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ABSTRACT OF THE DISSERTATION

Flavor Equilibration in Neutron Star Mergers

by

Ziyuan Zhang

Doctor of Philosophy in Physics

Washington University in St.Louis, 2024

Professor Mark Alford (Chair)

Neutron star mergers probe the high-density and high-temperature regime of dense mat-

ter. The mergers can reach several times saturation density, and their temperatures can

reach up to a hundred MeV. Simulations are essential for a better understanding of dense

matter physics and for comparing theoretical predictions with observations. Current merger

simulations, based on numerical general relativity and hydrodynamics, lack microphysical

inputs. Therefore, the goal of the thesis is to develop models and provide microphysical

insights for the theory community and the merger simulation community. Specifically, it

includes the state-of-the-art study on flavor equilibration under neutron star merger con-

ditions. This includes significant improvements on direct and modified Urca calculations,

and the development of a unified approach to Urca processes, etc. As part of the MUSES

framework, the physics has been implemented in the flavor equilibration module and is ready

for use by the communities.

In the first chapter, we will make a short introduction to neutron star mergers and

the equation of states that describe the matters in the merger. In the second chapter, we

present the state-of-the-art direct Urca calculations and subsequently correct the traditional

cold beta-equilibrium. In the third chapter, we estimate the isospin relaxation rates, and find

xi



that at temperatures around five MeV, the relaxation timescale is comparable to the timescale

of the density oscillations in the mergers, which produces a resonant peak in bulk viscosity.

In the fourth chapter, we first provide the state-of-the-art modified Urca calculation, which

is the first full phase space, fully relativistic rate calculation. In order to solve an unphysical

divergence issue in the modified Urca calculation, we tackle the problem in two ways, and one

of them leads to a unified approach that includes all Urca processes. In the fifth chapter, we

give a short introduction to MUSES and our flavor equilibration module. Besides, in order

to use a better interpolation scheme, we explored and implemented the Gaussian process

regression, which outperforms linear interpolation in accuracy.

xii



Chapter 1

QCD Phase Diagram and the MUSES

Framework

1.1 QCD Phase Diagram

The strong force is one of the four fundamental forces in Nature. It binds together nucleons

to counter electromagnetic force and form nuclei. The theory that describes the strong force

most successfully is Quantum Chromodynamics (QCD). The fundamental degrees of freedom

are quarks and gluons that mediate the interaction.

An important mission of the study of QCD and QCD matter is to map out its phase

diagram. Like water takes the form of 3 different phases in the temperature-pressure space,

QCD matters can be in different phases in the baryon chemical potential µB and the tem-

perature T plane (see Fig. 1.1) [6, 7, 8, 9, 10]. If studying asymmetric matter (asymmetric

in up and down quarks, or neutron and protons) where the isospin chemical potential µI is

non-zero, one would include a third axis [11].

In principle, one would solve the path integral to obtain the partition function, and hence

the thermodynamic quantities (i.e. equation of states [10, 12, 13, 14, 15, 16, 17]) to describe

the QCD matter in various phases. However since QCD is hard to solve directly, researchers

1



Chapter 1. QCD Phase Diagram and the MUSES Framework

Fig. 1.1: A schematic plot for the QCD phase diagram [1].

use different methods and probes to study different regimes of the relevant parameter space.

Lattice QCD is an approach that solves QCD on a lattice. It can solve for µB = 0. For

finite µB, expansion schemes allow it to give reliable results up to µB/T ∼ 3.5 [18]. Above

this µB, the weightings of the configurations become imaginary, and this is the well-known

sign problem in lattice QCD [19, 20, 21, 22, 23].

In regimes where µB or T is large, the QCD coupling becomes small. This is because of

the asymptotic property of QCD, an anti-screening effect. In these regimes, one can solve

QCD perturbatively. pQCD gives reliable results when T ≥ 300MeV or nB ≥ 40n0, where

n0 is the nuclear saturation density [24, 25, 26].

In regimes where the temperature is low, an approach reliable for up to ∼ 2n0 is the chiral

effective theory (χEFT). It preserves the chiral symmetry of QCD and allows for systematic

2
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expansions of 2-body and 3-body nucleon-nucleon interactions [27]. It also employs a sys-

tematic study of uncertainties, which are constrained below 2n0. It is a good approximation

of QCD at low density or low baryon chemical potential [17, 28, 29, 30].

At low densities and temperatures, the matter is in the hadron gas phase. The model

that describes this phase is the hadron resonance gas model [31, 32]. As temperature and

density increase, it is generally believed that there is a deconfinement phase transition from

hadrons to the quark-gluon plasma phase [33, 34]. At very low temperatures, there is also a

liquid-gas phase transition line around µB ∼ 939 MeV, where the baryon onset is [35, 36, 37].

At low temperatures and high densities, neutron stars and neutron star mergers are good

probes to understand nuclear matter and possibly quark matter phases. Understanding

flavor equilibration dynamics in neutron stars and neutron star mergers is the topic that the

thesis is contributing to.

1.2 Neutron Stars and Neutron Star Mergers

Neutron stars are produced in supernova explosions. It is the densest object in the universe

except black hole. It can reach above twice the solar mass while its radius is only about 10

to 12 km. The current maximum mass observed is Mmax = 2.14+0.10
−0.09 M⊙ from NANOGrav

[38], followed by an update Mmax = 2.072+0.067
−0.066 M⊙ from NICER [39].

In the outer crust, electrons have Fermi energy larger than the binding energy to the

nuclei, so electron gas is formed. In this part of the neutron star, matter mainly consists

of nuclei lattice and free electrons. In the inner crust, nucleons start to disassociate with

nuclei, and neutron superfluid is formed. In this part of the neutron star, there are free

electrons, free neutrons, and nuclei lattices. In the inner crust, some new forms of matter

called nuclear pasta are proposed [10, 40]. As density increases, in the outer core, there is

3
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no more individual spherical nucleus, but rather, a sea of neutrons, protons, electrons, and

muons, modeled as infinite nuclear matter. As density further increases, in the inner core,

the forms of matter are not clear yet. Hyperons, condensates, and quark matter may exist

[41, 10].

In 2017, the discovery of the event GW170817 opened a new window for exploring dense

matter [42]. Since then, there are more NS-NS, NS-BH, and BH-BH mergers being observed

[43, 44, 45, 46]. An isolated neutron star long after supernova is considered cold, whose

temperatures are less than 1 MeV, whereas a neutron star merger can reach temperatures

up to tens of MeV [47]. The mergers can also reach several times nuclear saturation density,

depending on the equation of state (more introduction in Sec. 1.3). Observations can help

understand, model, infer, and constrain microphysics [48, 49, 50, 51, 52, 53, 54].

Before the merger happens, two neutron stars orbit around each other. The strong

gravitational force begins to deform the stars and gravitational waves start to emit. This

is the inspiral phase. As the neutron stars start to touch and merge, the merging system

becomes much more complicated. The frequency increases from hundreds of Hz to the kHz

range, and matters are out of equilibrium [55]. For the first 20 ms, gravitational waves

continue to emit, and decay after about 20 ms. Angular momentum redistribution and

neutrino interactions become the dominant processes [47]. If the remnant survives after

several seconds, it gradually spins down, or it can collapse into a black hole.

The neutron star merger simulations are based on numerical general relativity and hy-

drodynamics. At the current stage, merger simulations lack microphysical input for the

merger and postmerger phases. Therefore, this thesis is aiming at better understanding the

important microphysics of the merger.
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1.3 Equation of State

Equation of state describes the thermodynamic relations of the system. In order to model

nuclear matter in the outer core, we use relativistic mean field (RMF) theory models [56,

57, 58]. Ref. [58] provides an extensive study on RMFs.

RMFs model nucleon interactions by meson exchange. One can write down the La-

grangian of the theory and solve for the mean fields. In the following, IUF RMF [59] is used

to illustrate.

The total Lagrangian consists of the nucleon contribution, the meson contribution, and

the interactions among them.

L = LN + Lσ + Lω + Lρ + Lσωρ (1.1)

= ψ̄(iγµ∂µ −mN)ψ + gσψ̄σψ − gωψ̄γ
µωµψ − 1

2gωψ̄γ
µρ⃗µτ⃗ψ

+ 1
2(∂µσ∂

µσ −m2
σσ

2) − κ

6 (gσσ)3 − λ

24(gσσ)4

− 1
4(∂µων − ∂νωµ)(∂µων − ∂νωµ) + 1

2m
2
ωωµω

µ + ζ

24g
4
ω(ωµω

µ)2

− 1
4(∂µρ⃗ν − ∂ν ρ⃗µ − gρ(ρ⃗ν × ρ⃗µ))(∂µρ⃗ν − ∂ν ρ⃗µ − gρ(ρ⃗ν × ρ⃗µ)) + 1

2m
2
ρρ⃗µρ⃗µ

+ Λωg
2
ρρ⃗µρ⃗

µg2
ωωµω

µ , (1.2)

and the relevant parameters can be found in the reference [59].

Apply the Euler-Lagrangian equation to obtain the equation of motion for the mean
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fields:

m2
σσ = gσns − κ

2g
3
σσ

2 − λ

6 g
4
σσ

3 , (1.3)

m2
ωω0 = gωnB − ζ

6g
4
ωω

3
0 − 2Λωg

2
ωg

2
ρρ

2
03ω0 , (1.4)

m2
ρρ03 = gρ

2 (np − nn) − 2Λωg
2
ωg

2
ρρ03ω

2
0 , (1.5)

where the number density, energy density, entropy density, and the Fermi-Dirac distribution

are [57]

n = 2
∫ d3k

(2π)3fk , (1.6)

ϵ = 2
∫ d3k

(2π)3Ekfk , (1.7)

s = −2
∫ d3k

(2π)3 [(1 − fk)ln(1 − fk) + fklnfk] , (1.8)

fk = 1
1 + exp(Ek − µk)/T , (1.9)

In order to solve for σ, ω, ρ, µn, µp, µe of the system, we need to impose another 3 con-

straints, which are charge neutrality np = ne, chemical equilibrium µn = µp + µe and

definition of baryon number density nB = nBn + nBp , where nB is a number given from the

input. Now we have 6 equations to solve for the 6 variables (σ, ω, ρ, µn, µp, µe) with some

proper initial guess for the mean fields and chemical potentials.

The effective masses are

m∗
N = mN − gσσ , (1.10)
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the dispersion relations are

En =
√
p2 +m∗2

n + gωω0 − 1
2gρρ03 , (1.11)

Ep =
√
p2 +m∗2

p + gωω0 + 1
2gρρ03 , (1.12)

and the effective chemical potentials are

µ∗
n = µn − gωω0 + 1

2gρρ03 , (1.13)

µ∗
p = µp − gωω0 − 1

2gρρ03 , (1.14)

Now we treat nucleons as free quasi-particles, with their masses, energies, and chemical

potentials being shifted by the mean fields. The sigma field contributes to the shift in

mass. The omega field contributes to the shift in energy and chemical potential. The rho

field contributes to the split between neutrons and protons, as well as energy and chemical

potential. For more details, see [57].

Although the parameters are fit to nuclear properties around saturation density, it is

important at higher densities the RMF produces enough pressure to counterbalance the

gravitational force.

An RMF model produces an equation of state for neutron stars, which is related to the

astrophysical observables through the Tolman-Oppenheimer-Volkov (TOV) equation [60, 61],

dP

dr
= −Gε(r)m(r)

r2

[
1 + P (r)

ε(r)

] [
1 + 4πr3P (r)

m(r)

] [
1 − 2Gm(r)

r

]−1

, (1.15)

dm

dr
= 4πr2ϵ(r) . (1.16)

Given an equation of state, one can solve the TOV equation to obtain the mass-radius curve.
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1.4 Urca Processes

Flavor equilibration dynamics (or isospin equilibration or proton fraction equilibration) is an

important aspect of the whole neutron star merger dynamics. Flavor equilibration happens

dominantly via Urca processes, which include direct Urca

n → p+ e− + ν̄ (1.17)

p+ e− → n+ ν

and modified Urca

N + n → N + p+ e− + ν̄ (1.18)

N + p+ e− → N + n+ ν,

where N is the spectator particle.

This thesis explores the neutrino-transparent regime where the temperature is below 10

MeV. Above 10 MeV, neutrinos are generally assumed to be trapped, and there are studies on

the neutrino-trapped regime [62, 63, 64, 65]. At low temperatures, particles that participate

in the reactions are close to their Fermi surfaces, or else they are exponentially suppressed.

In order for the processes to happen, momentum needs to be conserved. However, there

generally exists a threshold density, below which kF n ≥ kF p + kF e and direct Urca cannot

happen. In this case, spectator nucleons participate and provide extra momenta, hence

modified Urca happens instead.

The direct Urca neutron decay and electron capture rates, from Fermi’s golden rule, are

8
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[3]

Γnd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3fn(1 − fp)(1 − fe)∑ |M |2

(2E∗
n)(2E∗

p)(2Ee)(2Eν)(2π)4δ(4)(kn − kp − ke − kν) , (1.19)

and

Γec =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3 (1 − fn)fpfe∑ |M |2

(2E∗
n)(2E∗

p)(2Ee)(2Eν)(2π)4δ(4)(kp + ke − kn − kν) , (1.20)

where Σ|M | is the spin-summed matrix element, E∗
i =

√
k2

i +m∗2
i are the effective nucleon

dispersion relations, Ee =
√
k2

e +m2
e and Eν = kν are the electron/neutrino dispersion rela-

tions, and fi are Fermi-Dirac distributions.

The modified Urca neutron decay and electron capture rates are,

ΓmU,nd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3 (2π)4δ(4)(kn + kN1 − kp − ke − kν − kN2)

fnfN1(1 − fp)(1 − fe)(1 − fN2)
(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
, (1.21)

ΓmU,ec =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3 (2π)4δ(4)(kp + ke + kN1 − kn − kν − kN2)

fpfefN1(1 − fn)(1 − fN2)
(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
, (1.22)

where Σ|M | is the spin-summed matrix element for modified Urca processes.

The physics of flavor equilibration and details of the calculations are discussed in Chap. 2
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and Chap. 3.

1.5 the MUSES Framework

MUSES (Modular Unified Solver of Equation of States) is an open-source cyberinfrastructure

that provides novel tools to study gravitational wave astrophysics, nuclear physics, and

heavy-ion physics. The MUSES official website is https://musesframework.io/ and all

the source codes are in the following GitLab repo https://gitlab.com/nsf-muses.

Fig. 1.2: Proposed MUSES modules. Produced by the MUSES collaboration.

The MUSES collaboration has been expanding since its initiation. Currently, its physics

mainly consists of two parts, as shown in Fig. 1.2. The EoS Modules include effective modules

such as CMF [15], heavy ion EoSes such as BQS [12, 66], cold nuclear EoSes such as χEFT

[17], UTK [16]. The Observable/Users Modules include flavor equilibration module [67, 68]

which provides calculations for Urca rates and flavor equilibration information, QLIMR

module which provides calculations for mass-radius, I-Love-Q universal relation and tidal

deformability information. More groups are joining and in their development stages.
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The MUSES is aiming at covering most parts of the QCD phase diagram. The EoS

package will ultimately combine and merge all EoS modules into a smooth, unified EoS, as

the collaboration name suggests.

In terms of technology, MUSES is different from other platforms such as ComPOSE.

MUSES will use more modern tools such as Docker container technology for each module

and build a scalable deployment system that can work across different environments. MUSES

will also provide an interactive interface for its calculation engine and workflow management

to users.

For more details about MUSES and the flavor equilibration module, see Chap. 5.

1.6 Outline of the Thesis

The thesis is outlined as follows.

In chapter 2, we develop the state-of-the-art calculation for direct Urca processes in the

neutrino-transparent regime. We use a fully consistent description of nucleons, and full

matrix elements and perform 5-dim full phase-space numerical integral. Based on the rate

calculation, we correct the cold beta-equilibrium as a result of neutrino leaving the system.

The correction to the equilibrium condition can reach 20 MeV, which can lead to wrong Urca

rates if neglected.

In chapter 3, based on the state-of-the-art rate calculation and the correction to the

cold beta-equilibrium developed in chapter 2, we analyze the isospin (“beta”) equilibration

properties of neutrino-transparent nuclear (npe) matter in the temperature and density range

that is relevant to neutron star merger. We find that the isospin relaxation rate rises rapidly

as the temperature rises, and at T ≈ 5 MeV, it is comparable to the timescale of the density

oscillations that occur immediately after the merger. This produces a resonant peak in the
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bulk viscosity at T ≈ 5 MeV, which causes density oscillations to be damped on the timescale

of the merger. We conclude that there is good reason to include isospin relaxation dynamics

in merger simulations.

In chapter 4, the improvement of modified Urca calculation [4] over the traditional crude

modified Urca calculation encounters an unphysical divergence issue around the threshold.

First, we successfully solved the divergence issue by adding a width to the internal particle

propagator. Then, we take further steps to build a unified framework of Urca processes from

a neutrino self-energy diagram. This approach combines Urca processes into one calculation

and easily allows going beyond Fermi surface approximations. Besides, a modified Urca

rate calculation based on full 11-dim phase-space integrals and relativistic treatment of the

nucleons has been presented.

In chapter 5, an introduction to the MUSES framework and the flavor equilibration

module is provided. All physics and calculations discussed in chapter 2 and chapter 3 are

implemented in the flavor equilibration module. Besides, in order to improve the interpola-

tion schemes used in MUSES, we explore the performance of Gaussian process interpolations,

which is a Bayesian regression framework. It is shown that the GP interpolator better in-

terpolates the equation of state tables compared to the linear interpolator.
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Chapter 2

Urca Processes and Beta Equilibrium

We develop the state-of-the-art calculation for direct Urca processes in the neutrino-transparent

regime. We use a fully consistent description of nucleons and perform 5-dim full phase-space

numerical integral. Based on the rate calculation, we correct the beta-equilibrium condition

in the temperature range 1 MeV ≤ T ≤ 5 MeV as a consequence of neutrino leaving the

system. The correction to the equilibrium condition can reach 20 MeV, which can lead to

wrong Urca rates if neglected.

2.1 Introduction

Nuclear matter in neutron stars settles into beta equilibrium, meaning that the proton

fraction is in equilibrium with respect to the weak interactions. In this paper we will study

the conditions for beta equilibrium in ordinary nuclear matter (where all the baryon number

is contributed by neutrons (n) and protons (p)) in the temperature range 1 MeV ≲ T ≲

5 MeV. This regime, which arises in neutron star mergers [69, 70, 71, 72], is cool enough so

that neutrinos are not trapped, but warm enough so that there are corrections to the low-

temperature equilibrium condition. It has previously been shown [73] that in this regime the
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full beta equilibrium condition is

µn = µp + µe + ∆µ , (2.1)

where ∆µ is a correction that arises from the violation of detailed balance (neutrino trans-

parency) and the breakdown of the Fermi surface approximation (see Sec. 2.2). In nuclear

matter in the temperature regime discussed here, the proton fraction will equilibrate to-

wards the value given by Eq. (2.1). Even if equilibrium is not reached on the timescale of a

merger, one needs to know the correct equilibration condition in order to analyze phenom-

ena associated with this relaxation process, such as bulk viscosity and neutrino emission.

At low temperatures (T ≪ 1 MeV) ∆µ is negligible, but in the temperature regime under

consideration here it has been estimated to be up to tens of MeV [73]. The calculation

in Ref. [73] went beyond the Fermi-surface approximation by performing the phase space

integral for the equilibration rate over the entire momentum space. However, it used a very

crude model of the in-medium nucleons, assigning them their vacuum mass and assuming

that their kinematics remained nonrelativistic at all densities.

In this paper we improve on the analysis of Ref. [73]. We treat nuclear matter consistently

using relativistic mean field models [56, 58] with fully relativistic dispersion relations for the

nucleons. We show that this makes a considerable difference to the beta equilibration rates

because in these models the nucleons at the Fermi surface become relativistic at densities of

a few times nuclear saturation density n0. We calculate the direct Urca rate using the entire

weak-interaction matrix element rather than its non-relativistic limit, and evaluate the full

phase space integral.

