCMOS camera without 

filters, the above two matrices were averaged. 

 

4.2.3  Dataset Preparation 

Registered images of all channels were cropped to 480 by 480 pixels around the center. The 

single-channel images were normalized between 0 and 1 with respect to the maximum and 

minimum of intensity. The channels that will serve as training inputs are saved into one multi-

channel image file, and channels that will serve as training targets were saved as another multi-

channel image file. 
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At the beginning of the training phase, the dataset was randomly split into a training set of 50 

image pairs, and a validation set of 18 image pairs. In order to yield reproducible results, a 

random seed was selected. 

 

4.2.4  U-Net Hyperparameters, and Training Environment  

The U-Net is modified from the original version [51]. Contrary to the valid convolutions without 

padding, we padded the inputs to convolution with the boundary values, so that input and output 

of the neural network had the same size. This decouples the training phase from the data 

preparation phase, because valid convolution would change the size of output images, which 

requires re-configuration of the data loader when we change the U-Net model depth. And 

previous work has shown the same-size convolution does not compromise too much of the 

effectiveness of the neural network [52].  

 

We also decreased the number of feature maps in every depth of the network, in order to reduce 

the size of the network and avoid overfitting. The effects of feature map numbers will be 

discussed in the result section. We chose the mean squared error as the loss function. The 

training batch size was 10 images. A total of 1500 epochs of training were performed. We saved 

the model that had the lowest loss on the validation set as the training result. 
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The training is performed on a high-performance computing cluster with operating-system-level 

virtualization. The training task was allocated with 16 GB CPU memory, and 16 GB GPU 

memory. By down tuning the batch size, this task is also able to run on personal workstations.  

 

4.3 Results 

4.3.1 Loss Function and its Descending on Training and Validation Datasets 

The descending of loss between the trained model predictions and the ground truth had different 

behaviors on the training set and the validation set. (Figure 24) On the training set, the loss 

function kept getting lower values until the last epoch, while the loss recovered after around 

1200 epochs on the validation set. This is an indication that the model is getting overfitted by the 

training set, i.e., it is learning common patterns among the images in the training set, that are not 

general morphological features of the corresponding organelles. 
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Figure 24 The loss between the model prediction and the ground truth, during 1500 epochs of training, in (A) the 

training dataset and (B) the validation dataset. 

  

4.3.2 Comparison of Images between Model Prediction and Ground Truth 

We first evaluated the training results by visually comparing the model predictions and the 

ground truth from the validation set. The model correctly picked the morphological structures 

that belonged to peroxisomes and endoplasm reticulum. We can also observe that the same 

organelle showed up at slightly different positions in the input image (sCMOS fluorescent 
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microscopy) and the ground truth (spectral confocal microscopy). This results from the 

movements of the organelles during the acquisition time difference of the two imaging. 

However, the recognition of vacuoles was not as promising, largely due to the low signal to noise 

ratio in both the training inputs and the training targets. 

 

Figure 25 One group of bright field/fluorescent microscopy images, used as inputs into the neural network from the 

validation set. (A) bright field. (B) fluorescent microscopy with cyan filter. (C) fluorescent microscopy with green 

filter 

 

Figure 26 One group of ground truth of the neural network, for the same field of view as Figure 20, unmixed from 

the spectral confocal microscopy. (A) peroxisome. (B) vacuole. (C) endoplasm reticulum 
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Figure 27 Predicted organelles as the output of the neural network, given the inputs as in Figure 25. (A) predicted 

peroxisome. (B) predicted vacuole. (C) predicted endoplasm reticulum. 

 

4.3.3 Comparison of Extracted Statistics between Model Prediction and 

Ground Truth 

In order to quantify the training results and find its applicability in the downstream research, we 

segmented images from both the ground truth images in the validation set, and corresponding 

model predictions, and compared the statistics extracted from the segmented images. We 

compared the total volumes of endoplasm reticulum in each cell, as well as the counting number 

of peroxisomes in each field of view. Both properties showed near 1 to 1 correspondence 

between the model prediction and the ground truth. 
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Figure 28 Comparison of statistics extracted from the predictions of the neural network and the ground truth. (A) 

the total area of endoplasm reticulum in each cell. (B) the counting number of peroxisomes in each field of view 

(FOV) 

 

4.3.4 Segmentation training result from collaborators 

To deal with the low signal-to-noise ratio problem in the vacuole images unmixed from the 

spectral confocal microscopy, I segmented the spectral images with ilastik [28]. By using this 

segmented organelle images as the training target, we a turning the original image translation 

task into an image segmentation task, which is also what U-Net has proven to be effective.  

 

Our collaborators Gabi Wurgaft, Shirin Shoushtari, Yuyang Hu, and Ulugbek Kamilov trained a 

different U-Net with our sCMOS camera images and the segmented organelle images. The 

number of initial feature maps was 32, while our model is 8. They cropped the input and target 

images to 180 by 180 pixels to increase the number of images in the dataset, so that the increase 

in the feature map number would not cause overfitting. They also reduced the overfitting by 

decreasing the depth of the U-Net from 5 to 4. (Figure 29) Peak signal-to-noise ratio (PSNR), 
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signal-to-noise ratio (SNR), and structural similarity index (SSIM) were combined to evaluate 

the loss between the neural network prediction and the ground truth. 

