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ABSTRACT OF THE DISSERTATION

Biophysically-informed Models of Heterogeneity in Transcription Factor Activity
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Professor Barak Cohen, Chair

Professor Gary Stormo, Co-Chair

The activity of a transcription factor (TF) can be remarkably heterogeneous, both within and

between cells. Between cells, molecular fluctuations drive stochastic differences in the activities

of TFs. I will describe a project in which we have quantified how the different components of a

TF (its activation domain, affinity for DNA, concentration, and cooperative interactions) influence

stochastic fluctuations in TF activity. In addition to stochastic fluctuations between cells, within

cells TFs can switch between activating and repressing activities depending on the cis-regulatory

content of their target genes. I will describe a second project in which we have modelled how

the balance between homo- and heterotypic interactions determines whether a TF will function as

an activator or repressor. Understanding and quantitatively modeling the factors underlying TF

heterogeneity will be necessary if we are to predict patterns of gene expression from cis-regulatory

DNA. Our work suggests that biophysically-informed models will be an important part of capturing

the context-specific activities of TFs.
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Chapter 1: Introduction

1.1 Transcriptional regulation

The process of transcriptional regulation is fundamental to biology. By enabling cells to express a

select subset of the genes encoded in their genomes, it allows a multiplicity of cellular functions and

phenotypes to arise from the same genotype. This makes it especially important in multicellular

organisms, where it enables a multitude of cell types to be encoded by the same genome. As a

consequence, dynamic regulation of gene expression is essential for development. Because of the

central nature of gene regulation to development, changes in regulation are the primary drivers

of phenotypic change over evolutionary time [1, 2]. Within present-day populations, variants in

these regulatory sequences are the major drivers of common traits [3, 4] and variation in gene

expression modifies the penetrance of less common coding variants [5, 6]. Understanding the

sequence determinants of transcriptional regulation will therefore be essential to understand and

predict phenotypic variation and disease risk.

Transcription factors (TFs) are the central players in transcriptional regulation. Transcribing

every gene at an appropriate level while avoiding aberrant transcriptional initiation from intra-

and intergenic regions requires sequence-specific regulatory mechanisms. TFs provide such a

mechanism, with specificity coming from their DNA-binding domains (DBDs), which selectively

bind preferred motifs [7, 8]. Sequence variants that alter the degree of match to TF motifs can

therefore affect gene expression, leading to striking phenotypes in some cases [9, 10]. TFs also

provide cell type and state specificity to regulation, with cell types being defined by combinations of

TFs [11–15]. Because many TFs are inducible by signaling pathways [16], TFs are also responsible

for gene expression’s dynamic, environmentally responsive nature. While chromatin accessibility,
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methylation, and histone modifications are frequently invoked as regulatory mechanisms underlying

gene expression states, the proteins that deposit, remove, and bind these marks (“epigenetic writers”,

“erasers”, and “readers”) lack sequence specificity [17]. Therefore, in order for their effects to be

gene-specific, these factors must first be recruited to specific sequences by TFs.

1.2 Transcriptional factor function

TFs recruit chromatin modifiers and other cofactors likeMediator through effector domains. Effector

domains can function as activation domains (ADs) or repression domains (RDs) that, as their names

indicate, activate or repress transcription, respectively. Because of this, effector domain sequence is

a key determinant of whether a TF will activate or repress transcription, and how strongly it will

do so. Intriguingly, many TFs contain both activation and repression domains [18]. In fact, many

effector domains can act as both activators and repressors depending on the promoter to which they

are recruited. Such bifunctionality is frequently observed within the context of endogenous TFs,

with many TFs appearing to switch between activation and repression depending on the number and

arrangement of their binding sites [19]. This switching can even occur within a single cis-regulatory

context, with bifunctional effector domains having activating and repressive effects at different

timepoints after recruitment to the same promoter [18]. Furthermore, switching can occur at a

single-cell level, with some effector domains being able to split pools of cells into subpopulations

with the target gene either active or repressed. Switching is important in signal transduction, with

signal-responsive TFs tending to switch from repression in the absence of signal to activation in

the presence of signal [16]. These striking observations motivate us to ask what features govern

this heterogeneity in the activity of single transcription factors, and what mechanisms cause their

transcriptional effects to vary.
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1.3 Synthetic reporter assays

Synthetic reporter assays provide an ideal platform for addressing these questions. Synthetic

promoter constructs can be built out of known TF binding motifs, allowing us to precisely control

the identity of the TFs driving a reporter gene and the spatial configuration in which they bind.

Doing so has allowed us to identify a switch between activation and repression in the retinal TF

CRX [19]. Furthermore, it is possible to construct synthetic TFs out of effector and DNA-binding

domains, and put them under drug-inducible control. By targeting these synthetic TFs to a reporter

locus, it is possible to isolate the effects of effector domain sequence on expression from those of

DNA binding and TF abundance in the nucleus. This has allowed us and other groups to identify

sequence features that contribute to effector domain function [18, 20]. Using these approaches, we

can experimentally perturb each of the regulatory features just mentioned and measure their effects

on both bulk reporter expression and cell-to-cell variability. However, experimental perturbations

alone are not sufficient to understand the mechanisms underlying such heterogeneity in activity:

while we have had since 2016 activity measurements of synthetic reporters composed solely of

binding sites for CRX and NRL, a cooperating TF [19, 21, 22], we had not been able to fit a

predictive model to them prior to the work presented here [Barak Cohen, personal communication].

1.4 Biophysical and machine learning models

Gaining a predictive understanding of the mechanisms underlying regulation requires an appropriate

model. The models in use in the field can be broadly classified into biophysical and machine learning

models, each of which have unique strengths and weaknesses. Biophysical models, because they

are based on specific hypotheses about the mechanisms underlying the phenomena being modeled,

are generally highly interpretable, but require prior mechanistic knowledge to be constructed and fit

[23, 24]. In contrast, machine learning models, in particular the deep neural nets that have been

the focus of much attention recently, can capture complex sequence features in a more unbiased
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fashion and frequently achieve high predictive power. However, they are often considered “black

boxes” that lack biological interpretability [23, 25, 26]. A related issue afflicting many widespread

modeling paradigms is that they do not account for features of the experimental measurement or

for experimental or biological noise. This can lead to entanglement between experimental and

biological effects and is of particular concern given that it has been shown that models which do

not correctly account for experimental noise will generally make incorrect inferences [27]. It is

therefore desirable when analyzing biological data to use an approach to modeling that accounts for

noise and whose parameters have biophysical interpretations.

1.5 Scope of thesis

In this thesis, I will present two projects combining biophysically informed modeling and synthetic

reporter experiments to address questions related to heterogeneity in TF action. In chapters 2 and 3, I

use a yeast reporter system driven by synthetic TFs to characterize the effects of different regulatory

features on cell-to-cell variability in gene expression. In chapter 4, I use a biophysically-informed

machine learning approach to reanalyze accumulated data from high-throughput synthetic reporter

assays in the mouse retina, and use the learned parameters to develop a model explaining how CRX

switches between activation and repression depending on cis-regulatory context.
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Chapter 2: Activation domains can decouple the mean

and noise of gene expression

2.1 Introduction

Gene expression is an inherently stochastic process, producing levels of protein and mRNA that

fluctuate between genetically identical cells [28–31]. This stochasticity, or noise, in gene expression

is unavoidable due to the randomness of molecular motions. Noise in gene expression interferes

with information transmission in regulatory networks [32, 33], but also facilitates bistable switching

[34–36] and entrainment in systems such as circadian clocks [37–40]. Noise is a fundamental

property of gene expression with phenotypic consequences that have been observed across all

domains of life and scales of organization [41, 42].

Stochastic noise in gene expression tends to occur in bursts during which many mRNAs are

transcribed within a short period, interspersed within longer silent intervals [43–49]. This bursty

gene expression has been observed in bacteria [50], yeast [51], and mammalian cells [45]. One

major consequence of bursty gene expression noise is its effect on cell fate decisions [52–55],

which are frequently determined by stochastic fluctuations in the levels of transcriptional regulators

[56–66]. Stochasticity in cell fate decisions represents a “bet hedging” strategy that keeps cellular

phenotypes diverse even in the absence of genetic or environmental variation [50, 67–75].

Efforts to understand the molecular causes of expression noise have shown that both cis [66,

76–78] and trans factors [79–82] influence noise in gene expression. Transcription factors (TFs),

which constitute the interface between cis-regulatory elements (CREs) and trans-acting cofactors,

are a known source of expression noise [83]. TFs are composed of DNA binding domains, which

confer specificity for their target CREs, and activation domains (ADs), which recruit trans-acting
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cofactors that alter transcription once bound to DNA [84, 85]. Fluctuations in TF binding are a

major determinant of gene expression noise [83, 86, 87], but the effects of TF ADs on expression

noise have not been determined. Because ADs vary widely in the cofactors they recruit and the

contexts in which they are active [88–91], we investigated whether ADs also vary in their effects on

noise in gene expression.

Two hypotheses might explain howADs influence noise in gene expression. One hypothesis

is that the noise generated by an AD depends solely on its effect on mean levels of expression.

Noise is tightly coupled to mean output levels in most stochastic processes [92]. Thus, increasing a

gene’s mean expression necessarily increases its expression noise. This hypothesis is consistent

with the increase in noise produced by VP64 relative to VP16 [83]. A strong prediction of this

hypothesis is that diverse ADs will all generate the same amount of noise for a given mean level of

expression. An alternate hypothesis is that anAD’s effect on noise depends both on its effect on mean

expression and on the specific cofactors that underpin its activity. Different ADs might produce

different amounts of noise, even at the same mean output level, because of the distinct biochemical

properties of the cofactors they recruit. For example, it has been suggested [87] that recruitment of

chromatin remodelers is a key step in generating gene expression variation. If this is the case, TFs

with activation domains that recruit chromatin remodelers will have distinctly different effects on

noise from those that cannot. This hypothesis is supported by Tan et al’s observations of the effects

on noise of mutations in the p65 AD that ablate binding to CBP/p300 [93]. However, because only

a very limited number of ADs have been tested, it remains unresolved which hypothesis, if either,

applies more generally to ADs.
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2.2 Results

2.2.1 Comparison of the VP16 and Gcn4 ADs demonstrates that it is

possible to decouple expression noise from the mean

We first compared the effects of a strong AD (VP16) and a weak AD (Gcn4) on expression mean

and noise by performing dose-response experiments. Varying the levels of induction for each

synthetic TF led to Fano factors increasing with mean reporter protein expression. Strikingly, VP16

produced more gene expression noise than Gcn4 for every mean level of reporter expression tested

(Figure 2.1B). This result indicates that different ADs can create different amounts of noise in gene

expression, even when the mean expression level is the same.

Because the VP16 AD is stronger than the Gcn4 AD, the Gcn4 construct always required higher

beta-estradiol concentrations than VP16 to achieve the same mean reporter expression level. This

observation led us to a working hypothesis that high expression noise is produced by strong ADs

present at low nuclear concentrations, whereas low expression noise is achieved by weak ADs

present at high nuclear concentrations.

2.2.2 Comparisons of multiple activation domains reveal that expression

noise can be explained by AD strength

Our working hypothesis assumes that the noise generated by an AD is determined solely by its

strength and nuclear concentration. Alternatively, different ADs might generate different amounts

of noise based on the distinct cofactors they recruit. These two possibilities can be distinguished

by measuring the mean and noise induced by a diverse set of ADs at the same beta-estradiol

concentration. If the differences in noise were due only to differences in the strengths and nuclear

concentrations of ADs, then, for a fixed level of induction, the noise generated by ADs would be

predictable from the mean levels of reporter gene expression they produce. Alternatively, if certain

ADs had special biochemical properties, then such ADs would deviate from the mean versus noise

7



Figure 2.1: Comparison of the VP16 and Gcn4 ADs (A) Reporter system to measure the mean and

noise produced by diverse ADs. Synthetic TF constructs are composed of an mCherry tag (red), a

fixed zinc-finger DBD (blue), an estrogen response domain (yellow), and a variable AD (grey).

Synthetic TFs induce GFP expression (green) from a reporter gene driven by an array of zinc-finger

binding sites. Varying levels of beta-estradiol (black) controls the nuclear localization of the

synthetic TFs, allowing precise control of nuclear concentration while controlling for AD. (B)

Activation domains differ in the amount of noise they induce, even at comparable means. The noise

(Fano factor) produced by synthetic TFs carrying either the Gcn4 or VP16 AD is plotted for varying

mean levels of reporter gene expression. The trend lines connect the data points and are not model

fits to the data. Error bars are standard deviations over three replicates.
8



trendline.

To test these predictions, we assayed eleven different yeast ADs and a negative control at a

fixed beta-estradiol concentration. This experiment revealed a linear relationship between the

mean and noise of expression for all ADs tested (Pearson R2=0.90) (Figure 2.2A). We observed

similar linear trends at different fixed beta-estradiol concentrations (supplemental Figure A.3j).

