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ABSTRACT OF THE DISSERTATION

Complete Pick Spaces and Operator Inequalities

by

Georgios Tsikalas

Doctor of Philosophy in Mathematics

Washington University in St. Louis, 2024

Professor John E. McCarthy, Chair

This thesis is concerned with the treatment of three different research topics (each in a separate

chapter), all lying at the interface of complex analysis and operator theory.

The first chapter is based on two distinct research projects, both revolving around complete Pick

spaces. These are reproducing kernel Hilbert spaces that host an analogue of the Pick interpolation

theorem for multipliers. First, we study a generalized inner-outer factorization in the setting of a

particular complete Pick space over the annulus. The second project deals with the characterization

of interpolating sequences for multipliers between certain pairs of function spaces that enjoy an

analogue of the complete Pick property. In particular, we show that a sequence is interpolating for

a pair of such spaces if and only if it generates a Carleson measure with respect to the first space

and is 𝑛-weakly separated by the kernel of the second space, for any 𝑛 ≥ 2. We also construct

counterexamples to show that 𝑛-weak separation cannot, in general, be replaced by weak separation,

thus answering a question of Aleman, Hartz, McCarthy and Richter.

The second chapter deals with operator inequalities over the annulus. In particular, we consider

three different classes of operators associated with the annulus and offer estimates for the norm of

functions of such operators. Each class requires separate treatment: for the first one, we construct

a certain “extremal” weighted shift operator, while for the second one, we convert the operator

norm into the multiplier norm of a certain Hilbert function space. Further, to handle the third class,

we employ a technique due to Crouzeix and Greenbaum that involves the double-layer potential

vii



integral operator (that section is joint work with Michael Jury). Finally, we note that this chapter

also contains material that has not been submitted for publication; in Section 2.4, we construct a

counterexample to a question of Bello and Yakubovich concerning the class of operators that have

the annulus as a spectral set.

Finally, the third chapter, which is joint work with Michael Jury, focuses on the behavior of the

iterates

𝐹𝑛 ∶= 𝐹 ∘ 𝐹 ∘ ⋯ ∘ 𝐹⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 times

of holomorphic self-maps 𝐹 of the bidisk that do not have any interior fixed points. It is well-known

that, unlike the single-variable case, the sequence {𝐹𝑛} will, in general, diverge. However, it turns

out that the limiting behavior of {𝐹𝑛} is heavily influenced by the differentiability properties of 𝐹 at

certain boundary fixed points, which we term Denjoy-Wolff points following the classical setting.

In fact, we show that if 𝐹 possesses Denjoy-Wolff points with particular properties, then {𝐹𝑛} will

have to converge. To obtain these results, we employ a certain operator-theoretic representation of

holomorphic functions on the bidisk due to Agler.
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Chapter 1

Two Problems in Complete Pick Spaces

The material contained in this chapter originates in the following two papers:

Paper I G. Tsikalas. “Subinner-free outer factorizations on an annulus”. In: Integral Equations

Operator Theory 94.4 (2022), Paper No. 40, 15

Paper II G. Tsikalas. “Interpolating sequences for pairs of spaces”. In: J. Funct. Anal. 285.7 (2023),

Paper No. 110059, 43

1.1 Introduction

The starting point of our investigations in this chapter lies in the rich theory of the Hardy space

𝐻2, which is the Hilbert space of functions 𝑓 analytic in the unit disc 𝔻 = {|𝑧| < 1} and satisfying

||𝑓||22 ∶= sup
0≤𝑟<1

∫
2𝜋

0
|𝑓(𝑟𝑒𝑖𝜃)|2𝑑𝜃2𝜋 < ∞.

The Hardy space and its natural generalizations offer a computational and conceptual framework in

which operator theory flourishes. The multiplier algebra of𝐻2, denoted by Mult(𝐻2), is particularly

well-studied. It is the commutative Banach algebra of analytic functions 𝜙 in the unit disc, such that

the induced multiplication operator

𝑀𝜙𝑓 = 𝜙 ⋅ 𝑓

maps 𝐻2 continuously into itself. It is known that Mult(𝐻2) can be isometrically identified with

𝐻∞, the algebra of all bounded holomorphic functions on 𝔻 equipped with the norm ||𝜙||∞ ∶=
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sup𝑧∈𝔻 |𝜙(𝑧)|.Another well-studied object is the Szegő kernel

𝜎(𝑧, 𝑤) = 𝜎𝑤(𝑧) =
1

1 − 𝑧𝑤
, 𝑧, 𝑤 ∈ 𝔻,

which is the reproducing kernel of 𝐻2, satisfying

⟨𝑓, 𝜎𝑤⟩𝐻2 = 𝑓(𝑤), for every 𝑓 ∈ 𝐻2, 𝑤 ∈ 𝔻.

𝐻∞ presents a fertile framework for interpolation problems, one of the most classical ones

arguably being the following: given 𝑛 points 𝑧1,… , 𝑧𝑛 ∈ 𝔻 and 𝑛 complex numbers 𝑤1,… ,𝑤𝑛,

determine whether there exists 𝜙 ∈ 𝐻∞ such that

𝜙(𝑧𝑖) = 𝑤𝑖, 𝑖 = 1,… , 𝑛, and ||𝜙||∞ ≤ 1.

Pick’s solution [114] of this problem in 1915 impacted the development of function theory throughout

the twentieth century, while also having fruitful applications in engineering and, in particular, control

theory [19, 95]. Nevanlinna [106] independently arrived at a somewhat different characterization in

1919.

Theorem 1.1.1 (Pick, 1915, Nevanlinna 1919). The above interpolation problem has a solution if

and only if the 𝑛 × 𝑛 matrix

[
1 − 𝑤𝑖𝑤𝑗

1 − 𝑧𝑖𝑧𝑗
]

is positive-semidefinite.

It is possible to view the Nevanlinna-Pick theorem as a theorem about 𝐻2: Given 𝑛 points

𝑧1,… , 𝑧𝑛 ∈ 𝔻 and 𝑛 complex numbers 𝑤1,… ,𝑤𝑛, there exists 𝜙 ∈ Mult(𝐻2) such that

𝜙(𝑧𝑖) = 𝑤𝑖, 𝑖 = 1,… , 𝑛, and ||𝜙||Mult(𝐻2) ≤ 1

if and only if the 𝑛 × 𝑛 matrix

[(1 − 𝑤𝑖𝑤𝑗)𝜎(𝑧𝑖, 𝑧𝑗)]

2



is positive-semidefinite. This operator-theoretic approach was pioneered by Sarason [123], who

actually proved a much more general commutant lifting theorem that encodes, unifies and extends a

variety of classical interpolation and moment theorems on the disc, Pick’s included. That theorem

has since been generalized by many authors and the theory of commutant lifting, initiated by Nagy

and Foiaş (see [71]), is a widely studied tool in operator theory that derived from Sarason’s insights.

The study of the Nevanlinna-Pick interpolation problem for general spaces lead to the birth

of complete Pick spaces. These are reproducing kernel Hilbert spaces defined in terms of an

interpolation property for multipliers that recovers the Nevanlinna-Pick theorem in the case of

the Hardy space 𝐻2 (where the multipliers are precisely the 𝐻∞ functions). Further examples

include the classical Dirichlet space and standard weighted Dirichlet spaces on the unit disc, the

Sobolev space𝑊 2
1 on the unit interval and the Drury–Arveson space 𝐻2

𝑑 on the unit ball 𝔹𝑑 of ℂ𝑑.

Following foundational work of McCullough [97, 99], Quiggin [119] and Agler and McCarthy [7],

complete Pick spaces have been used to answer several interesting function-theoretical questions on

topics such as interpolating sequences [17], invariant subspaces [101], factorization theorems [15],

weak product spaces [85], the Column-Row property [79] and the corona theorem [56]. We refer

the reader to subsection 1.1.1 for precise definitions and additional examples. A comprehensive

treatment of complete Pick spaces can be found in the book [8].

After a brief preliminary section on reproducing kernel Hilbert spaces and the complete Pick

property, the rest of this chapter will be split in two parts, each focused on a different problem in the

setting of complete Pick spaces. In Section 1.2, we will study a generalized inner-outer factorization

(originating in [16, 85]) for functions living in a certain complete Pick space over the annulus. On

the other hand, in Section 1.3, we will give a complete characterization of interpolating sequences

for multipliers 𝜙 ∶ ℋ𝑠 →ℋℓ, where ℓ is a reproducing kernel, 𝑠 is a complete Pick kernel and ℓ/𝑠

is also a kernel (e.g. ℋ𝑠 could be the Hardy space andℋℓ could be a weighted Bergman space

on the disc). Further, we will construct a counterexample to a related question of Aleman, Hartz,

McCarthy and Richter [17].

3



1.1.1 Reproducing Kernel Hilbert Spaces and the Complete Pick Property

Let 𝑋 be a nonempty set. A function 𝑘 ∶ 𝑋×𝑋 → ℂ is called positive semi-definite, if whenever

𝑛 ∈ ℕ and 𝑥1,… , 𝑥𝑛 ∈ 𝑋 and 𝑤1,…𝑤𝑛 ∈ ℂ, then∑𝑛
𝑖,𝑗=1 𝑘(𝑥𝑗, 𝑥𝑖)𝑤𝑖𝑤𝑗 ≥ 0.We also say that 𝑘 is a

kernel. For each 𝑥 ∈ 𝑋, define a function 𝑘(⋅, 𝑥) on 𝑋 by 𝑘(⋅, 𝑥)(𝑦) = 𝑘(𝑦, 𝑥). Define also an inner

product on the linear span of these functions by

⟨∑
𝑖
𝑎𝑖𝑘(⋅, 𝑥𝑖),∑

𝑗
𝑏𝑗𝑘(⋅, 𝑥𝑗)⟩ = ∑

𝑖,𝑗
𝑎𝑖𝑏𝑗𝑘(𝑥𝑗, 𝑥𝑖).

Let ℋ𝑘 denote the Hilbert space obtained by completing the linear span of the functions 𝑘(⋅, 𝑥)

with respect to the previous inner product. We may regard vectors 𝑓 inℋ𝑘 as functions on 𝑋, with

𝑓(𝑥) = ⟨𝑓, 𝑘(⋅, 𝑥)⟩. ℋ𝑘 is said to be a reproducing kernel Hilbert space. references on the basics of

such spaces include the classical paper of Aronszajn [24] and the book [113].

The multiplier algebra Mult(ℋ𝑘) is defined as the collection of functions 𝜙 ∶ 𝑋 → ℂ such

that (𝑀𝜙𝑓)(𝑥) = 𝜙(𝑥)𝑓(𝑥) defines a bounded operator 𝑀𝜙 ∶ ℋ𝑘 → ℋ𝑘. The multipliers 𝜙 with

||𝑀𝜙|| ≤ 𝐶 are characterized by

(𝐶2 − 𝜙(𝑦)𝜙(𝑥))𝑘(𝑦, 𝑥) ≥ 0, (1.1)

since it is equivalent to ||𝑀∗
𝜙𝑓||ℋ𝑘

≤ 𝐶||𝑓||ℋ𝑘
, for a dense subset ofℋ𝑘.

Now, let 𝑛 be a positive integer, and letℳ𝑛 denote the 𝑛-by-𝑛 complex matrices. We say that 𝑘

has the 𝑁-pointℳ𝑛 Pick property if, for every finite sequence 𝜆1,… , 𝜆𝑁 of 𝑁 distinct points in 𝑋,

and every sequence𝑊1,… ,𝑊𝑁 inℳ𝑛, positivity of the block matrix

[𝑘(𝜆𝑖, 𝜆𝑗)(𝐼ℂ𝑛 −𝑊𝑖𝑊 ∗
𝑗 )]

𝑁

𝑖,𝑗=1

implies the existence of a multiplier 𝛷 ofℋ𝑘 ⊗ℂ𝑛 of norm at most 1 that satisfies

𝛷(𝜆𝑖) = 𝑊𝑖, for all 1 ≤ 𝑖 ≤ 𝑁.

When 𝑛 = 1, we say 𝑘 has the𝑁-point (scalar) Pick property. If 𝑘 has the𝑁-pointℳ𝑛 Pick property

for every 𝑛 and 𝑁, we say the kernel, and the corresponding Hilbert spaceℋ𝑘, have the complete

Pick property. For brevity, we will also sometimes say that 𝑘 is a CP kernel.

4



Examples of such kernels and spaces (all proofs can be found in [8]) are the Szegő kernel
1

1−𝑧𝑤

for the Hardy space on the unit disk; the Dirichlet kernel
−1

𝑧𝑤
log(1 − 𝑧𝑤) on the disk; the kernels

1

(1−𝑧𝑤)𝑡
for 0 < 𝑡 < 1 on the disk; the Sobolev space𝑊 2

1 on the unit interval; and the Drury-Arveson

space, the space of analytic functions on the unit ball 𝔹𝑑 of a 𝑑-dimensional Hilbert space (where 𝑑

may be infinite) with kernel

𝑘(𝑧, 𝑤) = 1
1 − ⟨𝑧, 𝑤⟩

.

A kernel 𝑘 is said to be irreducible if the underlying set 𝑋 cannot be partitioned into two non-

empty disjoint sets 𝑋1, 𝑋2 so that 𝑘(𝑥1, 𝑥2) = 0 for all 𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2. The kernel 𝑘 of an

irreducible complete Pick space satisfies 𝑘(𝑧, 𝑤) ≠ 0 for all 𝑧, 𝑤 ∈ 𝑋; see [7, Lemma 1.1]. By

Theorem 3.1 of [7], the spaceℋ𝑘 is an irreducible complete Pick space if and only if there exist a

function 𝛿 ∶ 𝑋 → ℂ ∖ 0, a number 𝑑 ∈ ℕ ∪ {∞} and a function 𝑢 ∶ 𝑋 → 𝔹𝑑, where 𝔹𝑑 denotes the

open unit ball of a 𝑑-dimensional Hilbert space𝒦, so that

𝑘𝑤(𝑧) =
𝛿(𝑧)𝛿(𝑤)

1 − ⟨𝑢(𝑧), 𝑢(𝑤)⟩𝒦
(𝑧, 𝑤 ∈ 𝑋). (1.2)

Finally, a kernel 𝑘 is normalized at 𝑤0 ∈ 𝑋 if 𝑘(𝑧, 𝑤0) = 1 for all 𝑧 ∈ 𝑋. One can always rescale

an irreducible complete Pick kernel (see [8, Section 2.6] for more background on rescaling kernels)

to achieve that in (1.2) the function 𝛿 is the constant function 1 and 𝑢(𝑤0) = 0.We point out that

working in normalized spaces is merely convenient, not essential for our proofs.

5



1.2 Subinner-Free Outer Factorizations on the Annulus

1.2.1 Background

Many results originating in the theory of the Hardy space over the unit disc can be extended to

the setting of complete Pick spaces. One such result is the following classical factorization theorem.

Note that, in this context, an inner function is a multiplier 𝜙 ∈ 𝐻∞(𝔻) such that the associated

multiplication operator𝑀𝜙 is an isometry on 𝐻2(𝔻), while an outer function 𝑔 ∈ 𝐻2(𝔻) has the

property that

span{𝜓 ⋅ 𝑔 ∶ 𝜓 ∈ 𝐻∞(𝔻)}

is dense in 𝐻2(𝔻).

Theorem 1.2.1 (Inner-outer factorization). Given 𝑓 ∈ 𝐻2(𝔻), 𝑓 ≠ 0, there exist unique (up to

renormalization) functions 𝜙, 𝑔 such that 𝜙 is an inner multiplier, 𝑔 is an outer function and

𝑓 = 𝜙𝑔.

The inner-outer factorization is a valuable tool for both function- and operator-theoretic arguments,

as it allows for the replacement of 𝑓 by the “nicer” functions 𝜙 and 𝑔.

Unfortunately, it is a known fact that in many well-studied function spaces (especially in the

multi-variable setting) no analogue of the inner-outer factorization exists. This is, however, not the

case with complete Pick spaces. Indeed, assumeℋ is an arbitrary space with the complete Pick

property. In [16], Aleman, Hartz, McCarthy and Richter proved a unique factorization result for

functions inℋ that involves the two classes of subinner and free outer functions. In particular, they

showed that for every 𝑓 ∈ ℋ ∖ {0}, there exists a unique (up to unimodular constants) subinner-free

outer pair (𝜙, ℎ) such that

𝑓 = 𝜙ℎ.

Here, the subinner factor 𝜙 is a contractive multiplier ofℋ such that ||𝜙ℎ|| = ||ℎ||, while the free

outer factor ℎ belongs to a special subclass of the cyclic vectors ofℋ (to be defined below). Note

6



that this factorization is the same (without the uniqueness assertion) as the one considered by Jury

and Martin in [85]. In these papers, the authors worked in the setting of the free Fock space ℱ2
𝑑 in 𝑑

variables, where a free inner-outer factorization is known to hold (see [23], [64]). Since there exists

a natural isometric embedding ofℋ into ℱ2
𝑑 for some 𝑑 ∈ ℕ ∪∞ (see subsection 1.2.3), this free

inner-outer factorization then also applies to functions in the embedded spaceℋ.

Now, in the setting of the Hardy space 𝐻2(𝔻), subinner functions coincide with the classical

inner functions. In the general case, subinner functions form a “large” class of contractive multipliers

ofℋ; Theorem 1.9 in [16] asserts that every 𝜙 in the unit ball of the multiplier algebra ofℋ is a

pointwise limit of subinner functions. We note that it may even happen that every function in the

space is, up to renormalization, a subinner multiplier! For instance, consider the Sobolev space

𝒲2
1 of those functions on [0, 1] that are absolutely continuous and whose derivatives are square

integrable. Agler [11] showed that𝒲2
1 is a complete Pick space. Theorem 1.5 of the same paper

implies that every 𝑓 ∈ 𝒲2
1 is a norm-attaining multiplier of𝒲2

1 , hence a constant multiple of a

subinner function.

On the other hand, free outer functions are much harder to come by. While they coincide with

the usual outer functions in the setting of 𝐻2(𝔻), in general they form a strict subset of the cyclic

vectors ofℋ. Also, the product of two free outer functions isn’t necessarily free outer (see e.g. [16,

Example 11.1]). Another perhaps surprising fact is the existence of nonconstant functions that are

simultaneously subinner and free outer. Simple examples of such functions can be found even in the

Dirichlet space 𝐷; see the remark after the proof of Theorem 14.9 in [16]. Also, in view of of our

observation in the last paragraph, we can easily see that suitable scalar multiples of kernel functions

in𝒲2
1 will be both subinner and free outer.

It is fair to say that free outer functions are not well-understood yet. The situation is exacerbated

by a striking lack of examples; indeed, besides the familiar Hardy space setting, it seems that only the

free outer factors of low-degree polynomials and of projections of kernel functions onto multiplier

invariant subspaces (see [16, Example 1.8]) have been worked out explicitly so far. In this note,
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we enlarge the pool of available examples by investigating subinner-free outer factorizations in the

setting of a certain complete Pick space on the annulus 𝐴𝑟 = {𝑟 < |𝑧| < 1}, which we now define.

Letℋ2(𝐴𝑟) denote the Hilbert function space on 𝐴𝑟 induced by the kernel

𝑘𝑟(𝜆, 𝜇) ∶=
1 − 𝑟2

(1 − 𝜆𝜇̄)(1 − 𝑟2/𝜆𝜇̄)
.

ℋ2(𝐴𝑟) is known to be a complete Pick space (see [20, p. 1137]). Our main result, proved in

subsection 1.2.6, is the following:

Theorem 1.2.2. For every 𝑓 ∈ 𝐻2(𝔻) ⊂ ℋ2(𝐴𝑟), the classical inner-outer factorization in 𝐻2(𝔻)

coincides (up to multiplication by unimodular constants) with the subinner-free outer factorization

of 𝑓 inℋ2(𝐴𝑟). An analogous result holds for functions in 𝐻2(𝔻0)1 ⊂ ℋ2(𝐴𝑟).

Theorem 1.2.2 tells us that a function inℋ2(𝐴𝑟) that is also analytic on the unit disk isℋ2(𝐴𝑟)-

free outer if and only if it is 𝐻2(𝔻)-outer. We show that a similar result holds forℋ2(𝐴𝑟)-subinner

functions that are also analytic on 𝔻.

Theorem 1.2.3. Suppose 𝜙 ∈ Mult(ℋ2(𝐴𝑟)) ∩ Hol(𝔻) = 𝐻∞(𝔻). Then, 𝜙 is 𝐻2(𝔻)-inner if and

only if 𝜙 isℋ2(𝐴𝑟)-subinner. An analogous result holds for 𝐻2(𝔻0)-inner functions.

Finally, Corollary 1.2.14 (see subsection 1.2.6) allows us to obtain new examples of free outer

functions in the two-dimensional Drury-Arveson space 𝐻2
2 by using the embedding ofℋ2(𝐴𝑟) into

𝐻2
2 .

1.2.2 Preliminaries

Letℋ be a separable Hilbert function space on a non-empty set 𝑋 with reproducing kernel

𝑘. Write Mult(ℋ) = {𝜙 ∶ 𝑋 → ℂ ∶ 𝜙𝑓 ∈ ℋ for all 𝑓 ∈ ℋ} for the multiplier algebra of

ℋ. Every multiplier 𝜙 defines a bounded linear operator 𝑀𝜙 ∈ ℬ(ℋ) by 𝑀𝜙(𝑓) = 𝜙𝑓. Putting

||𝜙||Mult(ℋ) = ||𝑀𝜙||ℬ(ℋ) turns Mult(ℋ) into a Banach algebra. If 𝑓 ∈ ℋ, write [𝑓] for the
1Here,𝐻2(𝔻0) is the Hardy space over the unbounded disk 𝔻0 = {|𝑧| > 𝑟} centered at infinity.
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multiplier invariant subspace generated by 𝑓, i.e. the closure of Mult(ℋ)𝑓 inℋ. 𝑓 is called cyclic,

if [𝑓] = ℋ.Also, define 𝑃𝑓 ∶ Mult(ℋ) → ℂ to be the linear functional 𝑃𝑓(𝜙) ∶= ⟨𝜙𝑓, 𝑓⟩ and set

ℰ𝑓 = {𝑔 ∈ ℋ ∶ 𝑃𝑓 = 𝑃𝑔}.

We can now state the Aleman, Hartz, McCarthy, Richter factorization result. To be precise, their

theorems are stated in the setting of a complete Pick spaceℋ with kernel 𝑘 normalized at 𝑧0 ∈ 𝑋.

Definition 1.2.4. (a) A function 𝑓 ∈ ℋ is called free outer, if

|𝑓(𝑧0)| = sup{|𝑔(𝑧0)| ∶ 𝑔 ∈ ℰ𝑓}.

(b) A multiplier 𝜙 ∈ Mult(ℋ) is called subinner, if ||𝜙||Mult(ℋ) = 1 and if there exists a nonzero

ℎ ∈ ℋ such that with ||𝜙ℎ|| = ||ℎ||.

(c) A pair (𝜙, 𝑓) is called a subinner/free outer pair, if 𝜙 is subinner, 𝑓 is free outer with 𝑓(𝑧0) > 0,

and ||𝜙𝑓|| = ||𝑓||.

Theorem 1.2.5. For every 𝑓 ∈ ℋ ∖ {0} there is a unique subinner/free outer pair (𝜙, ℎ) such that

𝑓 = 𝜙ℎ.

Theorem 1.2.6. If 𝑓, 𝑔 ∈ ℋ ∖ {0}, then 𝑃𝑓 = 𝑃𝑔 if and only if 𝑓 and 𝑔 have the same free outer

factors.

Having a distinguished normalization point turns out not to be important.

Corollary 1.2.7. Let ℎ ∈ ℋ. The following are equivalent:

(a) ℎ is free outer,

(b) there is 𝑧 ∈ 𝑋 with |ℎ(𝑧)| = sup{|𝑓(𝑧)| ∶ 𝑓 ∈ ℰ𝑓},

(c) for all 𝑧 ∈ 𝑋 we have |ℎ(𝑧)| = sup{|𝑓(𝑧)| ∶ 𝑓 ∈ ℰ𝑓}.

1.2.3 The free Fock space

We now briefly discuss preliminaries in regards to the free Fock space. Let 𝑑 ∈ ℕ ∪ {∞} and

write 𝔽+𝑑 for the free semigroup on 𝑑 letters {1, 2,… }; that is, the set of all words 𝑤 = 𝑤1𝑤2⋯𝑤𝑘
9



over all (finite) lengths 𝑘, where each 𝑤𝑗 ∈ {1, 2,… }.We also include the empty word ∅ in 𝔽+𝑑 , the

length of which is defined to be zero. If 𝑤 ∈ 𝔽+𝑑 , then 𝛼(𝑤) ∈ ℕ𝑑
0 is the multi-index associated with

𝑤, defined by 𝛼(𝑤) = (𝛼1,… , 𝛼𝑑), where 𝛼𝑗 equals the number of times the letter 𝑗 occurs in 𝑤.

Also, let 𝑥 = (𝑥1,… , 𝑥𝑑) be a freely non-commuting indeterminate with 𝑑 components. If 𝑤 ∈ 𝔽+𝑑 ,

then the free monomials are defined by 𝑥𝑤 = 1, if 𝑤 = ∅, and 𝑥𝑤 = 𝑥𝑤1 …𝑥𝑤𝑘
, if 𝑤 = 𝑤1⋯𝑤𝑘.

The free Fock space ℱ2
𝑑 is the space of all power series in d non-commuting formal variables

with square-summable coefficients, i.e. 𝐹 ∈ ℱ2
𝑑 if and only if 𝐹(𝑥) = ∑𝑤∈𝔽+𝑑

̂𝐹(𝑤)𝑥𝑤 and

||𝐹||2 = ∑𝑤∈𝔽+𝑑
| ̂𝐹(𝑤)|2 < ∞. A distinguished subspace of ℱ2

𝑑 is the symmetric Fock space

ℋ2
𝑑 ⊆ ℱ2

𝑑 . An element 𝐹 ∈ ℱ2
𝑑 is inℋ2

𝑑 if and only if
̂𝐹(𝑤) = ̂𝐹(𝑣), whenever 𝛼(𝑤) = 𝛼(𝑣). Now,

for every 𝑧 = (𝑧1, 𝑧2,… , 𝑧𝑑) ∈ 𝔹𝑑 and n ∶= (𝑛1, 𝑛2,… , 𝑛𝑑) ∈ ℕ𝑑
0, set 𝑧n ∶= 𝑧𝑛11 ⋯𝑧𝑛𝑑𝑑 . The map

𝑇 ∶ 𝐻2
𝑑 → ℱ2

𝑑 defined by

ℎ(𝑧) = ∑
n∈ℕ𝑑

0

ℎn
||𝑧n||2𝐻2

𝑑

𝑧n ↦ 𝐻(𝑥) ∶= ∑
n∈ℕ𝑑

0

ℎn( ∑
𝑤| 𝜆(𝑤)=n

𝑥𝑤) (1.3)

is an isometric embedding of 𝐻2
𝑑 into ℱ

2
𝑑 (𝑇 identifies 𝐻2

𝑑 withℋ
2
𝑑, see [130], Section 4). Also, if

𝑘𝑧(𝜆) =
1

1−⟨𝜆,𝑧⟩
denotes the kernel of𝐻2

𝑑,we set 𝐾𝑧 ∶= 𝑇𝑘𝑧 = ∑
n∈ℕ𝑑

0
𝑧n∑𝑤| 𝜆(𝑤)=n 𝑥

𝑤 ∈ ℋ2
𝑑, for

every 𝑧 ∈ 𝔹𝑑. For further details about the free Fock space and related non-commutative function

theory, see [88], [116], [117], [115], [130] and [122].