 

Figure 29 Model structure of the improved U-Net by Gabi Wurgaft, Shirin Shoushtari, Yuyang Hu, and Ulugbek 

Kamilov 

Figure 30 shows the model input, the prediction from the neural network, and the ground truth of 

a member of the validation dataset. (Figure 30) The PSNR is 13.75, the SNR is 3.087, and SSIM 

is 0.151, which are unusually low. However, the prediction from the neural network correctly 

captures the morphological features of the organelles, although the intensity of the predicted 

images is significantly lower than the ground truth. 
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Figure 30 comparison of the input to the improved U-Net (A), the prediction from the network (B), and the ground 

truth (C). by Gabi Wurgaft, Shirin Shoushtari, Yuyang Hu, and Ulugbek Kamilov 

4.4 Discussion 

The findings of this research project revealed the efficacy of the trained U-Net model in 

accurately segmenting and identifying organelles. Visual examination of the model predictions 

against the ground truth from the validation set demonstrated precise identification of 

peroxisomes and endoplasmic reticulum structures. However, the recognition of vacuoles was 

hindered by the limitations posed by the low signal-to-noise ratio in both the training inputs and 

targets. Moreover, quantitative analysis comparing the extracted statistics from the model 

predictions and ground truth indicated a close correspondence between the two for the total 

volumes of endoplasmic reticulum and the counting number of peroxisomes. 

The observed disparities in the descent of the loss function between the training and validation 

datasets provided insights into the potential issue of overfitting. This phenomenon, together with 

the image quality issue in the vacuole images, suggests that a training dataset of a larger size and 

a higher signal-to-noise ratio is a most urgent requirement to improve this technique. 

In conclusion, this research project integrated advanced imaging techniques and deep learning 

analysis to investigate the dynamic regulation of organelles in yeast cells. The utilization of 
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confocal microscopy, spectral imaging, and sCMOS camera imaging could provid valuable 

insights into the dynamics of organelles. The trained U-Net model demonstrated accurate 

segmentation and recognition of organelles, despite encountering challenges such as a low 

signal-to-noise ratio and the potential for overfitting. Future research endeavors should focus on 

enhancing the robustness of the model and exploring additional image processing and analysis 

techniques to further advance our understanding of organelle dynamics and their regulatory 

mechanisms in cellular growth processes. 
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Chapter 5: Conclusion 

In this thesis, we have undertaken a comprehensive exploration of organelle dynamics and their 

regulatory mechanisms in cellular growth processes. By combining advanced imaging 

techniques, including confocal microscopy, spectral imaging, and sCMOS camera imaging, with 

deep learning analysis using the U-Net model, we have made strides in understanding the 

regulation of organelles in yeast cells, and made promising progress in developing tools to 

understand their dynamics. 

 

Our findings reveal that the systems-level organelle biogenesis program is composed of 

collective organelle modes that respond to changes in nutrient availability. Through chemical 

biological dissection, we demonstrate that distinct organelle modes are specifically activated by 

the sensed growth rate and size of the cell, orchestrating the cellular organelle-scale response to 

environmental cues. Mathematical modeling and synthetic biological control further suggest that 

these distinct organelle modes enable the cell to maintain robust growth homeostasis while 

remaining responsive to varying environmental conditions. This regulatory architecture likely 

underlies the eukaryotic cell's ability to flexibly adjust cell sizes and growth rates, 

accommodating diverse environmental and developmental constraints [11]. 

 

We also enhance our understanding of how cells allocate resources to different organelles for 

growth purposes using quantitative models. The model explores the resource allocation process 

in cells and investigates how signals related to cell size and growth rate affect organelle 

distribution. In this model, excess volume is assigned to vacuoles to maintain a consistent 
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nucleocytoplasmic volume fraction, and experimental evidence using PopTag supports this 

concept [12].  

 

By elucidating the principles governing organelle biogenesis and cellular growth, our research 

contributes to a deeper understanding of fundamental cellular processes. Moreover, this 

knowledge has implications for various fields, including biotechnology, medicine, and synthetic 

biology. By comprehensively examining the interplay between organelles and cellular growth, 

we lay the foundation for future research endeavors that seek to unravel the complexities of 

eukaryotic cells and their regulatory mechanisms [11, 12]. 

 

Our research demonstrated the efficacy of the trained U-Net model in accurately segmenting and 

identifying organelles. Visual examination and quantitative analysis confirmed the model's 

ability to precisely identify peroxisomes and endoplasmic reticulum structures. However, 

challenges were encountered in recognizing vacuoles due to the limitations posed by low signal-

to-noise ratios in both the training inputs and targets. We identified the need for larger training 

datasets with higher signal-to-noise ratios as an urgent requirement to improve this technique and 

address potential overfitting issues. 

 

The integration of advanced imaging techniques and deep learning analysis has provided 

valuable insights into the dynamics of organelles. By uncovering the correlation structure of 

systems-level organelle biogenesis with cellular growth, we have shed light on the collective 

organelle modes activated by changes in nutrient availability. The activation of these distinct 

organelle modes, driven by the sensed growth rate and size of the cell, allows for the 
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maintenance of robust growth homeostasis while enabling responsiveness to varying 

environmental cues. 

 

While our research has significantly advanced our understanding of organelle dynamics and 

regulation, there remain avenues for further exploration. Enhancing the robustness of the U-Net 

model and exploring additional image processing and analysis techniques can contribute to a 

deeper understanding of organelle dynamics. Furthermore, investigating the interplay between 

organelles and other cellular processes, such as gene expression and signal transduction, holds 

great potential for unraveling the complexities of eukaryotic cells. 

 

In conclusion, this thesis represents a significant step forward in our understanding of organelle 

biogenesis, cellular growth, and their regulatory mechanisms in eukaryotic cells. The insights 

gained through our research provide a solid foundation for future studies that seek to uncover the 

intricacies of cellular organization and function. By continuing to explore and unravel the 

mysteries of organelles, we can unlock new avenues for advancements in biotechnology, 

medicine, and our understanding of life itself. 
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