To confirm that the AD does not affect the TF construct’s localization, we imaged the subcellular

localization of the TF construct using the mCherry tag. The ratio of nuclear to total mCherry

fluorescence was distributed similarly across strains (supplemental Figure A.4), indicating that

the AD does not affect the TF’s nuclear concentration. In the Saccharomyces Genome Database

(https://www.yeastgenome.org/), most of the TFs from which these ADs derive interact with unique

cofactors (examples in Figure A.5), suggesting that they activate transcription through different

mechanisms. Thus, at a fixed nuclear concentration, diverse ADs follow a predictable trend relating

the mean and noise of expression they produce.

We next asked whether mutants that interfere with the mechanism of action ofADs alter the fixed

relationship between the mean and noise produced by ADs. We assayed, at a fixed beta-estradiol

concentration, the activities of 84 mutants in the Gcn4 AD from Staller et al. This set was chosen to

cover a broad range of mutation types and activities. Although the mutants produced a wide range

of mean reporter gene activities, we still observed a strong linear relationship between the mean

and noise of expression across all mutants (Pearson R2=0.91) (Figure 2.2B).

Taken together, these results demonstrate that it is difficult to uncouple the mean and noise of

expression at a fixed nuclear concentration of AD. At a fixed nuclear concentration, diverse ADs

and a diverse set of AD mutants both exhibit a tight coupling between mean and noise. These

observations support our working hypothesis that noise in gene expression is controlled by the

interplay between the strength and nuclear concentration of ADs, and not by the specific mechanism

of action of ADs.

9



Figure 2.2: Comparisons of multiple activation domains (A) Linear relationship between activation

domain strength and noise for diverse ADs. The noise produced by diverse ADs is plotted versus

the mean level of reporter gene expression for each AD. Error bars are standard deviations of mean

and Fano across three replicates. (B) Linear relationship between activation domain strength and

noise for mutants in the Gcn4 AD. The noise produced by each Gcn4 AD mutant is plotted versus

its mean reporter gene expression. Error bars are standard deviations over three replicates.
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2.2.3 Simulations provide a mechanistic interpretation of the results

We asked what quantitative models of gene expression noise could explain the above observations,

and whether we could link perturbations of specific kinetic parameters of those models to the

observed effects of perturbing AD strength or nuclear concentration.

Assuming four different models of gene expression kinetics, we performed simulations in which

we systematically perturbed kinetic parameters alone or in combination. We then searched for

perturbations that could recapitulate the experimental effects of changing either the AD strength or

nuclear concentration.

The consensus model of gene expression noise is the random telegraph model [30, 94, 95]

(Figure 2.3A), in which it is assumed that DNA transitions between an active and inactive state, and

that stochastic bursts of expression initiate only from the active state. This model has been heavily

studied and is widely used to model noise in gene expression (36, 37). However, investigators have

more recently proposed a number of more complex models incorporating multiple distinct inactive

states. Scholes et al [96] describe a model in which a promoter must cycle through two states to

produce each mRNA (Figure 2.3B). Another elaboration on the random telegraph model is that of

Zoller et al [97], (Fig 3C), in which promoters cycle through multiple refractory states between

bursts. Finally, Rodriguez et al. [98] have proposed a multi-state model (Fig 3D.), in which, over

long timescales, there is alternation between a state that is permissive for bursting and one that is not.

We simulated each of these four models to identify regimes that could reproduce our experimental

observations.

To identify perturbations that could reproduce the effects of varying the nuclear concentrations of

ADs, we aimed to identify single parameters or linearly related pairs of parameters that, when varied,

reproduced our experimental observations. We performed simulations in which we varied one or

two parameters in the model through its physiological range while holding the other parameters

in the model at fixed values. We performed these simulations many times, each time holding the

other parameters in the models at different fixed values. We found no individual parameter that
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when varied reproduced our experimental observation that the Fano factor-mean relationship is

nonlinear with a decreasing slope. However, linear perturbations to two parameters simultaneously

could recapitulate the experimental effects of increasing nuclear concentration (Supplemental Figure

A.6). More specifically, we found that, assuming the random telegraph model, increasing Kon (the

frequency of transitioning to the active state) while simultaneously increasing Km (the transcription

rate while in the active state) (Figure 2.3E) or decreasing Dm (the mRNA degradation rate) (Figure

2.3F) produced trendlines that resembled those associated with increasing nuclear concentration of

TF.

All other models we tested either could not explain our observations or provided no additional

explanatory value. The mean-noise relationships predicted by the transcription cycle model (Figure

2.3B) sharply contrast with those we observe. Altering either parameter of this model is predicted to

cause Fano factor to fall then rise with mean (Figure A.6g-i). Simulations performed across a range

of combinations of parameters predicted that noise would be at a minimum when the two rates

are equal, with noise increasing with increasing disparity between the parameters. The refractory

period model’s (Figure 2.3C) predictions also conflict with our observations. This model predicts

two qualitatively distinguishable mean-Fano factor relationships, with changes in the rates of steps

leading out of the active state causing Fano factor to change linearly with mean (Figure A.6o-p),

and changes in the remaining steps having no effect on noise (Figure A.6 j-n).

The effects of varying the AD strength were more straightforward to recreate in models. Again,

assuming the random telegraph model, linear increases in Km, with or without concurrent changes

in Dm, produced linear mean-Fano relationships matching those we observed when AD strength is

varied (Figure 2.3G, 3H). Sherman et al’s [94] analytical solution for the moments of the random

telegraph model’s protein distribution also predicted these mean-Fano relationships (Figure A.6q-s).

Varying Km while holding Kon or Koff fixed at different values produced different slopes but other-

wise preserved the linear mean-fano relationship produced by ADs of increasing strength, whereas

varying Kon or Koff could not reproduce this trend regardless of the value of Km (Supplemental
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Figure A.6).

The multi-state model (Figure 2.3D), while able to reproduce our experimental results, did

not fit our observations better than the less complex random telegraph model. It predicted mean-

variance relationships similar to those of the random telegraph model, with modulating the rates of

transition into and out of the long-lived repressed state predicted to have effects resembling those of

modulating Koff (Figure A.6t) and Kon (Figure A.6u) in the random telegraph model, respectively,

and changes in the rates of the other steps having effects (Figure A.6v-x) similar to those of changes

in Km. We conclude that the random telegraph model is the simplest model that captures the effects

of both varying the strength and nuclear concentration of ADs. Additionally, we conclude that the

nuclear concentration of a TF influences Kon, while AD strength primarily acts through Km. This

can further be interpreted in terms of transcriptional burst parameters. Kon in the random telegraph

model is effectively equivalent to burst frequency, while burst size is proportional to the ratio of

Km to Koff. We therefore conclude that AD strength primarily controls burst size, while the nuclear

concentration of an AD affects burst frequency.

2.3 Discussion

Our results demonstrate that the mean and noise of gene expression can be separated by varying the

strength and nuclear concentration of ADs. By varying the induction levels of different ADs, we

observed noise levels spanning a roughly 2-fold range at comparable means. These results raise the

possibility of synthetically manipulating expression mean and noise independently by using ADs of

varying strength while tuning TF occupancy on DNA to compensate. Doing so would have many

applications in synthetic biology, allowing perturbation experiments aimed at determining the effects

of noise on gene expression networks, development, and cellular physiology, and opening the way

for engineering stochastic fate decisions during cellular reprogramming. Likewise, natural selection

could tune the noisiness of a gene’s expression, independent of its mean levels, by operating on

variation that affects the strength and nuclear concentrations of ADs.
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Figure 2.3: Stochastic models of gene expression. Cartoon diagrams of (A) the Random Telegraph

Model, (B) the Transcription Cycle model of Scholes et al, (C) The Refractory Model of Zoller et

al, and (D) the Multi-State Model of Rodriguez et al. The mean (X axis) and Fano factor (Y axis) of

protein expression predicted by the Random Telegraph Model are plotted for simulations in which

(E) Kon and Km are varied simultaneously, (F) Kon and Dm are varied simultaneously, (G) Km is

varied, or (H) Km and Dm are varied simultaneously.
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Although manipulating ADs allowed us to decouple the mean and noise of expression, we did

not find evidence that ADs with different mechanisms of action produced different amounts of noise.

At any fixed nuclear concentration of AD, the noise produced by an AD was largely predictable

from its effects on mean expression. Manipulating the class of AD did not alter the relationship

between mean and noise.

Our results can be explained in terms of the effects of AD strength and TF concentration in

the nucleus. TF binding to DNA occurs for only brief periods [99–102] leading to intermittent

transcriptional activation. At low TF concentrations there is low TF occupancy on the DNA. Coupled

with a strongAD, this regime leads to large but infrequent bursts of expression, which produces high

noise. Conversely, at high TF concentrations there is much higher promoter occupancy, leading to

more frequent bursts approaching a continuous rate of mRNA production, and therefore relatively

low noise. Maintaining the same mean level of expression in this regime requires lowering the

strength of the AD to compensate for more frequent bursting. This model is consistent with Pelet et

al’s [87] observation that transient nuclear localization of the TF Hog1 leads to bimodal expression

and greater noise than is induced by sustained induction.

Our working hypothesis that both nuclear concentration andAD strength determine noise can be

formulated quantitatively in terms of the random telegraph model of gene expression kinetics. The

components of the random telegraph model are both necessary and sufficient to explain our results:

models such as Zoller et al’s and Scholes et al’s that cannot be reduced to the random telegraph

model are unable to produce the mean-fano relationships we observe experimentally, and those

such as Rodriguez et al’s that add additional steps to the random telegraph model do not provide

additional explanatory power. Our results thus favor models without cycles or refractory states as

the more parsimonious explanation. This result is consistent with Zoller et al’s finding that synthetic

promoters have only one inactive state.

Based on the simulation and experimental results, we posit that AD strength primarily affects

Km, the rate of transcription from the promoter in its active state, while the abundance of TF in the
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nucleus determines Kon, the rate at which the promoter switches into the transcriptionally active

state. Under these assumptions, the random telegraph model predicts mean-Fano factor relationships

resembling those we observed experimentally. This is largely consistent with Senecal et al’s results

and their model suggesting that altering AD strength primarily affects Km, while modulating TF

level primarily affects Kon (“burst frequency”) and TF lifetime on the promoter affects Koff (“burst

duration”). However, our results require an additional effect of TF level on Km or Dm that was

not seen by Senecal et al. The next chapter will investigate the role of DBD affinity for sequence

motifs, cooperative TF binding, and other cis-factors in TF regulation of transcriptional noise.

2.3.1 Limitations

Synthetic TFs were used throughout this study. Their use is necessary to control for DNA binding

and isolate the effects of AD sequences and nuclear concentration, but could in theory alter the

properties of the ADs from their physiological context. Additionally, we performed all experiments

in yeast because it is a highly tractable model system. Because of this, the generalizability of our

results to mammalian contexts depends on the conservation of transcriptional regulatory mechanisms

across eukaryotes.

2.4 Experimental model and subject details

2.4.1 A reporter system that measures the effects of different ADs on

expression noise

To compare the effects of diverse ADs on expression noise, we set up a reporter system that allowed

us to measure the mean and noise of expression generated by TFs that differ only in the AD they

carry. We repurposed the reporter system described in Staller et al. [20] (Figure 2.1A), which

uses synthetic S. cerevisiae TFs consisting of an AD of interest, a fluorescent tag (mCherry), an

estrogen response domain (ERD) and a fixed synthetic zinc-finger DNA binding domain (DBD)
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[103]. Using a synthetic DBD avoids interference with endogenous yeast TFs, and the ERD allows

us to control the nuclear localization of the synthetic TFs with beta-estradiol. Swapping the ADs

on these synthetic TFs allowed us to directly compare the effects of different ADs while keeping

the rest of the TF constant and avoiding competition with endogenous TFs. The synthetic TF is

integrated at a single allele of the URA3 locus.

We measured the activities of these synthetic TFs by reading out the fluorescence of a GFP

reporter construct via flow cytometry. The reporter construct contains a tandem array of zinc-finger

binding sites and is integrated at the YBR032w locus. To probe the impact of varying TF stimulation

on target expression, we performed dose-response experiments with increasing amounts of beta-

estradiol and measured the resulting distribution of GFP by flow cytometry. We did not observe any

effect on cell growth from the beta-estradiol, either in the side and forward scatter measurements

(Figure A.1a), or in the growth rates (Figure A.2). We then computed the mean (x) and Fano factor

(𝜎2/𝑥) of expression for each TF at each beta-estradiol concentration. We used the Fano factor as

the measure of noise because it normalizes for different mean levels of expression [104–107].

A gene’s expression noise can be divided into an intrinsic and extrinsic component [108]. We

focused on the effect of ADs on the intrinsic component because current models of stochastic gene

expression best capture intrinsic noise. We therefore attempted to exclude extrinsic noise from our

measurements.

The presence of significant extrinsic noise in our data was indicated by a strong correlation

between the forward scatter, side scatter, GFP, and mCherry fluorescence in the raw data. However,

after controlling for cell size by gating on forward scatter, there was little correlation between the

expression of the TF construct as measured by mCherry signal and GFP expression (Figure A.1b).

We speculate that there is no residual correlation between mCherry and GFP because of the time

lag between the production of mCherry-tagged TFs and the expression and maturation of the GFP

reporter, or because the mCherry signal reflects the TF concentration throughout the cell and is not

specific for the nucleus. The observation that gating on forward scatter removes the correlation
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between TF and reporter gene fluctuations indicates that fluctuations in cell size are the major source

of extrinsic noise in our data.

