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ABSTRACT OF THE DISSERTATION 

Integrating DNA Methylation and 3D-genome Architecture to Identify Functional Regulatory 

Sequences in IDH-mutant AML 
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Associate Professor David Spencer, Chair 

Acute myeloid leukemia (AML) is a genetically and phenotypically heterogeneous disease. 

Recurrent mutations in genes involved in epigenetic pathways are common in AML and are 

thought to contribute to this variability by disrupting epigenetic patterns relative to normal 

hematopoietic cells. The most well-studied epigenetic modification in AML is DNA 

methylation. Although methods for studying DNA methylation have improved significantly in 

the past decade, the landscape of methylation changes in AML and how they relate to chromatin 

architecture and gene regulation is still not fully understood.  

This thesis is focused on the DNA methylation phenotype of IDH1 or IDH2 mutations in AML 

cells and the functional consequences of these changes. IDH1 or IDH2 mutations occur in 

approximately 20% of AML patients and are associated with altered DNA methylation patterns. 

The IDH1 and IDH2 genes encode metabolic enzymes that are not normally involved in DNA 

methylation. However, the mutant forms of IDH1 and IDH2 in AML produce 2-hydroxyglutarate 

(2HG) that inhibits the TET family of enzymes, which act to remove methylated cytosines on 

DNA through successive oxidation reactions. Hence, the net effect of IDH mutations is an 
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increase in DNA methylation by inhibiting its removal. Although the specific consequences of 

this hypermethylation phenotype have been difficult to define, in vivo mouse models have 

established that IDH mutations contribute to AML development. 

We used a comprehensive set of whole-genome bisulfite sequencing data from primary AML to 

characterize AML-associated DNA methylation phenotypes and identify IDH mutation-specific 

methylation changes in primary AML samples. Such an approach had not yet been taken to 

understand the direct consequences of IDH mutations, and our study identified a unique 

hypermethylation signature that is enriched for active enhancer regions in IDH-mutant AML. 

The differentially methylated regions (DMRs) from this analysis were characterized by active 

methylation and demethylation turnover, evidenced by an increase in TET-mediated 5-

hydroxymethylation, which may account for the unique susceptibility of enhancers to become 

hypermethylated in the presence of IDH mutations.  

We then used high-resolution chromatin conformation data to link these IDHmut-specific 

hypermethylated enhancer DMRs with their cognate gene(s), which we found to be highly 

expressed in hematopoietic cells. The interactions often coincided with CTCF binding sites that 

orchestrated chromatin loop formation and formed insulating TAD boundaries. We observed 

some evidence of disruption of loop formation and boundary insulation in IDH mutant samples 

compared with CD34+ normal hematopoietic cells, which correlated with decreased target gene 

expression in a subset of interactions. These results suggest that hypermethylation accumulates at 

regions that are important for genome organization and in certain cases may affect gene 

expression in favor of leukemia development.  
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Mechanistic studies of candidate loci were performed to better define the nature of enhancer 

DMR regulatory interactions. Results from targeted deletion of the DMR in a well-characterized 

MYC enhancer were consistent with our hypothesis of inherent regulatory activity associated 

with DMR regions, demonstrating a trend towards decreased MYC expression in DMR KO cell 

lines compared with WT cells. 
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Chapter 1: Introduction 
 

1.1 Acute Myeloid Leukemia 

1.1.1 Introduction 

Acute myeloid leukemia (AML) is an aggressive disease that affects ~20,000 adults and children 

annually and is typically associated with poor prognosis1–3. AML is characterized by abnormal 

growth of myeloid cells which rapidly divide and accumulate in the bone marrow, ultimately 

interfering with normal blood cell development. This process can lead to symptoms such as 

fatigue, infections, easy bleeding/bruising, and anemia, which left unmanaged/treated, can 

quickly progress to death. AML is relatively rare, accounting for <2% of all cancer diagnoses 

each year, however, it’s the second most common form of leukemia, representing ~30% of all 

adult cases (>19 y)3. Although survival is variable and often highly dependent on age, disease 

subtype, cytogenetic and molecular abnormalities, and treatment response, patients with AML 

have an average 5-year survival rate of ~28% compared with nearly 70 to 80% for patients with 

lymphoid malignancies4. Accordingly, significant development in our understanding and 

treatment of the disease is necessary to improve the overall health and survival of AML patients. 

The greatest challenge to finding effective therapy for AML is reflected in the genetic and 

phenotypic heterogeneity of the disease. Since the 1960s it has been understood that AML is a 

clonal disease that results from both inherited and acquired genetic lesions, but the full extent of 

genetic diversity amongst patients has only been made clear in the last 10-15 years by extensive 

next-generation sequencing studies1,5. Early characterizations of primary AML cells detected a 

variety of recurrent chromosomal abnormalities by cytogenetic karyotyping including large-scale 
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inversions and translocations. Detection of these cytogenetic events served as the earliest disease 

classification and prognostic scoring system for AML and, with some refinement, continues to 

be the most powerful predictor of patient outcome when present. However, a significant number 

of AML patients lack gross chromosomal abnormalities and have historically been difficult to 

stratify and develop tailored treatments for. With the advent and evolution of sequencing 

technology, and namely, the ability to detect genetic alterations at base pair resolution, our 

understanding of disease heterogeneity and pathophysiology has grown tremendously. Notably, 

AML sub-classification, patient stratification, and disease management have been improved by 

testing for recurrent genetic mutations, particularly when considering those patients with 

otherwise normal karyotypes1,3–9.   

Despite advances in characterizing the genetic landscape of AML, treatment hasn’t changed 

significantly since the 1960s, when the first uses of chemotherapy shifted the needle on patient 

survival and established the backbone of frontline therapy used by clinicians for the past 40 

years. Refinements in standard therapy, including treatment intensification, better supportive 

care, and introduction of bone marrow transplantation have improved outcomes in younger 

patients, however, mortality rates remain high in the elderly who typically have lower tolerance 

for aggressive treatment strategies. Targeted therapies, designed to address the root genetic cause 

of disease, are one approach to limit toxicity in patients but have shown modest efficacy to date. 

Even still, precision medicine continues to be a goal in the treatment of AML, and the 

development of new agents targeting biochemical pathways implicated in disease 

pathophysiology as well as immunotherapeutic strategies poised to harness the patient’s own 

immune system to recognize and eliminate malignant cells offer promising routes forward.  
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1.1.2 Diagnosis and Prognosis 

The diagnosis of AML involves a combination of clinical presentations and laboratory tests. 

Patients often present with symptoms of bone marrow failure including fever, infection, 

weakness/fatigue, enlarged spleen and/or lymph nodes, etc. Commonly, patients will have an 

initial complete blood count (CBC) and differential workup to assess for significant changes in 

mature blood cell populations (e.g. anemia, thrombocytopenia, neutropenia) as well as the 

presence of excess immature myeloid cells, or “blasts”, in the peripheral blood 2,10. Concerning 

results, or counts outside of the normal range, often indicate bone marrow biopsy for subsequent 

morphologic, cytogenetic, immunophenotypic, and molecular testing. AML diagnosis is 

classically established by the presence of >20% blasts in the bone marrow or peripheral blood by 

morphology (recently updated to >10% in multiple genetic contexts)10,11, while cell lineage and 

mutational subclassifications are assessed by immunophenotypic and molecular testing. 

Consideration of the patient’s clinical features as well as the results of these critical diagnostic 

tests help clinicians predict the likely course and outcome of the disease and guide therapeutic 

decisions. 

Age of diagnosis and overall health are important clinical factors that dictate prognosis and 

treatment approaches in AML patients. Age has proven to be a consistent determinant of 

outcome, as older patients (>70 y) historically experience the highest incidence of comorbidities, 

treatment-related toxicity, and poor responsiveness to intensive chemotherapy11,12. Perhaps not 

surprisingly, older patients also have a high frequency of adverse AML-associated factors 

including complex karyotypes, unfavorable mutations, and increased incidence of therapy-

related or secondary AML. Accordingly, old age is considered an independent predictor of 
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adverse outcome and indicates low-intensity therapy (often in combination with targeted agents 

such as venetoclax) for the best chance of long-term remission10.  

As previously mentioned, cytogenetics has been a long-standing cornerstone in AML prognosis. 

The well-adopted European LeukemiaNet (ELN) classification system stratifies patients into 

three risk categories (favorable, intermediate, adverse) based on karyotypic features. Patients 

with chromosomal abnormalities such as t(8;21)(q22;q22), inv(16)(p13.1q22) or 

t(16;16)(p13.1;q22), and t(15;17)(q22;q12) generally have a better response to standard 

chemotherapy and a more favorable prognosis, while patients with complex karyotypes (three or 

more chromosomal abnormalities), -5 or del(5q), -7 or abnormal(17p) tend to have poor response 

to standard chemotherapy and are categorized by adverse risk, or worse overall prognosis10,13. 

The intermediate risk group represents a heterogenous population of patients including those 

with normal karyotypes and other non-defined abnormalities. In current practice, cytogenetics 

reliably predicts outcomes when patients have favorable or adverse karyotypes. For example, 

patients with favorable cytogenetics including inv(16) or t(8;21) translocations have an increased 

5-year survival rate of 70% while individuals harboring unfavorable cytogenetic abnormalities 

such as monosomy 7 or complex karyotype have a dismal 5-year survival rate of 10%3,10,13. 

However, cytogenetics alone fails to capture the diversity of outcomes for intermediate-risk 

patients, where 5-year overall survival ranges from 25-50%10.  

The detection of gene mutations has helped further refine risk stratification groups in conjunction 

with cytogenetic events. Internal tandem duplications in the FLT3 gene (FLT3-ITD) are 

associated with a higher risk of relapse and poorer overall survival, especially when the allelic 

ratio is high1,7,14. However, significant developments in targeted therapy for FLT3-ITD is 

improving outcome for these patients, classifying them as intermediate risk. Mutations in the 
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NPM1 gene, in the absence of FLT3-ITD or with low-allelic ratio FLT3-ITD, are associated with 

a favorable prognosis. Biallelic mutations in CEBPA are associated with a favorable prognosis, 

while mutations in TP53, RUNX1, and ASXL1 genes (amongst others) are generally associated 

with an adverse prognosis5,10,13. 

Response to treatment has become an important prognostic factor dictating patient survival. 

Patients who achieve complete remission (CR) after induction therapy, defined as blast counts 

below 5% and normalization of other blood cell counts, typically have better outcomes than 

those who do not respond to treatment and/or relapse shortly after achieving remission9,15. 

However, the most recent updates to the ELN classification system reflect the importance of 

early measurable residual disease (MRD) monitoring in addition to assessing for CR10. 

Established techniques, such as multiparametric flow cytometry and RT-qPCR are currently used 

to detect MRD, or small numbers of leukemia cells remaining after treatment, and provide 

insights into the risk of relapse and the need for more intensive therapy or stem cell 

transplantation. 

1.1.3 Treatment strategies 

Standard treatment approaches for AML patients have historically revolved around the use of 

chemotherapy with the goal for patients to achieve complete remission after induction therapy 

while limiting therapy-related toxicities. Early randomized clinical trials laid a foundation for 

chemotherapy dosing regimens and schedules aimed at achieving this goal. Standard of care for 

multiple decades has followed a ‘3+7’ regimen where patients receive 3 consecutive doses of an 

anthracycline, followed by 7 consecutive high-dose treatments with cytarabine16. Subsequent 

consolidation treatment, typically involving additional rounds of intensive cytarabine 

chemotherapy, is given to reduce the risk of relapse and prepare the patient for stem cell 



6 

 

transplant when appropriate. Over the past few decades, additional randomized clinical trials 

have helped refine and tailor chemotherapy regimens to reflect the clinical and genetic 

heterogeneity of AML16,17. Broadly speaking, current front-line induction chemotherapy is 

administered as a combination of either daunorubicin or idarubicin anthracyclines and high-dose 

cytarabine, with the addition of nucleoside analogs, CD33 targeted monoclonal antibodies, and 

other targeted agents when indicated17.  

The choice to administer intensive chemotherapy, often in combination with other agents, is 

highly nuanced and dependent on several factors including the patient’s age/fitness, cytogenetic 

and molecular markers, and predicted CR rate/long-term outcome given the available therapies. 

For example, older patients (typically >70 y) have historically experienced high treatment-related 

mortality leading to general de-intensification of chemotherapy and increased use of alternative 

drugs including hypomethylating agents10. After considering a patient's age, the detection of 

certain cytogenetic abnormalities can be directive for treatment. Acute promyelocytic leukemia 

(APL) and core binding factor (CBF) AML, are two subsets that have near-curative regimens in 

place. While both subsets were initially treated with standard chemotherapy with low efficacy, 

studies in the early 2000s demonstrated cure rates >90% for APL patients treated with a 

nonchemotherapy regimen of ATRA and arsenic trioxide and 80-90% for CFB AML patients 

treated with fludarabine anthracycline plus cytarabine with the addition of gemtuzumab 

ozogamicin18. Most AML patients, however, require improvements to current chemotherapy 

combinations and dosing schedules as well as better-adapted agents that target molecular and 

epigenetic vulnerabilities of their individual leukemias to reach similar rates of long-term 

survival.  
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Developments in our understanding of the genetic landscape of AML have led to new targeted 

therapies offering more personalized treatment approaches. In certain cases, specific cytogenetic 

or molecular abnormalities qualify patients for targeted therapies in addition to or instead of 

standard treatment. For example, patients with FLT3 mutations benefit from receiving FLT3 

inhibitors such as midostaurin or gilteritinib14. Utilized in the setting of newly diagnosed AML 

with FLT3 mutations, midostaurin in combination with induction chemotherapy has been shown 

to increase overall survival rates and reduce the rate of disease relapse. For patients with relapsed 

or refectory AML with FLT3 mutations, the use of gilteritinib as a single agent has shown 

efficacy in controlling disease burden and extending survival19. Targeted therapies for IDH1 and 

IDH2 mutant AMLs, ivosidenib and enasidenib respectively, have also been approved for use in 

patients with relapsed or refractory disease, and during induction treatment in cases where 

aggressive chemotherapy is contraindicated, specifically when qualifying IDH mutations are 

present20–24. Additionally, the BCL-2 inhibitor venetoclax has shown promise, especially when 

combined with hypomethylating agents or low-dose cytarabine, for elderly patients or those who 

may not be candidates for intensive chemotherapy18,25e. As is true of many targeted therapies, 

toxicity and the risk of developing resistance often prevent long-term effectiveness. Therefore, 

defining combinatorial approaches to target multiple susceptibilities in a patient's leukemia is an 

active area of research.   

Outside the use of chemotherapy and targeted therapies, stem cell transplant (SCT) offers many 

patients the best chance at long-term remission or disease cure. The curative potential of SCT is 

predicated on eradicating the patient's leukemia cells in the bone marrow and peripheral blood 

with chemotherapy and often irradiation therapy, and successfully engrafting healthy stem cells 

to repopulate a normal hematopoietic system. Stem cells can be derived from a 
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histocompatibility-matched related or unrelated donor in the case of an allogeneic transplant 

(allo-SCT) or from the patient themselves in the case of an autologous transplant (auto-SCT). 

While auto-SCT is indicated in certain situations, allo-SCT is more commonly used in AML 

patients and offers the added benefit of graft-vs-leukemia effect to target remaining cancer cells 

in the recipient. SCT is not without substantial risk; as such, several factors inform the decision 

for SCT including a patient’s age, cytogenetic and molecular risk, response to initial therapy, and 

availability of a suitable donor. Even still, 20-40% of patients with the best predictors of 

transplant success will have disease recurrence10,26. Based on the most up-to-date guidelines, 

allo-SCT is generally indicated for patients whose relapse probability without transplant is 

>35%; adverse- and intermediate-risk AML patients most often qualify by this metric, however, 

clearance of measurable residual disease after induction is becoming a more widely accepted 

indicator for transplant success irrespective of cytogenetic risk10,13. Those patients with favorable 

risk who reach CR1 with adequate MRD clearance are not recommended for transplant, because 

the risk of non-relapse complications and mortality with treatment is considered to outweigh the 

reduction in relapse risk without4,10,13,16. Improvements in supportive care and prophylaxis have 

reduced the severity of leading comorbidities such as infection and graft-vs-host disease 

(GVHD) 27 and the possibility of SCT in older patients is increasing with the availability of 

reduced-intensity conditioning (RIC) regimens10,28. Even with these improvements, many 

patients choose to forego SCT given the risk of comorbidities and post-transplant relapse. 

1.1.4 AML pathophysiology and classification 

AML can develop in patients with a prior history of hematologic disorder, including 

myelodysplastic syndrome (MDS) or a myeloproliferative neoplasm (MPN), or as a result of 

previous therapy for an unrelated disease (therapy-related AML, tAML), but most commonly, 



9 

 

AML arises as a de novo entity. Irrespective of origin, AML manifests through the aberrant 

proliferation of immature myeloid cells, effectively crowding out normal hematopoiesis in the 

bone marrow. The stages of myeloid differentiation arrest are variable between patients, 

representing undifferentiated myeloblasts as well as more differentiated blast pollutions with 

characteristics of myelocytes, monocytes, erythrocytes, and/or megakaryocytes. The French-

American-British (FAB) classification system accounts for this variability using a staging system 

to label each leukemia as one of seven subtypes (M0-M7) depending on morphologic 

features10,29.   

Recurrent genetic abnormalities including chromosomal translocations and gene mutations are 

well documented in malignant cells of patients and serve as the dominant biomarkers in a second 

staging system for AML as defined by the World Health Organization (WHO)10. 

Subclassifications are defined by the presence of specific chromosomal translocations or gene 

mutations and are used to stratify patients into favorable, intermediate, or adverse risk groups. 

Importantly, several AML patients lack chromosomal abnormalities and/or risk-defining 

mutations, despite comprehensive sequencing studies suggesting an average of three acquired 

mutations are detected per patient leukemia. These findings not only highlight the diversity of 

underlying mutations in AML but also the ongoing need to functionally characterize the 

leukemogenic potential of the individual as well as co-occurring mutations.  

First established in the setting of familial cancer, the two-hit hypothesis was used to describe 

cancer predisposition as the inheritance of a mutated tumor suppressor allele, followed by a 

somatic hit to the opposite allele, leading to loss of both functional copies and ultimately 

uncontrolled proliferation30. Soon after, the two-hit model was extended to sporadic, or de novo, 

cancer whereby two rare genetic alterations affect both alleles of a critical gene in an individual 
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cell. This model was further adapted to describe the pathophysiology of AML where co-

occurring mutations impair normal hematopoiesis and activate pro-proliferative pathways. In this 

model, genetic events don’t necessarily need to occur in opposing alleles but rather can affect 

distinct regions that cooperate to drive leukemogenesis. Germline mutations are accounted for in 

the model of AML development for some patients, and in certain contexts have been shown to 

drive leukemogenesis in the absence of a second hit (predominantly seen cases of MLL-

rearranged pediatric AML). Although late-onset leukemia with germline predisposition is 

represented in the population, de novo adult AML is typically characterized by subsequent 

somatic mutations that arise in myeloid progenitors and confer a clonal advantage to the affected 

cells6,31,32.   

While the co-occurrence of mutations is foundational to our understanding of AML 

development, studies of clonal origin and evolution in the past decade suggest that the traditional 

“two-hit” hypothesis oversimplifies AML pathophysiology. Early models of AML pathogenesis 

proposed that two different types of mutations were required for malignant transformation. 

Recurrent mutations were characterized by functional consequence into two groups: Class I 

mutations, leading to uncontrolled proliferation and anti-apoptotic signaling, confer 

constitutively activate tyrosine kinases or dysregulate down-stream signaling factors, while Class 

II mutations disrupt normal hematopoietic differentiation by inhibiting key transcription factors 

and transcriptional regulators33,34. Combinations of Class I and Class II mutations are detected in 

AML patients and may accurately describe disease etiology in those cases, but more recently, 

epigenetic modifiers have emerged as a prominent third class of recurrent mutations estimated to 

be present in < 50% of patients1,24. Mutations in these factors have profound impacts on DNA 

methylation, histone modifications, and chromatin architecture, and while they aren’t thought to 



11 

 

cause leukemia in isolation, often cooperate with other genetic events to promote 

leukemogenesis.  

1.2 Epigenetic dysregulation in AML 

1.2.1 Recurrently mutated epigenetic factors in AML 

Recurrent mutations in genes involved in epigenetic pathways are common in AML and are 

thought to contribute to leukemia development by disrupting epigenetic patterns relative to 

normal hematopoietic cells. Genomic analysis of AML performed by the Cancer Genome Atlas 

consortium showed that epigenetic modulators are heavily represented among recurrently 

mutated genes, and specifically, more than 50% of patients have at least one mutation in 

DNMT3A, IDH1 and IDH2, or TET2, all of which are involved in DNA methylation either in 

their normal state or when mutated1. Importantly, mutations in these factors occur at high enough 

frequency in AML patients to suggest their roles as initiating events or ‘driver’ mutations in 

leukemia pathogenesis. Many studies have reported on consistent methylation phenotypes 

associated with each of these mutations, demonstrating their reproducible consequences at the 

level of the epigenome. Although extensive work has been done to characterize the role of these 

mutations in the developmental processes of leukemia, our understanding of the functional 

consequences associated with altered methylation is still incomplete. 

The DNMT3A gene encodes DNA methyltransferase 3 alpha, one of two enzymes responsible for 

establishing de novo DNA methylation patterns during embryonic development and 

hematopoiesis35–40. DNMT3A mutations are the third most commonly occurring mutation in 

AML patients and have been associated with poor prognosis and reduced overall survival1,5. 

While mutations are known to occur in all three active domains of the gene, missense mutations 

in the R882 residue within the methyltransferase domain are by far the most common. The R882 
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variant has consequently become the most well-studied DNMT3a mutation, now known to 

significantly impair its enzymatic activity and result in aberrant DNA hypomethylation thought 

to disrupt the differentiation of hematopoietic stem cells and give rise to pre-leukemic clones. 

Research suggests that DNMT3A mutations alone might not be sufficient to induce overt 

leukemia but can collaborate with other mutations to drive leukemogenesis35,38,39,41,42. We’ve 

come to understand that DNMT3A mutations are genetic events associated with the aging process 

and are present in roughly 20% of individuals over the age of 60, a phenomenon referred to as 

age-related clonal hematopoiesis (ARCH)31,43,44. Individuals carrying these mutations in their 

hematopoietic stem/progenitor cells have an increased risk of developing hematological 

malignancies but may remain asymptomatic for years, or until a second mutation arises to drive 

leukemia transformation. In vitro and in vivo models of DNMT3A mutations have been 

instrumental in understanding the role of DNMT3A in normal and abnormal hematopoiesis. 

Notably, DNMT3A knockout mice have been developed to model and test hypotheses related to 

clonal hematopoiesis. Importantly, these mice display expanded hematopoietic stem cell 

compartments, skewed differentiation, and increased self-renewal, reinforcing the gene's critical 

role in normal hematopoiesis35,38,40,42.  