Other authors have evaluated direct Urca phase space integrals in calculations of the

direct Urca rate, the neutrino emissivity, or the neutrino mean free path. Fully relativistic
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computations of direct Urca phase space integrals are uncommon in the literature, but they

do appear. Refs. [74, 75, 76, 77] calculate the neutrino mean free path using a fully relativistic

formalism, while integrating over the full phase space. Ref. [76] calculates the direct Urca

electron capture rate using a fully relativistic formalism and performs the full phase space

integration. While these calculations perform the full integration over phase space, they

focus on high temperatures (T ≳ 5 MeV) where neutrinos are trapped and where the direct

Urca threshold is blurred over a wide density range. In this temperature regime, which can

be reached in mergers as well [69, 78, 79, 80], beta equilibrium is given by

µn + µν = µp + µe , (2.2)

with µν being the neutrino chemical potential. As discussed in more detail in Sec. 2.2, the

neutrino trapped beta equilibration condition does not require an additional finite temper-

ature correction. This paper will examine the phase space integral at lower temperatures

where the direct Urca threshold is apparent and a key feature in the physics of beta equili-

bration or neutrino emission.

Other works use the relativistic formalism, but assume the nuclear matter is strongly

degenerate (using the Fermi surface approximation, described below), and thus their results

have a sharp direct Urca threshold density [81, 82, 83]. Ref. [84] uses the Fermi surface

approximation, but develops a way to incorporate the finite 3-momentum of the neutrino,

slightly blurring the threshold at nonzero temperature. Some works do the full phase space

integration, but use nonrelativistic approximations for the matrix element and nucleon dis-

persion relations [63, 62, 73, 85]. The vast majority of calculations use non-relativistic

approximations of the matrix element and the nucleon dispersion relations, together with

the Fermi surface approximation [86, 87, 88, 89, 90, 91, 92, 93, 94, 3, 95, 96, 97]. All of
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these calculations are approximations of the full phase space integration using the fully rel-

ativistic formalism. Under certain conditions, the approximations match well with the full

calculation, and have the advantage of being simple.

In Sec. 2.3 we introduce the two relativistic mean field models, IUF and SFHo, that we

use. Sec. 2.4 describes our calculation of the rate of direct Urca processes, where we integrate

over the entire phase space in order to include contributions from the region that would be

kinematically forbidden in the low temperature limit. Sec. 2.5 describes our calculation of

the modified Urca contribution to the rate, where we use the Fermi surface approximation

since there is no kinematically forbidden region for those processes in the density range that

we consider. Sec. 2.6 presents our results, and Sec. 2.7 provides our conclusions.

We work in natural units, where ℏ = c = kB = 1.

2.2 Beta equilibration

Beta equilibration in npe− matter is established by the Urca processes [61]. The modified

Urca processes

N + n → N + p+ e− + ν̄ (2.3)

N + p+ e− → N + n+ ν,
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(here, N represents a “spectator” neutron or proton) operate at all densities in the core of

the neutron star1. The direct Urca processes

n → p+ e− + ν̄ (2.4)

p+ e− → n+ ν

are exponentially suppressed when the temperature is much less than the Fermi energies and

the density is in the range where kF n > kF p + kF e. In nuclear matter, the proton fraction

rises as the density rises above n0 and eventually may reach a “direct Urca threshold” where

kF n = kF p + kF e. Above this threshold density beta equilibration is dominated by direct

Urca, since (when kinematically allowed) it is faster than modified Urca.

In nuclear matter at temperatures greater than, say, 10 MeV, the neutrino mean free path

is short and the nuclear matter system (for example, a protoneutron star) is neutrino-trapped

and has conserved lepton number YL = (ne +nν)/nB. In this case, the Urca processes (3.25)

and (3.24) can proceed forward and backward, as the nuclear matter contains a population

of neutrinos (or antineutrinos). In beta equilibrum, the forward and reverse processes have

equal rates (detailed balance) and the beta equilibrium condition is given by balancing the

chemical potentials of the participants in the equlibration reactions [99, 56]

µn + µν = µp + µe (ν-trapped) (2.5)

In cooler nuclear matter, at the temperatures considered in this work, the neutrino mean

free path is comparable to or longer than the system size and therefore neutrinos are not
1 In npe− matter, the proton-spectator modified Urca process operates at densities where xp > 1/65

[3, 89]. However, this condition is only violated (if ever) in the inner crust of neutron stars [98] where the
matter is not uniform and thus the calculations in this paper would not apply.
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in thermodynamic equilibrium: they escape from the star. Neutrinos can then occur in the

final state but not the initial state of the Urca processes. Beta equilibrium is still achieved,

but now by a balance of the neutron decay and the electron capture processes. However, the

principle of detailed balance is not applicable because electron capture is not the time-reverse

of neutron decay. There is then no obvious equilibrium condition that can be written down

a priori.

In the limit of low temperature (T ≪ 1 MeV) the Fermi surface approximation becomes

valid: the particles participating in the Urca processes are close to their Fermi surfaces,

and the neutrino carries negligible energy ∼ T . The beta equilibrium condition can then

be obtained by neglecting the neutrino, so that neutron decay and electron capture are just

different time orderings of the same process n ↔ p e−, and detailed balance gives2

µn = µp + µe (low temperature, ν-transparent). (2.6)

At temperatures T ≳ 1 MeV corrections to the Fermi surface approximation start to

become significant, particularly for the protons whose Fermi energy is in the 10 MeV range.

Then one cannot neglect the nonzero-temperature correction to (2.6)

µn = µp + µe + ∆µ, (general, ν-transparent) (2.7)

The correction ∆µ is a function of density and temperature, and its value in beta equilibrium

is found by explicitly calculating the neutron decay and electron capture rates and adjusting

∆µ so that they balance [73] (see also [101], where a similar calculation was done in the
2 The same condition on the chemical potentials can be reached by examining the phase space integrals

for the direct Urca neutron decay and electron capture rates, taking the limit where the neutrino energy and
momentum go to zero [100].
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context of a hot plasma). In this paper we perform that calculation.

For weak interactions we use the Fermi effective theory, which is an excellent approx-

imation at nuclear energy scales. The main approximations arise in our treatment of the

strong interaction. To describe nuclear matter and the nucleon excitations we use two differ-

ent relativistic mean field models, both consistent with known phenomenology and chosen

to illustrate a plausible range of behaviors. We describe these models in Sec. 2.3. For the

modified Urca process we model the nucleon-nucleon interaction with one-pion exchange

[2, 3].

2.3 Nuclear matter models

We will use two different equations of state, IUF [59] and SFHo [5], to calculate the Urca

rates and the nonzero-temperature correction ∆µ. These are both consistent at the 2σ level

with observational constraints on the maximum mass and the radius of neutron stars.

IUF predicts a maximum mass of neutron star to be 1.95M⊙, and SFHo predicts 2.06M⊙.

Both are consistent with the observed limits, which are:

• Mmax > 2.072+0.067
−0.066 M⊙ from NICER and XMM analysis of PSR J0740+6620 [39],

• Mmax = 1.928+0.017
−0.017 M⊙ from NANOGrav analysis of PSR J1614-2230 [102],

• Mmax = 2.01+0.14
−0.14 M⊙ from pulsar timing analysis of PSR J0348+0432 [103].

For the radius of a star of mass 2.06M⊙, SFHo predicts R = 10.3 km, consistent with R =

12.39+1.30
−0.98 km from NICER and XMM analysis of PSR J0740+6620 [39]. For the radius of a

1.4M⊙ neutron star, IUF predicts R = 12.7 km and SFHo predicts R = 11.9 km, consistent

with R = 11.94+0.76
−0.87 km obtained by a combined analysis of X-ray and gravitational wave

measurements of PSR J0740+6620 in Ref. [104]. Both models reproduce properties of nuclear
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matter around saturation within known experimental constraints. Although both models

predict a slightly different value for the saturation density n0, we will use n0 = 0.16 fm−3 in

all our plots.

It is still not determined whether there is a direct Urca threshold or not in nuclear

matter at neutron star densities [105, 106, 107, 108, 109], so we choose one equation of state

(IUF) with a threshold slightly above 4n0 and one (SFHo) with no threshold, as shown in

Fig. 2.1. Our approach could be applied to any equation of state where the beta process rates

can be calculated. As we will see in Sec. 2.6.3, the density dependence of the momentum

surplus kF p +kF e −kF n is an important factor in the behavior of the direct Urca rates at low

temperature, but the density dependence of the nucleon effective masses and Fermi momenta

has a noticeable impact as well.

The coupling constants for SFHo are shown in Appendix A. Notice that the constants are

taken from the online CompOSE database (https://compose.obspm.fr/), and are different

from the values provided in Ref. [5].

A key feature of our calculation is that we use the full relativistic dispersion relations for

the nucleons. In Figs. 2.2 and 2.3 we illustrate the importance of this in relativistic mean

field theories, where the nucleon effective mass drops rapidly with density3. We plot the

Dirac effective mass [114] and the Fermi momentum of the neutrons and protons in these

two EoSs. While around nuclear saturation density n0, the nucleons are nonrelativistic,

as the density rises to several times n0, the nucleon effective mass has dropped significantly

below its vacuum value. Neutrons on their Fermi surface become relativistic at 2−3n0, while

protons on their Fermi surface remain nonrelativistic until the density rises to 3 − 6n0. In

Figs. 2.13 and 2.14, we show that using a non-relativistic approximation would lead to Urca
3 While the precipitous drop in the nucleon Dirac effective mass with increasing density is a common

feature in relativistic mean field theories [110, 111], we note that in two recent treatments that go beyond
the mean field approximation, the drop in the effective mass was not as dramatic [112, 113].
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Fig. 2.1: Direct Urca momentum surplus kF p + kF e − kF n for IUF and SFHo equations of
state at T = 0 . When the surplus is negative, direct Urca is forbidden. IUF has
an upper density threshold above which direct Urca is allowed; SFHo does not.

rates that are incorrect by about an order of magnitude, although for direct Urca neutron

decay the discrepancy can be many orders of magnitude.

2.4 Beta equilibration via direct Urca

We calculate the in-medium direct Urca rates for neutron decay and electron capture using

the relativistic weak-interaction matrix element and the relativistic dispersion relations for

the nucleons and electrons. We also integrate over the full momentum phase space, not

relying on the Fermi surface approximation. This is important because in the “dUrca-

forbidden” density range the Fermi surface approximation would say the direct Urca rate

is zero, so nonzero-temperature corrections are the leading contribution. These become

significant (comparable to modified Urca) at the temperatures of interest here, T ≳ 1 MeV

[73].
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Fig. 2.2: Density dependence of the neutron’s (Dirac) effective mass and Fermi momentum
for the IUF and SFHo EoSs, showing that neutrons at the Fermi surface become
relativistic at densities above 2 to 3n0.
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Fig. 2.3: Density dependence of the proton’s (Dirac) effective mass and Fermi momentum
for the IUF and SFHo EoSs, showing that protons at the Fermi surface become
relativistic starting at densities between 3 − 6n0.
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In relativistic mean field models the dispersion relations for the neutrons, protons, and

electrons are

En =
√
m∗

n
2 + k2

n︸ ︷︷ ︸
E∗

n

+Un

Ep =
√
m∗

p
2 + k2

p︸ ︷︷ ︸
E∗

p

+Up (2.8)

Ee =
√
m2

e + k2
e

Eν = kν

where the nucleons’ effective mass m∗
i and energy shift Ui depend on density and temperature

[76]. The unshifted energies E∗
i arise in the phase space normalization and the Dirac traces

[75].

2.4.1 Neutron decay

The direct Urca neutron decay rate is [3, 115]

Γnd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3

fn(1 − fp)(1 − fe)
∑ |M |2

(2E∗
n)(2E∗

p)(2Ee)(2Eν)

(2π)4δ(4)(kn − kp − ke − kν) . (2.9)

23



Chapter 2. Urca Processes and Beta Equilibrium

For a more detailed explanation of this expression and its evaluation, see Appendix B. As

described there, it can be reduced to 5-dimensional momentum integral (B.34)

Γnd = G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dke

k2
nk

2
pk

2
efn(1 − fp)(1 − fe) Θ(Eν)∫ zmax

p

zmin
p

dzp

∫ z+
e

z−
e

dze
4EνMϕ0√

S2 − (E2
ν −R)2

, (2.10)

where R, S, and Mϕ0 are defined in Eqs. (B.15), (B.16), and (B.17). The antineutrino

energy Eν is given by

Eν = En − Ep − Ee, (2.11)

which becomes a function of the remaining integration variables, kn, kp, and ke. Note

that there are Fermi-Dirac distributions for the neutrons, proton vacancies, and electron

vacancies, but none for the neutrinos because we work in the neutrino-transparent regime

where neutrinos escape from the star and do not form a Fermi gas. We evaluate this integral

numerically using a Monte-Carlo algorithm.

2.4.2 Electron capture

The expression for the electron capture rate can be obtained from that for neutron decay

(B.1) by making the following changes: (1) the energy-momentum delta function now cor-

responds the the process p e− → n ν, and (2) there are Fermi-Dirac distributions for proton
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and electron particles, and neutron vacancies,

Γec =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3

(1 − fn)fpfe

∑ |M |2

(2E∗
n)(2E∗

p)(2Ee)(2Eν) (2.12)

(2π)4δ(4)(kp + ke − kn − kν) .

Evaluating this expression takes us through the same steps as for neutron decay, except

that the neutrino energy is now

Eν = Ep + Ee − En , (2.13)

and the requirement that this be positive leads to different limits on the momentum integrals,

Γec = G2

16π6

∫ ∞

0
dkn

∫ ∞

0
dkp

∫ ∞

0
dke

k2
nk

2
pk

2
efn(1 − fp)(1 − fe)Θ(Eν)∫ zmax

p

zmin
p

dzp

∫ z+
e

z−
e

dze
4EνMϕ0√

S2 − (E2
ν −R)2

. (2.14)

2.5 Beta equilibration via modified Urca

We calculate the rate of the modified Urca processes (3.25) using the relativistic dispersion

relations of the nucleons in the phase space integration, but unlike the direct Urca rate

we do not perform the phase space integration exactly, which would be difficult because the

involvement of the spectator particles would lead to an 11-dimensional numerical integral over

momentum. Instead we use the Fermi Surface approximation. This is reasonable for modified
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Urca as long as the Fermi surfaces are not too thermally blurred, i.e. when the temperature

is below the lowest Fermi kinetic energy, which is that of the proton. The modified Urca

processes do not have a density threshold in the range of densities we consider here (see

footnote 1), so the Fermi surface approximation never predicts a vanishing rate. In this

work we explore the temperature range 1 MeV < T < 5 MeV, and the proton’s Fermi kinetic

energy is at least 10 MeV in the density range n > n0, so the Fermi surface approximation is

justified for modified Urca rates. The first paragraph of Sec. 2.4 contains a discussion of why

we need to go beyond the Fermi surface approximation in our direct Urca rate calculations.

For the matrix elements that arise in modified Urca (C.1) and (C.16), we use the standard

results (see, e.g., [3]), which were calculated assuming non-relativistic nucleons. It has been

pointed out [4] that the standard calculation of the modified Urca matrix element [2], which

we use here, is based on a very crude approximation for the propagator of the internal off-

shell nucleon. A more accurate treatment would lead to different modified Urca rates and

shift our predicted values of ∆µ; we defer such a calculation to future work.

2.5.1 Neutron Decay

Modified Urca can proceed with either a neutron spectator or a proton spectator. From

Fermi’s Golden rule, we have the rate for the neutron decay process

ΓmU,nd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3

(2π)4δ(4)(kn + kN1 − kp − ke − kν − kN2)

fnfN1(1 − fp)(1 − fe)(1 − fN2)(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
. (2.15)
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Here, s = 1/2 because of the identical particles appearing in the process. N1 and N2 are

neutrons in the n-spectator process and for the p-spectator neutron decay process, N1 and

N2 are protons. The matrix element is different for each process (see Eqs. C.1 and C.16).

The detailed derivation of the modified Urca rates is in Appendix C. For n-spectator neutron

decay, allowing the system to deviate from the low-temperature beta equilibrium condition

(2.6) by amount

ξ = µn − µp − µe

T
, (2.16)

we obtain

ΓmU,nd(n)(ξ) = 7
64π9G

2g2
Af

4 (E∗
F n)3E∗

F p

m4
π

k4
F nkF p

(k2
F n +m2

π)2F (ξ)T 7θn , (2.17)

where f ≈ 1 is the N -π coupling [3],

F (ξ) ≡ − (ξ4 + 10π2ξ2 + 9π4)Li3(−eξ) + 12(ξ3 + 5π2ξ)

Li4(−eξ) − 24(3ξ2 + 5π2)Li5(−eξ)

+ 240ξLi6(−eξ) − 360Li7(−eξ) , (2.18)

and

θn ≡


1 kF n > kF p + kF e

1 − 3
8

(kF p + kF e − kF n)2

kF pkF e

kF n < kF p + kF e .

(2.19)
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The functions Lin(x) are polylogarithms of order n [116]. For p-spectator neutron decay, we

obtain

ΓmU,nd(p)(ξ) = 1
64π9G

2g2
Af

4 (E∗
F p)3E∗

F n

m4
π

(kF n − kF p)4kF n

((kF n − kF p)2 +m2
π)2F (ξ)T 7θp , (2.20)

where

θp ≡



0 if kF n > 3kF p + kF e

(3kF p + kF e − kF n)2

kF nkF e

if
kF n > 3kF p − kF e

kF n < 3kF p + kF e

43kF p − kF n

kF n

if
3kF p − kF e > kF n

kF n > kF p + kF e(
2 + 32kF p − kF n

kF e

− 3(kF p − kF e)2

kF nkF e

)
if kF n < kF p + kF e .

(2.21)

2.5.2 Electron Capture

The electron capture modified Urca rate can be obtained in a similar way to neutron decay,

by changing the sign of the neutrino 4-momentum in the energy-momentum delta function
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and interchanging the particle and hole Fermi-Dirac factors,

ΓmU,ec =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3

(2π)4δ(4)(kp + ke + kN1 − kn − kν − kN2)

fpfefN1(1 − fn)(1 − fN2)(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
. (2.22)

Through a similar calculation, we find that the modified Urca neutron decay and electron

capture rates in the Fermi surface approximation are related by

ΓmU,ec(n)(ξ) = ΓmU,nd(n)(−ξ) , (2.23)

and

ΓmU,ec(p)(ξ) = ΓmU,nd(p)(−ξ) . (2.24)

2.6 Results

2.6.1 Beta equilibrium at nonzero temperature

Figs. 2.4 and 2.5 show our final results for the nonzero-temperature correction ∆µ required

to achieve beta equilibrium, for the IUF and SFHo equations of state respectively. The key

features are

• At low temperatures T ≲ 1 MeV, the Fermi Surface approximation is valid and beta

equilibrium is achieved with a negligible correction ∆µ (see Sec. 2.2).
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Fig. 2.4: Nonzero-temperature correction ∆µ required for beta equilibrium (Eq. 2.7) with
the IUF EoS.
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Fig. 2.5: Nonzero-temperature correction ∆µ required for beta equilibrium (Eq. 2.7) with
the SFHo EoS.
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• As the temperature rises through the neutrino-transparent regime, the value of ∆µ

rises.

• We only provide results for temperatures up to 5 MeV because at temperatures of

around 5 to 10 MeV the neutrino mean free path will become smaller than the star,

invalidating our assumption of neutrino transparency.

• The figures indicate that the nonzero-temperature correction reaches values of 10 to

20 MeV before neutrino trapping sets in.

• The density dependence of ∆µ appears very different for different EoSs. For IUF the

largest values are reached at moderate densities, near the direct Urca threshold. For

SFHo, ∆µ has a minimum at those densities.

In the rest of this section we will explain these features of our results.