Now, consider an arbitrary normalized CP kernel 𝑘𝑥(𝑦) =
1

1−⟨ᵆ(𝑦),ᵆ(𝑥)⟩
, where 𝑢 ∶ 𝑋 → 𝔹𝑑 and

𝑑 ∈ ℕ ∪ {∞}. We can identify (see [7]) the Hilbert function spaceℋ𝑘 associated with 𝑘 with the

subspace

ℋ = closed linear span of {𝐾𝑧 ∶ 𝑧 ∈ ran 𝑢} ⊂ ℋ2
𝑑 ⊂ ℱ2

𝑑 .

Furthermore, it can be shown thatℋ is invariant under adjoints of multipliers of ℱ2
𝑑 and also the

map 𝑈𝑘𝑥 = 𝐾ᵆ(𝑥) extends to be a linear isometry 𝑈 ∶ ℋ𝑘 → ℱ2
𝑑 with range equal toℋ. Thus,

𝑈𝑈∗ = 𝑃ℋ and we have 𝑈∗ = 𝐶ᵆ, where 𝐶ᵆ𝐹(𝑥) = 𝐹(𝑢(𝑥)) for all 𝑥 ∈ 𝑋.

Denote by ℒℱ∞
𝑑 the algebra of all elements 𝐺 ∈ ℱ2

𝑑 such that the operator 𝐹 ↦ 𝐺𝐹 (multipli-

cation by 𝐺 from the left) is bounded on ℱ2
𝑑 . The algebra ℛℱ

∞
𝑑 of bounded right multiplication

operators is defined analogously. An element 𝐹 ∈ ℱ2
𝑑 will be called left-outer if {𝐺𝐹 ∶ 𝐺 ∈ ℒℱ∞

𝑑 }
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is dense in ℱ2
𝑑 . Similarly, 𝐹 will be called right-outer if {𝐹𝐺 ∶ 𝐺 ∈ ℛℱ∞

𝑑 } is dense in ℱ2
𝑑 . The

following is the content of Theorem 5.3 and Lemma 6.1 in [16].

Theorem 1.2.8. Supposeℋ𝑘 is a CP space and let 𝑈 ∶ ℋ𝑘 → ℱ2
𝑑 be its natural embedding into

ℱ2
𝑑 . If 𝑓 ∈ ℋ𝑘, the following are equivalent:

a) 𝑓 is free outer inℋ𝑘;

b) 𝑈𝑓 is left-outer in ℱ2
𝑑 ;

c) 𝑈𝑓 is right-outer in ℱ2
𝑑 ;

d) 𝑆−1(𝑈𝑓) is free outer in 𝐻2
𝑑, where 𝑆 ∶= 𝑃ℋ2

𝑑
𝑇 is the isometric identification (1.3) of𝐻2

𝑑 with

ℋ2
𝑑.

1.2.4 A note on normalization

We have already mentioned that Aleman, Hartz, McCarthy and Richter proved their results

for normalized CP kernels, i.e. kernels of the form (1.2) that also satisfy 𝛿 ≡ 1 and 𝑢(𝑧0) = 0 for

some point 𝑧0 ∈ 𝑋. These normalization assumptions have become the standard setting for research

into CP spaces, not, in general, due to necessity but due to the convenience they provide. Still, it

could be of interest to note that the subinner-free outer factorization continues to hold, without any

modifications, in the more general setting of an irreducible CP kernel (i.e. any kernel of the form

(1.2)).

First, assume 𝑘 is an irreducible CP kernel satisfying 𝛿 ≡ 1 and letℋ𝑘 denote the associated

function space. Fix an arbitrary 𝑧0 ∈ 𝑋 (not necessarily one with the property that 𝑢(𝑧0) = 0)

and put 𝜆0 = 𝑢(𝑧0) ∈ 𝔹𝑑. Let ℋ ⊂ ℋ2
𝑑 be a ∗-invariant subspace and choose 𝐹 ∈ ℋ ∖ {0}.

Our goal is to show that 𝐹 is right outer (equivalently, left outer) in ℱ2
𝑑 if and only if it satisfies

|𝐹(𝜆0)| = sup{|𝐺(𝜆0)| ∶ 𝐺 ∈ ℋ, 𝑃𝐹 = 𝑃𝐺}. In [16, Theorem 5.3], this is achieved (for 𝑧0 = 0) by

making use, among other things, of the fact that any 𝛷 ∈ ℱ∞
𝑑 satisfying |𝛷(0)| = ||𝛷||∞ must be

constant. This conclusion remains valid under the more general assumption that |𝛷(𝑧0)| = ||𝛷||∞.
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Indeed, we can look at the restriction 𝛷̃ = 𝛷|𝔹𝑑
∈ Mult(𝐻2

𝑑). Since

|𝛷(𝑧0)| = |𝛷̃(𝑧0)| ≤ ||𝛷̃||Mult(𝐻2
𝑑)
≤ ||𝛷||∞ = |𝛷(𝑧0)|,

[18, Lemma 2.2] implies that 𝛷̃ is constant. Thus, |𝛷(0)| = |𝛷̃(0)| = |𝛷̃(𝑧0)| = |𝛷(𝑧0)| = ||𝛷||∞,

which implies that 𝛷 is also constant. The rest of the proof of [16, Theorem 5.3] carries over

mutatis mutandis and gives us the desired result. Suppose now that 𝑓 ∈ ℋ𝑘 ∖ {0}. We can define

𝑓 to be ℋ𝑘-free outer if |𝑓(𝑧0)| = sup{|𝑔(𝑧0)| ∶ 𝑔 ∈ ℰ𝑓}. The proofs of Theorems 1.4-1.5, 5.4,

6.2 and Lemma 6.1 of [16] continue to hold if we adopt this (slightly) more general definition

of free outerness, thus giving us a (unique) subinner-free outer factorization for each element of

ℋ𝑘. Corollary 1.2.7 then tells us that our factorization will always be the same (up to unimodular

constants), regardless of the 𝑧0 we started with.

For the general case, assume 𝑘 is a kernel of the form (1.2). Put 𝑘′(𝑥, 𝑦) = 𝑘(𝑥,𝑦)

𝛿(𝑥)𝛿(𝑦)
. In view of

our observations in the previous paragraph, we obtain that Theorems 1.2.5, 1.2.8 continue to hold for

functions inℋ𝑘′. Now, we know that Mult(ℋ𝑘)=Mult(ℋ𝑘′), with equality of norms, and also that

the linear map 𝑈 ∶ ℋ𝑘 →ℋ𝑘′ defined as (𝑈𝑓)(𝑥) = 𝛿(𝑥)𝑓(𝑥) is a unitary (see [8, Section 2.6] for

details). These two facts imply that a multiplier isℋ𝑘-subinner if and only if it isℋ𝑘′-subinner and

also that a function 𝑓 inℋ𝑘 isℋ𝑘-free outer if and only if 𝛿𝑓 isℋ𝑘′-free outer. As an immediate

consequence, we obtain that Theorems 1.2.5 and 1.2.8 must also be valid in the setting ofℋ𝑘.

1.2.5 The spaceℋ2(𝐴𝑟)

We now record a few basic facts about the spaceℋ2(𝐴𝑟) that will be needed (see Chapter 2 for

the proofs). Let 𝐴𝑟 = {𝑟 < |𝑧| < 1} denote an annulus. ℋ2(𝐴𝑟) is defined as the Hilbert function

space on 𝐴𝑟 induced by the kernel

𝑘𝑟(𝜆, 𝜇) ∶=
1 − 𝑟2

(1 − 𝜆𝜇̄)(1 − 𝑟2/𝜆𝜇̄)
.

Letting ||.||ℋ2(𝐴𝑟) denote the corresponding norm, we obtain that

||𝑓||2ℋ2(𝐴𝑟)
=

−1

∑
−∞

𝑟2𝑛|𝑐𝑛|2 +
∞

∑
0
|𝑐𝑛|2,
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for every 𝑓 = ∑𝑐𝑛𝑧𝑛 ∈ ℋ2(𝐴𝑟).Also, every 𝜙 ∈ Mult(ℋ2(𝐴𝑟)) satisfies

||𝜙||∞ ≤ ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ √2||𝜙||∞,

hence Mult(ℋ2(𝐴𝑟)) is equal (but not isometric) to 𝐻∞(𝐴𝑟).

Now, putting

𝑢 ∶ 𝐴𝑟 → 𝔹2

𝑧 ↦ ( 𝑧
√𝑟2 + 1

, 𝑟
√𝑟2 + 1

1
𝑧),

and letting 𝑘2 denote the kernel of 𝐻2
2 , it can be easily checked that

𝑘𝑟(𝜆, 𝜇) = (1 − 𝑟2

1 + 𝑟2)𝑘2(𝑢(𝜆), 𝑢(𝜇)), ∀𝜆, 𝜇 ∈ 𝐴𝑟. (1.4)

So, ℋ2(𝐴𝑟) is a CP space and, even though 𝑘𝑟 is not normalized, dividing it by the constant

(1 − 𝑟2)/(1 + 𝑟2) gives us a kernel of the form (1.2) with 𝛿 ≡ 1. Now, it is easy to see that replacing

the norm of the base spaceℋ𝑘 by any constant multiple of it does not affect the properties of being

subinner or free outer. Hence, working with the original kernel 𝑘𝑟 does not make a difference as far

as subinner and free outer functions are concerned.

Finally, consider the unitary 𝑉 ∶ ℋ2(𝐴𝑟) → ℋ2(𝐴𝑟) defined as (𝑉𝑓)(𝑧) = 𝑓(𝑟/𝑧). Then,

𝐻2(𝔻0), which is the function space on 𝔻0 = {|𝑧| > 𝑟} induced by 1

1−(𝑟/𝑧)(𝑟/𝑤)
, will be the image of

𝐻2(𝔻) through 𝑉. The map 𝑉 will prove very useful when passing from𝐻2(𝔻)- to𝐻2(𝔻0)-versions

of our results.

1.2.6 Main Results

First, we record a helpful lemma; for multipliers ofℋ2(𝐴𝑟) that are analytic either on 𝔻 or on

𝔻0 = {𝑟 < |𝑧|}, the multiplier norm actually coincides with the supremum norm.

Lemma 1.2.9. i) If 𝑓 ∈ 𝐻2(𝔻), then

||𝑓||𝐻2(𝔻) = ||𝑓||ℋ2(𝐴𝑟).
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Similarly, if 𝑓 ∈ 𝐻2(𝔻0), then

||𝑓||𝐻2(𝔻0) = ||𝑓||ℋ2(𝐴𝑟).

ii) If either 𝜙 ∈ 𝐻∞(𝔻) or 𝜙 ∈ 𝐻∞(𝔻0), then

||𝜙||Mult(ℋ2(𝐴𝑟)) = ||𝜙||𝐻∞(𝐴𝑟).

Proof. Part i) is obvious so we only show part ii).

WLOG, suppose ||𝜙||𝐻∞(𝐴𝑟) ≤ 1. If 𝜙 ∈ Hol(𝔻), then ||𝜙||∞ ≤ 1 as a function on 𝔻 (by the

maximum modulus principle) and so 𝜙 is a contractive multiplier of 𝐻2(𝔻). By [113, Theorem

5.21], this implies that

(1 − 𝜙(𝜆)𝜙(𝜇)) 1
1 − 𝜆𝜇̄ ≥ 0 on 𝔻 × 𝔻

⟹ (1 − 𝜙(𝜆)𝜙(𝜇)) 1
1 − 𝜆𝜇̄ ≥ 0 on 𝐴𝑟 × 𝐴𝑟

⟹(1 − 𝜙(𝜆)𝜙(𝜇)) 1

(1 − 𝑟2

𝜆𝜇̄
)(1 − 𝜆𝜇̄)

≥ 0 on 𝐴𝑟 × 𝐴𝑟,

as the Schur product of two positive semi-definite kernels is positive semi-definite (notice that

1/(1 − 𝑟2/(𝜆𝜇̄)) is the kernel of the Hardy space on 𝔻0). Hence, we conclude that

(1 − 𝜙(𝜆)𝜙(𝜇))𝑘𝑟(𝜆, 𝜇) ≥ 0

⟹ ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ 1.

We have shown that ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ ||𝜙||𝐻∞(𝐴), which concludes our argument (the reverse

inequality ||𝜙||Mult(ℋ2(𝐴𝑟)) ≥ ||𝜙||𝐻∞(𝐴) is valid in every Hilbert function space) . For the case

where 𝜙 ∈ Hol(𝔻0), the proof proceeds in an analogous manner.

We proceed to show that the classical inner functions of the Hardy space on 𝔻 become subinner

functions when viewed as multipliers ofℋ2(𝐴𝑟).

Proposition 1.2.10. Suppose 𝑔 ∈ 𝐻∞(𝔻) is an 𝐻2(𝔻)-inner function. Then, 𝑔 is a subinner

multiplier ofℋ2(𝐴𝑟). An analogous result holds if 𝑔 ∈ 𝐻∞(𝔻0) and 𝑔 is 𝐻2(𝔻0)-inner2.
2i.e. there exists an𝐻2(𝔻)-inner function ℎ such that 𝑔(𝑧) = ℎ(𝑟/𝑧).
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Proof. We only consider the case where 𝑔 is 𝐻2(𝔻)-inner. By Lemma 1.2.9, we have

||𝑔||Mult(ℋ2(𝐴𝑟)) = ||𝑔||𝐻∞(𝐴𝑟) = ||𝑔||𝐻∞(𝔻) = 1.

Now, let ℎ ∈ 𝐻2(𝔻) be arbitrary. Then,

||𝑔ℎ||ℋ2(𝐴𝑟) = ||𝑔ℎ||𝐻2(𝔻) = ||ℎ||𝐻2(𝔻) = ||ℎ||ℋ2(𝐴𝑟).

Thus, 𝑔 is a norm-attaining multiplier ofℋ2(𝐴𝑟) with multiplier norm equal to 1, i.e. a subinner

multiplier.

Our next step will be to show that for functions in 𝐻2(𝔻) (similarly, for functions in 𝐻2(𝔻0)),

the property ofℋ2(𝐴𝑟)-free outerness coincides with outerness in the classical Hardy space sense.

To do this, we will be needing the following two lemmata.

Let Mult(𝐻2(𝔻),ℋ2(𝐴𝑟)) denote the set of functions 𝜙 ∶ 𝐴𝑟 → ℂ that multiply 𝐻2(𝔻) (or, more

precisely, the restrictions of 𝐻2(𝔻) functions to 𝐴𝑟) boundedly intoℋ2(𝐴𝑟). These multipliers turn

out to be equal precisely to all functions 𝜙 = ∑𝑐𝑛𝑧𝑛 ∈ Hol(𝐴𝑟) such that∑𝑛>0 𝑐𝑛𝑧
𝑛 ∈ 𝐻∞(𝔻)

and∑𝑛<0 𝑐𝑛𝑧
𝑛 ∈ 𝐻2(𝔻0).

Lemma 1.2.11.

Mult(𝐻2(𝔻),ℋ2(𝐴𝑟)) = {𝑓 + 𝑔 ∶ 𝑓 ∈ 𝐻2(𝔻0), 𝑔 ∈ 𝐻∞(𝔻)}.

Also,

||𝑓 + 𝑔||Mult(𝐻2(𝔻),ℋ2(𝐴𝑟)) ≤
||𝑓||𝐻2(𝔻0)

(1 − 𝑟2)
+ ||𝑔||𝐻∞(𝔻).

An analogous result holds for Mult(𝐻2(𝔻0),ℋ2(𝐴𝑟)).

Proof. (Note that there is a slight abuse of notation here, as we are identifying 𝐻2(𝔻) with the

Hilbert function space consisting of the restrictions of all 𝐻2(𝔻) functions to 𝐴𝑟. The kernel of that

space is, of course, the restriction of the Szegő kernel for 𝔻 to 𝐴𝑟 × 𝐴𝑟.)

Put𝑀 = Mult(𝐻2(𝔻),ℋ2(𝐴𝑟)). Since 1 ∈ 𝐻2(𝔻), we obtain𝑀 ⊂ ℋ2(𝐴𝑟). Now, let ℎ ∈ 𝐻2(𝔻0).

By [113, Theorem 3.11], we obtain

ℎ(𝜆)ℎ(𝜇) ≤ ||ℎ||𝐻2(𝔻0)𝑘𝐻2(𝔻0)(𝜆, 𝜇) in 𝔻0 × 𝔻0
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⇒ ℎ(𝜆)ℎ(𝜇) ≤ ||ℎ||𝐻2(𝔻0)𝑘𝐻2(𝔻0)(𝜆, 𝜇) in 𝐴𝑟 × 𝐴𝑟

⇒ ℎ(𝜆)ℎ(𝜇)𝑘𝐻2(𝔻)(𝜆, 𝜇) ≤ ||ℎ||𝐻2(𝔻0)𝑘𝐻2(𝔻0)(𝜆, 𝜇)𝑘𝐻2(𝔻)(𝜆, 𝜇) in 𝐴𝑟 × 𝐴𝑟

⇒ ℎ(𝜆)ℎ(𝜇)𝑘𝐻2(𝔻)(𝜆, 𝜇) ≤
||ℎ||𝐻2(𝔻0)

(1 − 𝑟2)
𝑘𝑟(𝜆, 𝜇) in 𝐴𝑟 × 𝐴𝑟.

By [113, Theorem 5.21], this last positivity condition implies that ℎ ∈ 𝑀 and also that ||ℎ||𝑀 ≤

||ℎ||𝐻2(𝔻0)/(1 − 𝑟2). This gives us 𝐻2(𝔻0) ⊂ 𝑀.

Now, consider 𝑔 ∈ 𝐻∞(𝔻). For every 𝑓 ∈ 𝐻2(𝔻), we have

||𝑔𝑓||ℋ2(𝐴𝑟) = ||𝑔𝑓||𝐻2(𝔻) ≤ ||𝑔||𝐻∞(𝔻)||𝑓||𝐻2(𝔻).

This shows that 𝑔 ∈ 𝑀 and also that ||𝑔||𝑀 = ||𝑔||𝐻∞(𝔻).We conclude that 𝐻2(𝔻0) + 𝐻∞(𝔻) ⊂ 𝑀.

Also, given ℎ ∈ 𝐻2(𝔻0) and 𝑔 ∈ 𝐻∞(𝔻), we obtain

||ℎ + 𝑔||𝑀 ≤
||ℎ||𝐻2(𝔻0)

(1 − 𝑟2)
+ ||𝑔||𝐻∞(𝔻).

For the converse, let 𝑓 ∈ 𝑀 ⊂ ℋ2(𝐴𝑟). Choose any function 𝑓1 ∈ 𝐻2(𝔻) with the property that

𝑓−𝑓1 ∈ 𝐻2(𝔻0).By our previous observations, we obtain 𝑓−𝑓1 ∈ 𝑀.Also, since 𝑓1 = 𝑓−(𝑓−𝑓1) ∈

𝑀 ∩ 𝐻2(𝔻) and 𝐻2(𝔻) is contained isometrically inℋ2(𝐴𝑟), we have 𝑓1 ∈ Mult(𝐻2(𝔻)) ⊂ 𝑀 and

also ||𝑓1||𝑀 = ||𝑓1||𝐻∞(𝔻). Thus, we obtain 𝑓 = (𝑓 − 𝑓1) + 𝑓1 ∈ 𝐻2(𝔻0) + 𝐻∞(𝔻) and so we must

have𝑀 = 𝐻2(𝔻0) + 𝐻∞(𝔻).

Now, we prove the 𝐻2(𝔻0)-version. Let 𝑓 ∈ 𝐻∞(𝔻0) and 𝑔 ∈ 𝐻2(𝔻). Then, we have

𝑉𝑓 ∈ 𝐻∞(𝔻) and 𝑉𝑔 ∈ 𝐻2(𝔻0) and so, for every ℎ ∈ 𝐻2(𝔻0), we can write

||(𝑓 + 𝑔)ℎ||ℋ2(𝐴𝑟) = ||(𝑉𝑓 + 𝑉𝑔)𝑉ℎ||ℋ2(𝐴𝑟)

≤ (||𝑉𝑔||𝐻2(𝔻0)/(1 − 𝑟2) + ||𝑉𝑓||𝐻∞(𝔻))||𝑉ℎ||𝐻2(𝔻)

= (||𝑔||𝐻2(𝔻)/(1 − 𝑟2) + ||𝑓||𝐻∞(𝔻0))||ℎ||𝐻2(𝔻0).

Thus, if 𝑀0 = Mult(𝐻2(𝔻0),ℋ2(𝐴𝑟)), we obtain ||𝑓 + 𝑔||𝑀0 ≤ ||𝑔||𝐻2(𝔻)/(1 − 𝑟2) + ||𝑓||𝐻∞(𝔻0).

This shows that 𝐻2(𝔻) + 𝐻∞(𝔻0) ⊂ 𝑀0.

Conversely, suppose𝜙 ∈ Mult(𝐻2(𝔻0),ℋ2(𝐴𝑟)). Then, it is easy to see that𝑉𝜙 ∈ Mult(𝐻2(𝔻),ℋ2(𝐴𝑟)),
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hence 𝑉𝜙 = 𝑓 + 𝑔, where 𝑓 ∈ 𝐻2(𝔻0) and 𝑔 ∈ 𝐻∞(𝔻). This implies that 𝜙 = 𝑉𝑓 + 𝑉𝑔 ∈

𝐻2(𝔻) + 𝐻∞(𝔻0) and our proof is complete.

Lemma 1.2.12. Let 𝑓, 𝑔 ∈ 𝐻2(𝔻) and suppose that

⟨𝜙𝑓, 𝑓⟩𝐻2(𝔻) = ⟨𝜙𝑔, 𝑔⟩𝐻2(𝔻), for all 𝜙 ∈ 𝐻∞(𝔻).

Then,

⟨𝜙𝑓, 𝑓⟩ℋ2(𝐴𝑟) = ⟨𝜙𝑔, 𝑔⟩ℋ2(𝐴𝑟), for all 𝜙 ∈ Mult(ℋ2(𝐴𝑟)).

Proof. Suppose 𝑓, 𝑔 satisfy the given assumptions and let 𝜙 ∈ 𝐻∞(𝐴𝑟) = Mult(ℋ2(𝐴𝑟)).Write

𝜙 = 𝜙1 + 𝜙2, where 𝜙1 ∈ 𝐻2(𝔻) and 𝜙2 = ∑𝑛=−1
−∞ 𝑎𝑛𝑧𝑛 ∈

1

𝑧
𝐻2(𝔻0). By the maximum modulus

principle, we obtain 𝜙1 ∈ 𝐻∞(𝔻), 𝜙2 ∈ 𝐻∞(𝔻0). Now, notice that

lim
𝑘→−∞

𝑛=−1

∑
𝑘

𝑎𝑛𝑧𝑛𝑓 = (
𝑛=−1

∑
−∞

𝑎𝑛𝑧𝑛)𝑓

in the ||.||ℋ2(𝐴𝑟) norm, as 𝐻
2(𝔻) ⊂ Mult(𝐻2(𝔻0),ℋ2(𝐴𝑟)), due to Lemma 1.2.11. We can write

⟨𝜙𝑓, 𝑓⟩ℋ2(𝐴𝑟) = ⟨𝜙1𝑓, 𝑓⟩ℋ2(𝐴𝑟) + ⟨𝜙2𝑓, 𝑓⟩ℋ2(𝐴𝑟),

where

⟨𝜙1𝑓, 𝑓⟩ℋ2(𝐴𝑟) = ⟨𝜙1𝑓, 𝑓⟩𝐻2(𝔻)

= ⟨𝜙1𝑔, 𝑔⟩𝐻2(𝔻) (by assumption)

= ⟨𝜙1𝑔, 𝑔⟩ℋ2(𝐴𝑟)

and also

⟨𝜙2𝑓, 𝑓⟩ℋ2(𝐴𝑟) = ⟨( lim
𝑘→−∞

𝑛=−1

∑
𝑘

𝑎𝑛𝑧𝑛)𝑓, 𝑓⟩
ℋ2(𝐴𝑟)

= lim
𝑘→−∞

𝑛=−1

∑
𝑘

𝑎𝑛⟨𝑧𝑛𝑓, 𝑓⟩ℋ2(𝐴𝑟)

= lim
𝑘→−∞

𝑛=−1

∑
𝑘

𝑎𝑛⟨𝑓, 𝑧−𝑛𝑓⟩ℋ2(𝐴𝑟),
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as 𝑓 ∈ 𝐻2(𝔻). Since 𝑓, 𝑧−𝑛𝑓 (where 𝑛 ≤ −1) are now both in 𝐻2(𝔻) , we obtain

⟨𝜙2𝑓, 𝑓⟩ℋ2(𝐴𝑟)] = lim
𝑘→−∞

𝑛=−1

∑
𝑘

𝑎𝑛⟨𝑓, 𝑧−𝑛𝑓⟩𝐻2(𝔻)

= lim
𝑘→−∞

𝑛=−1

∑
𝑘

𝑎𝑛⟨𝑔, 𝑧−𝑛𝑔⟩𝐻2(𝔻),

where the last equality is because of our initial assumptions. Working our way in the opposite

direction, we can then show that

lim
𝑘→−∞

𝑛=−1

∑
𝑘

𝑎𝑛⟨𝑔, 𝑧−𝑛𝑔⟩𝐻2(𝔻) = ⟨𝜙2𝑔, 𝑔⟩ℋ2(𝐴𝑟).

Hence,

⟨𝜙𝑓, 𝑓⟩ℋ2(𝐴𝑟) = ⟨𝜙1𝑔, 𝑔⟩ℋ2(𝐴𝑟) + ⟨𝜙2𝑔, 𝑔⟩ℋ2(𝐴𝑟) = ⟨𝜙𝑔, 𝑔⟩ℋ2(𝐴𝑟),

which concludes the proof.

We can now characterize those functions 𝑓 ∈ 𝐻2(𝔻) ⊂ ℋ2(𝐴𝑟) that areℋ2(𝐴𝑟)-free outer.

Theorem 1.2.13. Suppose 𝑓 ∈ 𝐻2(𝔻). Then, 𝑓 is 𝐻2(𝔻)-outer if and only if 𝑓 isℋ2(𝐴𝑟)-free outer.

An analogous result holds for 𝐻2(𝔻0)-outer functions.

Proof. Fix an arbitrary 𝑧0 ∈ 𝐴𝑟.

First, suppose that 𝑓 ∈ 𝐻2(𝔻) is not 𝐻2(𝔻)-outer and also let 𝑔 denote the 𝐻2(𝔻)-outer factor of 𝑓.

Since |𝑓| = |𝑔| on 𝜕𝔻, we obtain

⟨𝜙𝑓, 𝑓⟩𝐻2(𝔻) = ⟨𝜙𝑔, 𝑔⟩𝐻2(𝔻), for all 𝜙 ∈ 𝐻∞(𝔻),

and also |𝑔(𝑧0)| > |𝑓(𝑧0)|. But then, Lemma 1.2.12 tells us that

⟨𝜙𝑓, 𝑓⟩ℋ2(𝐴𝑟) = ⟨𝜙𝑔, 𝑔⟩ℋ2(𝐴𝑟), for all 𝜙 ∈ 𝐻∞(𝐴𝑟)

⇒ 𝑃𝑓 = 𝑃𝑔 inℋ2(𝐴𝑟).

Since |𝑔(𝑧0)| > |𝑓(𝑧0)|, Corollary 1.2.7 implies that 𝑓 is notℋ2(𝐴𝑟)-free outer.

Conversely, suppose that 𝑓 is 𝐻2(𝔻)-outer. Suppose also that 𝑓 is notℋ2(𝐴𝑟)-free outer. We will
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reach a contradiction.