To screen out this source of extrinsic noise, we filtered our data by gating on cells expressing

similar levels of mCherry, which removed 56% of the total variance in GFP expression. We chose

mCherry as the marker to filter by to exclude a small (< 1%) outlier subpopulation of events with

similar scatter to most cells but very high mCherry and low GFP. While filtering on mCherry does

not exclude all extrinsic noise related to forward scatter, additional filtering on forward scatter

leaves few cells, which lowered reproducibility without affecting the overall shape of the mean-fano

relationships. Using this system we compared the effects of diverse ADs on both the mean and

noise of expression.

2.4.2 Yeast strains

We repurposed the yeast strains created by Staller et al [20]. These strains (MATa/MATalpha,

synthetic TF-Kanr::ura3/URA3 GFP reporter-natR::YBR032w/YBR032w) are generated from

crosses between derivatives of FY4 (MATa, synthetic TF-Kanr::ura3) and FY5 (MATalpha, GFP

reporter-natR::YBR032w). Each synthetic TF construct consists of an mCherry tag, a murine Zif268

DNA binding domain (DBD), a human estrogen response domain (ERD), and an activation domain

(AD), driven by the yeast ACT1 promoter. The activation domains were either sampled from the

library of GCN4 mutants described in Staller et al by picking clones at random, or derived from

wild type ADs (Table A2). Sequence files of the all wild-type synthetic TF-AD fusions are available

in Supplementary folder 1. The GFP reporter is the same as reported in Staller et al. and consists of

a fast maturing GFP variant, with expression driven by six upstream Zif268 binding sites and the

P3 promoter.
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2.4.3 Culture conditions

All strains were obtained from frozen glycerol stocks. For the experiments involving wild-type

activation domains, cultures were seeded by pipetting 2 uL of each strain onto a YPD agar plate,

streaking out, and growing for 2 days in a 30 degree incubator. For each experiment, individual

colonies were then picked from the plates and grown out overnight in tubes containing 3 mL of

SC dextrose medium. These tubes were constantly rotated on a wheel in a 30 degree incubator

throughout the growth process. The optical densities of 1:10 dilutions of the overnight cultures

were then measured, and all cultures were diluted to an OD of 0.0225. For each combination of

strain and level of induction, 200 uL of diluted culture was added to a well of a deep 96 well plate.

50 uL of diluted beta-estradiol was then added to the well (final concentrations are listed in Table

A1). The diluted cultures were incubated with the beta-estradiol in a shaker incubator set to 300

rpm for 5 hours before measuring.

For the experiments involving mutant activation domains, the initial cultures were seeded by

pinning from the 96 well plate containing the glycerol stocks onto a YPD agar plate. Liquid cultures

were then seeded by pinning from the agar cultures into a deep well plate with 300 uL of SC in each

well. The deep well plate was agitated in a shaker incubator overnight.

2.5 Method details

2.5.1 Molecular cloning and transformations

To generate the remaining yeast strains not described in Staller et al (MATa/MATalpha, synthetic

TF-Kanr::ura3/URA3 GFP reporter-natR::YBR032w/YBR032w), eleven AD sequences (Table

A2) were ordered as DNA fragments from SynBio Technologies (Monmouth Junction, NJ). Those

AD fragments have homology arms for cloning into pMV219 (Addgene), a plasmid vector that

contains the pACT1-mCherry-DBD-ERD cassette described above. More specifically, pMV219

was digested with Nhe1-HF (NEB, R3131S) and Asc1-HF (NEB,R0558S), AD sequences were
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cloned downstream of the ERD using HIFI assembly (NEB, E2621S). The entire pACT1-mCherry-

DBD-ERD-AD region was then PCR amplified using primers YP16 and YP17 (Supplement) with

homology targeting the URA3 locus. The PCR product was then transformed into FY4 S288c yeast

by incubating with a mixture of 30-33% PEG, 100 uM lithium acetate, and 0.3 mg/mL boiled salmon

sperm DNA for 30 minutes at 30 C followed by 1 hour of heat shock at 42 C. The transformed yeast

were spun down, resuspended in YPD, and plated on nonselective medium, followed by replica

plating onto YPD+G418 plates (200 mg/ml). The KanR positive yeast were then struck out onto

SC-URA and 5-FOA (1 mg/ml) plates to test for loss of the URA3 locus.

Integrations were confirmed by colony PCR targeting the upstream breakpoint. To extract

genomic DNA, URA- yeast strains were grown overnight in YPD, spun down and resuspended in

500 ul each of lysis buffer containing 100 mM Tris, 50 mM EDTA, and 1% SDS. They were then

vortexed with silica beads for 2 minutes each. The liquid was then pipetted off the beads, mixed

with 275 uL of 7M ammonium acetate pH7, and incubated for 5 minutes 65 C then 5 minutes on

ice. 500 uL of chloroform was added, and the mixture was vortexed and spun for 2 mins. The

supernatant was then added to 1 mL isopropanol, incubated for 5 minutes at room temperature, and

spun down for 5 minutes. The resulting pellet was then washed with 70% ethanol, air dried, and

dissolved. For PCR, the genomic DNAwas first digested with Nhe1. 2.5 uL of digest was then

mixed with 2.5 uL of each primer (put sequences in supplement), 2.5 uL water, and 10 uL of NEB

OneTaq and run for 34 cycles of 30 seconds at 94 C, 30 seconds at 55 C, and 1 minute at 72 C. The

resulting PCR product was loaded directly onto an agarose gel, which was then run and imaged.

2.5.2 Beta-estradiol induction and flow cytometry

All single-cell fluorescence measurements were collected using a Beckman Coulter cytoflex S

flow cytometer. In the experiments with wild-type activation domains, the optical densities of 1:10

dilutions of the overnight cultures were first measured, and all cultures were diluted to an OD of

0.0225. For each combination of strain and level of induction, 200 uL of diluted culture was added
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to a well of a deep 96 well plate. 50 uL of diluted beta-estradiol was then added to the well (final

concentrations are listed in Table A1). The diluted cultures were incubated with the beta-estradiol

in a shaker incubator set to 300 rpm for 5 hours before measuring. Finally, 100000 such single-cell

fluorescences were collected for each combination of activation domain and induction level.

In the experiments with mutant activation domains, 5 uL of overnight culture from each well

was first diluted into 200 uL of SC in the corresponding well of a new deep well plate. 50 uL of 1

mM beta-estradiol diluted 1:1000 was added to each well of the new plate, and the plate was again

incubated for 5 hours in a shaker set to 300 rpm before measuring. Strains for which we suspected

contamination or other experimental error were then subjected to verification experiments. These

involved growing them up as liquid cultures in tubes and then streaking them out on agar plates.

Single colonies were then picked and used to start liquid cultures which were then induced and

measured using the same protocols used for the wild-type activation domains, except that, for each

mutant, we collected measurements for a fixed 45 seconds.

2.5.3 Imaging

Yeast strains MY447 (expressing a VP16 fusion), YM23.31 (expressing a War1 fusion), MY450

(expressing a GCN4 fusion), and MY460 (expressing a Gal4 fusion) were grown overnight from

streakouts in 1 mL of SC. They were then incubated for 4 hours in 250 uL of SC with or without

200 uM beta-estradiol. The yeast were immobilized on agarose pads and imaged on a Zeiss LSM

880 Confocal.

2.6 Quantification and statistical analysis

2.6.1 Simulations

Sets of simulations were run to predict the effects onmean and noise of varying one or two parameters

in a given stochastic model of gene expression, while keeping all others constant. The models
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simulated were the random telegraph model [30, 94, 95], the multi-state model of Rodriguez el at

[98], the refractory period model of Zoller et al [97], and the transcription cycle model of Scholes et

al [96]. These simulations were run using the implementation of Gillespie’s stochastic simulation

algorithm [109] in BioNetGen [110]. Model files are available in Supplementary folder 2, and sets

of input parameters used for each simulation are available in Supplemental TableA3. For each set of

parameters, 1000 individual simulations were run and a mean and a Fano factor was computed for

the distribution of protein expression at the ends of the individual runs. The relationships between

mean and Fano factor over multiple sets of parameters within the same model were plotted using

the Matplotlib and Seaborn packages in Python.

2.6.2 Flow data analysis

Outliers in forward and side scatter area and height were removed at the collection stage through

gating. Summary statistics of GFP fluorescence (mean and Fano factor) were then computed over

the cells whose mCherry fluorescence fell between 300 and 400 units, and the results were plotted,

again using Matplotlib and Seaborn.

2.6.3 Image analysis

The images were segmented in CellProfiler using the GFP signal, and total mCherry signal was

quantified for the nuclear and cytoplasmic segments of each cell.
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Chapter 3: The effects of cis-regulatory sequence on

noise in gene expression

3.1 Introduction

Using our yeast reporter system, we have dissected the effects of trans regulatory factors on gene

expression noise. However, cis-regulatory factors are also major influences on noise in gene

expression. Multiple studies have found effects on noise from cis-regulatory features such as TATA

boxes in promoters [111], chromatin architecture [111–114], and the presence of enhancers [66,

78, 115]. However, recent modeling and experiments [86, 114] suggests that transcription factor

binding is the primary driver of gene expression noise. Notably, while many studies have made

large-scale perturbations to higher-order features like the ones mentioned, few have specifically

measured the effect on noise of perturbing TF binding sites.

There are multiple features of TF binding sites (TFBS) that can be perturbed and are potentially

drivers of noise. The most basic is the affinity of the cis-regulatory element for its cognate TF(s),

which can be modulated by introducing mismatches between the TFBS sequence and the TF’s

consensus binding motif. Furthermore, Parab et al [86] suggest that the number of distinct TFs

binding to a promoter, and the cooperative and competitive interactions between them, is the primary

determinant of expression noise levels in yeast. These parameters can also be straightforwardly

manipulated, the former simply by adding binding sites for additional TFs, and the latter by altering

the spacing between the binding sites. In general, binding sites spaced such that TFs bind close

together and on the same side of the double helix will favor interactions between TFs, while spacings

that place TFs further apart and on opposite sides of the double helix will disfavor such interactions

[116]. Finally, while most studies in the field have focused on activation, repression domains are also
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widespread within TFs, and analysis of developmental single-cell transcriptomic data suggests that

repression, rather than activation, is the primary contributor to noise in expression [117]. Due to its

highly modular and controllable nature, our yeast reporter system allows us to make cis-regulatory

changes to modify any of these features. Taking advantage of this fact, we have made perturbations

systematically targeting each of these features and measured their effects on noise.

3.2 Results

3.2.1 Cooperativity increases mean reporter expression, with variable

effects on noise

To specifically probe the effects of binding site spacing and TF cooperativity on noise, we designed

two reporters (Figure 3.1A and B) to perturb these parameters in opposing fashions. One of these

reporters is designed to maximize interactions between TF molecules bound at the promoter. We

achieved this by spacing all binding sites for the synthetic activator 21 base pairs, that is, two helical

turns apart. In contrast to the original reporter, in which the activator binding sites are unevenly

spaced, this places all sites on the same side of the helix. We also designed a reporter to achieve

the opposite aim. This reporter has binding sites spaced 16 base pairs or 1.5 helical turns apart. By

placing adjacent binding sites on opposite sides of the double helix, this arrangement is intended to

minimize interactions between TF molecules bound at neighboring positions.

The new reporters were integrated into the HIS locus in MATalpha haploids and crossed with the

MATa haploids expressing the synthetic TF constructs generated in Chapter 1. When we measured

the mean and noise of these crosses’ reporter expression distributions, we observed clear differences

between the new reporters. In the context of activation domain swaps (Figure 3.2A), consistent

helical phasing, and thus presumably cooperativity, appears to increase mean expression. However,

the effects on noise are difficult to discern in this context, due to massive clonal variability between

lines with independent integrations, even though all of the crosses have the reporter integrated
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at the same locus. A potential explanation for this clonal variability is variable spreading of the

chromatin state in regions surrounding the HIS locus leading to variable silencing, aka, position

effect variegation [118]. The crosses expressing the reporter designed to maximize cooperativity

appeared to form two clusters, with the mean and noise of one overlapping with that of the reporter

designed to minimize cooperativity, and the other exhibiting high mean and noise. Within the

high mean, high noise group, noise appeared to decrease with mean. However, because most of

the variability within this group is clonal and not related to genotype, it is difficult to analyze its

behavior further within the scope of this study.

Examining the behavior of the new reporters in the context of a single cross and variable nuclear

concentration of the activator, patterns start to become clearer (Figure 3.2B). We took crosses of

each reporter with a single MATa clone expressing an HSF1 activation domain fusion and measured

their expression distributions across a range of beta-estradiol levels, as in chapter 1. In this context,

cooperativity appears to modify the mean-noise relationship, with the reporters designed to maximize

cooperativity have higher mean expression but similar noise levels. This leads to a decoupling

between mean and noise opposite that observed in chapter 1, with the more active constructs in

terms of mean having expression that is less noisy when levels of induction are adjusted to equalize

mean expression, rather than more noisy as in the case of different activation domain fusions.

