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Professor Christopher Maher, PI 

Professor Malachi Griffith, Chair 

 

Prostate cancer (PCa) accounts for 29% of all expected cancer diagnoses in men in 2024, but 

patients presenting with different disease stages can have significantly different outcomes. 

Patients with indolent PCa may experience little to no impact on their quality of life and have a 

5-year survival as high as 98%, but progression to aggressive disease causes 5-year survival to 

plummet to 30%. Patients with the most lethal form of the disease, metastatic castration-resistant 

PCa (mCRPC), have a median survival of only 5.5 months if they become resistant to treatment. 

Due to this clinical heterogeneity, it is critical to quickly and accurately stratify patients to match 

them with the appropriate treatment plans. To address this need, this thesis focuses on the 

development of novel tools that may be applied to diagnostic and prognostic biomarker detection 

in PCa by 1) creating a pipeline to aid in analysis of liquid biopsies, 2) developing a tool for 

discovering fusion-derived circular RNAs as potential biomarkers and 3) identifying an 

epigenetic signature for stratification of localized PCa.
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Chapter 1: Introduction 

1.1 Overview 

This thesis focuses on the development of novel bioinformatics tools for biomarker 

discovery in prostate cancer. Prostate cancer is highly heterogeneous and therefore a variety of 

different considerations must be accounted for when attempting to identify biomarkers in early-

stages vs late-stages of the disease. As a result, this work approaches biomarker discovery with a 

wide variety of strategies and includes methods relating to 1) structural variant detection in 

circulating tumor DNA, 2) machine learning algorithms applied to methylation profiles and 3) 

detection of circular RNAs formed by fusion transcripts. This chapter describes the heterogeneity 

found in prostate cancer and provides a foundation for understanding why each of these unique 

approaches may be particularly advantageous when considering specific aspects of the disease. 

1.2 Prostate cancer 

Prostate cancer (PCa) presents as a clinically heterogenous disease, accounting for 29% 

of all expected cancer diagnoses in men in 20241. The five-year survival rate for localized, 

indolent PCa exceeds 98%2, but the five-year survival for patients that advance to metastatic PCa 

declines to approximately 30%, resulting in PCa being the second leading cause of cancer-related 

deaths in men3. Metastatic castration resistant PCa (mCRPC), or disease that continues to 

progress despite surgery (castration) or hormone therapy (chemical castration), is considered the 

most lethal form of the disease. Virtually all mCRPC patients become resistant to standard 
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treatments, at which point the median survival is only 5.5 months3,4. It has also been noted that 

disease prevalence differs among different regions and populations, with African Americans 

known to be more likely to be diagnosed and have worse clinical outcomes than Caucasian 

males5. Owing to the prevalence of PCa and considerable variation in outcomes across disease 

stages and populations, there is an urgent need for more comprehensive patient stratification 

methods. 

1.2.1 Disease progression and treatment 

Indolent and Aggressive Prostate Cancer 

Approximately 80% of all PCa diagnoses occur when the disease is non-metastatic6. 

Those that present with indolent disease are often asymptomatic, with the most frequent 

complaints being difficulty with urination and nocturia7. Low-risk PCa patients are often 

monitored using strategies such as watchful waiting or active surveillance8. Active surveillance 

is a treatment strategy where surgery and other treatment options are deferred, instead focusing 

on proactive monitoring of disease progression. This typically involves regularly scheduled 

prostate-specific antigen (PSA) tests, digital rectal exams, biopsies, and/or imaging. This 

approach allows those with low-risk tumors to avoid possible side effects of more aggressive 

treatment. A watchful waiting plan is an even less aggressive treatment plan, often foregoing the 

use of frequent tests and generally used by those who do not want, or cannot have, more 

aggressive treatments such as instances where the patient has other life-threatening medical 

conditions.  

For those under active surveillance or who have not received a PCa diagnosis, PSA tests 

are often used to monitor prostate health, but the use of PSA screening has still led to over-
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diagnosis and over-treatment leading to negative side effects and a drop in the quality of life of 

patients9,10. In light of this, global organizations offer variable guidelines regarding 

recommendations for PSA screening. For example, the United States Preventive Services Task 

Force suggests that screening in men aged 55 to 69 should be decided individually and suggests 

that routine PSA screening in men over 70 is not recommended11. Meanwhile the European 

Association of Urology recommends PSA screening only for those with a life expectancy of at 

least 10-15 years12 and the Canadian Task Force on Preventive Health Care offers a weak 

recommendation against PSA screening, citing small and uncertain health benefits13. 

Although PSA screening may have benefits, formal diagnosis of PCa typically requires 

pathological analysis of a prostate biopsy. When evaluating the biopsy, samples are typically 

assessed using Gleason grade scores, which refers to the observed morphology of tumor cells. 

Cells exhibiting more aggressive characteristics, such as irregular gland formation and a lack of 

differentiation, receive scores >= 4, while less aggressive cells with normal morphology receive 

lower scores14. Conducting such biopsies is invasive, necessitating surgical procedures, which is 

not ideal for those who may be under active surveillance for years.  

Various genomics-based methods have been developed to enhance this approach, but 

they typically rely on gene expression profiles obtained from solid tumor biopsies15–17. 

Introducing a non-invasive, non-PSA-based, molecular strategy for identifying aggressive 

tumors would offer two significant advantages: it would be less intrusive for patients and would 

facilitate repeated sampling for continuous monitoring. Similarly, the low recurrence of somatic 

SNVs and the delayed appearance of SVs in localized PCa means that any non-invasive 

molecular biomarker at this disease stage likely needs to extend beyond the detection of somatic 

nucleotide variants18.  
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DNA methylation, which correlates with gene expression and occurs broadly throughout 

the genome, holds promise as a potential source of clinically useful biomarkers. Detectable non-

invasively, DNA methylation may serve as a value metric for distinguishing between indolent 

and aggressive PCa19,20. 

Metastatic Prostate Cancer 

Approximately 5% of patients are diagnosed with metastatic disease, many of whom will 

develop recurrence after treatment21. Those that progress to the most lethal form of the disease, 

mCRPC, have a median survival of only 5.5 months3. Fortunately, an increasingly large number 

of treatment options exist, but it is critical that patients are quickly matched to the most 

appropriate treatment. 

In metastatic prostate cancer (mPCa), the primary treatment course includes androgen 

deprivation therapy (ADT), also known as hormone therapy. However, almost all patients 

eventually progress to mCRPC and receive AR-directed drugs, such as enzalutamide or 

abiraterone, or taxane-based chemotherapy22,23. Despite the expanding array of effective 

treatments for mPCa, there remains a notable absence of molecular biomarkers to assist in 

quickly pairing patients with their optimal treatment plans23. Recent advances in liquid biopsy 

techniques present a promising avenue to address this deficiency24. For example, the clinically 

validated circulating tumor cell (CTC)-based assay, which detects abnormal AR splice variants 

resulting in the truncation of the AR protein ligand-binding domain targeted by enzalutamide and 

abiraterone, illustrates the potential for non-invasive disease monitoring25,26. However, this 

established assay yields false-negative results in 80-90% of cases and exhibits 3% sensitivity 
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when utilized prior to first-line treatment3,25. Consequently, there exists a clinical need for 

improved strategies for the non-invasive monitoring of mCRPC. 

1.2.2 Common somatic variants 

Single nucleotide variants 

Patients diagnosed with indolent PCa typically present with low tumor mutation burdens, 

with a median of 0.5 missense and/or nonsense mutations per megabase (Mb)27. Notably, some 

tumors display no detectable exonic SNVs and the most recurrently modified gene (SPOP) 

undergoes mutation in only 8% of patients27. Mutation rates increase as patients progress to 

mCRPC, with an average tumor mutation burden of 2.7 SNVs per Mb and 10 oncogenes (TP53, 

AR, FOXA1, SPOP, PTEN, ZMYM3, CDK12, ZFP36L2, PIK3CA and APC) enriched for 

mutations when compared to indolent disease28. Other studies have pointed to mutations found in 

BRCA1/2 and HOXB13 as high-risk factors29,30. The limited occurrence of recurrent SNVs and 

low tumor mutation burden, particularly in cases of indolent disease, make the use of SNVs as 

prognostic biomarkers difficult in PCa. 

Copy number alterations and structural variants 

In contrast to SNVs, as many as 70-87% of mCRPC patients harbor recurrent SVs18. 

Others have reported an average of 230 SVs per mCPRC patient31. While a wide variety of SVs 

and gene targets have been reported in PCa, some events are particularly prevalent. For example, 

the detection of TMPRSS2::ERG gene fusions has been proposed as a ‘gold standard biomarker 

for diagnosis’ in PCa due to its high prevalence early in tumor evolution, with a large variety of 

other fusions commonly observed as well31,32. Similarly, overexpression of the AR gene has long 

been known to drive castration resistance, with recent studies showing that this is a result not 
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only of a previously described genomic amplification of the gene, but also due to increased copy 

numbers of an upstream enhancer33–35. Indeed, amplification of the enhancer alone (in the 

absence of gene amplification) has been reported35.  

1.2.3 Methylation landscape 

Methylation is known to be associated with gene expression and to play a role in cancer 

progression20,36–38. In PCa, changes to methylation patterns have been previously documented to 

some extent, with hypermethylation and associated decreased expression of tumor suppressors 

such as GSTP1 occurring very early in tumor formation, providing evidence that changes begin 

early in oncogenesis39. Others have shown that differential methylation of exon 3 of the 

oncogene MYC correlates with Gleason grade 3 and grade 4 in some cases, providing evidence 

that correlations between methylation and Gleason grade exist40. Taken together, these findings 

suggest that methylation profiling of Gleason grade 3 and 4 tumors may identify early changes 

associated with the transition from indolent to aggressive disease.  

1.2.4 Liquid biopsies and prognostic assays 

As opposed to invasive solid tumor biopsies, acquisition of liquid biopsies simply 

requires a sample of bodily fluid from the patient, often in the form of blood or urine24. Once 

collected, a wide variety of strategies can be applied for detection of different types of 

biomarkers including CTC analysis26, ctDNA quantification41, analysis of ctDNA/ctRNA for 

detection of genomic variants22, ctDNA methylation profiling 19, and expression of mRNA-15, 

lncRNA-42 and circRNA-based43,44 biomarkers. Detection of biomarkers using these various 

approaches have been used with success in a variety of cancer types, including PCa15,22,26, non-

small cell lung cancer45, colorectal cancer46 and pan-cancer studies47. The quickly growing list of 
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successful applications of liquid biopsies is indicative of the clinical utility of this approach.  

However, the relatively low amount of material in patient plasma that originates from tumors can 

make the confident identification of some biomarkers difficult, so 1) standardized analytical 

strategies and 2) biomarkers based on molecules unlikely to quickly degrade are critical for 

further progress in this area.  

Regarding PCa specifically, a number of liquid-based assays have been designed with 

variable amounts of success. As mentioned in section 1.2.1, a current clinically approved assay 

based on CTCs works by detecting AR splice variants that remove the protein domain targeted 

by common therapies26. This assay for identifying refractory mCRPC gives 80-90% of patients a 

false negative and has a sensitivity of only ~3% when used prior to first-line treatment3,26. Using 

a different approach, the Maher Lab, in collaboration with Drs. Chaudhuri and Pachynski, 

developed a targeted panel for detecting variants in cfDNA (EnhanceAR-Seq), which achieved a 

100% positive predictive value for identifying resistance to AR-directed therapies and showed a 

significant association with patient survival (n=40)22. In addition to monitoring the AR gene and 

other oncogenes, the assay leveraged recent findings regarding the recurrent focal amplification 

of the AR enhancer18,34,35. Others have used an integrative approach based on both cfDNA- and 

CTC-monitoring of AR variants to monitor castration-resistant patients, while a different assay 

relied primarily on the abundance of ctDNA to evaluate castration-sensitive PCa48,49.  

1.3 Structural variation 

Structural variants (SVs) are large-scale alterations to genomic sequences, typically 

defined as being >1kb in size, although no precise limit on the required size exists50,51. In 

addition to inherited or germline alterations, the somatic acquisition of SVs have been associated 
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with various conditions and are particularly prevalent in specific cancer types, such as PCa35,52. 

A better understanding of these SVs and improved methods for detecting them may lead to 

improved treatment options. 