Ten-eleven translocation 2 (TET2) mutations are the fifth most commonly occurring mutation in 

adult AML, affecting approximately 20-25% of newly diagnosed individuals5,37,45–47. The 

prognostic significance of TET2 mutations in AML remains somewhat controversial, however, 

recent studies suggest that TET2 mutations in association with intermediate-risk cytogenetics 

may confer a more favorable prognosis, particularly in the absence of concurrent mutations in 

other epigenetic regulators or signaling pathways which may indicate a poor prognosis10,46,48. As 

an enzyme that catalyzes the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine 
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(5hmC), TET2 plays a critical step in DNA demethylation49–51. Typically, TET2 mutations 

arising in AML result in loss of function gene products and in many cases are bi-allelic, 

effectively depleting the cell of TET2 activity1,5,45. In the presence of these mutations, DNA 

demethylation is significantly inhibited, resulting in genome-wide patterns of hypermethylation. 

Similar to DNMT3A mutations, TET2 mutations are commonly observed in individuals with 

ARCH and are thought to arise in a primitive hematopoietic stem or progenitor cell, conferring a 

state of abnormal HSC expansion without causing overt leukemia. Additional cooperating 

mutations are therefore thought to be required for leukemia transformation31. Deletion of TET2 

in the bone marrow compartment of mice successfully recapitulates the DNA hypermethylation 

phenotype observed in AML patients and is sufficient to increase the self-renewal capacity of 

HSCs and skew cell differentiation toward monocytic/granulocytic lineages49,52–56. Recently, the 

loss of TET2 activity in in vitro and in vivo models has been associated with hypermethylation of 

key enhancers whose activity is thought to be necessary to regulate the expression of factors 

involved in myeloid differentiation57. However, the direct functional consequences of enhancer 

hypermethylation on regulatory activity are still unclear.  

IDH1/2 mutations are the third and fourth most commonly recurring mutations in AML, 

affecting ~20% of patients, and are associated with altered DNA methylation patterns that are 

thought to occur through the disruption of active DNA demethylation1,5,58,59. IDH1 and IDH2 

encode metabolic enzymes not normally involved in DNA methylation, but when mutated 

produce 2-hydroxyglutarate (2HG) that inhibits the TET family of enzymes, thereby reducing 

active demethylation. Analysis of DNA methylation in primary AML samples using array-based 

technologies and enhanced reduced-representation bisulfite sequencing has demonstrated that 

DNA methylation is increased in samples with IDH mutations60–63. While the direct effects of 
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these changes on gene regulation have been challenging to identify, the contribution of IDH 

mutations to leukemogenesis has been established in mouse models60,61,61,64. Expression of either 

IDH1R132H or IDH2R140Q blocks normal hematopoietic differentiation, promotes 

myeloproliferation, and can result in AML transformation in the presence of cooperating 

mutations. These studies establish the contribution of IDH mutations to AML development and 

suggest this may occur by disrupting the balance between DNA methylation and demethylation. 

1.2.2 The epigenetic landscape of DNA methylation  

Epigenetics refers to reversible, but heritable, chemical modifications added to DNA and RNA 

that regulate gene expression and genome organization without changing the primary DNA 

sequence. Epigenetic modifications have different effects on genome regulation depending the 

specific epigenetic ‘mark’ and its location in the genome, which often makes it difficult to 

reliably predict their effect on functional outputs, including gene expression. However, 

associations between epigenetic modifications and transcriptional outputs have been defined 

from measurements made in model systems and primary human samples, providing a basis for 

understanding the contribution of epigenetic regulation to normal development and how aberrant 

epigenetic patterns may contribute to cancer. DNA methylation (DNAme) is perhaps the most 

well-studied epigenetic modification in normal development and malignant states, and is thought 

to regulate gene expression by altering the accessibility of DNA to transcription factors and other 

regulatory proteins65–68. Although methods for studying DNA methylation have improved 

significantly in the past decade, the landscape of methylation changes in AML and how they 

relate to chromatin organization and gene regulation is still not fully understood.  

DNAme refers to the addition of a methyl group to the 5’ carbon of cytosine bases and is 

generally associated with processes of cell differentiation, X inactivation, locus imprinting, and 
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tumorigenesis69,70. DNAme is non-randomly distributed across the genomes of normal cells, 

almost exclusively occurring at cytosines in a C-G dinucleotide (CpG) context. At a gross level, 

the absence of methylation is associated with permissive chromatin and access to the 

transcriptional sequences on DNA, while the presence is correlated with repression. 

Interestingly, CpG methylation levels exhibit a bimodal distribution across the genome, 

representing a population of largely unmethylated cytosines and a population of cytosines that 

remain fully methylated, suggesting a sequence and/or context specificity for the modification. 

While methylation patterns are tissue and cell-type-specific due to their association with gene 

expression, most CpGs in the genome are hypermethylated (60%), whereas those in CpG-dense 

regions such as gene promoters, tend to be hypomethylated70. One possible explanation for this 

site specificity is related to the propensity for methylated cytosines to become deaminated, which 

can lead to the conversion of 5mC to thymine (T) and result in a C>T transition mutations in the 

DNA sequence (one of the most common genetic substitutions found in human cancers24,71. By 

restricting DNA methylation from promoters, the likelihood for mutations to occur in critical 

regulatory regions is greatly reduced.  

Although we often measure DNA methylation as a steady state, the life cycle of DNA 

methylation is a dynamic and finely regulated process crucial for gene expression and cellular 

identity. It begins during embryonic development when DNA is initially unmethylated69. De 

novo DNA methyltransferases establish methylation patterns by adding methyl groups to 

cytosine residues at specific sites. These patterns are faithfully propagated through cell divisions 

by maintenance methyltransferases, ensuring epigenetic inheritance72. While DNA methylation 

is relatively stable, it is not static. The kinetics of DNA methylation involve the potential for 

changes in response to various stimuli including cell differentiation signals, environmental 
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exposures, aging, and disease. DNMT3A and TET proteins are two of the key factors involved in 

DNA methylation turnover, actively adding, and removing methyl groups and allowing for 

dynamic adjustments to the epigenetic landscape. The rates and extent of these changes can vary 

between different genomic regions and cell types, influencing gene regulation and cellular 

responses. For example, in the case of many stem and progenitor cell populations, the process of 

lineage commitment and cell fate are driven by the transcriptional landscape which is thought to 

be heavily dependent on DNA methylation. As a modification known to influence the binding of 

certain transcription factors to DNA, high DNA methylation turnover rates have been associated 

with tissue-specific enhancer regions during development, as was reported in an elegant study of 

methylation kinetics in human embryonic stem cells73–75. 

1.2.3 DNA methylation in AML 

In AML cells, DNAme patterns become dysregulated, and often present as diffuse, global 

hypomethylation across the genome and/or focal hypermethylation. In cancer more broadly, 

hypermethylation has been linked to the silencing of tumor suppressor genes involved in 

important cellular processes such as DNA repair, cell cycle control, and apoptosis, however, very 

few examples of altered methylation directly affecting gene expression have been reported in 

AML. Moreover, AML exhibits significant heterogeneity in DNA methylation patterns 

associated with different molecular subtypes of the disease, making it difficult to define the 

unifying consequences of aberrant methylation in AML. As mentioned previously, AMLs with 

mutations in DNAme modifying enzymes have pronounced methylation phenotypes, but AMLs 

lacking these mutations also display subtype-specific methylation patterns. For example, AML 

with NPM1 mutations or MLL rearrangements often exhibits specific DNA methylation patterns 
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that stratify with molecular classification although these phenotypes have been less well 

studied76,77.  

More recently, the detection and classification of aberrant methylation as epi-alleles, also 

referred to as epi-mutations, has improved in line with our ability to phase epigenetic 

modifications with specific haplotypes. Importantly, the detection of epi-mutations helps us 

account for epigenetic hits in the two-hit hypothesis of cancer development. One example of this 

phenomenon in AML occurs at the GATA2 locus. Allele-specific expression of GATA2 has been 

well-documented in AML samples, but more recently, the role of allele-specific 

hypermethylation has emerged as an initiating event of AML pathogenesis. Specifically, allele-

specific methylation of the GATA2 promoter has been shown to occur nearly in 90% CEBPA-

mutated AML, whereby active transcription from that allele gets shut down, leaving only a single 

copy of GATA278. Concurrent overactivation of the opposite allele by a distal superenhancer 

region compensates for the cellular dosage of GATA2 often leading to increased levels. As a 

protein whose balance is known to be finely tuned in normal hematopoiesis, altered GATA2 

expression is thought to contribute to a pre-leukemic phenotype that likely cooperates with 

CEPBa mutations to drive leukemia development. There are likely other examples of 

methylation epimutations in AML that we have yet to identify that may help link aberrant 

methylation phenotypes with expression consequences that aren’t immediately obvious using 

previous approaches. 

As mentioned above, aberrant methylation at non-promoter regulatory elements such as 

enhancers has been described in AML, particularly in the presence of TET2 mutations. It is yet 

unclear if the altered methylation of enhancers directly affects activity. There is reason to believe 

that methylation within enhancer regions could prevent proper localization of transcription 
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factors, especially those known to have methylation-sensitive binding like CTCF. As our ability 

to link enhancers to their cognate genes continues to improve, we will be able to refine our 

understanding of the functional consequences associated with methylation at enhancers.   

1.3 3-Dimensional Genome Organization  

1.3.1 Hierarchy of genome organization 

The human genome, linearly comprised of three billion base pairs of DNA nucleotides, is 

organized hierarchically, where different levels of structure are thought to play a role in 

regulating gene expression, ensuring DNA integrity, and managing the vast amount of genetic 

information within the cell79–82. Recent advancements in genomic technologies, including 

chromosome conformation capture techniques, have helped unravel the hierarchical organization 

of the 3D genome with greater resolution, facilitating the study of spatial organization as it 

relates to genome function. In combination with molecular studies of nucleosome remodeling, 

histone modifications, and DNA methylation, we are starting to better understand the 

mechanisms governing 3D architecture and detect alterations that may be responsible for or 

related to cancer pathogenesis. 

At the broadest scale, the genome is partitioned into chromosomal territories within the 

nucleolus, where each chromosome occupies non-random, distinct regions. Within these 

territories, chromosomes exhibit hierarchical organization at multiple levels, including 

topologically associating domains (TADs), sub-TADs, loops, and diffuse chromatin 

interactions90–94. TADs are megabase-sized genomic regions characterized by high levels of self-

interactions. They act as structural and functional units of the genome, segregating chromatin 

into distinct regulatory domains. TAD boundaries are demarcated by insulator elements, such as 

CTCF-binding sites, which restrict chromatin interactions between adjacent TADs, thereby 
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regulating gene expression by spatially orienting proper enhancer-promoter interactions and 

preventing aberrant regulatory crosstalk between neighboring regions83–85.  

Within TADs, finer-scale structures known as sub-TADs or contact domains have been 

identified. While TAD architecture tends to be stable, these substructures exhibit some level of 

variability and are thought to be associated with regulatory interactions that drive and support 

cellular differentiation and identity. Interaction within these sub-structures can be somewhat 

diffuse, helping to nucleate the domains, or highly focal in the case of chromatin loops formed 

by robust interactions between distal regulatory regions, such as enhancers and gene promoters. 

These loops are often mediated by DNA binding proteins and complexes, including the CTCF, 

cohesin complex, and the mediator complex, which facilitate long-range chromatin 

interactions79,83,86,87. Loop extrusion models propose that the cohesin complex drives the 

formation of chromatin loops by progressively extruding DNA until it encounters boundary 

elements or convergent CTCF-binding sites, highlighting the importance of proper localization 

of CTCF in the genome88.  

The Mediator complex is also known to play a crucial role in regulating distal interactions. As a 

key transcriptional coactivator in eukaryotic gene expression, the mediator complex facilitates 

communication between enhancer regions and gene promoters by physically interacting with 

both transcription factors bound at enhancers and the preinitiation complex (PIC) assembled at 

promoters89,90. This interaction helps to bring distal enhancers into proximity with their target 

promoters, promoting the initiation of transcription. Some subunits of the Mediator complex 

have been shown to possess histone acetyltransferase (HAT) activity, which can lead to the 

acetylation of histones near gene promoters91. This histone modification is associated with 

transcriptional activation by promoting an open chromatin conformation conducive to 
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transcription. Additionally, the Mediator complex interacts with chromatin remodeling 

complexes, further facilitating changes in chromatin structure that are necessary for DNA 

accessibility and transcriptional activation90. 

Dynamic changes in the 3D genome organization occur during cellular differentiation, 

development, and response to environmental cues, highlighting the plasticity and regulatory 

complexity of the genome architecture. Dysregulation at any level of organization can potentially 

wreak havoc on genome regulation and expression programs necessary for healthy cell 

development. For example, the disruption of TAD boundaries and chromatin loops in the 

absence or inhibition of CTCF binding has been correlated with dysregulation of gene expression 

linked to developmental disorders, cancer, and other diseases84,85,92. Ongoing characterization of 

AML-associated changes in the epigenetic landscape as they relate to functional consequences 

on 3D genome architecture will provide novel insights into leukemia pathogenesis and offer 

potential strategies for targeted treatment.   

1.3.2 AML-associated alterations in 3D genome architecture 

In vitro studies provide circumstantial evidence suggesting that AML cells can remodel genome 

interactions in the presence of hypermethylated elements to enable alternative enhancer usage. 

This may be necessary to maintain gene expression when a cognate enhancer has decreased 

chromatin accessibility and prohibits activators from binding DNA. In certain cases of insulator 

hypermethylation, TAD boundaries become compromised and allow cross-talk of regulatory 

elements between adjacent regions. Termed enhancer-hijacking, elevated expression of 

oncogenes in experimental models have been described concomitantly with the formation of 

novel interactions with highly active enhancers in neighboring TADs where insulators break 



21 

 

down. Loss of insulation in many of these examples has been linked to hypermethylation of 

CTCF binding sites and loss of CTCF occupancy93. 

A recently published study reported the first comprehensive analysis of 3D genome architecture 

in primary AML samples94. Their investigation focused on recurrent structural variation 

(chromosomal fusions) as a potential cause for altered genome organization, describing subtle 

subtype-specific features of A/B compartmentalization, topologically associating domains, and 

chromatin loops. Perhaps the most striking outcome of their analysis was the detection of AML-

specific promoter-enhancer and promoter-silencer loops surrounding fusion events. They further 

validated the role of repressive loops on target gene expression in experimental models providing 

some of the first evidence for silencer-hijacking events in AML samples. Studies that expand the 

search for altered interactions beyond regions implicated in structural variation will be important 

in describing the full spectrum of AML-associated changes in genome organization.  

1.3 Study Rationale, Hypothesis, and Specific Aims 
The ability to characterize functional consequences of aberrant DNA hypermethylation in IDH 

mutant AML has been impeded by the lack of genome-wide studies in primary AML samples. 

Although previous studies using targeted DNA methylation approaches have reported the general 

effects of IDH1 and IDH2 mutations on DNA methylation62,76,95,96, a genome-wide methylation 

analysis in primary AML samples had not yet been described at the outset of our project. It has 

therefore been unclear whether IDH1 and IDH2 mutations display a truly unique methylation 

phenotype compared to other AML subtypes. In addition, most regions with altered methylation 

occur beyond gene promoters, which makes it challenging to directly link these changes to 

expression of the appropriate gene. However, the development of chromatin capture assays that 

measure direct interactions between regulatory sequences and genes now make it possible to 
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assign regulatory elements with altered methylation to their cognate gene promoters. We, 

therefore, hypothesized that whole-genome DNA methylation datasets combined with chromatin 

interaction data will identify functionally important regulatory sequences with altered DNA 

methylation that may contribute to leukemogenesis by directly influencing gene expression. To 

test this hypothesis, we have conducted experiments to address the following aims.  

Aim 1: Define IDH mutation-associated changes in genome-wide DNA methylation in 

AML. We identified regions of the genome with unique methylation changes in primary AML 

samples with IDH mutations (IDHmut) compared with normal bone marrow and other AML 

subtypes. Using an extensive set of whole genome bisulfite sequencing (WGBS) data from 55 

primary AML samples and normal hematopoietic stem and progenitor cells (HSPCs), 

differentially methylated regions were identified and assessed for unique methylation levels 

specific to IDHmut AML samples.  

Aim 2: Identify functional regulatory elements affected by IDHmut-associated methylation 

changes. We integrated WGBS with histone modification data, measurements of 3D genome 

interactions, and gene expression profiles in primary AML samples to characterize the activity of 

regions with IDHmut -specific DNA methylation. Through this line of investigation, we aimed to 

understand whether focal changes in methylation in these regions affect functional regulatory 

elements and whether these changes are associated with alterations in cis-regulatory activity, 

local chromatin interactions, and/or changes in the expression of key target genes. 

Aim 3: Characterize the activity of candidate enhancer DMRs in AML cell lines. We used 

targeted genome editing in AML cell lines to define the functional role of DNA methylation at 

DNA elements with IDHmut -associated hypermethylation. To determine whether sequences with 
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altered methylation have regulatory activity, we deleted selected DNA elements identified in 

Aim 2 to determine whether they are involved in regulating 3D architecture and/or expression of 

their target genes. 
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2.1 Abstract 
Recurrent mutations in IDH1 or IDH2 in acute myeloid leukemia (AML) are associated with 

increased DNA methylation, but the genome-wide patterns of this hypermethylation phenotype 

have not been comprehensively studied in AML samples. We analyzed whole-genome bisulfite 

sequencing data from 15 primary AML samples with IDH1 or IDH2 mutations, which identified 

~4,000 focal regions that were uniquely hypermethylated in IDHmut samples vs. normal CD34+ 

cells and other AMLs. These regions had modest hypermethylation in AMLs with biallelic TET2 
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mutations, and levels of 5-hydroxymethylation that were diminished in IDH and TET-mutant 

samples, indicating that this hypermethylation results from inhibition of TET-mediated 

demethylation. Focal hypermethylation in IDHmut AMLs occurred at regions with low 

methylation in CD34+ cells, implying that DNA methylation and demethylation are active at 

these loci. AML samples containing IDH and DNMT3AR882 mutations were significantly less 

hypermethylated, suggesting that IDHmut-associated hypermethylation is mediated by DNMT3A. 

IDHmut-specific hypermethylation was highly enriched for enhancers that form direct interactions 

with genes involved in normal hematopoiesis and AML, including MYC and ETV6. These results 

suggest that focal hypermethylation in IDH-mutant AML occurs by altering the balance between 

DNA methylation and demethylation, and that disruption of these pathways at enhancers may 

contribute to AML pathogenesis. 

2.2 Introduction 
DNA methylation changes in acute myeloid leukemia (AML) are caused by disruptions in the 

processes that add or remove 5-methyl groups to cytosines (1,2). In normal and malignant 

hematopoietic cells, de novo DNA methylation is catalyzed primarily by the DNA 

methyltransferase DNMT3A (3,4), which methylates unmethylated DNA substrates. 

Demethylation occurs passively after DNA synthesis in the absence of DNMT1-mediated 

propagation of hemi-methylated DNA, and actively via hydroxylation of 5mC by the TET family 

of hydroxylases. Alterations in these opposing forces result in either increased or decreased DNA 

methylation in AML cells. These changes include diffuse hypomethylation across large genomic 

regions and focal hypermethylation in CpG islands (CGIs). We recently showed that CGI 

hypermethylation in AML is mediated by DNMT3A and is present in nearly all AML subtypes 

(5). In addition to these changes, specific DNA methylation patterns correlate with AML 
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mutations that influence DNA methylation. This includes the DNMT3AR882 mutation, which 

impairs DNA methylation activity and results in a focal, canonical hypomethylation phenotype 

(5).  

Mutations in IDH1 and IDH2 are also associated with altered DNA methylation patterns (6,7) 

that are thought to occur by disrupting active DNA demethylation. IDH1 and IDH2 encode 

metabolic enzymes not normally involved in DNA methylation, but when mutated produce 2-

hydroxyglutarate (2HG) (8) that inhibits the TET family of enzymes (9), thereby reducing active 

demethylation. Analysis of DNA methylation in primary AML samples using array-based 

technologies and enhanced reduced-representation bisulfite sequencing has demonstrated that 

DNA methylation is increased in samples with IDH mutations (6,10). While the direct effects of 

these changes on gene regulation have been challenging to identify, the contribution of IDH 

mutations to leukemogenesis has been established in mouse models. Expression of either 

IDH1R132H or IDH2R140Q blocks normal hematopoietic differentiation, promotes 

myeloproliferation (11–13), and can result in AML transformation in the presence of cooperating 

mutations (13,14). These studies establish the contribution of IDH mutations to AML 

development and suggest this may occur by disrupting the balance between DNA methylation 

and demethylation. 

Although previous studies using targeted DNA methylation approaches have reported the general 

effects of IDH1 and IDH2 mutations on DNA methylation (6,7,10,15), a genome-wide 

methylation analysis in primary AML samples has not yet been described. It is therefore unclear 

whether IDH1 vs. IDH2 mutations cause hypermethylation at the same or different genomic loci, 

and whether these methylation changes are distinct from DNMT3A-mediated CGI 

hypermethylation. Additionally, although IDH mutations are thought to cause hypermethylation 
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via inhibition of TET enzymes, the overlap in methylation phenotypes between AML samples 

with these mutations is unclear. Here, we performed a genome-wide analysis of DNA 

methylation in primary AML samples with recurrent mutations in IDH1, IDH2, or TET2 using 

whole-genome bisulfite sequencing (WGBS). WGBS data from normal hematopoietic cells and 

AML samples with other mutational profiles were included to define the methylation phenotypes 

specific to IDH mutations, and to determine their relationship to ‘generic’ AML-associated 

methylation changes. We integrated these data with epigenetic modifications and three-

dimensional genome architecture from primary AML samples to characterize the functional 

genomic elements that may be affected by disruption of the balance between DNA methylation 

and demethylation in AML. 

2.3 Materials and Methods 

Patient samples  

Primary AML samples and normal hematopoietic cells for epigenetic studies were obtained from 

presentation AML and normal bone marrow aspirates, following informed consent using 

protocol (201011766) approved by the Human Research Protection Office at Washington 

University as described previously (5) . All experiments with AML samples used total bone 

marrow cells for DNA preparation. 

Whole genome bisulfite and oxidative bisulfite sequencing and data analysis  

Whole-genome bisulfite sequencing data for 38 samples were described previously (5). Data for 

13 additional samples were generated using 50ng of DNA with the Swift Accel-NGS Methyl-

Seq library preparation kit. Oxidative bisulfite sequencing libraries were prepared following 

treatment of 200ng of DNA with the TrueMethyl oxBS module (Cambridge Epigenetix) prior to 

bisulfite conversion and Swift library construction and sequencing on NovaSeq 6000 instruments 
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(Table S1). Data were aligned to the GRCh38 reference and processed into methylated read 

counts using biscuit (16) with default parameters. Differentially methylated CpGs (DMCs) were 

identified between AML groups and CD34+ cells using read count data via DSS (17) and 

required a minimum methylation difference of 0.2. DMCs were then used to identify 

differentially methylated regions (DMRs) with >10 CpGs and a difference in mean methylation 

of 0.2. IDHmut- and TET2mut-specific DMCs and DMRs were subsequently identified by 

comparing these samples to all other AML samples via the DSS beta-binomial test in the 

methylkit Bioconductor package (18). 5hmC values were obtained by subtracting the 

methylation ratios from OxWGBS data from WGBS data at all CpGs with coverage > 10x.  