The temperature dependence follows from the breakdown of the Fermi surface approx-

imation. At T ≲ 1 MeV the Urca processes are dominated by modes close to the Fermi

surfaces of the neutron, protons, and electrons. The energy of the emitted neutrino is of

order T which is negligible, so the direct Urca process is effectively n ↔ p e−, for which the

equilibrium condition is µn = µp + µe, i.e. ∆µ = 0. As the temperature approaches the

Fermi energy of the protons, the Fermi surface approximation breaks down. Modes far from

the proton and electron Fermi surfaces begin to play a role, and the energy of the emitted

neutrino becomes important. The processes that establish beta equilibrium, n → p e− ν̄e

and p e− → n νe, are not related by time reversal, so the principle of detailed balance does

not apply. This means that even below the direct Urca threshold density, direct Urca pro-

cesses can be fast enough and sufficiently different in their rates to require a correction ∆µ

to bring them into balance. As we will explain below, at ∆µ = 0 electron capture is much
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Fig. 2.6: Urca (direct plus modified) rates for IUF and SFHo EoSs at T = 3 MeV. When
∆µ = 0 (dashed lines) the rates for neutron decay (nd) and electron capture (ec)
do not balance. With the correct choice of ∆µ (Figs. 2.4, 2.5) the neutron decay
and electron capture rates (solid lines) become equal and the system is in beta
equilibrium.

less suppressed than neutron decay, requiring a positive value of ∆µ to decrease the proton

fraction and equalize the rates.

The density dependence of the correction ∆µ is more complicated, depending on specific

features of the equations of state. We will discuss this in more detail below.

2.6.2 Urca Rates

Fig. 2.6 illustrates how, without the nonzero-temperature correction ∆µ (dashed lines),

the neutron decay (nd) and electron capture (ec) rates become very different when the

temperature rises to 3 MeV. For both EoSs, electron capture is significantly faster than

neutron decay, so a positive ∆µ will be required to balance the rates and establish beta

equilibrium (solid lines). This is because a positive ∆µ reduces the proton fraction. The

resultant change in the phase space near the neutron and proton Fermi surfaces enhances the
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neutron decay rate and suppresses electron capture, bringing the two processes into balance

with each other.

For IUF, the mismatch between electron capture and neutron decay is greatest just below

the IUF direct Urca threshold density of 4n0, which explains why for IUF ∆µ reaches its

highest value there (Fig. 2.4). For SFHo, the mismatch is smallest at that density, which

explains why for SFHo ∆µ reaches a local minimum there (Fig. 2.5).
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dU ec

mU(n)
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1 2 3 4 5 6

10-23

10-21
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10-17

10-15

10-13

density nB/n0

Γ
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Urca rate (IUF), T=3MeV, Δμ=0

Fig. 2.7: Urca rates calculated using the IUF EoS at T = 3 MeV. Because ∆µ = 0 there
is a large mismatch between the direct Urca rates for neutron decay and electron
capture. Modified Urca (with neutron spectator (n) and proton spectator (p))
rates are calculated in the Fermi surface approximation and therefore match au-
tomatically.

Figs. 2.7 and 2.8 give further insight in to the density dependence of the rates by showing

the separate contributions from direct and modified Urca.

For IUF (Fig. 2.7), in the dUrca-forbidden density range one would expect that the direct

Urca rates should be exponentially suppressed at low temperature, leaving the modified Urca

rates which automatically balance when ∆µ = 0 because they are calculated in the Fermi

Surface approximation. We see that the direct Urca neutron decay rate is indeed strongly
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Fig. 2.8: Urca rates calculated using the SFHo EoS at T = 3 MeV. Because ∆µ = 0 there
is a large mismatch between the direct Urca rates for neutron decay and electron
capture. Modified Urca (with neutron spectator (n) and proton spectator (p))
rates are calculated in the Fermi surface approximation and therefore match au-
tomatically.

suppressed, but the direct Urca electron capture rate only shows a slight reduction below

the threshold, and remains well above the modified Urca rates. This mismatch is what leads

to a positive correction ∆µ in beta equilibrium. We will explain below why this is the case.

For SFHo (Fig. 2.8), the analysis is similar: neutron decay is heavily suppressed as

expected in the dUrca-forbidden region (up to infinite density), but electron capture is much

less suppressed. In the middle density range (3 to 5n0) where mUrca is dominant there is

no need for a correction, since the mUrca rates balance at ∆µ = 0. However, at lower or

higher densities the direct Urca electron capture rate becomes large enough to dominate, so

a positive ∆µ will be required to pull it down and establish equilibrium between neutron

decay and electron capture.

In the next subsection we analyze the imbalance between electron capture and neutron

decay rates in the dUrca-forbidden density range. This imbalance is the reason why a nonzero
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Fig. 2.9: The optimal kinematics for neutron decay for the IUF EoS. Left panel: the least
suppressed kinematic arrangement, showing the energy distance γ of each par-
ticle from its Fermi surface. Right panel: the Fermi-Dirac suppression factor,
e−|γe|/T e−|γn|Θ(γn)/T which is dominated by the difficulty of finding an electron
hole at energy γe below its Fermi surface.

∆µ is required in beta equilibrium. We can understand the difference in the rates, and their

density dependence, by looking at which parts of the phase space dominate the rate integrals.

This is largely determined by the Fermi-Dirac factors in the rate integrals, since the matrix

element depends only weakly on the magnitudes of the momenta.

2.6.3 Direct Urca suppression factors

The density and temperature dependence of the direct Urca rates is dominated by the Fermi-

Dirac factors. Below the dUrca threshold density, at zero temperature all direct Urca pro-

cesses would be forbidden, but at nonzero temperature the Fermi surfaces are blurred, so

there is some non-zero occupation of particle and hole states in regions of momentum space

where the direct Urca process is kinematically allowed. The rate is governed by the Fermi-

Dirac suppression factors for those momentum states.

At each density and temperature we search for the combination of momenta that is least
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Fig. 2.10: The optimal kinematics for electron capture for the IUF EoS. Left panel: the
least suppressed kinematic arrangement, showing the energy distance γ of each
particle from its Fermi surface. Right panel: the overall Fermi-Dirac suppression
factor, e−|γp|/T e−|γe|Θ(γe)/T e−|γn|Θ(−γn)/T , which is dominated by the difficulty of
finding a proton at energy γp above its Fermi surface.

suppressed, i.e. that maximizes the product of Fermi-Dirac factors in the rate integral while

maintaining energy-momentum conservation. The magnitude of that product of Fermi-Dirac

factors tells us how suppressed the whole process will be, at that density and temperature.

Below the direct Urca threshold density, considering particles near their Fermi surfaces,

the neutron has a momentum larger than the sum of proton and electron momenta, even if the

proton and electron are coaligned (see Fig. 2.1). In this regime, the direct Urca kinematics

will become essentially one-dimensional, as this is how the electron and proton momenta can

come closest to adding up to the large neutron momentum. We take the neutron momentum

to be positive, so a negative momentum indicates motion in the direction opposite of the

neutron. For momentum conservation to hold, the electron and proton will have to be away

from their Fermi surfaces. In the assumption of one-dimensional kinematics, we determine

the optimal momenta {kopt
n , kopt

p , kopt
e , kopt

ν } as follows. For neutron decay, we maximize

fn(1 − fp)(1 − fe) and for electron capture we maximize (1 − fn)fpfe. Energy and (one-

dimensional) momentum conservation impose two constraints on the momentum, leaving
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Fig. 2.11: The optimal kinematics for neutron decay at T = 3 MeV for SFHo, ob-
tained by maximizing the Fermi-Dirac products. The suppression factor,
e−|γe|/T e−|γn|Θ(γn)/T is dominated by the difficulty of finding an electron hole
below its Fermi surface.

two independent momenta over which to maximize.

The results of this maximization exercise are shown for the IUF EoS in Figs. 2.9 and

2.10, and for SFHo in Figs. 2.11 and 2.12.

The left panels show how far from their Fermi surfaces the particles are in the least Fermi-

Dirac-suppressed kinematic configuration. For each particle i we show γi ≡ Eopt
i −EF i, which

is the extra energy the particle with its optimal momentum has relative to its Fermi energy.

The curves only exist in the dUrca-forbidden region, which for IUF ends slightly above 4n0.

(In the dUrca-allowed region all particles can be on their Fermi surfaces, so the curves would

be trivially zero and are not shown). The right panels show the maximum value of the

Fermi-Dirac factor, which gives the overall suppression of the process.

Neutron decay Direct Urca neutron decay is suppressed because the neutrons at their Fermi

surface have just enough energy to make a proton and electron near their Fermi surfaces (this

is a consequence of the beta equilibrium condition (2.6)), but too much momentum (Fig. 2.1).

The process can still proceed (with an exponential suppression factor) by exploiting the
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Fig. 2.12: The optimal kinematics for electron capture at T = 3 MeV for SFHo, ob-
tained by maximizing the Fermi-Dirac products. The suppression factor,
e−|γp|/T e−|γe|Θ(γe)/T e−|γn|Θ(−γn)/T , is dominated by the difficulty of finding a pro-
ton above its Fermi surface.

thermal blurring of the Fermi surfaces. Figs. 2.9 (IUF) and 2.11 (SFHo) show that the

best option is to create a proton at energy γp above its Fermi surface and an electron

at energy γe = −γp which is below its Fermi surface. The co-linear proton and electron

now have more momentum then when they were both on their Fermi surfaces because the

proton’s momentum rises rapidly with γp because the proton is less relativistic, whereas the

electron’s momentum drops more slowly as γe becomes more negative, because the electron is

ultrarelativistic. The creation of the proton incurs no Fermi-Dirac suppression because states

above the Fermi surface are mostly empty, but the creation of the electron is suppressed by

a Fermi-Dirac factor of e−|γe|/T reflecting the scarcity of electron holes available to take such

an electron. The net suppression of the rate, e−|γe|/T e−|γn|Θ(γn)/T , is shown in the right panels

of Figs. 2.9 (IUF) and 2.11 (SFHo). For IUF we see the strongest suppression at around 2n0,

which explains the density dependence of the IUF neutron decay rate shown in Fig. 2.7. For

SFHo, since the dUrca-forbidden region extends up to infinite density, and the momentum

deficit remains large across the density range surveyed, we see stronger suppression that does
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not relent at the upper end of the density range, explaining the almost total suppression seen

in Fig. 2.8.

We can understand the density dependence of γp in terms of the one-dimensional model

within which the maximization was performed.

We assume that, as seen in Figs. 2.9 (IUF) and 2.11 (SFHo), the neutron remains on its

Fermi surface, and the neutrino takes negligible energy/momentum, since lack of momentum

to build the final state is the main obstacle. Conservation of energy and momentum then

tells us that

kF n = kopt
p + kopt

e , (2.25)

EF n = Ep(kopt
p ) + kopt

e . (2.26)

Using the dispersion relations (2.8) we can solve for kopt
p and kopt

e and, after using that

EF n = EF p + EF e (since we have assumed ∆µ = 0), we find

kopt
p − kF p =

∆k(2E∗
F p − ∆k)

2(E∗
F p + kF p − kF n) , (2.27)

where ∆k ≡ kF n − kF p − kF e is the momentum deficit (we plotted the surplus −∆k in

Fig. 2.1). From this analysis, we learn that the density dependence of γp, and therefore the

rate, not only depends on the momentum deficit ∆k, but on the relative behavior of the

neutron and proton Fermi momenta and their effective masses.

Although the momentum deficit ∆k in IUF monotonically shrinks with density, γp shows

a slight increase at low densities due to the fast drop of the effective proton mass m∗
p (see

Fig. 2.3). This fast decrease counter-intuitively leads E∗
F p to drop with density, while the

real Fermi energy, which includes the nuclear mean field, Up, rises with density as expected.

39



Chapter 2. Urca Processes and Beta Equilibrium

Closer to the threshold density, the momentum deficit dominates the behavior of γp and the

rate, so that γp goes to zero at the threshold as ∆k approaches zero, leading to kopt
p = kF p

as expected.

For the SFHo EoS, the direct Urca momentum deficit is only varying weakly with density

(see again Fig. 2.1). Although the momentum deficit is slowly falling, γp continues to rise

with density as shown in Fig. 2.11. This is due to the neutron Fermi momentum which rises

fast enough that the denominator in Eq. (2.27) decreases by more than a factor of five in

the studied density range while the momentum surplus stays nearly constant in comparison.

Electron capture [0.5ex] In the dUrca-forbidden density range, using the one-dimensional

kinematics described above, we find that the optimal kinematics for electron capture has a

proton above its Fermi surface and an electron close to its Fermi surface combining to make a

neutron slightly below its Fermi surface and a neutrino. The Fermi-Dirac suppression factor

is e−γp/T e−|γe|Θ(γe)/T e−|γn|Θ(−γn)/T , reflecting the scarcity of protons and electrons above their

Fermi surfaces, and of neutron holes below the neutron Fermi surface.

Figs. 2.10 and 2.12 show the corresponding energy excesses γi and Fermi-Dirac suppres-

sion factors. In the right panels we see that in the dUrca-forbidden region, electron capture

is somewhat suppressed but not nearly as suppressed as neutron decay. This is because, as

we explain below, it is able to proceed using a proton that is much closer to its Fermi surface

than is possible for neutron decay, and there is correspondingly less Fermi-Dirac suppression

(compare the left panels of Figs. 2.9 vs. 2.10, and Figs. 2.11 vs. 2.12).

The special feature of electron capture is that there is a very efficient way to exploit the

thermal blurring of the Fermi surfaces. Given a momentum shortfall ∆k ≡ kF n − kF p − kF e,

we can start with a proton whose momentum is less than ∆k above the Fermi surface. The

rarity of finding such a proton leads to a Fermi-Dirac suppression factor of e−|γp|/T . This

proton captures an electron near its Fermi surface with momentum parallel to the proton’s.
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At this point their combined momentum is not enough to make a neutron on its Fermi

surface, and there is excess energy. But we can use that excess energy to create, along with

a neutron on its Fermi surface, a neutrino whose momentum partly cancels the neutron

momentum, so the combined momentum of the proton and electron is enough to create that

final state.

Because of the “help” from the neutrino, the proton does not need to be as far above its

Fermi surface as the proton in neutron decay, so the electron capture rate is suppressed by

a smaller Fermi-Dirac factor,

The density dependence of the suppression factors (right panels of Fig. 2.10 for IUF and

Fig. 2.12 for SFHo) explain the density dependence of the direct Urca electron capture rates

shown in Figs. 2.7 and Figs. 2.8.

To understand the density dependence of γp, we can perform a similar analysis as for

neutron decay. We now assume neutron and electron to be on their Fermi surfaces, as shown

in Figs. 2.10 (IUF) and 2.12 (SFHo), which is not as good as an assumption compared to

the neutron decay analysis, but still helps us to gain insight into the behavior of the rates.

Energy-momentum conservation again allows us to deduce that

kF n = kopt
p + kF e + kopt

ν , (2.28)

EF n + kopt
ν = Ep(kopt

p ) + kopt
F e , (2.29)

which leads, following the same procedure as in the neutron decay case, to

kopt
p − kF p =

∆k(∆k + 2E∗
F p)

2(E∗
F p + kF n − kF p) . (2.30)

For IUF at low densities, we can neglect the proton Fermi momentum compared to the
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effective mass. The behavior of γp is then again dominated by the effective proton mass,

whose rapid decrease overcomes the rising neutron Fermi momentum at low densities. This

pushes the proton further away from its Fermi surface at low densities, before the momentum

surplus dominates the behavior of γp as the threshold is approached. As for neutron decay,

∆k = 0 at the threshold, therefore the rate is again dominated by particles on their respective

Fermi surfaces.

For SFHo, the momentum surplus is becoming smaller from n0 to 3n0 while the com-

bination of the effective masses and Fermi momenta in (2.30) varies slowly with density.

This allows the behavior of the momentum surplus ∆k to dominate the behavior of γp at

low densities, so both are increasing and therefore pushing the proton further away from its

Fermi surface initially. At higher densities, SFHo is seemingly approaching asymptotically

a direct Urca threshold. Both the momentum surplus and the Fermi momenta and effec-

tive masses in Eq. (2.30) are pushing the ideal proton momentum back closer to the Fermi

surface. Overall, the behavior of the electron capture rate in SFHo can therefore largely be

explained by the density dependence of the momentum surplus.

2.6.4 Non-relativistic Rate vs. Relativistic Rate

In Sec. 2.3 we emphasized that as the density rises above about 2n0 relativistic corrections

become important in the nucleon dispersion relations. In this section we illustrate the im-

portance of relativistic corrections in the neutron decay rate.

2.6.4.1 Direct Urca neutron decay

Fig. 2.13 shows various approximations to the direct Urca neutron decay rate at T = 3 MeV

(with ∆µ = 0). We show the rate calculated with fully relativistic dispersion relations, with
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the non-relativistic dispersion relation

EN = m∗
N + p2

N

2m∗
N

+ UN , (2.31)

and with the “vacuum dispersion relation” used in [73],

EN = meff,N + p2
N

2mN

, (2.32)

where mN = 940 MeV, and meff,N is chosen such that EN(pF ) = µN .

For the non-relativistic curves, we use a corresponding non-relativistic approximation of

the rescaled matrix element (B.3),

M = 1 + 3g2
A + (1 − g2

A) p⃗e · p⃗ν

EeEν

, (2.33)

see Refs. [73, 3], and the derivation in Appendix C of [117]. We see that relativistic corrections

make an enormous difference to the rate. The non-relativistic approximation is reasonably

accurate at low density (where the nucleons are indeed non-relativistic) but overestimates

the rate by up to eight orders of magnitude (at T = 3 MeV) between 2n0 and the direct

Urca threshold at 4.1n0. Due to the breakdown of the non-relativistic approximation, the

direct Urca threshold condition is incorrectly already fulfilled below two times saturation

density, which explains the steep increase of the non-relativistic rate around this density.

For a detailed discussion of the density dependence of the relativistic rate, see Sec. 2.6.3.

The thermal blurring of the Fermi energy, which is proportional to the temperature T ,

translates to a blurring in momentum space of order T/vF , where vF is the Fermi velocity. In

the correct relativistic treatment, vF has an upper bound of 1, whereas for the non-relativistic

dispersion relation, the Fermi velocity grows without a limit. This leads to a suppression of
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Fig. 2.13: Direct Urca neutron decay rate calculated using relativistic, non-relativistic and
the vacuum dispersion relations at T = 3 MeV for IUF.

the non-relativistic rate at higher densities which partially cancels the effects of the earlier

threshold.

The “vacuum dispersion relation” gives a rate that is one to eight orders of magnitude

too large (at T = 3 MeV), and is less suppressed at higher densities since the corresponding

Fermi velocity stays comparatively small in the plotted density range.

2.6.4.2 Modified Urca neutron decay

Fig. 2.14 shows the importance of using relativistic dispersion relations in calculating mod-

ified Urca. The rates are calculated for the IUF equation of state in the Fermi surface

approximation at T = 3 MeV. The relativistic rate is about 1 to 2 orders of magnitude

smaller than the non-relativistic rate. The modified Urca rates are not sensitive to the direct

Urca threshold because of the spectator providing extra momenta. Much of the difference

between the non-relativistic calculation and the relativistic calculation comes from the pref-

actors, as shown in Sec. 2.5 and Eqs. (C.14), (C.17), (C.15) and (C.18). The relativistic
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Fig. 2.14: Modified Urca rate calculated using relativistic and non-relativistic dispersion
relations at T = 3 MeV for IUF. (n) stands for neutron-spectator modified Urca
and (p) stands for proton-spectator modified Urca.

rates are suppressed by ∏i m
∗
i /E

∗
i , where i is the index for each of the nucleons participating

the interaction. Notice that the proton-spectator modified Urca rate is always less than the

neutron-spectator rate because the proton Fermi surface, and its accompanying phase space,

is smaller.

2.7 Conclusions

We have investigated the conditions for beta equilibrium in nuclear matter in neutron stars,

focusing on the temperature range where the material is cool enough so that neutrinos escape

(T ≲ 5 MeV) but warm enough so that nonzero temperature corrections to the Fermi surface

approximation play an important role (T ≳ 1 MeV).