1.3.1 Classes of structural variants 

SVs can take a number of forms, each with different potential biological implications 

depending on the genomic context of the variant51. For example, translocations occur when a part 

of one chromosome becomes attached, or is substituted with, a different chromosome. 

Translocations may be considered balanced or imbalanced, based on the net gain or loss of 

genetic material. Other SV classes include inversions when the orientation of a region is flipped. 

Such events are balanced but can affect how the region interacts with upstream and downstream 

sequences. Largescale insertions and deletions, like small indels, may introduce or remove 

genetic sequences and alter the spatial configurations of a region. Many of these classes may 

result in a gene fusion, an event where two disparate genes become juxtaposed with one another 

resulting in a novel gene.53  

1.3.2 Detection of structural variants 

The study of SVs has traditionally lagged behind the study of smaller mutations in part 

due to the technical difficulties caused by their scale and complexity50. Most current methods for 

SV detection are based on the computational detection and interpretation of sequence alignment 

anomalies when aligning short, paired-end reads54–56. For example, mate pairs that align further 

or closer to each other than expected may indicate an insertion or deletion57. Alternatively, 

changes in read depth in different regions may suggest the gain or loss of a genomic region58,59. 
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In most clinical situations, it is desirable to use a targeted sequencing panel to reduce 

costs and allow for increased coverage of clinically relevant regions. This presents a challenge 

for SV detection, as it is possible that a portion of an SV may not be covered by the panel, 

making it difficult to make precise calls. In the case of the EnhanceAR-Seq panel designed by 

our lab in collaboration with Drs. Chaudhuri and Pachynski for mCRPC patients, two particular 

SVs were of significant interest22. The first region of interest was the AR/enhancer locus. In 

order to capture the high variability present in potential SVs in this region, probes located 

throughout the AR gene as well as probes interspersed at regular intervals throughout the non-

coding region of interest were used. The second region of interest included potential 

TMPRSS2::ERG gene fusions. Fusions between these genes are known to have a select number 

of common breakpoints, so no intergenic probes were required. Other possible approaches, 

though not employed by EnhancerAR-Seq, can include the use of probes that contain sequences 

that would only exist if a specific SV junction were formed.  

When detecting SVs in cfDNA using a targeted panel, additional considerations must be 

made. For example, cfDNA is known to have non-random degradation based on nucleosome 

positioning and is often found in short fragments60. Additionally, ctDNA typically represents a 

very small fraction of all cfDNA, so highly sensitive methods that do not introduce poor 

specificity are required. Prior to our work, we identified three SV tools benchmarked for SV 

detection in cfDNA in their original publications, namely SVICT, Factera and Aperture61–63. 

While usable, each had specific, potential limitations that were thought to hinder their clinical 

adaptation. By default, SVICT targets SVs <2kb in size, smaller than many clinically relevant 

events61,64. Factera specializes in gene fusions but is not optimized for other SV classes. Aperture 

uses an alignment-free approach to overcome potential alignment issues but has the negative side 
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effect of being unable to classify the types of SVs that are detected. Importantly, none of the 

tools allow for a matched control, which is usually standard for clinical applications and for 

minimizing noise when low amounts of ctDNA are expected. 

1.4 Circular RNA 

It has been well established that standard processing of RNA typically includes splicing 

mechanisms to remove introns and to allow for the creation of different isoforms (with different 

sets of exons)65. More recently, it has been shown that some RNAs undergo backsplicing, which 

is a specific type of splicing wherein a downstream region of a transcript becomes covalently 

bound to a region that would normally precede it, resulting in a circularized RNA66.  

1.4.1 Structure and biogenesis 

Like linear RNA, circRNA consists of covalently bound nucleotides transcribed from a 

gene66. As a result of their circular structure, circRNAs cannot be modified to include a 5’ cap or 

a poly-A tail, because they do not have a 5’ or 3’ end. Although this may prevent the circRNA 

from being transported to the cytoplasm using the same mechanisms employed by linear mRNA, 

it does provide the circRNA with protection from exonucleases43. This inherent structural 

protection from degradation is thought to increase the half-life of circRNAs. 

The backsplicing events that result in these circular structures is thought to primarily be a 

function of standard spliceosome machinery, although trans-acting factors are also involved43,67. 

This is also usually facilitated by complimentary sequences located in the regions flanking the 

donor and acceptor splice sites, typically in the form of Alu-repeats66. 
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1.4.2 Biological function 

A variety of functions have been observed in circRNAs, suggesting that they are not 

sequencing artifacts. Such functions include mechanisms such as direct transcription regulation68 

and indirect regulatory functions facilitated by RNA-binding proteins and microRNAs69–71. They 

have also been shown to encode peptides, including novel peptides which would not have been 

possible by linear isoforms of the same gene72. 

1.4.3 Fusion-derived circular RNA 

A subset of circular RNAs include those isoforms which consist of genetic sequences that 

come from two separate genes73. Such transcripts are referred to as fusion-derived circRNAs 

(fcircRNAs) and may be the result of a gene fusion or of a read-through transcript (although 

some refer to these as read-through circRNAs, or rtCircRNAs)74. For clarity and brevity, this 

work will refer to any circRNA composed of genetic sequences from two different genes, 

regardless of the proximity of the genes, as an fcircRNA. 

Oncogenic Potential 

Although little is known about fcircRNAs, recent studies suggest that may be functional 

and, in some cases, oncogenic. Indeed, fcircRNAs arising from EML4::ALK fusions were shown 

to promote cell migration and invasion in non-small cell lung cancer45,75, while multiple different 

fcircRNAs have been suggested to have oncogenic functionality in leukemia76–78. Importantly, 

62 fcircRNAs were recently reported in a cohort of PCa patients with localized disease, although 

no information was given about which fcircRNAs they were79. Despite this limited 

understanding about their functionality, the expected stability of circular transcripts and somatic 
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nature of most clinically relevant gene fusions suggests that fcircRNAs could potentially be 

leveraged as cancer biomarkers43–45. 

Detection Methods 

The study of fcircRNAs has been severely limited, in part because of two specific 

obstacles: 1) most RNA-Seq studies use Poly(A)-selection to enrich for coding transcripts which 

systematically removes circRNAs and 2) software limitations. Indeed, most studies that have 

investigated the existence and functionality of fcircRNAs began by identifying a gene fusion of 

interest and then performing targeted sequencing or other highly specific methods (such as 

Sanger sequencing of PCR products) to interrogate potential backsplices in the fusion of 

interest45,76–78. We are aware of only three previously published software tools with fcircRNA 

detection functionality. The first, Acfs, has systematic biases by requiring that fcircRNAs be 

composed of genes from different chromosomes or from different strands of the same 

chromosome80. The second, Fcirc, uses a built-in aligner to map reads to a user-supplied list of 

gene fusions, preventing the detection of novel events81. Finally, CircFusion, uses a similar 

workflow as Fcirc but relies on alignments from STAR rather than using its own aligner and 

again requires a priori knowledge of gene fusions82. The fact that the example fusion list 

provided by Fcirc is twice as long as the one provided by CircFusion highlights the limitations 

that this approach entails, as results will be directly influenced by the list used. No available tool 

allows for genome-wide, unbiased detection of fcircRNAs.  
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Chapter 2: Novel pipeline for analysis of 

circulating tumor DNA 
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This chapter has been adapted from the following publication: 

Jace Webster, Ha X. Dang, Pradeep S. Chauhan, Wenjia Feng, Alex Shiang, Peter K. Harris, 

Russell K. Pachynski, Aadel A. Chaudhuri, Christopher A. Maher. PACT: A pipeline for 

analysis of circulating tumor DNA. Bioinformatics. 2023. 
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2.1 Introduction 

 Identification of genomic variants in ctDNA has emerged as a promising method for non-

invasive monitoring of cancer progression and treatment response. This non-invasive monitoring 

is particularly beneficial in metastatic disease as ctDNA originating from both primary and 

secondary tumor sites can be found within a single blood sample. Despite low ctDNA abundance 

and expected allele frequencies, deep targeted sequencing has been successfully used to improve 

sensitivity for detecting single nucleotide variants (SNVs)83. Structural variants (SVs) are a 

major class of genomic drivers of cancer progression but their use in non-invasive applications 

remains limited due to the challenges of accurately detecting the wide variety of possible 

complex genomic rearrangements22. 

 When attempting to overcome the limitations of current ctDNA SV callers, while also 

identifying copy number alterations (CNAs) and small mutations, users often resort to ad hoc or 

proprietary approaches. This leads to time-consuming analyses and inhibits reproducibility in the 

field, in part because of the variety of possible customizable tools and parameters required. A 

few tools have been developed for SV detection in ctDNA, however, each of the identified tools 

has crucial limitations inhibiting their ability to identify clinically relevant events. For example, 

none of them accept matched germline control data, which is critical for differentiating artifacts, 

germline and somatic events. 

 To address these limitations and promote accurate and reproducible detection of SVs, 

CNAs, and small mutations in ctDNA, we developed an open-source unified Pipeline for the 

Analysis of ctDNA (PACT). 
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2.2 Results 

 Although SNV and CNA strategies for ctDNA are usually considered robust, SV 

detection has traditionally been challenging. While PACT integrates callers of various variant 

types, its major focus is on improving SV analysis in ctDNA (Figure 2-S1 and 2-S2). We 

benchmarked PACT using (i) patient data, (ii) an in silico simulation, and (iii) an in vitro dilution 

experiment, while comparing against other ctDNA SV callers including SViCT, Factera, and 

Aperture61–63. 

2.2.1 Analysis of published clinical and reference datasets 

 First, we applied each tool to ctDNA samples from a published cohort of 40 prostate 

cancer patients and found that only PACT and Aperture detected all published SVs (Figure 2-

S3)22. Precision was not assessed due to the lack of gold standard positive controls. Similarly, 

only PACT and Aperture identified all expected SVs in a public cfDNA reference dataset (SRA: 

SRR8551545). However, Aperture reported 1,636 unvalidated SVs in the reference data (1,623 

more than the next highest tool, Factera), suggesting poor precision (Figure 2-S4). We also found 

a high accuracy rate when applying the SNV and CNA portions of PACT to the reference dataset 

(Table 2-S1). 

2.2.2 In silico simulation 

 Second, we performed an in silico simulation with tumor data from 4 prostate and 5 

colorectal cancer patients (Table 2-S2)22,84. Sequencing reads from tumor and respective matched 

controls were combined to simulate ctDNA content ranging from 0.1-30%, bounded by the 

tumor purity of original samples. At each dilution, PACT achieved the highest sensitivity (Figure 

2-1). Specificity was not assessed as validation of novel calls could not be performed, however, 
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we observed that Aperture and Factera consistently had the most candidates (i.e., approximately 

13x and 8x more than PACT at 7.5% tumor DNA content; Figure 2-S5), suggesting potentially 

poor precision.

 

Figure 2-1. In silico benchmarking results. Observed sensitivity after in silico simulation of SVs across 

different tumor DNA content levels. 

2.2.3 In vitro dilution experiment 

 Our third evaluation was performed using an in vitro dilution experiment of the well 

characterized breast cancer cell line (HCC1395) and its matched control cell line (HCC1395BL). 

We mixed these cells to created diluted samples with 0.1-100% tumor content. Targeted 
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sequencing of 26 validated SVs was then performed. We found that PACT achieved the highest 

sensitivity and F1 accuracy scores and was the only tool to achieve >90% sensitivity at all 

dilutions >3% (Figures 2-2). At the lowest detectable level (0.12% tumor content), PACT, 

Aperture, and Factera achieved 15%, 10%, and 0% sensitivity, respectively.  

 

Figure 2-2. In vitro benchmarking results. Sensitivity and F1 accuracy scores achieved during an 

analysis of in vitro simulation data. 
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2.3 Discussion 

Together, these results suggest PACT is both more sensitive and more precise than other 

ctDNA SV callers. By including SNV and CNA workflows within PACT and distributing the 

pipeline in a standardized workflow language (CWL), PACT is well suited for improving 

accuracy and reproducibility in ctDNA analysis, with potential clinical applications. 