ChIP-seq for histone modifications  

ChIP-seq was performed using ChIPmentation (19) with the following antibodies: H3K27me3 

(9733S), and H3K27ac (8173S) from Cell Signaling Technology, and H3K4me1 (ab1012) from 

Abcam. Sequencing was performed on a NovaSeq 6000 (Illumina, San Diego, CA) to obtain ~50 

million 2x150 bp reads. Data were analyzed via adapter trimming with trimgalore and alignment 

to GRCh38 using bwamem (20). Normalized coverage for visualization and analysis used the 

deeptools “bamCoverage” tool (21), and peaks were called with MACS2 (22). Statistical 

comparisons with DESeq2 (23) used raw fragment counts at peak summits, and visualizations 

were prepared with Gviz (24). Superenhancer analysis was conducted using ROSE software 

(25,26) with default parameters.  

RNA-seq analysis 

RNA-seq data from AML samples were obtained from the AML TCGA study (15). TPM values 

were obtained using kallisto (27) and gene counts were generated using the tximport 

Bioconductor package (28) in R with the tx2gene option set to accomplish gene-level 
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summarization. Previously published RNA-seq data for normal CD34+ cells generated using the 

same procedures that were used for the AML samples (29,30) were obtained as raw sequencing 

reads from the short-read archive (GSE48846) and processed as described above. 

Hi-C data analysis 

Hi-C data were obtained from previous studies of 3D genome interactions in primary AML 

samples (31) and normal hematopoietic stem/progenitors (32). All libraries were generated using 

MboI digestion prior to proximity ligation and data were analyzed using the juicer pipeline (33). 

Loops were identified with HICCUPs and were analyzed using bedtools (34) to identify overlap 

with genes and putative enhancers. Visualizations used the GenomicInteractions and Gviz R 

packages (24). 

Data Availability 

All raw data from primary AML samples presented in this study is available in dbGaP (accession 

number phs000159). Processed data from this study are available for public download at the 

following site: 1,68.  

2.4 Results 

2.4.1 Primary AML samples with IDH1 or IDH2 mutations are focally 

hypermethylated at regions with low methylation in normal hematopoietic 

cells. 

We performed WBGS using 15 primary bone marrow aspirate samples from AML patients with 

canonical IDH mutations, including seven with IDH1R132C/G, seven with IDH2R140Q, and one with 

an IDH2R172K allele (referred to throughout as IDHmut). These data were analyzed with WGBS 

data from 36 other primary AML samples representing nine mutational categories, including six 

with biallelic loss-of-function mutations in TET2, and primary CD34+ cells from six healthy 

https://wustl.box.com/v/wilsonIDHmethylation
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adult bone marrow donors (5). All AML samples were previously sequenced using whole 

genome and/or whole exome sequencing (15,35) that confirmed the mutations affecting DNA 

methylation were present in the dominant leukemic clone (Figure 1A). Importantly, the 15 AML 

samples with IDH mutations were wild type for DNMT3A and TET2 to minimize effects of other 

mutations on DNA methylation patterns. We first performed an unsupervised analysis of 

genome-wide methylation in 1 kb bins using principal component analysis (PCA). This 

demonstrated that most AML samples formed a diffuse cluster separate from CD34+ cells 

(Figure 1B). AML samples with either DNMT3AR882 or IDH mutations (and some with TET 

mutations) formed sub-clusters on opposite sides of the main AML group, which is consistent 

with the hypomethylation phenotype of AML cells with the DNMT3AR882 mutation (5) and 

suggests IDHmut samples may also have unique methylation features compared to other AMLs.  

We next determined whether IDH mutations have global or context-dependent effects on DNA 

methylation by analyzing methylation levels in regions defined by chromatin states in 

hematopoietic stem/progenitors (36). This demonstrated that quiescent and repressed chromatin 

states had lower methylation in most AMLs compared to CD34 cells, whereas bivalent regions 

(which are enriched for CpG islands) were hypermethylated in nearly all samples (Figure 1C). 

Enhancer and regions flanking transcriptional start sites (TSS) supervised a cluster of 

hypermethylated AMLs containing 14 of the 15 IDHmut samples. Mean methylation in IDHmut 

AMLs at enhancer regions was significantly higher vs. both CD34 cells and AMLs without IDH 

mutations (Figure 1D, P=0.009 and P=0.0002, respectively). IDHmut AMLs also tended to have 

higher mean methylation vs. other AML groups both genome-wide (Figure 1E, adjusted P=0.02) 

and in regions with other chromatin states (Figures S1A-B), but not in CpG islands (Figure 1F; 
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P=0.14), indicating that IDH mutations do not result in an exaggerated CGI hypermethylation 

phenotype. 

We next determined the extent to which IDH mutations result in focal methylation changes by 

performing differentially methylated CpG (DMC) and region (DMRs) analysis (37) between 

AMLs with IDH1 or IDH2 mutations and CD34 cells. There were 6,309 DMRs in IDH1mut 

AMLs, of which 99% were hypermethylated relative to CD34 cells (methylation difference >0.2, 

FDR<0.05 with >10 CpGs; Figure 1G); this was more than any mutation-defined AML group. 

IDH2mut AMLs had fewer DMRs (N=4,915), although most were also hypermethylated (85%). 

AMLs with IDH1 or IDH2 mutations also had the highest fraction of hypermethylated CpGs 

(DMCs) (85% and 87%, respectively; see Figure S1C), most of which were contained in DMRs 

(Figure S1D-E). Interestingly, although IDH mutations are thought to inhibit active 

demethylation, most IDHmut DMRs had low methylation in normal hematopoietic cells. For 

example, 60% of the IDHmut DMRs had a mean methylation <0.3 in both CD34+ cells (Figure 

1H) and more mature myeloid cell populations (Figure S1F), suggesting that DNA methylation 

pathways must be active in these regions despite the low methylation levels at these loci in 

normal cells. 

2.4.2 IDHmut-specific methylation changes are distinct from AML-associated 

CGI hypermethylation and are influenced by IDH mutation type. 

We next performed a second statistical comparison of the DMRs (and DMCs) identified in 

AMLs with IDH mutations vs. CD34+ cells to identify loci with methylation levels in the IDHmut 

samples that was significantly different from all other AML samples. AMLs with mutations in 

DNMT3A or TET2 were excluded from this analysis given their established hypomethylation 

phenotype (DNMT3A) and potential to phenocopy IDH mutations (TET2). This resulted in 4,388 
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and 2,552 IDH1mut and IDH2mut-specific DMRs, respectively, nearly all of which were 

hypermethylated relative to the other AML samples (Figures 2A-C, Tables S2-3). Similar results 

were observed at the DMC level (Figure S2A-B). Most of these DMRs displayed low 

methylation in normal cells, with 60% of IDH1mut-specific and 58% of IDH2mut-specific loci 

having a methylation level <0.3 in CD34+ and mature myeloid cells (Figure S2C-D). There was 

extensive overlap between the IDH mutation-specific DMRs (94% [2,399/2,552] of IDH2mut-

specific DMRs overlapped an IDH1mut-specific DMR), and AML samples with either mutation 

were hypermethylated at both DMR sets (Figure 2D). However, hierarchical clustering 

demonstrated considerable variability in methylation between the IDH1mut and IDH2mut samples 

(Figure 2E). Notably, three IDH2mut AMLs had lower methylation across the union of IDHmut-

specific DMRs. IDH2mut AML samples were also less methylated than IDH1mut samples at the 

combined set of IDHmut DMRs (0.54 vs. 0.70, respectively; P=0.04), but were hypermethylated 

relative to CD34+ cells (Figure 2E). This was not related to mutant IDH allele abundance (all 

samples had VAFs >30%, Table S1), and did not correlate with other recurrent mutations, 

including NPM1c (4 in IDH1mut and 3 in IDH2mut samples, Figure 2D; all samples were wild 

type for DNMT3A and TET2). Comparable differences in methylation were observed at the DMC 

level (Figure S2E-F), suggesting this phenomenon was not an artifact of DMR identification. 

Interestingly, the IDHmut-specific DMRs demonstrated markedly different CpG density and 

overlap with genomic annotations compared to hypermethylated regions in other AML samples. 

For example, both IDH1mut-specific and IDH2mut-specific DMRs displayed significantly less 

overlap with annotated CGIs compared to 4,573 hypermethylated regions identified in at least 2 

other AML mutation categories (18% and 20% of IDH1mut and IDH2mut DMRs overlapped a 

CGI, respectively, compared to 54% of commonly hypermethylated regions; see Figure 2F), and 
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had lower CpG density (mean CpG density of 0.81 and 0.79 vs. 1.26, respectively; P-

values<0.0001; Figure 2G). Promoters were also underrepresented in IDH1mut-specific and 

IDH2mut-specific DMRs (21% and 20% of IDH1mut and IDH2mut DMRs overlapped a promoter, 

vs 31% of commonly hypermethylated regions; Figure 2G). IDHmut-specific DMCs showed 

similar levels of overlap with annotated regions as DMRs (Figure S2G), further suggesting that 

IDH-associated hypermethylation is distinct from AML-associated CGI hypermethylation. 

2.4.3 Hypermethylation in TET2mut AMLs overlaps with IDHmut-specific 

hypermethylation but does not phenocopy the extent of methylation changes.  

We next determined whether AML samples with biallelic loss-of-function mutations in TET2 

shared similar genome-wide patterns of hypermethylation with IDHmut AMLs. Initial comparison 

of the TET2mut AMLs vs. normal CD34+ cells yielded fewer DMRs (and DMCs) and a lower 

proportion of hypermethylated regions compared to the combined set of DMRs in IDHmut 

samples (3,083 vs. 7,569 DMRs, and 75% vs 99% hypermethylated regions, respectively; see 

Figures 1G and S1A), consistent with previous reports (6,10). Hierarchical clustering of TET2mut 

samples with the set of IDHwt/TET2wt/DNMT3Awt AMLs at these regions did not reveal striking 

methylation differences between the two groups (Figure S3A). Consistent with this result, only 

188 TET2mut-specific DMRs were identified using the approach described above (with IDHmut 

and DNMT3AR882 AMLs excluded from the analysis) (Figure 3A). Although most TET2mut-

specific DMRs were hypermethylated relative to CD34+ cells and other AMLs (171 of 188), the 

fraction was less than in either IDH1mut or IDH2mut AMLs (89% vs 99% and 99%, respectively). 

Similarly, TET2mut-specific DMCs showed subtle hypermethylation (Figure S3B). TET2mut-

specific DMRs were also not enriched for CGIs and promoters compared to a set of regions 

commonly hypermethylated in AML (12% of TET2 DMRs overlapped a CGI vs. 54% of 

common hypermethylated DMRs; 17% of TET2 DMRs overlapped a promoter vs. 31% of 
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hypermethylated DMRs; see Figure S3C-D), suggesting these regions do not reflect CGI 

hypermethylation.   

To investigate the interaction between IDHmut and TET2-mediated demethylation, we compared 

TET2mut-specific and IDHmut-specific DMRs and performed oxidative bisulfite sequencing (38) 

to measure 5-hydroxymethylation (5hmC) in TET2mut, IDHmut, and TET2wt/IDHwt samples. This 

analysis showed that 68% (127 of 188) of the TET2mut-specific DMRs overlapped an IDHmut-

specific hypermethylated region (Figure 3B; P<0.0001 using a permutation test for overlaps 

using all DMRs identified in any AML group). TET2mut AMLs also displayed higher methylation 

levels at the combined set of 4,541 IDHmut-specific DMRs compared to CD34+ cells (mean 

methylation of 0.35 vs. 0.26; 40% of DMRs with increased methylation via beta binomial 

hypothesis testing with q<0.05; Figure 3C-D). Analysis of 5hmC using paired oxidative and 

standard whole-genome bisulfite sequencing (oxWGBS and WGBS with conversion rates 

ranging from 73%-83%; see Figure S3E) demonstrated low calculated levels of 5hmC across the 

genomes of all samples (0.44-0.66% in TET2mut, 0.52-1.22% in TET2wt, 0.17-0.25% in IDHmut; 

Figure S3F), with higher levels in enhancer regions (Figure S3G) and identifiable peaks at 

selected loci (Figure S3H). Calculated 5hmC was statistically higher in IDHmut DMRs compared 

to regions that were hypermethylated in other AML samples or in constitutively methylated 

heterochromatic regions (adjusted P=0.0009 and P=4x10-7 for a difference in mean 5hmC in all 

samples at IDHmut DMRs vs. 4,586 commonly hypermethylated DMRs and 105,519 

heterochromatin regions, respectively; see Figures 3E, S2I-J). AML samples with TET2, IDH1, 

or IDH2 mutations had lower calculated 5hmC levels at IDHmut DMRs compared to AMLs that 

were wild type for these genes (Figures 3E, S2I-J), providing evidence that these mutations 

influence methylation turnover at these loci. 



44 

 

2.4.4  DNA hypermethylation in IDHmut AML cells requires DNMT3A 

To assess whether de novo DNA methylation by DNMT3A contributes to IDHmut-associated 

hypermethylation, we analyzed methylation levels at IDHmut-specific DMRs in seven AML 

samples with co-occurring IDH1 (N=5) or IDH2 (N=2) and DNMT3AR882 mutations (R882 

mutations have a more severe hypomethylation phenotype than other DNMT3A mutations 

(4,39)). Interestingly, although DNMT3AR882/IDHmut AMLs were still hypermethylated at 

IDHmut-specific DMRs, the degree of hypermethylation was diminished, with 67% of these 

regions having significantly lower DNA methylation levels than samples with IDH mutations 

alone (3024 of 4541 regions having a beta-binomial adjusted P<0.05; see Figures 4A-C, S3A). 

Similar findings were observed in 7 additional DNMT3AR882/IDHmut AML samples using 

methylation array data from the TCGA AML study (15) (Figure S4B). To further characterize 

the extent of this interaction, we analyzed DNA methylation levels in DNMT3AR882/IDHmut AML 

samples at hypomethylated DMRs in AMLs with the DNMT3AR882 allele (5). Surprisingly, these 

regions remained nearly fully methylated in the DNMT3AR882/IDHmut double mutant samples, 

with 93% of the regions having significantly higher methylation than AMLs with DNMT3AR882 

alone (4209 of 4541 regions having a beta-binomial adjust P<0.05; see Figures 4D-F, Figure 

S4C). Similar findings were observed in the AML TCGA data (15) (Figure S4D), strongly 

suggesting that DNMT3A-mediated methylation and TET-mediated demethylation occur at the 

same places in the genome. 

2.4.5 IDHmut-specific hypermethylated DMRs are enriched for enhancers 

We next asked whether IDHmut-specific DMRs were associated with certain chromatin states. 

Annotation of these DMRs with chromatin states in CD34+ cells (36) demonstrated that 44% 

occurred in enhancers, which was a 2-fold enrichment over regions commonly hypermethylated 

(Figure 5A). This enrichment was not observed in analyses on DMRs identified in other AML 
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subtypes (Figure S5A-C). We further defined this association using ChIP-seq peaks for active, 

weak, and poised enhancers using ChIP-seq data for H3K27ac, H3K4me1, and H3K27me3 

modifications from 16 primary AML samples, including 2 with IDH mutations. This 

demonstrated that 47% of the IDHmut DMRs overlapped an active enhancer, compared to 3% and 

1% that overlapped poised and weak regions, respectively (Figures 5B-D). In comparison, 

commonly hypermethylated regions showed less overlap with active enhancers (13% of DMRs) 

and greater intersection with repressive H3K27me3 marks (Figure 5D). Analysis of IDHmut-

specific DMRs for transcription factor (TF) binding motifs identified binding sites for 

hematopoietic-associated TFs, including SPI1, RUNX1, and MYC (Figure 5E), further supporting 

the occurrence of IDHmut-specific hypermethylation in regions with potential regulatory activity. 

However, quantitative analysis of H3K27ac signal over these regions in samples with and 

without IDH mutations did not identify appreciable differences (P=0.24, Figure 5F), suggesting 

that hypermethylation does not modify H3K27ac levels within these regions.  

2.5 Discussion 
Recurrent gain-of-function IDH mutations increase DNA methylation, but the genomic locations 

and functional consequences of these changes have not previously been clearly defined. Our 

analysis of whole-genome bisulfite sequencing data from primary AML samples shows that 

methylation changes caused by these mutations is not widespread, but instead manifests as 

thousands of focal regions that are uniquely hypermethylated compared to normal CD34+ cells 

and AML cells without IDH mutations. These regions had lower CpG density and fewer CGIs 

than loci that are commonly hypermethylated in AML, suggesting that IDHmut-associated 

hypermethylation is caused by a distinct mechanism. The IDH2mut AMLs in our dataset had less 

pronounced hypermethylation than those with IDH1 mutations, but both were hypermethylated 
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at a highly overlapping set of loci. AMLs with biallelic inactivating TET2 mutations had a far 

less dramatic methylation phenotype, although many of the hypermethylated DMRs identified in 

these samples overlapped an IDHmut-specific DMR. Further, oxidative bisulfite sequencing 

demonstrated increased levels of 5hmC in these regions in AML samples that were wild type for 

TET2, IDH1 and IDH2; 5hmC levels were significantly lower in IDHmut or TET2mut samples in 

these regions, providing evidence that these mutations cause increased DNA methylation by 

impairing TET-mediated DNA demethylation. Regions with IDHmut-specific hypermethylation 

were enriched for active enhancers, many of which formed direct interactions with highly 

expressed AML genes, including MYC and ETV6. Although increased methylation at these loci 

was not associated with repressed chromatin or lower gene expression in IDHmut AML samples, 

this finding demonstrates that IDHmut-associated hypermethylation affects the regulatory 

sequences of genes that may contribute to AML pathogenesis. 

This study adds new context to the dynamics of de novo DNA methylation and active 

demethylation pathways in normal hematopoietic cells and in AML. The fact that IDHmut-

associated hypermethylation occurs at regions with low levels of DNA methylation in normal 

CD34+ cells suggests that de novo DNA methylation and TET-mediated demethylation are both 

active in these regions, despite their low steady-state methylation levels. This is supported by the 

observation that AML samples with co-occurring IDH and DNMT3AR882 mutations show 

significantly attenuated hypermethylation, and that IDHmut-specific DMRs have high levels of 

5hmC, which is produced from 5mC as a substrate. Remodeling of DNA methylation by these 

processes in specific regions has been reported previously in studies of embryonic stem cells, 

which have shown that methylation and active demethylation are in equilibrium at many loci 

(1,2), and may be maintained by the occupancy of methylation and demethylation complexes 
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(43). Our analysis suggests this equilibrium also exists in normal hematopoietic stem/progenitor 

cells and is disrupted in the presence of mutant IDH alleles, leaving de novo DNA methylation 

unopposed. The focal nature of IDHmut-associated hypermethylation implies that activity (or 

occupancy) of DNMT3A and TET enzymes is not diffuse and may instead be targeted to specific 

genomic regions. The genomic or epigenetic features directing this activity are unclear (44), but 

the enrichment of IDHmut DMRs in active enhancers suggests that components of active 

chromatin may recruit methylation and demethylation machinery. The convergence of these 

processes at enhancers could provide clues as to why mutations with opposite effects on DNA 

methylation both contribute to AML development via dysregulation of common target genes. 

Our analysis of 3D genome interactions involving IDHmut-specific DMRs found that these 

sequences directly interact with genes that are highly expressed in hematopoiesis and AML (e.g., 

MYC and ETV6). Contrary to the canonical relationship between DNA methylation and activity, 

hypermethylation in the IDHmut AML samples does not appear to repress either the enhancer 

elements or expression of their target genes. Other regulatory factors may therefore be dominant 

to DNA methylation at these loci, and result in persistently high gene expression. It is also 

possible that regions of active chromatin, such as enhancers (and superenhancers), have high 

rates of methylation turnover, and are therefore more susceptible to perturbations in methylation 

and demethylation (1,2). Focal hypermethylation may occur in DNA elements bound by factors 

that contribute to ‘fine-tuning’ these enhancers in specific cellular or developmental contexts, but 

that do not drive their activity in AML cells. Additional studies will be necessary to understand 

whether enhancer hypermethylation is a consequence of decreased occupancy of these 

modulating factors (45), or whether it directly prevents proper regulation in ways that contribute 

to AML development. 
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Figure 2.1. Genome-wide DNA methylation patterns in 51 primary AML samples and normal 

CD34+ cells 

A) Summary of the mutations in 51 primary AML patients analyzed using whole-genome 

bisulfite sequencing. B) Principal component analysis of genome-wide methylation in AML 

samples and CD34+ cells. Points show the values of the first and second principal components 

by variance explained from an analysis of genome-wide methylation summarized in mean 

methylation in 1 kb bins, with colors representing the defining mutation for each sample. 

Stratification of IDHmut samples from CD34+ cells and AML samples with DNMT3AR882 

mutations are highlighted by colored ellipses. C) Two-way hierarchical clustering of relative 

(difference from CD34+ cells) mean methylation levels in genomic regions define by 15 

chromatin states (36) in CD34+ cells, where rows are AML samples and columns are chromatin 

states. Blue is less methylated than CD34+ cells and red is more methylated. IDH1 and IDH2 

mutation status are indicated in the colored bar on the left, and selected chromatin states are 

shown underneath the panel. D) Mean methylation levels in the enhancer chromHMM state 

(derived from publicly available CD34+ epigenetic data) from WGBS for CD34+ cells (N=6) 

and AML subtypes (IDH1mut or IDH2mut, n=15; TET2mut, n=5; DNMT3AR882, n=6; 

DNMT3AR882/IDHmut, n=7; normal karyotype with NPM1c and wild-type IDH1, IDH2, TET2, 

and DNMT3A, n=4; Normal karyotype with wild-type NPM1, IDH1, IDH2, TET2, and 

DNMT3A, n=4; CBFB-MYH11, n=3; KMT2A-ELL, n=3; RUNX1-RUNX1T1, n=3). E. Mean 

methylation levels for ~28 million genome-wide CpGs in CD34+ cells and AML subtypes. F) 

Mean methylation at CpG islands in CD34+ cells and AML subtypes. G) Number of 

differentially methylated regions (DMRs) identified for each AML subtype compared with 

normal CD34+ cells. Teal and orange bars represent hypomethylated and hypermethylated 

DMRs with respect to normal CD34+ cells, respectively. Mean number of CpGs per DMR (top 

panel) and DMR length (bottom panel) are shown for each AML subtype. H. Mean methylation 

in IDHmut DMRs in IDHmut samples versus CD34+ cells. The red line indicates the percent of all 

DMRs with a mean methylation in CD34+ cells less than 0.3.   
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Figure 2.2. Characterization of IDHmut-specific DMRs. 

A) Mean methylation in all IDH1mut associated DMRs vs. CD34+ cells (n=6,309; black dots) and 

in IDH1mut-specific DMRs that are unique compared to all other AMLs (n=4,388; red dots).  B) 

Mean methylation in all IDH2mut associated DMRs vs. CD34+ cells (n=4,195; black dots) and in 

IDH2mut-specific DMRs that are unique compared to all other AMLs (n=2,552;red dots). C) 

Locus heatmap showing mean methylation values by group for the union of IDH1mut and 

DH2mut-specific DMRs, where each column is centered over the DMR with the window 

extending 5kb upstream and downstream of the DMR center. D) Mean methylation across all 

IDH1/2mut-specific DMRs (rows) in 15 individual IDHmut cases (columns). The mutation status 

of IDH1, IDH2, and NPM1 are indicated by the colored bars above the heatmap. Note that all 

AML samples in this panel are wild type for DNMT3A and TET2. E) Aggregate DMR 

methylation across 4,388 IDH1mut specific DMRs and 2,552 IDH2mut specific DMRs 

respectively. F) Fraction of generically hypermethylated DMRs, IDH1mut specific DMRs, and 

IDH2mut specific DMRs overlapping functional genomic elements. G) Distribution of CpG 

densities across generically hypermethylated regions in primary AML and IDH1mut- and 

IDH2mut-specific DMRs.  
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Figure 2.3. TET2mut AMLs have modest hypermethylation that overlaps IDHmut-specific DMRs. 