Previous work [73] found that a nonzero-temperature correction ∆µ to the traditional

beta equilibrium condition (Eq. (2.7)) was required to balance the rate of neutron decay
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against the rate of electron capture. We have improved on that calculation by using a

consistent description of nuclear matter, based on two relativistic mean field models, IUF

and SFHo.

We find that when using relativistic mean field models it is important to use the full

relativistic dispersion relations of the nucleons. In these theories the effective masses drop

quickly with density, so the neutrons become relativistic at densities of 2 to 3n0. Using

non-relativistic nucleon dispersion relations can make the modified Urca rates wrong by an

order of magnitude and the direct Urca rates wrong by many orders of magnitude.

Our results for the nonzero-temperature correction ∆µ are shown in Figs. 2.4 and 2.5.

We find that it rises with the temperature, and can be of order 10 to 20 MeV for temperatures

in the 3 to 5 MeV range. The density dependence is quite different for the two EoSs that we

studied, and we showed in detail how it depends on specific properties of the EoS.

We find that the nonzero-temperature correction plays an important role in the correct

calculation of Urca rates. Using the naive (low-temperature) beta equilibrium condition

µn = µp +µe at T = 3 MeV would yield electron capture rates that are too large by an order

of magnitude, and neutron decay rates that are too small by an order of magnitude (Fig. 2.6).

This would significantly affect calculations of neutrino emissivity in the cooler regions of a

neutron star merger, and therefore the estimated energy loss due to neutrinos. Currently

used neutrino leakage schemes (e.g. Ref. [118] and references therein), which often treat the

temperature range T ≲ 5 MeV as neutrino free streaming, need to be adapted to the corrected

beta equilibrium. Additionally, the bulk viscosity of nuclear matter [55] depends on the rate

of the Urca process which restores the system to beta equilibrium. The improved calculation

of the Urca rates presented here will modify the temperatures and densities at which bulk

viscosity reaches its maximum strength. Using the correct beta equilibrium condition also

affects the equation of state: a recent study estimated its impact to be at the 5% level [119],

46



Chapter 2. Urca Processes and Beta Equilibrium

and it would be interesting to evaluate the impact by performing a merger simulation using

an EoS that incorporates the the finite-temperature correction described in this paper.
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Isospin Equilibration

We analyze the isospin ("beta") equilibration properties of neutrino-transparent nuclear (npe)

matter in the temperature and density range that is relevant to neutron star mergers. With

the state-of-the-art direct Urca rate calculation and the correction to the beta-equilibrium

developed in the previous chapter, we find that the isospin relaxation rate rises rapidly

as temperature rises, and at T ≈ 5MeV, it is comparable to the timescale of the density

oscillations that occur immediately after the merger. This produces a resonant peak in the

bulk viscosity at T ≈ 5MeV, which causes density oscillations to be damped on the timescale

of the merger. We conclude that there is good reason to include isospin relaxation dynamics

in merger simulations.

3.1 Introduction

Nuclear matter in neutron stars relaxes towards isospin (“beta”) equilibrium; its steady

state has an equilibrium proton fraction xeq
p which is a function of baryon density nB and

temperature T . Equilibrium is established by weak interactions which operate on a timescale

that can range from microseconds to minutes. Astrophysical phenomena such as density

oscillations in neutron stars, which can be on a similar timescale, can therefore drive the
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system out of equilibrium, and the dynamics of the relaxation process may be relevant to

our understanding of the astrophysics.

In this analysis we focus on the astrophysical conditions found in neutron star mergers,

where homogeneous nuclear matter at densities from one to several times nuclear satura-

tion density n0 and temperatures up to 80 MeV undergoes compression and rarefaction on

millisecond timescales [79, 55], likely driving the system out of isospin equilibrium [119].

We calculate physical quantities relevant for isospin equilibration in neutrino-transparent

homogeneous nuclear matter at densities above nuclear saturation density. Neutrino trans-

parency is an approximation to the complex dynamics of neutrinos [69, 120] and is expected

to become less reliable as temperatures rise beyond a few MeV [73], so we focus our cal-

culation on the range 0 < T < 10 MeV. We neglect muons because they introduce extra

processes requiring a more sophisticated treatment. Previous analyses have found that they

do not make a large difference to the equilibration and relaxation rates [65], so we postpone

their inclusion to future work. The quantities we calculate are the isospin relaxation rate γI

and the the frequency-dependent bulk viscosity ζ and damping (sound attenuation) time for

density oscillations.

Previous work on this topic has assumed that the condition for isospin equilibrium is

µn = µp +µe. As we will now discuss, this is only valid at temperatures below about 1 MeV.

At the temperatures attained in neutron star mergers there is a non-negligible correction

to this condition. In this paper, we calculate the isospin relaxation rate and bulk viscosity

using the proper equilibrium condition.

In the infinite volume thermodynamic limit, equilibrium is established when the forward

and backward rates of each process are equal (“detailed balance”), so the equilibrium condi-

tion is a simple equality involving chemical potentials. However, neutrino transparency is a

finite-volume effect, arising when the mean free path of neutrinos is not much smaller than
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the size of the system. In a neutrino-transparent system neutrinos only occur in final states,

never in initial states, so the system does not obey the principle of detailed balance. Equi-

librium is attained when there is a balance between different processes: neutron decay and

electron capture (as seen in (3.24) and (3.25) below). In general, the equilibrium condition

in neutrino-transparent matter takes the form [67, 73],

µn = µp + µe − µeq
I (nB, T ) , (3.1)

where there is an isospin chemical potential µeq
I whose value is determined by the requirement

that the net rate of isospin creation is zero, i.e., the neutron decay and electron capture rates

(3.26) are equal,

ΓI ≡ Γnet
n→p = 0 (3.2)

At sufficiently low temperatures, T ≪ 1 MeV, the correction µeq
I in (3.1) becomes negligi-

ble because the Fermi surface approximation is valid: the Fermi-Dirac distribution exponen-

tially suppresses contributions from particles away from their Fermi surfaces and the energy

carried away by neutrinos is negligible (of order T ). If neutrinos are kinematically negligi-

ble then neutron decay and electron capture are effectively the time-reverse of each other,

n⇋ p e−, and the isospin equilibrium condition can be obtained from applying detailed bal-

ance to that process, yielding µn = µp + µe, i.e., µeq
I = 0. However, as the temperature rises

above about 1 MeV, µeq
I becomes non-negligible, and can reach values as large as 20 MeV

(see Fig. 3.1 and Refs. [67, 73]). The main purpose of this paper is to calculate isospin

equilibration properties of nuclear matter taking this correction into account. We hope this

will clarify the relevance of isospin relaxation and help researchers performing merger sim-

ulations to decide when they should include isospin relaxation dynamics in their evolution

algorithms.
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In Sec. 3.2 we derive expressions for the isospin relaxation rate and the bulk viscosity

in terms of the microscopic isospin equilibration rate ΓI , i.e., the rate of Urca processes.

In Sec. 3.3 we describe the relativistic mean field theories (RMFTs) that we use to model

nuclear matter. In Sec. 3.4 we summarize the calculation of the Urca rates and in Sec. 3.5

we present our results.

We use natural units where ℏ = c = kB = 1.

3.2 Isospin equilibration of nuclear matter

We now derive expressions for the isospin relaxation rate γI and the bulk viscosity ζ of

neutrino-transparent npe mattter at arbitrary temperature. We will assume that matter

always remains locally electrically neutral, so all calculations are performed at constant

charge density nQ = 0. The derivation in this section is applicable to both isothermal and

adiabatic density oscillations, by taking the derivatives at constant temperature or constant

entropy per baryon respectively. In the presentation below we will not explicitly show the

dependence on T or s/nB.

3.2.1 Isospin relaxation

In neutrino-transparent nuclear npe(µ) matter, in addition to the conserved baryon number

B and conserved electric charge Q there is another “briefly-conserved” charge, isospin I.

The relevant charge densities and chemical potentials can be related to the net densities and
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chemical potentials of neutrons (n), protons (p) and electrons (e),

nB = np + nn ,

nI = 1
2np − 1

2nn ,

nQ = np − ne ,

µB = 1
2µp + 1

2µn + 1
2µe ,

µI = µp − µn + µe ,

µQ = − µe .

(3.3)

The expressions above do not include a chemical potential for lepton number because the

neutrinos are far from thermal equilibrium so there is no associated chemical potential.

It will be convenient to define the isospin fraction xI , which is simply related to the

proton fraction (xp ≡ np/nB),

xI ≡ nI

nB

= xp − 1
2 . (3.4)

For many purposes we can treat xI as equivalent to xp, since ∂/∂xI is the same as ∂/∂xp,

and a derivative at constant xI is also a derivative at constant xp.

As noted in Sec. 3.1, on strong-interaction (∼ 10−23 s) timescales all three charges are

conserved, but on longer timescales the weak interactions break isospin, so µI and xI relax to

their beta equilibrated values µeq
I and xeq

I . To analyze this equilibration process, where the

system has been driven out of equilibrium by a density oscillation, it is natural to work in

terms of nB and xI , since baryon density is the quantity that tracks the density oscillation,

and the isospin fraction tracks relaxation to equilibrium.

Isospin equilibration of isospin is governed by the rate equation

dnI

dt
= nI

nB

dnB

dt
+ ΓI(nB, xI) . (3.5)
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The first term on the right side tells us that if isospin were conserved then compression

would change the isospin density by the same fraction as it changes baryon density. In the

second term ΓI is the isospin production rate, i.e., the net rate per unit volume at which

isospin increases, or equivalently the net rate at which neutrons are converted to protons.

In Sec. 3.4 we describe how it can be calculated from the Fermi theory of weak interactions

by integrating the net n → p rate over the Fermi-Dirac distributions of protons, neutrons,

and electrons.

Using the definition (3.4), the rate equation (3.5) becomes

dxI

dt
= 1
nB

ΓI(nB, xI) , (3.6)

and the equilibrium isospin fraction xeq
I (nB) is defined by

ΓI

(
nB, x

eq
I (nB, T )

)
= 0 . (3.7)

If xI is above its equilibrium value then there are too many protons, so the rate of p → n

becomes larger than n → p; ΓI should then become negative, driving xI back down towards

its equilibrium value. To obtain physically relevant quantities such as the isospin relaxation

rate and bulk viscosity we consider a generic small departure from equilibrium,

ΓI(n̄B +∆nB, x̄I +∆xI) = ∂ΓI

∂nB

∣∣∣∣∣
xI

∆nB + ∂ΓI

∂xI

∣∣∣∣∣
nB

∆xI , (3.8)

where x̄I ≡ xeq
I (nB). Using this in the rate equation (3.6) we obtain the rate equation for

the isospin fraction
dxI

dt
= −γI∆xI + γB

∆nB

n̄B

, (3.9)
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where
γI ≡ − 1

n̄B

∂ΓI

∂xI

∣∣∣∣∣
nB

,

γB ≡ ∂ΓI

∂nB

∣∣∣∣∣
xI

,

(3.10)

with both the derivatives evaluated at nB = n̄B, xI = x̄I . According to (3.9) a small deviation

of xI from equilibrium (with no change in nB) would evolve as ẋI = −γI(xI − xeq
I ), so we

identify γI as the isospin relaxation rate, which we expect to be positive.

The other rate factor, γB, tells us how quickly equilibrium is restored in response to a

change in density at fixed isospin fraction. In previous treatments (e.g. [121, 95, 122, 123,

124, 92, 88, 63]) this was simply related to γI (see (D.4)) because it was assumed that beta

equilibrium corresponds to µI = 0; however, as noted in Sec. 3.1, this is no longer true in

neutrino-transparent matter at T ≳ 1 MeV.

3.2.2 Bulk viscosity

To see how isospin equilibration leads to bulk viscous damping, we consider a fluid element

of nuclear matter, with pressure p, that is driven out of equilibrium by a small-amplitude

density oscillation,
nB(t) = n̄B + Re(δnB e

iωt) ,

xI(t) = x̄I + Re(δxI e
iωt) ,

p(t) = p̄+ Re(δp eiωt) .

(3.11)

We assume that the oscillation occurs around equilibrium, so

x̄I = xeq
I (n̄B, T ) . (3.12)
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We adopt the phase convention that the baryon density amplitude δnB ≪ n̄B is real. Bulk

viscous dissipation arises from a phase lag between pressure and density. The rate of energy

dissipation for the the small-amplitude oscillation (3.11) is obtained from

W = − 1
τ V̄

∫ τ

0
p(t)dV

dt
dt = 1

2ω Im(δp) δnB

n̄B

, (3.13)

where the period is τ = 2π/ω.

The hydrodynamic relation between bulk viscosity and rate of energy dissipation per unit

volume is W = ζ(∇ · v⃗)2, which for the small-amplitude oscillation (3.11) becomes (averaged

over one oscillation period)

W = 1
2ζω

2 (δnB)2

n̄2
B

. (3.14)

Identifying (3.13) with (3.14) we obtain the frequency-dependent bulk viscosity

ζ(ω) = Im(δp)
δnB

n̄B

ω
. (3.15)

For npe nuclear matter, where the phase lag of the pressure arises from the equilibration of

isospin, this becomes

ζ(ω) = n̄B

ω

∂p

∂xI

∣∣∣∣∣
nB

Im(δxI)
δnB

. (3.16)

We can now obtain the bulk viscosity of nuclear matter by analyzing the equilibration

process in more detail, which will allow us to calculate the phase lag. Substituting the

explicit form of the oscillations (3.11) in to the rate equation (3.9) we find the relationship

between the amplitudes δxI and δnB

iωδxI = −γIδxI + γB

n̄B

δnB (3.17)
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which can be rewritten
δxI

δnB

= 1
n̄B

γB

γI + iω
(3.18)

For the bulk viscosity (3.16) we take the imaginary part of (3.18),

ζ = − ∂p

∂xI

∣∣∣∣∣
nB

γB

γ2
I + ω2 , (3.19)

where γB and γI are defined in (3.10) This is the general expression for the bulk viscosity,

valid even when temperature corrections shift the equilibrium away from its low temperature

limit µeq
I = 0. In Appendix D we take the low temperature limit and show that previous

calculations, which assumed µeq
I = 0, agree with the general result in that limit. In the

low temperature limit (D.5) it is clear that the dependence of bulk viscosity on density

and temperature features a resonant maximum when the relaxation rate γI(nB, T ) coincides

with the angular frequency ω of the density oscillation. This is less clear in the more general

expression (3.19), but we have found that for typical equations of state µeq
I varies slowly

enough as a function of nB and T so that γB(nB, T ) is still roughly proportional to γI(nB, T )

(the constant of proportionality is a slowly varying function of nB and T ), so the resonant

peak is still present.

The bulk viscosity (3.19) can also be written

ζ = ζ0
γ2

I

γ2
I + ω2 , (3.20)

where

ζ0 = − ∂p

∂xI

∣∣∣∣∣
nB

γB

γ2
I

(3.21)

is the static (zero frequency) limit of the bulk viscosity. (Note that in the isothermal regime
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the derivative of the pressure can be rewritten as a derivative of µI , see App. E). From the

static bulk viscosity and the isospin relaxation rate γI , which are functions of nB and T ,

one can reconstruct the full frequency-dependent bulk viscosity as a function of density and

temperature.

3.3 Nuclear matter models

One of the most important features influencing the isospin relaxation rate of nuclear matter

is the direct Urca threshold density, which separates the low-density range, where in the

T → 0 limit only modified Urca processes are allowed, from the high-density range where

direct Urca processes are kinematically allowed (see Sec. 3.4). It is not known whether real-

world nuclear matter has a direct Urca threshold in the relevant density range, so we perform

calculations for two relativistic mean-field theories, IUF [59] and QMC-RMF3 [125]. Both

are consistent with current astrophysical and nuclear constraints. IUF has a direct Urca

threshold at 4 n0 whereas QMC-RMF3 does not have a threshold in the range of densities

found in neutron stars.

At a given baryon density nB, temperature T , and proton fraction xp we solve the RMFT

mean field equations to obtain the values of the meson condensates, thermodynamic quanti-

ties such as the pressure and proton and neutron chemical potentials, and also the nucleon

effective masses and energy shifts. The dispersion relations for nucleons in the relativistic

mean field models are then specified,

En =
√
m∗

n
2 + k2

n + Un, (3.22)

Ep =
√
m∗

p
2 + k2

p + Up, (3.23)
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where m∗
i are the effective masses, ki are the particle momenta and Ui are the energy shifts.

In RMFTs the effective masses and energy shifts are functions of density, temperature, and

proton fraction. In the models that we use the protons and neutrons have the same effective

mass, so the energy shifts play an important role by separating the neutron and proton

energies and thereby opening up more phase space for the Urca processes.

3.4 Urca Rates

3.4.1 Overview of Urca processes

The isospin equilibration rate ΓI (3.5) is given by the neutron decay and electron capture

processes, which are governed by the weak interaction. Depending on the number of specta-

tors, these processes are called direct or modified Urca. The direct Urca processes in neutrino

transparent matter are neutron decay and electron capture

n → p+ e− + ν̄ , (3.24)

p+ e− → n+ ν .

In most models of homogeneous nuclear matter the proton fraction xp increases mono-

tonically with the density. This means that for some models there is a direct Urca threshold

density, defined as the density below which, in the limit T → 0, the rate of the direct Urca

process is exponentially suppressed. Since at low temperature the participating neutrons,

protons, and electrons are all on their Fermi surfaces, the criterion for direct Urca to proceed

is kF n ⩽ kF p + kF e where kF i are the Fermi momenta for the particles. In npe matter this

threshold is xp ⩾ 0.11 since neutrality requires kF p = kF e. Below the threshold density,

kF n > kF p + kF e, so momentum conservation forbids the direct Urca processes for particles
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on their Fermi surfaces. In order for momentum conservation to be satisfied, some parti-

cles would need to be away from their Fermi surfaces, but this population is exponentially

suppressed by their Fermi-Dirac distributions.

At densities below the direct Urca threshold, we expect the Urca rates to be dominated

by the modified Urca process,

N + n → N + p+ e− + ν̄ , (3.25)

N + p+ e− → N + n+ ν ,

where N is a spectator nucleon that can scatter from one part of its Fermi surface to another,

injecting momentum via a virtual pion in to the accompanying direct Urca process.

We now discuss the calculation of the direct Urca (“dU”) and modified Urca (“mU”)

rates, which establish beta equilibrium (see Sec. 3.2),

Γnd = ΓdU,nd + ΓmU,nd , (3.26)

Γec = ΓdU,ec + ΓmU,ec . (3.27)

In this paper, we will calculate the direct Urca rates by integrating over the full phase

space, including Fermi-Dirac-suppressed contributions that become non-negligible when the

temperature rises to the MeV range [73]. We will calculate modified Urca rates in the Fermi

surface approximation (in which participating nucleons and electrons are assumed to be on

their Fermi surfaces) since modified Urca always has a non-suppressed contribution from

such particles.
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3.4.2 Direct Urca rates

The direct Urca neutron decay and electron captures rates are [3]

Γnd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3

fn(1 − fp)(1 − fe)
∑ |M |2

(2E∗
n)(2E∗

p)(2Ee)(2Eν)

(2π)4δ(4)(kn − kp − ke − kν) , (3.28)

and

Γec =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3

(1 − fn)fpfe

∑ |M |2

(2E∗
n)(2E∗

p)(2Ee)(2Eν)

(2π)4δ(4)(kp + ke − kn − kν) , (3.29)

where Σ|M | is the spin-summed matrix element, E∗
i =

√
k2

i +m∗2
i are the effective nucleon

dispersion relations, Ee =
√
k2

e +m2
e and Eν = kν are the electron/neutrino dispersion re-

lations, and fi are Fermi-Dirac distributions. Direct Urca rates are often calculated in

various approximations such as using non-relativistic dispersion relations for the nucleons

[122, 73, 62, 63], using vacuum masses for the nucleons [73], simplifying the matrix element

[62, 63], or using the Fermi surface approximation [122].

Our direct Urca rate calculations use the complete matrix element, relativistic dispersion

relations for all participating particles, and integrate momenta over the entire phase space.