2.4 Methods 

 PACT is a standardized ctDNA pipeline for detection of SVs, CNAs, and small 

mutations. It is designed for reproducibility in high-performance computing environments 

capable of processing large numbers of samples and can be run by popular workflow 

management systems. PACT consists of methods for detection of small mutations, CNAs, and 

SVs independently. Briefly, each variant calling strategy begins with the creation of an initial list 

of candidates nominated using an ensemble of tools for variant calling. Where possible, each tool 

is run using relaxed filtering criteria to increase sensitivity. To obtain high specificity, 

normalization and/or filtering strategies are applied to all nominated variants based on expected 

noise in ctDNA caused in part by deep sequencing and low allele frequencies (often <1%)83. All 

workflows accept sequencing data from matched controls and from a panel of unmatched, 

healthy individuals to aid in removing non-somatic events. Each of these individual workflows is 

described in greater detail below. 

2.4.1 SV Workflow 

 The PACT SV workflow can be broadly divided into two steps: 1) Creation of a broad 

list of SV candidates using relaxed filtering criteria and 2) filtering of candidates to reduce 
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ctDNA-related noise. The first step in PACT beings by making initial somatic SV calls using 

Delly, Lumpy, and Manta in sensitive mode54–56. All three callers are commonly used in studies 

of SVs, although none of them were specifically designed to be used on cell-free DNA (cfDNA). 

However, we adapted these tools for cfDNA by using relaxed parameters that allow sensitive 

reporting of SVs with low levels of read support. Delly calls are generated using default settings 

and the `delly call` command, however this command is not followed by the `delly filter` 

command normally recommended in the tool’s documentation, so that low-frequency SVs are 

not inadvertently removed at this stage. Lumpy calls are made using the `lumpyexpress` 

command, with the default minimum weight lowered to 3 by using the `-m` parameter. Manta is 

run using default settings, however only the candidateSV.vcf output file is used for downstream 

analysis, rather than relying on Manta’s built-in filtering that gets applied to the final 

somaticSV.vcf and diploidSV.vcf output files. 

 Consensus initial SV calls are then identified by merging initial SV candidates using 

SURVIVOR85. In our analyses we modified SURVIVOR’s default settings based on our 

experience applying SURVIVOR to clinically relevant SVs (max-distance-to-merge=100, 

minimum-sv-size=200, same-strand=false, estimate-sv-distance=false, all of which can be 

modified by the user of PACT). Initial consensus SVs represent highly sensitive collection of 

SVs supported by multiple callers. The vcf file containing consensus calls is then modified with 

a custom script to ensure compatibility with downstream tools. 

 To achieve a high level of specificity, PACT performs various filters to remove initial 

consensus SV calls that are likely false positives. First, targeted region-based filtering is 

performed to retain SV calls that originate from regions targeted by the targeted panel. A +/-
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200bp wingspan is automatically added to targeted regions to ensure that SVs with breakpoints 

that are located immediately adjacent to targeted regions are also retained. 

 Additional region-based filtering is performed to remove consensus SV calls that 

originate from genomic regions that are difficult to align to and tend to have high false positive 

rates. This is done by 1) immediately removing any consensus SV with a breakpoint that falls in 

a “blacklisted” region and 2) removing consensus SVs that have >1 breakpoint that falls in a 

low-complexity genomic region. In our benchmarking, blacklisted regions were based on the 

blacklist bed file provided by 10x Genomics at 

http://cf.10xgenomics.com/supp/genome/hg19/sv_blacklist.bed and low-complexity regions 

were taken from https://github.com/lh3/varcmp/raw/master/scripts/LCR-hs37f5.bed.gz. We 

found that these inputs worked well in our benchmarking, but users can supply alternative 

regions using the “neither_region” and “notboth_region” parameters. 

 Next, PACT performs normal filtering to eliminate SV calls with evidence suggesting 

that they are likely germline events or systematic (sequencing/alignment) artifacts. To do this, 

consensus SV calls from individual cfDNA samples across a patient cohort are merged and re-

genotyped across matched controls and cfDNA samples from healthy individuals. The “svtools 

sort” command is used for sorting and “svtools lmerge” command is used for merging SV calls 

across samples to generate cohort-wide SV calls86. Cohort-wide SV calls were then subsequently 

genotyped across all samples and matched controls using SVTyper87. Additionally, the user-

supplied panel of healthy normals (sequenced with the same targeted panel) is genotyped using 

the cohort-wide vcf. The panel of healthy normal is expected to contain cfDNA sequencing data 

from healthy individuals, if available. In the case where a true panel of healthy normals are not 
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available, the healthy normal panel may be substituted with a panel comprised of all available 

matched control samples (though they are not truly “healthy normal” samples). Candidate SVs 

are then filtered based on genotyping results to remove those with supporting reads found in the 

panel of normals or in each sample’s respective matched control. Additionally, PACT retains 

only consensus SV calls with multiple types of read support in cfDNA samples (at least 1 

supporting split-read and 1 supporting discordant paired-end read), requiring at least >2 total 

supporting reads by default (customizable by the user). If either breakpoint from an SV overlaps 

with an optionally supplied “whitelist” region bed file, the requirement for two forms of 

evidence (split-read and discordant paired-end read) is waived, but the minimum read support 

threshold must still be met. 

 Finally, to help users interpret the SVs, PACT performs SV annotation using snpEff88. 

Final output also includes additional useful information, including which of the SV callers 

(Delly, Lumpy and/or Manta) originally reported the SV, whether the event corresponds to the 

optionally provided whitelist, and the number of supporting split-read and discordant read-pairs 

that were found. The final result of the SV workflow is a highly confident list of annotated SV 

calls presented in a standard bedpe format, designed to be compatible with downstream analysis 

tools for easy interpretation. 

2.4.2 SNV/Indel Workflow 

SNV calling begins by generating candidate somatic calls using Mutect, Strelka, 

VarScan, and Pindel89–92. Each variant caller accepts a variety of unique parameters. Where 

possible, the PACT workflow allows full customization of input values for parameters that are 

passed to each tool but attempts to provide reasonable defaults (documented at 
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https://github.com/ChrisMaherLab/PACT) based on observed metrics in ctDNA where possible. 

Additionally, PACT accepts a list of whitelisted variants in VCF format which are genotyped 

using GATK’s HaplotypeCaller93. In our testing, we used the whitelist VCF that can be 

downloaded from the DoCM database94. All candidate calls are then combined and then 

decomposed using Vt’s decompose function95. 

 The decomposed VCF is next annotated using vep and read counts are standardized by re-

calculating the read depth for each SNV in both the tumor and matched control sample using the 

bam-readcount tool96,97. This allows for a standardized read depth measurement, rather than 

relying on reported read counts determined by individual callers. Filtering is then performed and 

is based on SNV frequeincy in gnomAD (https://gnomad.broadinstitute.org), mapping quality, 

read depth, and allele frequency. All thresholds include default values based on ctDNA quality 

control metrics observed by our group and can be found on the project’s GitHub page. Finally, to 

address the large number of likely false positives that occur as a result of high sequencing depths 

combined with low expected variant allele frequencies, background error suppression is 

performed by genotyping candidate SNVs/Indels in the user-provided panel of cfDNA samples 

from healthy individuals using GATK’s HaplotypeCaller93. If a panel of healthy individuals is 

unavailable, the user may instead provide a panel composed of all available matched controls for 

this step. Genotyping results are then supplied to GATK’s VariantFiltration method for filtering 

out any call that has read support in more than a specified percentage of samples (default: 10% 

of the panel of normals)93. All resulting calls are converted to table format using GATK’s 

VariantsToTable command with parameters that can be customized by the user. 
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 Aspects of PACT’s SNV/Indel workflow are comparable to the McDonnell Genome 

Institute’s public analysis workflow which has also been distributed in CWL format 

(https://github.com/genome/analysis-workflows).  

2.4.3 CNA Workflow 

 For CNA analysis, a read depth-based method is first employed to calculate the log-

transformed ratio of depth between the patient cfDNA sample and the control panel based on 

cfDNA samples from healthy individuals or matched control normal samples, corrected for 

biased in GC content and repeat content. If a panel of healthy individuals is unavailable, the user 

may instead provide a panel composed of all available matched controls. We employ CNVKit 

for read depth ratio calculation, control panel construction and bias correction58. Next, log ratio 

of depth is recentralized using the CN control regions (chosen as the least CN altered regions via 

surveying existing whole genome sequencing data, if available) to account for depth bias often 

seen in targeted sequencing of cfDNA. Finally, regions with log ratio of depth that deviated from 

that of the CN controls (default: 3 standard deviations from the mean) are called as CNAs. 

2.4.4 Application to published cfDNA prostate cancer cohort 

 Blood plasma cfDNA sequencing data from published prostate cancer patients that had 

been reported to contain either 1) tandem duplications of the Androgen Receptor (or its 

enhancer) or 2) deletions resulting in TMPRSS2::ERG gene fusions were selected for initial 

PACT testing22. Although matched tissue WGS was available for only one patient with a 

reported SV (WGS supported the SV found in cfDNA for this patient), calls were considered 

reliable as these two SVs are well recognized hallmarks in prostate cancer and, in this cohort, 

correlated with survival outcomes. Sensitivity was assessed based on the total number of 
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previously reported SVs detected by each tool. False positive rates were not evaluated due to the 

lack of validation sequencing of novel calls. All tools (PACT, Factera, SViCT, Aperture) were 

run with default settings, with the exception of SViCT, which was run using ‘-M 6000000’ 

(default: -M 2000). The -M parameter defines the max size of SVs evaluated by SViCT and was 

increased based on the reported size of the previously detected events. 

2.4.5 Application to Horizon Discovery reference data 

 The Horizon Discovery reference dataset has been sequenced and is expected to contain 

SLC34A2::ROS1 and CCD6::RET gene fusions, both at approximately 5% allele frequency 

(Catalog number: HD786, SRA: SRR8551544). Fastq files were downloaded and aligned by bwa 

mem with default settings and duplicate reads were marked using the Picard MarkDuplicate 

tool98,99. Outputs were then sorted using sambamba 0.6.8100. All tools were run using default 

settings. As no panel of healthy normals was available for use with PACT, we substituted it with 

a panel of matched controls. Unfortunately, SViCT repeatedly failed to run to completion, 

despite the standard bam format of the input files. Specifically, SViCT crashed with a “double 

free or corruption (!prev)” error message. With repeated testing with or without changes to the -

M parameter, we repeatedly received either this error or at times an exit code 139 error 

(segmentation fault). Both kinds of errors are standard C++ error messages (SViCT is written in 

C++) and usually means that there was an error within the software itself that caused the 

program to mismanage its memory resources. We noted that multiple issues have been opened 

on the project’s GitHub page relating to these and other memory related error messages. It is 

unclear why the tool ran successfully on the cfDNA prostate cancer cohort (suggesting the tool 

was installed correctly) but failed on these samples, even though these samples were compatible 

with all other tested tools. For these reasons, we excluded SViCT from this analysis. 
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Performance of the remaining tools was assessed by checking for the detection of the reported 

SLC34A2::ROS1 and CCDC6::RET fusions and by determining the number of reported SVs that 

were called but were not expected to appear in this particular Horizon Discovery dataset. 

2.4.6 In silico simulation 

 In silico simulation data was generated using sequencing data from solid tumor samples 

collected from two different cohorts. The first was the prostate cancer cohort described in Dang, 

Chauhan, et al., 2020. We selected 4 solid tumor prostate samples based on the criteria that 

TMPRSS2::ERG fusions had been detected 1) in the solid tumor data and 2) in cfDNA from the 

same patient. Although validation sequencing was not performed, the presence of this well 

documented fusion in multiple samples from the same patients were considered sufficient to be 

treated as true positives. The second cohort was a colorectal cancer cohort described in Dang, 

Krasnick, et al., 2020. In that study, whole genome sequencing was followed by targeted 

validation sequencing on a number of solid tumor samples. We selected 5 samples, which 

contained a total of 7 validated SVs, based on the criteria that 1) the same sample was used for 

both discovery and validation sequencing and 2) the SV had >50 supporting reads in the 

validation sequencing. All selected samples also has matched control data available. 