A) Mean DMR methylation across 2512 TET2mut DMRs called vs. CD34+ cells (black points) 

and 121 in TET2mut-specific DMRs (red points) in TET2 mutant samples versus all other AMLs 

that are wild type for IDH, TET2, and DNMT3A. B) Intersection of in TET2mut-specific and 

IDHmut-specific DMRs. C) Aggregate methylation over IDHmut-specific DMRs in IDHmut and in 

TET2mut AML and CD34+ cells. D) Locus heatmap of mean methylation values for all IDHmut-

specific DMRs (rows), where each column is centered over the DMR with the window extending 

5kb up- and down-stream the DMR center point. E) Mean 5hmC (WGBS minus oxWGBS) 

levels in IDHmut, TET2mut, and IDHwt/TET2wt AML samples at 105,519 ChromHMM 

heterochromatic regions, 4,586 generically hypermethylated regions (i.e., regions that were 

hypermethylated vs. CD34+ cells in at least 2 AMLs without IDH1, IDH2, or TET2 mutations), 

and 4,541 IDHmut-specific hypermethylated DMRs.  
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Figure 2.4. DNMT3AR882/IDHmut double mutant AMLs display an attenuated focal 

hypermethylation phenotype. 

A) Locus heatmap of mean methylation at IDHmut DMRs (rows) in IDH1 or IDH2 mutant, 

DNMT3AR882/IDHmut double mutant, and DNMT3AR882 AMLs, and CD34+ cells. B) Distribution 

of IDHmut-specific DMR methylation levels by AML subtype.  C) Example IDHmut-specific 

DMR locus within the ETV6 gene demonstrating an intermediate methylation phenotype of 

double mutant samples with respect to IDHmut and DNMT3AR882 mutant AMLs. D) Methylation 

locus heatmap of average subtype methylation across DNMT3AR882 DMRs called vs. CD34+ 

cells in IDHmut, DNMT3AR882/IDHmut double mutant, and DNMT3AR882 AMLs, and CD34+ cells. 

E) Distribution of DNMT3AR882 DMR methylation levels by AML subtype. F) Example 

DNMT3AR882 DMR locus within the MLLT1 gene, demonstrating the hypomethylation phenotype 

of DNMT3AR882 mutant samples with respect to IDHmut and DNMT3AR882/IDHmut double mutant 

AML samples.  
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Figure 2.5. IDHmut-specific DMRs are enriched for putative enhancers. 

A) Distribution of ChromHMM chromatin states from CD34+ cells represented in IDHmut-

specific DMRs. Enrichment of chromatin states within IDHmut-specific DMRs is shown with 

respect to the frequency of states overlapping regions of common CpG island hypermethylation. 

B) Enhancer-based annotation of common hypermethylated regions, IDH1mut, and IDH2mut 

DMRs, where DMRs intersecting an H3K27ac peak alone or in combination with H3K4me1 

constitute active enhancers, an H3K27ac peak in combination with H3K27me3 constitutes 

poised enhancers, and H3K4me1 alone constitutes a weak enhancer profile. C) Examples of 
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intragenic and genic enhancer regions exhibiting IDH1mut, IDH2mut, or IDH1/2mut 

hypermethylation compared with CD34+ cells and other AML subtypes. D) Heatmap of 

enhancer histone modifications and heterochromatin modifications over IDHmut-specific DMRs 

(left) and generic hypermethylation (right) in CD34+ cells (N=4 H3K27ac, N=7 H3K3me1, and 

N=7 H3K27me3), IDHmut AML (n=3), and IDHwt AML samples (N=9 H3K27ac, N=10 

H3K3me1, and N=24 H3K27me3). E) Differential active enhancer signal (H3K27ac) for all 

AML-associated putative enhancers (black points) compared to putative enhancers intersecting 

an IDH1/2mut-specific DMR (red points). F) HOMER motif enrichment analysis of IDH1/2mut-

specific DMRs with respect to a background set of generically hypermethylated regions. G) 

Enrichment analysis of TF binding events for 445 TFs within IDH1/2mut-specific DMRs.  

 

 

Figure 2.6. IDHmut-specific DMRs are enriched in superenhancers and interact with highly 

expressed genes in AML. 
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A) Schematic of DMR and enhancer-associated DMRs (eDMR) and their interaction with target 

genes based on intersection HiC-defined genome loops. B) Rank ordered enhancer regions based 

on H3K27ac signal in a representative IDHmut AML sample, annotated by presence of 

overlapping IDHmut-specific DMRs (absence of DMRs indicated by green points, greater than 

one DMR indicated by orange points) and computationally-defined ‘superenhancer’ (above red 

line). Enhancers of specific hematopoietic genes are designated. C) Distribution of number of 

IDHmut-specific DMRs overlapping a set of AML consensus superenhancers from H3K27ac data 

from 4 primary samples (N=779). D) Distribution of normalized gene expression values for all 

expressed genes (orange histogram) and a set of 750 eDMR target genes (blue histogram) in 

IDHmut AML samples. E) Example IDHmut -eDMR locus displaying interactions with the MYC 

promoter. A zoomed-in view of the locus demonstrates focal enhancer hypermethylation in 

IDH1mut (purple) and IDH2mut (green) samples compared with CD34+ cells (blue). Normalized 

MYC expression is shown for 17 CD34+ cord blood cell samples, 6 and 14 IDH1mut and IDH2mut 

samples, and 91 IDHwt samples. F) Example IDHmut-DMR locus in a candidate enhancer that 

displays robust interactions with the ETV6 promoter. A zoomed-in locus view demonstrates focal 

enhancer hypermethylation in IDH1mut (purple) and IDH2mut (green) samples compared with 

CD34+ cells (blue). Normalized ETV6 expression is shown for CD34+ cells, IDH1mut and 

IDH2mut samples, and IDHwt samples (see E for sample sizes).  
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Chapter 3: Identification of functional 

regulatory elements affected by IDHmut-

associated methylation changes. 
 

Elisabeth R. Wilson, Mohamed Mahgoub, Heidi Struthers, Reza Ghasemi, and David H. Spencer       
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3.1 Introduction 
Considering our findings that IDH-mutation specific hypermethylation is enriched at genomic 

regions with features of active enhancers1, we decided to conduct a rigorous study of 3D 

chromatin interactions in samples with and without IDH mutations to better define this 

relationship and the genes that may be affected by this enhancer hypermethylation phenotype. 

We performed a multi-tiered analysis of 3D genome architecture in 15 primary AML samples 

with and without IDH1 or IDH2 mutations. Analysis of these data was focused on the ~4,400 

IDHmut-specific DMRs identified in Aim 1 of this thesis. We evaluated potential associations 

between these DMRs and all levels of genome organization, including genome compartments, 

topologically associated domains (TADs), and chromatin loops and used ‘generically’ 

hypermethylated regions defined in Chapter 3 as ‘control’ regions to identify patterns that were 

uniquely associated with IDH-specific hypermethylation.  
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Genome interactions in this study were measured using Micro-C, an updated version of Hi-C that 

performs ‘all-vs-all’ chromatin conformation analysis at nucleosome-level resolution. While 

these data provide genome-wide information about genome architecture, this project focused 

specifically on characterizing features of the 3D landscape that overlap with enhancer-associated 

methylation uniquely observed in IDH mutant AML. Additionally, we performed capture on the 

same Micro-C libraries for >84,000 annotated gene promoters that enriched for promoter-

anchored interactions to more accurately evaluate interactions that may directly affect gene 

regulation. Promoter capture data was also used to search for evolved interactions that may not 

be enriched/detected in genome-wide Micro-C sequencing. Analysis of all interaction data 

allowed us to address specific hypotheses about the role of IDHmut-specific hypermethylated 

DMRs in AML. These include the association of IDHmut -specific DMRs with active vs. 

repressed compartments, the propensity of regions to undergo compartment switching when an 

IDHmut -specific DMR is present, and whether DMRs influence TAD boundary strength or the 

interaction frequency or expression of genes that directly interact with distal enhancers. At the 

level of loop interactions, we were able to perform differential analysis between CD34 normal 

cells, IDHwt AML, and IDHmut cases to assess differential interaction frequencies involving the 

set of IDHmut-specific DMRs that may indicate altered regulation of target genes. We also 

performed CUT&Tag for selected histone modifications (H3K4me3, H3K9me3, H3K27me3, 

H3K27ac) that enabled annotation of regions that form interactions with genes with putative 

regulatory functions.  
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3.2 Methods 

Patient samples 

Banked samples were selected based on mutation status and previous generation of whole-

genome bisulfite sequencing data. MicroC libraries were generated from 15 primary AML 

patients with varying mutation statuses including IDH1/2 mutations (n=4), DNMT3a R882 

(n=6), RUNX1-RUNX1T1 (n=2), and MLL rearrangements (n=3). Additionally, we generated 

libraries from normal donor-mobilized CD34+ cells to use as a comparison for assessing AML-

associated changes in 3D architecture. 

Micro-C and Capture-C 

Library preparation was performed with the Dovetail Micro-C Kit following the manufacturer’s 

protocol2. In brief, crosslinking of chromatin is performed in intact nuclei to stabilize the 

interactions between DNA and associated proteins. Crosslinked chromatin is then digested using 

Micrococcal nuclease (MNase) to fragment the genome at the sites of naked chromatin. DNA 

fragments are ligation under dilute conditions to form chimeric DNA molecules. Crosslinking is 

reversed through heat treatment to remove proteins, and the ligated DNA fragments are 

subsequently purified and prepped for high-throughput sequencing. The resulting library of DNA 

fragments represents the spatial proximity of genomic regions within the chromatin.  

ChIP-seq for histone modifications  

ChIP-seq was performed using ChIPmentation3 with the following antibodies: H3K27me3 

(9733S), and H3K27ac (8173S) from Cell Signaling Technology, and H3K4me1 (ab1012) from 

Abcam. Sequencing was performed on a NovaSeq 6000 (Illumina, San Diego, CA) to obtain ~50 

million 2x150 bp reads. Data were analyzed via adapter trimming with trimgalore and alignment 

to GRCh38 using bwamem4. Normalized coverage for visualization and analysis used the 
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deeptools “bamCoverage” tool5, and peaks were called with MACS26. Statistical comparisons 

with DESeq27 used raw fragment counts at peak summits, and visualizations were prepared with 

Gviz.  

RNA-seq analysis 

RNA-seq data from AML samples were obtained from the AML TCGA study8. TPM values 

were obtained using kallisto and gene counts were generated using the tximport Bioconductor 

package in R with the tx2gene option set to accomplish gene-level summarization. Previously 

published RNA-seq data for normal CD34+ cells generated using the same procedures that were 

used for the AML samples were obtained as raw sequencing reads from the short-read archive 

(GSE48846) and processed as described above. 

CUT & TAG  

CUT&TAG experiments were performed according to published recommendations from the 

Heinekoff lab9. Briefly, cells were fixed with formaldehyde to crosslink proteins to DNA. 

Membranes were subsequently permeabilized and cells were treated with primary antibodies 

specific to the nuclear protein of interest. Protein A-Micrococcal Nuclease (pA-MN) is added to 

DNA and localizes to target proteins via the Fc chain of the primary antibody. The addition of 

calcium triggers the MN activity, causing it to cleave the DNA and create small fragments of 

DNA. A transposase enzyme is used to insert sequencing adapters into the fragments, which are 

then PCR amplified and sequenced. 

Data processing and analysis 

BWA-MEM was used to align raw Micro-C data, while pairtools was used to record and sort 

valid ligation events, remove PCR duplicates, and generate pairs .bam files.  Cooler tools 

subsequently convert .bam files to contact matrixes that were used for downstream analysis. 
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Conformation analysis of Micro-C data utilized multiple published tools including the fanc 

eigenvector module for defining genome compartmentalization, cooltools insulation and 

SpectralTAD callers for topologically associated domain definition, and Chicago tools for 

Capture-C loop identification and mustache for loop calling in whole Micro-C data. 

Visualization tools include the python coolpup and cooltools modules, the Genova R packages, 

and the HiGlass server10–14. 

3.3 Results 

3.3.1 Micro-C analysis of primary AML samples and mobilized CD34+ cells 

from normal donors. 

We used Micro-C to measure genome interaction landscapes in 15 primary AML samples, 

including samples with IDH1/2 mutations (n=4), DNMT3A R882 (n=6), RUNX1-RUNX1T1 

(n=2), and MLL rearrangements (n=3). Additionally, we generated libraries from purified CD34+ 

hematopoietic stem/progenitor cells obtained from peripheral blood mobilized healthy normal 

donors. These were used as normal controls to define AML-associated changes in 3D 

architecture, particularly as they relate to AML-associated methylation phenotype. Libraries 

from all samples were generated in triplicate and pooled to reach an average number of read 

pairs per library of 589 million. The average fraction of non-duplicate read pairs per library was 

75%, of which an average of 40% supported cis long-range interactions greater than 10kb, 

indicating optimal library construction. The yield and quality statistics of our libraries suggested 

that we could run subsequent genome-wide analyses at resolutions as low as 5 to 10kb with 

significant results. In addition to sequencing full Micro-C libraries, probe capture was performed 

for all samples and sequenced to enrich promoter-associated interactions, adding further support 

for point interactions observed in the genome-wide data. 
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Genome compartments in AML cells remain intact compared to normal CD34+ cells. 

We initially analyzed genome compartmentalization in CD34+ normal cells and AML samples. 

Genome compartments are characterized by two states—the active compartment (compartment 

A) and the inactive compartment (compartment B). These compartments are defined by large 

genomic regions that tend to interact more frequently with each other than with regions in the 

opposing compartment and can be visualized as checkered patterns in the genome-wide 

interaction matrix from Micro-C or similar experiments. As is implied, the active A 

compartments tend to include expressed genes while the inactive B compartments are enriched 

for repressed genes and heterochromatic regions. Using a standard eigenvector (EV) 

decomposition approach from the Fanc-C suite of analysis tools15, compartments were called in 

all AML samples and CD34 normal samples. The returned EV contains a positive or negative 

value for each region of the genome (here we used 50kb bins) where the sign indicates the two 

separate compartments. The sign of the EV value was correlated with GC content of the 

corresponding genomic regions to orient the compartments so that the aggregate compartment 

regions with higher GC content were called compartment A. For subsequent analysis and figures, 

EVs were oriented so positive values represent compartment A and negative values represent 

compartment B.  

In agreement with previous findings demonstrating consistent compartment structure amongst 

cells in similar tissue types16, we found that genome-wide compartmentalization was largely 

conserved between the CD34+ stem/progenitor cells and AML. In all samples, the B 

compartment occupied slightly more of the genome than the A compartment (average 55% B, 

average 45% A; Figure 1). In addition to partitioning each sample into active vs. inactive 

compartments, we also compared AML samples to normal CD34+ cells and determined the 
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frequency of compartment switching in each sample (i.e. regions classified as A compartment in 

CD34+ cells that are found in the B compartment in AML, A→B; regions found in B 

compartment of CD34+ cells vs. A compartment in AML, B→A). A→B switches were more 

common across all AML samples regardless of mutation subclass and involved a mean of 6.1% 

of the genome (range: 3.2% to 11%) compared to a mean of 3.8% of the genome switching from 

B→A (range: 1.2% to 5.9%) (Figure 1). When assessing the consistency of switches between 

samples within the same mutation classification, we found that the locations of compartment 

switches were highly variable. Overall, the fraction of switches shared across all AMLs was 6% 

of the union of switched bins, and the average fraction of overlap observed within the IDHmut, 

DNMT3AR882, and MLL fusion mutational subsets was 11.4% of the subset union of switched 

bins (10.2% to 12.1%) (Figure 2). We only had two RUNX1-RUNX1T1 samples in our cohort, 

which resulted in a 54% fraction of overlap for switched bins between these two samples, 

however, we predict the fraction of shared bin switches in this subset would be comparable to the 

others if more samples were present.  

Hierarchical clustering of inter-sample Pearson correlation values based on compartment bins 

representing the top 10% of variance across AML samples revealed a distinct group containing 

three out of four IDHmut samples (including two samples with chromosomal fusions: RUNX1-

RUNX1T1 and a MLL fusion), separate from other IDHwt AML and CD34+ cells (Figure 3). 

Although the fourth IDHmut did not cluster with the others, it displayed a higher Pearson 

correlation with other IDHmut samples compared to any other mutational subclass of AML as a 

group. Clustering also revealed a distinct group containing four out of five DNMT3AR882 

samples; the fifth DNMT3AR882 sample had lower levels of correlation with the other 

DNMT3AR882 samples and increased correlation with MLL fusion cases despite any clear overlaps 
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in their mutation profiles (Figure 3). The samples with transcription factor fusions (2 KMT2A 

rearranged cases and 2 with RUNX1-RUNXT1 gene fusions) formed a separate branch of the 

dendrogram from the IDHmut and DNMT3AR882groups (Figure 3). As expected, CD34+ normal 

cells displayed a high level of correlation forming a unique branch of the dendrogram. Our 

clustering analysis of variable regions highlights subclass-specific features of 

compartmentalization that are otherwise difficult to detect on a genome-wide scale and suggests 

that the strong methylation phenotypes associated with IDHmut and DNMT3AR882mutations may 

contribute to subtype stratification at the compartment level. 

The active genome compartment is enriched for IDHmut-specific hypermethylation. 

To better characterize associations between IDHmut-specific methylation changes and 

compartmentalization, we began by intersecting the set of ~4,500 IDHmut-specific DMRs and 

~4,600 commonly hypermethylated regions with CD34+ defined compartments. 92% of IDHmut-

specific DMRs and 70% of commonly hypermethylated regions overlapped A compartment bins, 

respectively, with the remainder of each set falling into B compartment bins. We calculated the 

enrichment of each DMR set for A and B compartments using methods that controlled for the 

total compartment size and DMR length. This analysis showed significant enrichment of IDHmut 

DMRs in the A compartment compared with commonly hypermethylated regions (1.89 vs. 1.23; 

Figure 4), while the opposite was true for the B compartment with common DMRs being 

overrepresented (0.48 vs. 0.07; Figure 4). These differences were not concentrated within in 

subset of compartment bins but rather were dispersed across the genome (Figure 5). This finding 

is consistent with our previous observation that IDHmut-specific DMRs are enriched within active 

enhancer regions, which, based on histone modification data from hematopoietic cells published 

by our group and others, tend to occur within the active compartment of the genome.  
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We next surveyed the distribution of compartment scores for all DMR-containing compartments 

in CD34+ normal cells and IDHmut AML to determine whether IDH-associated hypermethylation 

had more subtle effects on compartment-level interactions. Compartment scores summarized 

over the set of CD34+ defined compartments containing a DMR showed an overall trend towards 

lower compartment scores for A compartment DMR bins in three of four IDH mutant AML 

samples compared to normal and slightly decreased B compartment DMR bin strengths in two 

samples compared to normal (Figure 6). For example, a slight downward shift was observed in 

the distribution of positive compartment scores for three samples along with a slight upward shift 

in negative values for two samples (less negative values are consistent with weaker B 

compartment scores) when subsetted for compartments containing hypermethylated DMRs, 

suggesting these regions may form less robust interactions with genomic regions in their 

respective nuclear compartments. 

IDHmut-associated hypermethylation influences compartment assignment.  

We next directly tested the relationship between regions with altered compartment assignments 

and regions of IDH-associated hypermethylation. For each sample, we intersected the bins that 

had undergone a compartment switch with the set of IDHmut-specific DMRs and commonly 

hypermethylated regions. This analysis identified an average of 7.7% of A->B or B->A switched 

bins overlapped an IDHmut DMR in each sample.  When evaluating the rate of DMR overlap 

based on switch direction, we found that DMRs more often coincided with a switch from the 

active compartment to the repressed compartment (fraction of A->B switches: mean 6.4%, range: 

3.9%-9.6%; fraction of B->A switches: mean 2.8%, range: 2%-3.6%). The same analysis 

repeated for the commonly hypermethylated regions identified an average of 8% of all switched 

bins overlapping a common DMR per sample. A to B switches were again over-represented in 
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this set of common DMR-associated switches, but to a lesser extent than the IDHmut-specific 

DMRs (A->B mean 9%, range: 8%-11.4%; B->A mean 5.6%, range: 4.7%-8%). Given that a 

similar fraction of switched bins overlap IDHmut-specific DMRs as they do commonly 

methylated regions, these data suggest that hypermethylation associated with IDH mutations 

more often coincides with a switch from the active compartment to the repressed compartment 

compared with common hypermethylation, which is consistent with the enrichment of IDHmut-

specific DMRs for the A compartment over the set of commonly hypermethylated regions.  

To assess whether the A>B or B>A switching is a potential consequence of DNA 

hypermethylation, we tested the enrichment of IDHmut-specific DMRs for compartment switches 

in IDHwt samples. We noted that the number of total switches and switch direction were variable 

amongst patients and may account for differences in the frequency of DMR overlaps. We 

therefore calculated an enrichment of IDHmut-specific DMRs for switches with respect to 

common hypermethylation switches in each patient. Overall, switched bins in IDHmut samples 

had a modest increase in enrichment for IDHmut-specific DMRs compared with IDHwt samples 

(average enrichment 0.64 vs. 0.56, respectively; Figure 7, upper left).  When looking specifically 

at the set of A>B switches across samples, the enrichment of IDHmut -specific DMR overlap was 

similarly pronounced in IDHmut cases compared with IDHwt cases (average enrichment 0.68 vs. 

0.6, respectively; Figure 7, upper right). We did not note any clear differences in the enrichment 

of IDHmut DMRs for B>A switches between IDHmut and IDHwt samples (average enrichment 

0.51 vs. 0.53 respectively; Figure 7, lower left). These data suggest that IDH mutant-associated 

hypermethylation may influence compartmentalization not only by weakening interactions 

within the active compartment but also by inducing compartment switching in certain regions.  
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IDH mutant samples were next compared to CD34+ normal cells both in aggregate and 

individually to assess for changes in compartment strengths before and after switching (i.e. in 

normal vs malignant states). On average, bins with a DMR that underwent a compartment switch 

had lower absolute compartment scores in CD34+ cells, indicating these regions had weaker 

interactions with their respective compartments across the genome. Likewise, the ‘switched’ 

compartment score in the IDHmut AMLs was also low, with a mean change in compartment score 

of < 1.5 (inside red lines; Figure 8). We characterized these events as weak A > weak B or weak 

B> weak A switches. However, we also observed events characterized by weak > strong 

compartmentalization switches and strong > weak switches (average change in compartment 

score of > 1.5 (outside red lines); Figure 8). Although we did not observe an overall correlation 

of DMR-containing bins with strong vs. weak switches, there were examples of strong switches 

associated with DMRs that may individually represent the effects of IDHmut-associated 

hypermethylation on compartmentalization, warranting further analysis in follow up studies.  