For details see Appendix A of Ref. [67].
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3.4.3 Modified Urca rates

We use the standard expressions for the modified-Urca neutron decay and electron captures

rates,

ΓmU,nd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3

(2π)4δ(4)(kn + kN1 − kp − ke − kν − kN2)

fnfN1(1 − fp)(1 − fe)(1 − fN2)(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
, (3.30)

and

ΓmU,ec =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3

(2π)4δ(4)(kp + ke + kN1 − kn − kν − kN2)

fpfefN1(1 − fn)(1 − fN2)(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
, (3.31)

where s = 1/2 is a symmetry factor to account for identical particles. These are obtained

using the matrix element from Ref. [2, 126] and using the Fermi surface approximation to

simplify the phase space integral. For details see Appendix B of [67].

3.5 Results

We now present numerical results for the quantities described in Sec. 3.2. We perform all the

computations in the isothermal regime: see Sec. 3.6 for further discussion of this assumption.
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3.5.1 Isospin chemical potential

To calculate linear-response isospin equilibration properties such as the relaxation rate or

bulk viscosity one needs to perturb around the equilibrium state. i.e., the state in which

the net rate of isospin creation is zero. As noted in Sec. 3.1, at nonzero temperature this

requires a nonzero isospin chemical potential, µeq
I (Eq. (3.1)). Its value is negative because

thermal corrections enhance electron capture more than neutron decay, so to restore the

balance between these rates we need a chemical potential that reduces the proton fraction:

this suppresses electron capture by reducing the proton population and enhances neutron

decay by adding more occupied neutron states.

In Fig. 3.1 we show how −µeq
I varies with density and temperature for our two exemplary

equations of state, IUF and QMC-RMF3. The plot shows contours labeled by their value of

−µeq
I . As discussed in Refs. [73, 67] µeq

I tends to zero as T → 0 which is why it was neglected

in previous treatments of bulk viscosity in neutron stars. However, as the temperature rises

above about 1 MeV, it becomes non-negligible. Note that for IUF, which has a direct Urca

threshold at nB ≈ 4n0, µeq
I is enhanced near the threshold density. This is because thermal

blurring of the Fermi surfaces becomes more important close to threshold, and opens up

phase space for the electron capture process more than it does for neutron decay [73, 67];

this imbalance is the reason for a nonzero µeq
I .

3.5.2 Isospin Relaxation Rate

Fig. 3.2 shows how the isospin relaxation time τ = 1/γI (3.10) depends on density and

temperature for our two reference equations of state, IUF (left) and QMC-RMF3 (right). We

have shaded the range of density and temperature where relaxation occurs on the timescale

relevant for mergers, 0.1 ms to 25 ms. The thick contour shows where γI = 2π× 1 kHz,
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Fig. 3.1: Density and temperature dependence of −µeq
I , the isospin chemical potential in

isospin equilibrium (Eq. (3.1)), for the IUF equation of state (left panel) and
QMC-RMF3 (right panel); −µeq

I rises with temperature because it arises from
thermal blurring of the Fermi surfaces (see text). For IUF at low temperatures it
is also influenced by the direct Urca threshold at nB ≈ 4n0.

which as we will see below is where the bulk viscosity reaches a resonant maximum for

a 1 kHz oscillation. If there is material in a merger that lies in this density/temperature

range and obeys our assumptions (such as neutrino transparency), then the relaxation of its

proton fraction is occurs on a timescale that is comparable to that of the merger dynamics,

indicating that the relaxation process should be included in simulations.

In regions where the equilibration time is much smaller than 0.1 ms equilibration happens

so fast that one could use the approximation that the matter is always in isospin equilibrium.

In regions where the equilibration time is much longer than 20 ms the equilibration process is

slow, and the proton fraction of each fluid element could be approximated as being constant.

Previous simulations of neutron star mergers have either investigated these extreme cases of

instantaneous equilibration, or frozen composition [127] or only partly implemented the low

density and low-temperature approximation to the Urca rates studied here [128, 129, 120,

130, 131].
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Fig. 3.2: Density and temperature dependence of the isospin relaxation time τ = 1/γI

(Eq. (3.10)). The shaded region shows where the relaxation time is between 0.1 ms
and 25 ms, i.e. comparable to the timescale of merger dynamics. The thick line
shows the temperatures and densities where the bulk viscosity of a 1 kHz density
oscillation would reach its maximum, i.e., where γI = 2π × 1 kHz (Sec. 3.2.2).

Recently a first attempt has been made [132] to include both direct and modified Urca

processes, calculated in the Fermi surface approximation, in the simulation. It was found

that Urca processes affect the proton fraction of the fluid elements on the timescale of the

merger dynamics.

For the IUF equation of state there is a noticeable feature in the relaxation time plot:

relaxation becomes faster when the density reaches around 4n0. This is because IUF has a

direct Urca threshold at this density. At densities above this threshold more phase space

opens up and Urca rates, at a given temperature, are much faster than they are at densities

below the threshold. Below the threshold density, the relaxation time is comparable to the

merger timescale at temperatures of order 2 to 4 MeV. Above the threshold density, the

relaxation time is comparable to the merger timescale at temperatures below 2 MeV.

For QMC-RMF3, the relaxation time depends only weakly on density. This is because

there is no direct Urca threshold. Across the whole density range that we studied beta
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Fig. 3.3: Static (zero-frequency) bulk viscosity (3.21) for the IUF (left) and QMC-RMF3
(right) equations of state. The static bulk viscosity drops as temperature rises
because it is inversely proportional to the relaxation rate.

equilibrium is determined by a balance between neutron decay (dominated by modified

Urca) and electron capture (dominated by direct Urca) [73, 67]. Consequently, the region

where the relaxation time is comparable to the merger timescale extends across the whole

density range that we computed, for temperatures in the MeV-range.

Assuming that our reference EoSes are representative, Fig. 3.2 implies that if neutrino-

transparent homogeneous matter is present in mergers then regions at T ≲ 5 MeV will

likely be driven out of isospin equilibrium and regions at T ∼ 2 to 5 MeV (the exact range

depending on the EoS) will equilibrate on the timescale of the merger.

3.5.3 Bulk Viscosity and Damping Time

In Fig. 3.3 we show the density and temperature dependence of the static (zero-frequency)

bulk viscosity ζ0 (3.21). The plot shows contours of log10(ζ0) where ζ0 is in cgs units

(g cm−1 s−1). The static bulk viscosity depends inversely on the relaxation rate, so it drops

as the temperature rises, and at low temperatures we also see the effects of the direct Urca
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Fig. 3.4: Bulk viscosity at frequency f = 1 kHz for the IUF (left) and QMC-RMF3 (right)
equations of state. In both cases the resonant peak occurs where the relaxation
rate passes through ω = 2π × 1 kHz, which occurs at T ≈ 5 MeV.

threshold at nB ≈ 4n0, as in Fig. 3.2.

From the isospin relaxation rate and the static bulk viscosity one can reconstruct the

frequency-dependent bulk viscosity (Eq. (3.20)). Since density oscillations in neutron star

mergers typically have frequencies in the kHz range, Fig. 3.4 shows the density and temper-

ature dependence of bulk viscosity at angular frequency ω = 2π× kHz.

As described in Sec. 3.2.2, we expect the bulk viscosity to reach a resonant maximum when

the isospin relaxation rate γI(nB, T ) coincides with the angular frequency ω of the density

oscillation. The relaxation rate rises quickly with temperature since higher temperature

opens up more phase space near the Fermi surfaces. We therefore expect the bulk viscosity

to achieve its maximum value at the temperature where γI(nB, T ) ≈ ω. From Fig. 3.2 we see

that for a 1 kHz density oscillation that temperature is around 5 MeV. This explains what

we see in Fig. 3.4: the contours run roughly horizontally, with the bulk viscosity reaching

a maximum at T ≈ 5 MeV. At lower temperatures the system equilibrates so slowly that

isospin is almost conserved: the proton fraction remains constant, and the system has a low
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Fig. 3.5: Damping time for density oscillations of frequency 1 kHz as a function of density
and temperature, for the IUF (left) and QMC-RMF3 (right) equations of state.

bulk viscosity. At higher temperatures where γI ≫ ω the system equilibrates so quickly that

there is little phase lag between pressure and density, and the bulk viscosity tends towards

its static value ζ0 (Fig. 3.21).

For the IUF EoS one can see the effect of the direct Urca threshold at nB ≈ 4n0: below

that density relaxation is slower (due to a lack of kinematically allowed phase space), and

so a higher temperature is needed to bring the relaxation rate up to 1 kHz.

Comparing these to previous calculations that used nonrelativistic dispersion relations

for the nucleons (e.g., Refs. [63], [85]), our resonance peaks are shifted to slightly higher

temperatures for given densities. This is because in our models of nuclear matter the in-

medium effective masses of the nucleons are much lower than the vacuum masses so the

relativistic corrections are significant, decreasing the Urca rates and relaxation rates [67, 65],

which means higher temperatures are required to achieve resonance (γI = ω).

One physical manifestation of bulk viscosity is the damping of density oscillations. The
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damping time for an oscillation of angular frequency ω is [85]

τdamp = κ−1

ω2ζ(ω) , (3.32)

where the incompressibility is

κ−1 ≡ nB
∂p

∂nB

∣∣∣∣∣
xI ,T

. (3.33)

Since this paper focuses on isothermal density oscillations we use the isothermal compress-

ibility.

Fig. 3.5 shows how the damping time depends on density and temperature for IUF (left)

and QMC-RMF3 (right). We expect that in density/temperature regions where the damping

time is in the tens of milliseconds range, bulk viscosity will have a significant impact on

density oscillations during the merger.

The key features of this plot are: (1) the temperature dependence of the damping time

is mainly determined by that of the bulk viscosity, so the damping time is shortest when the

bulk viscosity (Fig. 3.4) is largest, i.e. at T ∼ 5 MeV; (2) the density dependence of the

damping time also roughly follows that of the bulk viscosity, but damping is slowed at high

densities by the growth of the incompressibility: oscillations then store more energy and so

take longer to decay; (3) the shortest damping times are short enough so that bulk viscous

damping is relevant on merger timescales.

These results are comparable to those obtained in Ref. [65], which used different models

for nuclear matter and used the low-temperature approximation for beta equilibrium, µeq
I =

0.

The data for the plots shown in this section are available at https://github.com/

zzz-new/Physics_MUSES_Beta_Equilibration or https://gitlab.com/ahaber/npe-bulkviscosity.

The code used to develop the QMC-RMF3 model and to solve the mean-field equations for
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both our models of nuclear matter can be found at https://gitlab.com/ahaber. The code

for calculating Urca rates and isospin equilibration properties will be made public as part of

the MUSES framework https://musesframework.io/.

3.6 Conclusions

We have analyzed the isospin equilibration properties of neutrino-transparent nuclear (npe)

matter in the temperature and density range that is relevant to neutron star mergers. Our

analysis includes corrections to the isospin equilibrium condition µn = µp +µe which arise at

T ≳ 1 MeV. We find that at temperatures of order 2 to 5 MeV the isospin relaxation time,

i.e., the timescale on which the proton fraction relaxes to its equilibrium value, is comparable

to the timescale of the density oscillations that occur immediately after the merger. At lower

temperatures, isospin relaxes more slowly, and at higher temperatures, it relaxes faster. For

a 1 kHz density oscillation this leads to a resonant peak in the bulk viscosity at T ∼ 5 MeV,

when the relaxation rate matches the frequency. This causes damping of such a density

oscillation on the timescale of the merger, providing strong motivation to include isospin

relaxation dynamics in merger simulations.

There are many directions in which further work is needed to elucidate the dynamics of

isospin under merger conditions. (1) Our most significant assumption is neutrino trans-

parency, which is valid in the limit of a long mean free path for the neutrinos. The behavior

of neutrinos in mergers is more complicated, with an energy-dependent mean free path that

interpolates between the transparent and trapped regimes [120]. It will be important to

develop tools that can handle this scenario. (2) Our calculation of the n⇌ p rate is based

on the standard separation between the direct Urca and modified Urca contributions which

are added to give the total rate. Our treatment of direct Urca is full and rigorous, including
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the entire weak interaction matrix element and integrating the rate over the whole phase

space, but the standard expression for the modified Urca rate uses crude approximations,

and improving on it is a natural next step [4]. (3) We performed our calculation in the

isothermal regime, assuming that the thermal relaxation rate is faster than the dynamical

timescales. It would be straightforward to perform a parallel calculation in the adiabatic

regime, but previous analyses [73, 65] have found that this does not change the results signif-

icantly. This is because the temperatures involved are lower than the Fermi energies of the

relevant particles, so the entropy contribution to the pressure is generally a small correction.

In reality thermal conduction in mergers is likely to interpolate between the isothermal and

adiabatic regimes, again because of the role of neutrinos, which can have a long mean free

path depending on their energy and the ambient density and temperature [55], so they likely

dominate the thermal conductivity. (4) Our calculation of bulk viscosity and the damping

time for oscillations assumes linear response (“subthermal bulk viscosity”) where the ampli-

tude of the oscillations is small in the sense that the departure of the chemical potentials

from equilibrium is much less than the temperature. Simulations indicate that in the first

few milliseconds after merger there are large-amplitude oscillations, for which the suprather-

mal bulk viscosity [133, 134] would be relevant. Note that if the Urca rate equation (3.6)

is explicitly included in a merger simulation code then the resulting evolution will naturally

incorporate the physical effects, including the subthermal and suprathermal bulk viscosity.

(5) At merger densities we expect nuclear matter to contain muons, which we neglected in

this work. Including them opens up additional equilibration channels (n ⇌ p µ and purely

leptonic processes) leading to a more complicated picture with multiple relaxation times [65].

(6) A natural next step is to compare our results with the isospin equilibration properties of

more exotic forms of matter, such as hyperonic [135] or quark matter [136, 137, 92, 138, 139].

In conclusion, this paper provides the most complete treatment to date of the physics
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of isospin equilibration in homogeneous neutrino-transparent nuclear matter, in the density

and temperature range that is relevant to neutron star mergers. Our calculation of the

isospin relaxation rate and related phenomena such as bulk viscosity and the damping of

density oscillations provides a guideline for merger simulators to assess which approximations

for isospin equilibration are appropriate at a given density and temperature, and when an

explicit implementation of the relaxation process is required.
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Chapter 4

A Unified Approach to Urca Processes

This chapter is based on several unpublished results.

4.1 Introduction

As shown in the previous chapters, modified Urca has been commonly treated with a lot of

approximations [2, 3]. Yakovlev et al. [3] treat nucleons as non-relativistic particles, neglect

electron momentum, and average over neutrino orientation. Friman and Maxwell [2] have

made further approximations as described in [3] Sec.3.4.(b). One of the crude treatment to

the internal propagator (indicated in Fig. 4.1) involves approximating it as 1
µe

. Shternin et

al. [4] have improved the treatment of the internal propagator using

G = 1
ϵ− Ek

, (4.1)

where ϵ is the energy of the off-shell particle and Ek is the dispersion relation of the particle.

However, this leads to an unphysical divergence of the rate when close to the direct Urca

threshold, which will be discussed in Sec. 4.2. In the work done by Shternin et al., nucleons

are treated as non-relativistic particles, which is not a good approximation above 2 to 3 n0

72



Chapter 4. A Unified Approach to Urca Processes

Fig. 4.1: Modified Urca Feynman diagram. The internal propagator is highlighted in or-
ange. It is commonly approximated as 1/µe, which has been widely used [2, 3].

in RMFs (see discussions in Chap. 2). Therefore, a calculation with consistent relativistic

treatment has been presented.

Before solving the divergence issue, in Sec. 4.3, we present a new relativistic calculation

of the modified Urca processes by doing full phase-space integrals. This is among the first

calculations that allow modified Urca to go beyond Fermi surface approximation and the first

full phase-space rate calculation for modified Urca. More study in this section is ongoing.

Back to the divergence issue, we added a width to the internal propagator and showed

that this approach solves the unphysical divergence, which is discussed in Sec. 4.4.

Up until the point of writing this thesis, direct Urca and modified Urca have been calcu-

lated separately. In Sec. 4.5, a first try towards a framework of unifying all Urca processes

is presented. This is also among the first calculations that consistently allow modified Urca

to go beyond Fermi Surface approximation. It is more efficient because instead of an 11-dim
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integral, only a 6-dim integral is necessary.

4.2 Improved Modified Urca

4.2.1 The Modified Urca Rates and the Angular Averaged

Matrix Element

To calculate the rate, we start from Fermi’s Golden rule, as discussed in Chap. 2 and Chap. 3,

ΓmU,nd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3 (2π)4δ(4)(kn + kN1 − kp − ke − kν − kN2)

fnfN1(1 − fp)(1 − fe)(1 − fN2)
(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
. (4.2)

In this section, we still carry out the calculation under Fermi surface approximation.

The details about the modified Urca Fermi surface approximation have been laid out in

the Appendix. C, now with a different matrix element because of implementing a different

propagator. The first step of Fermi surface approximation involves separating the integral

into two parts, i.e. the angular integral and the energy integral. In order to carry out the

angular integral analytically described in [89], we need to do an angular averaging of the

matrix element ⟨|M |2⟩ so that they are independent of the angles. The angular-averaged

matrix element is calculated as the following,

⟨|M |2⟩ = IM

IN

=
∫
(∏6

i=i d
3kiδ(|k⃗i| − ki))δ(3)(k⃗in − ⃗kout)|M |2∫

(∏6
i=i d

3kiδ(|k⃗i| − ki))δ(3)(k⃗in − ⃗kout)
. (4.3)

To calculate the IM integral weighted by the matrix element, we setup a coordinate system
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of the momentum transfers, and we label the incoming neutron by 1, outgoing proton by 2,

incoming spectator by 3, and outgoing spectator by 4. We have

p⃗1 = k⃗1 − k⃗3 , (4.4)

p⃗2 = k⃗4 − k⃗2 , (4.5)

p⃗3 = k⃗2 , (4.6)

p⃗4 = k⃗4 , (4.7)

p⃗5 = k⃗e . (4.8)

Therefore, the coordinate system of the momentum transfers is

p⃗1 = p⃗2 + p⃗5 , (4.9)

p⃗2 = p2(0, 0, 1) , (4.10)

p⃗3 = p3(
√

1 − z2
3 , 0, z3) , (4.11)

p⃗4 = p4(
√

1 − z2
4 cosϕ4,

√
1 − z2

4 sinϕ4, z4) , (4.12)

p⃗5 = p5(
√

1 − z2
5 cosϕ5,

√
1 − z2

5 sinϕ5, z5) . (4.13)

After the angular-averaged matrix element is calculated, the remaining parts of the in-

tegration (both angular and energy integrals) are the same as described in Appendix. C. A

notice to the angular integral that the neutrino 3-momentum is usually neglected so that dΩ

can be integrated out first, leaving an angular integral with only 5 particles.

In this modified Urca calculation, we include 4 diagrams, same as in [4]. Fig. 4.2 shows the

2 direct diagrams. For each direct diagram, there is also a corresponding exchange diagram.

The difference between the 2 direct diagrams comes from whether the weak vertex happens
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Fig. 4.2: Modified Urca Feynman diagrams [4]. For each direct diagram, there is also a
corresponding exchange diagram where the incoming external legs of the direct
diagram are exchanged.

before or after the strong vertex. The amplitude is calculated as the sum of the 2 direct

diagrams minus the sum of the 2 exchange diagrams, i.e. M = (M1D +M2D)− (M1E +M2E).

The difference between our modeling and the Shternin et al. modeling of the nucleon-nucleon

interaction is that we use one-pion exchange (OPE) [2, 3] instead of complicated nucleon-

nucleon interactions. Besides, in our calculation, we use a full Fermion propagator i
/k−m

, as

opposed to using a non-relativistically approximated one.

4.2.2 Results

Fig. 4.3 shows the result of the modified Urca calculation with angular averaged matrix

element under Fermi surface approximation. We also observed an enhancement from all

densities below the threshold and an unphysical divergence around the threshold. As dis-

cussed in [4], the enhancement is mainly due to a better treatment of the internal propagator

(there is also a contribution from a more complete angular-averaged matrix element).