 Sequencing reads from all samples were aligned and processed as was done with the 

Horizon Discovery data. Reads from aligned tumor data were then systematically combined with 

reads from the aligned reads of each sample’s respective matched control. Calculations for the 

number of reads used when generating samples of different tumor DNA content levels were 

performed based on the total number of reads in a sample (based on samtools flagstat output) and 

the previously annotated tumor purity of each tumor sample22,84,101. Reads were downsampled 
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from each tumor sample using Picard DownsampleSam and then downsampled reads from each 

tumor were merged with their respective matched control using Picard MergeSamFiles99. 

Combined files were then labeled internally based on their expected dilution using the Picard 

AddOrReplaceReadGroups command and output bam files were check with samtools flagstat to 

confirm that they contained the expected number of reads99,101. This process was repeated 100 

times for each sample at each tested tumor DNA content level, using a random seed each time 

for the DownsampleSam command. 

 All simulated samples were analyzed using the default settings of each tool and 

sensitivity was assessed by determining the number of previously selected (and validated) SVs 

detected at each tumor DNA content level across all 100 iterations. False positive rates were not 

assessed as we were unable to perform validation sequencing on potential novel calls. We were 

unable to assess SViCT’s performance as it failed to run to completion on any of the simulated 

samples, failing on each sample with the same errors observed when the tool was applied to the 

Horizon Discovery dataset. 

2.4.7 In vitro validation 

 We further evaluated PACT performance in an in vitro dilution experiment of a breast 

cancer cell line (HCC1395). First, published genomic breakpoints from 26 validated gene fusions 

in the HCC1395 breast cancer cell line were used to design a targeted panel using Roche’s 

HyperDesign tool (https://hyperdesign.com)102. HCC1395 cancer cells were then combined in 

vitro with the matched control (HCC1395BL) following a standard serial dilution strategy to 

simulate different tumor DNA content levels (0.1%-100%) and then sequenced isolated DNA 

samples using our targeted panel. Sequencing reads were UMI tagged and aligned using bwa 



28 

 

mem. Reads were grouped by UMI (fgibio GroupReadsbyUmi) and consensus reads were called 

(fgibio CallDuplexConsensusReads) to reconstruct the most likely read representing the 

corresponding DNA fragment103. Consensus reads were then re-aligned using bwa mem for final 

alignment98. 

 All samples were analyzed with each SV caller using default settings. SVs targeted by 

potentially poorly designed probes were removed from analysis by filtering out any SV without 

any coverage at the 100% tumor DNA content level (8 SVs). Similarly, samples with <0.12% 

tumor DNA content were removed from analysis as no tool made a correct call at that level. 

Again, we were unable to get SViCT to run to completion on the HCC1395 samples, despite the 

files being compatible with all other tools and instead received the same error messages as 

previously described. As no panel of healthy normals was available, we used a panel of matched 

controls.  

 For evaluation, all calls that did not match previously validated SVs were labeled as false 

positives (FPs) and validated calls that were not detected were labeled as false negatives (FNs). 

Similarly, true positives were defined as calls that matched validated SVs (TPs). Sensitivity was 

used to assess the proportion of true events that were detected and precision was used to assess 

the proportion of all calls that corresponded to true events. The F1 accuracy score is the 

harmonic mean of the sensitivity and precision, such that a result with perfect precision and 

sensitivity would have an F1 score of 1.0 and poor performance would have a score that 

approaches 0.  
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2.4.8 Resource requirements 

 PACT is designed to be used in a high-performance computing environment. The 

pipeline itself contains a variety of published bioinformatics tools and therefore its minimum 

computing requirements are determined by the most resource intensive tool in the pipeline 

(CNVkit), which is set to require 64GB of RAM and 12 cores. Minimum requirements for any 

given tool can be manually changed by modifying the CWL file wrapper for the tool found in the 

tools directory on the project GitHub page, although we believe we have provided sensible 

default requirements for all tools. We found CPU time to be highly variable and it may be 

influenced by many factors including (but not limited to) sequencing depth, number of 

samples/matched controls, number of healthy normals, and number of variants identified.  
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2.5 Supplementary Materials 

 

 

Figure 2-S1. Overview of PACT workflow. Unmatched, health normal samples are compared against 

patient plasma and patient germline data to perform SNV, CNA and SV calling. 
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Figure 2-S2. Overview of SV-calling portion of PACT. Aligned reads from targeted sequencing of 

cfDNA and a matched control are analyzed by an ensemble of SV callers using sensitive settings and 

consensus calls are then identified. A variety of filtering steps are then applied to reduce expected cfDNA 

noise. Region-based filters require that at least one breakpoint corresponds to a region targeted by the 

sequencing panel and filters out potential sequencing errors by removing SVs with more than one 

breakpoint that corresponds to low complexity genomic regions and SVs with any breakpoints that 

originate in blacklisted regions. Remaining candidates are then genotyped in a panel of healthy 

unmatched individuals to further remove potential artifacts and germline events, and then read support 

filtering is finally applied. 
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Figure 2-S3. Re-analysis of published cfDNA data. Events detected are based on 5 tandem duplications of 

the AR gene and/or its upstream enhancer and 4 deletions resulting in TMPRSS2::ERG gene fusions. Both 

events are considered hallmarks of PCa and correlated with survival in the original publication. 
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Figure 2-S4. Unreliable SV call count. Indicates the number of SVs reported that do not match previously 

validated SVs as reported by Horizon Discovery in their cfDNA reference dataset. SViCT results are not 

shown as it failed to run to completion. 
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Figure 2-S5. Average number of SVs made during in silico analysis. Averages are based on 9 samples 

used across 100 iterations of the simulation. Only dilutions of <=7.5% tumor content are shown, as some 

samples were unable to be simulated at higher content levels due to the low tumor purity of the original 

samples being used as the basis for the simulation. Precision was not formally calculated due to the lack 

of validation sequencing of novel calls. However, PACT simultaneously achieved the highest sensitivity 

in these samples (Fig. 1B) and also reported the fewest total SVs, suggesting high precision. 
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Table 2-S1. Horizon Discovery SNVs and CNAs. All validated SNVs, INDELS and CNAs, as reported 

by Horizon Discovery, in the reference cfDNA dataset and their detection status based on the SNV/CNA 

workflows found in PACT. PACT reported an additional 21 non-synonymous variants in this dataset, all 

of which have been reported by Horizon Discovery in the genomic DNA that is meant to correspond to 

their ctDNA reference, suggesting that PACT was able to detect additional true SNVs that had been 

validated in the genomic DNA, but not ctDNA, version of this reference. 

Gene Mutation Detected by PACT 

GNA11 c.626A>T Yes 

AKT1 c.49G>A Yes 

PIK3CA c.1633G>A Yes 

EGFR c.2300_2308dup Yes 

EGFR c.2235_2249del Yes 

MYC Amplification Yes 

MET Amplification Yes 
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Table 2-S2. Samples used for in silico simulation.  

Cancer of Origin Structural Variant # of Samples 

Prostate TMPRSS2::ERG 4 

Colorectal VIT1A::TCF7L2 2 

Colorectal STRAP::DERA 1 

Colorectal PDE4D::SEC24A 1 

Colorectal IFT11::RHO 1 

Colorectal BIRC6::PLB1 1 

Colorectal ABR::NAALADL2 1 
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Chapter 3: Novel method for detection of 

fusion-derived circRNA 
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This chapter has been adapted from the following publication: 

Jace Webster, Hung Mai, Amy Ly, Christopher Maher. INTEGRATE-Circ and INTEGRATE-

Vis: Unbiased Detection and Visualization of Fusion-Derived Circular RNA. Bioinformatics. 

2023. 

  



39 

 

3.1 Introduction 

 Circular RNAs (circRNAs) occur when splicing mechanisms cause downstream exons to 

covalently bind to an upstream exon, referred to as a backsplice, resulting in a circular, rather 

than linear, transcript. Backsplicing events are thought to rely primarily on standard spliceosome 

machinery and are in part facilitated by complimentary sequences located within the introns that 

flank the donor and acceptor splice sites, although trans-acting factors are also involved66. 

CircRNAs have been shown to function through a variety of mechanisms, including direct 

regulation of transcription68, indirect transcriptional regulation through interactions with 

microRNAs69,70 or RNA-binding proteins71, and by encoding peptides72. As circRNAs are not 

susceptible to degradation by exonucleases due to their circular structure, they are thought to be 

more stable than linear transcripts43,44. 

 Fusion-derived circRNAs (fcircRNAs) are circRNAs that are generated by backsplicing 

within a gene fusion transcript and represent a recently discovered and poorly understood subset 

of circRNAs73,76–78,104. The gene fusion transcripts that form fcircRNAs are typically the result of 

genomic structural variation, such as translocations or deletions, that cause the 5’ end of a gene 

to become juxtaposed to the 3’ end of an independent gene. Such gene fusions are common in 

many cancers53,64,105  and have been identified as druggable targets106,107. FcircRNAs can also 

have other sources, such as the backsplicing of read-through transcripts that contain multiple 

genes, although these have sometimes been referred to as read-through circRNAs74,108. For 

simplicity, we will refer to any circRNA that is composed of multiple independent genes as 

fcircRNAs. 
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 While fcircRNAs remain poorly understood, recent studies have demonstrated they are 

functional. For example, fcircRNAs from BCR::ABL1 fusions have shown oncogenic potential in 

leukemia76 and EML4::ALK fcircRNAs were shown to promote cell migration and invasion in 

non-small cell lung cancer75. An additional 62 fcircRNAs have been reported within RNA-Seq 

data across a cohort of prostate cancer patients, but their potential functions were not 

investigated79. Considering the stability of circular transcripts and the somatic nature of most 

gene fusions, it is perhaps no surprise that early attempts have already been made to determine if 

fcircRNAs can be leveraged as cancer biomarkers45. 

 Despite the oncogenic nature of some fcircRNAs and their potential as biomarkers, the 

study of fcircRNAs has been severely limited due to 1) the widespread use of Poly(A)-selection 

in RNA protocols which systematically removes circRNAs prior to sequencing and 2) a lack of 

software tools capable of detecting such events. As a result, most previously identified 

fcircRNAs were discovered through targeted sequencing of hypothetical backsplice junctions in 

gene fusions of interest76. We are aware of only three software tools developed for fcircRNA 

detection. The first published tool, Acfs80, has systematic biases by algorithmically requiring 

fcircRNAs to be formed by fused genes originating from different chromosomes or from 

different strands of the same chromosome (removing the possibility of detecting an fcircRNA 

from a read-through transcript or from well-studied fusions like TMPRSS2::ERG). Acfs was 

initially developed only for circRNAs and although updated versions support fcircRNAs, default 

input parameters disable fcircRNA detection. The second tool, Fcirc81, accepts unaligned reads 

as input and then uses a built-in aligner to map reads against custom reference sequences 

generated based on a user-supplied list of potential gene fusions. Finally, CircFusion82 uses a 

nearly identical workflow as Fcirc but uses STAR109 for performing read alignments. 
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Interestingly, both Fcirc and CircFusion require a priori knowledge via an input list of potential 

gene fusions thereby preventing unbiased fcircRNA discovery. Notably, the gene fusion list 

provided by Fcirc contains twice as many fusions as the list provided by CircFusion, highlighting 

an immediate discrepancy in the potential candidates that could be detected between tools. To 

our knowledge, there are no automated methods that allow the unbiased discovery of fcircRNAs 

throughout the full genome. 

 To address the need for improved fcircRNA detection methods, we have developed 

INTEGRATE-Circ. INTEGRATE-Circ is an open-source software tool capable of integrating 

both RNA and whole genome sequencing data to perform unbiased detection of novel gene 

fusions and report the presence of splice variants in gene fusion transcripts, including 

backsplicing events. We assessed the performance of INTEGRATE-Circ using simulated data 

and then demonstrate its utility through the analysis of leukemia and breast cancer cell lines. 

Additionally, we have released an update to our previously published tool, INTEGRATE-Vis, 

making it the first software capable of automatically generating publication-ready visualizations 

of fcircRNAs. 

3.2 Results 

3.2.1 INTEGRATE-Circ software 

 INTEGRATE-Circ leverages an algorithm originally developed for our highly accurate 

fusion discovery software, INTEGRATE102. The original INTEGRATE algorithm was designed 

to analyze RNA-Seq, and when available include whole genome sequencing (WGS), paired-end 

reads to detect high confidence, novel gene fusion events. A comparison with 8 gene fusion 

detection tools demonstrated that INTEGRATE was the most accurate method. As such, the 
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methodology behind INTEGRATE serves as a strong starting point for developing tools that can 

detect junctions between fused genes. 