3.2.2 Repression by REB1 suppresses noise

We then asked what effect repression has on noise. More specifically, we asked whether the effect

on noise of reducing reporter expression by adding binding sites for a repressor is distinguishable

from that of reducing reporter expression by reducing activator binding. To answer this question,

we designed two reporters (Figure 3.1C and D). One of these reporters has binding sites for the TF

REB1 inserted between the activator binding sites of the original reporter. (REB1 acts as a repressor

in this context, leading to mean expression levels lower than observed from the original reporter.)

To design the other, we made point mutations in the original activator binding sites to its binding
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affinity for the synthetic TF construct. These reporters were again integrated at the HIS locus in

MATalpha haploids and crossed with the MATa haploids generated in Chapter 1.

When we measured the mean and noise of the new reporters’ expression across all crosses

under uniform culture conditions (Figure 3.2A), we observed a striking difference between the

reporters. The reporter with weakened activator binding sites exhibited strong clonal variability

and varied widely in both mean and noise. The reporter with added REB1 sites, on the other hand,

exhibited almost uniformly low noise despite occupying the same range of mean expression levels

as the reporter with weakened activator binding. While noise did increase with mean among the

lowest-expression crosses, noise otherwise varied little with mean and was consistently lower than

among crosses expressing the reporter with weakened activator binding.

We also observed this pattern in the context of fixed genotypes and varying induction levels

(Figure 3.2B). When we induced differing levels of activator nuclear localization by varying the

level of beta-estradiol in the growth medium, crosses expressing an HSF1 AD fusion TF and the

reporter with added REB1 binding sites again exhibited consistently low noise. This again contrasts

with the reporter with weakened activator binding sites, whose expression was noisier and much

less responsive to the level of TF stimulation. Overall, it appears that REB1 greatly suppresses

noise in its targets’ expression.

3.2.3 Distinct mechanisms of repression have distinct effects on noise

The striking difference in noise between the two reporters led us to ask what molecular mechanisms

might underlie the effect of repression on noise. To link mechanisms of repression to specific noise

behaviors, we constructed a simple model of repressor action amenable to stochastic simulation

via the Gillespie algorithm. In this model, we assume that there are two TFs that can bind to the

promoter, an activator and a repressor, which bind at different sites. We further assume that activator

binding corresponds to a transcriptionally “on” state, with the overall kinetics of the transcription

following the random telegraph model, with the addition of a distinction between repressor bound
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and unbound states. Under these assumptions, there are two basic mechanisms by which repressor

binding can reduce transcription: it can either reduce activator binding (Figure 3.3A), or reduce

the rate of transcription while the activator is bound (Figure 3.3C). We simulated the effects of

progressively adding repressor to the system in these two scenarios.

Simulations suggest that qualitatively distinct mechanisms of repression will have clearly distinct

effects on noise. In the scenario in which repressor binding reduces the time spent in the “on” state by

inhibiting activator binding, noise goes up as the level of the repressor increases and the mean level of

expression goes down (Figure 3.3B). Conversely, the repressor that reduces the rate of transcription

in the “on” state without inhibiting repressor binding is predicted to simultaneously suppress mean

expression and noise as its level increases (Figure 3.3D). These qualitative predictions hold across

a broad range of assumed parameter values. The consistently low noise from the REB1-binding

reporter is clearly consistent with the latter scenario in which REB1 reduces the rate of transcription

in the active, activator-bound state without affecting the time spent in this state.

3.2.4 The effect of MIG1 on noise resembles that of decreased activator

binding

We then asked whether other repressors exhibit the same noise behavior as REB1. The original

reporter construct contains a binding site for the repressor MIG1. MIG1 is a key regulator of yeast’s

response to glucose, and is induced by the presence of glucose in the growth medium. We thus

assayed the effect of removing MIG1 activity by growing the yeast on raffinose as an alternative

carbon source, and asked whether it would mirror that of manipulating REB1 binding.

Looking first at the effect of carbon source on the reporters with varying activator binding site

spacing in the context of varying beta-estradiol levels (Figure 3.4A), we observed that removing

MIG1 appeared to phenocopy increases in beta-estradiol induction. Yeast expressing these reporters

followed the same trendlines in mean-noise space when grown on either carbon source, with those

grown in raffinose exhibiting higher mean and noise. Turning to the effect of carbon source on
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reporters with reduced expression (Figure 3.4B), we observed a striking pattern from the reporter

with weakened activator binding sites, which actually produced lower noise at high levels of beta-

estradiol and mean expression when the yeast were grown on raffinose and thus lacking MIG1

activity. This is consistent with the mechanism of repression in which inhibition of activator binding

reduces time spent in the “on” state, and contrasts sharply with the effects of MIG1 binding. Finally,

when yeast expressing the REB1-binding reporter were grown on raffinose, the effect of REB1

overrode the effect of removing MIG1, with the reporters producing low noise throughout the full

range of beta-estradiol concentrations.

3.3 Discussion

Here we have assayed the effects of a diverse array of cis-regulatory perturbations on noise, across

a wide range of trans-regulatory contexts. In contrast to the effects of trans-regulatory perturbations,

which generally alter mean and noise in the same direction and differ primarily quantitatively, we

find that cis-regulatory perturbations have much more complex and heterogeneous effects on noise

which are often opposite to their effects on mean. This implicates cis-regulatory architecture as key

to specifying noise levels, and suggests that interactions between multiple TFs bound to the same

regulatory element are central to the mechanisms generating expression noise.

When we manipulated the spacing between TF binding sites, we found that spacings that

facilitate intermolecular interactions reduce noise relative to mean. This stands in stark contrast to

the prediction in [86] that cooperative binding would lead to higher noise than independent binding.

Apossible explanation for this discrepancy is that the model in [86] assumes that cooperative binding

is switchlike and all-or-nothing in nature. This represents an extreme case of cooperativity that

might not be reflective of TFs’ behavior in the cell. In the case of our reporter system, the estrogen

response domain is known to dimerize, while the other components are not known to specifically

self interact. Because there are more than two activator binding sites in our reporters, dimerization

will increase the effective affinity of the TF constructs for conducively spaced binding sites, while
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more distant sites can still be bound independently of one another. The effect of cooperativity in our

system might therefore be to increase promoter occupancy without making binding and activation

significantly more switch-like.

An especially striking finding from our experiments is that different repressors can have opposing

effects on noise that are consistent with distinct mechanisms of repression. This contrasts with

the noise effects of activators, which, as we observed in Chapter 2, form a single allelic series.

These observations are consistent with recent high throughput screens for effector domain function

[18], which have found that activation domains tend to be unstructured and homogenous in their

sequence features, while repressor domains are more structurally diverse and can be grouped into

distinct classes. This also resembles the results of targeting experiments, which show that repressive

chromatin modifiers that act on different marks have clearly distinct kinetic profiles [119]. However,

previous studies of repression kinetics have focused on the rates of silencing and reactivation, while

our simulations suggest that the primary factor differentiating repressors with distinct noise profiles

is whether repression excludes activator binding. Such a difference could be explained by repressive

cofactors differing in their effects on accessibility. Under this hypothesis, repressors that reduce

noise along with mean would recruit cofactors that do not impact accessibility, while repressors

that increase noise would recruit cofactors that promote a heterochromatic, inaccessible state that

prevents other TFs from binding. Analyses of coaccessibility and gene expression via single-cell

sequencing provide support for this model, suggesting that there are indeed different classes of

repressors that act through mechanisms with opposing effects on accessibility [120]. Overall, our

results implicate repressors as prime candidates for regulating noise independently of mean, as has

been observed by Antolovic et al [117].

3.4 Methods

Molecular cloning, transformations, yeast culture, and flow cytometry measurements followed the

same protocols as in chapter 1, except for the following modifications. Reporter sequences were
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designed in Snapgene and ordered from synbio. The reporters were synthesized and cloned into

vector pMVS008P_TDH3VenusNATMX6 by synbio. To add homology arms, we performed PCR

directly on resuspended lyophilized plasmid DNA, using the primers HIS_UP_homology2 and

HIS_dwn_homology2 targeting the HIS locus. The annealing temperature was progressively raised

over the course of PCR, being 50 C for the first 2 cycles, 65 C for the next 2, and 72 C for the

remainder. The inserts were transformed into FY5 (BAC45) MATalpha yeast as in chapter 1, with

NAT used to select for transformants instead of G418. To confirm integration at the HIS locus,

transformants were struck out on HIS- medium and screened for lack of growth. Additionally, we

performed PCR on DNA extracted by the protocol in chapter 1, using primers HIS_up_in_1 and

HIS_up_out_1 targeting the 5’ integration breakpoint, and HIS_dnw_in_1 and HIS_dwn_out_1,

targeting the 3’ integration breakpoint. Transformants with confirmed integrations at HIS were

crossed with the MATa transformants generated in chapter 1 by mixingYPD liquid cultures in a deep-

well plate and leaving at room temperature overnight. The crosses were then pinned onto medium

containing both selectable markers (G418 and Nat) to select for diploids. Reporter expression was

then induced and measured as in chapter 2, and the resulting data was analyzed using the same

computational pipeline.
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(A)

(B)

(C)

(D)

Figure 3.1: Promoter architectures assayed in this chapter. (A) Reporter with binding sites for

synthetic activator spaced 21 bp (2 full helical turns) apart to maximize cooperativity (B) Reporter

with binding sites for synthetic activator spaced 16 bp (1.5 full helical turns) apart to minimize

cooperativity (C) Reporter with point mutations in binding sites for synthetic activator to reduce

binding affinity (D) Reporter with added binding sites for REB1 to introduce repression
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A

B

Figure 3.2: Effects of cis-regulatory perturbations on mean and noise. (A) Noise levels quantified

using Fano Factor (on Y axis) vs. Means (on X axis) of GFP expression across pairings of CRE

(indicated by hue) and AD (indicated by shape) (B) Noise levels quantified using Fano factor (on

Y axis) vs. Means (on X axis) of GFP expression across pairings of CRE (indicated by hue) and

beta-estradiol level (indicated by shade) 32



Figure 3.3: Predicted effects of repression on noise. Repressors which act through a mechanism

that prevents activator binding (A) are predicted to increase noise as they decrease mean (B).

Repressors that act through a mechanism that allows activator binding but prevents transcription

from the activator bound state (C) reduce both noise and mean (D).
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(A)

(B)

Figure 3.4: Effects of MIG1 perturbations on mean and noise. (A) (Top) Noise levels quantified

using Fano Factor (on Y axis) vs. Means (on X axis) of GFP expression. Yeast grown in dextrose

medium, and therefore with MIG1 activity, are indicated by circles, while yeast grown in raffinose

medium, and thus without MIG1 activity, are indicated by crosses. The reporter with activator

binding sites spaced 2 full helical turns apart to promote cooperativity is in green, and the reporter

with activator binding sites spaced 1.5 helical turns apart to suppress cooperativity is in black.

Beta-estradiol concentration is indicated by shading. (B) (Bottom) Noise levels quantified using

Fano Factor (on Y axis) vs. Means (on X axis) of GFP expression. Yeast grown in dextrose medium,

and therefore with MIG1 activity, are indicated by circles, while yeast grown in raffinose medium,

and thus without MIG1 activity, are indicated by crosses. The reporter with point mutations in the

activator binding sites to reduce affinity is in blue, and the reporter with added repressor binding

sites is in red. Beta-estradiol concentration is indicated by shading.
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Chapter 4: Transcription factor interactions explain

the context-dependent activity of CRX binding sites

4.1 Introduction

A typical mammalian transcription factor (TF) binds hundreds or thousands of cis-regulatory

sequences (CRSs) in the genome [121–123]. CRSs that are bound by the same TF vary widely in

their activity, and can include strong enhancers, transcriptional silencers, or sequences with weak or

no cis-regulatory activity [19, 91, 123–138]. Such dramatic functional differences among CRSs

with similar TF binding sites (TFBSs) show that local sequence context modulates the contribution

of a TFBS to cis-regulatory activity, yet how this occurs is not well understood. Proposed models

of cis-regulatory grammar that may account for context-dependence vary in their emphasis on

the importance of interactions between TFs, and they suggest different degrees of flexibility in

the possible functional arrangements of TFBSs [139–142]. The enhanceosome model proposes

that strict geometrical constraints determine whether CRS-bound TFs can activate transcription,

suggesting that context-dependent effects of TFBSs are strongly influenced by highly specific

interactions between them [139–141, 143]. The contrasting billboard model proposes that active

CRSs are defined by the presence of a sufficient number of bound TFs, with no strong constraints

governing their arrangement [142]. The billboard model implies that the context of a TFBS is

determined primarily by additive effects of the surrounding TFBSs, with few specific interactions

between sites. Other models of cis-regulatory grammar propose that individual TFBSs are weak on

their own and depend on strong cooperative interactions [16], that particular TFBSs recruit specific,

required transcriptional cofactors [91], or that the balance between sites for transcriptional activators

and sites for repressors determines whether a CRS is an enhancer or silencer [144–146]. The degree
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to which these proposed features of cis-regulatory grammar modulate the local context within a

CRS is not well understood. As a result, accurately predicting the activity of CRSs or the effects of

genetic variants in TFBSs remains an unsolved problem.