Write 𝑓 = 𝑔ℎ for the subinner-free outer factorization of 𝑓 inℋ2(𝐴𝑟).We claim that ℎ ∉ 𝐻2(𝔻).

Indeed, if ℎ ∈ 𝐻2(𝔻) we can write

𝑃𝑓 = 𝑃ℎ inℋ2(𝐴𝑟) (as ℎ is the free outer factor of 𝑓)

⇒ ⟨𝜙𝑓, 𝑓⟩ℋ2(𝐴𝑟) = ⟨𝜙ℎ, ℎ⟩ℋ2(𝐴𝑟), for all 𝜙 ∈ 𝐻∞(𝐴𝑟)

⇒ ⟨𝜙𝑓, 𝑓⟩𝐻2(𝔻) = ⟨𝜙ℎ, ℎ⟩𝐻2(𝔻), for all 𝜙 ∈ 𝐻∞(𝔻)

⇒ 𝑃𝑓 = 𝑃ℎ in 𝐻2(𝔻)

⇒ |𝑓(𝑧)| ≥ |ℎ(𝑧)|, for all 𝑧 ∈ 𝔻,

as 𝑓 is 𝐻2(𝔻)-outer. But ℎ is the free outer factor of 𝑓 and 𝑓 is not ℋ2(𝐴𝑟)-free outer, so Corollary

1.2.7 implies that |ℎ(𝑧0)| > |𝑓(𝑧0)|, a contradiction.

Hence, ℎ ∉ 𝐻2(𝔻). This implies the existence of 𝑘 < 0 such that the term 𝑎𝑘𝑧𝑘 in the Laurent

expansion of ℎ is nonzero. Thus ||𝑧ℎ||ℋ2(𝐴𝑟) < ||ℎ||ℋ2(𝐴𝑟). But then, we obtain

||𝑓||ℋ2(𝐴𝑟) = ||𝑓||𝐻2(𝔻) = ||𝑧𝑓||𝐻2(𝔻)

= ||𝑧𝑓||ℋ2(𝐴𝑟) = ||𝑔(𝑧ℎ)||ℋ2(𝐴𝑟) ≤ ||𝑧ℎ||ℋ2(𝐴𝑟)

< ||ℎ||ℋ2(𝐴𝑟) = ||𝑓||ℋ2(𝐴𝑟),

a contradiction again. Thus, 𝑓 must beℋ2(𝐴𝑟)-free outer and our proof is complete.

For the 𝐻2(𝔻0)-version, note that 𝑓 is 𝐻2(𝔻0)-outer if and only if 𝑉𝑓 is 𝐻2(𝔻)-outer. By our

previous result, this is equivalent to 𝑉𝑓 (and hence 𝑓) beingℋ2(𝐴𝑟)-free outer.

We now show Theorem 1.2.2 from the introduction.

Proof of Theorem 1.2.2. Let 𝑓 ∈ 𝐻2(𝔻) and write 𝑓 = 𝜙ℎ for the classical inner-outer factorization

in 𝐻2(𝔻). By Theorem 1.2.13, ℎ isℋ2(𝐴𝑟)-free outer, while 𝜙 is subinner by Proposition 1.2.10.

Notice also that ||𝑓||ℋ2(𝐴𝑟) = ||ℎ||ℋ2(𝐴𝑟) and so 𝑓 = 𝜙ℎ coincides (up to multiplication by unimod-

ular constants) with the subinner-free outer factorization of 𝑓 inℋ2(𝐴𝑟). The 𝐻2(𝔻0)-version is

entirely analogous.
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We have proved that a function in ℋ2(𝐴𝑟) that is also analytic on the unit disk is ℋ2(𝐴𝑟)-

free outer if and only if it is 𝐻2(𝔻)-outer. Theorem 1.2.3 says that an analogous result holds for

ℋ2(𝐴𝑟)-subinner functions that are also analytic on𝔻. The key result used in the proof is a modified

subinner-free outer factorization for functions in spaces whose reproducing kernel has a CP factor.

Proof of Theorem 1.2.3. Suppose 𝜙 ∈ 𝐻∞(𝔻).

If 𝜙 is 𝐻2(𝔻)-inner, then it must also beℋ2(𝐴𝑟)-subinner, by Proposition 1.2.10.

Now, suppose that 𝜙 is ℋ2(𝐴𝑟)-subinner. Thus, ||𝜙||𝐻∞(𝔻) = 1 (by Lemma 1.2.9) and also

there exists a nonzero 𝑓 ∈ ℋ2(𝐴𝑟) such that

||𝜙𝑓||ℋ2(𝐴𝑟) = ||𝑓||ℋ2(𝐴𝑟).

Letting 𝑠 denote the classical Szegő kernel on𝔻, it is easy to see that 𝑘𝑟/𝑠 is positive semi-definite on

𝐴𝑟 × 𝐴𝑟. Hence, by [16, Theorem 1.10], we can find a (unique, up to multiplication by unimodular

constants) pair of nonzero functions 𝜓 ∈ Mult(𝐻2(𝔻),ℋ2(𝐴𝑟)) and ℎ ∈ 𝐻2(𝔻) such that

i) 𝑓 = 𝜓ℎ,

ii) ||ℎ||𝐻2(𝔻) = ||𝑓||ℋ2(𝐴𝑟),

iii) ℎ is 𝐻2(𝔻)-free outer,

iv) ||𝜓||Mult(𝐻2(𝔻),ℋ2(𝐴𝑟)) ≤ 1.

Since 𝜙ℎ ∈ 𝐻2(𝔻), we can write

||𝑓||ℋ2(𝐴𝑟) = ||𝜙𝑓||ℋ2(𝐴𝑟) = ||𝜙𝜓ℎ||ℋ2(𝐴𝑟) = ||𝜓(𝜙ℎ)||ℋ2(𝐴𝑟)

≤ ||𝜙ℎ||𝐻2(𝔻) (by item (iv))

≤ ||ℎ||𝐻2(𝔻) (since ||𝜙||𝐻∞(𝔻) = 1)

= ||𝑓||ℋ2(𝐴𝑟) (by item (ii))

Thus, we must have ||𝜙ℎ||𝐻2(𝔻) = ||ℎ||𝐻2(𝔻), which implies that 𝜙 is 𝐻2(𝔻)-inner.

For the 𝐻2(𝔻0)-version, note that 𝑓 is 𝐻2(𝔻0)-inner if and only if 𝑉𝑓 is 𝐻2(𝔻)-inner.
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We now combine the embedding (1.4) ofℋ2(𝐴𝑟) into 𝐻2
2 with Theorem 1.2.2 to obtain new

examples of free outer functions in 𝐻2
2 .

Corollary 1.2.14. Let 𝑓 = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 be an 𝐻2(𝔻)-outer function. Then, for every 𝑟 ∈ (0, 1), the

function 𝐹 ∈ 𝐻2
2 uniquely defined by

⟨𝐹, 𝑧𝑖1𝑧
𝑗
2⟩𝐻2

2
= 1 − 𝑟2

1 + 𝑟2
𝑟𝑗

(√𝑟2 + 1)𝑖+𝑗
𝑎𝑖−𝑗, (for all 𝑖, 𝑗 ≥ 0)

is 𝐻2
2-free outer (put 𝑎𝑘 = 0 for negative 𝑘). Hence, if 𝑇 ∶ 𝐻2

𝑑 → ℱ2
𝑑 denotes the natural isometric

embedding of 𝐻2
𝑑 into ℱ

2
𝑑 , 𝑇(𝐹) is both left- and right-outer in ℱ

2
𝑑 . An analogous result holds for

𝐻2(𝔻0)-outer functions.

Proof. We only show the𝐻2(𝔻) version. Suppose 𝑓 = ∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 is𝐻2(𝔻)-outer. By our previous

results, 𝑓 will beℋ2(𝐴𝑟)-free outer. Consider the rescaled kernel defined on 𝐴𝑟 × 𝐴𝑟 by

𝑘′𝑟(𝜆, 𝜇) ∶=
1 + 𝑟2

1 − 𝑟2𝑘𝑟(𝜆, 𝜇) =
1 + 𝑟2

(1 − 𝜆𝜇)(1 − 𝑟2/𝜆𝜇)
= 𝑘2(𝑢(𝜆), 𝑢(𝜇)), (1.5)

where 𝑘2 is the kernel of𝐻2
2 . 𝑘′𝑟 is now a normalized CNPkernel. It induces the holomorphic function

spaceℋ𝑘′𝑟 on𝐴𝑟, the norm of which is simply the norm ofℋ2(𝐴𝑟)multiplied by√(1 − 𝑟2)/(1 + 𝑟2).

We easily see that 𝑓 will beℋ𝑘′-free outer as well.

Now, recall the isometric identification 𝑆 = 𝑃ℋ2
𝑑
𝑇 (see (1.3)) of 𝐻2

𝑑 with the symmetric Fock space

ℋ2
𝑑. By Theorem 1.2.8, we obtain that 𝐹 ∶= 𝑆−1𝑈𝑓 is 𝐻2

2-free outer, where 𝑈 ∶ ℋ𝑘′ → ℱ2
2

denotes the embedding ofℋ𝑘′ intoℋ2
2 induced by (1.5). This function satisfies (for all 𝑖, 𝑗 ≥ 0):

⟨𝐹, 𝑧𝑖1𝑧
𝑗
2⟩𝐻2

2
= ⟨𝐹, 𝑆−1𝑆(𝑧𝑖1𝑧

𝑗
2)⟩𝐻2

2

= ⟨𝑓,𝑈∗𝑆(𝑧𝑖1𝑧
𝑗
2)⟩ℋ𝑘′

= ⟨𝑓, ( 𝑧
√𝑟2 + 1

)
𝑖

( 𝑟
√𝑟2 + 1

1
𝑧)

𝑗

⟩
ℋ𝑘′

= 1 − 𝑟2

1 + 𝑟2⟨𝑓,
𝑟𝑗

(√𝑟2 + 1)𝑖+𝑗
𝑧𝑖−𝑗⟩

ℋ2(𝐴𝑟)
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= 1 − 𝑟2

1 + 𝑟2
𝑟𝑗

(√𝑟2 + 1)𝑖+𝑗
𝑎𝑖−𝑗,

for any 𝑟 ∈ (0, 1), as desired (for negative 𝑘, interpret 𝑎𝑘 as being zero). The rest of the Corollary

follows immediately from Theorem 1.2.8.

Example. Consider the function 𝑓(𝑧) = 𝑧 − 𝜆. This function is

• ℋ2(𝐴𝑟)-subinner if and only if 𝜆 = 0 (by Theorem 1.2.3);

• ℋ2(𝐴𝑟)-free outer, if |𝜆| ≥ 1 (by Theorem 1.2.13);

• notℋ2(𝐴𝑟)-cyclic (and hence not ℋ2(𝐴𝑟)-free outer), if 𝑟 < |𝜆| < 1;

• ℋ2(𝐴𝑟)-cyclic but not ℋ2(𝐴𝑟)-free outer, if |𝜆| ≤ 𝑟 (by Theorem 1.2.13).

To conclude, we have a complete characterization of subinner and free outer functions in

ℋ2(𝐴𝑟) ∩Hol(𝔻). Of course, it would be even more interesting if we were able to describe generic

subinner and/or free outer functions inℋ2(𝐴𝑟).We pose this as a question.

Question 1.2.15. Let 𝑓 ∈ ℋ2(𝐴𝑟). What is the subinner-free outer factorization of 𝑓?
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1.3 Interpolating Sequences for Pairs of Spaces

1.3.1 Background

Letℋ denote a reproducing kernel Hilbert space on a nonempty set 𝑋. Let Mult(ℋ) denote

the multiplier algebra ofℋ, that is the set of all functions 𝜙 on 𝑋 that multiplyℋ into itself. A

sequence {𝜆𝑖} ⊂ 𝑋 is called an interpolating sequence for Mult(ℋ) ((IM) for short) if, whenever

{𝑤𝑖} ⊂ ℓ∞, there exists a multiplier 𝜙 such that 𝜙(𝜆𝑖) = 𝑤𝑖 for all 𝑖. Consider also the following

weighted restriction operator associated to {𝜆𝑖} ⊂ 𝑋

𝑇 ∶ 𝑓 ↦ (
𝑓(𝜆𝑖)
||𝑘𝜆𝑖||

),

which mapsℋ into the space of all complex sequences. {𝜆𝑖} is called an interpolating sequence for

ℋ ((IH) for short) if 𝑇(ℋ) = ℓ2. In general, the set of all Mult(ℋ)-interpolating sequences will be

a strict subset of the set of allℋ-interpolating sequences. However, these two classes turn out to

coincide in many well-studied reproducing kernel Hilbert spaces. In particular, a class of spaces

that share this property is the class of all complete Pick spaces.

Interpolating sequences are often characterized by appropriate separation and Carleson measure

conditions. Ifℋ𝑘 is a reproducing kernel Hilbert space with kernel 𝑘, then

𝑑𝑘(𝑧, 𝑤) = √
1 −

|⟨𝑘𝑧, 𝑘𝑤⟩|2
||𝑘𝑧||2||𝑘𝑤||2

, 𝑧, 𝑤 ∈ 𝑋,

i.e. the distance from 𝑘𝑧/||𝑘𝑧|| to the space spanned by 𝑘𝑤, defines a pseudometric on 𝑋 (see [8,

Lemma 9.9]). Actually, 𝑑𝑘 is a metric on 𝑋 if and only if no two kernel functions 𝑘𝑧, 𝑘𝑤 (with

𝑧 ≠ 𝑤) are linearly dependent. In general, not much is known about 𝑑𝑘 and many natural questions

remain open (see [21]). In the setting of the Hardy space, 𝑑𝑘 is precisely the pseudohyperbolic

metric on the unit disk. The sequence {𝜆𝑖} ⊂ 𝑋 is said to be weakly separated by 𝑘 if there exists

𝜖 > 0 such that

𝑑𝑘(𝜆𝑖, 𝜆𝑗) ≥ 𝜖, for all 𝑖 ≠ 𝑗. (WS)
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We also say that {𝜆𝑖} satisfies the Carleson measure condition forℋ𝑘 if 𝜇 = ∑∞
𝑖=1

1

||𝑘𝜆𝑖||
2
𝛿𝜆𝑖 is a

Carleson measure for the Hilbert function spaceℋ𝑘. This is equivalent to the existence of 𝐶 > 0

such that

∫|𝑓|2 𝑑𝜇 =
∞

∑
𝑖=1

|𝑓(𝜆𝑖)|2

||𝑘𝜆𝑖||2
≤ 𝐶||𝑓||2ℋ𝑘

, ∀𝑓 ∈ ℋ𝑘. (CM)

Carleson [45] and Shapiro-Shields [131] proved that (IM), (IH) and (CM)+(WS) all coincide in

the setting of the Hardy space on 𝔻. Bishop [36] and Marshall-Sundberg [93] showed that this is

still the case if the Hardy space is replaced by the Dirichlet space on 𝔻.

As already stated, (IH) and (IM) continue to be equivalent in any complete Pick space. Also,

it is not hard to see that the implication (IH)⇒ (CM)+(WS) is valid in every reproducing kernel

Hilbert space. The question whether the converse always holds true in a complete Pick space (first

formulated by Agler-McCarthy in [8, Question 9.57] and by Seip in [128, Conjecture 1, p. 33])

remained open for more than ten years. It was finally given an affirmative answer byAleman, Hartz,

McCarthy and Richter in the breakthrough paper [17], as a consequence of the positive solution

of the Kadison-Singer problem [92]. An alternative proof, using the Column-Row property for

complete Pick spaces, can be found in [79]. See also [37] for partial progress regarding this problem

prior to [17].

We will be concerned with the concept of interpolating sequences for multipliers between spaces,

which we now define.

Let 𝑘, ℓ be two reproducing kernels on a set 𝑋 such that 𝑘𝑧, ℓ𝑧 ≠ 0 for all 𝑧 ∈ 𝑋. We will denote

the corresponding reproducing kernel Hilbert spaces byℋ𝑘 andℋℓ. If 𝜙 ∈ Mult(ℋ𝑘,ℋℓ), then

𝜙 ⋅ 𝑘𝑧 ∈ ℋℓ and so the function 𝜙 satisfies a growth estimate:

|𝜙(𝑧)| =
|𝜙(𝑧)𝑘𝑧(𝑧)|
||𝑘𝑧||2

=
⟨𝜙𝑘𝑧, ℓ𝑧⟩
||𝑘𝑧||2

≤ ||𝜙||Mult(ℋ𝑘,ℋℓ)
||ℓ𝑧||
||𝑘𝑧||

, ∀𝑧 ∈ 𝑋, (1.6)

where |𝜙||Mult(ℋ𝑘,ℋℓ) denotes the norm of the multiplication operator𝑀𝜙 ∶ ℋ𝑘 →ℋℓ. A sequence

{𝜆𝑖} ⊂ 𝑋 will be called an interpolating sequence for Mult(ℋ𝑘,ℋℓ) if, whenever {𝑤𝑖} ⊂ ℓ∞, there

exists a multiplier 𝜙 ∈ Mult(ℋ𝑘,ℋℓ) such that 𝜙(𝜆𝑖) = 𝑤𝑖
||ℓ𝜆𝑖||

||𝑘𝜆𝑖||
for all 𝑖.
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Aleman, Hartz, McCarthy and Richter investigated interpolating sequences for pairs of spaces

in [17]. For an arbitrary pair (𝑘, ℓ), it can be shown that Mult(ℋ𝑘,ℋℓ)-interpolating sequences

satisfy the Carleson measure condition (CM) forℋ𝑘 and are weakly separated by ℓ. One does not

expect these two conditions to also be sufficient in general. But what if, in addition, we assume 𝑘 to

be a complete Pick factor of ℓ? This is the case, for example, wheneverℋ𝑘 is the Hardy space on

𝔻 and the operator𝑀𝑧 of multiplication by the coordinate function defines a contraction operator

onℋℓ.

Question 1.3.1 (Aleman, Hartz, McCarthy and Richter [17]). Let 𝑠 be a normalized complete

Pick kernel on 𝑋 and let ℓ = 𝑔𝑠, where 𝑔 is a kernel on 𝑋. Is it true that a sequence {𝜆𝑖} ⊂ 𝑋 is

interpolating for Mult(ℋ𝑠,ℋℓ) if and only if it satisfies the Carleson measure condition forℋ𝑠 and

is weakly separated by ℓ?

Aleman, Hartz, McCarthy and Richter were able to give a positive answer [17, Theorem 1.3] to

Question 1.3.1 under the extra assumption that ℓ is a power of a complete Pick kernel (notice that,

by [8, Remark 8.10] and the Schur product theorem, the expression 𝑠𝑡𝑤(𝑧) defines a reproducing

kernel whenever 𝑠 is a normalized complete Pick kernel and 𝑡 > 0).

Theorem 1.3.2 (Aleman, Hartz, McCarthy and Richter [17]). Let 𝑠1, 𝑠2 be normalized complete Pick

kernels on 𝑋 such that 𝑠2/𝑠1 is positive semi-definite, and let 𝑡 ≥ 1. Then, a sequence is interpolating

for Mult(ℋ𝑠1,ℋ𝑠𝑡2
) if and only if it satisfies the Carleson measure condition forℋ𝑠1 and is weakly

separated by 𝑠𝑡2 (equivalently, by 𝑠2).

Note that, for 𝑠1 = 𝑠2 = 𝑠 and 𝑡 = 1, their result recovers the characterization of Mult(ℋ𝑠)-

interpolating sequences in the setting of the complete Pick spaceℋ𝑠.

In subsection 1.3.3, we provide a complete characterization of Mult(ℋ𝑠,ℋℓ)-interpolating

sequences, thus extending Theorem 1.3.2. Surprisingly, the conditions of Question 1.3.1 turn out

not to be sufficient, in general, for Mult(ℋ𝑠,ℋℓ)-interpolation. In particular, a stronger notion of

weak separation is required.
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Definition 1.3.3. Suppose 𝑘 is a reproducing kernel on a nonempty set 𝑋 and {𝜆𝑖} ⊂ 𝑋. For any

𝑛 ≥ 2, we say that {𝜆𝑖} is 𝑛-weakly separated by 𝑘 if there exists 𝜖 > 0 such that for every 𝑛-point

subset {𝜇1,… , 𝜇𝑛} ⊂ {𝜆𝑖} we have

dist(
𝑘𝜇1
||𝑘𝜇1||

, span{
𝑘𝜇2
||𝑘𝜇2||

,… ,
𝑘𝜇𝑛
||𝑘𝜇𝑛||

}) ≥ 𝜖.

Notice that 2-weak separation by 𝑘 coincides with weak separation by 𝑘.

We can now state our first result.

Theorem 1.3.4. Suppose 𝑠 is a normalized complete Pick kernel and ℓ = 𝑔𝑠 for some (positive

semi-definite) kernel 𝑔. Then, a sequence {𝜆𝑖} ⊂ 𝑋 is interpolating for Mult(ℋ𝑠,ℋℓ) if and only if

it satisfies the Carleson measure condition forℋ𝑠 and is 𝑛-weakly separated by ℓ, for every 𝑛 ≥ 2.

Passing to 𝑛-weak separation is a necessity and not merely an artifact of the proof of Theorem

1.3.4, as the following result shows.

Theorem 1.3.5. There exists a kernel ℓ with a normalized complete Pick factor 𝑠 and the following

property:

For every 𝑛 ≥ 2, there exists a sequence {𝜆𝑖} ⊂ 𝑋 that satisfies the Carleson measure condition for

ℋ𝑠 and is 𝑛-weakly separated, but not (𝑛+1)-weakly separated by ℓ (and hence, not Mult(ℋ𝑠,ℋℓ)-

interpolating).

Thus, the conditions stated in Question 1.3.1 are not, in general, sufficient. A natural line of

inquiry then emerges: which conditions do we need to impose on a pair (𝑠, ℓ) for Question 1.3.1

to have a positive answer? We investigate this in subsection 1.3.5. In particular, Theorem 1.3.21

tells us that, at least for “reasonable” pairs (𝑠, ℓ), the issue lies solely with the possible existence

of weakly separated sequences that are not 𝑛-weakly separated by ℓ (for some 𝑛 ≥ 3). In other

words, the only obstruction to Question 1.3.1 having a positive answer is that ℓ might not possess

the following (rather peculiar) property: for any fixed 𝑛 ≥ 2, a kernel ̂ℓ𝑧 can be “close” to the span

of 𝑛 other kernels ̂ℓ𝑤1, ̂ℓ𝑤2,… , ̂ℓ𝑤𝑛 if and only if it is “close” to one of them. This implies, perhaps
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surprisingly, that the answer to Question 1.3.1 is a matter that depends entirely (at least for pairs

satisfying the hypotheses of Theorem 1.3.21) on the kernel ℓ; the specific nature of the complete

Pick factor 𝑠 turns out to be irrelevant here. Kernels for which weak separation of a sequence is

always equivalent to 𝑛-weak separation (for every 𝑛) will be said to have the automatic separation

property (also called AS property for short).

The question then becomes: which kernels have the automatic separation property? This is

explored in subsections 1.3.6-1.3.7. A first class of examples is furnished by kernels satisfying a

stronger property, the multiplier separation property. These are kernels ℓ such that weak separation

by ℓ is always equivalent to weak separation by Mult(ℋℓ), the latter condition being equivalent to

the existence of 𝜖 > 0 such that for any two points 𝜆𝑖 ≠ 𝜆𝑗, we can find 𝜙𝑖𝑗 ∈ Mult(ℋℓ) of norm at

most 1 satisfying 𝜙𝑖𝑗(𝜆𝑖) = 𝜖 and 𝜙𝑖𝑗(𝜆𝑗) = 0. Examples (to be found in subsection 1.3.6) include

products of powers of 2-point Pick kernels (Example 1.3.6) and Hardy spaces on finitely-connected

planar domains (Example 1.3.6). In subsection 1.3.7, we give a general criterion for the AS property.

The idea here (see Theorem 1.3.35 for a precise statement) is that a kernel ℓ has the AS property

if and only if any weakly separated finite union of “sufficiently sparse” sequences forms anℋℓ-

interpolating sequence. As a consequence, we discover that an even larger number of well-studied

spaces possess AS kernels. These include “large” weighted Bergman spaces (Example 1.3.7) and

weighted Bargmann-Fock spaces (Example 1.3.7). Subsection 1.3.7 culminates in Theorem 1.3.39,

which describes a large class of pairs (𝑠, ℓ) for which Question 1.3.1 has a positive answer (this

includes all pairs (𝑠, ℓ) such that ℓ is one of the kernels from the previous examples and 𝑠 is a

complete Pick factor of ℓ).

Finally, it should be noted that the pair (𝑠, ℓ) constructed in the proof of Theorem 1.3.5, while

offering a counterexample to Question 1.3.1, is not a natural setting for the solution of interpolation

problems. One might then wonder whether imposing a few weak regularity conditions (like the ones

in the statement of Theorem 1.3.35) on (𝑠, ℓ) would always force the pair to behave according to

the manner predicted by Question 1.3.1. This doesn’t seem to be the case. In particular, subsection
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1.3.8 contains the construction of a “nice” holomorphic pair (𝑠, ℓ) on the bidisk which provides us

with a more natural counterexample to Question 1.3.1 (however, that construction is not sufficient

to establish Theorem 1.3.5 in its entirety).

1.3.2 Preliminaries

Suppose 𝑘, ℓ are reproducing kernels on 𝑋. Then, Mult(ℋ𝑘,ℋℓ) is the collection of functions

𝜙 ∶ 𝑋 → ℂ such that (𝑀𝜙𝑓)(𝑧) = 𝜙(𝑧)𝑓(𝑧) defines a bounded operator 𝑀𝜙 ∶ ℋ𝑘 → ℋℓ . It is

easy to see that for 𝜙 ∈ Mult(ℋ𝑘,ℋℓ) one has

𝑀∗
𝜙ℓ𝑤 = 𝜙(𝑤)𝑘𝑤,

for all 𝑤 ∈ 𝑋. Moreover, the multipliers 𝜙 with ||𝜙|| ≤ 𝑀 are characterized (see [113, Theorem

5.21]) by the positivity of

𝑀2ℓ𝑤(𝑧) − 𝜙(𝑧)𝜙(𝑤)𝑘𝑤(𝑧). (1.7)

We say that the pair (𝑘, ℓ) has the Pick property if, for every finite sequence of distinct points

𝜆1,… , 𝜆𝑁 ∈ 𝑋 and every sequence 𝑤1,… ,𝑤𝑁 ∈ ℂ, positivity of the matrix

[ℓ𝜆𝑖(𝜆𝑗) − 𝑤𝑗𝑤𝑖𝑘𝜆𝑖(𝜆𝑗)]
𝑁
𝑖,𝑗=1

(1.8)

implies the existence of a multiplier 𝜙 ∈ Mult(ℋ𝑘,ℋℓ) of norm at most 1 that satisfies

𝜙(𝜆𝑖) = 𝑤𝑖, for all 1 ≤ 𝑖 ≤ 𝑁.

Note that, as observed in [17, Section 4], if the pair (𝑘, ℓ) has the Pick property, then one can solve

Pick problems with infinitely many points.

Now, assume that 𝑠 is an irreducible complete Pick kernel normalized at some point, hence

𝑠𝑤(𝑧) =
1

1 − ⟨𝑏(𝑧), 𝑏(𝑤)⟩
,

where 𝑏 ∶ 𝑋 → 𝔹𝑑. Assume also that ℓ is another kernel on 𝑋 such that ℓ/𝑠 is positive semi-definite

(denoted by ℓ/𝑠 >> 0). Simple examples of such kernels are given by ℓ = 𝑠𝑡, 𝑡 ≥ 1. Note that the
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positivity condition for ℓ/𝑠 is satisfied if and only if 𝑏 ∈ Mult(ℓ⊗ℂ𝑑, ℓ)with ||𝑀𝑏|| ≤ 1 (if 𝑑 = ∞,

ℂ𝑑 is treated as ℓ2), see [15, Lemma 2.2] for a proof. In recent years, kernels with a complete Pick

factor have been investigated in regard to invariant subspaces [54], factorization theorems [15], [16]

and the Column-Row property [79, Section 3.8].