 A thorough explanation of the original INTEGRATE fusion detection algorithm is 

provided in the INTEGRATE publication, but a brief overview is provided here to give context 

for the changes that are implemented in INTEGRATE-Circ. The original workflow involves the 

creation of a gene graph such that each node consists of a gene and each edge is based on 

discordantly mapped read pairs that may encompass a fusion junction between the two genes. 

Initial pruning of the graph is performed, primarily through the re-alignment of discordant read 

pairs. Potential spanning reads and previously unmapped reads are then mapped to remaining 

gene nodes and their ‘neighboring node(s)’ in an attempt to identify spanning read support for 

putative fusions and reads that are aligned near each other are clustered together to identify 

potential fusion junctions. Fusion junctions that are supported by the mapped RNA-Seq spanning 

reads are then compared against WGS reads to allow for single-base pair resolution of the 

genomic breakpoints, if WGS data is provided. 

 INTEGRATE-Circ builds upon the INTEGRATE framework by using the location and 

orientation of detected junctions to infer the existence of unique isoforms generated by 

alternative splicing or backsplicing mechanisms. A general overview of this workflow is 

depicted in Figure 3-1. After identifying potential gene fusions, clusters of junction-spanning 

RNA-Seq reads are re-evaluated. For each potential fusion, each cluster of spanning RNA-Seq 

reads are compared to each other to determined which cluster has the highest read support, with 

the most well-supported junction being considered the primary fusion. The primary fusion is 

expected to correspond to the true genomic fusion junction and should be supported by WGS 

data, if available. All other spanning read clusters are then evaluated with respect to the primary  
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Figure 3-1. INTEGRATE-Circ workflow. A) INTEGRATE-Circ begins by creating a gene graph of 

potential fusions based on RNA-Seq data and removing nodes from the graph based on encompassing and 

spanning read support. If provided, encompassing and spanning WGS reads are then examined for 

additional evidence for fusions. B) Once gene fusion candidates have been identified, all RNA reads that 

span both genes are clustered together based on region to identify the locations of gene junctions. The 

junction with the most support is identified as the fusion and junction and all other junctions are then 

evaluated based on their orientation and positioning with respect to the fusion junction. 
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fusion junction. Since secondary junctions are thought to result from alternative splicing of 

transcripts are not expected to be a direct indication of genomic rearrangements, secondary 

junctions are not expected to have WGS support. A simplified schematic demonstrating how 

spanning read clusters are annotated based on their relative orientation to the primary junction is 

depicted in Figure 3-S1, although a much broader variety of potential secondary junction 

orientations, including those that do not match with canonical exon boundaries, are possible. 

INTEGRATE-Circ applies an extended version of the logic described in the schematic to all 

identified gene junctions. Where possible, junctions are compared based on canonical exon 

boundaries to aid in identifying reciprocal gene fusions. In cases where identified junctions are 

not located at annotated exon boundaries, relative locations and orientations are evaluated based 

on genomic base pair position for annotation purposes. By combining insights from RNA-Seq 

and WGS, INTEGRATE-Circ is designed to sensitively detect gene fusion junctions and be able 

to differentiate between genomic rearrangements and alternatively spliced transcripts, including 

backsplices. 

 All identified junctions from linear and circular transcripts (including read-throughs) are 

reported by INTEGRATE-Circ using a number of standardized formats, including bedpe, vcf and 

generic tsv formats with accompanying annotation information (including gene names, total 

RNA-Seq/WGS read support, a list of supporting reads, and whether the junction uses canonical 

exon boundaries). Although bedpe and vcf files are commonly used for annotating standard 

fusion breakpoints, no standardized file format exists to specifically describe fcircRNAs. 

Therefore, INTEGRATE-Circ reports fcircRNAs using a modified bedpe file, described in the 

README file of the project GitHub page. This modified bedpe format is consistent with the 
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output file generated by Fcirc to help ensure consistency with other downstream applications in 

the future. This file format is accepted by INTEGRATE-Vis for fcircRNA visualization. 

 All benchmarking of INTEGRATE-Circ was performed on a big memory blade with 32 

Intel Xeon CPU E5-2640s with 400G of memory. On our largest dataset (HCC1395 RNA-Seq 

with ~200 million paired-end reads), the run time for INTEGRATE-Circ on the big memory 

blade was approximately 1.5 hours. 

 INTEGRATE-Circ requires paired-end sequencing data in order to identify 

encompassing reads when creating the initial gene graph and therefore cannot accept single-end 

reads. Required sequencing depth varies based on how highly expressed a given fcircRNA may 

be. In our analysis of HCC1395, a total of ~200 million paired-end reads were generated and all 

validated fcircRNAs <5 supporting RNA-Seq reads. It is possible that deeper sequencing may be 

required for less abundant isoforms and to reduce the likelihood of false positives. In our testing, 

we found that INTEGRATE-Circ performed optimally on relatively short reads and we 

recommend the use of 2x75bp or 2x100bp read lengths. 

3.2.2 INTEGRATE-Vis software 

 The fcircRNA visualization workflow within INTEGRATE-Vis consists of two primary 

steps: annotation and visualization. The annotation step uses a user-provided, standard GTF file 

to determine the exon boundaries of exons located immediately around the reported fusion and 

backsplice junctions. If a junction does not match canonical exon boundaries, the enarest 

upstream (for 5’ end of junctions) or downstream (for 3’ end of junctions) exon boundary is 

selected for visualization purposes. Additionally, genomic cytoband information for the 
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chromosome(s) involved in the fcircRNA is extracted from the user-provided ideogram file in 

order to put the genomic location of the fcircRNA into context. 

 The second step in the workflow is the creation of the visualization using the annotation 

information generated during the previous step. The genomic locations of fusion genes are 

presented based on cytoband location and the resulting fusion gene transcript is presented. The 

presented fusion transcript contains a minimal number of exons (max of 3 per gene), but does not 

necessarily represent the full transcript length, nor are the exons presented to scale. The 

fcircRNA is then presented in relation to the fusion transcript. Optionally, the user may provide a 

bam file from which INTEGRATE-Vis will attempt to identify the number of spanning reads 

that support both reported junctions. As both INTEGRATE-Circ and Fcirc perform their own 

custom secondary alignment steps, it is possible that the read support values calculated by 

INTEGRATE-Vis will differ from those reported by INTEGRATE-Circ and/or Fcirc. Additional 

details can be found at https://github.com/ChrisMaherLab/INTEGRATE-Vis. 

3.2.3 In silico simulation  

 To perform an initial comparison between the identified fcircRNA detection tools, a 

simulated dataset containing 30 linear fusion transcripts was generated based on the most 

frequent gene fusions reported in the COSMIC database110. Randomly generated backsplice 

junctions were then created for each of the fusion transcripts based on the exons present in the 

reported fusion transcript. RNA-sequencing reads for the fusion and backsplice junctions were 

simulated 100 separate times. An overview of this workflow and the resulting simulated inter- 

and intra-chromosomal events can be found in Figure 3-2 and Table 3-S1. 
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For benchmarking purposes, INTEGRATE-Circ, Fcirc, Acfs and CircFusion were 

applied to the simulated data with default settings (besides Acfs, which was given the 

‘Search_trans_splicing yes’ parameter to support fcircRNA detection). Since Fcirc and 

CircFusion both require a list of potential gene fusions, the provided gene fusion lists 

(downloaded from GitHub for each tool on March 10, 2022 and February 7, 2023, respectively) 

were used as input (305 fusions for CircFusion and 773 fusions for Fcirc). CircFusion failed to 

run with default settings with exit warnings suggesting that the 305 gene fusion list was too 

large. This failure, combined with the fact that CircFusion accepts the expected transcript IDs, 

fusion breakpoints and backsplice junctions of potential fcircRNAs, suggests that CircFusion 

may be better optimized for validation of specific, previously identified events and led us to 

exclude CircFusion from the remaining benchmarking analyses. Similarly, although we were 

able to run Acfs successfully on the tool’s provided example data, the tool reported no 

fcircRNAs in our simulated data (and reported no errors at runtime). It is possible that the 

fcircRNA detection portion of Acfs has poor sensitivity, as it failed to detect any fcircRNAs in 

real sequencing data in its original publication. Sensitivity, precision and F1 accuracy scores for 

results from INTEGRATE-Circ and Fcirc were then calculated for each of the 100 simulation 

iterations. We found that when comparing fcircRNA detection between INTEGRATE-Circ and 

Fcirc, INTEGRATE-Circ was superior in terms of sensitivity (mean: 87.3% +/- 4% vs 57.1% +/- 

2%), precision (mean: 96.1% +/- 3% vs 74.2% +/- 4%) and F1 accuracy (mean: 91.5% +/- 4% vs 

64.5% +/- 2%) (Figure 3-2C). Notably, if Acfs had consistently achieved the maximum 

sensitivity that its algorithm would allow (it systematically excludes 4 of the simulated 

backsplices because their contributing genes originated on the same strands of the same 
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chromosomes), the maximum possible sensitivity of the tool in this simulation would be 86.6%, 

meaning that it could not have outperformed INTEGRATE-Circ’s average sensitivity. 

Figure 3-2. Benchmarking results based on in silico simulation. A) Schematic depicting the creation of 

simulated transcripts. Recurrent gene fusions were identified from the COSMIC database and theoretical 

backscplice junctions were then randomly introduced to the selected fusions. Linear fusion transcripts and 

a linearized version of the region that spans the simulated backsplice were used to simulate RNA-Seq 

reads. B) Circos plot representing all simulated events. C) F1 accuracy, precision and sensitivity scores 

after analysis of the simulated fcircRNAs by both tools across 100 iterations.  
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3.2.4 Application to public K562 cell line data 

 Next, we applied INTEGRATE-Circ, Acfs and Fcirc to the K562 lymphoblast cell line 

which contains four validated linear fusion transcripts, three of which have published support for 

the presence of fcircRNAs in either K56276 or in a different context74,108. A summary of the 

results regarding the four previously validated fusion transcripts are shown in Table 3-1. For 

previously published junctions we required on or more reads. For novel junctions we required 

two or more independent reads. We found that Fcirc detected only on of the published linear 

gene fusions and no corresponding fcircRNAs while INTEGRATE-Circ detected all four linear 

fusions and reported fcircRNAs in three of the four fusions. Of the three fcircRNAs called by 

INTEGRATE-Circ, two have been previously reported 

(circPRKAA1(5,6,7,8,9,10)::TTC33(1,2)74 and circKANSL1(3)::ARL17A(3)108) while one 

(circNUP214(25,26,27,28,29)::XKR3(2,3)) was novel.  

Table 3-1. Results of K562 analysis. Supporting reads for previously reported linear fusion transcripts in 

K562 and any fcircRNAs that may derive from those transcripts. Missing values indicate that no junction 

was reported. 

 Read Support 

Linear Fusion Junction Backsplice Junction 

Fusion INTEGRATE-Circ Fcirc INTEGRATE-Circ Fcirc 

BCR::ABL1 960 1146 - - 

PRKAA1::TTC33 12 - 1 - 

KANSL1::ARL17A 35 - 9 - 

NUP214::XKR3 356 - 3 - 
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Unfortunately, neither tool was able to detect the circBCR(13,14)::ABL1(2,3) fcircRNAs 

that were previously reported in this cell line76, however this result is consistent with a previous 

attempt to detect fcircRNAs using this same public sequencing data which also failed to detect 

the circBCR(13,14)::ABL1(2,3) isoforms74. 

3.2.5 Application to HCC1395 cell line 

 For a final evaluation, we applied INTEGRATE-Circ, Acfs and Fcirc to the breast cancer 

cell line HCC1395. This cell line was chosen because it has significantly more validated fusions 

that K562 but has not previously been evaluated for the presence of fcircRNAs. 