These patterns were observed in individual samples to varying degrees, representing sample-to-

sample heterogeneity in compartment switching while maintaining overall trends (Figure 9). In 

only one sample did we observe strong B > strong A switches (average change in compartment 

score of > 1.5), all of which occurred on chromosome 19 suggesting that unique 

constitution/regulation/3D organization associated with chr19 may be present in that patient 

(Figure 9). This analysis of IDH mutant AML samples suggests that DMR-associated switches 

may occur at equivocal regions, for instance, compartment bins that are weakly in the A or B 

compartment in normal cells and may naturally fluctuate between the two, rather than at regions 

strongly associating with one compartment vs the other. Though not systematically measured, a 

manual review of DMR-associated switches supported this hypothesis, showing a prevalence of 
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these events at the borders of A and B compartments in normal CD34+ cells, where values 

inherently tend to be closer to zero. 

Gene expression changes in DMR-resident switch regions correlate with compartment 

activity. 

To better understand the functional consequences of compartment switching associated with 

IDHmut hypermethylation, we summarized gene expression levels and AML-associated 

expression changes based on localization within compartment bins that had undergone a switch. 

Bulk RNAseq data generated for three of four IDHmut patients and six CD34+ normal donor 

samples were used to obtain expression values for the sets of genes contained within DMR-

associated switch regions; switched regions that harbored commonly hypermethylated DMRs 

were used as controls. Individual sample analysis showed genes within both IDHmut-specific and 

common hypermethylated DMR-associated regions had a bimodal pattern of normalized 

expression (Figures 10 and 11). Consistent with previous observations, the regions associated 

with IDHmut-specific DMRs were enriched for highly expressed genes compared with the 

common hypermethylated set1. In all cases of A to B switches, an overall shift toward higher 

expression was observed in the AML sample compared with CD34+ normal cells for these sets 

of genes (Figure 10). Though statistically difficult to quantify, this shift appeared greater for the 

DMR-associated A>B switch genes than the background set. A similar analysis was conducted 

for DMR-associated B>A switches, revealing a modest shift in gene expression to the right for 

AML samples compared with CD34+ normal cells that was mirrored in the background set 

(Figure 11). Expression changes were next evaluated on a gene-by-gene basis between CD34+ 

cells and IDHmut AML samples. Interestingly, although expression differences were variable, 

some genes displayed consistent expression changes across samples that suggest the tendency for 

hypermethylation associated with IDH mutations to influence their expression (Figure 12). 
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Genes consistently upregulated in association with B>A DMR switches included previously 

reported cancer-related factors COP117, FTO18, and HGF19, while genes consistently 

downregulated in association with A>B DMR switches across IDH mutant AMLs included 

known hematopoietic factors AKT320, MN1h21, and HDAC922. We did not observe any consistent 

examples of upregulation for A>B switches or downregulation associated with B>A switches, 

that is, for all consistent changes (observed in at least two of three cases), upregulation correlated 

with a switch into the more active compartment of the nucleus while downregulation correlated 

with a switch to the repressed compartment. Taken together, these results suggest that IDHmut-

specific hypermethylation may impact factors governing nuclear compartmentalization, and in 

certain cases affect regional gene expression without directly targeting the regulatory sequence 

of a gene. 

3.3.2 Relationship of IDHmut associated hypermethylation with topologically 

associated domain architecture. 

We were next interested in assessing the relationship between topologically associated domains 

(TADs) and DNA methylation in normal hematopoietic progenitors and primary AML samples. 

TADs are distinct, self-contained genomic regions that can promote interactions necessary for 

gene expression and prevent spurious interactions between neighboring regulatory units23. By 

definition, regulatory elements within a TAD have more frequent interactions with genes 

contained in that domain vs. adjacent regions. Broad topological domains tend to be conserved 

across species, suggesting their functional importance in genome organization while sub-TADs 

show a greater degree of heterogeneity across species and are thought to be consistent with 

tissue-specific expression patterns24. CTCF is a critical factor in TAD formation and 

maintenance, often demarcating the edges of strong domains where it is bound25. In certain 

disease contexts, loss of TAD insulation and concomitant gene expression changes have been 
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correlated with the inhibition of CTCF binding at normal domain boundaries26. Although the 

enrichment of CTCF binding at TAD boundaries has been well established, the epigenetic 

patterns governing the dynamics of CTCF binding are less well understood. Here, we investigate 

the potential influence of DNA methylation on CTCF-mediated TAD boundary maintenance in 

primary AML, along with the downstream consequences on gene regulation.  

Large domains are conserved in AML cells, while local topology exhibits AML-specific 

features.  

We started by calling TAD boundaries in CD34+ normal cells and individual AML samples 

using different methods including Arrowhead, the gold standard approach for Hi-C analysis 

developed by the Aiden lab, as well as the HiCExplorer, SpectralTAD, and cooltools domain 

calling modules10,11,27. Given the significant overlap in boundary calls across methods, we 

proceeded with the set of TADs identified by the cooltools suite, which has been suggested for 

analyzing Micro-C data. Cooltools uses a sliding diamond window method to generate an 

insulation profile for each contact matrix. Moving across the length of the genome, contacts 

within the window for each position are summed and inspected for local minima consistent with 

decreased contact frequencies between upstream and downstream loci. These highly insulated 

positions are then assigned a boundary strength using a peak prominence model and thresholded 

as weak vs. strong boundaries as shown below for one example region encompassing the MYC 

locus in CD34+ normal cells (Figure 13).  

Using rigorous thresholding parameters for the cooltools insulation calculations, we found the 

total number of strong boundaries (aka TAD boundaries), as well as the distance between 

boundaries, was largely consistent amongst CD34+ normal cells and primary AML samples with 

varying mutational profiles at a lower resolution (100kb sliding windows), likely representing 
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domain architecture consistent with blood cell identity (Figure 14, right panel). As expected, the 

number of TADs detected increased as the resolution increased (30kb and 50 kb sliding 

windows), detecting local structures demonstrating sub-TAD architecture (Figure 14, left and 

middle panels). What was surprising, however, was that the increased resolution also revealed 

unique features of TAD compartmentalization in AML samples compared to normal. Notably, 

AML samples on average had an increased number of TAD boundaries compared with normal 

cells, and IDH mutant samples consistently exhibited a higher number of TAD boundaries than 

any other AML subtype when using a 30kb sliding window. The increase in local TAD 

formation we observed in AMLs vs. normal cells may represent a tendency for transformed cells 

to adopt new chromatin interaction patterns that support a proliferative phenotype, or perhaps 

have no functional consequence but are the result of underlying mutations and epigenetic forces. 

It will be important to investigate this possibility in future studies linking the mechanism of 3D 

genome organization with AML phenotypes beyond the differential methylation patterns studied 

in this thesis.  

We were struck by the significant increase in TAD boundaries observed in IDH mutant samples 

compared to other AMLs and wondered whether this may be related to IDH mutant 

hypermethylation. However, no clear association was identified between the TAD boundaries 

and IDHmut-specific DMRs via an overlap analysis. This suggests that most DMRs do not 

directly affect TAD boundary formation or stability but does not formally rule out the possibility 

of longer-range effects or other downstream consequences of hypermethylation that could 

increase TAD structures. It will be interesting to follow up on this finding and explore possible 

explanations related to cellular metabolism, inhibition of histone-modifying complexes, 

oxidative stress, etc., either individually or in combination with DNA hypermethylation. 
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CTCF binding events are enriched at strong boundaries in normal CD34+ cells. 

Since TAD formation is known to be facilitated by the structural DNA binding protein CTCF, 

we wanted to evaluate how well CTCF binding correlated with the TAD boundaries identified in 

our samples. For this analysis, we used publicly available ChIPseq data from CD34+ normal 

cells and a consensus set of TAD boundary regions identified in the Micro-C data from CD34+ 

normal samples. We first compared CTCF binding signal with the boundary scores for each 

overlapping interval. Although CTCF ChIPseq signal was observed to varying degrees across the 

range of boundary scores, it was significantly enriched in regions with the highest scores (i.e. 

greatest insulation strengths) (Figure 15). Interestingly, when we looked at the set of TAD 

boundaries containing an IDHmut-specific DMR, we found that strong boundaries (those clearing 

a cooltools statistical threshold of 0.67 boundary score) were enriched for IDHmut-specific 

hypermethylation compared to the set of commonly hypermethylated DMRs (Figure 16, right of 

the threshold line). In contrast, weaker boundaries showed little difference in the frequency of 

overlap between the two sets (Figure 16, left of the threshold line). This observation suggested to 

us that differential methylation in IDH mutant samples may uniquely affect a set of boundaries 

regulating and or maintaining a set of interactions important for normal cell development. We 

therefore wanted to define a set of regions with CTCF occupancy that could be tested for 

changes in boundary strength associated with differential methylation.  

The two independent thresholding models used to identify the set of strong boundaries (Li, Otsu) 

nicely capture the boundary strength cutoffs for clear CTCF enrichment (Figure 15), the Li 

threshold being more permissive while the Otsu threshold is more stringent. Using each 

threshold value, we identified a set of strong boundaries containing statistically significant CTCF 

binding peaks in CD34+ normal samples. The two sets contained a similar number of 
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boundaries, that is, the permissive threshold added only 6% to the total number of CTCF resident 

boundaries, therefore we used the more permissive Li threshold to define an inclusive set of 

1,389 CTCF boundaries for subsequent TAD analysis (see below).  

TAD boundaries containing hypermethylated CTCF binding sites are weakened in IDH 

mutant AML compared to normal cells. 

To measure potential changes in TAD boundaries influenced by IDHmut-specific 

hypermethylation, we intersected the boundary CTCF peaks with IDHmut-specific DMRs 

(henceforth referred to as CTCF-DMR boundaries) and compared the strength of resultant 

boundaries between CD34+ normal cells and IDHmut AML samples. CTCF-associated 

boundaries can represent strong point interactions between distal regulatory elements, consistent 

with corner loops or focal maximal falling off the diagonal in contact matrices, as well as borders 

between neighboring regions with diffuse by highly interactive chromatin. We discuss findings 

from our detailed analysis of the point-to-point interactions facilitated by CTCF in a later 

section. Here we report on the analysis of all TAD boundaries in aggregate.  

Although results were variable across individual IDH mutant cases, average boundary strengths 

at the set of CTCF-DMR bounds were significantly decreased in the set of IDH mutant AML 

samples compared to CD34+ normal cells (Figure 17, left panel). We also assessed boundary 

strengths for the same regions in IDHwt samples to help determine if the observed differences 

were specific to IDH mutant AML or generalizable across all AML samples in our data set. We 

found a similar level of sample-to-sample heterogeneity for IDHwt samples, however, the trend 

towards decreased scores for CTCF-DMR boundary was not observed to the same extent for the 

other mutation subtypes (Figure 17, right panel). The same analysis was repeated with the 

control set of commonly hypermethylated regions, revealing a more even distribution of both 
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strengthened and weakened boundaries across AML subtypes when compared to normal cells. 

Taken together, these results suggest that IDHmut-specific hypermethylation may uniquely affect 

genome regulation at the level of topological domain architecture, perhaps disrupting strong 

insulator regions through methylation-dependent inhibition of CTCF binding. Additional 

experiments measuring CTCF occupancy at these regions in IDH mutant AML samples will be 

important to follow up on this hypothesis. 

To better quantify the differences between mutation subtypes, we performed a clustering analysis 

of CTCF-DMR boundary scores across all AMLs. Although the differences were relatively 

subtle, we observed an overall decrease in strength across the set of CTCF-DMR boundaries for 

AMLs compared to CD34+ normal cells. In this cohort, IDH mutant cases did not form a distinct 

clustering, suggesting a degree of heterogeneity between these samples consistent with overall 

heterogeneity in AML samples (Figure 18). We did, however, notice that DNMT3AR882 samples 

formed a distinct cluster from other mutation subclasses, which may capture a unique TAD 

phenotype associated with DNMT3AR882 associated hypomethylation. We previously described a 

relationship between regions of DNA hypermethylation in IDH mutant samples and high 

methylation turnover rates, where we believe active methylation and de-methylation occur in a 

balance to maintain a baseline state. The fact that other AMLs with altered methylation activity 

may display a structural phenotype in the same set of regions is an interesting observation that 

could be the subject of future investigations. The same analysis was repeated for commonly 

hypermethylated CTCF boundaries demonstrating greater dispersion of DNMT3aR822 subtypes 

compared to the analysis of CTCF-DMRs, suggesting that regions associated with features of 

IDH hypermethylation may stratify a consistent phenotype in certain patients with altered 

methylation. 
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TAD with hypermethylated CTCF boundary elements exhibit reduced insulation in IDH 

mutant AML compared to normal cells. 

We next looked to see if there were any high-level patterns unifying the set of weakened 

boundaries or the intervening region of the associated TADs that could suggest potential 

consequences of insulator hypermethylation. A reduction in insulation suggests that the local 

interaction frequencies may be altered in these samples, therefore we assessed intra- and inter-

TAD interactions across the set of CTCF-DMR boundaries in normal samples and IDH mutant 

samples. As expected, interaction frequencies between neighboring TADs decreased as a 

function of distance, consistent with our understanding of genome organization, however, we 

noticed some sample-specific differences in the immediate TAD and neighboring TADs based 

on methylation status. IDH mutant samples had consistently reduced interaction frequencies in 

the resident CTCF-DMR TAD (intra-TAD) compared to normal samples, although interaction 

frequencies were generally decreased for all CD34+ defined TADs in these samples (Figure 19). 

Changes in inter-TAD interactions were less clear for these samples, overall exhibiting 

consistent interaction frequencies for n+1, n+2, and n+3 nearest neighbor TADs with normal 

cells (Figure 19). We see this phenomenon hold up when visualizing the contact matrix for 

implicated regions including an example on chromosome 8 that demonstrates how a decrease in 

insulation at a CTCF-DMR TAD boundary is accompanied by loss of interactions, including 

focal/point interactions, for the adjacent region (Figure 20).  

Lastly, we wanted to summarize gene expression in the TADs containing a CTCF-DMR in one 

or both boundaries to assess for any patterns in the set of affected regions and determine if 

decreased insulation is correlated with changes in gene expression. Based on the intersection of 

annotated genes with the set of affected TADs, we observed a significant increase in average 

gene expression for the set of all genes contained within affected TADs compared to unaffected 
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TADs (Figure 21).  Similarly, when we summarized genes in TADs with commonly 

hypermethylated CTCF sites in either or both boundaries, average expression was significantly 

higher than unaffected TADs and comparable to CTCF-DMR-affected TADs. Though very 

coarse, this analysis suggests that while hypermethylation tends to be focal, its localization may 

be reflective of the broader activity in a region—in this case, TADs with more active 

transcription. At this level of summarization, we did not observe any clear differences in gene 

expression associated with AML mutation status, suggesting that CTCF motif hypermethylation 

in insulator regions may not consistently alter the regulation of genes genome-wide. However, 

hypermethylation of regulatory elements in specific insulators may correlate with gene 

expression changes that are relevant for leukemia cell proliferation and will be important to 

follow up on in additional analyses.  

3.3.3 Relationships between IDHmut -specific hypermethylation and chromatin loops 

In addition to relationships between IDHmut-specific hypermethylation and higher-order genome 

organization, we were also interested in the local effects of methylation on interactions between 

gene promoters and regulatory elements. One of the most striking observations from our 

genome-wide methylation analysis in a mutationally diverse AML cohort was the enrichment of 

active enhancer regions in IDH mutant DMR1. Our. published study began to explore the impact 

of these changes on genome interactions using Hi-C data from two AML samples without IDH 

mutations generated in our lab and one published Hi-C data set from CD34+ normal cells. We 

used these data to link enhancer DMRs (eDMRs) to their cognate genes but recognized the 

limitations of this analysis given that we did not have data from IDH mutant AML samples. To 

expand our characterization of the functional consequences of enhancer hypermethylation, we 

used MicroC and CaptureC data from CD34+ normal cells and IDH mutant and wild-type 
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primary AML samples to identify enhancer-promoter interactions that may be uniquely 

influenced by IDHmut-specific DMRs. 

IDHmut-specific DMRs overlap chromatin loops to a greater extent than commonly 

hypermethylated regions in AML 

We first began by calling loop interactions from CaptureC data using the CHiCAGO (Capture 

Hi-C Analysis of Genomic Organization) pipeline28. This approach uses statistical models to call 

loop interactions in a sparse data set where information is concentrated around promoter-defined 

bait regions. We observed variability in the total number of CHiCAGO loops identified per 

sample at a resolution of 10kb with ~22,000 to ~78,000 CHiCAGO interactions identified in an 

individual AML sample and ~120,000 identified in CD34+ normal cells (Figure 22). A simple 

intersection of sample-specific loops with the set of IDHmut-specific DMRs and the control set of 

commonly hypermethylated regions demonstrated a proportional level of variability in the 

number of resulting DMR loops with the overall number of loop calls. The sample-to-sample 

variability in loop calls could be due to the transient nature of loop formation, or inherent 

differences in primary samples (patient-specific features, tissue banking, cell handling, etc.), 

sequencing depth, and/or the under-sampling nature of most capture datasets and analyses at the 

high resolution of loop interactions are likely more sensitive to variability due to such factors. 

For example, we noticed the large jump in loop counts for CD34+ cells was correlated with an 

increase in sequencing coverage in those samples.  

We next investigated the relationship between IDHmut-specific DMRs and chromatin loops by 

measuring overlaps between these regions and comparing this to commonly hypermethylated 

regions. Using this approach, we found that IDHmut-specific DMRs were uniformly enriched for 

point interactions compared to background hypermethylation across primary samples and CD34+ 
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normal samples, although to varying degrees (Figure 23). The sample-to-sample variability in 

enrichment is, again, likely due to technical aspects of the assay and would require greater 

sequencing depth per library and additional samples to adequately acknowledge any mutation-

specific patterns in the enrichment level if present. The overall finding, however, is consistent 

with our previous annotation of IDHmut-specific DMRs being uniquely enriched for active 

enhancers; regulatory elements that tend to be situated opposite gene promoters in loop 

interactions. 

IDHmut-specific DMRs occur in a set of focal interactions. 

Having identified enrichment for IDHmut-specific DMRs in point-to-point chromatin interactions, 

we were next interested in measuring potential differences in the interaction frequencies of 

eDMR loops between AML subtypes. Taking the full union of capture loops identified across 

AML and CD34+ normal cells, we clustered samples based on the normalized interaction 

frequencies for all loops intersecting an eDMR. Our analysis showed considerable heterogeneity 

across AML subtypes, however, the range of normalized interaction frequencies for most loops 

in this set was very narrow, potentially impeding the detection of any subtype-specific 

supervision (Figure 24). Similar results were observed when we clustered samples based on 

interaction frequencies of loops overlapping the set of commonly hypermethylated regions.  

To further assess the possibility of altered interaction dynamics between eDMRs and distal 

regions in hypermethylated AML, we performed aggregate peak analysis (APA) on the set of 

CD34+ eDMR loops in individual samples with and without IDH mutations. APA quantifies the 

enrichment of a set of interactions in aggregate by summing up contact frequencies in 

submatrices of the genome-wide contact matrix, each centered on a peak pixel representing the 

interaction of two distinct loop anchors. The focal enrichment for the set of interactions in 
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aggregate manifests as larger values at the center of the APA plot. For this analysis, we used the 

genomic coordinates of loops defined using CaptureC data to highlight a set of enriched 

interactions in the context of the complete micro-C data. At a resolution of 10kb, APA plots 

show a clear enrichment for eDMR loops in all samples including normal CD34+ cells, IDH 

wild-type, and IDH mutant cases (Figure 25, column 1). When compared with the set of CD34+ 

loops containing a commonly hypermethylated region in a loop anchor, the IDHmut-specific 

DMR loops showed increased signal intensity, suggesting they may coincide with a robust set of 

focal interactions in AML compared to commonly methylated regions that are more diffuse 

(Figure 25, column 2).  

IDHmut-specific hypermethylation influences CTCT-bound chromatin loops in AML 

compared to normal cells.  

Given the subtle differences in interaction frequencies across the full set of eDMR loops, we 

decided to focus our analysis on the loops where an eDMR intersected an established CTCF site. 

DNA methylation is known to influence CTCF binding29 and we therefore hypothesized that 

these loops may be preferentially affected by IDHmut associated hypermethylation. For this 

analysis, we began by identifying loop anchors containing a CTCF-binding site overlapped by an 

eDMR (CTCF-DMR). Although the breadth of impact a DMR has on adjacent regions isn’t fully 

clear and may be an interesting study in and of itself, we specifically wanted to identify 

regulatory elements whose hypermethylation could directly impact known binding factors. 

Measurements of direct CTCF binding in normal CD34+ cells are limited, so we used ChIPseq 

data from primary AML samples to infer a set of consensus interactions likely mediated by 

CTCF binding in AML. Using a union set of binding peaks from a diverse set of primary AML 

samples, we intersected CTCF binding events with IDHmut-specific DMRs to define a set of 866 

CTCF-DMRs for downstream analysis. These CTCF-DMRs were subsequently overlapped with 
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CD34+ normal cell CaptureC loop anchors to define interactions with a CTCF-DMR specifically 

in the anchor opposite the bait probe, identifying 1,080 interactions. We again performed 

enrichment analysis for interactions anchored on a CTCF-DMR region across AML samples. 

Although a statistical difference in the interaction frequency of CTCF-DMR loops was difficult 

to define between IDHmut samples and CD34+ normal cells, the overall interaction frequency of 

CTCF-DMR resident loops was decreased in IDHmut AML compared to normal (Figure 25, 

column 3). There was a similar decrease in the enrichment of CTCF-DMR resident loops in 

IDHwt AMLs compared with normal cells, however, we did not observe any clear differences 

between the AML subtypes (Figure 26, column 3). We reason that group-level differences in 

interaction frequencies may be difficult to detect at the resolution of our data, if present, or there 

may be a feature-specific reason we don’t see a difference between IDHmut samples and other 

AMLs—for example, if the enhancers marked by hypermethylation are depleted of CTCF or 

other methylation sensitive TF binding sites, we may not expect the difference in loop formation 

to be altered dramatically. It is also possible that if differences do indeed exist, the directional 

effects of hypermethylation on interaction frequency for this set of enhancers are heterogeneous, 

and when assessed in aggregate appear to be neutral. 

We also recognize that the set of CTCF peaks used in this analysis doesn’t fully account for 

CTCF binding events in CD34+ normal cells and may miss CTCF-mediated interactions present 

only in non-malignant cells. In the absence of CTCF ChIPseq data from normal cells, we used 

data from a previous study that performed ChIAPET to enrich for three-dimensional genomic 

interactions bound by CTCF in CD34+ normal progenitors. The assay is designed to enrich a set 

of proximity ligation events bound by CTCF but does not necessarily indicate which loop anchor 

harbors the CTCF binding site in the same way that ChIPseq detects discrete CTCF binding 
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events. We used this set of loop coordinates to broadly compare the signal of CTCF loops in 

normal CD34+ cells and AMLs, given our inability to subset these loops based on a direct 

overlap of CTCF binding events with a DMR. In aggregate, the set of CD34+ CTCF-associated 

interactions were the most enriched in the MicroC data from CD34+ normal samples, while all 

IDHmut AML samples consistently showed lower enrichment scores for these foci (Figure 25, 

column 4). Again, we did not observe any subtype-specific patterns in CTCF loop enrichment, 

suggesting that normal CTCF-bound interactions may be marginally reduced in AML cells 

compared to CD34+ cells, irrespective of mutational background (Figure 26, column 4). 

Although this analysis does not assess for novel CTCF-associated interactions present in AML, 

the fact that we observe an overall decrease in interaction frequencies mediated by CTCF 

binding does suggest that underlying differences in CTCF-associated interactions may be present 

in AML cells. 