The following result is very useful in the context of Mult(ℋ𝑠,ℋℓ)-interpolating sequences.

It appears as Proposition 4.4 in [17], where it is proved as an application of Leech’s theorem [8,

Theorem 8.57].

Theorem 1.3.6. Suppose ℓ, 𝑠 are kernels on 𝑋 such that 𝑠 has the complete Pick property and

ℓ/𝑠 >> 0. Then, the pair (𝑠, ℓ) has the Pick property.

An important consequence of Theorem 1.3.6 is:

Theorem 1.3.7 (Aleman, Hartz, McCarthy and Richter [17]). Suppose ℓ, 𝑠 are kernels on 𝑋 such

that 𝑠 is a normalized complete Pick kernel and ℓ/𝑠 >> 0.

(a) A sequence is interpolating for Mult(ℋ𝑠,ℋℓ) if and only if it satisfies the Carleson measure

condition (CM) forℋ𝑠 and is interpolating forℋℓ.

(b) If a sequence is weakly separated by 𝑠, then it is interpolating for Mult(ℋ𝑠,ℋℓ) if and only

if it is interpolating for Mult(ℋ𝑠).

Note that, in general, a Mult(ℋ𝑠,ℋℓ)-interpolating sequence needn’t be weakly separated by 𝑠

([17, Example 4.13]).

Letℋ𝑘 be a reproducing kernel Hilbert space on a set 𝑋, with kernel 𝑘. We write ̂𝑘𝑧 = 𝑘𝑧/||𝑘𝑧||

for the normalized kernel function at 𝑧. Let {𝜆𝑖} be a sequence of distinct points in 𝑋. The Grammian,

or Gram matrix, associated with the sequence is the (infinite) matrix 𝐺(𝑘) = [𝐺𝑖,𝑗], where

𝐺𝑖,𝑗 = ⟨ ̂𝑘𝜆𝑖, ̂𝑘𝜆𝑗⟩ =
𝑘(𝜆𝑗, 𝜆𝑖)

√𝑘(𝜆𝑗, 𝜆𝑗)𝑘(𝜆𝑖, 𝜆𝑖)
.

We say that the sequence {𝜆𝑖} ⊂ 𝑋 has a bounded Grammian (BG) if the Gram matrix, thought of

as an operator on ℓ2, is bounded; we shall say that it is bounded below (BB) if the Gram matrix is
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bounded below on ℓ2. A consequence of Carleson’s characterization [45] is that if the Grammian

of a sequence for the Szegő kernel 𝑠𝑤(𝑧) =
1

1−𝑧𝑤
is bounded below, then it is bounded above (see

e.g. [8, Chapter 9]). This is no longer true in the Dirichlet space; see [36]. Sequences satisfying

(BB) have also been called simply interpolating and have been studied in [22], [48] and [49] in the

setting of the Dirichlet space.

The following lemma is well-known (see [8, Chapter 9] for a proof).

Lemma 1.3.8.

(a) The Grammian is bounded (BG) if and only if the sequence satisfies the Carleson measure

condition (CM) forℋ𝑘.

(b) The following three conditions are equivalent:

(i) the Grammian is bounded and bounded below (BG)+(BB),

(ii) the functions ̂𝑘𝜆𝑖 form a Riesz sequence, i.e. there exist 𝑐1, 𝑐2 > 0 such that for all

scalars 𝑎𝑖,

𝑐1∑
𝑖
|𝑎𝑖|2 ≤ ||||∑

𝑖
𝑎𝑖 ̂𝑘𝜆𝑖||||

2 ≤ 𝑐2∑
𝑖
|𝑎𝑖|2,

(iii) the sequence is interpolating forℋ𝑘 (IH).

We will also be making crucial use of the following result, which is part of [8, Theorem 9.46].

We use {𝑒𝑖} to denote the standard orthonormal basis for ℓ2.

Theorem 1.3.9. Let 𝑘 be an irreducible complete Pick kernel on 𝑋, let {𝜆𝑖} ⊂ 𝑋, and let 𝐺 denote

the Grammian associated with {𝜆𝑖}. Then, 𝐺 is bounded if and only if there exists is a multiplier
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𝛹 ∈ Mult(𝐻𝑠, 𝐻𝑠 ⊗ ℓ2) such that

𝛹(𝜆𝑖) = 𝑒𝑖 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗

⋮

∗

1

∗

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

for every 𝑖.

As noted in [17], a more restrictive definition of irreducibility is used in the statement given in

[8], however our more relaxed definition suffices for the proof to go through.

Finally, we record a basic Hilbert space lemma (as seen in [131, Section I]) which will be used

repeatedly throughout the paper, often without special mention.

Lemma 1.3.10. Supposeℋ is a Hilbert space and 𝑣0, 𝑣1,… , 𝑣𝑛 ∈ ℋ. Let 𝑑 denote the distance

from 𝑣0 to the subspace spanned by 𝑣1,… , 𝑣𝑛. If 𝑣1,… , 𝑣𝑛 are also linearly independent, then

𝑑2 =
det[⟨𝑣𝑖, 𝑣𝑗⟩]0≤𝑖,𝑗≤𝑛
det[⟨𝑣𝑖, 𝑣𝑗⟩]1≤𝑖,𝑗≤𝑛

.

1.3.3 ACharacterization

Suppose 𝑠 is a normalized (irreducible) complete Pick kernel defined on a set 𝑋. Suppose also

that ℓ is another kernel on 𝑋, satisfying

ℓ(𝑧, 𝑤) = 𝑠(𝑧, 𝑤)𝑔(𝑧, 𝑤), 𝑧, 𝑤 ∈ 𝑋,

where 𝑔 is a kernel. Let {𝜆𝑖} ⊂ 𝑋 and 𝑛 ≥ 2. Recall that {𝜆𝑖} is 𝑛-weakly separated by ℓ if there

exists 𝜖 > 0 such that for every 𝑛-point subset {𝜇1,… , 𝜇𝑛} ⊂ {𝜆𝑖} we have

dist( ̂ℓ𝜇1, span{ ̂ℓ𝜇2,… , ̂ℓ𝜇𝑛}) ≥ 𝜖.
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Similarly, we say that {𝜆𝑖} is strongly separated by ℓ if there exists 𝜖 > 0 such that for every 𝑖 ∈ ℕ

we have

dist( ̂ℓ𝜆𝑖, span𝑗≠𝑖{ ̂ℓ𝜆𝑗}) ≥ 𝜖.

What is the difference between 𝑛-weak separation for all 𝑛 and strong separation? The former

condition allows the use of a different 𝜖 for each 𝑛, while the latter asks for the use of a single 𝜖 for

every 𝑛.

Now, the fact that the pair (𝑠, ℓ) satisfies the Pick property allows us to recast weak and strong

separation by ℓ in terms of separation by elements of Mult(ℋ𝑠,ℋℓ).

Lemma 1.3.11. Suppose 𝑠 is a normalized complete Pick factor of a kernel ℓ on 𝑋. Also, let {𝜆𝑖} ⊂ 𝑋

and 𝑛 ≥ 2.

(a) {𝜆𝑖} is 𝑛-weakly separated by ℓ if and only if there exists 𝜖 > 0 such that for every 𝑛-point

subset {𝜇1, 𝜇2,… , 𝜇𝑛} of {𝜆𝑖} there exists a multiplier 𝜙 ∈ Mult(ℋ𝑠,ℋℓ) of norm at most 1

with 𝜙(𝜇1) = 𝜖
||ℓ𝜇1||

||𝑠𝜇1||
and 𝜙(𝜇𝑗) = 0, for 𝑗 = 2, 3,… , 𝑛.

(b) {𝜆𝑖} is strongly separated by ℓ if and only if there exists 𝜖 > 0 such that for every 𝑖 ∈ ℕ there

exists a multiplier 𝜙 ∈ Mult(ℋ𝑠,ℋℓ) of norm at most 1 with 𝜙(𝜆𝑖) = 𝜖
||ℓ𝜆𝑖||

||𝑠𝜆𝑖||
and 𝜙(𝜆𝑗) = 0

for every 𝑗 ≠ 𝑖.

Proof. First, we prove (a). Let 𝑛 ≥ 2 and suppose {𝜆𝑖} is 𝑛-weakly separated by ℓ. We can then

find 𝜖 > 0 such that for every 𝑛-point subset {𝜇1,… , 𝜇𝑛} ⊂ {𝜆𝑖} we have

𝑑 = dist( ̂ℓ𝜇1, span{ ̂ℓ𝜇2,… , ̂ℓ𝜇𝑛}) ≥ 𝜖.

Now, fix 𝑛 points {𝜇1,… , 𝜇𝑛} ⊂ {𝜆𝑖} and let 𝑚 ∈ {2, 3,… , 𝑛}. 𝑛-weak separation implies that the

vectors { ̂ℓ𝜇1, ̂ℓ𝜇2,… , ̂ℓ𝜇𝑛} are linearly independent. In view of Lemma 1.3.10, we can write

det [⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]1≤𝑖,𝑗≤𝑚
det [⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]2≤𝑖,𝑗≤𝑚

= [dist( ̂ℓ𝜇1, span{ ̂ℓ𝜇2,… , ̂ℓ𝜇𝑚})]
2
≥ 𝑑2 ≥ 𝜖2

⇒ det [(1 − 𝑤𝑗𝑤𝑖)⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]1≤𝑖,𝑗≤𝑚 > 0,
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where 𝑤1 = 𝜖/2 and 𝑤2 = 𝑤3 = ⋯ = 𝑤𝑛 = 0. Since this is true for arbitrary 𝑚 ∈ {2, 3,… , 𝑛},

Sylvester’s criterion tells us that the matrix

[(1 − 𝑤𝑗𝑤𝑖)⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]1≤𝑖,𝑗≤𝑛

is positive semi-definite. Multiplying the previous matrix by the dyad [||ℓ𝜇𝑖|| ⋅ ||ℓ𝜇𝑗||], we obtain

the positivity of

[(1 − 𝑤𝑗𝑤𝑖)ℓ(𝜇𝑗, 𝜇𝑖)]1≤𝑖,𝑗≤𝑛,

which can be rewritten as

[ℓ(𝜇𝑗, 𝜇𝑖) − 𝑣𝑗𝑣𝑖𝑠(𝜇𝑗, 𝜇𝑖)]1≤𝑖,𝑗≤𝑛,

where 𝑣1 =
𝜖

2

||ℓ𝜇1||

||𝑠𝜇1||
and 𝑣2 = 𝑣3 = ⋯ = 𝑣𝑛 = 0. But (𝑠, ℓ) has the Pick property, so we can deduce

the existence of a multiplier 𝜙 ∈ Mult(ℋ𝑠,ℋℓ) of norm at most 1 such that 𝜙(𝜇1) =
𝜖

2

||ℓ𝜇1||

||𝑠𝜇1||
and

𝜙(𝜇𝑗) = 0, for 𝑗 = 2, 3,… , 𝑛.

We have proved one implication from part (a). For the converse, simply reverse the steps in the

previous proof (the Pick property of (𝑠, ℓ) is no longer necessary).

The proof of (b) is essentially identical to that of (a). One point worth mentioning is that the

inequalities det [(1 − 𝑤𝑗𝑤𝑖)⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]1≤𝑖,𝑗≤𝑚 > 0, for all 𝑚 ≥ 2, allow us to deduce (through

Sylvester’s criterion and standard approximation arguments) the positivity of the infinite matrix

[(1 − 𝑤𝑗𝑤𝑖)⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]𝑖,𝑗. The rest of the proof carries over without change.

Next, we use the Column-Row property for spaces with a complete Pick factor ([79, Theorem

3.18]) to characterize Mult(ℋ𝑠,ℋℓ)-interpolating sequences in terms of theℋ𝑠-Carleson measure

condition and strong separation by ℓ. We state the result here for the reader’s convenience.

Theorem 1.3.12 (Hartz, [79]). Suppose 𝑠 and ℓ are as above and let 𝛷 ∈ Mult(ℋ𝑠,ℋℓ ⊗ ℓ2) be a

column multiplication operator. Then, the row multiplication operator 𝛷𝑇 is bounded and

||𝛷𝑇|| ≤Mult(ℋ𝑠⊗ℓ2,ℋℓ)≤ ||𝛷||Mult(ℋ𝑠,ℋℓ⊗ℓ2).
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We now give our characterization. Our argument is motivated by the proof of Theorem 4.4 in

[79].

Theorem 1.3.13. Suppose 𝑠 and ℓ are as above and let {𝜆𝑖} ⊂ 𝑋. Then, {𝜆𝑖} is interpolating for

Mult(ℋ𝑠,ℋℓ) if and only if it satisfies the Carleson measure condition for ℋ𝑠 and is strongly

separated by ℓ. In this case, there exists a bounded linear operator of interpolation associated with

{𝜆𝑖}.

Proof. First, suppose that {𝜆𝑖} is interpolating for Mult(ℋ𝑠,ℋℓ). By Theorem 1.3.7(a), we obtain

that {𝜆𝑖} satisfies (CM) with respect toℋ𝑠.

Recall also (see (1.6)) that every 𝜙 ∈ Mult(ℋ𝑠,ℋℓ) satisfies

|𝜙(𝑧)| ≤ ||𝜙||Mult(ℋ𝑠,ℋℓ) ⋅
||ℓ𝑧||
||𝑠𝑧||

,

for every 𝑧 ∈ 𝑋.We can thus define

𝑆 ∶ Mult(ℋ𝑠,ℋℓ) → ℓ∞

𝜙 ↦ {𝜙(𝜆𝑖) ⋅
||𝑠𝜆𝑖||
||ℓ𝜆𝑖||

}
𝑖≥1
.

𝑆 is well-defined, linear and bounded by ||𝜙||Mult(ℋ𝑠,ℋℓ). Since {𝜆𝑖} is interpolating, 𝑆 is also onto

ℓ∞.A standard application of the Open Mapping Theorem then allows us to deduce the existence

of a constant 𝐶 > 0 (the constant of interpolation), such that for every {𝑤𝑖} ∈ ℓ∞ we can find

𝜙 ∈ Mult(ℋ𝑠,ℋℓ)with the property that 𝜙(𝜆𝑖) = 𝑤𝑖||ℓ𝜆𝑖||/||𝑠𝜆𝑖|| and ||𝜙||Mult(ℋ𝑠,ℋℓ) ≤ 𝐶⋅||{𝑤𝑖}||∞.

In view of Lemma 1.3.11(b), this implies that {𝜆𝑖} is strongly separated by ℓ.

For the converse, suppose that {𝜆𝑖} satisfies (CM) with respect to 𝑠 and is strongly separated by

ℓ.

By Lemma 1.3.11(b), there exist multipliers {𝜙𝑖} ⊂ Mult(ℋ𝑠.ℋℓ) and𝑀 > 0 such that

(i) 𝜙𝑖(𝜆𝑗) = 𝛿𝑖𝑗
||ℓ𝜆𝑖||

||𝑠𝜆𝑖||
, for every 𝑖, 𝑗;

(ii) ||𝜙𝑖||Mult(ℋ𝑠,ℋℓ) ≤ 𝑀, for every 𝑖.
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Also, by Theorem 1.3.9, there exists a multiplier 𝛹 ∈ Mult(ℋ𝑠,ℋ𝑠 ⊗ ℓ2) such that

𝛹(𝜆𝑖) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗

⋮

∗

1

∗

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

for every 𝑖.

Consider now the bounded diagonal operator diag{𝜙1, 𝜙2, 𝜙3,… } ∈ Mult(ℋ𝑠 ⊗ ℓ2,ℋℓ ⊗ ℓ2) and

define

𝛷 ∶= diag{𝜙1, 𝜙2, 𝜙3,… } ⋅ 𝛹 ∈ Mult(ℋ𝑠,ℋℓ ⊗ ℓ2).

Notice that

𝛷(𝜆𝑖) =
||ℓ𝜆𝑖||
||𝑠𝜆𝑖||

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

⋮

0

1

0

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

for every 𝑖. Theorem 1.3.12 now tells us that 𝛷𝑇 ∈ Mult(ℋ𝑠⊗ℓ2,ℋℓ) and thus, letting 𝛥 ∶ ℓ∞ →

Mult(ℋ𝑠 ⊗ ℓ2) denote the embedding via diagonal operators, we can define

𝑇 ∶ ℓ∞ → Mult(ℋ𝑠,ℋℓ)

{𝑤𝑖} ↦ 𝛷𝑇 ⋅ 𝛥({𝑤𝑖}) ⋅ 𝛹.

𝑇 is well-defined, bounded and also satisfies

[𝑇({𝑤𝑖})](𝜆𝑗) = 𝑤𝑗
||ℓ𝜆𝑗||
||𝑠𝜆𝑗||

,
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for every 𝑗. Thus, 𝑇 is the linear operator of interpolation with respect to {𝜆𝑖} and our proof is

complete.

We are now ready to prove Theorem 1.3.4. Of critical importance will be the observation (see

[8, Proposition 9.11] for a proof) that every sequence {𝜆𝑖} ⊂ 𝑋 satisfying (CM) with respect toℋ𝑠

can be written as a union of 𝑛 sequences that are weakly separated by 𝑠, where 𝑛 is a finite integer.

In this setting, it turns out that 𝑛-weak separation by ℓ (for the 𝑛 that is given as a consequence of

[8, Proposition 9.11]) is precisely what is missing for {𝜆𝑖} to be Mult(ℋ𝑠,ℋℓ)-interpolating.

Proof of Theorem 1.3.4. By Theorem 1.3.13, every Mult(ℋ𝑠,ℋℓ)-interpolating sequence satisfies

(CM) with respect to 𝑠 and is strongly separated by ℓ, hence also 𝑛-weakly separated by ℓ for every

𝑛 ≥ 2.

For the converse, suppose {𝜆𝑖} ⊂ 𝑋 satisfies (CM) with respect to 𝑠 and is 𝑛-weakly separated

by ℓ, for every 𝑛 ≥ 2. If {𝜆𝑖} also happens to be weakly separated by 𝑠, then it must be interpolating

for Mult(ℋ𝑠) (and hence interpolating for Mult(ℋ𝑠,ℋℓ) by Theorem 1.3.7(b)). If not, then there

exists 𝑛 ≥ 2 such that {𝜆𝑖} can be written as a union of 𝑛 sequences that are weakly separated by 𝑠.

In other words, there exist disjoint sequences {𝑝1𝑖 }, {𝑝2𝑖 },… , {𝑝𝑛𝑖 } ⊂ 𝑋 and a number 0 < 𝑐 < 1 such

that {𝜆𝑖} = ∪𝑘=1{𝑝𝑘𝑗 } and also for every 𝑖 ≠ 𝑗,

||⟨ ̂𝑠𝑝1𝑖 , ̂𝑠𝑝1𝑗 ⟩||
2, ||⟨ ̂𝑠𝑝2𝑖 , ̂𝑠𝑝2𝑗 ⟩||

2, … , ||⟨ ̂𝑠𝑝𝑛𝑖 , ̂𝑠𝑝𝑛𝑗 ⟩||
2 ≤ 𝑐. (1.9)

Now, choose an arbitrary point from {𝜆𝑖}. Without loss of generality, we may choose a point 𝑝1𝑚1

from {𝑝1𝑖 }. Consider the pseudometric

𝑑𝑠(𝜆1, 𝜆2) = √1 − |⟨ ̂𝑠𝜆1, ̂𝑠𝜆2⟩|2

associated with ℋ𝑠. By (1.9), we obtain that 𝑑𝑠(𝑝𝑘𝑖 , 𝑝
𝑘
𝑗 ) ≥ √1 − 𝑐, for every 𝑖 ≠ 𝑗 and every

𝑘 ∈ {1, 2,… , 𝑛}. Now, for any fixed 𝑘 ∈ {2, 3,… , 𝑛} and 𝑖 ≠ 𝑗, the fact that 𝑑𝑠 is a pseudometric

implies

√1 − 𝑐 ≤ 𝑑𝑠(𝑝𝑘𝑖 , 𝑝
𝑘
𝑗 ) ≤ 𝑑𝑠(𝑝𝑘𝑖 , 𝑝1𝑚1) + 𝑑𝑠(𝑝1𝑚1, 𝑝

𝑘
𝑗 ).
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Consequently, for every 𝑘 ∈ {2, 3,… , 𝑛}, there exists at most one point𝑝𝑘𝑚𝑘
such that 𝑑𝑠(𝑝1𝑚1, 𝑝

𝑘
𝑚𝑘
) <

√1−𝑐

2
(if such a point does not exist, pick an arbitrary point of {𝑝𝑘𝑖 } to be 𝑝𝑘𝑚𝑘

). Hence, there exists

𝑐′ > 0 (depending only on 𝑐) such that for every 𝑘 ∈ {1, 2,… , 𝑛} and every 𝑗 ≠ 𝑚𝑘, we have

||⟨ ̂𝑠𝑝1𝑚1
, ̂𝑠𝑝𝑘𝑗 ⟩

||2 ≤ 𝑐′ < 1. (1.10)

Also, for every 𝑘 ∈ {1, 2,… , 𝑛} and every 𝑗 ≠ 𝑚𝑘, the Pick property of 𝑠 allows us to find a

contractive multiplier 𝜙𝑘𝑗 ∈ Mult(ℋ𝑠) such that 𝜙𝑘𝑗 (𝑝
𝑘
𝑗 ) = 0 and

𝜙𝑘𝑗 (𝑝1𝑚1) = √1 − ||⟨ ̂𝑠𝑝1𝑚1
, ̂𝑠𝑝𝑘𝑗 ⟩

||2. (1.11)

Consider now the product
𝑛

∏
𝑘=1

∏
𝑗≠𝑚𝑘

𝜙𝑘𝑗 . (1.12)

More precisely, we take any weak-star cluster point of the partial products. We thus obtain a

contractive multiplier 𝛷 ∈ Mult(ℋ𝑠) such that 𝛷(𝑝𝑘𝑗 ) = 0, for every 𝑗 ≠ 𝑚𝑘.

Now, since {𝜆𝑖} is 𝑛-weakly separated by ℓ, Lemma 1.3.11(a) tells us that there exists a contractive

multiplier 𝛹𝑚1,𝑚2,…,𝑚𝑛 ∈ Mult(ℋ𝑠,ℋℓ) such that 𝛹𝑚1,𝑚2,…,𝑚𝑛(𝑝
𝑘
𝑚𝑘
) = 0 for every 𝑘 ≥ 2 and

also 𝛹𝑚1,𝑚2,…,𝑚𝑛(𝑝
1
𝑚1) = 𝜖

||||ℓ𝑝1𝑚1
||||

||||𝑠𝑝1𝑚1
||||
, where the constant 𝜖 > 0 does not depend on the choice of

points 𝑝1𝑚1,… , 𝑝𝑛𝑚𝑛.

Finally, we put

𝛷̃ = 𝛹𝑚1,𝑚2,…,𝑚𝑛 ⋅ 𝛷 ∈ Mult(ℋ𝑠,ℋℓ).

This is a contractive multiplier that is zero at every point of the sequence {𝜆𝑖} except 𝑝1𝑚1. We also

have (by (1.11))

𝛷̃(𝑝1𝑚1) = 𝛹𝑚1,𝑚2,…,𝑚𝑛(𝑝
1
𝑚1) ⋅ 𝛷(𝑝

1
𝑚1)

= 𝜖
||||ℓ𝑝1𝑚1

||||

||||𝑠𝑝1𝑚1
||||

𝑛

∏
𝑘=1

∏
𝑗≠𝑚𝑘

√1− ||⟨ ̂𝑠𝑝1𝑚1
, ̂𝑠𝑝𝑘𝑗 ⟩

||2. (1.13)

Now, the fact that {𝜆𝑖} satisfies (CM) with respect to 𝑠 implies the existence of a constant 𝐶 > 0

such that for every 𝑓 ∈ ℋ𝑠 the inequality

∑
|𝑓(𝜆𝑖)|2

||𝑠𝜆𝑖||2
≤ 𝐶||𝑓||2ℋ𝑠
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holds true. Choosing 𝑓 = ̂𝑠𝑝1𝑚1
, we obtain

𝑛

∑
𝑘=1

∑
𝑗

||⟨ ̂𝑠𝑝1𝑚1
, ̂𝑠𝑝𝑘𝑗 ⟩

||2 ≤ 𝐶. (1.14)

Combining (1.10), (1.13) and (1.14), we can conclude that

||||𝑠𝑝1𝑚1
||||

||||ℓ𝑝1𝑚1
||||
𝛷̃(𝑝1𝑚1)

is bounded below by a positive number that only depends on the constants 𝜖, 𝑐 and 𝐶 and not on the

specific point 𝑝1𝑚1 we started with. Thus, {𝜆𝑖} is strongly separated by ℓ. By Theorem 1.3.13, {𝜆𝑖}

must be Mult(ℋ𝑠,ℋℓ)-interpolating.

Remark 1.3.14. In the setting of Theorem 1.3.4, suppose {𝜆𝑖} ⊂ 𝑋 is a union of 𝑛 disjoint se-

quences (where 𝑛 ≥ 2) that are interpolating for Mult(ℋ𝑠). The previous proof tells us that {𝜆𝑖} is

Mult(ℋ𝑠,ℋℓ)-interpolating if and only if it is 𝑛-weakly separated by ℓ.

1.3.4 ACounterexample to Question 1.3.1

Now, suppose we have a sequence {𝜆𝑖} satisfying (CM) with respect to 𝑠 and suppose also that

𝑛 ≥ 3 is the smallest integer such that {𝜆𝑖} can be written as a union of 𝑛 disjoint sequences that are

weakly separated by 𝑠. Then, not even (𝑛−1)-weak (let alone weak) separation by ℓ can, in general,

guarantee that {𝜆𝑖} is Mult(ℋ𝑠,ℋℓ)-interpolating. This is essentially the content of Theorem 1.3.5,

which we now prove.

Proof of Theorem 1.3.5. Let 𝑠 be the Szegő kernel on the unit disk 𝔻. For every 𝑛 ≥ 3, choose 𝑛

disjoint sequences {𝜆𝑛,1𝑖 }𝑖, {𝜆
𝑛,2
𝑖 }𝑖,… , {𝜆𝑛,𝑛𝑖 }𝑖 ⊂ 𝔻 that are interpolating for Mult(ℋ𝑠) and such that

their 𝑖𝑡ℎ terms satisfy

lim
𝑖
𝑑𝑠(𝜆

𝑛,𝑘
𝑖 , 𝜆𝑛,𝑚𝑖 ) = 0, (1.15)

for every 𝑘,𝑚 ∈ {1, 2,… , 𝑛}. We also require the existence of 𝑐 > 0 (which could depend on 𝑛)

such that

𝑑𝑠(𝜆
𝑛,𝑘
𝑖 , 𝜆𝑛,𝑚𝑗 ) ≥ 𝑐, (1.16)
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for all 𝑛, 𝑖, 𝑗, 𝑘,𝑚 such that 𝑖 ≠ 𝑗. Finally, choose these sequences in such a way that 𝜆𝑛,𝑘𝑖 = 𝜆𝜈,𝑚𝑗 is

equivalent to 𝑖 = 𝑗, 𝑛 = 𝜈 and 𝑘 = 𝑚, i.e. there are no common points between them. Here is one

way of constructing such sequences: let {𝑎11} be an arbitrary point in 𝔻 and suppose that, for 𝑚 ≥ 1,

the𝑚-point set {𝑎𝑚1 ,… , 𝑎𝑚𝑚} has been determined. Then, choose𝑚+ 1 points 𝑎𝑚+1
1 ,… , 𝑎𝑚+1

𝑚+1 such

that

(i)
1−|𝑎𝑚+1

𝑖 |

1−|𝑎𝑘𝑗 |
≤ 𝜌 < 1, ∀𝑘 ∈ {1,… ,𝑚}, 𝑖 ∈ {1,… ,𝑚 + 1}, 𝑗 ∈ {1,… , 𝑘}.