 To ensure that each tool was working as intended, both Poly(A)-selected and total RNA 

sequencing data was analyzed. We expect that no fcircRNAs would be found in the Poly(A)-

selected data due to the removal of circular transcripts during the poly(A) enrichment. As 

anticipated, INTEGRATE-Circ only reported fcircRNAs in the total RNA data (Figure 3-3A). In 

contrast, Fcirc unexpectedly nominated 16 fcircRNAs in the Poly(A)-selected data, nearly 3x 

more fcircRNAs than it reported in the total RNA data. None of the fcircRNAs called by Fcirc in 

the total RNA data were reported in the Poly(A)-selected data, or vice versa. We focused our 

remaining analysis on the total RNA data results since fcircRNAs observed in the Poly(A)-

selected data were thought to be potential noise and are suggestive of Fcirc having a potentially 

high false positive rate. 
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Figure 3-3. Analysis of HCC1395 cell line data. A) Number of fcircRNAs reported by INTEGRATE-Circ 

and Fcirc when applied to Poly(A)-selected and total RNA sequencing data. B) Reported read support for 

previously validated HCC1395 linear fusions. 

As all fcircRNAs must, by definition, be a subset of the detected fusion transcripts, we 

next compared INTEGRATE-Circ and Fcirc linear fusion calls made using the total RNA data 

against a published list of validated fusions in HCC1395102, requiring >2 supporting independent 

reads. In the 9 validated fusions that were reported by both tools, we found that INTEGRATE-

Circ reported greater read support in 100% of the fusions (Figure 3-3B). Additionally, 17 

previously reported fusions were found by INTEGRATE-Circ alone while only 1 published 

event was found solely by Fcirc. Two additional validated gene fusions called by Fcirc failed to 

meet our filtering criteria and were missed by INTEGRATE-Circ because the reads were either 

not mapped to the gene of interest and/or no encompassing reads were detected (which is 

required by INTEGRATE-Circ). 
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3.2.6 In vitro validation of novel fcircRNAs 

Finally, we attempted to validated predicted fcircRNAs using PrimeTime Probe reverse 

transcription quantitative PCR (PrimeTime Probe qPCR) amplification of putative backsplices. 

Divergent primers for all fcircRNA candidates that passed manual review (Figure 3-4A) from 

either tool were designed using the strategy depicted in Figure 3-4B, as has been described 

previously for both circRNA111 and fcircRNA78 validation. We also performed the PrimeTime 

Probe qPCR assay on the HCC1395 B Lymphocyte (HCC1395BL) cell line, which serves as a 

matched control cell line. PrimeTime Probe qPCR amplified products were run on a gel (Figure 

3-4C) and purified products from the HCC1395 cell line were excised from the gel and Sanger 

sequenced, confirming the presence of the circTTC33(1,2,3)::PRKKA1(3,4,5), 

circLINC00630(5,6,7)::LLOXNC01-237H1.2(1,2,3,4) and circRP11-540B6.3(1)::FAN1(1) 

fcircRNAs reported by INTEGRATE-Circ in HCC1395 (Figure 3-4D). Notably, PrimeTime 

Probe qPCR products consistent with the size of circTTC33(1,2,3)::PRKKA1(3,4,5) and  

circLINC00630(5,6,7)::LLOXNC01-237H1.2(1,2,3,4) were detected in the HCC1395BL cell line 

as well as the cancer cell line (Figure 3-S2). As these fcircRNAs appear to be derived from read-

through transcripts and are not the result of somatic structural variation, it is perhaps 

unsurprising that evidence for them was found in both cell lines, rather than only in the cancer 

cell line. We were unable to confirm the presence of any of the fcircRNAs reported by Fcirc. 

Similarly, as each validated fcircRNA was composed of genes from the same strands of the same 

chromosomes, the Acfs algorithm would have been able to detect any of the validated 

fcircRNAs. 
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Figure 3-4. Validation of HCC1395 fcircRNAs. A) Manual review process for fcircRNAs. While the top 

example represents the expected relative locations of fusion and backsplice junctions, the other 

schematics represent scenarios where the backsplice donor would not be present in the fusion transcript 

(middle example) or the backsplice acceptor would not be present in the fusion transcript (bottom 

example). Reported fcircRNAs that follow the middle or bottom examples are physically impossible as an 

fcircRNA must be a subset of the sequence present in the fusion transcript and were therefore excluded 

from PrimeTime Probe qPCR validation. B) Design of divergent forward and reverse primers that face 

away from the fusion junction and placement of PrimeTime Probes to span the reported backsplice 

junction. The design for LINC00630::LLOXNC01 is shown, but an identical procedure was used for each 
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candidate that was evaluated. C) Gel of the amplified PrimeTime Probe qPCR products for both the 

HCC1395 cancer cell line and the matched normal tissue HCC1395BL. Bands of the expected size were 

excised and sent for Sanger sequencing. D) All reported fcircRNA candidates. A validation status of 

“Yes” denotes that the Sanger sequencing of PrimeTime Probe qPCR products matched the expected 

backsplice junction sequence. The * indicates that multiple fcircRNA isoforms were reported to result 

from the same fusion transcript. 

3.2.6 Visualization of novel fcircRNAs using INTEGRATE-Vis  

 Currently there are no publicly available tools for visualizing fcircRNAs. Most studies 

have relied on the manual creation of schematics to convey their findings, which can be time 

consuming, leads to highly variable figure quality between studies, and can cause confusion 

when trying to accurately depict complex fcircRNA isoforms which, until recently, lacked a 

formalized nomenclature104. To improve the dissemination of information in this relatively new 

field, we implemented an updated version of INTEGRATE-Vis (v1.1.0). In addition to the 

visualizations of linear fusion transcripts which were supported by earlier version of 

INTEGRATE-Vis112, the tool now supports the visualization of detected fcircRNAs and is 

compatible with both INTEGRATE-Circ and Fcirc output files. Example outputs using default 

settings are shown in Figure 3-5, which depicts the three novel, validated HCC1395 fcircRNAs 

identified by INTEGRATE-Circ. 
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Figure 3-5. Validated HCC1395 fcircRNAs visualized with INTEGRATE-Vis. Default output from 

INTEGRATE-Vis depicting the validated A) TTC33::PRKAA1, B) LINC00630::LLOXNC01-237H1.2 

and C) RP11-540B6.3::FAN1 fcircRNAs. 
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3.3 Discussion 

 Here we present both the novel tool, INTEGRATE-Circ, and v1.1.0 of INTEGRATE-

Vis. Together, these open-source software tools allow for unbiased detection and visualization of 

novel fcircRNAs. Through the use of (1) simulated data, (2) publicly available cell line data, and 

(3) experimental validation in a paired breast and normal cell line, we have demonstrated the 

ability of INTEGRATE-Circ to accurately identify linear fusion transcripts and fcircRNAs using 

short-read, paired-end sequencing data in an unbiased fashion.  

 One potential limitation of the INTEGRATE-Circ algorithm is that all annotations 

assume that the junction with the most spanning read support is the true fusion junction. This 

assumption may be false in situations where an alternative splice variant of a fusion transcript is 

more abundant than the transcript that represents the full genomic fusion. The inclusion of WGS 

data in the INTEGRATE-Circ algorithm is meant to minimize the likelihood of incorrectly 

designating an alternatively spliced junction as the primary junction, as the WGS reads should 

only support the true genomic fusion. Although users can run INTEGRATE-Circ without WGS 

data, including this information is likely to improve performance when trying to avoid such 

scenarios. 

 While fcircRNAs are composed of sequences from different genes, there are multiple 

ways for disparate gene sequences to become part of the same transcript, such as gene fusions 

and read-throughs. Each of the isoforms validated in the HCC1395 cell line in this study were 

the result of read-through transcripts, sometimes referred to as read-through circRNAs (rt-

circRNAs) instead of fcircRNAs. Some events fir poorly into any current characterization, such 

as the circKANSL1(3)::ARL17A(3) transcript identified by INTEGRATE-Circ in the K562 cell 
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line and previously reported in a medulloblastoma patient and other cell lines74,108. ARL17A is 

immediately upstream of the adjacent KANSL1 on chromosome 17, but their positions are 

inverted as KANSL1 becomes the 5’ gene partner of the KANSL1::ARL17A fusion transcript that 

later gives rise to the associated circRNA108. The resulting circRNA is therefore not a typical 

read-through event, nor does it necessarily involve a genomic alteration. Indeed, 

KANSL1::ARL17A circularized transcripts have been referred to as both fcircRNAs108 and as rt-

circRNAs74 in published literature. In either case, the capability of INTEGRATE-Circ to detect 

circRNAs resulting from both read-throughs and larger intra-/inter-chromosomal fusions, as 

evidenced by our analysis of cell line data and a variety of simulated fusion events, is indicative 

of the broad utility of our unbiased approach. 

 As demonstrated by the performance of INTEGRATE-Circ in both breast cancer and 

leukemia cell lines, this approach has broad applicability independent of the cancer type. Indeed, 

as seen in our analysis of the healthy normal HCC1395BL cell line, fcircRNAs caused by read-

throughs can be present even in healthy normal tissue. It is possible that fcircRNAs are more 

prevalent in diseases where structural variation is a common feature, but prior limitations have 

prevented comprehensive studies. Similarly, it is possible that their prevalence increases later in 

disease development due to the accumulation of somatic mutations. By providing improved 

detection and visualization methods, we hope that future work will be able to address such 

questions. 

 In summary, we have demonstrated that the novel software tool, INTEGRATE-Circ, can 

sensitively and accurately identify both linear fusion transcripts and fcircRNAs with single-base 

pair resolution, in an unbiased manner, across a variety of datasets. Additionally, the companion 

tool INTEGRATE-Vis is the first to provide automated visualization of fcircRNAs. We 
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anticipate that the combined use of these tools will facilitate a wide variety of future studies to 

better understand the basic and clinical significance of fcircRNAs. 

3.4 Methods 

3.4.1 Simulated data generation 

 The Gene Fusion Curation portion of the COSMIC v96 database110 was used to identify 

30 recurrent gene fusions for use as a basis for the in silico simulation. Fusions were first ranked 

by the number of mutated samples and then the single most common isoform for each fusion was 

selected for simulation. No gene was permitted to appear in more than one selected fusion, 

meaning that some fusions were skipped because promiscuous genes were listed as frequently 

having multiple gene partners (for example, the SS18::SSX1 and SS18::SSX2 fusions were both 

highly recurrent, but only the SS18::SSX1 fusion was selected). The positions of each individual 

exon present in the selected fusions were then identified using Ensembl’s hg19 annotation and 

individual exon sequences were then isolated using bedtools getfasta -name -s -fi <hg19.fa> -

bed <all_exons.bed> > exons.fa113. Backsplices with randomly generated junctions (using 

canonical exon boundaries) were then designed for each of the 30 fusions. All linear fusion 

isoforms selected from COSMIC and their corresponding fcircRNAs were then assembled by 

grouping together the necessary exons from the exons.fa file to form multi-exon transcripts. 

 Next, RNA-Seq reads were generated using the simReads() function from the Rsubread R 

library (R version 4.0.0, Rsubread version 2.4.3)114. The initial random seed was set to 42 and 

then reads were simulated over 100 iterations using the following parameters: library.size = 

100000, read.length = 100, paired.end = True, simulate.sequencing.error = True. No WGS data 

was simulated. 
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3.4.2 K562 data 

 K562 cell line sequencing data was downloaded from the Sequence Read Archive using 

accession number SRR8587462. No WGS data was used for analysis. Data was prepared for 

analysis as described in section 3.4.6. 

3.4.3 HCC1395 sequencing data 

 Poly(A)-selected HCC1395 sequencing data was downloaded from the public Sequence 

Read Archive, accession number SRR892423. For total RNA sequencing of HCC1395, a total 

RNA input of 1g was used to generate the RNA-Seq library using the New England BioLabs 

NEBNext Ultra II Directional RNA Library Prep for Illumina kit with rRNA Depletion module 

and NEBNext Multiplex Oligos for Illumina (Unique Dual Index UMI Adaptors RNA Set 1) per 

manufacturer’s protocol. Paired-end sequencing was performed on the NovaSeq platform. 