IDHmut-specific DMRs are associated with diminished promoter interactions in AML 

compared to normal donor cells.  

In addition to surveying for AML-associated changes in normal hematopoietic stem/progenitor 

interactions, we also wanted to detect any novel interactions in IDHmut AMLs that may be the 

result of altered methylation (i.e. an IDHmut -specific interaction landscape). To address this, we 

used CHiCdiff, a differential looping module offered as part of the CHiCAGO pipeline, to run 

direct comparisons between IDHmut AMLs and CD34+ normal cells or other IDHwt AMLs. 

CHiCdiff reported 21,126 statistically significant differential loops between IDHmut AML and 

CD34+ cells, representing both up and down-regulated interactions in AML with respect to 

normal (43% up, 57% down; weighted-padj < 0.05; Figure 27, left panel). Of the total set, 6,490 

differential interactions intersected an eDMR in the loop anchor opposite the promoter capture 

probe. Interactions upregulated in IDHmut AML were greatly under-represented in this set of 
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differential interactions (8% up in IDHmut AML) with most differential loops exhibiting 

decreased frequencies compared to CD34+ normal cells (92% down in IDHmut AML; Figure 27, 

right panel). When we called differential loops between IDHwt samples and CD34+ normal cells, 

only 4,895 loops were identified (56% up, 44% down; weighted-padj < 0.05; Figure 28, left 

panel). Of the differential loops, 1,139 intersected an eDMR opposite the bait anchor. Similar to 

the set of differential IDHmut eDMR loops, these loops were largely downregulated in IDHwt 

samples vs. CD34+ cells but to a slightly lesser degree (14% up, 86% down). 

We also intersected the sets of differential loops with commonly hypermethylated regions and 

found the number of statistically significant loops was slightly reduced for this set of loops in 

both IDHmut and IDHwt AML (4,667 vs. 894, respectively; weighted-padj < 0.05). Of these loops, 

the distribution between up and down-regulated interactions was also skewed towards decreased 

interactions compared to normal, but to a lesser degree than IDHmut eDMR loops (17% and 38% 

increased interactions in IDHmut and IDHwt AML, respectively;  83%  and 62% decreased 

interactions in IDHmut and IDHwt AML, respectively). This finding suggests that while common 

AML-associated hypermethylation occurs within downregulated interactions, IDHmut-specific 

hypermethylation marks a set of interactions that are more consistently downregulated in AML. 

Differential interactions coinciding with IDHmut-specific CTCF-DMRs identify divergent 

phenotypes in IDHmut and IDHwt AML 

Finally, narrowing our focus only to differential interactions with a differentially methylated 

CTCF binding site in the regulatory anchor, we found 2,664 CTCF-DMR loops and 1,307 

commonly hypermethylated CTCF loops reaching statistical significance (weighted-padj < 0.05). 

In both cases, the fraction of differentially upregulated loops in IDHmut AML was very low 

compared to the number of interactions representing differentially decreased interactions 
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compared to normal cells (UP in IDHmut: 4% CTCF-DMR diff loops, 3% common hyper diff 

loops; DOWN in IDHmut: 96% CTCF-DMR diff loops, 97% common hyper diff loops) (CTCF-

DMRs shown in Figure 27, right panel). Upon inspection of the list of gene targets, we found a 

few candidate genes whose significance in AML development and prognosis has been previously 

described in the literature. For example, target genes involved specifically in down-regulated 

CTCF-DMR interactions included MED24, and RTEL1, while genes involved in down-regulated 

interactions associated with either CTCF-DMRs or commonly hypermethylated CTCF sites 

included KDM6B and TP53. While the interaction with any of these genes may be representative 

of regulatory dynamics in AML, we were interested in the finding that MED24, a component of 

the mediator complex was found to interact uniquely with down regulated interactions in IDHmut 

AML. As a critical component tethering enhancer-promoter interactions and facilitating 

transcriptional activation, altered regulation of MED24 could conceivably have impacts on the 

genome-wide regulation of the 3D genome and gene expression.  

Interestingly, when we performed this same analysis on the subset of CTCF-DMR differential 

loops in IDHwt samples compared to CD34+ cells, the distribution between up and down-

regulated loops was flipped (Figure 28, right panel). That is, differential interactions intersecting 

a CTCF-DMR were more often upregulated than downregulated in IDHwt samples. This finding 

supports our hypothesis that interactions coinciding with IDHmut associated hypermethylation 

tend to be robust, possibly a feature of active or tightly regulated enhancer-promoter interactions 

and suggests that the dynamics of these interactions may be influenced by the methylation 

phenotype of the cells. 
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3.3.4 IDHmut-specific enhancer DMRs form loops with highly expressed genes 

in hematopoietic cells 

To expand our previous observation that IDHmut-specific eDMR regions interact with highly 

expressed genes in AML, we analyzed the expression of genes in chromatin loops identified 

from the Capture-C data from CD34+ normal donor cells and AML samples. We started by 

interrogating CHiCAGO loops to define two sets of target genes: those opposite an IDHmut -

specific eDMR and those opposite a commonly hypermethylated DMR; regions with both an 

IDHmut-specific DMR and a common hypermethylated DMR were removed the from analysis, 

while genes interacting with both eDMR anchors and commonly hypermethylated anchors were 

retained. Considering all consensus loops detected in CD34+ normal donor samples that 

intersected an annotated gene, we identified 2,757 targets opposite an eDMR and 2,147 gene 

targets opposite a commonly hypermethylated anchor. When filtering only expressed gene 

targets based on RNAseq data from a large cohort of AML samples (n=152), we identified a 

union set of 1,955 eDMR target genes vs 1,439 genes opposite a commonly hypermethylated 

loop anchor. Consistent with our previously published results, the average normalized expression 

level of eDMR targets was increased compared to genes opposite a commonly hypermethylated 

anchor (7.85 vs 7.13 normalized counts respectively), a feature reflected in the overall right shift 

in the distribution of normalized expression for eDMR targets (Figure 29, left panel). We noted 

an overlap of 333 genes between the two sets, which had an average normalized expression level 

and distribution more consistent with the full set of eDMR targets (CD34+ avExp: 7.7 

normalized counts) rather than the full set of commonly hypermethylated targets. Increased gene 

expression for these targets suggests that the influence of eDMR interaction is dominant to the 

effect of interactions with commonly hypermethylated regions. Analysis of loop interactions 

using MicroC data corroborates our previous findings of increased eDMR target expression 
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compared to commonly hypermethylated enhancer targets but improves the overall resolution, 

lending greater specificity in linking enhancers to their cognate genes.  

Having identified target genes that interact with putative enhancer regions prone to 

hypermethylation in IDHmut AML, we next wanted to characterize the consequences of IDHmut-

specific enhancer hypermethylation on gene expression. Accordingly, we assessed the 

normalized expression of the same set of eDMR targets and commonly hypermethylated 

enhancer targets in IDHmut and IDHwt AMLs.  The average normalized expression for eDMR 

targets in IDHmut samples was decreased compared to CD34+ normal cells to a greater degree 

than the set of commonly hypermethylated enhancer targets, while the average expression of all 

measurable genes slightly increased in IDHmut AML compared to normal cells. The distribution 

of average normalized expression for both sets was slightly left-shifted in IDHmut samples 

compared to normal cells, and we noticed rather than displaying the bi-modal curve observed in 

CD34+ samples, expression in the IDHmut samples exhibited an intermediate peak for both gene 

sets. Though not dramatic, the observed trend toward decreased expression for both sets of 

genes, suggests that the regulation of certain targets may be impacted by hypermethylation of 

interacting enhancers (Figure 10b). This provides evidence that highly expressed genes may 

display some diminished expression in the setting of enhancer hypermethylation while still being 

expressed. 

Highly expressed genes involved in differential CTCF-eDMR loops have decreased 

expression in AML compared to normal cells. 

We were also curious whether genes involved in differential loop interactions, or IDHmut-specific 

loops, had any unifying features. As reported above, interactions with decreased frequency in 

IDHmut samples compared with CD34+ cells were present in the full set of differential loops but 
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significantly over-represented when looking at the subset containing an eDMR in the regulatory 

anchor (92% DOWN in IDHmut vs. 8% UP in IDHmut). Overall, genes participating in a 

differential loop interaction with a coinciding eDMR in the regulatory anchor, exhibited a range 

of normalized expression values and in aggregate didn’t display any significant trends in 

expression level differences between IDHmut samples and CD34+ normal samples. When looking 

specifically at the top 50% of genes based on expression, however, we observed a notable 

decrease in the average value and distribution of expression for target genes, while the bottom 

50% of expressed genes displayed comparable values between IDHmut and CD34+ normal cells 

(Figure 11). Further filtering of the set of interactions to include only target genes involved in a 

differential interaction with a CTCF-eDMR in the regulatory anchor strengthened the observed 

trend of decreased expression in IDHmut samples compared to CD34+ normal samples when 

summarizing the top 50% of expressed targets while remaining consistent for the bottom 50% of 

targets (Figure 12). This finding is consistent with our previous observations that highly 

expressed genes display a unique relationship to IDHmut-specific hypermethylation compared 

with instances of common hypermethylation and may mark a set of regulatory interactions that 

may become hypermethylated as a result of active epigenetic and transcriptional regulation. In 

addition, the expression data suggests that hypermethylation at enhancers of highly expressed 

genes may contribute to decreases in expression for certain targets.  

In addition to looking at the overall trends in eDMR target gene expression, we also wanted to 

look for candidate genes with consistently increased or decreased expression across IDH mutant 

samples compared to normal cells. To think that all eDMRs impact target gene expression in a 

meaningful way is unlikely, and therefore we wanted to identify concrete, believable examples 

of enhancer hypermethylation coinciding with the decreased (or increased) expression of its gene 
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target/s. Narrowing our focus to differential chromatin loops with a hypermethylated CTCF 

binding site in the regulatory anchor, we found several candidate hematopoietic genes with 

observable changes in expression. Many of these genes had reduced expression compared to 

normal cells, including MED24, RETL1, RRAS, and PTBP1 (Figure 13). The role of these genes 

in hematopoiesis and leukemogenesis has been discussed in previous studies30–33, but whether 

the expression changes observed in relation to enhancer hypermethylation contribute to an 

oncogenic phenotype is unclear and could be an interesting focus for future experiments. Again, 

we highlight MED24 as an interesting candidate for follow-up studies, given its role in 

facilitating physical interaction between distal regulator elements. It would be interesting to test 

if any of the phenotypes observed in our study are dependent on MED24 based on genetic 

knockdown or KO studies.  
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3.5 Figures 
 

 

Figure 3.1. Summary of genome compartmentalization across AML samples using a 50 kb 

sliding window.  

Each bar contains the proportion of a patient’s genome in the A and B compartments (blue bars 

and purple bars, respectively), as well as the proportion of genomic windows that have 

undergone a switch from A to B or B to A with respect to CD34+ normal donor cells (green bars 

and pink bars, respectively).   

 



95 

 

 

 

Figure 3.2. Overlap of switched bins within subtypes.  

The height the of black bars represents the total number of shared switch regions in the indicated 

combination of samples as shown in the multi-sect line plot below. The total number of switched 

regions identified in a given sample is shown in the blue bars to the left.  
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Figure 3.3. Hierarchical clustering based on between-sample correlation at the top 10% of most 

variable compartment regions in AML samples.  

Pearson correlation values for each pairwise comparison between samples (n=4 IDH mutations; 

n=5 DNMT3A-R882 mutations; n=3 KMT2A fusions; n=2 RUNX1-RUNX1T1 fusions, n= 2 

CD34+ normal cells) was calculated for a set of ~6,000 compartment bins representing the top 

10% of variance.  A higher correlation between samples is represented by darker red bins in the 

heatmap while darker blue bins represent less/anti-correlated samples. 

 

Figure 3.4. Enrichment for DMRs in A vs. B nuclear compartments. 

Commonly hypermethylated DMRs (pink bars) and IDHmut-specific DMRs (blue bars) were 

intersected with 50 kb compartment intervals and annotated as active (falling within an A 

compartment) or suppressed (falling within a B compartment) based on the activity defined in 

CD34+ normal cells.  
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Figure 3.5. Association of IDHmut-specific hypermethylation with the active genome 

compartment.  

MicroC contact matrix for an IDH mutant AML sample at a representative region on 

chromosome 12 (top). PC1 values calculated for the same region of chromosome 12 where 

positive values (black) represent A compartments and grey (negative) values represent the B 

compartment (1st track of bottom panel). Location of commonly hypermethylated regions in 

AML and IDHmut-specific DMRs (2nd and 4th tracks of the bottom panel, respectively). DNA 

methylation values for CD34+ normal cells and IDHmut AML across the same representative 

region (3rd and 5th tracks of the bottom panel, respectively). Hg38 gene annotation track 

(bottom). Red boxes highlight the overlaps of IDHmut-specific DMRs with the active 

compartment. 
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Figure 3.6. Distribution of compartment scores for all IDHmut-specific DMR resident 

compartment bins in normal cells and IDHmut samples.  

 

 

Figure 3.7. Enrichment of IDHmut-specific DMRs for switched bins in individual samples.  

Top Left: Enrichment calculated over the full set of switched bins irrespective of direction. Top 

Right: Enrichment calculated over the A > B switch regions only. Bottom Left: Enrichment 



99 

 

calculated over the B > A switch regions only. Enrichment was calculated as the quotient of the 

frequency of IDHmut -DMRs intersecting with a switched bin divided by the frequency of 

common hypermethylation intersecting a switched bin.  

 

 

Figure 3.8. Comparison of PC1 scores for 50kb genomic windows between CD34+ normal cells 

and IDHmut AML.  

Each point shows the mean PC1 value for a 50kb genomic region from CD34 normal cells (n=2) 

and IDmut AML (n=4); the color of the point denotes compartment status. Points on the line y=x 

have similar compartment scores in CD34+ normal cells and IDHmut AML (gray dots are stable 

A, yellow are stable B) while points falling off the y=x diagonal represent compartment switches 

(teal are A to B switches, blue are B to A switches). Points outside of the dotted red lines falling 

off the x=y axis represent bins with the strongest shifts in compartmentalization (weak A to 

strong B or weak B to strong A along the y-axis; strong A to weak A or B along the x-axis).  
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Figure 3.10. Distribution of expression values for genes within DMR-associated A to B 

compartment switched regions. 

The distribution of normalized expression levels for switch compartment genes is plotted for 

three individual IDHmut samples (left to right), with IDHmut -specific DMR switch genes 

displayed in the top row and commonly hypermethylated switch genes displayed in the bottom 

row. Blue curves represent the distribution of normalized expression in the IDHmut case while 

pink curves represent the expression levels of the same set of genes in normal donor CD34+ 

cells.  
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Figure 3.11. Distribution of gene expression within B to A switched DMR compartments.  

The distribution of normalized expression levels for switch compartment genes is plotted for 

three individual IDHmut samples (left to right), with IDHmut -specific DMR switch genes 

displayed in the top row and commonly hypermethylated switch genes displayed in the bottom 

row. Blue curves represent the distribution of normalized expression in the IDHmut case while 

pink curves represent the expression levels of the same set of genes in normal donor CD34+ 

cells.  
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Figure 3.12. Gene expression changes in DMR-associated compartment switches.  

Each panel shows the pairwise normalized expression values for genes in DMR resident bin 

switches for a given patient compared to normal (A to B switches on the right, B to A on the 

left). Blue lines denote an increase in expression compared to normal, while red lines denote a 

decrease in expression compared to normal cells.  

 

 

Figure 13. Example contact matrix with insulation profile for a region on chromosome 8. 

Cooltools uses a sliding window to summarize interaction frequencies and inspect for local 

minima consistent with decreased contact between upstream and downstream loci. Insulation 

minima are annotated with boundary strength, shown here as weak boundaries in blue and strong 

boundaries in orange.  
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Figure 3.14. Sample level summary of genome-wide cooltools TAD boundaries assigned using 

different sliding window sizes (30kb, 50kb, 100kb) for 10kb resolution data.  

Top: Total number of boundaries meeting the threshold cutoff for strong TAD classification. 

Bottom: Distribution of TAD sizes. Normal donor and AML samples are color-coded according 

to driver mutation subtypes. 

 

 

Figure 3.15. CTCF binding enrichment in strong TAD boundaries.  

Boundary strengths assigned to all insulation minima called in CD34+ contact matrix are plotted 

against the CTCF ChIPseq signal calculated over the same region. Threshold parameters used to 

define the set of strong peaks in cooltools are plotted in pink (Otsu) and green (Li) dashed lines 

to show the level of enrichment of CTCF binding for strong peaks.  
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Figure 3.16. Distribution of scores for boundaries intersecting an IDHmut-specific DMR (blue) or 

a commonly hypermethylated region (salmon) in CD34+ normal cells.  

The Li threshold line demarcates the cutoff for strong boundaries. 

 

 

Figure 3.17. TAD boundary scores for CTCF-containing boundaries in IDHmut (left) and IDHwt 

AML samples at boundaries defined in CD34+ normal cells. 
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Figure 3.18. Hierarchical clustering of AML samples based on the difference from normal 

boundary scores at CTCF-DMR TAD boundaries as defined in CD34+ normal donor cells.  

 

 

Figure 3.19. Intra- and inter-TAD interaction frequencies for the set of CTCF-DMR associated 

TADs in CD34+ normal cells (yellow) and IDH mutant AML (blue).   
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Figure 3.20. Example region on chromosome 8 of contact matrix demonstrating loss of TAD 

insulation around a CTCFdmr TAD boundary in IDHmut AML (bottom corner matrix) compared 

to normal donor cells (top corner matrix).  

The arrow indicates a boundary with reduced insulation in IDHmut AML. Black boxes annotate 

regions with notable disruption of local topology. Top: Tracks annotating IDHmut -specific DMR 

location and H3K27ac Cut&Tag signal from normal donor apheresis sample. Left: CTCF motifs 

called within CTCF ChIPseq peaks in primary AML samples.  
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Figure 3.21. Normalized expression for all genes residing in a TAD with a CTCFdmr or 

CTCFcommon-hyper boundary compared with the set of all expressed genes.  

  

 

Figure 3.22. The total number of CHiCAGO loops clearing the statistical threshold (interaction 

score > 5) per sample.  
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Figure 3.23. Intersection of loop interactions with DMRs. Bottom: Fraction of total loops 

intersecting the set of commonly hypermethylated regions (salmon bars) and IDHmut-specific 

DMRs (blue bars) per sample.  

Top: Enrichment for IDHmut-specific DMRs in loop anchors compared to commonly 

hypermethylated regions. 

 

 

Figure 3.24. Hierarchical clustering of chromatin loop interaction frequencies for DMR loops 

(left) and commonly hypermethylated loops (right). Normalized counts are plotted in the 
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heatmap with light yellow bins representing lower interaction frequencies and darker red bins 

representing higher interaction frequencies.   

 

 

Figure 3.25. Aggregate peak analysis (APA) of MicroC data using different subsets of DMR 

capture loops in IDHmut samples.  

Columns left to right: Loops intersecting an IDHmut-specific DMR in the anchor opposite the 

bait, loops intersecting a commonly hypermethylated region in the anchor opposite the bait, 

CD34+ normal cell CTCF-bound loops defined by ChIAPET assays, CTCF-bound IDHmut-

specific DMR loops. Rows: CD34+ normal donor and individual IDHmut AML samples. 
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Figure 3.26. Aggregate peak analysis (APA) of MicroC data using different subsets of DMR 

capture loops in IDHwt AML.  

Columns left to right: Loops intersecting an IDHmut-specific DMR in the anchor opposite the 

bait, loops intersecting a commonly hypermethylated region in the anchor opposite the bait, 

CD34+ normal cell CTCF-bound loops defined by ChIAPET assays, CTCF-bound IDHmut-

specific DMR loops. Rows: CD34+ normal donor and individual IDHwt AML samples. 
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Figure 3.27. Differential chromatin interactions detected in a comparison between CD34+ 

normal cells and IDH-mutant AML.  

Left: Volcano plot of the union set of interactions. Right: Volcano plot of the subset of 

interactions intersecting a CTCF-DMR. Interactions with statistically increased frequency in 

IDH-mutant AML are annotated in blue while those statistically decreased in frequency are 

annotated in red. Gray dots are not significantly different between groups.  

 

Figure 3.28. Differential chromatin interactions detected in a comparison between CD34+ 

normal cells and IDH wild-type AML. Left: Volcano plot of the union set of interactions.  

Right: Volcano plot of the subset of interactions intersecting a CTCF-DMR. Interactions with 

statistically increased frequency in IDH-mutant AML are annotated in blue while those 

statistically decreased in frequency are annotated in red. Gray dots are not significantly different 

between groups. 
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Figure 3.29. Distribution of gene expression in CD34+ normal samples (left) and IDHmut AML 

samples (right).  

Density curves represent different subsets of genes including those opposite commonly 

hypermethylated loop anchors (green), those opposite IDHmut-specific DMR loop anchors, and 

the full set of expressed genes.  

 

 

Figure 3.30. Expression of DMR target genes in differential loops.   
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Normalized expression of IDHmut-specific DMR target genes in IDHmut AML and (right) and 

IDHwt AMLs (left) involved in the set of CD34+ vs. IDH mutant differential interactions.  
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4.1 Introduction 
Our observation that focal hypermethylation in IDH mutant primary acute myeloid leukemia 

samples affects enhancers suggests these regions could be manipulated to affect gene expression. 

While the optimal experiment would be to induce a hypermethylation phenotype in biologically 

relevant models, the available tools for remodeling epigenetic patterns in a targeted, site-specific 

manner remain challenging to employ. Therefore, we first wanted to characterize the baseline 

activity of candidate eDMR regions to understand how they influence gene expression in their 

normal state. Since much of the work described in this chapter was conducted in parallel with 

our analysis of Micro-C data from AML patients, our choice of candidate loci was informed by 

the lower-resolution HiC data available at the time for a limited number of AML samples and 

cell lines. Future studies will benefit from the higher-resolution MicroC data recently generated 

from a large set of AML cases when comprehensively investigating the nature of eDMR-target 

gene interactions.  
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Several hematopoietic gene candidates (as well as many less well-studied genes) were identified 

in our preliminary analysis as targets of enhancers uniquely hypermethylated in IDHmut samples 

including MYC, ARID1A, RUNX3, ASXL1, DOT1L, EGFRA, KDM2A, NOTCH, and SRSF3. As 

previously discussed, the genes forming interactions with IDHmut-specific eDMRs tend to be 

highly expressed compared to the distribution of all expressed genes in AML cells, suggesting 

that hypermethylation may occur in regions where regulatory activity is increased to maintain 

elevated target gene expression. Many of the genes in our selection are known to be active 

during development, including MYC. HiC data from primary AML samples and AML cell lines 

show robust interactions between the MYC promoter and a region that is approximately 1.7 mb 

downstream of the transcription start site containing a discrete locus that is hypermethylated in 

IDHmut AML samples and unmethylated in IDHwt samples and normal hematopoietic progenitor 

cells (Figure 1).  

Previous studies of the MYC locus have characterized an extended enhancer region containing 

our DMR of interest. Termed the blood enhancer cluster (BENC), this region contains 

evolutionarily conserved regulatory elements that are critical for MYC expression in blood cells1. 