(ii) 𝑑𝑠(𝑎𝑚+1
𝑖 , 𝑎𝑚+1

𝑗 ) ≤ 1

𝑚+1
, for all 𝑖, 𝑗.

Essentially, our sequences come in 𝑚-point packets (where 𝑚 is increasing) that are well-separated

from one another but such that the points in each packet are increasingly close to each other. Now,

put {𝜆𝑛,𝑘𝑖 }𝑖≥1 = {𝑎𝑖𝑐(𝑛,𝑘)}𝑖≥𝑑(𝑛), where 𝑐(𝑛, 𝑘) = 𝑘 + ∑𝑛−1
𝑗=1 𝑗 and 𝑑(𝑛) = ∑𝑛

𝑗=1 𝑗. Then, no two

sequences will have any points in common. Also, by item (i), each {𝜆𝑛,𝑘𝑖 }𝑖≥1 converges to 𝜕𝔻

exponentially and so must be interpolating for Mult(ℋ𝑠). The same condition guarantees that (1.16)

must be valid for some constant 𝑐 > 0. Finally, item (ii) implies that (1.15) is also satisfied.

We now turn to the construction of the kernel ℓ. For every 𝑛 ≥ 3, choose 𝑛 linearly dependent

vectors {𝑣𝑛,1, 𝑣𝑛,2,… , 𝑣𝑛,𝑛} in ℓ2 with the following property: any choice of 𝑛 − 1 vectors among

{𝑣𝑛,1, 𝑣𝑛,2,… , 𝑣𝑛,𝑛} produces a linearly independent set. Also, define 𝑢 ∶ 𝔻 → ℓ2 by

𝑢(𝜆) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑣𝑛,𝑘, if 𝜆 = 𝜆𝑛,𝑘𝑖 for some 𝑖, 𝑛, 𝑘

𝑒1, for every other point 𝜆 ∈ 𝔻.

(The definition of 𝑢 on points other than 𝜆𝑛,𝑘𝑖 is not important.) Since 𝜆𝑛,𝑘𝑖 = 𝜆𝜈,𝑚𝑗 is equivalent to

𝑖 = 𝑗, 𝑛 = 𝜈 and 𝑘 = 𝑚, the function 𝑢 is well-defined. Finally, consider the positive semi-definite

kernel 𝑔 ∶ 𝔻 × 𝔻 → ℂ given by 𝑔(𝜆, 𝜇) = ⟨𝑢(𝜆), 𝑢(𝜇)⟩ℓ2 and put ℓ ∶= 𝑠 ⋅ 𝑔.

Now, fix 𝑛 ≥ 3 (this will remain fixed for the rest of the proof). Since any (𝑛 − 1)-point subset

of {𝑣𝑛,1, 𝑣𝑛,2,… , 𝑣𝑛,𝑛} is linearly independent, there exists 𝜖 > 0 such that each vector 𝑣𝑛,𝑗 always

has distance greater than 𝜖 from the span of any (𝑛 − 2)-point subset of the remaining 𝑛 − 1 vectors.
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Thus, we can deduce (in a manner identical to the proof of Lemma 1.3.11) the existence of 𝜖1 > 0

such that for any (𝑛 − 1)-point subset {𝜈1, 𝜈2,… , 𝜈𝑛−1} of {1, 2,… , 𝑛} the matrix

[(1 − 𝑤𝑗𝑤𝑖)⟨𝑣𝑛,𝜈𝑗, 𝑣𝑛,𝜈𝑖⟩]1≤𝑖,𝑗≤𝑛−1,

is positive semi-definite, where 𝑤1 = 𝜖1 and 𝑤2 = ⋯ = 𝑤𝑛−1 = 0. By definition of the kernel 𝑔,

we obtain that for every such subset {𝜈1, 𝜈2,… , 𝜈𝑛−1} and every choice of 𝑛 − 1 (not necessarily

distinct) integers 𝑚1, 𝑚2,… ,𝑚𝑛−1, the matrix

[(1 − 𝑤𝑗𝑤𝑖)𝑔(𝜆
𝑛,𝜈𝑗
𝑚𝑗 , 𝜆

𝑛,𝜈𝑖
𝑚𝑖 )]1≤𝑖,𝑗≤𝑛−1,

is positive semi-definite. Now, multiply with the corresponding Grammian associated to 𝑠 and apply

the Schur product theorem to deduce positivity of the matrix

[(1 − 𝑤𝑗𝑤𝑖)ℓ(𝜆
𝑛,𝜈𝑗
𝑚𝑗 , 𝜆

𝑛,𝜈𝑖
𝑚𝑖 )]1≤𝑖,𝑗≤𝑛−1.

Since (𝑠, ℓ) has the Pick property, this last positivity condition implies that for any (𝑛 − 1)-point

subset {𝜈1, 𝜈2,… , 𝜈𝑛−1} of {1, 2,… , 𝑛} and every 𝑚1, 𝑚2,… ,𝑚𝑛−1 ≥ 1, there exists a contractive

multiplier 𝛷 ∈ Mult(ℋ𝑠,ℋℓ) such that

𝛷(𝜆𝑛,𝜈1𝑚1 ) = 𝜖1
||||ℓ𝜆𝑛,𝜈1𝑚1

||||

||||𝑠𝜆𝑛,𝜈1𝑚1
||||

and 𝛷(𝜆𝑛,𝜈𝑖𝑚𝑖 ) = 0, (1.17)

for all 𝑖 ∈ {2,… , 𝑛 − 1}.

Now, recall that each sequence {𝜆𝑛,𝑘𝑖 }𝑖 is interpolating for Mult(ℋ𝑠) and hence their union

∪𝑛𝑘=1{𝜆
𝑛,𝑘
𝑖 } must satisfy the Carleson measure condition forℋ𝑠 (this is because of the elementary

fact that the sum of two Carleson measures is a Carleson measure). In view of the separation

condition (1.16) and the Pick property of 𝑠, we can mimic the construction of the Blaschke-type

multiplier (1.12) from the proof of Theorem 1.3.4 to deduce the existence of an 𝜖2 > 0 with the

property that, for every point 𝜆𝑛,𝑘𝑖 , there exists a contractive multiplier 𝛹 ∈ Mult(ℋ𝑠) such that

𝛹(𝜆𝑛,𝑘𝑖 ) = 𝜖2 and 𝛹(𝜆𝑛,𝑚𝑗 ) = 0, (1.18)
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for all 𝑚 ∈ {1, 2,… , 𝑛} and every integer 𝑗 ≠ 𝑖.

Combining (1.17) and (1.18) (and also using the basic fact that the product of a function in

Mult(ℋ𝑠) with a function in Mult(ℋ𝑠,ℋℓ) yields a multiplier in Mult(ℋ𝑠,ℋℓ)), we deduce that

for every (𝑛 − 1)-point subset {𝜇1, 𝜇2,… , 𝜇𝑛−1} of the union ∪𝑘{𝜆
𝑛,𝑘
𝑖 } there exists a multiplier 𝜙 ∈

Mult(ℋ𝑠,ℋℓ) of norm at most 1 such that 𝜙(𝜇1) = 𝜖1𝜖2
||ℓ𝜇1||

||𝑠𝜇1||
and 𝜙(𝜇𝑗) = 0, for 𝑗 = 2, 3,… , 𝑛 − 1.

By Lemma 1.3.11(a), we conclude that ∪𝑘{𝜆
𝑛,𝑘
𝑖 } must be (𝑛 − 1)-weakly separated by ℓ.

We now show that ∪𝑘{𝜆
𝑛,𝑘
𝑖 } is not 𝑛-weakly separated by ℓ. We proceed by contradiction;

suppose instead that there exists 𝜖 > 0 such that for every 𝑛-point subset {𝜇1, 𝜇2,… , 𝜇𝑛} of ∪𝑘{𝜆
𝑛,𝑘
𝑖 }

the matrix

[(1 − 𝑤𝑗𝑤𝑖)ℓ(𝜇𝑖, 𝜇𝑗)]1≤𝑖,𝑗≤𝑛

is positive semi-definite, where 𝑤1 = 𝜖 and 𝑤2 = ⋯ = 𝑤𝑛 = 0. Choosing 𝜇𝑘 = 𝜆𝑛,𝑘𝑚 gives us the

positivity of

[(1 − 𝑤𝑗𝑤𝑖)ℓ(𝜆
𝑛,𝑖
𝑚 , 𝜆

𝑛,𝑗
𝑚 )]

1≤𝑖,𝑗≤𝑛
,

for every 𝑚 ≥ 1. Next, multiply the previous matrix by the transpose of [𝑠(𝜆𝑛,𝑖𝑚 , 𝜆
𝑛,𝑗
𝑚 )] (which must

be positive semi-definite as well) and the dyad [𝑠(𝜆𝑛,𝑖𝑚 , 𝜆𝑛,𝑖𝑚 )−1𝑠(𝜆
𝑛,𝑗
𝑚 , 𝜆𝑛,𝑗𝑚 )−1]. The Schur product

theorem then allows us to obtain

det [(1 − 𝑤𝑗𝑤𝑖)𝑔(𝜆
𝑛,𝑖
𝑚 , 𝜆

𝑛,𝑗
𝑚 )

|𝑠(𝜆𝑛,𝑖𝑚 , 𝜆
𝑛,𝑗
𝑚 )|2

𝑠(𝜆𝑛,𝑖𝑚 , 𝜆𝑛,𝑖𝑚 )𝑠(𝜆
𝑛,𝑗
𝑚 , 𝜆𝑛,𝑗𝑚 )

]
1≤𝑖,𝑗≤𝑛

≥ 0. (1.19)

However, condition (1.15) implies that lim𝑚
|𝑠(𝜆𝑛,𝑖𝑚 ,𝜆𝑛,𝑗𝑚 )|2

𝑠(𝜆𝑛,𝑖𝑚 ,𝜆𝑛,𝑖𝑚 )𝑠(𝜆𝑛,𝑗𝑚 ,𝜆𝑛,𝑗𝑚 )
= 1, for every 𝑖, 𝑗 ∈ {1,… , 𝑛}.

Thus, letting 𝑚 → ∞ in (1.19) and using the definition of 𝑔, we obtain

det [(1 − 𝑤𝑗𝑤𝑖)⟨𝑣𝑛,𝑖, 𝑣𝑛,𝑗⟩]1≤𝑖,𝑗≤𝑛 ≥ 0,

which implies

det [⟨𝑣𝑛,𝑖, 𝑣𝑛,𝑗⟩]1≤𝑖,𝑗≤𝑛 ≥ 𝜖2||𝑣𝑛,1||
2 det [⟨𝑣𝑛,𝑖, 𝑣𝑛,𝑗⟩]2≤𝑖,𝑗≤𝑛 > 0,

a contradiction, as the vectors {𝑣𝑛,1,… , 𝑣𝑛,𝑛} are linearly dependent.
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To sum up, we have showed that, for every 𝑛 ≥ 3, the sequence ∪𝑛𝑘=1{𝜆
𝑛,𝑘
𝑖 } satisfies (CM)

with respect to 𝑠 and is (𝑛 − 1)-weakly separated, but not 𝑛-weakly separated by ℓ. The proof is

complete.

Remark 1.3.15. Notice that the choice of the Szegő kernel 𝑠 in our counterexample is not really

important; all that was required for the proof to go through was a complete Pick kernel 𝑠 containing,

for every 𝑛 ≥ 3, disjoint sequences {𝜆𝑛,1𝑖 }𝑖, {𝜆
𝑛,2
𝑖 }𝑖,… , {𝜆𝑛,𝑛𝑖 }𝑖 in the underlying set that satisfy (1.15)

and (1.16).

Remark 1.3.16. Here is a simpler counterexample (which only works for fixed 𝑛). Choose 𝑛 ≥ 3

and consider the kernel 𝑠(𝜆, 𝜇) = 1

1−𝑧𝑛𝑤𝑛 defined on 𝔻 × 𝔻. Also, let 𝜔1,… , 𝜔𝑛 denote the 𝑛𝑡ℎ

roots of unity and choose 𝑛 vectors 𝑣1,… , 𝑣𝑛 in ℂ𝑛−1 with the property that every choice of 𝑛 − 1

vectors among them produces a linearly independent set. Put

𝑢(𝜆) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑣𝑘, if 𝜆 = 1

2
𝜔𝑘

𝑣1, for every other point 𝜆 ∈ 𝔻,

and set 𝑔(𝜆, 𝜇) = ⟨𝑢(𝜆), 𝑢(𝜇))⟩, ℓ ∶= 𝑠 ⋅ 𝑔 and 𝑧𝑘 =
1

2
𝜔𝑘. By assumption, there exists 𝜖 > 0 such

that the matrix

[(1 − 𝑤𝑗𝑤𝑖)𝑔(𝑧𝜇𝑖, 𝑧𝜇𝑗)]1≤𝑖,𝑗≤𝑛−1

is positive semi-definite for every (𝑛−1)-point subset {𝜇1,… , 𝜇𝑛−1} of {1,… , 𝑛}, where𝑤1 = 𝜖 and

𝑤2 = ⋯ = 𝑤𝑛−1 = 0. But since 𝑠(𝑧𝑖, 𝑧𝑗) = 4/3 for every 𝑖, 𝑗, we immediately obtain the positivity

of the matrix

[(1 − 𝑤𝑗𝑤𝑖)ℓ(𝑧𝜇𝑖, 𝑧𝜇𝑗)]1≤𝑖,𝑗≤𝑛−1.

Thus, the sequence {𝑧1,… , 𝑧𝑛} is (𝑛 − 1)-weakly separated by ℓ and also (trivially) satisfies

the Carleson measure condition for ℋ𝑠. However, the kernel functions ℓ𝑧1,… , ℓ𝑧𝑛 are linearly

dependent, which implies that {𝑧1,… , 𝑧𝑛} is not 𝑛-weakly separated.
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Remark 1.3.17. Given the artificial nature of the kernel 𝑔, one might wonder whether more natural

counterexamples to Question 1.3.1 can be found. Subsection 1.3.8 contains a “nicer” counterexample

involving holomorphic kernels on the bidisk.

1.3.5 When is (CM)+(WS) Sufficient?

Once more, suppose that 𝑠, ℓ are two kernels on 𝑋 such that ℓ/𝑠 >> 0 and 𝑠 is a normalized

complete Pick kernel. The proof of Theorem 1.3.5 shows that a potential reason for the failure of

theℋ𝑠-Carleson measure condition and weak separation by ℓ to always be sufficient conditions for

Mult(ℋ𝑠.ℋℓ)-interpolation is that 𝑋 might contain weakly separated (by ℓ) sequences that are not

𝑛-weakly separated by ℓ for some 𝑛 ≥ 3. This motivates the following definition.

Definition 1.3.18. Let ℓ be a kernel on a set 𝑋. ℓ will be said to have the automatic separation

property if any sequence {𝜆𝑖} ⊂ 𝑋 that is weakly separated by ℓ must always be 𝑛-weakly separated

by ℓ for every 𝑛 ≥ 3. Such kernels will also be called AS kernels.

Remark 1.3.19. The AS property is not very intuitive from a geometric viewpoint. Indeed, if ℓ has

the automatic separation property, then, for every 𝑛 ≥ 2, a normalized kernel function ̂ℓ𝜇 can be

“close” to the span of 𝑛 other normalized kernel functions if and only if it is actually “close” to

one of them (see [65, Section 6] for a direct proof of the fact that the Szegő kernel on 𝔻 has this

property). Nevertheless, as we shall see in subsections 1.3.6-1.3.7, it turns out that a surprisingly

large number of well-known function spaces possess AS kernels.

As an immediate consequence of Theorem 1.3.4, we obtain that Question 1.3.1 has a positive

answer for every pair (𝑠, ℓ) such that ℓ has the automatic separation property.

Corollary 1.3.20. Let 𝑠, ℓ be two kernels on a set 𝑋 such that ℓ is an AS kernel and 𝑠 is a normalized

complete Pick factor of ℓ. Then, a sequence {𝜆𝑖} ⊂ 𝑋 is interpolating for Mult(ℋ𝑠,ℋℓ) if and only

if it satisfies the Carleson measure condition forℋ𝑠 and is weakly separated by ℓ.
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We now show that, under some additional weak hypotheses on the kernels 𝑠 and ℓ, Question

1.3.1 having a positive answer for the pair (𝑠, ℓ) is actually equivalent to ℓ being an AS kernel.

Theorem 1.3.21. Suppose 𝑋 is a topological space, ℓ a kernel on 𝑋 with a normalized complete

Pick factor 𝑠 and the following properties are satisfied:

(Q1) ℓ ∶ 𝑋 × 𝑋 → ℂ is continuous;

(Q2) If {𝜆𝑖} ⊂ 𝑋 satisfies ||ℓ𝜆𝑖|| → ∞, then ||ℓ𝜆𝑖||
−1ℓ(𝜆𝑖, 𝜇) → 0 for every 𝜇 ∈ 𝑋;

(Q3) Let {𝜆𝑖} ⊂ 𝑋. Then, either ||ℓ𝜆𝑖|| → ∞ or {𝜆𝑖} contains a subsequence converging to a point

inside 𝑋;

(Q4) If ||ℓ𝜆𝑖|| → ∞, then ||𝑠𝜆𝑖|| → ∞.

Then, the following assertions are equivalent:

(i) For every {𝜆𝑖} ⊂ 𝑋, {𝜆𝑖} is interpolating forMult(ℋ𝑠.ℋℓ) if and only if it satisfies the Carleson

measure condition forℋ𝑠 and is weakly separated by ℓ.

(ii) ℓ has the automatic separation property.

Proof. Let ℓ be a kernel with a complete Pick factor 𝑠 defined on a topological space 𝑋 such that

properties (Q1)-(Q4) are all satisfied.

If (ii) holds, then (i) must also hold by Corollary 1.3.20.

Now, suppose that (ii) fails. Thus, there exists a sequence {𝜆𝑖} and 𝑛 ≥ 2 such that {𝜆𝑖} is

𝑛-weakly separated but not (𝑛 + 1)-weakly separated by ℓ. This implies the existence of 𝑛 + 1

subsequences {𝜆1𝑚}𝑚, {𝜆2𝑚}𝑚,… , {𝜆𝑛+1𝑚 }𝑚 ⊂ {𝜆𝑖} (which may contain repeated points) such that the

points 𝜆1𝑚, 𝜆2𝑚,… , 𝜆𝑛+1𝑚 are distinct from one another, for every 𝑚, and also

lim
𝑚

dist( ̂ℓ𝜆1𝑚, span{ ̂ℓ𝜆2𝑚,… , ̂ℓ𝜆𝑛+1𝑚
}) = 0. (1.20)

Since

[dist( ̂ℓ𝜆1𝑚, span{ ̂ℓ𝜆2𝑚,… , ̂ℓ𝜆𝑛+1𝑚
})]

2
=

det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛+1

det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]2≤𝑖,𝑗≤𝑛+1

,
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condition (1.20) (and the fact that all determinants det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]2≤𝑖,𝑗≤𝑛+1 are uniformly bounded

with respect to 𝑚, given that their entries cannot exceed 1 in modulus) implies that

lim
𝑚

det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛+1 = 0. (1.21)

By 𝑛-weak separation, we also obtain the existence of 𝜖 > 0 such that for every 𝑛-point subset

{𝜇1,… , 𝜇𝑛} of {𝜆𝑖} we have

dist( ̂ℓ𝜇1, span{ ̂ℓ𝜇2,… , ̂ℓ𝜇𝑛}) > 𝜖. (1.22)

We now use (Q1) and (Q2) to deduce a useful lemma about the behavior of the pseudometric 𝑑ℓ.

Lemma 1.3.22. Let ℓ be a kernel on 𝑋 satisfying (Q1) and (Q2). If {𝑤𝑖} and {𝑧𝑖} are two sequences

in 𝑋 such that 𝑤𝑖 → 𝑤 for some 𝑤 ∈ 𝑋 and ||ℓ𝑧𝑖|| → ∞, then

𝑑ℓ(𝑤𝑖, 𝑧𝑖) → 1.

Proof of Lemma 1.3.22. Since 𝑤𝑖 → 𝑤, continuity of ℓ (property (Q1)) implies that 𝑑ℓ(𝑤𝑖, 𝑤) → 0.

Also, by (Q2), we obtain that ⟨ ̂ℓ𝑧𝑖, 𝑓⟩ → 0 whenever 𝑓 is a finite linear combination of kernel

functions. But since linear combinations of kernel functions are dense inℋℓ, it must be true that

̂ℓ𝑧𝑖 → 0 weakly inℋℓ. Finally, 𝑑ℓ is a pseudometric and so we can write

−𝑑ℓ(𝑤,𝑤𝑖) + 𝑑ℓ(𝑤, 𝑧𝑖) ≤ 𝑑ℓ(𝑤𝑖, 𝑧𝑖) ≤ 1,

where 𝑑ℓ(𝑤,𝑤𝑖) → 0 and 𝑑ℓ(𝑤, 𝑧𝑖) = √1 − |⟨ ̂ℓ𝑤, ̂ℓ𝑧𝑖⟩|2 → 1, as ̂ℓ𝑧𝑖 → 0 weakly. Thus,

𝑑ℓ(𝑤𝑖, 𝑧𝑖) → 1 and the proof is complete.

We can also assume, without loss of generality, that each subsequence {𝜆𝑘𝑚}𝑚 either satisfies

||𝑠𝜆𝑘𝑚|| → ∞ and ||ℓ𝜆𝑘𝑚|| → ∞ or converges to a point 𝑝𝑘 ∈ 𝑋. This is possible because of (Q3) and

(Q4) (we can keep extracting subsequences until we have the desired properties). There are now

three separate cases to examine.

First, suppose that all of the sequences {𝜆𝑘𝑚}𝑚 converge to points 𝑝𝑘 in 𝑋. Combining (1.21)

with the continuity of ℓ (property (Q1)), we deduce that
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det [⟨ ̂ℓ𝑝𝑖, ̂ℓ𝑝𝑗⟩]1≤𝑖,𝑗≤𝑛+1 = 0. (1.23)

Hence, the kernel functions ℓ𝑝1,… , ℓ𝑝𝑛+1 are linearly dependent. Consider the finite sequence

{𝑝1,… , 𝑝𝑛+1} ⊂ 𝑋. This sequence trivially satisfies the Carleson measure condition forℋ𝑠, is 𝑛-

weakly separated (because of (1.22)), and hence weakly separated, but not (𝑛+ 1)-weakly separated

by ℓ (because of (1.23)). Thus, (i) fails in this case.

Suppose now that at least one sequence {𝜆𝑘𝑚}𝑚 satisfies ||𝑠𝜆𝑘𝑚|| → ∞ and ||ℓ𝜆𝑘𝑚|| → ∞. Suppose

also that at least one sequence {𝜆𝑘′𝑚}𝑚 converges to a point 𝑝𝑘′ ∈ 𝑋. We will arrive at a contradiction.

Without loss of generality, we can reindex our sequences so that {𝜆1𝑚},… , {𝜆𝑟𝑚} converge to points

𝑝1,… , 𝑝𝑟 in 𝑋, while {𝜆𝑟+1𝑚 },… , {𝜆𝑛+1𝑚 } satisfy ||𝑠𝜆𝑘𝑚|| → ∞ and ||ℓ𝜆𝑘𝑚|| → ∞ (where 1 ≤ 𝑟 ≤ 𝑛).

In view of (1.22), we can write

det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑟 ≥ 𝜖2 det [⟨ ̂ℓ𝜆𝑖𝑚,

̂ℓ𝜆𝑗𝑚⟩]2≤𝑖,𝑗≤𝑟 ≥ … ≥ 𝜖2(𝑟−1). (1.24)

Similarly, we obtain

det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]𝑟+1≤𝑖,𝑗≤𝑛+1 > 𝜖2(𝑛−𝑟). (1.25)

Now, Lemma 1.3.22 tells us that (as 𝑚 → ∞)

⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩ → 0, ∀𝑖 ∈ {1,… , 𝑟}, ∀𝑗 ∈ {𝑟 + 1,… , 𝑛 + 1}. (1.26)

We can thus write

det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛+1 =

= ( det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑟)( det [⟨

̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]𝑟+1≤𝑖,𝑗≤𝑛+1) + 𝑒𝑚,

where 𝑒𝑚 → 0 as 𝑚 → ∞ because of (1.26). Hence, letting 𝑚 → ∞ in the previous equality and

using (1.24) and (1.25) gives us

lim inf
𝑚

det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛+1 ≥ 𝜖2(𝑛−1) > 0,

a contradiction.
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Finally, suppose that all of our sequences {𝜆𝑘𝑚}𝑚 satisfy ||ℓ𝜆𝑘𝑚|| → ∞ and ||𝑠𝜆𝑘𝑚|| → ∞. By

[17, Proposition 5.1], we can extract a subsequence {𝜆𝑘𝑚𝑗
}𝑗 from each {𝜆𝑘𝑚}𝑚 that is interpolating

for Mult(ℋ𝑠). Hence, the union ∪𝑛+1𝑘=1{𝜆𝑘𝑚𝑗
} will satisfy the Carleson measure condition forℋ𝑠. By

assumption, it will also be 𝑛-weakly separated but not (𝑛 + 1)-weakly separated by ℓ. Thus, (i) fails

and our proof is complete.

Remark 1.3.23. Property (Q2) is definitely satisfied whenever each kernel function ℓ𝜇 is bounded

on 𝑋, however this is not necessary in general. For instance, the kernel ℓ(𝜆, 𝜇) = 𝑒𝜆𝜇 of the

Bargmann-Fock space on ℂ satisfies (Q2), even though not every ℓ𝜇 is a bounded function.

Before we proceed, we record the following useful lemma. It essentially says that factoring a

kernel does not increase the distance between the normalized kernel functions.

Lemma 1.3.24. Suppose 𝑔, ℓ are two reproducing kernels on𝑋 such that ℓ/𝑔 is positive semi-definite.

Then,

dist( ̂𝑔𝜇1, span{ ̂𝑔𝜇2,… , ̂𝑔𝜇𝑛}) ≤ dist( ̂ℓ𝜇1, span{ ̂ℓ𝜇2,… , ̂ℓ𝜇𝑛}),

for any 𝑛-point subset {𝜇1, 𝜇2,… , 𝜇𝑛} of 𝑋 (where 𝑛 ≥ 2).

Proof. Assume that there exists 𝜖 > 0 such that

dist( ̂𝑔𝜇1, span{ ̂𝑔𝜇2,… , ̂𝑔𝜇𝑛}) > 𝜖

(if no such 𝜖 exists, then there is nothing to prove). In view of Lemma 1.3.10, we obtain

det[⟨ ̂𝑔𝜇𝑖, ̂𝑔𝜇𝑗⟩]1≤𝑖,𝑗≤𝑚
det[⟨ ̂𝑔𝜇𝑖, ̂𝑔𝜇𝑗⟩]2≤𝑖,𝑗≤𝑚

> 𝜖2, for all 𝑚 ∈ {2,… , 𝑛}.