3.4.4 Manual review of fcircRNA calls in HCC1395 

 Manual review was performed based on the fusion and backsplice junctions reported in 

the final output files of INTEGRATE-Circ and Fcirc to ensure that the junctions were in an 

orientation that was capable of forming an fcircRNA. An example of some of the patterns 

observed are present in FIGURE. As the orientation of the original genes and the junctions are 

known, it is possible to predict the potential outcomes of any combination of junctions. The top 

example in FIGURE depicts the expected pattern during the manual review and describes an 

fcircRNA that would contain only the 2nd exon of Gene A and the 3rd exon of Gene B. The 

middle example from FIGURE depicts a fusion junction connecting Gene A exon 2 to Gene B 

exon 2, but suggests that Gene B exon 1 is a backsplice donor. As Gene B exon 1 is not 

contained in the fusion transcript, it is not possible for Gene B exon 1 to be involved in the 



60 

 

backsplice junction. Similarly, the final example in Figure 4A depicts a backsplice acceptor 

(Gene A exon 4) that would not be present in the linear fusion transcript. Scenarios such as there 

were excluded from PrimeTime qPCR validation as they were considered impossible and 

representative of a software error. 

3.4.5 Validation of fcircRNA calls in HCC1395 

 Potential candidates were precisely validated using PrimeTime qPCR Probe Assays 

(Integrated DNA Technologies) with forward and reverse primer sets covering approximately 

50nt each side of the backsplice junctions, and qPCR probes that specifically spanned the 

backsplice junctions themselves. Amplification was performed using the manufacturers 

recommended protocols. Amplified PrimeTime Probe qPCR products were purified using DNA 

Clean & Concentrator-5 (ZYMO RESEARCH) and purified DNA was analyzed with Sanger 

sequencing. Output from Sanger sequencing was compared to predicted backsplice junction 

sequences to assess the presence of the fcircRNA. 

 Selection and excision of DNA from the gel was done based on an expected size of 

approximately 100bp for each fcircRNA (based on the distance of primers from backsplice 

junctions, FIGURES). Non-specific bands were thought to be caused by non-specific binding to 

different transcripts, in part due to non-ideal PCR conditions. For example, due to having a large 

number of primers being used during the PCR reactions, the annealing temperature was sub-

optimal for a small number of primers. Similarly, due to the low expected abundance of 

fcircRNA, a relatively large number of PCR cycles were performed (45 cycles), which may also 

introduce non-specific binding. 
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3.4.6 Alignment of all sequencing data 

 Fcirc performs its own sequence alignment and accepts unaligned fastq files as input. 

Therefore, all reads from the in silico simulation, public K562 data and HCC1395 sequencing 

were provided to Fcirc in an unaligned format and were then aligned to hg19 by Fcirc. 

 In the original INTEGRATE publication102, it was shown that performance can vary 

slightly based on the aligner used and that optimal performance was achieved by using GSNAP 

for initial alignment. For this reason, all reads analyzed by INTEGRATE-Circ were aligned by 

GSNAP (version 2021-03-08)115 using the following parameters: -d hg19, --novelsplicing=1, --

read-group-platform=Illumina, --extend-soft-clips. Aligned reads were then sorted using 

samtools sort (v1.7) (CITATION) and processed by INTEGRATE-Circ using default 

parameters. Although INTEGRATE-Circ accepts WGS data, no WGS data was used for 

benchmarking purposes in order to provide a fair comparison between the different tools and 

because WGS data is not necessary for fcircRNA detection. 

 For Acfs, reads were prepared using the recommended steps for paired-end sequencing 

data provided on the project’s GitHub page (https://github.com/arthuryxt/acfs). 
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3.5 Supplementary Materials 

 

Figure 3-S1. Junction annotation strategy used by INTEGRATE-Circ. Simplified schematic of how 

INTEGRATE-Circ compares secondary junctions to the primary fusion junction in order to assign 

annotations. 

1 2 3 45’ 3’ 1 2 3 45’ 3’

1 2 3 45’ 3’ 1 2 3 45’ 3’

Primary Junction Secondary Junction

Gene Fusion

Alternative Splice Variant

1 2 3 45’ 3’ 1 2 3 45’ 3’

Reciprocal Gene Fusion

1 2 3 45’ 3’ 1 2 3 45’ 3’

Backsplice Variant

Gene A Gene B
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Figure 3-S2. Quantification of fcircRNA expression in HCC1395 and HCC1395BL. A-C) Relative 

expression of fcircRNA candidates 1-3 based on PrimeTime Probe qPCR. Expression values for each 

candidate are normalized to the expression found in HCC1395BL. *-In the case of Candidate 3, no 

expression was detected for HCC1395BL. For visualization purposes, HCC1395BL expression was 

therefore set to a “hypothetical” Tm value of 36. 
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Table 3-S1.  Fusions used for in silico simulation 

5’ Fusion Gene 3’ Fusion Gene 

BCR ABL1 

TMPRSS2 ERG 

EWSR1 FLI1 

PML RARA 

EML4 ALK 

KIAA1549 BRAF 

CCDC6 RET 

SS18 SSX1 

RUNX1 RUNX1T1 

PAX3 FOX01 

FUS DDIT3 

COL1A1 PDGFB 

CRTC1 MAML2 

NAB2 STAT6 

ETV6 NTRK3 

CBFA2T3 GLIS2 

KMT2A MLLT1 

PAX8 PPARG 

ASPSCR1 TFE3 

HMGA2 LPP 
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JAZF1 SUZ12 

SET NUP214 

CD74 ROS1 

TPM3 NTRK1 

CTNNB1 PLAG1 

TAF15 NR4A3 

CKDN2D WDFY2 

YWHAE NUTM2B 
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Chapter 4: Methylation biomarkers of 

aggressive prostate cancer 
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4.1 Introduction 

Although localized, indolent PCa has a 98% 5-year survival rate, survival drops to 30% 

in metastatic disease over that same time period1,116. For this reason, being able to reliably 

distinguish between indolent and aggressive tumors is critical. Traditionally, this has been done 

using Gleason grade scores14. The Gleason score is assigned based on morphological differences 

in tumor cells and is reported as the sum of the score assigned to two separate regions of the 

tumor on a 1-5 scale, with indolent regions receiving a 3 and more aggressive tumors receiving 

4-5. More recently, measures of prostate specific antigens (PSA) are also used to measure tumor 

progression9,10,13. Unfortunately, over-treatment is a widely observed problem in early PCa and 

improved stratification strategies could lead to direct improvements in treatment strategies and 

the quality of life of the patient9,10,13. 

Compared to other cancers, PCa has a relatively low tumor mutation burden and few 

recurrent SNVs and SVs have been identified in localized disease27. For this reason, biomarkers 

based on genetic mutations are not tractable. In lieu of this, a number of RNA expression-based 

assays have been developed in this space with varying degrees of success15,17. Unfortunately, 

RNA is less stable than DNA which can make quality control more complicated. Similarly, since 

PCa may remain indolent for years, a liquid biopsy-based assay would be beneficial in this space 

to allow for non-invasive, long-term monitoring of disease progression, but RNA is difficult to 

detect in blood43. 

Methylation profiling has emerged as an attractive strategy for biomarker detection 

because it does not rely on tumor mutation burden and because it can be measured directly from 

DNA (including cfDNA)19. A number of methylation changes in aggressive PCa have already 
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been well documented, such as hypermethylation of GSTP1 and observations that methylation of 

MYC correlate with Gleason scores40,117. To expand on these findings, recent work has been done 

to build classification algorithms to stratify PCa tumors based on methylation data118. Notably, 

most studies have relied on bulk sequencing using Illumina 450k methylation arrays applied to 

heterogeneous cohorts. Given the highly heterogeneous nature of PCa, it is possible that such 

approaches may lack in sensitivity. Indeed, many of these studies separate samples based on total 

summed Gleason score, such that a sample rated as 5+3 would be grouped with a 4+4 sample, 

masking the present heterogeneity within each tumor. Furthermore, as 450k methylation arrays 

only measure a pre-specified region of the genome, it is possible that whole genome sequencing 

could reveal new information associated with the transition from indolent to aggressive disease. 

To begin to address these limitations, our group has acquired matched Gleason grade 3 

and grade 4/5 samples captured using laser-capture micro-dissection from the same tumors, 

allowing for intra-tumor comparisons while minimizing the inherent heterogeneity of bulk 

analyses, as part of an exploratory study. Whole genome analysis was then performed using 

Enzymatic Methylation Sequencing (EM-Seq) to help gain insights into regions not detectable by 

methylation arrays119,120. Using this approach, we were able to perform an initial, exploratory 

assessment of the differential methylation in indolent and aggressive disease and develop an 

initial epigenetic signature to aid in tumor classification. This work serves as a proof of concept 

for the application of whole genome methylation sequencing in this setting and highlights the 

benefits of the approach. Future studies are required to validate the findings presented here. 
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4.2 Results 

A total of 23 aggressive and 11 indolent samples, including 6 matched pairs, were 

obtained for this exploratory study. Samples were deeply sequenced using EM-Seq resulting in 

an average of 615M reads per sample.  

4.2.1 EM-Seq results are consistent with published data 

For our initial analysis, we sought to ensure that the results achieved by EM-Seq were 

comparable to published 450K microarray data when examining CpG sites present in both 

datasets. Indolent samples (Gleason 3) sequenced with EM-Seq were compared to PCa samples 

Figure 4-1. Comparison of EM-Seq and 450k array data. Indolent (A) and aggressive (B) samples 

from our cohort sequenced using EM-Seq and the TCGA cohort processed using the Illumina 450k 

array. C) Number of CpG sites with methylation data after filtering. 
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with a summed Gleason score of 6 in the TCGA cohort analyzed with the Illumina 450k array 

(Figure 4-1A). Comparisons were also made between our aggressive samples (Gleason 4-5) 

sequenced with EM-Seq and TCGA samples reported as having a summed Gleason score of 9 

(Figure 4-1B). Although comparisons could only be made using CpGs found using both 

approaches, the overlapping CpGs were found to be highly concordant, with both comparisons 

yielding Pearson correlations >0.97. The need to rely on the summed total Gleason score of 

samples in the TCGA cohort highlights the ambiguity that is highly prevalent in most studies in 

this space, which hide the heterogeneity that may be present in tumors. Importantly, we also 

found that even after filtering CpGs with less than 10x coverage in our cohort, the EM-Seq 

samples contained approximately 50x more informative CpG sites than what was present in the 

array data (Figure 4-1C). This difference is clinically important, as many previous studies that 

have built classifiers for stratifying PCa patients use individual CpG sites as input, but they have 

been limited to those sites available on the 450k array. Based on these results, we concluded that 

while our EM-Seq data is comparable to published array-based studies, it contains a large 

amount of information that has been systematically ignored in most studies. 

4.2.2 Unique methylation differences distinguish indolent from aggressive PCa 

Having confirmed that our EM-Seq data was consistent with other methodologies, we 

next sought to further evaluate differences between indolent and aggressive PCa. Methylation 

patterns near transcript start sites (TSSs) were found to be tightly regulated, as expected, in both 

indolent and aggressive disease, with a general tendency toward hypomethylation in aggressive 

samples that becomes more prevalent in regions that are further removed from TSSs (Figure 4-

2A). This is consistent with the general observation of global hypomethylation in cancer outside 

of tightly regulated regions37. While this appeared to be the more common global trend, gene-
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specific patterns were also identified. A total of 263,362 differentially methylated regions 

(DMRs) were identified based on 1kb bins tiled throughout the genome, with the overwhelming 

majority of statistically significant DMRs located near TSSs (Figure 4-2B). A representative 

example of these DMRs is shown in Figure 4-2C, representing the DMR located in the promoter 

region of GSTP1. GSTP1 methylation has been well-studied in the context of localized PCa and 

our detection of a DMR in this promoter region served as a form of positive control. 

To better understand the biological implications of the detected DMRs, differentially 

expressed genes (DEGs) were identified using the publicly available TCGA PRAD cohort. A 

total of 223 genes were found to be both differentially expressed and differentially methylated. 