Local sequence context has strong effects on the function of binding sites for the retinal TF

Cone-rod homeobox (CRX) [147–149]. CRX is a paired-type K50 homeodomain TF and a critical

regulator of transcription in multiple retinal cell types, where it contributes to both activation and

repression of cell type-specific genes [128, 147, 149–158]. Using massively parallel reporter assays

(MPRAs), we previously found that genomic CRX-bound sequences include strong enhancers

and silencers [19, 136, 159, 160]. The activities of these CRSs, whether activating or repressing,

depend on both CRX binding sites and CRX protein, which demonstrates that the effects of CRX

sites are modulated by context [19, 159]. Yet how local sequence context determines whether a

CRX-bound region functions as an enhancer or a silencer is poorly understood. We previously

found that synthetic CRSs with sites for CRX and the rod photoreceptor-specific leucine zipper

TF NRL were often strongly activating [19], and CRX cooperatively interacts with NRL at some

promoters [22, 128, 147, 153, 155, 156, 161]. We also found that CRX-bound silencers tend to

contain more copies of the CRXmotif than CRX-bound enhancers [19, 136, 159], while CRX-bound

enhancers are enriched in sites for other TFs relative to silencers [136]. However, it is unclear why

CRX binding sites have an activating effect at some elements and a repressing effect at others. We

hypothesized that interactions between CRX and other co-bound TFs determine whether a sequence

functions as an enhancer or silencer, and we sought to capture those interactions in a quantitative

model.

A key advantage of synthetic CRSs is that their binding site composition can be systematically

varied to generate informative training data for models of cis-regulatory grammars. We used

our MPRA data from synthetic CRSs to train neural network-based models using MAVE-NN, a

modeling framework designed to efficiently model data from massively parallel functional assays

[24]. We find that the effects of CRX sites are explained by a model that includes positive, additive
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contributions of individual TFBSs, negative homotypic interactions between sites for the same

TFs, and positive heterotypic interactions between sites for different TFs. The model explains

the observations that CRX sites produce context-dependent activation and repression, and that the

addition of an NRL site converts silencers to enhancers. The model also accounts for our finding that

CRX-bound enhancers have sites for diverse TFBS, while CRX-bound silencers lack this diversity.

More generally, our results suggest that context-dependent activity of binding sites for transcriptional

activators can be explained by the balance between the negative effects of interactions between sites

for the same TF, the positive effects of individual TFBSs, and heterotypic cooperativity between

sites.

4.2 Results

4.2.1 Positive heterotypic and negative homotypic interactions explain the

effects of CRX and NRL sites on expression

We previously reported that both genomic and synthetic CRSs with many binding sites for CRX tend

to act as silencers, while CRSs with fewer CRX sites tend to act as enhancers [19, 136]. Our prior

results from a reporter library of 1,299 synthetic CRSs showed that sequences composed of only

CRX and NRL binding sites exhibit activity that ranges from strong activation to repression [19].

These CRSs were tested by MPRA in mouse retinal explants, which preserve all retinal cell types

and cell type-specific TFs that comprise the native context in which CRX is active. We observed that

sequential addition of CRX sites upstream of a basal promoter led first to increased activation and

then to repression below basal levels when three or four CRX sites were present (Figure 4.1A and

B). Repressive CRSs with four CRX sites could be converted to strongly activating sequences by

replacing one CRX site with a site for NRL. Synthetic sequences composed of multiple CRX sites

and one NRL site were more active than equal length CRSs composed of only CRX sites (Figure

4.1B) or only NRL sites (Figure A.7). We found that genomic CRX-bound sequences followed a
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Figure 4.1: Synthetic CRSs sites reveal context-dependent effects of CRX and NRL sites. (A)

Design of synthetic CRS MPRA library reported in [19]. Combinations of CRX and NRL sites (up

to four TFBSs) were cloned adjacent to either a Rho or a Hsp68 basal promoter. TFBSs could be in

either forward or reverse orientation. (B) MPRA activity (y-axis) of CRSs composed only of high

affinity CRX sites (blue) is consistently lower than that of CRSs with high affinity CRX sites and

one NRL site (orange), relative to the Rho basal promoter. Sequential addition of high affinity CRX

first activates, then represses the Rho basal promoter. Plot shows a subset of the data reported in

[19].

similar pattern [19]. Thus, our previous experiments with systematically varied synthetic CRSs

show that a sequence context composed of only two types of TFBSs strongly modulates the effects

of CRX binding sites. However, it is unclear what kinds of interactions among CRX and NRL sites

could account for such context-dependent activity.
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To discover interactions among CRX and NRL sites that might explain context-dependent

activity, we trained a model using MAVE-NN, a recently published neural network framework

that is designed specifically to model data obtained from massively parallel functional assays

[24]. A key strength of MAVE-NN is that it deconvolves sequence-function relationships from

the confounding effects of experimental non-linearities and noise. Using MAVE-NN, we modeled

our synthetic CRS data. As noted above, the synthetic CRSs were composed of systematically

varied combinations of CRX and NRL sites [19]. Sequences included up to four sites in either

the forward or reverse orientation. TFBSs included high, medium, and low affinity versions of

CRX sites and the consensus site for NRL (Figure 4.1A). CRSs were cloned upstream of either the

murine Rho or Hsp68 basal promoter. The library included all 584 possible combinations of one,

two, and three TFBSs, and 715 sequences randomly sampled from all possible combinations of

four sites. We trained MAVE-NN models with different architectures to predict MPRA activities

from sequence alone. We reasoned that due to the small number of TFBSs included in the synthetic

CRSs and the uniform spacing between them, additive models with or without interaction terms

would capture most of the effects of CRX and NRL sites on reporter activity. Each model infers

a relationship between a reporter gene sequence and its latent phenotype, which represents the

intrinsic activity of the CRS that is indirectly read out by the MPRA. MAVE-NN simultaneously

models (1) the relationship between DNA sequence and the latent phenotype, and (2) the nonlinear

relationship between the latent phenotype and the noisy MPRAmeasurement. MAVE-NN quantifies

the performance of the models using an information theoretic measure called predictive information

[24, 27]. Predictive information is the mutual information between the inferred latent phenotype and

the MPRAmeasurement, and it represents how well the model captures the relationship between

a reporter gene’s inferred intrinsic activity and its MPRA output. We used predictive information

to compare the performance of four different model architectures: (1) an additive model lacking

interactions between TFBSs, (2) a nearest-neighbor model that only allows interactions between

neighboring TFBSs, (3) a pairwise interaction model allowing interactions between all pairs of
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TFBSs regardless of spacing, and (4) a “black box” multilayer perceptron model that makes no prior

assumptions about the interactions between TFBSs. To train the models, the data was randomly

split among training (80%), validation (10%), and test (10%) sets. All performance metrics were

computed from the test set. Model parameters for analysis were taken from the best performing

model out of multiple random initializations.

Of the three model architectures that included additive and interaction terms, we found that

the pairwise interaction model achieved the best overall performance (Figure 4.2A and B). This

model provided 1.8 bits of predictive information, roughly equivalent to an accurate three-way

classification of CRSs by activity. The predictive information of the pairwise model (1.82 bits) is

approximately half that of the multilayer perceptron “black box” model (3.00 bits). The disparity in

predictive information between the pairwise and black box models suggests that additional higher

order interactions between TFBSs likely account for much of the unexplained activity of the synthetic

CRSs. However, this unexplained activity likely consists of small discrepancies between sequences

with similar activities, because the pairwise model captured a substantial fraction of the variation in

reporter activity (Figure 2B and C, R2 = 0.889). To understand how additive and interaction effects

of TFBSs might explain the context-dependent activity of CRX sites, we examined the parameters

of the pairwise model. We found that the additive contributions of all TFBSs, averaged over all

four possible positions in the synthetic CRSs, were positive (Figure 4.2D). This is consistent with

the roles of CRX and NRL as transcriptional activators. The average additive contribution of CRX

sites increases with site affinity, particularly for sites in the forward orientation. High affinity CRX

sites have a stronger positive, additive effect than NRL sites, suggesting CRX is a stronger activator

(Figure 4.2D). The additive terms of the model reflect the expected effects of simple transcriptional

activators whose probability of binding to a CRS is determined by the number and affinity of binding

sites. However, these positive, additive terms do not account for the context-dependent effects of

CRX binding sites observed in the data shown in Figures 4.1B and A.7.

Examining the interaction terms of the model, we observed a pattern of positive, heterotypic
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cooperativity between CRX and NRL sites, and negative homotypic interactions between binding

sites for the same TF (Figure 4.2D). Negative homotypic interactions are strongest between NRL

sites and between high affinity CRX sites, and they decrease with decreasing CRX site affinity.

CRX sites also show a strong, affinity-dependent negative interaction with the Rho basal promoter,

which contains three CRX sites [147, 162]. Negative homotypic interactions were especially strong

between adjacent sites but can be observed at all distances in the synthetic CRSs (Figure A.8).

Positive interactions between CRX and NRL sites also occur at all distances and depend on binding

site affinity. The modeling results suggest that activating and inhibiting interactions between CRX

and NRL are the primary determinants of the activity of CRSs with binding sites for these two TFs.

Taken together, the parameters of the pairwise interaction model reveal a cis-regulatory grammar

that accounts for the observed context-dependent activity of CRX and NRL sites. Consistent with

the known roles of CRX and NRL as transcriptional activators, sites for these TFs consistently

make positive, independent contributions to activity. However, negative homotypic interactions

reduce activation or lead to repression when multiple sites for the same TF are placed together.

The repressive effect of negative homotypic interactions can be overcome by the strong positive

cooperativity between CRX and NRL. An important feature of this cis-regulatory grammar is that

additive effects and interactions scale differently with the number of TFBSs. The independent

contributions of TFBSs increases linearly with the number of TFBSs, while the interaction effects

increase with the square of the number of TFBSs. These differences in scaling have a strong impact

on CRSs with multiple sites and explain why the replacement of a single binding site can convert a

silencer to an enhancer (Figure 4.1B).

4.2.2 Positive heterotypic interactions require CRX protein

We previously reported that many genomic and synthetic CRSs with CRX binding sites either retain

or gain activity in Crx-/- retina, despite the loss of CRX protein [13]. Activity in Crx-/- retina still

requires intact CRX sites, indicating that another TF, possibly the CRX ortholog OTX2, acts at these
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Figure 4.2: Amodel of CRX and NRL-driven cis-regulatory activity in wild-type retina. (A) The

performance of different model architectures (measured as predictive information) fit to MPRA

measurements of the CRX-NRL library in wild-type retina. Error bars indicate standard error. (B)

The observed activity (y-axis) of test set sequences in wild-type retina compared to the latent

phenotype (x-axis) inferred by the pairwise model. (C) The observed activity (y-axis) of test set

sequences in wild-type retina compared to the activity predicted by the pairwise model (x-axis). (D)

Model parameters for additive and pairwise contributions of CRX and NRL sites and the Rho

promoter to activity in wild-type retina, averaged across the four positions in synthetic CRSs. For

pairwise interactions rows indicate the 5’ site and columns indicate the 3’ site. Forward and reverse

orientation of the TFBS is indicated by (f) and (r). (E) Model parameters for additive and pairwise

contributions of CRX and NRL sites to activity in Crx-/- retina, averaged across positions and

spacings.
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sites when CRX is absent. To examine how additive and pairwise interactions among TFBSs change

in the absence of CRX, we trained a pairwise interaction model on prior data from the synthetic CRS

library tested in Crx-/- retina, with the Rho basal promoter. The Crx-/- model performed similarly to

that trained on data from wild-type retina (2.21 bits of predictive information, Figure A.8 A-C, R2 =

0.900 for predicted versus observed activity). In this model, additive effects of all TFBSs remained

positive (Figure 4.2E), indicating that these CRSs continue to be bound by transcriptional activators

in Crx-/- retina. Unlike the model for wild-type retina, the additive contributions of CRX sites did

not show a strong dependence on affinity. Negative homotypic interactions remain in Crx-/- retina,

though they are attenuated for CRX sites. Notably, the positive interaction between CRX and NRL

sites was absent, indicating that the interaction between these two sites depends specifically on

CRX and NRL, and that other TFs that bind these sites in Crx-/- retina do not interact. Despite the

loss of positive cooperativity between CRX and NRL sites, the model suggests that synthetic CRSs

in Crx-/- retina maintain or increase their activity due to stronger additive contributions of lower

affinity binding sites and a modest attenuation of negative homotypic interactions between CRX

sites. The negative homotypic interactions with the Rho basal promoter are likely attenuated as well,

though we were unable to explicitly model the effects of the Rho promoter because there was no

data from a library without the Rho promoter. Taken as a whole, the model suggests that cooperative

interactions depend on the specific identities of the TFs involved, while the positive additive and

negative homotypic effects hold more generally among TFs, though with varying effect sizes.

4.2.3 Additional retinal TFs contribute independently to CRS activity

CRX and NRL are critical for establishing rod photoreceptor identity, and together they drive high

expression of many key rod photoreceptor genes [22, 151, 155, 161, 163]. However, a cooperative

interaction between CRX and NRL is not sufficient to explain the context-dependent effects of CRX

sites in enhancers, because most CRX-bound enhancers do not contain a copy of the NRLmotif [136,

159]. To investigate how other TFBSs contribute to the activity of CRSs that contain CRX sites, we
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designed a new library of 6,600 synthetic CRSs. The library included TFBSs for CRX, NRL, and

three additional TFs expressed in photoreceptors, NEUROD1, RORB, and MAZ [158, 164, 165].