Hence, from Sylvester’s Criterion, we can deduce the positivity of the matrix

[(1 − 𝑤𝑗𝑤𝑖)⟨ ̂𝑔𝜇𝑖, ̂𝑔𝜇𝑗⟩]1≤𝑖,𝑗≤𝑛,

where 𝑤1 = 𝜖 and 𝑤2 = ⋯ = 𝑤𝑛 = 0. Taking the Schur product with the positive semi-definite

matrix [⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩/⟨ ̂𝑔𝜇𝑖, ̂𝑔𝜇𝑗⟩] then gives us
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[(1 − 𝑤𝑗𝑤𝑖)⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]1≤𝑖,𝑗≤𝑛 >> 0,

which implies that

dist( ̂ℓ𝜇1, span{ ̂ℓ𝜇2,… , ̂ℓ𝜇𝑛}) =
√√√

√

det[⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]1≤𝑖,𝑗≤𝑛
det[⟨ ̂ℓ𝜇𝑖, ̂ℓ𝜇𝑗⟩]2≤𝑖,𝑗≤𝑛

≥ 𝜖.

This concludes the proof of the lemma.

Let us now look at an example of a pair (𝑠, ℓ) for which Question 1.3.1 has a positive answer

but such that ℓ is not an AS kernel.

Example. Let 𝑛 ≥ 2. Consider the restricted Szegő kernel 𝑠(𝑧, 𝑤) = 1

1−𝑧𝑤
on

1

2
𝔻 and choose 𝑛 + 1

disjoint sequences {𝜆1𝑚}, {𝜆2𝑚},… , {𝜆𝑛+1𝑚 } ⊂ 1

2
𝔻 that converge to the boundary of

1

2
𝔻 and such that

their 𝑚𝑡ℎ terms satisfy

lim
𝑚
⟨ ̂𝑠𝜆𝑖𝑚, ̂𝑠𝜆𝑗𝑚⟩ = 1, (1.27)

for every 𝑖, 𝑗. Also, choose an orthonormal sequence ∪1≤𝑘≤𝑛+1{𝑒𝑘𝑚}𝑚 in ℓ2 and define 𝑢 ∶ 1

2
𝔻 → ℓ2

by

𝑢(𝜆) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑒𝑘𝑚, if 𝜆 = 𝜆𝑘𝑚 for some 𝑚 ≥ 1 and 𝑘 ∈ {1,… , 𝑛}

∑𝑛
𝑖=1 𝑒

𝑖
𝑚 + 1

𝑚
𝑒𝑛+1𝑚 , if 𝜆 = 𝜆𝑛+1𝑚 for some 𝑚 ≥ 1

𝑒11, for every other point 𝜆.

(The definition of 𝑢 on points different from 𝜆𝑘𝑚 is not important.) Finally, set 𝑔 ∶ 1

2
𝔻 × 1

2
𝔻 → ℂ

to be equal to 𝑔(𝜆, 𝜇) = ⟨𝑢(𝜆), 𝑢(𝜇)⟩ and define ℓ ∶= 𝑠 ⋅ 𝑔. Note that ℓ does not satisfy (Q3) from

Theorem 1.3.21.

Consider now a sequence {𝜈𝑖} ⊂
1

2
𝔻 that satisfies the Carleson measure condition forℋ𝑠. The

only way this can happen is if {𝜈𝑖} is actually a finite sequence (this is because ||𝑠𝜈𝑖|| is uniformly
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bounded above). But then, {𝜈𝑖} will (trivially) be interpolating for Mult(ℋ𝑠) and hence also for

Mult(ℋ𝑠,ℋℓ). Thus, Question 1.3.1 has a positive answer for the pair (𝑠, ℓ).

We now show that ℓ is not anAS kernel. By definition of 𝑔,we obtain that dist( ̂𝑔𝜇1, span{ ̂𝑔𝜇2,… , ̂𝑔𝜇𝑛})

is uniformly bounded below, where {𝜇1,… , 𝜇𝑛} is any 𝑛-point subset of ∪𝑘{𝜆𝑘𝑚}. In view of Lemma

1.3.24, this implies that ∪𝑘{𝜆𝑘𝑚} is 𝑛-weakly separated by ℓ. However, notice that

det [⟨𝑔𝜆𝑖𝑚, 𝑔𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛+1
det [⟨𝑔𝜆𝑖𝑚, 𝑔𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛

= [dist(𝑔𝜆𝑛+1𝑚
, span{𝑔𝜆1𝑚,… , 𝑔𝜆𝑛𝑚})]

2

= [dist((
𝑛

∑
𝑖=1

𝑒𝑖𝑚 + 1
𝑚𝑒𝑛+1𝑚 ), span{𝑒1𝑚,… , 𝑒𝑛𝑚})]

2

→ 0,

as 𝑚 → ∞. Thus, det [⟨ ̂𝑔𝜆𝑖𝑚, ̂𝑔𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛+1 → 0 and so, in view of (1.27), we obtain

det [⟨ ̂ℓ𝜆𝑖𝑚,
̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛+1 → 0

as 𝑚 → ∞. But then,

[dist( ̂ℓ𝜆𝑛+1𝑚
, span{ ̂ℓ𝜆1𝑚,… , ̂ℓ𝜆𝑛𝑚})]

2 =
det [⟨ ̂ℓ𝜆𝑖𝑚,

̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛+1
det [⟨ ̂ℓ𝜆𝑖𝑚,

̂ℓ𝜆𝑗𝑚⟩]1≤𝑖,𝑗≤𝑛
→ 0,

as 𝑚 → ∞ (note that the determinant in the denominator is uniformly bounded below by 𝑛-weak

separation). Hence, ∪𝑘{𝜆𝑘𝑚} is not (𝑛 + 1)-weakly separated by ℓ, which implies that ℓ does not

have the automatic separation property.

1.3.6 Automatic Separation by Multipliers

In this subsection, we look at kernels enjoying a separation property which is stronger than the

AS property. To be precise, we will be concerned with kernels ℓ defined on a set 𝑋 such that for

every {𝜆𝑖} ⊂ 𝑋, weak separation by ℓ implies weak separation by Mult(ℋℓ).

Definition 1.3.25. Let ℓ be a kernel on a set 𝑋. We will say that ℓ has the multiplier separation

property if, for every 𝛿 > 0, there exists an 𝜖 > 0 such that, for any two points 𝜆𝑖 ≠ 𝜆𝑗 in 𝑋 satisfying

𝑑𝑠(𝜆𝑖, 𝜆𝑗) > 𝛿, there exists 𝜙𝑖𝑗 ∈ Mult(ℋℓ) of norm at most 1 satisfying 𝜙𝑖𝑗(𝜆𝑖) = 𝜖 and 𝜙𝑖𝑗(𝜆𝑗) = 0.
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Remark 1.3.26. For any kernel ℓ and any sequence {𝜆𝑖} ⊂ 𝑋, weak separation by Mult(ℋℓ) always

implies weak separation by ℓ. This is a consequence of the positivity of (1.7) (for 𝑘 = ℓ). Hence, for

kernels satisfying the multiplier separation property, weak separation by the kernel always coincides

with weak separation by the multiplier algebra.

First, we show that the multiplier separation property does indeed imply the AS property.

Proposition 1.3.27. Let ℓ be a kernel on 𝑋 with the multiplier separation property. Then, ℓ satisfies

the automatic separation property.

Proof. Let 𝑛 ≥ 3 and suppose {𝜆𝑖} ⊂ 𝑋 is weakly separated by ℓ. Thus, there exists 𝛿 > 0 such that

𝑑𝑠(𝜆𝑖, 𝜆𝑗) > 𝛿 for every 𝑖 ≠ 𝑗. By assumption, there exists 𝜖 > 0 such that for every 𝑖 ≠ 𝑗, we can find

𝜙𝑖𝑗 ∈ Mult(ℋℓ) of norm at most 1 such that 𝜙𝑖𝑗(𝜆𝑖) = 𝜖 and 𝜙𝑖𝑗(𝜆𝑗) = 0. Now, suppose {𝜇1,… , 𝜇𝑛}

is an arbitrary 𝑛-point subset of {𝜆𝑖}. Consider the contractive multiplier 𝛷 ∶= ∏𝑛
𝑖=2 𝜙𝜇1𝜇𝑖, which

satisfies 𝛷(𝜇2) = ⋯ = 𝛷(𝜇𝑛) = 0 and 𝛷(𝜇1) = 𝜖𝑛−1. But then, we will have ||𝛷 ̂ℓ𝜇1||ℋℓ
≤ 1 and

so we can write

1
dist( ̂ℓ𝜇1, span{ ̂ℓ𝜇2,… , ̂ℓ𝜇𝑛})

= inf {||𝑓|| ∶ 𝑓 ∈ ( span{ ̂ℓ𝜇2,… , ̂ℓ𝜇𝑛})
⟂, ⟨𝑓, ̂ℓ𝜇1⟩ = 1}

= inf {||𝑓|| ∶ 𝑓 ∈ ℋℓ, 𝑓(𝜇2) = ⋯ = 𝑓(𝜇𝑛) = 0, 𝑓(𝜇1) = ||ℓ𝜇1||}

≤
||𝛷 ̂ℓ𝜇1||
𝜖𝑛−1

≤ 1
𝜖𝑛−1 ,

hence {𝜆𝑖} must be 𝑛-weakly separated by ℓ. This concludes the proof.

Suppose now that we have a kernel (or a collection of kernels) with the multiplier separation

property. Our next result shows that performing certain operations on these kernels allows us to

construct new ones possessing the same property.
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Proposition 1.3.28. Suppose ℓ ∶ 𝑋×𝑋 → ℂ and 𝑘 ∶ 𝑆×𝑆 → ℂ are two kernels with the multiplier

separation property and let 𝜙 ∶ 𝑆 → 𝑋 be a function and 𝑎 ≥ 1. Suppose also that 𝜌 denotes any of

the following kernels:

(a) ℓ ⊗ 𝑘;

(b) ℓ𝑎 (here, we also assume that ℓ is non-vanishing);

(c) ℓ ∘ 𝜙 (defined by ℓ ∘ 𝜙(𝜆, 𝜇) = ℓ(𝜙(𝜆), 𝜙(𝜇)));

(d) a kernel 𝜌 ∶ 𝑋 × 𝑋 → ℂ such that both 𝜌/ℓ and ℓ𝑎/𝜌 are positive semi-definite;

(e) a kernel 𝜌 ∶ 𝑋 × 𝑋 → ℂ such that ℓ/𝜌 is positive semi-definite and ||𝜙||Mult(ℋ𝜌) ≤

𝐶 sup𝑥∈𝑋 |𝜙(𝑥)|, for some constant 𝐶 ≥ 1, for every 𝜙 in Mult(ℋ𝜌);

(f) a kernel 𝜌 ∶ 𝑋 × 𝑋 → ℂ such thatℋ𝜌 andℋℓ have equivalent norms.

Then, 𝜌 must also have the multiplier separation property.

Before we go into the proof, we require the following simple lemma.

Lemma 1.3.29. Suppose 𝑔, ℓ are two reproducing kernels on𝑋 such that ℓ/𝑔 is positive semi-definite.

Then, Mult(ℋ𝑔) ⊂ Mult(ℋℓ) and ||𝜙||Mult(ℋℓ) ≤ ||𝜙||Mult(ℋ𝑔), for every 𝜙 ∈ Mult(ℋ𝑔).

Proof. We know that ||𝜙||Mult(ℋ𝑔) ≤ 𝑀 if and only if the matrix [(𝑀2 − 𝜙(𝜆𝑖)𝜙(𝜆𝑗))𝑔(𝜆𝑖, 𝜆𝑗)] is

positive semi-definite for any choice of points 𝜆𝑖 in 𝑋. Taking the Schur product with [(ℓ/𝑔)(𝜆𝑖, 𝜆𝑗)]

then yields the desired result.

Proof of Proposition 1.3.28. For (a), let 𝛿 > 0 and suppose (𝜆𝑖, 𝜇𝑖), (𝜆𝑗, 𝜇𝑗) are two points in 𝑋 × 𝑆

satisfying 𝑑ℓ⊗𝑘((𝜆𝑖, 𝜇𝑖), (𝜆𝑗, 𝜇𝑗)) > 𝛿. Thus, we must have

|(ℓ ⊗ 𝑘)((𝜆𝑖, 𝜇𝑖), (𝜆𝑗, 𝜇𝑗))|2

(ℓ ⊗ 𝑘)((𝜆𝑖, 𝜇𝑖), (𝜆𝑖, 𝜇𝑖))(ℓ ⊗ 𝑘)((𝜆𝑗, 𝜇𝑗), (𝜆𝑗, 𝜇𝑗))

=
|ℓ(𝜆𝑖, 𝜆𝑗)𝑘(𝜇𝑖, 𝜇𝑗)|2

ℓ(𝜆𝑖, 𝜆𝑖)ℓ(𝜆𝑗, 𝜆𝑗)𝑘(𝜇𝑖, 𝜇𝑖)𝑘(𝜇𝑗, 𝜇𝑗)

≤ 1 − 𝛿2,
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which implies that either |⟨ ̂ℓ𝜆𝑖, ̂ℓ𝜆𝑗⟩|
2 ≤ √1 − 𝛿2 or |⟨ ̂𝑘𝜇𝑖, ̂𝑘𝜇𝑗⟩|

2 ≤ √1 − 𝛿2. Without loss of

generality, assume that |⟨ ̂ℓ𝜆𝑖, ̂ℓ𝜆𝑗⟩|
2 ≤ √1 − 𝛿2, hence

𝑑ℓ(𝜆𝑖, 𝜆𝑗) ≥ √1 − √1 − 𝛿2.

The fact that ℓ has the multiplier separation property then implies the existence of 𝜖 > 0 (depending

only on 𝛿) and 𝜙𝑖𝑗 ∈ Mult(ℋℓ) of norm at most 1 such that 𝜙𝑖𝑗(𝜆𝑖) = 𝜖 and 𝜙𝑖𝑗(𝜆𝑗) = 0. In view of

(1.7), we obtain

(1 − 𝜙𝑖𝑗(𝑥)𝜙𝑖𝑗(𝑦))ℓ(𝑥, 𝑦) ≥ 0, (1.28)

for every choice of points 𝑥, 𝑦 ∈ 𝑋.We now extend 𝜙 to 𝑋 × 𝑆 by putting 𝜙(𝑥, 𝑠) = 𝜙(𝑥), for

every (𝑥, 𝑠) ∈ 𝑋 ×𝑆. Condition (1.28) then becomes (1−𝜙𝑖𝑗(𝑥, 𝑠)𝜙𝑖𝑗(𝑦, 𝑡))ℓ(𝑥, 𝑦) ≥ 0, which, after

taking the Schur product with 𝑘(𝑠, 𝑡), gives us

(1 − 𝜙𝑖𝑗(𝑥, 𝑠)𝜙𝑖𝑗(𝑦, 𝑡))ℓ(𝑥, 𝑦)𝑘(𝑠, 𝑡)

= (1 − 𝜙𝑖𝑗(𝑥, 𝑠)𝜙𝑖𝑗(𝑦, 𝑡))(ℓ ⊗ 𝑘)((𝑥, 𝑠), (𝑦, 𝑡)) ≥ 0,

for every choice of points (𝑥, 𝑠), (𝑦, 𝑡) ∈ 𝑋 × 𝑆. Hence, 𝜙𝑖𝑗 is a contractive multiplier of ℋℓ⊗𝑘,

which concludes the proof of (a).

For (b), let 𝑎 ≥ 1. It is easy to see that a sequence is weakly separated by ℓ if and only if it

is weakly separated by ℓ𝑎 (actually, 𝑎 > 0 suffices for this, as √1 − 𝑥𝑎 ∼ √1 − 𝑥, 0 ≤ 𝑥 ≤ 1)

. Thus, assuming {𝜆𝑖} ⊂ 𝑋 is weakly separated by ℓ𝑎, we can deduce the existence of 𝜖 > 0

and {𝜙𝑖𝑗} ⊂ Mult(ℋℓ) such that 𝜙𝑖𝑗(𝜆𝑖) = 𝜖, 𝜙𝑖𝑗(𝜆𝑗) = 0 and 𝜙𝑖𝑗 has norm at most 1, for all 𝑖, 𝑗.

Clearly, each 𝜙𝑖𝑗 also satisfies (1.28). Taking the Schur product with the positive-semidefinite kernel

ℓ𝑎−1(𝑥, 𝑦) then gives us that each 𝜙𝑖𝑗 ∈ Mult(ℋℓ𝑎) (and has norm at most 1), which concludes the

proof of (b).

For (c), let 𝛿 > 0 and assume that 𝑠𝑖, 𝑠𝑗 are two points in 𝑆 satisfying 𝑑ℓ∘𝜙(𝑠𝑖, 𝑠𝑗) > 𝛿. It is known

(see [113, Theorem 5.7]) that there exists an isometry 𝛤 ∶ ℋℓ∘𝜙 →ℋℓ satisfying 𝛤((ℓ∘𝜙)𝑠) = ℓ𝜙(𝑠),

for every 𝑠 ∈ 𝑆. This implies that 𝑑ℓ∘𝜙(𝑠, 𝑡) = 𝑑ℓ(𝜙(𝑠), 𝜙(𝑡)), for every 𝑠, 𝑡 ∈ 𝑆. Thus, we obtain
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𝑑ℓ(𝜙(𝑠𝑖), 𝜙(𝑠𝑗)) > 𝛿. But ℓ has the multiplier separation property, so we deduce the existence of

𝜖 > 0 (depending only on 𝛿) and 𝜓𝑖𝑗 ∈ Mult(ℋℓ) of norm at most 1 such that 𝜓𝑖𝑗(𝜙(𝑠𝑖)) = 𝜖 and

𝜓𝑖𝑗(𝜙(𝑠𝑗)) = 0. Since (again by [113, Theorem 5.7]) ||𝑓||ℋℓ∘𝜙
= inf{||𝐹||ℋℓ

∶ 𝑓 = 𝐹 ∘ 𝜙}, for

every 𝑓 ∈ ℋℓ∘𝜙, we obtain ||𝜓𝑖𝑗 ∘ 𝜙||Mult(ℋℓ∘𝜙) ≤ ||𝜓𝑖𝑗||Mult(ℋℓ) ≤ 1 and so 𝜓𝑖𝑗 ∘ 𝜙 is a separating

multiplier with the desired properties.

For (d), suppose that 𝜌 is a kernel on 𝑋 satisfying the given hypotheses. Let 𝛿 > 0 and assume

that 𝜆𝑖, 𝜆𝑗 are two points in 𝑋 with 𝑑𝜌(𝜆𝑖, 𝜆𝑗) > 𝛿. By Sylvester’s criterion, we obtain the positivity

of the 2 × 2 matrix

[
(1 − 𝛿2)𝜌(𝜆𝑖, 𝜆𝑖) 𝜌(𝜆𝑖, 𝜆𝑗)

𝜌(𝜆𝑗, 𝜆𝑖) 𝜌(𝜆𝑗, 𝜆𝑗).
]

Taking the Schur product with the positive 2 × 2 matrix [(ℓ𝑎/𝜌)(𝜆𝑖, 𝜆𝑗)] then yields the positivity of

[
(1 − 𝛿2)ℓ𝑎(𝜆𝑖, 𝜆𝑖) ℓ𝑎(𝜆𝑖, 𝜆𝑗)

ℓ𝑎(𝜆𝑗, 𝜆𝑖) ℓ𝑎(𝜆𝑗, 𝜆𝑗)
] ,

which implies that 𝑑ℓ𝑎(𝜆𝑖, 𝜆𝑗) > 𝛿. Thus, we obtain 𝑑ℓ(𝜆𝑖, 𝜆𝑗) > √1 − 𝑎√1 − 𝛿2. But ℓ has the

multiplier separation property, so we deduce the existence of 𝜖 > 0 (depending only on 𝛿 and 𝑎)

and 𝜙𝑖𝑗 ∈ Mult(ℋℓ) of norm at most 1 such that 𝜙𝑖𝑗(𝜆𝑖) = 𝜖 and 𝜙𝑖𝑗(𝜆𝑗) = 0. By Lemma 1.3.29,

𝜙𝑖𝑗 must also be a contractive multiplier ofℋ𝜌, which concludes the proof.

For (e), again suppose that 𝜌 is a kernel on 𝑋 satisfying the given hypotheses and let 𝜆𝑖, 𝜆𝑗 be

two points in 𝑋 satisfying 𝑑𝜌(𝜆𝑖, 𝜆𝑗) > 𝛿. Reasoning as in the proof of (d), we obtain the existence

of 𝜖 > 0 (depending only on 𝛿) and 𝜙𝑖𝑗 ∈ Mult(ℋℓ) of norm at most 1 such that 𝜙𝑖𝑗(𝜆𝑖) = 𝜖 and

𝜙𝑖𝑗(𝜆𝑗) = 0. Butℋℓ is a Hilbert function space, so, in view of our assumptions, we can write

||𝜙𝑖𝑗||Mult(ℋ𝜌) ≤ 𝐶 sup
𝑥∈𝑋

|𝜙𝑖𝑗(𝑥)| ≤ 𝐶||𝜙𝑖𝑗||Mult(ℋℓ) ≤ 𝐶,

which implies that 𝜙𝑖𝑗 is a separating multiplier with the desired properties.

Finally, suppose that ℋℓ and ℋ𝜌 have equivalent norms. This implies that the evaluation

functionals 𝑇𝑥 ∶ ℋℓ → ℂ, 𝑇𝑥(𝑓) = 𝑓(𝑥) and 𝑆𝑥 ∶ ℋ𝜌 → ℂ, 𝑆𝑥(𝑓) = 𝑓(𝑥) also have equivalent
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norms (with constants independent of 𝑥 ∈ 𝑋). Hence, there exist 𝐶1, 𝐶2 > 0 such that

𝐶1||ℓ𝑥||ℋℓ
≤ ||𝜌𝑥||ℋ𝜌 ≤ 𝐶2||ℓ𝑥||ℋℓ

, (1.29)

for every 𝑥 ∈ 𝑋. But since we know that, for any kernel 𝑘 and points 𝑥, 𝑦 ∈ 𝑋,

1
𝑑𝑘(𝑥, 𝑦)

= 1
dist( ̂𝑘𝑥, span{ ̂𝑘𝑦})

= inf {||𝑓||ℋ𝑘
∶ 𝑓 ∈ ( span{ ̂𝑘𝑦})

⟂, ⟨𝑓, ̂𝑘𝑥⟩ = 1}

= inf {||𝑓||ℋ𝑘
∶ 𝑓 ∈ ℋ𝑘, 𝑓(𝑦) = 0, 𝑓(𝑥) = ||𝑘𝑥||ℋ𝑘

}, (1.30)

(1.29) and the equivalence of || ⋅ ||ℋℓ
and || ⋅ ||ℋ𝜌 allow us to deduce the existence of constants

𝐶′
1, 𝐶′

2 > 0 such that

𝐶′
1𝑑ℓ(𝑥, 𝑦) ≤ 𝑑𝜌(𝑥, 𝑦) ≤ 𝐶′

2𝑑ℓ(𝑥, 𝑦),

for all 𝑥, 𝑦 ∈ 𝑋. This double inequality, combined with the fact that the associated multiplier norms

|| ⋅ ||Mult(ℋℓ) and || ⋅ ||Mult(ℋ𝜌) must also be equivalent, finishes off the proof.

Remark 1.3.30. Let ℓ, 𝑘 be two kernels on 𝑋 with the multiplier separation property. In view of

Proposition 1.3.28, the product ℓ ⋅ 𝑘 (which is the restriction of ℓ ⊗ 𝑘 along the diagonal) must also

have the multiplier separation property.

Remark 1.3.31. Assume that ℓ, 𝜌, 𝑘 are kernels on 𝑋 such that ℓ and 𝑘 have the multiplier separation

property and 𝜌/ℓ and 𝑘/𝜌 are both positive semi-definite. Then, 𝜌 needn’t even be an AS kernel.

Indeed, define

𝜌(𝜆, 𝜇) = 1
1 − 𝜆2𝜇2

+ 1
1 − 𝜆3𝜇3

, ℓ(𝜆, 𝜇) = 1
1 − 𝜆6𝜇6

,

and

𝑘(𝜆, 𝜇) = 1
(1 − 𝜆2𝜇2)(1 − 𝜆3𝜇3)

,

for 𝜆, 𝜇 ∈ 𝔻. It is not hard to see that ℓ is a factor of both 1

1−𝜆2𝜇2
and

1

1−𝜆3𝜇3
, hence 𝜌/ℓ is positive

semi-definite. Also, since ℓ is a CP kernel, it evidently possesses the multiplier separation property.
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On the other hand, note that

𝑘(𝜆, 𝜇)
𝜌(𝜆, 𝜇)

= 1/2
1 − ⟨ 1

√2
(𝜆2, 𝜆3), 1

√2
(𝜇2, 𝜇3)⟩

, 𝜆, 𝜇 ∈ 𝔻,

and so 𝑘/𝜌 is positive semi-definite (actually a CP kernel). Being the product of two CP kernels, 𝑘

must satisfy the multiplier separation property. However, note that (letting 𝜔 = 𝑒2𝜋𝑖/3)

𝜌𝑧 − 𝜌𝜔𝑧 + 𝜌−𝜔𝑧 − 𝜌−𝑧 = 0,

for all 𝑧 ∈ 𝔻. Also, any two-vector subset of {𝜌𝑧, 𝜌𝜔𝑧, 𝜌−𝜔𝑧, 𝜌−𝑧} is linearly independent if 𝑧 ≠ 0.

This implies that 𝜌 does not have the AS property.

We now present examples of kernels satisfying the multiplier separation property.

Example (Products of powers of 2-point Pick kernels).

Let 𝑘 = 𝑘𝑡11 ⊗ 𝑘𝑡22 ⊗⋯⊗ 𝑘𝑡𝑛𝑛 , where 𝑛 ≥ 1, 𝑡𝑖 ≥ 1 and each 𝑘𝑖 is an irreducible kernel on 𝑋𝑖

with the 2-point scalar Pick property (note that, in view of [8, Lemma 7.2], every such kernel must

be nonzero on 𝑋𝑖 × 𝑋𝑖). If 𝑥, 𝑦 ∈ 𝑋𝑖 satisfy 𝑑𝑘𝑖(𝑥, 𝑦) = 𝛿, then the 2-point Pick property implies

the existence of a contractive multiplier 𝜙𝑥𝑦 ∈ Mult(ℋ𝑘𝑖) such that 𝜙𝑥𝑦(𝑥) = 𝛿 and 𝜙𝑥𝑦(𝑦) = 0.

Thus, each 𝑘𝑖 has the multiplier separation property and we also deduce, in view of Proposition

1.3.28, that the same must be true for 𝑘. Examples of such kernels (which are actually products of

powers of complete Pick kernels) include those of the form

𝑘((𝜆1,… , 𝜆𝑚), (𝜇1,… , 𝜇𝑚)) =
𝑚

∏
𝑖=1

1
(1 − ⟨𝑏𝑖(𝜆𝑖), 𝑏𝑖(𝜇𝑖)⟩)𝑡𝑖

,

where 𝑡𝑖 ≥ 1, 𝑏𝑖 ∶ 𝑋𝑖 → 𝔹𝑑 and (𝜆1,… , 𝜆𝑚), (𝜇1,… , 𝜇𝑚) lie in the polydomain 𝑋1×𝑋2×⋯×𝑋𝑚.

If each 𝑘𝑖 is defined on the same set 𝑋, Proposition 1.3.28(c) and the previous result imply

that ̃𝑘 ∶= 𝑘𝑡11 𝑘
𝑡2
2 ⋯𝑘𝑡𝑛𝑛 must also have the automatic separation property whenever every 𝑘𝑖 is an

irreducible 2-point Pick kernel.

Example (Hardy spaces on planar domains).