Pathway enrichment analysis revealed that the most highly enriched InterPro terms for this gene 

set included Homeodomain, Homeodomain-like, and Homeobox, which have previously been 

implicated in PCa29,121.  
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Figure 4-2. Methylation profiles of indolent and aggressive PCa. A) Rolling window of average 

methylation among indolent and aggressive samples near transcription start sites. B) Location of 1kb tiles 

found to be differentially methylated, with respect to transcription start sites. C) Rolling window of 

average methylation near the GSTP1 gene in indolent and aggressive samples. 
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4.2.3 Classification of PCa severity using CpG methylation 

 Having confirmed that distinct methylation profiles distinguish between indolent and 

aggressive disease, we sought to develop a specific methylation signature for classifying tumor 

samples. Two different approaches for identifying differentially methylated CpG sites (DMSs) 

were attempted, both of which were limited to tumors with matched indolent and aggressive foci 

available to serve as a smaller, discovery cohort. The first approach used methylKit applied to all 

matched samples grouped together (n=5 patients), while the second approach used the union of 

DMSs identified by comparing each individual set of matched samples (n=5 patients).We found 

that 99% of DMSs found using the union approach were also found using the grouped pair 

approach (Figure 4-3A). Approximately 43% of DMSs found using the grouped approach were 

located in promoter regions, whereas 58% of sites using the union approach were located in 

promoter regions (Figure 4-3B). This suggests that the union approach, though yielding far fewer 

DMSs, was enriched for sites that may be more biologically important. We therefore focused on 

DMSs called using the union approach. A machine learning algorithm was then applied to 

identify 22 DMSs for use as an epigenetic signature. This signature, derived only from the CpGs 

identified using the matched samples, was then applied to all available samples. We found that it 

accurately grouped indolent and aggressive samples in all but two cases (Figure 4-3C). A full list 

of the identified CpGs can be found in Table 4-S1. Importantly, ~95% (21/22) of the identified 
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CpGs in our epigenetic signature are not found on the Illumina 450k methylation array, 

highlighting the importance of a whole genome sequencing approach.  

Figure 4-3. Epigenetic signature for PCa stratification. A) Upset plot showing the overlap between DMSs 

called using two different approaches. B) Annotation of DMSs called using two different approaches. C) 

Heatmap showing how indolent and aggressive samples cluster based on methylation observed at 22 

CpGs. 
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4.2.4 Unique copy number alterations in aggressive disease 

Copy number alteration (CNA) analysis also revealed distinct profiles in indolent and 

aggressive samples, with the average amount of the genome altered in aggressive samples being 

2.4x greater than the amount of the genome altered in indolent samples (Figure 4-4A). PCa is 

known to have a large number of SVs and we were able to confirm that some of these may 

emerge during the transition between indolent and aggressive disease27. Interestingly, copy 

number gains were particularly prominent on chromosome 8 in aggressive samples, which 

includes the MYC oncogene, while being entirely absent in the indolent samples (Figure 4-4B). 

While tools exist for copy number analysis using 450k arrays, they are thought to have poor 

Figure 4-4. Copy number alterations in localized PCa. A) Total percentage of the genome affected by 

CNAs in each sample. B) Frequency of CNAs across chromosome 8 in the aggressive and indolent 

samples. 
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reliability compared to whole genome sequencing approaches, further highlighting the benefits 

of our whole genome sequencing approach122. 

4.3 Discussion 

 There is a clinical need for improved methods for accurate and non-invasive 

classification of indolent and aggressive PCa. Methylation profiling has been identified as a 

promising approach in this space, in part because of the few recurrent genetic mutations that 

exist in early PCa and because of the potential for future non-invasive assays. However, the 

majority of current studies comparing indolent and aggressive disease are limited in that they do 

not fully address the highly heterogeneous nature of PCa. Furthermore, most classification 

methods rely on specific differentially methylated CpGs found using the Illumina 450k 

methylation array, suggesting that there are large portions of the genome that are being 

systematically ignored.  

 In our exploratory analysis, we have found that whole genome methylation sequencing of 

specific portions of localized tumors is able to give important insights into the methylation 

profile of aggressive disease while observing nearly 50x more CpG sites than traditional array-

based approaches, even after accounting for filtering of uninformative CpGs. Furthermore, our 

use of whole genome methylation sequencing allowed for reliable copy number analysis, as 

opposed to the limitations present when using array-based techniques. Using this approach, we 

identified 223 genes with associated DMRs that appear to influence gene expression and 

identified recurrent copy number gains near the MYC locus found only in aggressive tumor 

samples. 
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 The development of our epigenetic signature, though effective in our small cohort, is 

limited. Calculated beta values for methylation at specific CpG sites is prone to noise, which is 

only exacerbated by our small cohort size. Validation through the use of larger cohorts is 

important. Alternatively, the development of a classifier using bulk data from a larger cohort and 

then applying that algorithm to our unique cohort may also yield interesting results. This 

approach would allow for evidence that an epigenetic signature developed using a highly 

heterogeneous cohort could accurately distinguish between indolent and aggressive sub-clones 

from within a single tumor. In either case, further work is required before further application of 

the epigenetic signature described here. 

4.4 Methods 

4.4.1 Sample collection and processing 

Tumor samples were collected by clinicians using an IRB-approved protocol. 

Pathologists reviewed the collected samples and identified specific regions within each sample 

that corresponded to Gleason grade 3 or grade 4/5 morphology. Specified regions were collected 

using laser capture microdissection. All samples were processed using the NEBNext Enzymatic 

Methyl-seq Kit using the manufacturer’s instructions and 20ng of material. 

4.4.2 Copy number analysis 

Copy number calls were calculated using default settings using CNVnator59. This was 

done using the CNVnator workflow described in McDonnell Genome Institute’s publicly 

available pipelines found at https://github.com/genome/analysis-workflows. CNVnator was run 

using a bin size of 100bp and outputs were filtered requiring an e-value < 0.05 as reported by 
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CNVnator. Genome alteration percentage was calculated based on a genome size of 3 billion bp. 

Identification of recurrent alterations on chromosome 8 was performed using the GenVisR R 

library123. 

4.4.3 Methylation analysis 

Quality control, sequence alignment and initial calculations for methylation values were 

performed using a public workflow made available by the McDonnell Genome Institute at 

https://github.com/genome/analysis-workflows. Briefly, raw reads were trimmed using flexbar 

and resulting reads were aligned using Biscuit124,125. Methylation data and quality control metrics 

were determined with the Biscuit pileup and Biscuit qc commands, respectively. Conversion 

efficiency was evaluated by repeating the pipeline and using pUC19 and Lambda reference 

genomes as input.  

 Differential methylation was then calculated using methylKit as previously described126. 

Filtering was performed using methylKit::filterByCoverage(low.count=10, lo.perc=NULL, 

hi.count=NULL, hi.perc=99.9) and subsequently normalized using 

methylKit::normalizeCoverage(method=’median’). DMRs were identified by breaking the 

genome into 1kb tiles and then filtered, requiring an absolute methylation difference of 10% and 

q-value < 0.05.  

4.4.4 Differential expression analysis 

 TCGA PRAD RNA-Seq expression data were accessed using the ExperimentHub R 

package and analyzed using DESeq2127,128. Samples with a summed Gleason score of 6 were 

labeled as “indolent” and samples with a summed Gleason score >= 8 were labeled as 
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“aggressive”. DEGs were required to have an absolute log2() fold change >= 1 and an adjusted 

p-value < 0.05. 

4.4.5 Pathway enrichment analysis 

 Genes that were both differentially expressed and differentially methylated were analyzed 

using DAVID’s functional annotation tool129. Comparisons were made against a background of 

all human genes. Pathway identification was performed using gene labels from InterPro130. 

4.4.6 CpG site selection for epigenetic signature 

 DMSs were identified using methylKit by comparing each individual set of matched 

samples (n=5 patients) as described in 4.4.3 and then finding the union of the results. Remaining 

DMSs with a q-value < 0.05 and located within a DMR (see 4.4.3). Elastic net regression was 

then performed 70 times, each time keeping the 50 top hits. After 70 iterations, the 500 most 

frequently identified CpGs were evaluated using xgboost to create an importance summary. A 

mixed effects logistic regression model was then applied to identify the optimal subset of 

remaining CpGs, resulting in 22 CpG sites. 
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4.5 Supplemental Materials 

Table 4-S1. CpG sites included in epigenetic signature. All positions are based on hg19. 

chr1:909989 

chr1:2790061 

chr1:7784435 

chr1:10888850 

chr1:23902793 

chr1:27519514 

chr1:29123388 

chr1:39692386 

chr1:156388569 

chr1:156388490 

chr1:231040827 

chr5:1800371 

chr7:128910663 

chr10:62818851 

chr10:99537434 

chr11:86672012 

chr11:126269720 

chr13:52739393 

chr13:99985582 

chr17:79834695 
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chr17:79834699 

chrX:40012656 
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Chapter 5: Summary, future directions and 

conclusions 
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5.1 Summary 

 This work sought to address computational needs associated with the detection of 

biomarkers in prostate cancer. We identified points in early and late-stage disease progression 

that might benefit the most from improved use of predictive biomarkers and developed tools that 

leveraged different biological aspects that were most relevant to the different disease states. 

Specifically, we used methylation profiling in early-stage disease due to the low number of 

recurrent genetic mutations at this stage, while using somatic mutation detection in late-stage 

cancer because of specific known mutations that associate with treatment resistance. 

Additionally, we determined that although recent evidence suggested that fcircRNAs may 

associate with cancer progression and a number of fcircRNAs had been detected in early prostate 

cancer, no systematic method existed for detecting these isoforms. Development of 

INTEGRATE-Circ and INTEGRATE-Vis provides the community with the tools needed to gain 

a better understanding of fcircRNAs and their potential as biomarkers. By developing software 

tools to address needs, we have provided tools to improve future work not only in prostate 

cancer, but in oncology as a whole. 

5.2 Future Directions 

 While software development and benchmarking are critical for performing high quality 

and reproducible research, it is only in the application of such tools that the full potential of the 

software can be realized. The following areas of research have been identified as possible future 

directions for the utilization of the methods described here. 
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5.2.1 Validation of prognostic biomarkers in mCRPC 

 PACT, our pipeline for the analysis of circulating tumor DNA, presents the field with a 

reproducible way to identify somatic mutations from liquid biopsies. Our lab, in collaboration 

with Drs. Pachynski and Chaudhuri, previously published a prognostic liquid biopsy assay for 

detection of key variants in mCRPC22. PACT provides an effective way for additional studies to 

validate these previous findings and for others to confirm those findings. Indeed, ongoing 

collaborations with the labs of Drs. Pachynski and Chaudhuri has already resulted in the use of 

PACT to further investigate the association between AR alterations and clinical progression, 

including in pre-treatment patients131. As PACT is disease-agnostic, this tool has potential utility 

in other diseases as well. We anticipate that the adoption of PACT will improve the 

reproducibility and utility of future liquid biopsies in a variety of contexts. 

5.2.2 Identification of fcircRNAs as possible biomarkers 

 Given the reported oncogenic nature of some fcircRNAs and the relative stability of 

circRNA in general, fcircRNAs represent an attractive clinical biomarker. However, due to the 

lack of detection methods, few fcircRNAs have been identified. With the creation of 

INTEGRATE-Circ, a large number of possible studies across different cancer types are now 

feasible. Although little is known about fcircRNAs, it is possible that studies that specifically 

look at cancer types with frequent structural variations (such as PCa) may identify recurrent 

fcircRNAs that could serve as biomarkers. We expect that the use of INTEGRATE-Circ and 

INTEGRATE-Vis will empower the field to identify and evaluate fcircRNAs as potential 

biomarkers in a wide variety of disease states.  
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5.2.3 Development of localized PCa prognostic assays 

 Pending the validation of our approach using additional cohorts, it is feasible that a 

methylation-based assay for detecting aggressive disease using liquid biopsies could be 

developed based on the biomarkers identified in this work. The use of non-invasive assays for 

early stage PCa patients would improve the efficiency of disease progression monitoring while 

reducing the inconvenience of more invasive methods. Future work should therefore seek to use 

larger cohorts to allow for more in-depth analyses and for validation of the exploratory findings 

presented here. 

5.3 Conclusion 

 In summary, this work describes the development of bioinformatic tools to aid in the 

future detection and evaluation of predictive biomarkers. The methods described herein represent 

a multi-pronged approach using multiple biomarker classes (somatic mutations, methylation 

changes, RNA circularization and expression) based on the unique biological changes previously 

observed in specific stages of PCa progression. These tools may empower future work both in 

early-stage and late-stage PCa. Furthermore, through our development of PACT, INTEGRATE-

Circ and INTEGRATE-Vis we have provided the cancer research field at large with novel tools 

to encourage future clinically relevant work in any cancer type, beyond PCa. As a result of this 

work, we have helped ensure the accuracy and reproducibility of future studies aiming to identify 

and evaluate cancer biomarkers. 
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