We previously found that motifs for these TFs were enriched in CRX-bound enhancers, but not

silencers [136]. We sought to discover whether these additional TFBSs interact cooperatively with

CRX sites, or whether they contributed independently to enhancer activity. We designed synthetic

CRSs composed of five sites and we systematically varied the TFBSs composition across the library.

Each CRS included either two or three CRX sites and one or two sites for each of two additional TFs

(Figure 4.3A). Synthetic CRSs were cloned upstream of the Rho minimal promoter and tested by

MPRAwith three replicate transfections in explanted retinas (mean R2 between replicates = 0.950,

FigureA.9A).We used the data to train different models and again found that the pairwise interaction

model performed better than the additive or nearest-neighbor models (predictive information =

2.65). No additional performance was gained from the black box model (FigureA.9B). The pairwise

model captured most of the variance in CRS activity (Figure 4.3B and C, R2 between predicted and

observed expression = 0.970).

Examining the average additive effects of TFBSs in the pairwise interaction model, we found

that higher affinity sites for NRL, NEUROD1, RORB, and MAZ contributed positively to activity,

while lower affinity sites had weaker positive effects or negative effects on activity (Figure 4.3D).

High affinity sites for NEUROD1 and RORB in particular made strong additive contributions to

activity. In contrast to the models above, the additive contributions of CRX sites in this model were

negative. This is likely due to the design of the library, which only includes CRSs with two or

three CRX sites, making it difficult to deconvolve additive effects of individual CRX sites from the

effects of negative homotypic interactions between CRX sites. The interaction terms of the model

exhibit a mixture of moderate positive and negative effects that depend on the affinity and order

of the TFBSs (Figs. 3D and S3C). We looked specifically for interactions between other TFs and

CRX by examining the interaction terms between high affinity CRX sites and each type of TFBS

(Figure 4.3E). As with the prior model, there were strong, affinity-dependent negative homotypic
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interactions between CRX sites. High affinity NRL sites interacted positively with CRX sites only

in some positions. Sites for RORB showed consistent positive interactions with CRX sites across

positions, while sites for NEUROD1 and MAZ generally did not interact with CRX sites. The

results of this model suggest that, while CRX does cooperatively interact with some TFs, such

interactions are not necessary to overcome the repressive effects of negative homotypic interactions.

Instead, the additive contributions from diverse TFBSs can shift the balance towards activation.

4.2.4 Balance between positive and negative interactions can explain

context-dependent effects of binding sites for transcriptional activators

The MAVE-NN models suggest that the context dependency of sites for transcriptional activators

like CRX and NRL can be explained by the balance between the negative effects of homotypic

interactions and the positive effects of individual TFBSs and heterotypic interactions between them.

These effects create context dependence without the need for repressor TFBSs or dual-function

TFs with distinct activation and repression domains. Instead, the results presented above suggest

that some transcriptional activators self-inhibit when present at higher occupancy on a CRS. The

negative effects of self-inhibition can be overcome by positive cooperativity with a different TF,

or by the non-cooperative action of a diverse collection of TFs that, as a collective, engage in

fewer negative homotypic interactions. Under this model, the TFBS composition at enhancers and

silencers shifts the balance between these effects in favor of either activation or repression. At

enhancers, positive cooperativity and the independent contributions of diverse activator TFBSs

outweigh the effects of negative homotypic interactions, while at silencers negative homotypic

interactions predominate.

To demonstrate how context dependence is achieved under such cis-regulatory grammar of

balanced effects, we implemented a simplified model that expresses CRS activity as the sum between

positive and negative contributions of activator TFBSs. This model recapitulates the non-monotonic

relationship we observed between the number CRX sites and CRS activity (Figure 4.1B). In the
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Figure 4.3: Amodel of cis-regulatory activity driven by diverse TFBSs in wild-type mouse retina.

(A) Design of MPRA library of synthetic CRSs with additional lineage-specific TFBSs. CRSs

contained five sites placed adjacent to the Rho basal promoter. Each CRS contained either three

CRX sites and two sites for other TFs (3-1-1) or two CRX sites, two sites for another TF, and one

site for a third TF (2-2-1). (B) Observed activity (y-axis) of test set sequences compared to the

latent phenotype (x-axis) predicted by the pairwise model. (C) Observed activity (y-axis) of test set

sequences compared to the activity predicted by the pairwise model (x-axis). (D) Model parameters

representing additive and pairwise contributions of TFBSs averaged across positions. (E)

Distributions of interactions with high-affinity CRX binding sites across all positions, broken down

by partner TF.
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model, we assume that CRS activity is the sum of (1) positive, additive contributions from sites for

transcriptional activators, (2) positive cooperativity between sites for different TFs, and (3) negative

interactions between sites for the same TF. For CRSs composed only of sites for two different TFs,

as in Figure 4.1, this sum is

𝐴 = 𝛼𝑥𝑥 + 𝛼𝑦𝑦 + 𝛽𝑥𝑦𝑥𝑦 −
𝛾𝑥𝑥(𝑥−1)+𝛾𝑦𝑦(𝑦−1)

2
(1)

where 𝐴 is activity of a CRS, 𝑥 is the number of sites for the first TF, 𝑦 is the number of sites for

the second TF, and 𝛼, 𝛽, 𝛾 are weights reflecting the relative strength of each contribution to activity.

The first two terms represent the additive contribution of each TFBS, the third term represents

positive cooperativity between all pairs of sites for different TFBSs, and the final term represents

negative interactions between all pairs of sites for the same TF.

We calculated the expected activities of all possible CRSs with up to four sites (Figure 4.4A),

making the simplifying assumption that the relative strengths of the different terms in eq. 1 are

similar and setting all weights equal to 1. The simulated activities recapitulate patterns of expression

observed in the library of synthetic CRSs with combinations of CRX and NRL sites. Starting with

the basal promoter alone (zero TFBSs), increasing the number of sites for a single TF leads first to

an increase and then a decrease in activity (leftmost column or top row in Figure 4.4A, compare

with Figs. 1B and S1). The highest activities are obtained from CRSs with combinations of sites

from both TFs. In the model, a CRS with four CRX sites is repressive. Replacing one of those sites

with an NRL site converts the CRS from a silencer to an enhancer, an effect also observed in the

data (Figs. 4A and 1B.) While our model relies on simplifying assumptions that are unlikely to fully

hold in vivo, it successfully recapitulates the major trends observed in our data.

We also modeled the effects of TFBS diversity in the absence of cooperative interactions. The

MAVE-NN model of synthetic CRSs with five TFBSs suggests that a diversity of TFBSs can

shift the balance in favor of activation, even without cooperative interactions (Figure 4.3D). For

a CRS composed of a given number of sites, greater TFBS diversity reduces negative homotypic

interactions. As a result, the independent positive effects of each TFBS predominate. To model these
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effects, we assumed that (1) bound TF activators always make positive, independent contributions

to activity and (2) all TFs engage in negative homotypic interactions. We calculated the sums of

positive and negative effects for CRSs with five total TFBSs, but different numbers of CRX sites

(and therefore varying amounts of negative homotypic interactions). In these simulated CRSs, the

total additive contribution is constant and equal to the total number of TFBSs (Figure 4.4B, blue

circles). As the diversity of the TFBSs increases, the number of negative homotypic interactions is

reduced (Figure 4.4B, orange crosses). A CRS with five CRX sites is therefore highly repressive,

while replacing some CRX sites with different TFBSs increases the activity of the CRS (Figure

4.4B, green squares). This simplified model demonstrates how strong activity can be achieved by

the independent effects of diverse TFBSs, even in the absence of cooperative interactions. This

model suggests an explanation for our prior observation that CRX-bound strong enhancers have

more diverse TFBSs than CRX-bound silencers [136].

4.3 Discussion

Because the effects of a TFBS often strongly depend on local sequence, the activity of cis-regulatory

DNA is not a simple function of TFBS composition. To accurately predict the activities of cis-

regulatory sequences and the effects of genetic variants that occur within them, we need models of

cis-regulatory grammar that accurately account for the influence of sequence context. Different

occurrences of a TF binding motif can differ in their effects due to post-translational modifications

of TFs [166, 167], the presence of other co-bound factors [91, 125, 126, 129, 131, 137, 145,

168–171], and binding by different TFs with similar sequence specificities [130, 172, 173]. Our

results suggest that context dependence can also be determined by the overall balance between

independent and interaction effects of individual sites for transcriptional activators. At the core of

this model is a distinction between additive, independent effects of individual TF molecules and

effects of interactions between molecules. In the case of CRX, the independent and interaction

effects influence cis-regulatory activity in opposite directions, with CRX molecules independently
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Figure 4.4: Simplified balance model of context-dependent effects of binding sites for

transcriptional activators. (A) Simulated CRS activities calculated by eq. 1 for sequences with up

to four TFBSs for CRX or NRL. Stepwise addition of sites for a single TF first increase then

decrease activity. The first two columns show predicted expression of CRSs with only CRX sites or

with CRX sites plus one NRL site. Compare with the measured values in Figure 4.1B. (B) Model of

CRSs with five TFBSs shows how TF diversity reduces negative homotypic interactions and

increases CRS activity. As CRX sites are replaced with sites for different TFs, TF diversity

increases (x-axis) and the number of negative homotypic interactions decreases (orange crosses)

and the overall CRS activity increases (blue squares). The total additive contribution of TFBSs

(green circles) is equal to the total number of TFBSs and remains constant.
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contributing to activation while engaging in repressive homotypic interactions with one another.

The independent, activating effects scale linearly with the number of binding sites, while the number

of repressive homotypic interactions scales with the square of binding site number. As the number

of binding sites in a CRS increases, negative homotypic interactions grow faster than the activating

effects of individual binding sites. As a result, sequences with many CRX sites are likely to act as

silencers, a pattern that we observe with both synthetic CRSs and genomic CRX-bound sequences

[19, 136].

In this model, other TFs can influence whether a CRX-bound CRS will activate or repress

transcription in two ways. First, a TF like NRL may form positive cooperative interactions with

CRX. Positive cooperative interactions also scale with the square of the numbers of binding sites,

thus the addition of relatively few sites for a cooperating TF can shift the balance towards activation.

This explains our observation that, for a repressive CRS with four CRX sites, converting one position

to an NRL site changes activity of the CRS from repression to activation (Figure 4.1B). This effect

in synthetic CRSs is consistent with our previous finding that genes near CRX-bound loci that are

co-bound by NRL are more highly expressed than genes near regions bound by CRX alone [19]. In

the second way, the presence of other bound TFs at a CRS can also overcome negative homotypic

effects by making strong additive contributions, without cooperativity, as in the case of NEUROD1.

At a CRS, having fewer sites for a single TF and more sites for a variety of TFs minimizes negative

homotypic interactions and allows the additive effects of TFBSs to predominate. The repressive

effects of homotypic interactions can thus be overcome by positive cooperativity, or by the presence

of diverse TFBSs.

This model suggests an explanation for our prior observation that CRX-bound enhancers often

have more diverse TFBSs than CRX-bound silencers [136]. Genomic sequences that act as silencers

tend to contain clusters of multiple CRX sites and few sites for other TFs, while genomic enhancers

tend to contain sites for a variety of photoreceptor TFs [19, 136, 159]. These patterns are recapitulated

in synthetic CRSs whose TFBS composition is systematically varied. We previously quantified
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the role of TFBS diversity in distinguishing silencers from enhancers using a phenomenological

metric that we called information content, which considers the number and diversity of TFBSs in

a CRS [136]. High information content sequences have a greater number and diversity of TFBSs

and are more likely to be enhancers, while silencers are often low information content because they

lack TFBS diversity. Our MAVE-NN models suggest that high information content sequences are

enhancers because binding site diversity allows the additive contributions of TFBSs to outweigh

negative homotypic interactions. This is in contrast to low-diversity silencers, which our model

suggests are dominated by negative homotypic interactions. TFBS diversity is a feature of enhancers

in other cell types, where a similar balance between positive additive effects and negative homotypic

interactions may occur [174].

In our models, negative homotypic interactions strongly influence the context-dependent effects

of binding sites for several photoreceptor TFs, particularly CRX and NRL. The existence of such

interactions is supported by data from both synthetic CRSs and genomic sequences. Sequential

addition of CRX or NRL binding sites upstream of the Rho basal promoter first increases, then

decreases transcription, sometimes below basal levels (Figure 4.1B and A7) [19]. Genomic CRX-

bound sequences that act as silencers when measured by MPRA have more copies of the CRX motif

than sequences that act as enhancers [19, 136, 159]. We have shown that this silencing activity

depends on both CRX motifs and CRX protein [19]. Similar negative homotypic effects have been

reported for several TFs, including liver specific factors [175], yeast Gcn4 [176], pluripotency TFs

[134, 177], and Sp3 [178]. These findings suggest some TFs may self-inhibit or recruit repressors

when they highly occupy certain CRSs [138, 179, 180]. The homeodomain TFWUSCHEL activates

transcription as a monomer at low concentration, but forms repressive dimers at higher concentration

[181, 182]. A recent study found that homeodomain TFs in particular are enriched in activation

domains that also exhibit the ability to repress [18]. Our model of context dependency suggests that

the balance between positive effects and negative homotypic interactions can account for the dual

activities of some TFs, without the need for dedicated repressors.
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4.4 Methods

4.4.1 Model fitting

For the CRX + NRL library, binding site arrangements and MPRA activities were extracted from

Database S3 of [19]. For the library with CRX, NEUROD1, NRL, RORB, and MAZ sites (CDNRM

library), the MPRA experiment was performed as described below. Data files are described below

under Data availability. To encode arrangements of TFBSs as input sequences for MAVE-NN, we

used single letters to represent each type of binding site. To create input sequences of uniform length

for the CRX + NRL library, dummy binding sites labeled “O” were prepended to each arrangement

to render all CRSs four sites long, and an additional letter indicating the basal promoter (Rho or

Hsp68) was then appended to the end. Models were trained using mave-nn package version 1.01

until convergence on the processed data, using hyperparameters given in Table 1. The models were

specified using the Skewed-T GE noise model with a heteroskedasticity order of 2. We used the

consensus gauge with basal Hsp68 as the consensus sequence to obtain parameters from the models

trained on CRX-NRL data in wild-type retina, and the uniform gauge for the remaining models.