We also observed the appearance of the divergence around the threshold. With gradually
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Fig. 4.3: Modified Urca rates under Fermi surface approximation. “Vacuum propagator”
stands for the relativistic bare Fermion propagator, instead of a non-relativistic
Fermion propagator.

increasing density, the momentum deficit for direct Urca is getting smaller. At the direct

Urca threshold, kF n = kF p +kF e, no extra momentum is necessary for direct Urca to happen,

and the spectator would not need to participate in the reaction anymore. At this point, the

internal nucleon goes on-shell, k2 = m2, which means that its energy and momentum can

be connected via the dispersion relation, i.e. ϵ = Ek, where Ek =
√
m∗2 + k2 + U for RMF

models. Therefore, the propagator diverges, hence the rate.
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4.3 Modified Urca with Full Phase Space Integral

Before we discuss how to solve the divergence issue, we take further steps to improve the

modified Urca calculations. In this section, we present a full phase space integration, as

opposed to Fermi surface approximation, thus we do not need to perform angular-averaging

of the matrix element anymore.

4.3.1 Method

We still start from the rate expression

ΓmU,nd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3 (2π)4δ(4)(kn + kN1 − kp − ke − kν − kN2)

fnfN1(1 − fp)(1 − fe)(1 − fN2)
(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)

= (2π)4

(2π)18

∫
dΩndΩpdΩedΩνdΩN1dΩN2dkndkpdkedkνdkN1dkN2

δ((En + EN1) − (Ep + Ee + Eν + EN2))δ(3)((k⃗n + ⃗kN1) − (k⃗p + k⃗e + k⃗ν + ⃗kN2))

fnfN1(1 − fp)(1 − fe)(1 − fN2)
(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
. (4.14)

We integrate out the momentum delta function first, then use the fact that neutrinos are

ultra-relativistic, Eν = |k⃗ν |, we get

ΓmU,nd = 1
(2π)14

∫
dΩndΩpdΩedΩνdΩN1dΩN2dkndkpdkedkνdkN1dkN2

δ
(

(En + EN1) − (Ep + Ee + EN2) − |(k⃗n + ⃗kN1) − (k⃗p + k⃗e + ⃗kN2)|
)

fnfN1(1 − fp)(1 − fe)(1 − fN2)
(
s

∑ |M |2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
. (4.15)
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The coordinate system is set up as

k⃗n = kn(0, 0, 1) , (4.16)

k⃗p = kp(
√

1 − z2
p , 0, zp) , (4.17)

k⃗e = ke(
√

1 − z2
e cosϕe,

√
1 − z2

e sinϕe, ze) , (4.18)

k⃗N1 = kN1(
√

1 − z2
N1 cosϕN1,

√
1 − z2

N1 sinϕN1, zN1) , (4.19)

k⃗N2 = kN2(
√

1 − z2
N2 cosϕN2,

√
1 − z2

N2 sinϕN2, zN2) , (4.20)

and we define the argument of the energy delta function as g(zp) = Eν − |k⃗ν |. Then the

energy-conserving delta function becomes

δ(g(zp)) = δ(zp − zp0)
|g′(zp)|zp=zp0

, (4.21)

where g(zp0) = 0.

This calculation is different from [140] in several ways:

• They calculate the neutrino opacity, whereas we calculate the full 11-dim rate

• They use non-relativistic approximations for the nucleons, while we use fully relativistic

calculations. We emphasized in Chap. 2 that in RMF, nucleons become relativistic

above 2 - 3 n0.

4.3.2 Results

In our calculation, we empirically observed that the interference terms are negligible com-

pared to the non-interference terms, which is also observed in [4] for modified Urca processes.

Fig. 4.4 shows the result of a full phase-space, fully relativistic calculation. For now, we
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Fig. 4.4: Modified Urca rate calculated from a full phase-space integral. All particles are
treated relativistically.

only included 2 diagrams rather than all 4. The corresponding Fermi surface approximation

calculation with vacuum propagator in this plot also included only 2 diagrams in order to

compare. The plot also compares the rate with different treatments to the modified Urca

processes. The plot confirms the enhancement of the modified Urca rate at all densities, as

discussed in [4, 140]. The full phase space rate is larger than the Fermi surface approximation

rate by a factor of 2 or so. Fermi surface approximation and angular-averaged matrix element

should mainly contribute to the difference. The enhancement may lead to some impact in

physics such as faster cooling [4], bulk viscosity peak shift [141], etc.

Under Fermi surface approximation, neutrino energies are on the order of the tempera-
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ture, so they are negligible, and the cold beta equilibrium is µn = µp+µe. In this equilibrium,

neutron decay and electron capture are the reverse processes of each other, so the two rates

are equal. Since this method goes above Fermi surface approximation, we plan to check if

the two rates are equal under the cold beta equilibrium. If not, we could correct the beta

equilibrium as we did in Chap. 2.

4.4 Solving the Divergence by Adding a Width to the

Propagator: A First Study

We have improved the modified Urca calculations in the previous two sections. Now, we go

back to the unphysical divergence issue in the rate.

4.4.1 Method

The goal of the first attack on this problem is to solve the unphysical divergence issue.

We improve the in-medium nucleon propagator by adding a self-energy. We expect that

with this form of the propagator, the infinity issue can be solved and the modified Urca

process will show a smooth behavior around the direct Urca threshold. This is because the

imaginary part of the denominator of the propagator pushes the pole above the real axis,

and by integrating over the real axis, the pole will not be encountered.

From the physics point of view, we have added an imaginary part to the mass. The

quantum mechanical analog is that of a wave function

ψ(t) ∝ eiωt−Γt = ei(ω+iΓ)t . (4.22)
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Then, the probability of finding the particle with this wave function decays exponentially,

|ψ(t)|2 ∝ e−Γt . (4.23)

Thus, having an imaginary part of the mass or the energy indicates that the particle is

unstable.

Back to the problem. To dress the bare propagator with a width, we start with Dyson’s

equation, which states that

G = G(0) +G(0)ΣG(0) + ... = G(0)

1 − ΣG(0) , (4.24)

where G is the full or dressed propagator, G(0) is the bare propagator, Σ is the self-energy.

For a fermion, the bare propagator is

G(0) = i

/k −m
. (4.25)

Therefore, the dressed propagator is

G = i

/k − (m+ iΣ) . (4.26)

4.4.2 Results

Fig. 4.5 shows the effects when including the width in the internal particle propagator.

Without the width, the bare relativistic propagator reproduced the unphysical divergence

around the threshold. When a finite width of 1 MeV is included, which is a reasonable value

from [142], we observed that the modified Urca becomes smooth around the threshold. As
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Fig. 4.5: Modified Urca neutrino emissivity with and without a width in the internal rela-
tivistic propagator at T = 1 MeV. We use IUF to model the nuclear matter.

we have discussed before, the imaginary part of the self-energy pushes the pole away from

the real axis, thus avoiding the divergence.

In our exploration, we tried different values of the width and found that below 3.5 n0

in IUF, the emissivities with and without a width overlap. At densities from 3.5 n0 to

the threshold, the emissivity without width may be overestimated from the observation of

the divergence. From 3.5 n0 to the treshold, in order to get the correct rate, one needs to

calculate the imaginary part of the self-energy as the width. For now, the self-energy is

taken only as a parameter. The nucleon scattering processes are supposed to contribute to

the self-energy, and the calculation for the self-energy would be left for future works.
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Notice that this plot is the neutrino emissivity (i.e. rate weighted by the neutrino energy).

The nucleons are treated non-relativistically. This work was done in 2020, and most recently,

Suleiman et al. [140] have used the same approach adding a width to the internal propagator

to solve the divergence issue and treating width as a parameter to vary.

4.5 A Unified Approach of Urca Processes

In the previous section, we solved the divergence issue by adding a width to the internal

propagator, and the modified Urca becomes smooth around the direct Urca threshold. Now,

in this section, we tackle this problem from a different perspective. Not only has the modified

Urca avoided the divergence, but also it smoothly transits into direct Urca. This is our

approach to a unified framework of Urca processes.

4.5.1 The Idea of Unified Urca

When we add a width to the internal nucleon propagator, we have successfully solved the

divergence, and the modified Urca is smooth around the threshold. Then we can step

forward for a more advanced question, that is can we calculate some kind of sum of the Urca

processes, where it naturally and smoothly transits from modified Urca into direct Urca

processes around the threshold?

An idea is that we can think of direct Urca as some first-order expansion and modified

Urca as some higher-order expansion and so on. To realize this idea, we construct a neutrino

self-energy diagram, shown in Fig. 4.6, where we dressed the neutron propagator. The proton

propagator could also be dressed, but for now, let us leave it as a bare propagator.

To understand this diagram, we can expand the dressed propagator using Dyson’s equa-

tion, and then this diagram is equivalent to the sum of Fig. 4.7, Fig. 4.8, and all higher-order
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ν ν
e

W− W−
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Fig. 4.6: Neutrino self-energy diagram.

terms.

ν ν
e

W− W−
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p

Fig. 4.7: Neutrino self-energy diagram with the bare nucleon propagator.

ν ν
e

W− W−p

n

n

n̄
π0 π0

Fig. 4.8: Second order expansion of the neutrino self-energy diagram.

To connect these diagrams to the Urca processes, we recall the Cutkosky cutting rules

[143], which states that the imaginary part of the self-energy diagrams can be calculated by

cutting the internal lines of the loops and putting virtual particles on-shell. Then the the

imaginary part of the self-energy can be calculated via the related tree-level diagram. In our

case, the imaginary part of the self-energy in Fig. 4.7 gives direct Urca, the imaginary part

of the self-energy in Fig. 4.8 gives modified Urca. Therefore, by calculating the imaginary
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part of the neutrino self-energy diagram with dressed nucleon propagators, we effectively

calculated all Urca processes.

4.5.2 An Ansatz of an Unstable Particle Propagator

In real-time thermal field theory, the degree of freedom is doubled, and the particle propaga-

tor is represented by a matrix [144, 145, 146, 147, 148]. The G11 component of the thermal

propagator for fermions is

iG11(k) = i

/k −m+ iϵ
− nF (k)(/k +m) 2πδ(k2 −m2) , (4.27)

where the component propagator consists of a usual zero-temperature part and a thermal

part, with nF being the Fermi-Dirac distribution. The components are related, so we only

show the relevant changes in G11, and then changes can be made to other components

accordingly.

As discussed in [144], the on-shell delta function is obtained from the spectral density of

a fermion when ϵ → 0. We conjecture that the correct general expression is

iG11(k) = i

/k − (m− iΓ/2) − nF (k)ρuF (k) , (4.28)

where ρuF (k) is the spectral density function for an unstable fermion, defined analogously

to the one for scalar particles,

ρuF(k) = i(GuF(k) −G∗
uF(k)) , (4.29)
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in terms of the non-thermal propagator for an unstable fermion

GuF(k) =
/k +m− iΓ/2

k2 − (m− iΓ/2)2 . (4.30)

To test our conjecture, we look at the limit of small Γ, where (4.28) should reduce to

(4.27). We substitute (4.30) in to (4.29), and assume that the particle width is fairly small,

Γ ≪ m, so the function is sharply peaked near k2 = m2, which means we can also assume

(k2 −m2) ≪ m2. In this approximation we find

ρuF (k) ≈ (/k +m) 2πR(k2−m2) (4.31)

where R(k2−m2) ≡ 1
π

mΓ
(k2 −m2)2 +m2Γ2 . (4.32)

R(k2−m2) is a regulated delta function, sharply peaked at k2 = m2 and properly normalized

∫ ∞

−∞
R(x)dx = 1 . (4.33)

In the limit Γ → 0, R(k2−m2) → δ(k2−m2). This confirms that in the limit of small width

Γ, our conjectured expression (4.28) reduces to the expression (4.27). If our conjecture is

correct, the propagator for a particle of finite (but not too large) width is given by (4.28)

and (4.31).

4.5.3 Formulation

We start from a self-energy calculation established in [145] Sec. 3, and we should be able to

get the same rate expression discussed in Chap. 2 and Chap. 3, which we will show below.
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The direct Urca calculation is given by

Γ = −
(
GF cosθc√

2

)2 ∫ d3ke

(2π)3(2Ee)

∫ d3kν

(2π)3(2Eν) d
4kW δ

(4)(ke + kν − kW )(1 − fν)(1 − fe)

gB(k0
W ) Tr

[
γµ(1 − γ5)/keγ

λ(1 − γ5)/kν

]
ImΠR

µλ(kW ) , (4.34)

where ΠR
µλ(kW ) is the W boson polarization tensor. Note that the expression in the paper is

multiplied by a factor of 2 to include the inverse process, but we do not include it here.

Following the identity (Eq. 187 to Eq. 188 in [145]; [146]; also see Le Bellac [147] Chap.

4)

Π<
µλ(q) = Π>

µλ(−q) = 2igB(q0)ImΠR
µλ(q), (4.35)

and

iΠ<
µλ(q) =

∫ d4kn

(2π)4
d4kp

(2π)4 Tr
[
γµ(1 − gAγ

5)G<(kp)γλ(1 − gAγ
5)G>(kn)

]
δ(4)(kW − kn − kp) ,

(4.36)

where

G<(k) = 2π sign(k0)(1 − nF )(/k +m)δ(k2 −m2) , (4.37)

G>(k) = −2π sign(k0)nF (/k +m)δ(k2 −m2) , (4.38)

are the bare thermal propagators of the nucleons.
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Combing these equations, we get

Γ =G
2
F cos

2θc

16(2π)8

∫ d3kn

En

d3kp

Ep

d3ke

Ee

1
Eν

fn(1 − fp)(1 − fe)δ(En − Ep − Ee − Eν)

Tr
[
γµ(1 − γ5)/keγ

λ(1 − γ5)/kν

]
Tr
[
γµ(1 − gAγ

5)(/k +mp)γλ(1 − gAγ
5)(/k +mn)

]
. (4.39)

Including the mean fields [75], as discussed in Chap. 2, the expression becomes

Γ =G
2
F cos

2θc

16(2π)8

∫ d3kn

E∗
n

d3kp

E∗
p

d3ke

Ee

1
Eν

fn(1 − fp)(1 − fe)δ(En − Ep − Ee − Eν)

Tr
[
γµ(1 − γ5)/keγ

λ(1 − γ5)/kν

]
Tr
[
γµ(1 − gAγ

5)(/k +m∗
p)γλ(1 − gAγ

5)(/k +m∗
n)
]
. (4.40)

This rate expression indeed agrees with what we got from Appendix. B.

Taking one step further, we can replace the on-shell delta function(s) in Eq. 4.37 and

Eq. 4.38 with our proposed unstable particle propagator(s) suggested in Sec. 4.5.2 with

R(k0, k⃗,Γ). We first start with including the neutron width by dressing the neutron propa-

gator. Then, the rate expression (with a neutron width) becomes

Γ =G
2
F cos

2θc

16(2π)8

∫ d3kp

E∗
p

d3ke

Ee

1
Eν

(2d4kn)R(k0
n, k⃗n,Γn) sign(k0

n) fn(1 − fp)(1 − fe)

Tr
[
γµ(1 − γ5)/keγ

λ(1 − γ5)/kν

]
Tr
[
γµ(1 − gAγ

5)(/k +m∗
p)γλ(1 − gAγ

5)(/k +m∗
n)
]

δ(En − Ep − Ee − Eν) . (4.41)

Notice that when the width Γn → 0, that is, when the neutron is on-shell,

2
∫
d4knR(k0

n, k⃗n,Γn) sign(k0
n) →2

∫
d4knδ(k2

n −m2
n) sign(k0

n)

=
∫
d3kn

δ(k0
n −mn)
En

, (4.42)
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Eq. 4.41 reduces to Eq. 4.40.

4.5.4 Results

dU ec

mU(n),vac. prop

mU(n),std. prop.

ec (n width)

1 2 3 4 5 6

10-22

10-20

10-18

10-16

density nB/n0

Γ
[M
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4
]

Urca rate, T=1MeV

Fig. 4.9: Unified Urca electron capture rate at T = 1 MeV using IUF.

We implemented the unified Urca rate with a neutron width. Instead of taking the

neutron width as a constant value, we calculated the neutron scattering diagram (nn → nn)

with Fermi surface approximation as the contribution to the neutron width.

The results are shown in Fig. 4.9 for T = 1 MeV using IUF. The blue dashed line is

the electron capture direct Urca rate, and the red dashed line is the crude modified Urca,

as we have discussed in detail in Chap. 2. The red solid line is the modified Urca with
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angular-averaged matrix element, fully relativistic vacuum propagator, and under Fermi

surface approximation (denoted as modified Urca with vacuum propagator). The purple

solid line is the unified Urca rate with neutron width implemented. For the modified Urca

with vacuum propagator, 4 diagrams have been included, i.e. we include the 2 diagrams of

the weak vertices happening before and after the strong vertices and then subtract the sum of

their corresponding exchange diagrams. Squaring the total sum |Md,1 +Md,2 −Me,1 −Me,2|2

will also give the interference terms, which are negligible (Sec. 4.3). The divergence issue

is discussed in Sec. 4.4, and the enhancement at lower densities [4] because of using a full

vacuum propagator instead of 1/µe propagator has been observed as well.

For the unified Urca, one can see that it starts from being slightly above the crude

modified Urca at low densities, and gradually it makes a transition into direct Urca around

the threshold, as expected. One might notice that at low densities, the enhancement is

not as strong as the modified Urca with vacuum propagator. This is because this unified

Urca calculation only includes the neutron width, which should correspond to the diagram

where the strong vertex happens before the weak vertex. It has not been explored that if

we include both neutron and proton widths in the unified Urca calculation, then we would

get the exchange diagrams and the interference terms. However, as a first step, we have

successfully included the sum of direct Urca, modified Urca, and higher-order processes in a

single unified calculation. A more rigorous derivation and some technical details are being

further explored.

4.6 Conclusion

In this chapter, we have presented several results improving modified Urca calculations and a

unified approach to Urca processes. Specifically, we start from Shternin et al. [4] and perform
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a relativistic calculation under Fermi surface approximation, where the full propagator leads

to a significant enhancement in modified Urca. Then we performed a full phase space and

fully relativistic calculation without angular averaging over the matrix element. We found an

even larger enhancement, mainly due to phase space integration and not performing angular

averaging.

However, in these calculations, an unphysical divergence emerges around the threshold.

To solve the issue, we tried two different approaches. First, we add a width to the inter-

nal propagator, which pushes the pole above the real axis and solves the infinity problem.

However, this approach does not explain what it becomes above the threshold. This leads

to the second approach which is an approach that unifies Urca calculations into a neutrino

self-energy diagram. In this approach, modified Urca smoothly makes a transition into direct

Urca above the threshold.

The full phase space modified Urca and the unified Urca calculations are among the

first calculations that allow modified Urca to go beyond Fermi surface approximation. The

unified Urca will also be less computationally expensive than the full phase-space integral.

In all of the calculations presented in this chapter, an enhancement of modified Urca is

observed compared to the traditional calculation. This can lead to faster cooling [4], a shift

of bulk viscosity resonance peak [141], and so on. Since our full phase-space approach can go

beyond Fermi surface approximation, we plan to check if neutron decay and electron capture

modified Urca are equal in cold beta equilibrium. If not, we can correct the beta equilibrium

as we did in Chap. 2.
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The MUSES Framework and

Gaussian Process Interpolation

5.1 Introduction to MUSES

MUSES (Modular Unified Solver of Equation of States) is an open-source cyberinfrastructure

that provides novel tools to study gravitational wave astrophysics, nuclear physics, and

heavy-ion physics. The MUSES official website is https://musesframework.io/ and all

the source codes are in the following GitLab repo https://gitlab.com/nsf-muses.

As mentioned previously, MUSES mainly consists of two parts, the equation of state

modules and the users or observable modules. The alpha release of MUSES, which is ex-

pected in 2024, will include the CMF group [15], χEFT group [17], UTK group [16], flavor

equilibration group [67, 68] and QLIMR group (I-L-Q plus M-R).