The BENC consists of multiple modules, each of which is thought to have varying importance 

for MYC expression depending on the stage of hematopoietic development. To date, the most 

comprehensive studies of the BENC have been performed in mouse bone marrow, where the 

authors systematically knocked out individual BENC modules or the whole cluster and measured 

the consequences on MYC expression and cell differentiation. The authors reported that knocking 

out the entire cluster led to complete loss of MYC expression in hematopoietic stem and 

progenitor cells and accumulation of developmentally arrested myeloid progenitors, while 

changes resulting from individual module deletion were restricted to different developmental 



119 

 

states. Interestingly, deletion of the module bearing homology to our eDMR region of interest 

was the most deleterious for MYC expression in mouse hematopoietic stem cells, suggesting a 

potential role for the eDMR region in regulating MYC expression in normal human 

hematopoiesis and AML. 

Mechanistic studies of the MYC BENC in human cells have been limited, however structural 

variations including tandem duplications within the BENC region have been observed in ~3% of 

primary AML samples and are thought to introduce additional binding sites for BRG1 and other 

TFs that may alter or amplify the regulatory capacity of the region2. Studies in K562 cell lines 

have interrogated the BENC for units of active regulation by tiling dCas9-KRAB binding across 

the locus in a silencer screen. Though their gRNAs span the full length of the BENC and 

identified critical regions for MYC expression, their screen did not specifically test the regulatory 

capacity of our eDMR region. Other groups have indirectly investigated independent modules of 

the BENC during their studies of BET-inhibitor therapy and resistance, reporting altered binding 

of BRG1 to the MYC super-enhancer and consequent decreases in MYC expression and cell 

viability, however, definitive examples of activity for the eDMR region are still outstanding. 

Given the well-established role of MYC expression in hematopoiesis and the evidence for robust 

3D chromatin architecture encapsulating the region, we decided to prioritize the MYC locus as a 

model for investigating the relationship between DNA hypermethylation and enhancer activity.  

In parallel, we also wanted to develop models to investigate the relationship of ARID1a with its 

cognate eDMR. ARID1a participates in epigenetic regulation as a component of SWI/SNF 

chromatin remodeling complexes and is documented to be the most frequently mutated subunit 

across human cancers. ARID1a is thought to play an important role in both tumor initiation and 

tumor suppression depending on the biological context. For example, primary endometrial 
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cancers carry WT ARID1a prior to developing deleterious mutations upon metastasis, suggesting 

a role for ARID1a in a narrow window of early disease transformation3, however, the majority of 

data supports a tumor-suppressive function for the protein. Recurrent loss of function mutations 

in ovarian carcinoma, endometrial adenocarcinomas, colon cancer, and gastric cancer have been 

linked to altered processes including tumor formation, cell proliferation, cell cycle, and DNA 

damage repair. 

Although mutations in ARID1a are less common in hematologic malignancies, altered regulation 

and/or expression of ARID1a may still be relevant for leukemogenesis or processes related to 

disease maintenance and progression. For example, ARID1a has been shown to target SWI/SNF 

complexes to enhancers thereby cooperating with transcription factors to promote chromatin 

accessibility and gene expression4. In vitro models of ARID1a deficiency in hepatocellular 

carcinoma and colon cancer have shown correlations between augmented histone H3K27ac at 

known enhancers and changes in transcription of the nearby genes4. In colorectal cancers, loss of 

ARID1a showed the inactivation of ARID1a -bound enhancers and a concomitant decrease in 

target gene expression5. Therefore, it is possible that changes in ARID1a expression resulting 

from methylation-related changes at its enhancers could affect transcriptional and/or signal 

pathways in favor of a leukemia phenotype. Our goal for this set of experiments was simply to 

determine if interactions between the ARID1a promoter and its cognate eDMR are necessary for 

normal expression in a hematopoietic model.  

As mentioned above, the goal of future experiments will be to perform enhancer modification 

studies where methylation is targeted to individual enhancement units, thereby recapitulating the 

IDHmut-specific enhancer hypermethylation phenotype in a forward approach to assess the 

consequences on gene expression and 3D architecture. To inform future hypotheses, we started 
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by testing the dependency of candidate gene expression on the native enhancer context by 

knocking out the eDMR enhancer regions and measuring the effect on target gene regulation. 

CRISPR-Cas9 targeted editing of AML cell lines was used to delete specific regions identified as 

being hypermethylated and IDHmut AML and RNAseq was performed to measure resultant gene 

expression.   

4.2 Methods 

CRISPR-Cas9 cell editing 

Ribonuclear complexes of Cas9 protein coupled with guide RNAs were electroporated into AML 

cell lines using the NEON electroporator. RNAs were designed to flank the eDMR regions of 

interest. Single-cell sorting of treated cells followed by expansion in culture, generated clonal 

knockout lines that were validated by PCR sequencing.  

RNA-seq analysis 

RNA-seq libraries were generated on whole-cell RNA. Sequenced data were processed using 

standard read alignment and feature counting methods. The DESeq2 Bioconductor package was 

used to normalize gene counts and perform differential analysis. 

4.3 Results 

4.3.1 Generation of clonal eDMR knockout cell lines 

Our previous work profiling methylation phenotypes in IDHmut AML identified several focally 

hypermethylated regions enriched for active enhancer modifications.  Given the observed 

association of hypomethylation with putative regulatory activity, we wanted to characterize the 

relationship of the association using a few candidate loci including a distinct region coincident 

with a portion of the BENC, a highly conserved multi-modular superenhancer of MYC located 

1.7 mb downstream of the genes’ promoter1. Additional annotation of these regions identified 
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transcription factor binding motifs including BRD4, BRG1, and YY1, further supporting their 

putative activity and suggesting that aberrant methylation may alter the epigenetic capacity of the 

locus to promote transcription.  

To functionally validate the dependence of AML cells on the MYC eDMR locus, we generated 

clonal knockouts of the eDMR region in AML cell lines. Using a CRISPR-Cas9 RNP editing 

approach, we used flanking guide RNAs to target two individual regions of the MYC enhancer 

for deletion in OCI-AML3 and MOLM13 cells. Neighboring regions were identified as having 

active enhancer marks; one region spanning ~1.1 kb overlapped a known binding site of BRD4 

in other AML cell lines (enhancer A or “EnhA”), while the other region spanning ~1.4 kb with 

IDHmut-specific focal hypermethylation harbored a YY1 binding site specifically detected in the 

OCI-AML3 cell line (enhancer B or “EnhB”) (Figure 1). Interactions between the MYC promoter 

and these distal enhancer regions are enriched as shown in the MicroC contact matrices from 

AML samples and normal cells, forming distinct loops consistent with corner TAD insulation 

(Figure 2). We also targeted the adjacent regions for deletion in the same cell to measure the 

impact of combinatorial enhancer loss. We elected to use OCI-AML3 cells as an initial model 

because they have low methylation in these enhancer regions similar to normal hematopoietic 

stem/progenitor cells and AML samples without IDH mutations. Of note, OCI-AML3 cells are 

triploid for the MYC gene and enhancer (+chr8), which requires careful interpretation of the 

deletion clone data. At the onset of our experiments, we did not have genome-wide methylation 

data from MOLM13 cells to adequately assess the methylation status of the eDMR locus, but we 

wanted an orthogonal AML model that was diploid for the MYC locus to help interpret the 

consequences of MYC-eDMR deletion.  
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After performing CRISPR-Cas9 nucleofection with dual guides, single cells were sorted and 

cultured for 2-3 weeks to allow for clonal expansion. Expanded clones were then passaged 3-4 

times before screening for deletions—we noticed a delayed doubling time for certain clones 

during the first and second passages, however, after an additional two passages the cells all 

appeared to double at a normal rate. eDMR deletions were screened using PCR primers that 

spanned the deletion site and promising clones were sent for follow-up sequencing to confirm the 

size of enhancer deletions. We obtained multiple deletions in the OCI-AML3 cell line while 

MOLM13 cells grew poorly after editing. Single-cell-derived MOLM13 clones were frozen back 

for future experiments, while OCI-AML3 clones were carried forward for phenotypic analysis. 

Of note, we were only able to successfully generate EnhB KO clones in OCI-AML3 and 

MOLM13 clones. While we had multiple clones grow out from our EnhA and double Enh KO 

experiments, none of them were confirmed to have the appropriate deletions, suggesting that loss 

of EnhA may be incompatible with the viability or growth of OCI-AML3 and MOLM13 cells. 

Twelve OCI-AML3 clones were identified as having PCR bands consistent with the EnhB 

eDMR deletion. These were predominantly heterozygous at the locus (or contained at least one 

WT allele; Figure 4). Targeted analysis confirmed deletions of roughly the same size across 

clones consistent with the targeting sites of our guide RNA (Figure 5). We selected 7 

representative EnhB KO clones with clean deletion signals based on sequencing, 6 heterozygous 

clones, and one probable homozygous clone, and performed RNAseq to measure changes in 

MYC expression. Whole-genome sequencing was not performed on these clones but will be 

necessary in the future to rule out any off-target editing that may affect the MYC locus. 

Deletion of the ARID1a eDMR was carried out using a similar approach. gRNAs were designed 

to flank the region of differential hypermethylation. Transfected cells were again single-cell 
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sorted and given time to grow out before screening. Although ARID1a eDMR deletion was less 

efficient in OCI-AML3 cells compared with the MYC locus, we did identify three clones with 

PCR deletion bands (Figure 6). PCR screening suggested successful deletion in all three clones, 

one clear heterozygous deletion, and two compound heterozygous clones. Targeted sequencing 

confidently identified deletions in two of the clones (Figure 7), while the other was inconclusive 

due to sequencing artifacts, however, we proceeded with further phenotypic characterization for 

all three deletions with the caveat of interpreting data from the inconclusive clone with caution. 

Whole-genome sequencing was not performed on these clones but will be necessary in the future 

to rule out any off-target editing that may affect the ARID1a locus. 

4.3.2 Deletion of the MYC eDMR correlates with a decrease in MYC 

expression. 

As a readout of enhancer function, we measured changes in MYC expression after the deletion of 

eDMR regions. RNA was collected from individual clonal deletion lines and RNAseq libraries 

were generated. Sequencing data was processed and aligned with standard tools and normalized 

exon counts were used to compare gene expression levels across seven EnhB KO clones and two 

OCI-AML3 WT cells. MYC expression was very similar all samples; however, KO clones were 

variable and displayed a trend towards decreased expression compared with WT cells (average 

12.7 vs. 12.5, respectively; Figure 8). This decrease in expression did not reach a level of 

statistical significance (p-value = 0.142; Figure 10) and will require additional RNAseq data 

from WT cells to adequately assess whether the decrease observed in KO clones is a 

consequence of enhancer deletion, or consistent with intra-group heterogeneity that we aren’t 

seeing in the WT group due to a small sample size. If the correlation between EnhB deletion and 

decreased expression were to hold up in a larger sample size, our results may suggest a role for 

the eDMR region in regulating normal MYC expression.  
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One of the anticipated challenges of interpreting expression changes in MYC is the presence of a 

third allele in OCI-AML3 cells that likely contributes to the overall transcriptional output of the 

locus. Most of our clones were heterozygous for enhancer deletion (i.e. had at least one intact 

WT allele based on PCR results), and it’s unclear whether loss of enhancer activity from one or 

even two alleles would have a measurable impact on overall expression levels of MYC. To 

address this challenge, we tried to determine if altered MYC expression could be observed at the 

level of allele-specific expression. Leveraging common variation in the genome, we wanted to 

assign RNAseq reads to individual alleles and look for any bias or skewing consistent with the 

deletion of a cis-acting enhancer. We were able to locate two single nucleotide polymorphisms 

(SNPs) in MYC, one at the 3’ end of the first exon and one in the middle of the second exon. 

While sequencing coverage in a small fraction of clones was optimal for measuring the allelic 

ratios at both SNPs, the second exon SNP was reproducibly covered across all samples and 

allowed us to assess allelic expression for all KO clones.  

We found that three of seven clones showed some evidence of allelic skewing based on SNP 

ratios. RNAseq data from WT OCI-AML3 cells showed a 2:1 ratio at both SNP sites consistent 

with MYC expression from all three alleles. Similarly, we observed a 2:1 SNP ratio for four of 

our EnhB KO clones, which is likely the result of expression from all three alleles (Figure 9, 

top). Three KO clones had a 1:1 SNP ratio which suggests that expression is restricted to two of 

three alleles (Figure xx, bottom). These data alone don’t rule out the possibility of altered eDMR 

enhancer activity, as other compensatory methods may help maintain expression from the MYC 

locus in the absence of this downstream enhancer module but do seem to suggest that stable 

expression of MYC from all alleles is the preferred state in OCI-AML3 cells. It will be necessary 

to follow up with Micro-C studies on these deletion clones to determine if there are altered 
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looping dynamics between the MYC promoter and the downstream enhancer region upon eDMR 

deletion. These data could be used not only to phase the expression data with the deletion allele 

but also to indicate whether loss of the enhancer is reflected in reduced BENC interactions 

and/or increased interactions with alternative enhancer regions. 

In line with this result, we also want to acknowledge that cancer cells are known to be addicted 

to MYC in certain cases, meaning they either die or find a way to maintain MYC expression 

against whatever regulatory barrier is put in the way. This may be true of OCI-AML3 cells, and 

if so, may be the reason we don't detect any viable clones with significantly decreased MYC 

expression. There is evidence in the literature describing the complexity of MYC regulation in 

cancer cells including examples of enhancer modularity with potential combinatorial activity, 

enhancer switching (use of the PVT1 enhancer region during BETi-dependent loss of BRD4 

binding in the BENC)6,7, and other compensatory methods used for maintaining elevated 

expression. While our results are suggestive that these AML cells may utilize the EnhB eDMR 

for optimal MYC expression, loss of a single allele, or two alleles in the case of a triploid cell, it's 

not enough to significantly reduce cellular levels of MYC protein. However, it is certainly 

possible that further disruption of the broader enhancer region would compromise MYC 

regulation. Evidence supporting this hypothesis is the lack of success we had in generating EnhA 

deletion or dual enhancer deletion clones. The adjacent EnhA eDMR may be necessary for MYC 

regulation, in which case loss of the region either individually or in combination with the EnhB 

eDMR would be deleterious for cell growth and survival. 
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4.3.3 Deletion of the ARID1a eDMR correlates with a significant increase in 

ARID1a expression. 

ARID1a eDMR KO experiments were overall less efficient, however, we were able to generate 

three clones with successful eDMR deletions. RNAseq data was generated and analyzed 

similarly to the MYC eDMR knockout data. We found that normalized ARID1a expression was 

not only increased in the KO clones compared with OCI-AML3 wild-type cells but also 

noticeably consistent amongst the biological replicates (average 13.2 vs. 11.5, respectively; p-

value = 0.002; Figure 10). Though this result was opposite of what we hypothesized in our 

original model of enhancer hypermethylation, we did leave room for the possibility of enhancer 

hijacking or the use of alternative enhancers where eDMR deletion may favor rearrangement of 

the 3D interaction landscape. There are well-documented examples of alternative looping at 

imprinting loci, where hypermethylation of an imprinting control region facilitates interactions 

between the imprinted gene promoter and a distal enhancer element to drive expression. 

Although regulation of the ARID1a locus doesn’t fall into the category of imprinting, it’s 

reasonable to think that hypermethylation of regulatory elements could direct alternative looping 

interactions with the ARID1a promoter in favor of increased expression. 

Another explanation for the increased expression of ARID1a is the possible loss of a suppressor-

promoter interaction upon eDMR deletion. Although we annotated the ARID1a eDMR region as 

having active enhancer marks in primary AML samples and OCI-AML3 cells, it’s possible that 

H3K27ac is helping to recruit suppressive factors to the locus that act as a “regulatory break” to 

keep expression within a specific range. Loss of such a region may result in a loss of balance or 

un-checked stimulatory factors that result in increased expression. Without 3D chromatin 

conformation data, it is difficult to say if altered looping dynamics are contributing to the 

increased expression of ARID1a in eDMR KO clones. CTCF ChIPseq data from OCI-AML3 WT 
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cells does indicate potential binding of the insulator protein, suggesting that hypermethylation 

could deplete the locus of CTCF binding and favor the use of an alternative enhancer. Analysis 

of CUT&TAG data from these clones will be useful for identifying nearby active enhancer 

regions that could feasibly loop onto the ARID1a promoter and drive expression. 

4.4 Discussion and Future Directions 
We believe these KO lines provide novel information about the function of the MYC and 

ARID1a eDMR elements and test two models that could explain their hypermethylation in AML 

cells. In the first model, the enhancer is not essential for regulating the expression gene 

expression and passively accumulates methylation during AML development. In the second, the 

eDMR does influence target gene expression to some degree, and its activity is altered by 

hypermethylation. If methylation accumulates at non-essential enhancers, we would have 

expected deletions of the eDMR regions to have no impact on gene expression. However, we 

observed changes in expression for both MYC and ARID1a after eDMR deletion, suggesting 

some regulatory functions of the eDMR regions and supporting the hypothesis that aberrant 

methylation contributes to the dysregulation of critical regulatory elements. 

One reason for the subtle effects we observed in expression changes could be due to our 

selection of gene targets, which may be regulated by multiple enhancers. Other genes with fewer 

regulatory inputs may be more amenable to single-locus manipulation of functional regulatory 

elements to understand whether hypermethylation at the IDHmut-specific DMRs in AML affects 

expression. Future experiments could include enhancers for additional genes that we found in our 

studies, including (but not limited to) ASXL1, DOT1L, EGFRA, KDM2A, NOTCH, and SRSF3, 

all of which are considered to play a role in hematopoietic development and form interactions 
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with regions that display differential hypermethylation specific to IDHmut AML based on 

preliminary findings.  

We would also like to generate Micro-C libraries for our MYC and ARID1a enhancer deletion 

clones and perform targeted capture experiments to measure changes in loop interactions 

converging at the MYC and ARID1a promoter. While our current data set measures the 

functional consequence of enhancer deletion on target expression, it doesn’t capture any 

potential changes in the surrounding interaction landscape. Initial analysis will interrogate 

interactions gained or lost with the MYC eDMR or ARID1a eDMR respectively and follow up by 

surveying for new loops that may suggest alternative enhancer usage or regulatory 

compensation.  

For these initial experiments, we opted to use OCI-AML3 cells as our model for enhancer 

knockout but believe performing knockout experimenters in other AML cell lines will add 

important insights. For example, the THP1 cell line is wild-type for the IDH gene and has a 

single copy of chromosome 8, which may simplify our interpretation of BENC eDMR deletions. 

We’ve opted to use AML cell lines for these experiments given that they are easier to manipulate 

and more homogenous than primary cells, however, we are aware that these cells tend to have 

significantly altered genomes and may not behave the same as primary cells. As an alternative 

approach in future experiments, we will consider using embryonic stem cells (ESCs) for 

enhancer knockout experiments in the future, as they may provide a more comparable or 

representative genome equivalent to primary AML samples. Using our hematopoietic 

differentiation protocol, we would generate hematopoietic progenitors for targeted enhancer 

knockout experiments and test gene expression and local 3D architectural changes accordingly.  
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Finally, in attempts to increase the throughput of eDMR enhancer activity, we have also 

considered the use of a CRISPR interference (CRISPRi) screen where Cas9 is fused to a KRAB 

repressive domain that when targeted to an enhancer region, could shut down or block the 

activity of the locus. Paired with single-cell RNAseq, the ability to correlate individual gRNAs 

with gene expression changes would allow us to narrow in on potential enhancers that we may 

have overlooked in epigenetic correlation approaches. 
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4.6 Figures 
 

 

Figure 4.1. DNA methylation in IDHmut AML and OCI-AML3 cell line at the MYC eDMR. 

Top: methylation tracks for IDHmut AML cells (orange) and OCI-AML3 WT cell (black). 

Individual CpG values are smoothed across the locus for visualization. Bottom: H3K27ac signal 

from OCI-AML3 WT cells with neighboring peaks designated as EnhA and EnhB. 
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Figure 4.2. Regulation of MYC. Left: Interaction matrix surrounding the MYC locus in IDHmut 

AML and CD34+ samples.  

Darker pixels in the matrix represent increased interaction frequencies compared to background 

levels. Red arrows indicate point interactions between the MYC promoter and the eDMR regions 

in the BENC. Right: Normalized MYC expression in CD34+ cells, IDHmut AML, and IDHwt 

AML. 

 

Figure 4.3. Regulation of ARID1a.  

Left: Interaction matrix surrounding the ARID1a locus in IDHmut AML and CD34+ samples. 

Darker pixels in the matrix represent increased interaction frequencies compared to background 
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levels. Red arrows indicate point interactions between the ARID1a promoter and the eDMR 

regions in the BENC. Right: Normalized ARID1a expression in CD34+ cells, IDHmut AML, and 

IDHwt AML. 

 

Figure 4.4. PCR genotyping for the MYC EnhB DMR deletion clones.  

The size of deletion bands and full-length bands are annotated by red arrows.  

 

 

Figure 4.5. NGS sequencing reads of PCR amplification for the MYC EnhB deletion allele.  

Three representative clones are shown to demonstrate the size of the deletions. 
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Figure 4.6. PCR genotyping for the ARID1a DMR deletions.  

The size of deletion alleles and full-length alleles are annotated by red arrows. 

 

 

Figure 4.7. NGS sequencing reads of PCR amplification for the ARID1a eDMR deletion allele. 

Three representative clones are shown to demonstrate the size of the deletions. 
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Figure 4.8. Normalized MYC expression in EnhB eDMR KO clones and OCI-AML3 WT 

comparators.  

KO clones have moderately decreased expression of MYC compared to the WT control (p-value 

= 0.142). 
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Figure 4.9. SNP analysis in exon 1 and exon 2 of MYC.  

IGV browser views of RNAseq reads aligned at individual SNP loci in the first and second exons 

of MYC. Alternate bases (SNP bases) are designated by color. Top: Example clone with 2:3/1:3 

SNP ratios. Bottom: Example clone with 1:1 SNP ratios. Red boxes annotate the SNP. Red boxes 

highlight the SNP locus.  
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Figure 4.10. Normalized ARID1a expression in eDMR KO clones and OCI-AML3 WT 

comparators.  

KO clones have significantly ARID1a increased expression compared to the WT control (p-value 

0.002). 
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Chapter 5: Conclusions and Future 

Directions 
 

Elisabeth R. Wilson and David H. Spencer       

IDH1 and IDH2 are two of the most mutated genes in AML patients, accounting for roughly 

20% of newly diagnosed cases. It is well established that recurrent gain-of-function mutations in 

these genes increase DNA methylation in AML through the production of the oncometabolite 2-

HG that inhibits TET2 demethylation activity. However, the precise genomic locations and 

functional consequences of these changes have not previously been clearly defined. Previous 

studies have surveyed the hypermethylation landscape of IDHmut AML using array-based 

methods and reduced representation bisulfite sequencing, which capture only a fraction of the 

genome known to be enriched in CpG dinucleotides (i.e. CpG islands within gene promoters). 

Although these studies identified a clear hypermethylation phenotype, the functional 

consequences have been difficult to define given the lack of correlation with changes in gene 

expression.  

Our comprehensive genome-wide study of methylation changes in primary AML samples with 

IDH mutations expands upon previous findings by highlighting that the most profound 

methylation changes occur at regulatory enhancers. We were able to leverage our comprehensive 

whole-genome bisulfite sequencing datasets to detect what we believe to be truly IDHmut-specific 

DNA methylation changes. We found that these changes were not diffusely spread through the 

genome but were rather concentrated as focal changes marked by hypermethylation compared to 

both normal CD34+ cells and AML cells without IDH mutations. Moreover, differentially 



139 

 

methylated regions were enriched for active enhancer modifications in normal CD34+ progenitor 

cells and primary AML samples, suggesting they may play important regulatory roles in 

hematopoiesis. DNA methylation is generally thought to have a repressive effect on genome 

function. We sought to better understand the functional consequences of enhancer 

hypermethylation in IDHmut AML and gain insights into why enhancers are uniquely affected by 

these methylation changes.  