To ensure consistent training outcomes, we trained each model from a large number of random

initializations (25 for the CRX + NRL library in wild-type retina, 20 for the library in Crx-/- retina,

and 50 for the CDNRM library), with the numbers chosen to achieve maximum performance and

reproducibility. We picked the best-performing model of each type for further evaluation. Model

performance was evaluated by cross-validation with an 80-10-10 percent training-validation-test

set split. The measurements were split randomly between sets and the same split was used for all

random initializations.

4.4.2 CDNRM library design

We designed a library of 6600 synthetic CRSs composed of combinations of binding sites for

CRX, NRL, NEUROD1, RORB, and MAZ. The library was designed to vary TFBS diversity
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around CRX sites. It contained all possible arrangements of either 3 sites for CRX and 1 site each

for two other TFs (3-1-1 sequences); or 2 sites for CRX, 2 sites for a second TF, and 1 site for

a third TF (2-2-1 sequences). CRX sites in a CRS were either all high affinity or a mixture of

affinities. TFBS orientation was held constant. High, medium and low affinity CRX sites were

those used in the CRX + NRL library [19]. The NRL, NEUROD1, RORB, and MAZ motifs were

randomly selected from sites identified in genomic strong enhancers that lose activity when the

corresponding motif is deleted [136]. Note that NRL sites in the CDNRM library vary from the

site in the CRX + NRL library, but all sites for the synthetic CRSs have been shown to be active

in genomic sequences. Binding site sequences were padded to make all motifs 12 bp, then a con-

stant buffer sequence was added (AGCTAC<motif>GT) to create a 20 bp “building block” that

maintains helical spacing when sites were combined, similar to our procedure for prior libraries of

synthetic CRSs [13,16,65]. The 12 bp motifs used with the core motif underlined, are: high affinity

CRX, TGCTAATCCCAC; medium affinity CRX, TGCTAAGCCAAC; low affinity CRX, TGCT-

GATTCAAC; high affinity NRL: AATTTGCTGACC; medium affinity NRL, GGCCTGCTGACC;

high affinity NEUROD1, CAACAGATGGTA; medium affinity NeuroD1, CGGCAGGTGGTA;

high affinity RORB, AATTAGGTCACT; medium affinity RORB, ATCTGGGTCAGT; high affinity

MAZ, GGGGGAGGGGGG; medium affinity MAZ, GCGGGCGGGGGG.

4.4.3 MPRA library cloning

Synthetic CRSs were each represented in the library with 3 unique barcodes. As standards, the library

included 20 genomic sequences taken from [18] that span the dynamic range of the MPRA and 150

scrambled sequences as negative controls. The Rho basal promoter was tagged with 90 barcodes to

ensure precise measurement of basal levels. Barcoded CRSs were synthesized as two sub-libraries on

a single chip using custom oligonucleotide synthesis fromAgilent Technologies. The oligonucleotide

libraries were cloned as previously described [18]. Briefly, we amplified oligos using either primer

pairs MO563 (GTAGCGTCTGTCCGTGAATT) and MO564 (CTGTAGTAGTAGTTGGCGGC)
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or RZFP3 (TCTAGACTGCGGCTCGAATT) and RZFP4 (AGATCTAATGCATACGCGGC), and

cloned them into the vector pJK03 (AddGene #173,490). The rod-specific Rho promoter, the DsRed

reporter gene, and a multiplexing barcode (mBC) was cloned between the synthetic sequence and

the cBC. One sub-library was assigned mBC TAGTAACGG, the other was assigned CCTACTAGT.

The final plasmid libraries were mixed together at equimolar concentrations.

Retinal explant electroporation: Animal procedures were performed in accordance with a

WashingtonUniversity in St Louis InstitutionalAnimal Care andUse Committee-approved vertebrate

animals protocol. Electroporations into retinal explants into P0 CD-1mice and RNAextractions were

performed as described previously [13,18,42,49]. We performed three replicate electroporations.

cDNA and the input plasmid pool was sequenced on the Illumina NextSeq platform. We obtained

an average sequencing depth of >675 reads per barcode.

4.4.4 MPRA data processing

Sequencing reads were filtered to retain only perfect barcode matches. After filtering we retained

95% of sequencing reads. Barcodes with fewer than 50 reads in the plasmid pool were considered

missing and removed. Barcode read counts were normalized by total sample reads. MPRA activity

scores for each replicate were calculated by dividing RNAbyDNAvalues, averaging across barcodes

for each CRE, then normalizing to the activity of the basal promoter [18]. Replicates were averaged

and the log2 transformed values were used for model training.
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Chapter 5: Conclusions

5.1 Repression is heterogeneous and involves complex

interactions, while activation is homogeneous and additive

In the studies I have described in the previous chapters, we have uncovered a great degree of

complexity and context-dependency in the activities of transcription factors. One of the most

striking aspects of our findings is the asymmetry between activation and repression, with each

manifesting a different form of complexity. More specifically, activators are homogeneous in terms

of noise, but act upon multiple rate constants. Furthermore, activation can occur through specific

cooperative interactions. On the other hand, in our retinal MPRAdata, repression primarily occurred

through homotypic interactions between large numbers of adjacent binding sites. However, in terms

of noise, we observed clear differences in activity and thus mechanism between different repressors,

quite unlike what we saw with activators. In the following section, I will propose a theoretical

framework to explain these seemingly disparate observations, and conclude by arguing that an

understanding of noise will be necessary to model gene regulation even if modeling noise is not the

immediate objective.

5.2 Potential mechanisms for repression by an excess of

activator

One of our most counterintuitive observations is that transcription factors that act as activators when

bound individually frequently act as repressors at high occupancy on the DNA. We suspect that this

effect is not specific to a particular transcription factor, given that we observed this phenomenon in
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both TFs (CRX and NRL) for which we were powered to detect homotypic interactions. Additionally,

multiple studies [181, 183] have observed repressive homotypic interactions, with Mukund et al

[183] even observing it generally among the strongest activation domains. There are a number

of imaginable explanations for this effect. One possible explanation for the MPRA results is

that the “CRX” binding sites in fact bind multiple transcription factors with differing degrees of

homotypic cooperativity. The effects of more cooperative transcription factors will thus increasingly

predominate as the number of sites increases, leading to the observed switch if the more cooperative

TFs are repressors and the less cooperative TFs are activators. However, the switch between

activation and repression would be expected to be confined to a specific set of TF binding sites

under this model, contrary to the observations of this phenomenon in multiple settings. Additionally,

Mukund et al [183] observed this switch in a targeting system using combinations of just effector

domains, a setting where differential DNA binding has been taken out of the picture. Switching

between activation and repression has also been observed [18] in the context of targeting single

effector domains to different promoters, again ruling out mechanisms involving DNA binding.

If the switch between activation and repression does not depend on differential DNA binding, it

must be occurring after DNA binding and mediated by transcriptional effector domains. One can

easily imagine a similar differential binding mechanism occurring after DNA binding. To elaborate,

it is easily to imagine differential cooperativity in recruitment of different cofactors by effector

domains, such that repressive cofactors are primarily recruited by multiple effector domains acting

cooperatively, while activating cofactors can be recruited by effector domains acting independently.

This would thus promote activation at low transcription factor occupancy and repression at high

occupancy. This model can be further extended to encompass phase separation. Under this version

of the model, individual effector domains would again recruit activating cofactors, while a sufficient

number of effector domains in close proximity would nucleate a condensate, with corepressors

preferentially partitioning into such liquid drops, thus leading to repression.

Another possible explanation is rooted in kinetics. Galburt [184] has shown that factors with no
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DNAbinding specificity can have site-specific effects on transcription based on the kinetic landscape

of a promoter. This is because many mechanisms of action, such as catalyzing DNA opening or

stabilizing the open complex, increase the rates of both forward and reverse reactions within the

transcriptional process. Thus, depending on the rates in the absence of the factor, introducing

the factor can either increase or decrease the overall rate of transcription depending on which

step(s) are rate-limiting. A concrete example of this can be derived from the standard recruitment

model of TF activity [185] in which an activation domain interacts (with cofactors which in turn

interact) with polymerase, thus bringing it to the transcription start site. While this might increase

transcription if the activator is present at low occupancy, excessive binding of polymerase to

the activation domains could prevent it from escaping the promoter, thus reducing transcription

when occupancy of the transcription factor is high. Importantly, Galburt shows [184] that the

transcription factor must impact multiple rates for this switching to occur. This is consistent with

our results from the yeast reporter system, with modulation of activator occupancy through nuclear

concentration consistently inducing mean-variance relationships suggestive of changes in multiple

kinetic parameters, regardless of the specific activation domain used.

5.3 Potential explanations for the greater complexity of

repression

Another striking finding from our experiments is the marked asymmetry between activators and

repressors in isolation, with activators having qualitatively homogeneous effects on noise consistent

with a complex shared mechanism and repressors producing sharply distinct effects on noise that can

be straightforwardly modeled. A partial explanation for this difference lies in the inherent nature of

activation and repression. Because functional transcription initiation is confined to a set of defined

sites that is small compared to the genome, activators can act autonomously, while repression is

meaningful only in the context of activating sequence features. This inherent disparity points to
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a potential evolutionary explanation for the differences between activation and repression. Since

activation can occur independently of any other factor binding, there might be selective pressure for

activators to preserve autonomous activity, constraining the space of mechanisms available to them.

Repressors, on the other hand, because the sites where they are functionally significant always

have activators bound as well, are free to evolve context-dependent mechanisms of action. This

helps to explain the results from our yeast reporters. While autonomously acting activators must act

directly upon transcription initiation, repressors can act by excluding activator binding, opening up

a mechanism with strongly distinct effects on noise.

This framework can also help explain how repressive homotypic interactions can become

widespread. Multifunctional transcription factors are particularly free to evolve complex interactions.

Because the different domains and activities contained within the same protein are always present

together, mutations in one can be compensated by changes in the other components. This allows

the different components to coevolve, and thus develop highly interdependent mechanisms. The

interactions that evolve between domains and functions could then occur between adjacent molecules

of the same factor as well, leading to complex homotypic interactions.

Besides the neutral mechanism just discussed, another factor potentially driving the evolution

of homotypic repressive interactions is selection for signal responsive elements to be repressed

under basal conditions. In the absence of signal, signaling pathways tend to exert a repressive effect

upon CRSs bound by their associated signal-responsive TFs [16]. This has the function of ensuring

that associated constitutive TFs that provide cell type specificity do not inappropriately activate

transcription in the absence of signal. In the presence of signal, cooperative interactions between

signal-responsive and cell type-specific TFs create highly specific patterns of gene expression.

Selection for such regulatory logic will naturally favor the development of positive heterotypic

interactions. Negative homotypic interactions might also be selected for because they help to prevent

inappropriate activation by a single TF in the absence of additional cooperating TFs.
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5.4 Models of noise and nonlinearity are necessary to gain a

predictive understanding of gene expression

Theory and practical experience both indicate that modeling noise and characteristics of the experi-

mental measurement process is a vital part of any attempt to gain a predictive understanding of gene

expression. As related by Atwal and Kinney [27], maximum likelihood inference is likely to give

incorrect results if an incorrect noise model is used. To achieve accurate inference, the noise model

must either be correctly specified ahead of time or learned alongside the model of deterministic

effects using mutual information as the objective. This comports with practical experience. It is

widely accepted in the field [186, 187] that correcting for batch effects or experimental variability

is an essential part of any bioinformatic analysis. In our own experience [Barak Cohen, personal

communication], all models prior to MAVE-NN had failed to fit the building block MPRA data

used here. This includes both biophysical models and standard machine learning architectures,

suggesting that this is not due to an inability to capture deterministic biological effects. Rather, what

sets MAVE-NN apart from previous approaches to modeling is that it explicitly models experimental

noise and nonlinearity and learns it alongside the genotype-phenotype mapping, thus implementing

the mutual information objective Atwal and Kinney [27] describe. The necessity of modeling

these features of the data has multiple implications for future analyses as new MPRA methods

are developed to probe the effects of ever more complex sequence features on ever more complex

phenotypes.