Suppose that 𝛺 ⊂ ℂ is a domain with boundary 𝜕𝛺 consisting of a finite collection of smooth

curves. Let 𝑑𝜎 be arclength measure on 𝜕𝛺 and define𝐻2(𝛺) to be the closure in 𝐿2(𝜕𝛺, 𝑑𝜎) of the
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subspace consisting of restrictions to 𝜕𝛺 of functions holomorphic on 𝛺 (see [5] and [68] for the

basic theory of these spaces). While the choice of the measure 𝑑𝜎 is not canonical, all the standard

choices lead to the same space of holomorphic functions on 𝛺 with equivalent norms. A fascinating

result due to Arcozzi, Rochberg and Sawyer (see [20, Corollary 13]) then tells us that 𝐻2(𝛺) admits

an equivalent norm with the property that with the new norm the space is a reproducing kernel

Hilbert space with a complete Pick kernel. In view of Proposition 1.3.28(f), we obtain that the

kernel of 𝐻2(𝛺) has the multiplier separation property.

Examples 1.3.6-1.3.6 serve as manifestations of a general observation: the multiplier separation

property will always be present in kernels obtained by performing any of the operations from

Proposition 1.3.28 to one or more 2-point Pick kernels. We state this as a corollary.

Corollary 1.3.32. Let ℓ be a kernel on 𝑋 defined by performing a finite number of any of the

operations from Proposition 1.3.28 to one or more kernels having the 2-point Pick property. Then,

ℓ has the multiplier separation property.

1.3.7 Automatic Separation for General Spaces

First, we prove a result (which mirrors Proposition 1.3.28) showing that certain operations on

kernels preserve the AS property.

Proposition 1.3.33. Suppose ℓ ∶ 𝑋 × 𝑋 → ℂ and 𝑘 ∶ 𝑆 × 𝑆 → ℂ are two AS kernels and let

𝜙 ∶ 𝑆 → 𝑋 be a function and 𝑎 ≥ 1. Suppose also that 𝜌 denotes any of the following kernels:

(a) ℓ ⊗ 𝑘;

(b) ℓ𝑎 (here, we also assume that ℓ is non-vanishing);

(c) ℓ ∘ 𝜙 (defined by ℓ ∘ 𝜙(𝜆, 𝜇) = ℓ(𝜙(𝜆), 𝜙(𝜇)));

(d) a kernel 𝜌 ∶ 𝑋 × 𝑋 → ℂ such that both 𝜌/ℓ and ℓ𝑎/𝜌 are positive semi-definite;

(e) a kernel 𝜌 ∶ 𝑋 × 𝑋 → ℂ such thatℋ𝜌 andℋℓ have equivalent norms.

Then, 𝜌 must also have the AS property.
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Proof. The ideas here are very similar to those used in the proof of Proposition 1.3.28 (one difference

being that we have to use Lemma 1.3.24 in place of Lemma 1.3.29), so we only prove (c)-(e).

For (c), let {𝑠𝑖} ⊂ 𝑆 be weakly separated by ℓ ∘ 𝜙, hence we can find 𝜖 > 0 such that any two points

𝑠𝑖 ≠ 𝑠𝑗 satisfy 𝑑ℓ∘𝜙(𝑠𝑖, 𝑠𝑗) > 𝜖. Recall (as in the proof of Proposition 1.3.28(c)) that

⟨(ℓ ∘ 𝜙)𝑠, (ℓ ∘ 𝜙)𝑡⟩ℋℓ∘𝜙
= ⟨ℓ𝜙(𝑠), ℓ𝜙(𝑡)⟩ℋℓ

, (1.31)

for every 𝑠, 𝑡 ∈ 𝑆. This implies that 𝑑ℓ(𝜙(𝑠𝑖), 𝜙(𝑠𝑗)) = 𝑑ℓ∘𝜙(𝑠𝑖, 𝑠𝑗) > 𝜖, for every 𝑖 ≠ 𝑗, hence the

sequence {𝜙(𝑠𝑖)} ⊂ 𝑋 is weakly separated by ℓ. But ℓ has the AS property, so {𝜙(𝑠𝑖)} must also be

𝑛-weakly separated by ℓ, for every 𝑛 ≥ 3. Thus, we can find positive constants 𝜖𝑛 > 0 such that for

every 𝑛-point subset {𝜙(𝜇1),… , 𝜙(𝜇𝑛)} of {𝜙(𝑠𝑖)} and for 𝑤1 = 𝜖𝑛, 𝑤2 = ⋯ = 𝑤𝑛 = 0, the matrix

[(1 − 𝑤𝑗𝑤𝑖)⟨ ̂ℓ𝜙(𝜇𝑖), ̂ℓ𝜙(𝜇𝑗)⟩ℋℓ
]1≤𝑖,𝑗≤𝑛

is positive semi-definite. In view of (1.31), the same must be true for the matrix

[(1 − 𝑤𝑗𝑤𝑖)⟨(̂ℓ ∘ 𝜙)𝜇𝑖, (̂ℓ ∘ 𝜙)𝜇𝑗⟩ℋℓ∘𝜙
]1≤𝑖,𝑗≤𝑛.

Lemma 1.3.10 then implies that {𝑠𝑖} is 𝑛-weakly separated by ℓ ∘ 𝜙, for every 𝑛 ≥ 3, so the proof of

(c) is complete.

For (d), suppose that 𝜌 is a kernel on 𝑋 satisfying the given hypotheses. Let {𝜆𝑖} ⊂ 𝑋 be a

sequence satisfying 𝑑𝜌(𝜆𝑖, 𝜆𝑗) > 𝜖 > 0, for every 𝑖 ≠ 𝑗. As in the proof of Proposition 1.3.28(d),

we obtain 𝑑ℓ(𝜆𝑖, 𝜆𝑗) > √1 − 𝑎√1 − 𝜖2, for every 𝑖 ≠ 𝑗. This implies that {𝜆𝑖} is weakly, and hence

𝑛-weakly, separated by ℓ, for every 𝑛 ≥ 3. Lemma 1.3.24 then allows us to deduce that {𝜆𝑖} must

also be 𝑛-weakly separated by 𝜌, for every 𝑛 ≥ 3, which concludes the proof.

Finally, suppose thatℋℓ andℋ𝜌 have equivalent norms. As in the proof of Proposition 1.3.28

(f), there exist constants 𝐶1, 𝐶2 > 0 such that (1.29) is satisfied. But then, we also know that for any

kernel 𝑘 ∶ 𝑋 × 𝑋 → ℂ and any 𝑛-point set {𝜇1,… , 𝜇𝑛} ⊂ 𝑋 we can write

1
dist( ̂𝑘𝜇1, span{ ̂𝑘𝜇2,… , ̂𝑘𝜇𝑛})
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= inf {||𝑓|| ∶ 𝑓 ∈ ℋ𝑘, 𝑓(𝜇2) = ⋯ = 𝑓(𝜇𝑛) = 0, 𝑓(𝜇1) = ||𝑘𝜇1||}.

This equality, combined with (1.29) and the equivalence of norms for ℋℓ,ℋ𝜌, implies that a

sequence in 𝑋 is 𝑛-weakly separated by ℓ if and only if it is 𝑛-weakly separated by 𝜌, for any 𝑛 ≥ 2,

and so, since ℓ is an AS kernel, we are done.

Remark 1.3.34. Let ℓ, 𝑘 be two AS kernels on 𝑋. In view of Proposition 1.3.33, the product ℓ ⋅ 𝑘

must have the AS property as well.

Next, we establish a general criterion for theAS property, one that is closely related to the nature

of interpolating sequences forℋℓ. In particular, we will show that, under some mild additional

assumptions, the kernel ℓ satisfies the AS property if and only if any weakly separated finite union

of “sufficiently sparse” sequences in 𝑋 forms anℋℓ-interpolating sequence.

Theorem 1.3.35. Suppose 𝑋 is a topological space, ℓ is a kernel on X and the following properties

are satisfied:

(Q0) No finite collection of kernel functions ℓ𝜆1,… , ℓ𝜆𝑚 can form a linearly dependent set if

|{𝜆1,… , 𝜆𝑚}| = 𝑚;

(Q1) ℓ ∶ 𝑋 × 𝑋 → ℂ is continuous;

(Q2) If {𝜆𝑖} ⊂ 𝑋 satisfies ||ℓ𝜆𝑖|| → ∞, then ||ℓ𝜆𝑖||
−1ℓ(𝜆𝑖, 𝜇) → 0 for every 𝜇 ∈ 𝑋;

(Q3) Let {𝜆𝑖} ⊂ 𝑋. Then, either ||ℓ𝜆𝑖|| → ∞ or {𝜆𝑖} contains a subsequence converging to a point

inside 𝑋.

Then, the following assertions are equivalent:

(i) ℓ has the automatic separation property.

(ii) Suppose {𝜆𝑖} is any weakly separated by ℓ sequence that satisfies ||ℓ𝜆𝑖|| → ∞ as 𝑖 → ∞.

Then, for any 𝑛 ≥ 3 and any decomposition {𝜆𝑖} = ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 } where ||||ℓ𝜇𝑘𝑗

|||| → ∞ as

𝑗 → ∞, for every 1 ≤ 𝑘 ≤ 𝑛,we can always find a subsequence {𝑚𝑖} such that ∪∞𝑗=1∪
𝑛
𝑘=1 {𝜇𝑘𝑚𝑗

}

is interpolating forℋℓ.
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Note that the extra hypotheses imposed on ℓ include properties (Q1)-(Q3) from the statement of

Theorem 1.3.21, as well as a new condition (Q0) ensuring that no finite collection of kernel functions

can be linearly dependent. This is to avoid the somewhat trivial situation where the failure of the

AS property would be caused by the existence of linearly dependent kernel functions ℓ𝜆1,… , ℓ𝜆𝑚

(where 𝑚 ≥ 3) such that no two kernels ℓ𝜆𝑖, ℓ𝜆𝑗 are linearly dependent if 𝑖 ≠ 𝑗.

Proof. First, suppose that ℓ satisfies the hypotheses of (ii). Working towards a contradiction, assume

that there exists {𝜆𝑖} ⊂ 𝑋 and 𝑛 ≥ 3 such that {𝜆𝑖} is (𝑛 − 1)-weakly separated but not 𝑛-weakly

separated by ℓ. Thus, we can find a subsequence ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 } of {𝜆𝑖} where |{𝜇1𝑗 ,… , 𝜇𝑛𝑗 }| = 𝑛

for every 𝑗 (but we may have 𝜇𝑘𝑗 = 𝜇𝑟𝑖 if 𝑘 ≠ 𝑟) and

lim
𝑗
dist( ̂ℓ𝜇1𝑗 , span{

̂ℓ𝜇2𝑗 ,… , ̂ℓ𝜇𝑛𝑗 }) = 0. (1.32)

In view of Q(0), ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 } must contain infinitely many points. We can also assume, without

loss of generality, that each subsequence {𝜇𝑘𝑗 }𝑗 either satisfies ||||ℓ𝜇𝑘𝑗
|||| → ∞ or converges to a point in

𝑋. This is possible because of (Q3) (we can keep extracting subsequences until we have the desired

properties).

Now, if every {𝜇𝑘𝑗 }𝑗 converges to a point 𝑝𝑘 in 𝑋, we can show (as in the proof of Theorem

1.3.21) that the kernel functions ℓ𝑝1,… , ℓ𝑝𝑛 are linearly dependent, which contradicts (Q0). On the

other hand, if at least one subsequence {𝜇𝑘′𝑗 }𝑗 satisfies ||||ℓ𝜇𝑘′𝑗
|||| → ∞ and at least one subsequence

{𝜇𝑘𝑗 }𝑗 converges to a point in 𝑋, we arrive at a contradiction (using properties (Q1)-(Q3)) in precisely

the same manner as in the proof of Theorem 1.3.21. Finally, if ||||ℓ𝜇𝑘𝑗
|||| → ∞ as 𝑗 → ∞, for every 𝑘,

the sequence ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 } will satisfy the hypotheses of (ii). Thus, we can extract a subsequence

∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇𝑘𝑚𝑗

} of ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 } that is interpolating forℋℓ. In particular, ∪∞𝑗=1 ∪

𝑛
𝑘=1 {𝜇𝑘𝑚𝑗

} must

be 𝑛-weakly separated by ℓ, which contradicts (1.32). Hence, ℓ must be an AS kernel.

For the converse, assume that ℓ possesses the automatic separation property. Let 𝑛 ≥ 3 and

suppose {𝜆𝑖} is a weakly separated by ℓ sequence that can be written as {𝜆𝑖} = ∪∞𝑗=1∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 }, where

||||ℓ𝜇𝑘𝑗
|||| → ∞ for every 1 ≤ 𝑘 ≤ 𝑛.Assume also, for convenience, that |{𝜇1𝑗 ,… , 𝜇𝑛𝑗 }| = 𝑛 for every 𝑗.
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The AS property tells us that {𝜆𝑖} has to be 𝑛-weakly separated by ℓ, for every 𝑛 ≥ 3. Arguing as in

the proof of Lemma 1.3.11, we can show that there exists 𝜖 > 0 such that the matrices

[(1 − 𝑤𝑚,𝑘𝑤𝑚.𝑟)⟨ ̂ℓ𝜇𝑟𝑗 ,
̂ℓ𝜇𝑘𝑗 ⟩]1≤𝑘,𝑟≤𝑛

are positive semi-definite for every 𝑚 ∈ {1,… , 𝑛} and 𝑗 ≥ 1, where 𝑤𝑘,𝑘 = 𝜖 and 𝑤𝑚,𝑘 = 0 if

𝑚 ≠ 𝑘 (without the assumption that |{𝜇1𝑗 ,… , 𝜇𝑛𝑗 }| = 𝑛, we would need to consider matrix blocks of

non-constant size |{𝜇1𝑗 ,… , 𝜇𝑛𝑗 }| ≤ 𝑛, but that wouldn’t affect the proof in any way). Adding together

the matrices corresponding to 𝑚 = 1, 2,… , 𝑛, we obtain the positivity condition
𝑛

∑
𝑘,𝑟=1

𝑎𝑘𝑎𝑟⟨ ̂ℓ𝜇𝑟𝑗 ,
̂ℓ𝜇𝑘𝑗 ⟩ ≥ 𝑐

𝑛

∑
𝑘=1

|𝑎𝑘|2, (1.33)

for every 𝑗 ≥ 1 and every choice of scalars 𝑎𝑘, 𝑎𝑟 (𝑐 can be taken to be 𝜖2/𝑛).

Our next step will be to extract a subsequence ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇𝑘𝑚𝑗

} that has a bounded below Grammian.

To achieve this, it suffices to find a subsequence {𝑚𝑗} such that for every 𝜌 ≥ 1,
𝜌

∑
𝑖,𝑗=1

𝑛

∑
𝑘,𝑟=1

𝑎𝑘𝑖 𝑎𝑟𝑗 ⟨ ̂ℓ𝜇𝑟𝑚𝑗
, ̂ℓ𝜇𝑘𝑚𝑖

⟩ > 𝑐
2[2 −

𝜌

∑
𝑖=1

2−𝑖]
𝜌

∑
𝑖=1

𝑛

∑
𝑘=1

|𝑎𝑘𝑖 |2, (1.34)

for every choice of scalars 𝑎𝑘𝑖 , 𝑎𝑟𝑗 .

We will construct {𝑚𝑗} inductively. First, choose 𝑚1 = 1. Then, (1.34) will be satisfied (for

𝜌 = 1) because of (1.33). Now, suppose that 𝜌 integers {𝑚1,… ,𝑚𝜌} have been chosen so that (1.34)

is satisfied. Without loss of generality, we can take our scalars 𝑎𝑘𝑖 to satisfy∑
𝜌+1
𝑖=1 ∑

𝑛
𝑘=1 |𝑎

𝑘
𝑖 |2 = 1.

By assumption, we know that ||||ℓ𝜇𝑘𝑗
|||| → ∞ for every 𝑘 and hence, by Lemma (1.3.22), there exists

an integer 𝑚𝜌+1 such that

||⟨ ̂ℓ𝜇𝑟𝑚𝜌+1
, ̂ℓ𝜇𝑘𝑚𝑖

⟩|| ≤
2−(𝜌+2)

2𝑛2𝜌 , (1.35)

for every 𝑘, 𝑟 ∈ {1,… , 𝑛} and 𝑖 ∈ {1,… , 𝜌}. This implies that

2
|
|
|

𝜌

∑
𝑖=1

𝑛

∑
𝑘,𝑟=1

𝑎𝑘𝑖 𝑎𝑟𝜌+1⟨ ̂ℓ𝜇𝑟𝑚𝜌+1
, ̂ℓ𝜇𝑘𝑚𝑖

⟩
|
|
|
≤ 2−(𝜌+2)𝑐. (1.36)

Now, we can combine our inductive hypothesis with (1.33) and (1.36) to obtain

𝜌+1

∑
𝑖,𝑗=1

𝑛

∑
𝑘,𝑟=1

𝑎𝑘𝑖 𝑎𝑟𝑗 ⟨ ̂ℓ𝜇𝑟𝑚𝑗
, ̂ℓ𝜇𝑘𝑚𝑖

⟩
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=
𝜌

∑
𝑖,𝑗=1

𝑛

∑
𝑘,𝑟=1

𝑎𝑘𝑖 𝑎𝑟𝑗 ⟨ ̂ℓ𝜇𝑟𝑚𝑗
, ̂ℓ𝜇𝑘𝑚𝑖

⟩ + 2ℜ[
𝜌

∑
𝑖=1

𝑛

∑
𝑘,𝑟=1

𝑎𝑘𝑖 𝑎𝑟𝜌+1⟨ ̂ℓ𝜇𝑟𝑚𝜌+1
, ̂ℓ𝜇𝑘𝑚𝑖

⟩]

+
𝑛

∑
𝑘,𝑟=1

𝑎𝑘𝜌+1𝑎𝑟𝜌+1⟨ ̂ℓ𝜇𝑟𝑚𝜌+1
, ̂ℓ𝜇𝑘𝑚𝜌+1

⟩

> 𝑐
2[2 −

𝜌

∑
𝑖=1

2−𝑖]
𝜌

∑
𝑖=1

𝑛

∑
𝑘=1

|𝑎𝑘𝑖 |2 − 2−(𝜌+2)𝑐 + 𝑐
𝑛

∑
𝑘=1

|𝑎𝑘𝜌+1|2 >

> 𝑐
2[2 −

𝜌

∑
𝑖=1

2−𝑖]
𝜌+1

∑
𝑖=1

𝑛

∑
𝑘=1

|𝑎𝑘𝑖 |2 − 2−(𝜌+2)𝑐

= 𝑐
2[2 −

𝜌+1

∑
𝑖=1

2−𝑖],

as desired.

We have thus found a subsequence ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇𝑘𝑚𝑗

} that has a bounded below Grammian. Now,

since (by Lemma 1.3.22) ̂ℓ𝜇𝑘𝑚𝑗
converges to 0 weakly for every 𝑘 ∈ {1,… , 𝑛}, we easily see that it

must have a subsequence (which we denote by { ̂ℓ𝜈𝑘𝑗 }) that is a Riesz sequence. This implies that

∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜈

𝑘
𝑗 } must have a bounded Grammian and so it has to be interpolating forℋℓ by Lemma

1.3.8. This concludes the proof.

An apparent limitation in applying Theorem 1.3.35 is that one first needs to know that there

exists a sufficient condition forℋℓ-interpolation having the form {(WS) by ℓ + (D)}, with the

property that condition (D) is always satisfied by any finite union of “sufficiently sparse” sequences.

Of course, establishing the sufficiency of such a condition in the first place is usually a highly non-

trivial problem! Nevertheless, as there already exists a large literature on the subject of interpolating

sequences in different function spaces, Theorem 1.3.35 will be of use in discovering new examples

of AS kernels.

First, we prove a lemma which will aid us in situations where a different metric or distance

function is used instead of the one induced by the kernel.

Lemma 1.3.36. Let ℓ be a kernel on the topological space 𝑋 satisfying conditions (Q1)-(Q3) from

the statement of Theorem 1.3.35 and also let 𝜌 ∶ 𝑋 × 𝑋 → [0,∞) be a continuous function such
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that 𝜌(𝜆, 𝜇) = 0 if and only if 𝜆 = 𝜇. Assume that if {𝜇𝑖} ⊂ 𝑋 converges to a point in 𝑋 and {𝜈𝑖} ⊂ 𝑋

satisfies ||ℓ𝜈𝑖|| → ∞, then there exists 𝜖 > 0 and 𝑖0 ∈ ℕ such that

𝜌(𝜇𝑖, 𝜈𝑖) > 𝜖,

for all 𝑖 ≥ 𝑖0. Finally, suppose that there exists a condition (C) such that a sequence {𝜆𝑖} ⊂ 𝑋 is

interpolating forℋℓ if and only if it satisfies (C) and also there exists 𝛿 > 0 such that 𝜌(𝜆𝑖, 𝜆𝑗) > 𝛿,

for every 𝑖 ≠ 𝑗. Then, a sequence in 𝑋 is interpolating forℋℓ if and only if it satisfies (C) and is

weakly separated by ℓ.

Proof. One direction is obvious; since any sequence {𝜆𝑖} satisfying 𝜌(𝜆𝑖, 𝜆𝑗) > 𝛿, for 𝑖 ≠ 𝑗, and (C)

is interpolating forℋℓ, it must also be weakly separated by ℓ.

For the converse, suppose that {𝜆𝑖} satisfies (C) and is weakly separated by ℓ.Aiming towards a

contradiction, assume that there exist subsequences {𝜇𝑖}, {𝜈𝑖} ⊂ {𝜆𝑖} such that 𝜇𝑖 ≠ 𝜈𝑖 for every 𝑖 and

also

lim
𝑖
𝜌(𝜇𝑖, 𝜈𝑖) = 0. (1.37)

We can additionally assume (in view of (Q3)) that {𝜇𝑖} either converges to a point in 𝑋 or satisfies

||ℓ𝜇𝑖|| → ∞ and an analogous assumption can be made for {𝜈𝑖}. Now, if both of them converge

to points 𝑝1, 𝑝2 ∈ 𝑋, the assumptions that ℓ is continuous and {𝜆𝑖} is weakly separated imply that

𝑑ℓ(𝑝1, 𝑝2) ≠ 0, hence 𝑝1 ≠ 𝑝2. But then, continuity of 𝜌 implies that

0 = lim
𝑖
𝜌(𝜇𝑖, 𝜈𝑖) = 𝜌(𝑝1, 𝑝2) ≠ 0,

a contradiction. On the other hand, if {𝜇𝑖} converges to a point in 𝑋 and {𝜈𝑖} satisfies ||ℓ𝜈𝑖|| → ∞, we

can find (in view of our assumptions) 𝜖 > 0 and 𝑖0 ∈ ℕ such that 𝜌(𝜇𝑖, 𝜈𝑖) > 𝜖 for all 𝑖 ≥ 𝑖0, which

again contradicts (1.37). Finally, assume that {𝜇𝑖}, {𝜈𝑖} both satisfy ||ℓ𝜇𝑖|| → ∞ and ||ℓ𝜈𝑖|| → ∞.

Mimicking the proof of “(i)⇒(ii)” from Theorem 1.3.35, we can extract a subsequence {𝑚𝑖} such

that the union {𝜇𝑚𝑖
} ∪ {𝜈𝑚𝑖

} is interpolating forℋℓ. This implies that {𝜇𝑚𝑖
} ∪ {𝜈𝑚𝑖

} must also satisfy

𝜌(𝜇𝑚𝑖
, 𝜈𝑚𝑖

) > 𝛿 > 0, for all 𝑖, which contradicts (1.37). Our proof is complete.
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Remark 1.3.37. In the setting of Lemma 1.3.36, assume that condition (C) possesses the following

additional property: every sequence in 𝑋 that can be written as {𝜆𝑖} = ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 }, where

||||ℓ𝜇𝑘𝑗
|||| → ∞ as 𝑗 → ∞, for every 1 ≤ 𝑘 ≤ 𝑛, contains a subsequence of the form ∪∞𝑗=1 ∪

𝑛
𝑘=1 {𝜇𝑘𝑚𝑗

}

that satisfies (C). If we also have that no two functions ℓ𝑧, ℓ𝑤 are linearly dependent if 𝑧 ≠ 𝑤, the

conclusion of Lemma 1.3.36 can be strengthened to give: {𝜆𝑖} ⊂ 𝑋 is weakly separated by ℓ if and

only if there exists 𝛿 > 0 such that 𝜌(𝜆𝑖, 𝜆𝑗) > 𝛿, for every 𝑖 ≠ 𝑗. We omit the proof of this claim,

as it is very similar to that of the previous Lemma.

Now, recall that, as seen in subsection 1.3.6, every kernel possessing the multiplier separation

property must also be an AS kernel. In particular, Corollary 1.3.32 tells us that, in a certain sense,

“proximity” to powers of products of 2-point Pick kernels guarantees that the kernel will have the

AS property. Well-studied examples of spaces associated with such kernels include (apart, of course,

from complete Pick spaces) Bergman spaces with standard weights on the 𝑛-dimensional unit ball,

where the reproducing kernel is equal to

ℓ𝛼(z,w) =
1

(1 − ⟨z,w⟩)𝑛+1+𝛼
, z,w ∈ 𝔹𝑛, 𝛼 > −1.

The norm ofℋℓ𝛼 is given by integration against the weighted Lebesgue measure 𝑑𝑣𝛼 defined as

𝑑𝑣𝛼(𝑧) = 𝑐𝛼(1 − |𝑧|2)𝛼𝑑𝑣(𝑧), where 𝑐𝛼 ensures that 𝑑𝑣𝛼 is a probability measure. See [149] for

more details on these spaces.

What happens then when we move beyond such weights? It would be natural to look at so-called

“large” Bergman spaces, where the weights are rapidly decreasing. One major difficulty when

studying such spaces arises from the lack of an explicit expression for the reproducing kernels (see

[83] and the references therein for more information). For a particular example, letℋ𝑘 denote the

Bergman space on 𝔻 with weight exp ( − 1

1−|𝑧|2
) and let

𝑧𝑗 = 1 − 2−𝑗, 𝑤𝑗 = 𝑧𝑗 + 𝑖2−5𝑗/4, 𝑗 ≥ 0.

As explained in [17, Example 4.13], {𝑧𝑗} ∪ {𝑤𝑗} forms a sequence in 𝔻 that isℋ𝑘-interpolating (in

particular, {𝑧𝑗}∪ {𝑤𝑗}must be weakly separated by 𝑘), but not weakly separated by𝐻∞ = Mult(ℋ𝑘).

Thus, 𝑘 does not have the multiplier separation property and Proposition 1.3.27 does not apply.
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Still, it turns out that 𝑘, as well as the kernels of many other large Bergman spaces on 𝔻, is an

AS kernel.

Example (Large Bergman spaces on 𝔻).

Given an increasing function ℎ ∶ [0, 1) → [0,∞) such that ℎ(0) = 0 and lim𝑟→1 ℎ(𝑟) = +∞,

we extend it by ℎ(𝑧) = ℎ(|𝑧|), 𝑧 ∈ 𝔻. We also assume that ℎ ∈ 𝐶2(𝔻) and 𝛥ℎ(𝑧) = ( 𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)ℎ(𝑥 + 𝑖𝑦) ≥ 1. Define the weighted Bergman space

𝐴2ℎ(𝔻) = {𝑓 ∈ Hol(𝔻) ∶ ||𝑓||2ℎ = ∫
𝔻
|𝑓(𝑧)|2𝑒−2ℎ(𝑧)𝑑𝑚(𝑧) < ∞},

where 𝑑𝑚 is area measure.