In our survey of subtype-specific methylation patterns, we were surprised to find that canonical 

mutations in the two IDH genes had slightly different hypermethylation signatures. Notably, 

IDH2mut AMLs in our dataset had less pronounced hypermethylation than those with IDH1 

mutations, even though both were hypermethylated at a highly overlapping set of loci. The 

reason for a more subtle IDH2 mutant methylation phenotype is still unclear. However, patients 

with IDH2 mutations tend to have better survival outcomes than those with IDH1 mutations, 

suggesting this genomic difference may have important biological and clinical implications. One 

possible explanation for this phenomenon is the difference in subcellular localization of the two 

mutant enzymes—IDH1 participates in the citric acid cycle in the cytosol while IDH2 is active in 

the mitochondria. If the oncometabolite 2HG originating in the cytosol diffuses into the nucleus 

more readily, then IDH1 mutations could have a more potent effect on TET enzymes. Our 

analysis revealed that AMLs with biallelic inactivating TET2 mutations exhibited an even less 

pronounced methylation pattern compared to IDH mutant AML, despite the fact that many of the 

hypermethylated DMRs identified in these samples overlapped IDHmut -specific DMRs. 

Additionally, our analysis using oxidative bisulfite sequencing demonstrated elevated levels of 5-

hydroxymethylcytosine (5hmC) in these regions in AML samples that were wild-type for TET2, 

IDH1, and IDH2. Conversely, 5hmC levels were notably lower in samples with mutations in 
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IDH or TET2 in these regions. Together, these data necessitate revisions to previous assumptions 

in the field that IDH1, IDH2, and TET2 mutations all have the same effects. While our data 

supports previous models where IDH mutations induce increased DNA methylation by 

interfering with TET-mediated DNA demethylation, it also suggests there may be TET2-

independent factors that contribute to the IDH mutant hypermethylation phenotype. 

Beyond defining subtype-specific methylation patterns, we also gained insight into the dynamics 

of de novo DNA methylation and active demethylation pathways in normal hematopoietic cells 

and AML. The fact that IDHmut associated hypermethylation occurs at regions with low levels of 

DNA methylation in normal CD34+ cells suggests that de novo DNA methylation and TET-

mediated demethylation are both active in these regions, despite their low steady-state 

methylation levels. This is supported by the observation that AML samples with co-occurring 

IDH and DNMT3AR882 mutations show significantly attenuated hypermethylation and that 

IDHmut-specific DMRs have high levels of 5hmC, which is produced from 5mC as a substrate. 

Remodeling of DNA methylation by these processes in specific regions has been reported 

previously in studies of embryonic stem cells, which have shown that methylation and active 

demethylation are in equilibrium at many loci and may be maintained by the occupancy of 

methylation and demethylation complexes. Our analysis suggests this equilibrium also exists in 

normal hematopoietic stem/progenitor cells and is disrupted in the presence of mutant IDH 

alleles, leaving de novo DNA methylation unopposed. The focal nature of IDHmut associated 

hypermethylation implies that the activity (or occupancy) of DNMT3A and TET enzymes is not 

diffuse and may instead be targeted to specific genomic regions. The genomic or epigenetic 

features directing this activity are unclear, but the enrichment of IDHmut DMRs in active 

enhancers suggests that components of active chromatin may recruit methylation and 
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demethylation machinery. The convergence of these processes at enhancers could provide clues 

as to why mutations with opposite effects on DNA methylation both contribute to AML 

development via dysregulation of common target genes. 

In addition to investigating the factors that predispose regions to IDHmut-specific 

hypermethylation, we also wanted to characterize the potential functional consequences of these 

changes. One of the possible consequences of altered enhancer methylation could be a change in 

the expression of target genes. Our initial analysis of 3D genome interactions using Hi-C data 

from a limited set of normal CD34+ cells and AML cases identified a set of genes that form 

interactions with IDHmut-specific DMRs. In normal CD34+ cells and IDHmut AML, these genes 

were enriched for highly expressed genes compared with the full distribution of expressed genes 

and those opposite a commonly hypermethylated region. Although increased methylation at 

these loci was not associated with repressed chromatin or lower gene expression in IDHmut AML 

samples, this finding suggested that IDHmut associated hypermethylation affects the regulatory 

sequences of genes that may contribute to AML pathogenesis. While none of our Hi-C samples 

had IDH mutations, this analysis was key for identifying generalized features of eDMR target 

genes. What we lacked was an ability to correlate enhancer methylation status with the strength 

of interactions, or even the adaption of novel interactions.   

To follow up on these preliminary findings, we performed Micro-C on 15 AML samples and 2 

CD34+ normal donor samples (IDHmut, n=4; DNMT3aR882, n=6; MLL fusions, n=3; RUNX1-

RUNX1T1, n=2). We additionally performed a hybridization-capture of our Micro-C libraries to 

enrich the interactions converging on gene promoters across the genome. Importantly, these 

Micro-C experiments improved upon our previous data set by increasing the overall resolution at 

which we could identify chromatin interactions (particularly enhancer-promoter interactions) and 
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by extending chromatin conformation data across IDHmut and wild-type cases. While this dataset 

contains a wealth of information, we focused on defining and characterizing the intersection of 

chromatin interactions with IDHmut-specific DMRs. Specifically, we used the Micro-C data to 

call genome compartments, topologically associated domains (TADs), and chromatin loops in all 

AML and normal samples. Each set of features was assessed for overlap with the DMRs and 

summarized based on methylation phenotype (IDHmut vs. CD34+ normal and IDHwt). At all 

levels of nuclear organization, we identified unique features of chromatin organization in IDHmut 

AML and/or the set of interactions involving IDHmut-specific DMRs, suggesting that 

hypermethylation occurs at regions relevant to genome organization.  

Our analysis of compartments showed significant enrichment of IDHmut-specific DMRs in the 

active genome compartment compared with the control set of commonly hypermethylated 

regions, consistent with our hypothesis that these regions preferentially interact with 

transcriptionally active loci. An unsupervised analysis also demonstrated unique 

compartmentalization in IDHmut AML, stratifying these samples separately from IDHwt AML 

CD34+ and normal cells. When we looked at the intersection of DMRs with TAD boundaries, 

we found a slight overall decrease in boundary strength in IDHmut AML compared with wild-

type samples and normal cells. Similarly, at the level of looping interactions, we found that 

differential interactions between IDHmut and normal cells were heavily skewed towards having 

decreased frequency in AML when they intersected a DMR. Many of the interactions coincided 

with CTCF binding sites, regions where this methylation-sensitive protein helps orchestrate 

looping, providing a potential explanation for the reduction in interaction frequency. Additional 

measurements of CTCF binding in these primary samples will be necessary to determine the 

impact of methylation on CTCF-mediated looping dynamics.  
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To follow up on observations from our previous studies of whole-genome bisulfite sequencing 

and 3D chromatin architecture data, we selected candidate hypermethylated enhancers for 

mechanistic study. We focused on the MYC locus which had robust interactions with a 

previously identified superenhancer region containing focal hypermethylation specific to IDH 

mutant AML. Three regions within the superenhancer showed H3K27ac signal coinciding with 

DMRs, two of which we attempted to knock out using CRISPR-Cas9 based editing strategies. To 

measure the consequences of enhancer DMR knockout, we performed RNAseq to measure any 

coincident changes in MYC expression and/or histone modifications surrounding the regulatory 

region. 

These experiments were designed to test two models that could describe the effect of 

hypermethylation on the MYC eDMR in human AML. In our first model, the enhancer region 

has regulatory input on MYC expression, and its activity is altered by the hypermethylation we 

observed in IDHmut AML. In this case, loss of the enhancer may cause MYC expression to 

decrease. Although the influence of the cluster of enhancers at this locus is complex and some 

level of redundancy is expected, previous studies have shown that knockout of even a single 

enhancer can have measurable activity. Nonetheless, we anticipated that our experiments in 

transformed cell lines might have only modest changes in MYC expression. A second hypothesis 

is that the eDMR is completely inactive and does not regulate MYC expression at all. 

Hypermethylation in this scenario accumulates due to this inactivity. In this case, no changes in 

MYC expressions would be expected upon deletion of the eDMR.  

We generated seven clones with deletions of the eDMR and observed that MYC expression 

trended lower compared with unmodified cells. The deletions all spanned roughly the same 

region and there was no apparent correlation between deletion size and expression difference. 
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One of the challenges we experienced in interpreting expression results from OCI-AML3 eDMR 

KO cells was an additional allele of MYC on the +8 chromosome. Since clones were genotyped 

using PCR and sequencing, we did not have the exact genotype for each clone, making it 

difficult to determine how many alleles were successfully edited. We looked for patterns of allele 

skewing in the RNAseq data that suggested allele-specific expression due to loss of the cis-acting 

enhancer region. Although we observed some evidence of skewing in three of seven clones, the 

pattern was inconsistent such that definitive correlation between the presence of a deletion and 

expression remained unclear.  

Interestingly we found an opposite result when we deleted the eDMR region contacting the 

ARID1a promoter in OCIAML3 cells. Rather than observing a decrease in expression, which we 

might expect if enhancer hypermethylation inhibits its activity, we observed a consistent increase 

in ARID1a expression for all three of our knockout clones compared to OCIML3 wild-type cells. 

Similar to MYC, ARID1a is encoded on a triploid chromosome in OCIML3 cells, complicating 

our interpretation of expression results. Although additional sequencing is required to precisely 

genotype these cells, PCR results suggested that two of the three clones were compound 

heterozygous for eDMR deletions and lacked a wild-type allele, while the third clone had one 

copy knocked out leaving at least one intact wild-type allele. The fact that all three clones had 

similarly increased expression suggests the loss of even one copy of the eDMR is enough to 

change overall AIRD1a levels. The loss of additional alleles did not appear to have additive 

effects, perhaps due to feedback mechanisms that prevent expression from exceeding a certain 

level. 

The eDMRs involving MYC and ARID1a represent a very small fraction of the total regions 

impacted by IDHmut-specific hypermethylation. However, these regions are consistent with our 
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overall observations that IDHmut associated hypermethylation occurs in regions that may regulate 

highly expressed genes in AML. They also serve as two different contexts in which 

hypermethylation may have consequences on gene expression. Decreased gene expression upon 

enhancer deletion may be the result one predicts a priori based on our general understanding of 

methylation/function relationships. However, the ARID1a locus provides an alternative example, 

where hypermethylation may have the opposite effect. While far from conclusive, these two 

examples suggest that a diversity of underlying mechanisms may be relevant when 

characterizing the impact of hypermethylation on genome regulation and gene expression. 

We envision future experiments to study other eDMR regions identified in our genome-wide 

analysis. One approach is a methylation reporter assay that could efficiently measure the intrinsic 

activity of the DNA sequences of a large fraction of eDMRs. This would allow for the 

prioritization of interesting ‘hits’ for subsequent CRISPR editing approaches to either delete or 

modify their native context. We initiated such an approach using a published reporter plasmid 

that allows putative cis-acting regulatory sequences to be inserted upstream of a barcoded 

reporter gene. RNA sequencing of the reporter gene with the barcode would therefore provide a 

digital readout of the influence of the regulatory element on the expression level. This construct 

was also selected for its lack of CpGs in the backbone, providing an optimal vector for in vitro 

treatment with a DNA methyltransferase enzyme without having consequences on critical 

regulatory elements (other than insert itself). Methylated and unmethylated libraries could then 

be transfected into cells where cellular processes can act on the reporter plasmids and drive 

expression accordingly. Collecting and measuring RNA and DNA in tandem would then be used 

to define enhancer sequence activity as a function of methylation status. We have selected 46 

eDMR elements for this experiment, which were prioritized based on consistent 
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hypermethylation signal across IDHmut AML samples and CpG density to provide ample 

substrate for methylation. Initial cloning attempts proved challenging, and we had minimal 

success getting a diverse representation of species in our reporter library. Assembly approaches 

and ligation-based methods were both attempted using varying ratios of vector to insert, all of 

which failed to produce a successful library. Future experiments will be important for optimizing 

the cloning procedure to efficiently express all 46 eDMR elements selected (or any additional 

elements of interest). We believe these experiments will not only identify additional candidate 

enhancers where hypermethylation may be consequential to the regulatory landscape and/or gene 

expression but will also provide a more systematic approach to identifying characteristics of 

regulatory elements that are susceptible to hypermethylation. It will be particularly interesting to 

look for correlations between baseline enhancer activity, degree of hypermethylation in AML, 

and the consequences on reporter expression. 

While reporter assays provide a massively parallel approach for screening eDMR activity, they 

fail to recapitulate the chromatin context within which these enhancers are operating. To address 

the direct consequences of focal hypermethylation at regulatory sequences residing in their 

native context, we have started to develop a system that pairs the localization of a catalytically 

dead Cas9 enzyme (dCas9) with the methyltransferase activity of DNMT3A to deposit 

methylation at candidate eDMRs. We currently have multiple clonal AML cell lines that express 

an inducible SunTag/DNMT3A system. However, additional experiments are necessary to 

determine the on-target efficiency and specificity of the system in each clonal line before testing 

any hypotheses on the effects of hypermethylation. Using RNAseq and Capture-C we believe 

this system will help to better characterize the role of focal hypermethylation at critical 

regulatory elements in their native context. We foresee the use of RNAseq and Micro-C as 
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important read-out assays for measuring the consequences of enhancer hypermethylation on 

cognate gene expression (and potential downstream targets), as well as changes in the looping 

interactions with the candidate target (loss of previously observed loops, neo-loops, etc.).  

Our systematic studies of genome-wide methylation and 3D chromatin architecture suggest a 

potential role for altered methylation in regulating genome organization and gene expression in 

AML. We acknowledge that methylation is only a part of the larger regulatory story and that 

other factors contribute to gene regulation at these loci. We hypothesize that DNA methylation 

may be responsible for the ‘fine-tuning’ of gene expression, which may be especially important 

at certain developmental phases during hematopoiesis. Although the direct effects of IDHmut-

specific hypermethylation may be difficult to ascertain in AML cells, they may signal DNA 

elements that are critical for proper gene regulation at a specific point in the path between normal 

stems and full transformed leukemia. 
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Supplemental Figures 
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Figure S1. IDHmut AMLs exhibit the greatest proportion of focal increases in methylation 

compared with CD34+ cells. A. DMC summary for individual AML mutational subtypes 

compared with CD34+ cells. DMC differential methylation status is classified as either 

hypermethylated (orange bars) or hypomethylated (teal bars) with respect to CD34+ cells. B. 

Top panel: Example locus with a focal enrichment of dmCpGs where the highlighted cytosines 

were identified as constituents of a DMR with statistically increased methylation in IDHmut 

samples compared with CD34+ cells. Bottom panel: Summary of DMCs localizing within/outside 

DMRs identified in individual subtypes vs. CD34+ cells. C-D. Average methylation levels across 

TssAFlnk (C) and TxFlnk (D) ChromHMM regions in CD34+ cells (N=6) and AML subtypes 

(IDH1mut or IDH2mut, n=15; TET2mut, n=5; DNMT3AR882, n=6; DNMT3AR882/IDHmut, n=7; normal 

karyotype with NPM1c and wild-type IDH1, IDH2, TET2, and DNMT3A, n=4; Normal karyotype 

with wild-type NPM1, IDH1, IDH2, TET2, and DNMT3A, n=4; CBFB-MYH11, n=3; KMT2A-ELL, 

n=3; RUNX1-RUNX1T1, n=3). E. Distribution of mean methylation values across IDHmut DMCs 

localizing within (left panels) or outside (right panels) IDH1mut (top panels) and IDH2mut (bottom 

panels) DMRs in IDHmut AML samples vs. CD34+ HSPCs. F. Distribution of mean methylation 

values across IDH1mut (top panels) and IDH2mut (bottom panels) DMRs in IDHmut AML samples 

vs. normal myeloid cells (n=3 promyelocyte samples; n=3 polymorphonuclear leukocyte 

samples; n=2 monocyte samples).  
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Figure S2. IDHmut-specific DMCs exhibit similar methylation patterns and genomic annotations 

as IDHmut-specific DMRs. A-B. Distribution of mean methylation across IDHmut DMCs localizing 

within (A) or outside of (B) IDHmut-specific DMRs in IDHmut samples vs. all other 

IDHwt/TET2wt/DNMT3Awt AMLs.  C-D. Distribution of mean methylation values across IDH1mut-

specific (C) and IDH2mut-specific (D) DMRs in IDHmut AML samples vs. normal myeloid cells (n=3 

promyelocyte samples; n=3 polymorphonuclear leukocyte samples; n=2 monocyte samples). E-

F. Violin plots of methylation levels across all IDH1mut-specific (E) and IDH2mut-specific (F) 

DMCs in CD34+ cells, IDH1mut samples, and IDH2mut samples. G. Fraction of IDH1mut-specific 

DMCs and IDH2mut-specific DMCs overlapping functional genomic elements including CpG 

islands (CGIs), enhancers, gene bodies, and promoters. 
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Figure S3. TET2mut-associated hypermethylation is distinct from canonical CpG-island 

hypermethylation and is consistent with regions of increased TET2 hydroxymethylation activity 

in TET2wt cells. A. Hierarchical clustering of TET2mut AMLs with all other IDHwt, TET2wt, and 

DNMT3Awt AMLs at the set of TET2mut vs. CD34+ DMRs. Column annotation represents 

mutational classification by sample. B. Distribution of TET2mut-specific DMC mean methylation in 

TET2mut samples vs. the set of IDHwt/TET2wt/DNMT3Awt AMLs. C. Percent overlap of generic 

AML-associated hypermethylation and TET2mut- specific DMRs with defined genomic 

annotations. D. Distribution of CpG density across the set of commonly hypermethylated CpG 

islands and TET2mut- specific DMRs. E. CpG conversion rate of 9 paired whole-genome bisulfite 

and oxidative bisulfite prepared libraries (n=2 for IDHmut ; n=4 for TET2mut; n=3 for IDHwt/TET2wt). 

F. Genome-wide average 5hmc levels across ~10.6 million CpGs with > 10x coverage in each 

of the paired samples, as calculated by subtracting oxidative bisulfite levels from bisulfite levels. 

G. Hierarchical clustering of mean 5-hmC levels across 15 chromatin states defined in CD34+ 

cells for individual patient samples. Columns represent chromatin states and rows represent 

individual patient samples. Vertical color blocks indicate IDH and TET2 mutation status of 

individual samples. H. Example locus encompassing the ETV6 gene with diminished 5hmc 

levels in two IDHmut samples (red tracks) and four TET2mut samples (blue tracks) compared with 

three IDHwt/TET2wt samples (green track). I. Mean 5-hmC levels in IDHmut, TET2mut, and 

IDHwt/TET2wt patient samples at heterochromatic regions, commonly hypermethylated regions, 

and IDHmut-specific DMRs. J. Distribution of estimated 5hmc levels across 4008 IDHmut – 

specific DMRs, 4586 commonly hypermethylated regions in AML, and ~105,500 

heterochromatic regions summarized by mutation. 
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Figure S4. Individual samples with IDH mutations alone and in combination with DNMT3A-

R882 exhibit group level methylation trends at IDHmut-specific and DNMT3A-R882 DMRs. A. 

Methylation values across IDHmut-specific DMRs in a set of 15 IDHmut samples (red underline) 

and 7 DNMT3AR882/IDH doubly mutant samples (blue underline) assayed with WGBS. B. 

Methylation values across IDHmut-specific DMRs in a set of 20 IDHmut samples (red underline) 

and 6 DNMT3AR882/IDH double mutant samples (blue underline) assayed with methylation array. 

C. Methylation value across DNMT3AR882 DMRs in a set of 6 DNMT3AR882 samples (red 

underline) and 7 DNMT3AR882/IDH doubly mutant samples (blue underline) assayed with 
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WGBS. D. Methylation values across DNMT3AR882 DMRs in a set of 18 DNMT3AR882 samples 

(red underline) and 6 DNMT3AR882/IDH double mutant samples (blue underline) assayed with 

methylation arrays. E.  Hierarchical clustering of CpG methylation values contained within 2183 

IDHmut-specific DMRs in primary AML samples with IDH1 (n=7), IDH2 (n=13), TET2 (n=15), and 

DNMT3AR882 (n=6), and co-occurring DNMT3AR882/IDH (n=6), and also MLL-ELL (n=11), CBFB-

MYH11 (n=12), and RUNX1-RUNX1T1 (n=7) fusions. F. Hierarchical clustering of CpG 

methylation values contained within 3852 DNMT3AR882 DMRs in primary AML samples with 

IDH1 (n=7), IDH2 (n=13), TET2 (n=15), DNMT3AR882 (n=6), and co-occurring DNMT3AR882/IDH 

mutations (n=7), and also MLL-ELL (n=11), CBFB-MYH11 (n=12), and RUNX1-RUNX1T1 (n=7) 

fusions. 

 

Figure S5. ChromHMM states are unique in subtype-specific DMRs for AMLs with canonical 

fusions and DNMT3AR882 mutations compared to IDHmut AML. A. Percent overlap of 1921 

RUNX1-RUNX1T1 DMRs with 15 ChromHMM chromatin states. B. Percent overlap of 276 MLL-

ELL DMRs with 15 ChromHMM chromatin states. C. Percent overlap of 309 CBFB-MYH11 

DMRs with 15 ChromHMM chromatin states.  

 



154 

 

 

Figure S6. IDHmut-specific enhancer DMRs are enriched in ‘superenhancers’ and contact highly 

expressed genes in AML. A. Locus heatmap of mean subtype methylation across IDHmut-

specific DMRs, including annotated overlaps with gene promoters (green), putative active 

enhancers (purple), and FitHiC loop anchors (blue). B. Representative rank-ordered analysis of 

H3K27ac marked enhancers in two IDHwt AML samples annotated by enhancer and super-

enhancer overlap with IDHmut-specific DMRs. C. Distribution of number of IDHmut-specific DMRs 

overlapping computationally defined ‘superenhancers’ in 3 IDHmut AML samples. D. Hierarchical 

clustering of IDHmut -eDMR target gene expression in IDH1 (n=6), IDH2 (n=14), and normal 
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CD34+ cord blood cells (N=17, GSE48846). E. Example IDHmut -eDMR locus displaying robust 

interactions with the DOT1L promoter. A zoomed in view of the locus demonstrates focal 

enhancer hypermethylation in IDH1mut (purple) and IDH2mut (green) samples compared with 

CD34+ cells (blue). Normalized DOT1L expression is shown for 17 CD34+ samples, 6 and 14 

IDH1mut and IDH2mut samples, and 91 IDHwt samples. F. Example of IDHmut -eDMR locus 

displaying robust interactions with the SRSF3 promoter. A zoomed in view of the locus 

demonstrates focal enhancer hypermethylation in IDH1mut (purple) and IDH2mut (green) samples 

compared with CD34+ cells (blue). Normalized SRSF3 expression is shown for 17 CD34+ 

samples, 6 and 14 IDH1mut and IDH2mut samples, and 91 IDHwt samples. 
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