Nonlinear activation functions are a widespread motif in biology. Both saturating and sigmoid

curves are common in biochemistry, with Michaelis-Menten and Hill functions arising from simple

physical chemical models. Both of these curves are commonly fit to biochemical data to recover

biophysical parameters. While there have been some recent publications [188, 189] that fit binding

curves to genome-wide data from ChIP or Cut and Tag, and the Garcia lab has done extensive

work using input-output functions as the organizing framework [190–192], there has been relatively
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little exploration of global nonlinearities in cis-regulatory activity. However, there is evidence

that such nonlinearities might be a useful conceptual tool for understanding a broad range of

regulatory phenomena. For example, massively parallel assays of enhancer-promoter compatibility

have consistently found that the relationship between intrinsic enhancer and promoter activity and

expression is predominantly multiplicative, with a relatively small residual component [193, 194].

This residual component has been explained differently by different authors. Bergman et al [194]

describe the residual as a specific interaction between two classes of enhancers and two classes of

promoters. Hong et al, on the other hand, propose that the deviations from multiplicative scaling

arise from detection limits and saturation imparting a sigmoidal character to reporter activity. A

fine-grained examination of the results from Bergman et al [194] also lends support to this model.

Close examination of the features distinguishing the proposed classes of enhancers and promoter

reveals a preponderance of features, like accessibility, H3K27 acetylation, and activity in MPRAs

and CRISPR screens, that can be interpreted as proxies for overall level of activity. This suggests

that the deviations from the multiplicative relationship in Bergman et al’s [194] data might also

arise from a global nonlinearity superimposed upon an simple underlying principle. Approaches to

modeling like MAVE-NN that explicitly account for global nonlinearity hold promise for untangling

specific interactions from global epistasis due to nonlinearity in experimental measurements.

Noise is another ubiquitous biological phenomenon that must be accounted for in order to

obtain accurate models. Until recently, noise in MPRA data has been largely an experimental

artifact because the assays have been performed in bulk. However, single cell MPRAs (scMPRAs)

have recently been developed to probe cis-regulatory effects on cell type- and state-specific gene

expression and cell-to-cell variability [114, 195, 196]. By the nature of these assays, their output

exhibits both technical and biological noise. This implies that any attempt to model single-cell gene

regulation will have to account for the intrinsic noise in gene expression, even if the objective is to

understand cell-type specific regulation and not specifically noise. Because, as we have seen here, it

is possible to decouple mean and noise, studies that only probe effects on mean expression will not
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be sufficient to derive an adequate noise model for single-cell data. Therefore, understanding gene

regulation in its cellular context will require a dialog between theory and experiment that treats

noise and nonlinear input-output relationships not as epiphenomena, but inherent features of biology.

Approaches to modeling designed with such a dialog in mind will be vital tools for understanding

gene regulation.
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Appendix A: Supplement

A.1 Supplementary Figures
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Figure A.1: mCherry expression does not correlate with beta-estradiol or GFP expression after

controlling for cell size, Related to STAR methods A: mCherry expression and scatter

measurements by GFP expression in a beta-estradiol dose-response experiment B: mCherry

expression vs. GFP expression across all strains expressing WT activation domains, controlling for

forward scatter

78



Figure A.2: Yeast growth curves in the presence and absence of beta-estradiol, Related to STAR

methods
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Figure A.3: Additional plots of mean-Fano factor relationships, related to Figure 2 A-C:

Reproducibility of Fano factor estimates with cells filtered by forward scatter in addition to

mCherry D: Means and Fano factors induced by yeast activation domains with cells filtered by

forward scatter in addition to mCherry E: Means and Fano factors induced by VP16 and GCN4 at

varying levels of beta- estradiol with cells filtered by forward scatter in addition to mCherry F:

Means and Fano Factors of GCN4 mutants plotted on log scale G: Violin plots of predicted GFP

expression distributions across ADs H: Violin plots of observed GFP expression distributions across

ADs (ordered by mean GFP) I: Mean-Fano curves created by varying induction of 7 different

activation domains Fig. S3j: Mean-Fano trendlines across activation domains at different

beta-estradiol concentrations (in box)
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Figure A.4: Imaging shows nuclear localization of synthetic TF depends mostly on beta-estradiol

concentration, Related to STAR methods A: Distributions of ratios of nuclear to total mCherry

signal across conditions and strains. Strains MY447, YM23.31, MY450, and MY460 were induced

with 200 uM beta-estradiol and the mCherry signal in the nucleus was quantified with fluorescence

microscopy. The GFP fluorescence from the reporter gene was used to define cytoplasmic

fluorescence. B: Example image of mCherry and GFP fluorescence in the absence of beta-estradiol

C: Example image of mCherry and GFP fluorescence in the presence of beta-estradiol
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Figure A.5: Overlap between AD interaction partners, Related to STAR methods A: Shared and

unique physical interaction partners of GCN4, GAL4, and RTG3 B: Shared and unique genetic

interaction partners of GCN4, GAL4, and RTG3 C: Shared and unique physical interaction partners

of ADR1, GAL4, and HSF1 D: Shared and unique genetic interaction partners of ADR1, GAL4,

and HSF1
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Figure A.6: Additional simulation results, related to Figure 3 A: Predicted effect of varying only

Kon at different fixed values of Koff B: Predicted effect of varying only Kon at different fixed

values of Km C: Predicted effect of varying only Koff at different fixed values of Kon D: Predicted

effect of varying only Koff at different fixed values of Km E: Predicted effect of varying only Km

at different fixed values of Kon F: Predicted effect of varying only Km at different fixed values of

Koff G: Predicted effect of varying K1 in Scholes et al’s transcription cycle model H: Predicted

effect of varying K2 in Scholes et al’s transcription cycle model I: Predicted effect of varying

degradation rate in Scholes et al’s transcription cycle model J: Predicted effect of varying Koff2 in

Zoller et al’s refractory period model K: Predicted effect of varying Koff3 in Zoller et al’s

refractory period model L: Predicted effect of varying Koff4 in Zoller et al’s refractory period

model M: Predicted effect of varying Koff5 in Zoller et al’s refractory period model N: Predicted

effect of varying Kon in Zoller et al’s refractory period model O: Predicted effect of varying Koff in

Zoller et al’s refractory period model P: Predicted effect of varying Km in Zoller et al’s refractory

period model G: Effect of varying Kon predicted by Sherman et al’s analytical solution R: Effect of

varying only Koff predicted by Sherman et al’s analytical solution S: Effect of varying only Km

predicted by Sherman et al’s analytical solution T: Predicted effect of varying Kon1 in Rodriguez et

al’s model U: Predicted effect of varying Koff1 in Rodriguez et al’s model V: Predicted effect of

varying Kon2 in Rodriguez et al’s model W: Predicted effect of varying Km1 in Rodriguez et al’s

model
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Figure A.7: Increasing NRL sites reduces MPRA activity in synthetic CRSs. Synthetic CRSs

composed only of NRL sites show an increase, then a decrease in activity relative to the Rho basal

promoter as the number of sites is increased. Plot shows a subset of the data reported in [19].
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Figure A.8: Amodel of CRX and NRL-driven cis-regulatory activity in Crx-/- retina. (A) The

performance of different model architectures (predictive information) fit to MPRAmeasurements

of synthetic CRSs in Crx-/- retina. (B) Observed activity (y-axis) of test set sequences in Crx-/-

retina compared to the latent phenotype (x-axis) predicted by the pairwise model. (C) Observed

activity (y-axis) of test set sequences in Crx-/- retina compared to the activity predicted by the

pairwise model (x-axis). (D) Model parameters for position-specific pairwise contributions of CRX

and NRL sites in wild-type retina. Forward and reverse orientation of binding sites is indicated by

capital or lower case letter. CRX sites are either high (C or c), medium (M or m), or low (L or l)

affinity. NRL sites are labeled N or n and the Rho promoter is labeled R. There are no model

parameters for Hsp68 (H, used as the overall basal sequence) or the placeholder site _ used to

equalize the lengths of input sequences. See methods for details. (E) Position-specific pairwise

contributions of CRX and NRL sites to activity in Crx-/- retina.
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Figure A.9: Amodel of cis-regulatory activity driven by diverse TF binding sites in wild-type

retina. (A) Reproducibility of MPRAmeasurements across three replicates. (B) Performance of

modes fit to measurements of the MPRA library of CRSs composed of five TFBSs, expressed in

terms of predictive information. (C) Position-specific pairwise contributions of diverse TF binding

sites. Model parameters shown are the average of multiple training runs from different random

starts as described in the methods. Capital and lowercase letters represent high and medium affinity

sites for CRX (C), NEUROD1 (D), NRL (N), RORB (R), and MAZ (M). Low affinity CRX sites

are represented by x.
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Table A.1: Beta-estradiol concentrations used in creating Figure 1. 200 nM was used for all

conditions in Figure 2. Related to Figure 1.

GCN4 16 uM 8 uM 4 uM 2 uM 1 uM 500 nM

250 nM 125 nM 64 nM 32 nM 16 nM 0 nM

VP16 1.2 nM 1.1 nM 1 nM 0.9 nM 0.8 nM 0.7 nM

0.5 nM 0.4 nM 0.3 nM 0.2 nM 0.1 nM 0 nM

A.2 Supplementary tables
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Table A.2: AD sequences and names of strains

AD

name

Sequence Strain names

VP16 ELHLDGEDVAMAHADALDDFDLDMLGDGDSPGPGFTPHD-

SAPYGALDMADFEFEQMFTDALGIDEYGG

MY447,

MY448

War1 TNIKPSPSSSVDNLNDYLTDINSLAWGVNSLNDEFWTDLFM-

NDI

YM23.23,

YM23.24,

YM23.31,

YM23.32

GCN4 IPELDDAVVESFFSSSTDSTPMFEYENLEDNSKEWTSLFD-

NDIPVTTDDVSLADK

MY449,

MY450,

MY457,

MY461

Gal4 SAAHHDNSTIPLDFMPRDALHGFDWSEEDDMSDGLPFLKT-

DPNNNGF

MY459,

MY460

ADR1

AD4

DFVDFQELLDNDTLGNDLLETTAVLKEFELLHDDSVSATATS C1, C3, C4

Gal4

AD2

NFNQSGNIADSSLSFTFTNSSNGPNLITTQTNSQALSQPI-

ASSNVHDNFMNNEITASKIDDGNNSKPLSPGWTDQTAY-

NAFGITTGMFNTTTMDDVYNYLFDDEDTPPNPKKE

D3, D4

HSF1

AD1

IFTTDRTDASTTSSTAIEDIINPSLDPQSAASPVPSSSFFHD-

SRKPSTSTHLVRRGTPLGIYQTNLYGHNSRENTNPN-

STLLSSKLLAHPPVPYGQNPDLLQHAVYR

B2, D10, D11,

D12

HSF1

AD2

FTSRDPNNQTSENTFDPNRFTMLSDDDLKKDSHT-

NDNKHNESDLFWDNVHRNIDEQDARLQNLENMVHILSP-

GYPNKSFNNKTSSTNTNSNMESAVNVNSPGFNLQDYLT-

GESNSPNSVHSVPSNGSGSTPLPMPNDNDTEHASTSVNQ-

GENGSGLTPFLTVDDHTLNDNNTSEGSTRVSPDIKFSATEN-

TKVSDNLPS

E3

HSF1

AD4

DFVDFQELLDNDTLGNDLLETTAVLKEFELLHDDSVSATATS B4, E5

RTG3

AD1

MNNNESEAENQRLLDELMNQTKVLQETLDFSLVTPTPHHND-

DYKIHGSAYPGGETPAQ

E10
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Table A.3: Parameter values used in simulations in Figure 3 in units of S-1 (Ranges given for

parameters that were varied).

Kon Koff Km Dm Kp Dp

Fig. 3e 0.022-0.22 0.22 0.14-1.4 0.044 5.2 0.02

Fig. 3f 0.0022-0.034375 0.022 1.4 4.4-1.76 5.2 0.02

Fig. 3g 0.22 0.22 0.014-1.4 0.044 5.2 0.02

Fig. 3h 0.22 0.22 1.4-3.5 4.4-1.76 5.2 0.02
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A.3 Sequences

A.3.1 Primer sequences in Chapter 2

YP16: ACTGCACAGAACAAAAACCTGCAGGAAACGAAGATAAATCTTCGTACGCTGCAGGTC-

GAC YP17: GTGAGTTTAGTATACATGCATTTACTTATAATACAGTTTTTCGATGAATTC-

GAGCTCGTTURA3_UP_Kai_1: GAAGGTTAATGTGGCTGTGGURA3_UP_Kai_2: GATTCG-

GTAATCTCCGAGCAGAAG URA3_UP_Kai_rc: CCTACCAATAGCTTCAACACTGTTGAG

A.3.2 Primer sequences in Chapter 3

HIS_UP_homology2: GGCAAGATAAACGAAGGCAAAGATGACCTGCAGGTCGACGGATCC

HIS_dwn_homology2: GCGAGGTGGCTTCTCTTATGGCAACCGCCGATGAATTCGAGCTCG

HIS_up_in_1: CTTCTTTGCGTCCATCCHIS_up_out_1: CCACCTAGCGGATGACTCHIS_dwn_in_1:

CCATGGTATGGATGAATTGTAC HIS_dwn_out_1: CCCGTTCCTCCATCTC
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