An important technology that MUSES uses is the Docker https://www.docker.com/

container. It is a modern technology that is essentially a lightweight virtual machine. The

two core concepts are the Docker images and the Docker containers. A Docker image is a

file of a wrapped-up application, and a Docker container is an instance of the file. This pair

of concepts is similar to class and instance of class in object-oriented programming. In the
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Docker architecture, there is a Docker registry that stores the images, a Docker host server,

and a Docker client, where users interact with the host server. In the host server, the core

part is Docker Daemon, which manages Docker images and Docker containers.

An advantage of the containerization technology is that it easily allows scalable deploy-

ment. Currently, each individual module will be containerized and will use Pegasus workflow

management system (Pegasus WMS) https://pegasus.isi.edu/ to automate computation

tasks.

5.2 The Flavor Equilibration Module

Our flavor equilibration module aims at providing calculations of relevant observables for

the users, which includes Urca rates, warm beta-equilibrium proton fraction and chemical

potentials, relaxation rates, susceptibilities, static bulk viscosity, and damping time. All the

observables and their physics have been discussed in the previous chapters. The source code is

published at https://gitlab.com/nsf-muses/flavor-equilibration/beta_equil with

user instructions included.

The module can either be used as an independent package or within the MUSES cal-

culation engine. If the module is used as part of the MUSES calculation framework, then

the user will pick one of the EoSes available within the framework. At the moment, the

calculation engine is under construction. More information will be provided at the alpha

release.

On the other hand, if one wants to provide and use some other EoSes not available from

the MUSES framework, the module also works as an independent package. The workflow

of the flavor equilibration module is shown in Fig. 5.1. Note that the lepton module on the

top left corner will replace our internal neutralizer when used within the MUSES calculation
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engine. One can provide a hadron EoS with dispersion relations, then the module can provide

calculations for the Urca rates and/or the flavor equilibration information. More instructions

are provided in the README.md file of the Gitlab repo.

Fig. 5.1: MUSES flavor equilibration module workflow. Produced by Mark Alford.
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5.3 Gaussian Process Interpolation

At the moment, the interpolation method used in the collaboration predominantly is lin-

ear interpolation. The main disadvantages are that, first, it is not able to provide smooth

higher-order derivatives, and second, its accuracy may not be good enough to match the

requirements for some modules. Therefore, the aim of this section is to provide a study on

Gaussian process interpolation and investigate its performance compared to linear interpo-

lation.

Gaussian process (GP) regression is a Bayesian framework for regressing data. It models

data by a joint multidimensional Gaussian distribution, i.e. assuming the data given are

samples drawn from a joint distribution, and the parameters that describe the distribution

can be estimated from the data. Now, predictions at new points correspond to calculating

the mean of conditional distributions.

A standard textbook for GP regression is [149]. A nice tutorial on GP regression is [150].

For the development of this section, I would like to thank Reed Essick for helpful advice.

5.3.1 General Formalism and A Basic Example

Suppose we have a data set. We assume that the dependent variables are realizations of a

random variable f . We model the conditional distribution of the dependent variable f |X as

a joint Gaussian distribution f |X ∼ N(µ,K), where µ is the vector of means and K is the

covariance matrix that describes the correlations between each independent variables. The

mean vector and the covariance matrix fully characterize and determine the joint Gaussian

distribution.

If we want to predict the value f∗ at a new point x∗, we first construct a joint Gaussian
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distribution f, f∗|X, x∗, and then obtain the conditional distribution

f∗|f,X, x∗ ∼ N(KT
∗ K

−1f ,K∗∗ −KT
∗ K

−1K∗) . (5.1)

Essentially, we are predicting a distribution, where the mean of the predicted distribution is

the desired value. The math proof is given in Chapter 2 of [149].

A simple example would easily illustrate how it works. Suppose we have a data set

D = {(x1, µ1), (x2, µ2)}, and we want to predict the value µ∗ at a new point x∗. We assume

the data D is drawn from a joint 2d Gaussian distribution, that is,

Pf1,f2(f1 = µ1, f2 = µ2) = 1
(2π)|K| 1

2
exp

−1
2

[
f1 − µ1 f2 − µ2

] K11 K12

K21 K22


−1 f1 − µ1

f2 − µ2


 ,

(5.2)

where K is the covariance matrix, and |K| is the determinant of K. Let us pick the most

common kernel function that generates the covariance matrix, which is usually called the

squared exponential kernel. We have, for each entry,

Kij = θ1e
−

|xi−xj |2

2θ2 , (5.3)

where θ1 and θ2 are two hyperparameters we choose. In general, θ1 describes the variance of

the data, and θ2 describes the correlation lengths of the data.

Now, we include one more piece of information, which is x∗. The new joint distribution

is
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Pf1,f2,f∗(f1 = µ1, f2 = µ2, f∗ = µ∗) ∝

exp

−1
2

[
f1 − µ1 f2 − µ2 f∗ − µ∗

]

K11 K12 K1∗

K21 K22 K2∗

K∗1 K∗2 K∗∗



−1 
f1 − µ1

f2 − µ2

f∗ − µ∗



 , (5.4)

and the conditional distribution f∗|X, f, x∗ ∼ N(µ∗, σ∗), where

µ∗ = KT
∗ K

−1f , (5.5)

and

σ∗ = K∗∗ −KT
∗ K

−1K∗ . (5.6)

The mean µ∗ is the value we want to predict at x∗.

A simple test of setting x∗ to x1 will get back µ1 with no uncertainty, i.e. σ∗ = 0. Given

that x∗ = x1 and K∗ =

 θ1

K21

, and define K12 = θ1k12, then
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µ∗ = KT
x∗K

−1f

=
[
θ1 K21

]  θ1 K12

K21 θ1


−1 µ1

µ2



=
[
1 k12

]
· 1

1 − k2
12

 1 −k12

−k21 1


µ1

µ2



= 1
1 − k2

12

[
1 k12

]  µ1 − k12µ2

−µ1k21 + µ2


= 1

1 − k2
12

(µ1 − k12µ2 − µ1k
2
12 + k12µ2)

= 1
1 − k2

12
(1 − k2

12) ∗ µ1

= µ1 ,
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and

σ2
∗ = K∗∗ −KT

∗ K
−1K∗

= θ1 −
[
θ1 K21

]  θ1 K12

K21 θ1


−1  θ1

K21



= θ1 −
[
θ1(1 k12)

]
· 1

1 − k2
12

 1 −k12

−k21 1


 1

k12



= θ1 − θ1

1 − k2
12

[
1 k12

] 1 − k2
12

0


= θ1 − θ1

= 0 .

5.3.2 Kernel Functions

Kernel functions are different ways of generating the covariance matrix in the Gaussian

distribution. The most common one is the square exponential kernel (also called RBF), as

we have encountered in the example above. It assumes the covariance between points xi and

xj to be

Kij = θ1 exp
(

−|xi − xj|2

2θ2

)
. (5.7)

θ1 describes the variance of the covariances, and θ2 describes the correlation lengths of

the data. A characteristic of the matrix element is that the values of the entries decay

exponentially when getting away from the diagonal, and only the entries close to the diagonal

are non-vanishing. If the correlation length is too short, then very few points are correlated

with each other. In this case, the regression would be zigzag, because for each point, it does
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not know much information about the neighboring points. If the correlation length is too

long, then a point is correlated with too many other points. The regression would be too

“smooth” or too “averaged” such that it loses some information about the fine structures of

the data. Finding good hyperparameters would be an important topic which we will cover

in the next subsection.

If the underlying function is smooth and continuous, this square exponential kernel is

a good one to start with. In the case of interpolating equation of states without phase

transition, the thermodynamic quantities are generally smooth, so we will work with this

kernel in the project. If the equation of state has sharp features, then modifications might

be needed [151].

Other kernel functions include white noise kernel, which adds some noise to the data,

Matern kernel, which captures some degrees of non-smoothness, periodic kernel, which as-

sumes some periodicity of the underlying data and so on. It is common to combine some of

these kernels to capture more features.

5.3.3 Hyperparameter Estimation from the Likelihood

In GP regression, we have some hyperparameters that describe the characteristics of the

data, for example, variance and correlation length. A common systematic way of estimating

these hyperparameters is to maximize the likelihood function (or maximize the posterior)

over the hyperparameters.

From Bayes theorem,

P (θ|D) = P (D|θ)P (θ) , (5.8)

where P (θ) is the prior, which is our belief about the parameters θ before doing any experi-

ment, P (θ|D) is the posterior, which is the updated information including what we learned
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from the experiment, P (D) = 1 since this is the data we obtained, and finally L(θ) ≡ P (D|θ)

is the likelihood.

In our exploration, we use a flat prior (i.e. assume a uniform distribution of θ), so

maximizing the likelihood and maximizing the posterior are the same.

For example, we have a set of data that we believe are from a normal distribution:

X1, . . . , XN ∼ N (µ, σ2) , (5.9)

where Xi are independent draws from this identical distribution. The log-likelihood function

is:

logP (X1, . . . , XN |µ, σ2) = log
(

N∏
i=1

1√
2πσ2

exp
(

−(xi − µ)2

2σ2

))

= −N

2 log(2π) − N

2 log
(
σ2
)

−
N∑

i=1

(xi − µ)2

2σ2 . (5.10)

Calculating the partial derivatives ∂L
∂µ

and ∂L
∂σ2 , we can get the estimate for each of the

parameters

µ =
∑
Xi

N
, (5.11)

and

σ2 = 1
N

∑
(Xi − µ)2 . (5.12)

In reality, the likelihood functions would be much more complicated than the simple

example above. The (log) likelihood for GP (given in Chapter 2 of [149]) is

logP (f |X, θ) = −1
2f

TK−1f − 1
2 log|K| − N

2 log2π , (5.13)
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where N is the number of training data. Therefore, some other numerical methods need to

be used.

Gradient descent is a common approach to maximize likelihood (or minimize the negative

of likelihood). At each point in parameter space, one can calculate the gradient, whose

direction is the fastest change at the point, and iteratively “go down the hill” to reach the

global minimum of the objective function (or to reach a good local minimum in case the

landscape to complicated).

On the practical level, at each iteration, the matrix inversion operation is carried out,

whose time complexity is on the order of O(n3). Therefore, if the data size is too large

(empirically a few thousand data points in our exploration), downsampling or sparse matrix

approximation may be necessary.

5.3.4 Markov Chain Monte Carlo (MCMC) and Autocorrelation

Analysis

In order for the GP interpolator to be more robust, we use Markov Chain Monte Carlo to

sample from the likelihood distribution over all hyperparameters, and then randomly pick

some of the samples out of the whole MC chain, each determining one interpolator and then

we average over all predictions. The argument for doing this is based on posterior predictive

distribution, where

p(x∗|X) =
∫

Θ
p(x∗|θ)p(θ|X)dθ (5.14)

≈ 1
M

∑
i

p(x∗|θi)p(θi|X) . (5.15)
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Therefore, by sampling the hyperparameter sets multiple times, each hyperparameter set

defining a GP interpolator, we average over all of the interpolators to obtain an approxima-

tion of the posterior predictive distribution.

Before we get into the MCMC sampling technique, we start from Markov Chain. Markov

Chain is a chain of states such that the probability of transiting from the current state to

the next depends only on the current state, i.e. does not depend on the history paths of how

it reaches the current state. Mathematically,

P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn) . (5.16)

An important concept for Markov Chains is stationary distribution. Denote the transition

matrix from one state to another as T , and we start from a random distribution Si over all

states. Then, the transition from the distribution over current states to the next is

Si+1 = SiT . (5.17)

If we keep applying the transition matrix, the distribution over the chain may stay stationary,

that is

S = ST . (5.18)

What this means is that the probability distribution of being at each state stays the same

from some time point on. Therefore, as we keep applying the transition operation, the

distribution S over the Markov Chain asymptotically reaches the target distribution P ,

which is the distribution we want to sample our hyperparameters from.
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When the stationary distribution is reached, we have the detailed balance:

P (X1)T (X1 → X2) = P (X2)T (X2 → X1) . (5.19)

The transition probability is further divided into two parts, a proposal distribution g and an

acceptance rate A,

T (X1 → X2) = g(X2|X1)A(X1 → X2) . (5.20)

so
A(X1 → X2)
A(X2 → X1)

= g(X1|X2)
g(X2|X1)

T (X1 → X2)
T (X2 → X1)

. (5.21)

A common choice of the acceptance rate is

A(X1 → X2) = min
(
1, g(X1|X2)
g(X2|X1)

T (X1 → X2)
T (X2 → X1)

)
. (5.22)

This is the well-known Metroplis-Hastings algorithm in Monte Carlo.

Now that we know Markov Chain and Monte Carlo, we can put together to see how

MCMC works. In our hyperparameter space, we want to sample from the likelihood. We

start from a (good) initial guess of the hyperparameters (a point in the parameter space x1).

We propose a distribution g(x), sample a point from this distribution g(x2|x1), and calculate

the acceptance rate A(x1 → x2). Then we generate a random number r from a uniform

distribution between 0 and 1. If r < A, then we accept the new state. Otherwise, we stay in

the same state. Then, we iteratively perform the steps described above, until the stationary

distribution is reached. Discarding some first samples (known as burn-in step), we obtain a

good approximation to the likelihood function.

In the actual calculations, we use the emcee package (https://emcee.readthedocs.io/
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en/stable/) to perform MCMC sampling. The algorithm is published in [152].

At this point, a question is: How long does the chain need to be? If the chain is short, the

samples close to each other would be correlated, dependent samples. If the chain is too long,

we are guaranteed to obtain independent samples but it would be computationally costly.

Therefore, we need to perform the autocorrelation analysis.

Autocorrelation is the self-correlation of a time series, i.e. how the series at different time

lags correlated with each other. Denote the series of our samples as B(t), and the time lag

or the shift as τ ,

ρB(t)B(t+τ)(τ) = E[B(t)B(t+ τ)]
σB(t)σB(t+τ)

. (5.23)

At τ = 0, the autocorrelation should be 1, and decay as τ increases. One can define a

threshold value below which the samples are considered as independent. The emcee package

provides the functionalities of estimating autocorrelation time.

5.3.5 Derivatives

GP interpolators can also provide gradient information. The predicted value as a function

of new points x∗ is

f(x∗) = KT
∗ K

−1y . (5.24)

Suppose in our training set, we have n points. Then, KT
∗ is the vector consisting of K(xi, x∗),

where xi are all n training points. KT
∗ is of size 1 by n. If we denote α ≡ K−1y, then α is

of size n by 1. We can rewrite the matrix multiplication as the sum of each multiplication,

f(x∗) =
n∑

i=1
αiK(xi, x∗) . (5.25)

Calculating the gradient of f at x∗ is equivalent to calculating the gradient of the kernel
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function K at x∗, i.e.

∇f(x∗) =
n∑

i=1
αi ∇K(xi, x∗) . (5.26)

GP allows smooth high-order derivatives, as long as the kernel has smooth high-order

derivatives. For example, if we choose the square exponential kernel,

K(x0, x∗) = σ2
fe

− (x0−x∗)2

l2 , (5.27)

∇K(x0, x∗) = K(x0, x∗) ∗ 2 ∗ (x0 − x∗)
l2

. (5.28)

5.3.6 Results on Interpolating the Equation of States

We carry out some preliminary tests on the performance of the GP interpolator to compare

to the performance of the linear interpolator.

From the practical point of view, as mentioned above, the plain type of matrix inversion

operation has a time complexity of O(n3), we only use no more than 2000 data points on

this test. For the inversion, we simply use numpy packages numpy.linalg.inv. In order to

speed up the algorithms of maximizing the likelihood and MCMC sampling, it would be

better if we have some good estimation as initial guesses of the hyperparameters. Since the

hyperparameters are supposed to describe the mean and variance of the data, we calculate

the mean and variance of the data in each direction and use them as the initial guesses for

the algorithms.

Another important thing to point out is that we perform tests on a regular grid, since

most of the EoS tables can be generated as regular grids. Besides this, if downsampling is

involved, it is necessary that the downsampled data is also in a regular grid (i.e. cannot

simply take one row of data out of every few lines).
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The following is the result for IUF equation of state on a 13 × 15 × 10 grid in number

density nB, temperature T and proton fraction YQ, ranging from 1n0 to 6n0 in nB, 1 MeV

to 10 MeV in T , and 0.05 to 0.25 in YQ.

Also, it is worthwhile pointing out that in this test case the chain length needs not to be

as many as that estimated by the emcee package autocorrelation analysis. Within 100 MC

steps, the errors are already low, likely due to good initial guesses.

Tab. 5.1: Mean absolute percentage error of different methods.

Linear Maximizing Likelihood Avg. over 50 MCMC Samples
0.0241 0.0053 0.0025

One can see from Tab. 5.1 that both of the GP interpolator predictions have higher

accuracy compared to the linear interpolator, with the averaged interpolator result being

10 times better in terms of error. This averaging method may have small fluctuations

in its performance because of randomly picking the samples. However, the more sets of

hyperparameters one sample (i.e. the more interpolators), the better these interpolator

predictions should approximate the true distribution, and the better the result should be.

5.3.7 Conclusion

From what we have seen in the performance tests, Gaussian process interpolation on the

equation of states has demonstrated its promising power in terms of accuracy.

In reality, the equation of state used would have 105 data points or more. In every

optimization step, the inversion of the covariance matrix is required, and a plain type of

matrix inversion would make this task formidable. Since we use the square exponential

kernel, a characteristic is that entries of the matrix further away from the diagonal are

exponentially suppressed. Then, it would be valid to discard points away from where we are
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predicting, because only “neighboring points” are correlated to each other. This is the idea of

the sparse matrix approximation and this approximation is suggested for the implementation

stage.
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Appendix A

The SFHo relativistic mean field

theory

The Lagrangian for the SFHo relativistic mean field model is given in Refs. [153, 5] and reads

L = LN + LM + Ll , (A.1)

LN = ψ̄(iγµ∂µ −mN + gσσ − gωγ
µωµ − gρ

2 τ · ρµγ
µ)ψ , (A.2)

with bold symbols being vectors in iso-space, τ being the iso-spin generators, and

LM =1
2∂µσ∂

µσ − 1
2m

2
σσ

2 − bM

3 (gσσ)3 − c

4(gσσ)4 − 1
4ωµνω

µν + 1
2m

2
ωωµω

µ + ζ

24g
4
ω(ωµω

µ)2

− 1
4Bµν · Bµν + 1

2m
2
ρρµ · ρµ + ξ

24g
4
ρ(ρµ · ρµ)2 + g2

ρ

[ 6∑
i=1

aiσ
i +

3∑
j=1

bj(ωµω
µ)j
]
ρµ · ρµ ,

(A.3)
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where

ωµν = ∂µων − ∂νωµ , (A.4)

Bµν = ∂µρν − ∂νρµ . (A.5)

The lepton contribution

Ll = ψ̄e (iγµ∂µ −me)ψe , (A.6)

consists of free electrons with a mass of me = 0.511 MeV. In our calculations we use the

values of the masses and couplings given in the online CompOSE database. These are listed

in Table A.1. In the table,

cσ = gσ/mσ , (A.7)

cω = gω/mω , (A.8)

cρ = gρ/mρ . (A.9)
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Quantity Unit Value
cσ fm 3.1791606374
cω fm 2.2752188529
cρ fm 2.4062374629
b 7.3536466626 × 10−3

c −3.8202821956 × 10−3

ζ −1.6155896062 × 10−3

ξ 4.1286242877 × 10−3

a1 fm−1 −1.9308602647 × 10−1

a2 5.6150318121 × 10−1

a3 fm 2.8617603774 × 10−1

a4 fm2 2.7717729776
a5 fm3 1.2307286924
a6 fm4 6.1480060734 × 10−1

b1 5.5118461115
b2 fm2 -1.8007283681
b3 fm4 4.2610479708 × 102

mσ fm−1 2.3689528914
mω fm−1 3.9655047020
mρ fm−1 3.8666788766
mn MeV 939.565346
mp MeV 938.272013
M MeV 939

Tab. A.1: SFHo parameter values taken from CompOSE (https://compose.obspm.fr/
eos/34). The last three masses are taken from [5].
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Appendix B

Direct Urca neutron decay rate

From Fermi’s Golden rule, we have the rate (Eq. 3.28) [3, 115]

Γnd =
∫ d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3

∑ |M |2

(2E∗
n)(2E∗

p)(2Ee)(2Eν)(2π)4δ(4)(kn−kp−ke−kν)fn(1−fp)(1−fe) .

(B.1)

There is no neutrino Fermi-Dirac factor because we assume the medium is neutrino-transparent,

i.e., neutrinos escape the star. The spin-summed matrix element is [77]

∑
|M |2 = 32G2[(g2

A −1)m∗
nm

∗
p(ke ·kν)+(gA −1)2(ke ·kn)(kp ·kν)+(1+gA)2(kp ·ke)(kn ·kν)] ,

(B.2)

where G = GF cos θc, GF = 1.166 × 10−11 MeV−2 is the Fermi constant and θc = 13.04◦ is

the Cabbibo angle. As they originate from spin summations (see Appendix B of [75]), the

4-vector dot products in the matrix element (B.2) are kµ = (E∗,k).
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Chapter B.Direct Urca neutron decay rate

It is convenient to define the rescaled dimensionless matrix element

M ≡
∑ |M |2

32G2E∗
nE

∗
pEeEν

(B.3)

=
(g2

A−1)m∗
nm

∗
p(ke ·kν) + (gA−1)2(ke ·kn)(kp ·kν) + (1+gA)2(kp ·ke)(kn ·kν)

E∗
nE

∗
pEeEν

.

In the nonrelativistic limit, since gA ≈ 1, M ≈ (1 + 3g2
A) ∼ 4 [62, 122, 97, 77, 3, 154].

The neutron decay rate can now be written

Γnd = 2G2

(2π)8

∫
d3knd

3kpd
3ked

3kν M δ(4)(kn − kp − ke − kν)fn(1 − fp)(1 − fe) . (B.4)

The 12-dimensional integral can be reduced to a 5-dimensional integral as follows. Integrating

over the 3-momentum conservation delta functions reduces the integral to 9 dimensions

(compare (E.1) in Ref. [117])

Γnd = 2G2

(2π)8

∫
d3knd

3kpd
3ke Mδ(En − Ep − Ee − |⃗kn − k⃗p − k⃗e|)fn(1 − fp)(1 − fe) . (B.5)

The remaining delta function imposes energy conservation in the creation of the neutrino:

Eν = |⃗kν |, so the argument of the delta function is

g(ϕ) ≡ Eν − |⃗kn − k⃗p − k⃗e| , (B.6)

Eν ≡ En − Ep − Ee .

Each momentum integral can be written in polar co-ordinates as d3k = k2dkdzdϕ where

z = cos θ. Setting up the following coordinate system (see Appendix E in [117])
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Chapter B.Direct Urca neutron decay rate

k⃗n = kn(0, 0, 1) , (B.7)

k⃗p = kp(
√

1 − z2
p , 0, zp) , (B.8)

k⃗e = ke(
√

1 − z2
e cosϕ,

√
1 − z2

e sinϕ, ze) , (B.9)

allows us to integrate over zn and ϕn yielding a factor of 4π and over ϕp yielding a factor of

2π, which eliminates three angular integrals, so that (compare (E.5) in [117])

Γnd = G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dkek

2
nk

2
pk

2
e fn(1 − fp)(1 − fe) I(kn, kp, ke) , (B.10)

where

I(kn, kp, ke) ≡ Θ(Eν)
∫ 1

−1
dzp

∫ 1

−1
dze

∫ 2π

0
dϕM δ(g(ϕ)) . (B.11)

Note that for simplicity we label the electron azimuthal angle as ϕ (rather than ϕe). The

factor of Θ(Eν) restricts the integral to the region of momentum space where the neutrino

energy Eν(kn, kp.ke) is positive, which is a requirement for the emission of a neutrino. This

condition leads to the upper limits on the proton and electron momenta. If we perform the

integrals in the order shown in (B.10) then the electron momentum integral is the inner inte-

gral, so it is performed for known values of kn and kp, so the constraint Eν > 0 corresponds

to Ee < En −Ep. Similarly, the kp integral is performed for a known value of kn, so its range

is constrained by requiring that there is enough energy to create an electron (of unknown

momentum) and a neutrino, Ep < En − me. This leads to upper limits on the proton and
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Chapter B.Direct Urca neutron decay rate

electron integral,

kmax
p = Θ(En − Up −mp −me)

√
(En − Up −me)2 −m2

p , (B.12)

kmax
e = Θ(En − Ep −me)

√
(En − Ep)2 −m2

e . (B.13)

In the delta function in Eq.(B.11),

g(ϕ) = Eν −
√
R + S cosϕ , (B.14)

where R ≡ k2
n + k2

p + k2
e − 2knkeze − 2knkpzp + 2kpkezpze , (B.15)

S ≡ 2kpke

√
1 − z2

p

√
1 − z2

e . (B.16)

Since g(ϕ) depends on ϕ only via cosϕ there will be either zero or two solutions to g(ϕ) = 0,

so

I(kn, kp, ke) = 2 Θ(Eν)
∫ 1

−1
dzp

∫ 1

−1
dze Θ

(
S − |E2

ν −R|
) Mϕ0

|g′(ϕ0)|
, (B.17)

where Mϕ0 is the dimensionless rescaled matrix element (B.3) evaluated at ϕ0, which can

be either of the two solutions of g(ϕ) = 0,

cosϕ0 = E2
ν −R

S
. (B.18)

It does not matter which solution we use for ϕ0 because g is a function of cosϕ and M

depends only on cosϕ and sin2ϕ, so the integrand has the same value for both the solutions.

The theta function Θ(S−|E2
ν −R|) imposes the condition that there are two solutions (rather

than none), by limiting the integral to the domain where −1 < cosϕ0 < 1.

We now use (B.14) and (B.18) to evaluate the integrand in (B.17).
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Chapter B.Direct Urca neutron decay rate

Firstly, the Jacobian of the delta function is

|g′(ϕ0)| =

√
S2 − (E2

ν −R)2

2Eν

. (B.19)

Using (B.19) in (B.17),

I = 4EνΘ(Eν)
∫ 1

−1
dzp

∫ 1

−1
dze

Θ
(
S − |E2

ν −R|
)

√
S2 − (E2

ν −R)2
Mϕ0 . (B.20)

Secondly, substituting (B.18) in to (B.2) gives the matrix element

Mϕ0 = 1
2

(gA − 1)2F1 + (gA + 1)2F2 + (g2
A − 1)F3

E∗
nE

∗
pEeEν

, (B.21)

where

F1 =
(
k2

n + k2
e − k2

p − 2E∗
pEν − E2

ν − 2knkeze

)(
knkeze − EeE

∗
n

)
, (B.22)

F2 =
(
k2

n + k2
p + k2

e + 2E∗
pEe − E2

ν − 2kn(kpzp + keze)
)(
E∗

nEν + kn(kpzp + keze − kn)
)
,

(B.23)

F3 = m∗2
n

(
k2

e − k2
n − k2

p + 2EeEν + E2
ν + 2knkpzp

)
. (B.24)

Limits of angular integration To speed up the numerical evaluation of (B.20) we implement

the theta function as limits on the range of integration over zp and ze. The condition
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S > |E2
ν −R| can be written (using (B.15), (B.16)) as

|a+ bze| < c
√

1 − z2
e , (B.25)

where a ≡ q2 − k2
n − k2

p − k2
e + 2knkpzp , (B.26)

b ≡ 2ke(kn − kpzp) , (B.27)

c ≡ 2kekp

√
1 − z2

p . (B.28)

The inequality (B.25) is obeyed for z−
e < ze < z+

e where

z±
e = −ab± c

√
c2 + b2 − a2

b2 + c2 . (B.29)

Note that if the roots are real then they are always within the physical range ze ∈ [−1, 1].

We can therefore put bounds on zp by requiring that (B.29) has real roots,

c2 + b2 > a2

⇒ 2kpEν > |E2
ν + k2

e − k2
n − k2

p + 2knkpzp| . (B.30)

This means that z−
p < zp < z+

p , where

z±
p =

k2
n + k2

p − k2
e − E2

ν ± 2keEν

2knkp

. (B.31)

In this case, however, these bounds are not necessarily within the physical range zp ∈ [−1, 1],

so the true bounds on the zp integral are

[zmin
p , zmax

p ] = [z+
p , z

−
p ] ∩ [−1, 1] . (B.32)
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We can now write the angular integral as

I = 4EνΘ(Eν)
∫ zmax

p

zmin
p

dzp

∫ z+
e

z−
e

dze
Mϕ0√

S2 − (E2
ν −R)2

. (B.33)

Using this in (B.10) we obtain

Γnd = G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dke k

2
nk

2
pk

2
efn(1 − fp)(1 − fe)

Θ(Eν)
∫ zmax

p

zmin
p

dzp

∫ z+
e

z−
e

dze
4EνMϕ0√

S2 − (E2
ν −R)2

. (B.34)

The second line corresponds to the I integral (B.11), (B.33). It is natural to group a factor of

Eν with Mϕ0 to cancel the factor of Eν in the denominator (B.21) which can cause numerical

problems at the edge of the kinematically allowed momentum range where Eν → 0.

The neutron decay rate can therefore be computed as a 5-dimensional momentum integral

(B.34), obtaining the integration ranges from (B.12), (B.13), (B.32), and (B.29), the matrix

element from (B.21), and the Jacobian (square root denominator) from (B.15), (B.16).
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Modified Urca neutron decay rate

The matrix element is (4.16) in [3, 117]

(
s

∑ |Mn|2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
= 42G2 f

4

m4
π

g2
A

E2
e

k4
F n

(k2
F n +m2

π)2 , (C.1)

where f ≈ 1 is the N-π coupling and s = 1/2 for the identical particles. The conventional

way of doing the integral is to divide the integral into an energy integral and an angular

integral (termed “phase space decomposition” [61])

∫
dk3

ndk
3
pdk

3
edk

3
νdk

3
N1dk

3
N2 =

∫
dkndkpdkedkνdkN1dkN2k

2
nk

2
pk

2
ek

2
νk

2
N1k

2
N2 ×

∫
dΩndΩpdΩedΩνdΩN1dΩN2 .

(C.2)

We use relativistic dispersion relations for nucleons

EN =
√
k2 +m∗2

N + UN , (C.3)
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where U is the mean field contribution to the energy. We define E∗ ≡
√
k2 +m∗2 , then

dE∗ = kdk/E∗. We use ultra-relativistic dispersion relations for electron and neutrino,

E = k , (C.4)

then dE = dk (the electron mass me = 0.511 MeV is negligible compared to its momentum).

Therefore, we can convert the momentum integral to an energy integral, and the rate integral

becomes

ΓmU,nd(n) = 42G2g2
Af

4

(2π)14m4
π

∫
dΩndΩpdΩedΩνdΩN1dΩN2

× δ(3)(k⃗n + k⃗N1 − k⃗p − k⃗e − k⃗N2)k2
nk

2
pk

2
ek

2
νk

2
N1k

2
N2

1
E2

e

k4
F n

(k2
F n +m2

π)2

×
∫
dE∗

ndE
∗
pdEedEνdE

∗
N1dE

∗
N2

E∗
n

kn

E∗
p

kp

E∗
N1

kN1

E∗
N2

kN2

× δ(En + EN1 − Ep − Ee − Eν − EN2)fnfN1(1 − fp)(1 − fe)(1 − fN2) . (C.5)

Notice that it is most common to set k⃗ν = 0 in the momentum conserving delta function

but keep Eν in the energy delta function.

In the Fermi surface approximation, we set all momenta to Fermi momenta and we will have

Ee = ke = kF e, kν = Eν .
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Now, the rate integral becomes

ΓmU,nd(n) = 42G2g2
Af

4

(2π)14m4
π

k2
F nk

2
F pk

2
F ek

2
FN1

k2
FN2

1
k2

F e

k4
F n

(k2
F n +m2

π)2
E∗

n

kF n

E∗
p

kF p

E∗
FN1

kFN2

E∗
N2

kN2

×
∫
dΩndΩpdΩedΩνdΩN1dΩN2δ

(3)(k⃗n + k⃗N1 − k⃗p − k⃗e − k⃗N2)

×
∫
dE∗

ndE
∗
pdEedEνdE

∗
N1dE

∗
N2E

2
νfnfN1(1 − fp)(1 − fe)(1 − fN2)

× δ(E∗
n + E∗

N1 − E∗
p − Ee − Eν − E∗

N2 + (Un − Up)) . (C.6)

For the energy integral, we do a change of variable,

x = E∗ − µ∗

T
, (C.7)

then, dx = (1/T )dE∗ and µ = 0 for the neutrino. For the integral bounds, we have

∫ +∞

m∗
dE∗ = T

∫ +∞

(m∗−µ∗)/T
dx = T

∫ +∞

−(µ∗−m∗)/T
dx ≈ T

∫ +∞

−∞
dx , (C.8)

where the approximation is valid because µ∗ ≫ T . For neutrino, µ = 0 and m = 0, so the
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lower bound is 0. Then, the energy integral, which we denote as I, becomes

I ≡
∫
dE∗

ndE
∗
pdEedEνdE

∗
N1dE

∗
N2E

2
νfnfN1(1 − fp)(1 − fe)(1 − fN2)

× δ(E∗
n + E∗

N1 − E∗
p − Ee − Eν − E∗

N2 + (Un − Up))

=T 7
∫
dxndxpdxedxνdxN1dxN2 x

2
νf(xn)f(xN1)(1 − f(xp))(1 − f(xe))

× (1 − f(xN2))δ(xn + xN1 − xp − xe − xν − xN2 + µn − µp − µe

T
)

=T 7
∫ +∞

0
dxνx

2
ν

∫ +∞

−∞
dxndxpdxedxN1dxN2 f(xn)f(xN1)f(−xp)f(−xe)

× f(−xN2)δ(xn + xN1 − xp − xe − xν − xN2 + µn − µp − µe

T
)

=T 7
∫ +∞

0
dxνx

2
ν

∫ +∞

−∞
dxndxpdxedxN1dxN2 f(xn)f(xN1)f(xp)f(xe)f(xN2)

× δ(xn + xN1 + xp + xe − xν + xN2 + µn − µp − µe

T
) . (C.9)

One can use Mathematica to obtain an analytical expression,

I = 1
12F (ξ) , (C.10)

where ξ ≡ (µn − µp − µe)/T , and

F (ξ) ≡ − (ξ4 + 10π2ξ2 + 9π4)Li3(−eξ) + 12(ξ3 + 5π2ξ)Li4(−eξ)

− 24(3ξ2 + 5π2)Li5(−eξ) + 240ξLi6(−eξ) − 360Li7(−eξ) . (C.11)

For the angular integral, we can look up [89], which calculated the n-dimensional angular

integral for n=3,4,5, and obtain

A = 32π(2π)4

k3
n

θn , (C.12)
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where

θn =


1 kF n > kF p + kF e

1 − 3
8

(kF p + kF e − kF n)2

kF pkF e

kF n < kF p + kF e .

(C.13)

Therefore, the neutron decay modified Urca rate with n-spectator under Fermi surface ap-

proximation is

ΓmU,nd(n)(ξ) = 7
64π9G

2g2
Af

4 (E∗
F n)3E∗

F p

m4
π

k4
F nkF p

(k2
F n +m2

π)2F (ξ)T 7θn . (C.14)

Similarly, we can calculate the electron capture mU rate with n-spectator

ΓmU,ec(n)(ξ) = ΓmU,nd(n)(−ξ) . (C.15)

For p-spectator processes, the matrix element is

(
s

∑ |Mp|2

26E∗
nE

∗
pEeEνE∗

N1E
∗
N2

)
= 48G2 f

4

m4
π

g2
A

E2
e

(kF n − kF p)4

((kF n − kF p)2 +m2
π)2 , (C.16)

where we still have s = 1/2. Then we have the mU rates with p-spectator

ΓmU,nd(p)(ξ) = 1
64π9G

2g2
Af

4 (E∗
F p)3E∗

F n

m4
π

(kF n − kF p)4kF n

((kF n − kF p)2 +m2
π)2F (ξ)T 7θp , (C.17)

ΓmU,ec(p)(ξ) = ΓmU,nd(p)(−ξ) , (C.18)
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where

θp =



0 kF n > 3kF p + kF e

(3kF p + kF e − kF n)2

kF nkF e

3kF p + kF e > kF n > 3kF p − kF e

4(3kF p − kF n)
kF n

3kF p − kF e > kF n > kF p + kF e

2 + 3(2kF p − kF n)
kF e

− 3(kF p − kF e)2

kF nkF e

kF n < kF p + kF e .

(C.19)
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Cold beta equilibrium

Previous calculations of the bulk viscosity of neutrino-transparent matter assumed that

isospin equilibrium occurs when µn = µp + µe, i.e. µeq
I = 0 for any nB, T . As we have

described, this is only valid when the temperature is below about 1 MeV. In this low-

temperature regime the isospin creation rate depends only on ∆µI ,

ΓI = dΓ
dµI

∆µI = dΓ
dµI

(
∂µI

∂xI

∣∣∣∣∣
nB

∆xI + ∂µI

∂nB

∣∣∣∣∣
xI

∆nB

)
(D.1)

To make contact with earlier results we define

χnB
≡ −nB

∂µI

∂nB

∣∣∣∣∣
xI

(D.2)

and

χxI
≡ 1
n̄B

∂µI

∂xI

∣∣∣∣∣
nB

. (D.3)

Then comparing (D.1) with (3.8) and (3.9) we can write γB in terms of γI ,

γI = −χxI

dΓ
dµI

γB = 1
n̄B

χnB

χxI

γI .

(D.4)
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Using the thermodynamic identity (E.1) we can then write the bulk viscosity (3.20) as

ζcold =
χ2

nB

χxI

γI

γ2
I + ω2 . (D.5)

This agrees with previous calculations such as Eq. (128) of Ref. [88].
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A relevant thermodynamic identity

In this appendix we show that

1
nB

∂p

∂xI

∣∣∣∣∣
nB ,T

= nB
∂µI

∂nB

∣∣∣∣∣
xI ,T

. (E.1)

We start by observing that
1
nB

∂p

∂xI

∣∣∣∣∣
nB ,T

= ∂p

∂nI

∣∣∣∣∣
nB ,T

. (E.2)

Using the thermodynamic expression for pressure, p = µBnB +µInI +Ts− ε(nB, nI , s), and

the relation
∂ε

∂nI

∣∣∣∣∣
nB ,T

= ∂ε

∂nI

∣∣∣∣∣
nB ,s

+ ∂s

∂nI

∣∣∣∣∣
nB ,T

∂ε

∂s

∣∣∣∣∣
nB ,nI

= µI + T
∂s

∂nI

∣∣∣∣∣
nB ,T

(E.3)

it follows that
∂p

∂nI

∣∣∣∣∣
nB ,T

= nB
∂µB

∂nI

∣∣∣∣∣
nB ,T

+ nI
∂µI

∂nI

∣∣∣∣∣
nB ,T

. (E.4)

We now use the Maxwell relation

∂µB

∂nI

∣∣∣∣∣
nB ,T

= ∂2ε

∂nB∂nI

∣∣∣∣∣
T

= ∂µI

∂nB

∣∣∣∣∣
nI ,T

, (E.5)
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where derivatives with respect to nB are taken at constant nI and vice versa, so (E.4) becomes

∂p

∂nI

∣∣∣∣∣
nB ,T

= nB
∂µI

∂nB

∣∣∣∣∣
nI ,T

+ nI
∂µI

∂nI

∣∣∣∣∣
nB ,T

= nB
∂µI

∂nB

∣∣∣∣∣
xI ,T

,

(E.6)

which proves Eq. (E.2) and therefore Eq. (E.1)
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