𝐴2ℎ(𝔻)-interpolating sequences for weights of polynomial growth (i.e. ℎ(𝑧) = −𝛼 log(1 −

|𝑧|), 𝛼 > 0) were characterized by Seip in [126] (see also [128] for a thorough account). Later

on, Borichev, Dhuez and Kellay [38] tackled the case of radial weights of arbitrary (more than

polynomial) growth. To state their results, let

𝜌(𝑟) = [(𝛥ℎ)(𝑟)]−1/2, 0 ≤ 𝑟 < 1.

Certain natural growth restrictions are imposed on 𝜌 in the setting of [38]. Examples of admissible

ℎ include

ℎ(𝑟) = log log
1

1 − 𝑟 ⋅ log
1

1 − 𝑟, ℎ(𝑟) = 1
1 − 𝑟 and ℎ(𝑟) = exp

1
1 − 𝑟.

Now, let𝒟(𝑧, 𝑟) denote the disc of radius 𝑟 centered at 𝑧 and define

𝑑𝜌(𝑧, 𝑤) =
|𝑧 − 𝑤|

min{𝜌(𝑧), 𝜌(𝑤)}
, 𝑧, 𝑤 ∈ 𝔻.

A subset 𝛤 ⊂ 𝔻 will be called 𝑑𝜌-separated if there exists 𝑐 > 0 such that 𝑑𝜌(𝑧, 𝑤) > 𝑐, for all

𝑧, 𝑤 ∈ 𝛤 such that 𝑧 ≠ 𝑤.Also, define the upper 𝑑𝜌-density of 𝛤 to be

𝐷+
𝜌 (𝛤) = lim sup

𝑅→∞
lim sup
|𝑧|→1,𝑧∈𝔻

Card(𝛤 ∩ 𝒟(𝑧, 𝑅𝜌(𝑧)))
𝑅2 .

By [38, Theorem 2.4], a sequence {𝜆𝑖} is interpolating for 𝐴2ℎ(𝔻) if and only if it is 𝑑𝜌-separated

and satisfies 𝐷+
𝜌 (𝛤) <

1

2
.
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Can Theorem 1.3.35 be applied here? Let ℓℎ denote the associated reproducing kernel. First,

note that 𝐴2ℎ(𝔻) satisfies condition (Q0), as it contains all polynomials (thus, if 𝜇1,… , 𝜇𝑚 ∈ 𝔻

are 𝑚 distinct points, we can always find 𝑓 ∈ 𝐴2ℎ(𝔻) such that 𝑓(𝜇1) = ⋯ = 𝑓(𝜇𝑚−1) = 0 and

𝑓(𝜇𝑚) ≠ 0). It also satisfies (Q1)-(Q3) and ||(ℓℎ)𝜆𝑖|| → ∞ if and only if |𝜆𝑖| → 1 (see Theorems

3.2-3.3 in [83]). Next, we observe that the conditions of Lemma 1.3.36 are satisfied as well. Indeed,

if {𝜇𝑖} ⊂ 𝔻 converges to a point in 𝔻 and {𝜈𝑖} ⊂ 𝔻 satisfies ||(ℓℎ)𝜈𝑖|| → ∞, then the fact that 𝜌

decreases to 0 near the point 1 (one of the additional restrictions imposed on 𝜌) implies that we can

find 𝜖 > 0 such that 𝑑𝜌(𝜇𝑖, 𝜈𝑖) > 𝜖 for all 𝑖. Thus, we can deduce that {𝜆𝑖} is interpolating for 𝐴2ℎ(𝔻)

if and only if it is weakly separated by ℓℎ and satisfies 𝐷+
𝜌 (𝛤) <

1

2
(actually, in view of Remark

1.3.37, one can easily show that 𝑑𝜌-separation is equivalent to weak separation by ℓℎ). Finally,

suppose that {𝜆𝑖} is a weakly separated by ℓℎ sequence that can be written as {𝜆𝑖} = ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 },

where ||||(ℓℎ)𝜇𝑘𝑗
|||| → ∞ as 𝑗 → ∞, for every 1 ≤ 𝑘 ≤ 𝑛. Then, we can always find a subsequence

{𝑚𝑗} such that 𝑆 = ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇𝑘𝑚𝑗

} satisfies 𝐷+
𝜌 (𝑆) = 0. Hence, 𝑆 must be interpolating for 𝐴2ℎ(𝔻)

and Theorem 1.3.35 allows us to conclude that ℓℎ has the AS property.

For our next example, we turn to spaces of Bargmann-Fock type. Since these are spaces of

entire functions, their multiplier algebras will consist solely of constants (as every multiplier must

be bounded). This implies that the associated reproducing kernels will not contain any (non-trivial)

complete Pick factors, thus Bargmann-Fock spaces are not really relevant in the context of Question

1.3.1. Still, it is worth noting that their kernels satisfy, in general, the AS property.

Example (Bargmann-Fock spaces on ℂ𝑛). Given 𝑛 ≥ 1 and 𝛼 > 0, the Bargmann-Fock space over

ℂ𝑛 is defined as

𝐹2𝛼 = {𝑓 ∈ Hol(ℂ𝑛) ∶ ||𝑓||2𝛼 = ∫
ℂ𝑛
|𝑓(𝑧)|2𝑒−𝛼|𝑧|2𝑑𝑚(𝑧) < ∞},

where 𝑑𝑚 denotes Lebesgue measure on ℂ𝑛.

Interpolating sequences for 𝐹2𝛼 in one variable have been completely characterized by Seip [127]

and Seip-Wallstén [129]. For the general case, a sufficient condition for 𝐹2𝛼 -interpolation was given

by Massaneda and Thomas in [94] (the authors also gave a necessary condition, although, as they
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admit, the gap between the two is rather large). Given {𝜆𝑖} ⊂ ℂ𝑛, we say that {𝜆𝑖} is separated if

there exists 𝛿 > 0 such that |𝜆𝑖 − 𝜆𝑗| > 𝛿, for all 𝑖 ≠ 𝑗.Also, let 𝐵(𝑧, 𝑟) denote the ball of center

𝑧 ∈ ℂ𝑛 and radius 𝑟. Given 𝛤 ⊂ ℂ𝑛, the upper density of 𝛤 is defined as

𝐷+(𝛤) = lim sup
𝑟→∞

sup
𝑧∈ℂ𝑛

Card(𝛤 ∩ 𝐵(𝑧, 𝑟))
𝑟2 .

[94, Theorem 5.1] states that any {𝜆𝑖} ⊂ ℂ𝑛 that is separated and satisfies 𝐷+({𝜆𝑖}) < 𝛼/𝑛 must be

interpolating for 𝐹2𝛼 .

Now, let ℓ(𝑧, 𝑤) = 𝑒𝛼𝑧𝑤 denote the reproducing kernel of 𝐹2𝛼 . Since |⟨ ̂ℓ𝑧, ̂ℓ𝑤⟩|2 = 𝑒−𝛼|𝑧−𝑤|2, a

sequence {𝜆𝑖} is weakly separated by ℓ if and only if it is separated. Also, it can be easily verified

that ℓ satisfies conditions (Q0)-(Q3) from Theorem 1.3.35. Next, suppose that {𝜆𝑖} is a weakly

separated by ℓ sequence that can be written as {𝜆𝑖} = ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇

𝑘
𝑗 }, where ||||ℓ𝜇𝑘𝑗

|||| → ∞ as 𝑗 → ∞,

for every 1 ≤ 𝑘 ≤ 𝑛. This implies that |𝜇𝑘𝑗 | → ∞, for every 1 ≤ 𝑘 ≤ 𝑛, hence we can always find a

subsequence {𝑚𝑗} such that 𝑆 = ∪∞𝑗=1 ∪
𝑛
𝑘=1 {𝜇𝑘𝑚𝑗

} satisfies 𝐷+(𝑆) = 0. In view of [94, Theorem 5.1],

𝑆 must be interpolating for 𝐹2𝛼 . By Theorem 1.3.35, we can conclude that ℓ has the AS property.

Remark 1.3.38. Let 𝜙 ∶ ℂ → ℝ be a subharmonic function and consider the weighted Bargmann-

Fock space defined on 𝔻 by

𝐹2𝜙 = {𝑓 ∈ Hol(ℂ) ∶ ||𝑓||2𝜙 = ∫
ℂ
|𝑓(𝑧)|2𝑒−2𝜙(𝑧)𝑑𝑚(𝑧) < ∞}.

In [34] and [110], the results of Seip [127] and Seip-Wallstén [129] were extended to 𝐹2𝜙 with

𝛥𝜙 ≃ 1. Later on, Marco, Massaneda and Ortega-Cerdà [91] described interpolating sequences

for 𝐹2𝜙 for a wide class of 𝜙 such that 𝛥𝜙 is a doubling measure. A further extension was achieved

by Borichev, Dhuez and Kellay in [38], where a class of radial 𝜙 having more than polynomial

growth was considered. Somewhat more recently, a sufficient condition for interpolation in “small”

Bargmann-Fock spaces (where 𝜙(𝑧) = 𝛼(log+ |𝑧|)2) was given by Baranov, Dumont, Hartmann

and Kellay in [29, Theorem 1.6]. A common characteristic shared by all conditions that appear

in the previously mentioned results (regardless of whether they are both necessary and sufficient

or merely sufficient for 𝐹2𝜙 -interpolation) is that they have the form: {{separation by 𝑑} + (D)},
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where 𝑑 ∶ ℂ × ℂ → [0,∞) plays the role of a distance function and (D) is a density condition that

is, roughly, always satisfied by any finite union of “sufficiently sparse” sequences. Thus, letting ℓ𝜙

denote the kernel of 𝐹2𝜙 , Theorem 1.3.35 tells us that, for any 𝜙 corresponding to one of the previous

cases and such that ℓ𝜙 satisfies (Q0)-(Q3) and 𝑑 satisfies the hypotheses of Lemma 1.3.36, ℓ𝜙 will

have the AS property.

We end this subsection by giving a general class of pairs (𝑠, ℓ) for which Question 1.3.1 has a

positive answer.

Theorem 1.3.39. Let ℓ be a kernel on 𝑋 defined by performing a finite number of any of the

operations from Proposition 1.3.33 to one or more kernels having the 2-point Pick property and/or

to one or more kernels from Example 1.3.7. Suppose also that 𝑠 is a complete Pick factor of ℓ.

Then, a sequence {𝜆𝑖} ⊂ 𝑋 is interpolating for Mult(ℋ𝑠,ℋℓ) if and only if it satisfies the Carleson

measure condition forℋ𝑠 and is weakly separated by ℓ.

Proof. This is a consequence of Corollary 1.3.20 and of Propositions 1.3.27 and 1.3.33, since

2-point Pick kernels and the kernels from Example 1.3.7 are all AS kernels.

1.3.8 AHolomorphic Counterexample

In this subsection, we construct a holomorphic pair (𝑠, ℓ) on 𝔻2, where 𝑠 is a CP factor of ℓ and

ℓ satisfies properties (Q0)-(Q3) from Theorem 1.3.35, such that there exists an (infinite) sequence

{𝜆𝑖} ⊂ 𝔻2 satisfying the Carleson measure condition forℋ𝑠 and being weakly separated by ℓ, but

not Mult(ℋ𝑠,ℋℓ)-interpolating. In particular, we will construct a sequence that is weakly but not

4-weakly separated by ℓ.

Example. Letℋ𝑘 denote the weighted Bergman space on 𝔻 with weight 𝑒
− 1
1−|𝑧|2 and define the

kernels

ℓ((𝜆1, 𝜆2), (𝜇1, 𝜇2)) =
𝑘(𝜆1, 𝜇1) + 𝑘(𝜆2, 𝜇2)
(1 − 𝜆1𝜇1)(1 − 𝜆2𝜇2)

,
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and

𝑠((𝜆1, 𝜆2), (𝜇1, 𝜇2)) =
1

2 − 𝜆1𝜇1 − 𝜆2𝜇2
=

1

2

1 − ⟨ 1
√2
(𝜆1, 𝜆2),

1
√2
(𝜇1, 𝜇2)⟩

,

where (𝜆1, 𝜆2), (𝜇1, 𝜇2) ∈ 𝔻 × 𝔻.

Evidently, 𝑠 is a complete Pick kernel. Also, letting 𝐻2
𝔻2 denote the Hardy space on 𝔻2, we

observe that the vector-valued function 𝜙(𝜆1, 𝜆2) = [𝜆1/√2 𝜆2/√2] ∈ Mult(𝐻2
𝔻2 ⊗ ℂ2, 𝐻2

𝔻2)

is a contractive multiplier. This implies that 𝑠 is a complete Pick factor of 1/(1 − 𝜆1𝜇1)(1 −

𝜆2𝜇2) and hence also of ℓ. Regarding ℓ, it is easily verified that ℓ((𝜆1, 𝜆2), (𝜇1, 𝜇2)) is of the form

∑∞
𝑛,𝑚=0 𝑎𝑛,𝑚(𝜆1𝜇1)

𝑛(𝜆2𝜇2)𝑚, where every 𝑎𝑛,𝑚 is nonzero. We deduce that the monomials 𝜆𝑛1𝜆𝑚2

form a complete orthogonal set forℋℓ. Thus, ℓ satisfies (Q0) (and the same must be true for 𝑠). In

view of [83, Theorems 3.2-3.3], ℓ must also satisfy (Q1)-(Q3) (this is because 𝑘 already satisfies

these properties). Finally, it is worth noting that the existence of the factor 1/(1 − 𝜆1𝜇1)(1 − 𝜆2𝜇2)

implies that Mult(ℋℓ) = 𝐻∞(𝔻2).

Now, define the sequence

𝜆4𝑗+𝑛 = (𝑧4𝑗+𝑛, 𝑤4𝑗+𝑛) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(1 − 2−𝑗, 1 − 2−𝑗), if 𝑛 = 0;

(1 − 2−𝑗, 1 − 2−𝑗 + 𝑖2−5𝑗/4), if 𝑛 = 1;

(1 − 2−𝑗 + 𝑖2−5𝑗/4, 1 − 2−𝑗), if 𝑛 = 2;

(1 − 2−𝑗 + 𝑖2−5𝑗/4, 1 − 2−𝑗 + 𝑖2−5𝑗/4), if 𝑛 = 3,

where 𝑗 ≥ 1. Letting

𝐾((𝜆1, 𝜆2), (𝜇1, 𝜇2)) = 𝑘(𝜆1, 𝜇1) + 𝑘(𝜆2, 𝜇2),

it can be easily verified that

𝐾𝜆4𝑗 − 𝐾𝜆4𝑗+1 − 𝐾𝜆4𝑗+2 + 𝐾𝜆4𝑗+3 = 0,
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for all 𝑗 ≥ 1. Thus,

det[⟨ ̂𝐾𝜆4𝑗+𝑛, ̂𝐾𝜆4𝑗+𝑚⟩]0≤𝑛,𝑚≤3 = 0, (1.38)

for all 𝑗 ≥ 1.Also, let 𝑟 and 𝑡 denote the Szegő kernels on𝔻 and𝔻2, respectively. A short calculation

reveals that

lim
𝑗

𝑟(1 − 2−𝑗, 1 − 2−𝑗 + 𝑖2−5𝑗/4)
√𝑟(1 − 2−𝑗, 1 − 2−𝑗)𝑟(1 − 2−𝑗 + 𝑖2−5𝑗/4, 1 − 2−𝑗 + 𝑖2−5𝑗/4)

= 1.

Thus, we obtain

lim
𝑗
⟨ ̂𝑡𝜆4𝑗+𝑛, ̂𝑡𝜆4𝑗+𝑚⟩ = lim

𝑗
[⟨ ̂𝑟𝑧4𝑗+𝑛, ̂𝑟𝑧4𝑗+𝑚⟩ ⋅ ⟨ ̂𝑟𝑤4𝑗+𝑛

, ̂𝑟𝑤4𝑗+𝑚
⟩] = 1,

for all 𝑛,𝑚 ∈ {0, 1, 2, 3}. In view of (1.38) and the previous limit, we can write

det[⟨ ̂ℓ𝜆4𝑗+𝑛, ̂ℓ𝜆4𝑗+𝑚⟩]0≤𝑛,𝑚≤3

= det[⟨ ̂𝐾𝜆4𝑗+𝑛, ̂𝐾𝜆4𝑗+𝑚⟩ ⋅ ⟨ ̂𝑡𝜆4𝑗+𝑛, ̂𝑡𝜆4𝑗+𝑚⟩]0≤𝑛,𝑚≤3 → 0, (1.39)

as 𝑗 → ∞.

Next, we prove the existence of 𝜖 > 0 such that

𝑑ℓ(𝜆4𝑗+𝑛, 𝜆4𝑗+𝑚) > 𝜖, (1.40)

for all 𝑗 ≥ 1 and 𝑛,𝑚 ∈ {0, 1, 2, 3}, 𝑛 ≠ 𝑚. First, note that the discussion preceding Example 1.3.7

implies the existence of 𝛿 > 0 such that

𝑑𝑘(1 − 2−𝑗, 1 − 2−𝑗 + 𝑖2−5𝑗/4) > 𝛿, ∀𝑗 ≥ 1. (1.41)

Now, let 𝑗 ≥ 1 and 𝑛,𝑚 ∈ {0, 1, 2, 3}, with 𝑛 ≠ 𝑚. Without loss of generality, we may as-

sume that 𝑧4𝑗+𝑛 = 1 − 2−𝑗 and 𝑧4𝑗+𝑚 = 1 − 2−𝑗 + 𝑖2−5𝑗/4 (if 𝑧4𝑗+𝑛 = 𝑧4𝑗+𝑚, we would

work with 𝑤4𝑗+𝑛 and 𝑤4𝑗+𝑚 instead). Note that |𝑤4𝑗+𝑛|, |𝑤4𝑗+𝑚|, |𝑧4𝑗+𝑛| ≤ |𝑧4𝑗+𝑚|, hence

||𝑘𝑤4𝑗+𝑛
||, ||𝑘𝑤4𝑗+𝑚

||, ||𝑘𝑧4𝑗+𝑛|| ≤ ||𝑘𝑧4𝑗+𝑚|| (𝑘 is rotationally invariant). Also, in view of (1.30)

and (1.41), we can find 𝑓 ∈ ℋ𝑘 such that ||𝑓||ℋ𝑘
< 1/𝛿, 𝑓(𝑧4𝑗+𝑛) = 0 and 𝑓(𝑧4𝑗+𝑚) = ||𝑘𝑧4𝑗+𝑚||.

Define

𝐹(𝜆1, 𝜆2) =
√||𝑘𝑧4𝑗+𝑚||2 + ||𝑘𝑤4𝑗+𝑚

||2

||𝑘𝑧4𝑗+𝑚||
𝑓(𝜆1), (𝜆1, 𝜆2) ∈ 𝔻2.
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[113, Theorem 5.4] implies that ||𝑓||ℋ𝐾 ≤ ||𝑓||ℋ𝑘
. Thus,

||𝐹||ℋ𝐾 ≤
√||𝑘𝑧4𝑗+𝑚||2 + ||𝑘𝑧4𝑗+𝑚||2

||𝑘𝑧4𝑗+𝑚||
||𝑓||ℋ𝑘

< √2/𝛿.

Also, observe that 𝐹(𝜆4𝑗+𝑛) = 0 and

𝐹(𝜆4𝑗+𝑚) =
√||𝑘𝑧4𝑗+𝑚||2 + ||𝑘𝑤4𝑗+𝑚

||2

||𝑘𝑧4𝑗+𝑚||
𝑓(𝑧4𝑗+𝑚) = ||𝐾𝜆4𝑗+𝑚||.

In view of (1.30), we obtain 𝑑𝐾(𝜆4𝑗+𝑛, 𝜆4𝑗+𝑚) > 𝛿/√2. An application of Lemma 1.3.24 then gives

us (1.40).

Next, note that both ||ℓ𝜆4𝑗+𝑛||, ||𝑠𝜆4𝑗+𝑛|| → ∞ as 𝑗 → ∞, for all 𝑛 ∈ {0, 1, 2, 3}. Thus, there exists a

subsequence {𝑚𝑗} such that ∪3𝑛=0{𝜆4𝑚𝑗+𝑛} satisfies the Carleson measure condition forℋ𝑠. Also,

after some calculations, we can deduce the existence of 𝜖′ > 0 with the property

𝑑𝑡(𝜆4𝑗+𝑛, 𝜆4𝑖+𝑚) > 𝜖′, (1.42)

for all 𝑖 ≠ 𝑗 and all 𝑛,𝑚 ∈ {0, 1, 2, 3}. Lemma 1.3.24 then implies that

𝑑ℓ(𝜆4𝑗+𝑛, 𝜆4𝑖+𝑚) > 𝜖′, (1.43)

for all 𝑖 ≠ 𝑗 and all 𝑛,𝑚 ∈ {0, 1, 2, 3}. (1.40) combined with (1.43) tell us that ∪3𝑛=0{𝜆4𝑗+𝑛} (and

hence ∪3𝑛=0{𝜆4𝑚𝑗+𝑛} as well) is weakly separated by ℓ. However, Lemma 1.3.10 and (1.39) imply

that ∪3𝑛=0{𝜆4𝑗+𝑛} (and hence ∪3𝑛=0{𝜆4𝑚𝑗+𝑛} as well) is not 4-weakly separated by ℓ. We deduce that

the pair (𝑠, ℓ) constitutes a counterexample to Question 1.3.1.

Remark 1.3.40. The specific choice of 𝑠 in the previous example is not important; all that was

required for the proof to go through was a CP factor 𝑠 of ℓ such that ||𝑠𝜆4𝑗+𝑛|| → ∞ as 𝑗 → ∞, for

all 𝑛 ∈ {0, 1, 2, 3}.
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Chapter 2

Operator Inequalities on the Annulus

The material contained in this chapter originates in the following three papers:

Paper III G. Tsikalas. “A note on a spectral constant associated with an annulus”. In: Oper. Matrices

16.1 (2022), pp. 95–99

Paper IV G. Tsikalas. “A von Neumann type inequality for an annulus”. In: J. Math. Anal. Appl. 506.2

(2022), Paper No. 125714, 12

Paper V M. T. Jury and G. Tsikalas. “Positivity conditions on the annulus via the double-layer potential

kernel”. 2023, submitted. arXiv: 2307.13387

One exception is Section 2.4, which is unpublished.

2.1 Introduction

Let 𝑋 be a closed set in the complex plane and let ℛ(𝑋) denote the algebra of complex-valued

bounded rational functions on 𝑋, equipped with the supremum norm

||𝑓||𝑋 = sup{|𝑓(𝑥)| ∶ 𝑥 ∈ 𝑋}.

Suppose that 𝑇 is a bounded linear operator acting on the (complex) Hilbert space 𝐻. Suppose also

that the spectrum 𝜎(𝑇) of 𝑇 is contained in the closed set 𝑋. Let 𝑓 = 𝑝/𝑞 ∈ ℛ(𝑋). As the poles of

the rational function 𝑓 are outside of𝑋, the operator 𝑓(𝑇) is naturally defined as 𝑓(𝑇) = 𝑝(𝑇)𝑞(𝑇)−1

or, equivalently, by the Riesz-Dunford functional calculus (see e.g. [55] for a treatment of this
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topic). Given a fixed constant 𝐾 > 0, we will say that the set 𝑋 is a 𝐾-spectral set for 𝑇 if 𝜎(𝑇) ⊆ 𝑋

and the inequality

||𝑓(𝑇)|| ≤ 𝐾||𝑓||𝑋

holds for every 𝑓 ∈ ℛ(𝑋). The set 𝑋 is a spectral set for 𝑇 if it is a 𝐾-spectral set with 𝐾 = 1.

Spectral sets were introduced and studied by von Neumann in [105], where he proved the

celebrated result that an operator 𝑇 is a contraction if and only if the closed unit disk is a spectral

set for 𝑇. They have applications to the approximate computation of norms of matrix functions, an

essential task in many fields of pure and applied mathematics, including numerical and functional

analysis (see e.g. [76, 82, 111]). Inequalities of von Neumann-type have also found deep applications

in complex geometry, such as an alternative proof of Lempert’s theorem on the Carathéodory metric

[6] and the solution of the Carathéodory extremal problem for the symmetrized bidisc [10]. We

refer the reader to the book [111] and the survey [28] for more detailed presentations and more

information on 𝐾-spectral sets.

2.1.1 The Hardy Space and von Neumann’s Inequality

von Neumann’s original proof of his inequality consisted in first showing that it holds for the

Möbius transformations of the disk, and then reducing the case of any general analutic function

to this special case. Since then, his result has been proved in many different ways (in [111] alone,

there exist five different proofs). A particularly illuminating proof was given by Sz.-Nagy in [136]

as an application of his famous dilation theorem, which asserts that every contraction operator can

be dilated to a unitary operator. We now present another well-known proof of this inequality that is

closely tied to the Hardy space 𝐻2.

Recall that 𝐻2 is the Hilbert space of functions 𝑓 analytic in the unit disc 𝔻 = {|𝑧| < 1} and

satisfying

||𝑓||22 ∶= sup
0≤𝑟<1

∫
2𝜋

0
|𝑓(𝑟𝑒𝑖𝜃)|2𝑑𝜃2𝜋 < ∞.
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Its multiplier algebra can be isometrically identifiedwith𝐻∞, the algebra of all bounded holomorphic

functions on 𝔻 equipped with the norm ||𝜙||∞ ∶= sup𝑧∈𝔻 |𝜙(𝑧)| (see also Chapter 1). Now, a well-

known characterization tells us that a function 𝜙 ∶ 𝔻 → ℂ is a multiplier of 𝐻2 with norm less than

or equal to 1 if and only if there exists a positive semi-definite function 𝑘 ∶ 𝔻 × 𝔻 → ℂ such that

1 − 𝜙(𝜆)𝜙(𝜇) = 𝑘(𝜆, 𝜇)(1 − 𝜆𝜇̄) on 𝔻 × 𝔻.

Since 𝑘 is positive semi-definite on 𝔻 × 𝔻, it can be written as a (possibly infinite) sum of dyads

(i.e. positive semi-definite functions of the form 𝑓(𝜆)𝑓(𝜇)). Taking 𝜙 to be a polynomial, we can

then apply both sides of the last equality to an arbitrary contraction 𝑇 by means of the hereditary

functional calculus (see Section 2.8.3 in [14] for the details) to obtain

𝐼 − 𝜙(𝑇)𝜙(𝑇)∗ = ∑
𝑖≥0

𝑓𝑖(𝑇)(𝐼 − 𝑇𝑇∗)𝑓𝑖(𝑇)∗.

Since ||𝑇|| ≤ 1 is equivalent to 𝐼 − 𝑇𝑇∗ ≥ 0, standard positivity arguments can be used to conclude

that 𝐼 − 𝜙(𝑇)𝜙(𝑇)∗ ≥ 0, as desired. In Section 2.3, we will deduce a certain von Neumann-type

inequality for an operator class on the annulus by applying analogous positivity arguments to model

formulas in an appropriate function space setting.

2.1.2 Crouzeix’s Conjecture and the Double-Layer Potential

Given a Hilbert space 𝐻 and 𝑇 ∈ ℬ(𝐻), we let

𝑊(𝑇) = {⟨𝑇𝑥, 𝑥⟩ ∶ 𝑥 ∈ 𝐻, ||𝑥|| = 1}

denote the numerical range of 𝑇. The following conjecture first appeared in 2004 [62] and has since

continued to generate intense research activity.

Crouzeix’s conjecture. 𝑊(𝑇) is a 2-spectral set for 𝑇, for every 𝑇 ∈ ℬ(𝐻).

This conjecture is already known to hold if𝑊(𝑇) is disk (a result originally due to Okubo and

Ando [108] via dilation theory), if 𝑇 is 2 × 2 [62] and for a few other special classes of matrices,
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see [75], [58], [50], [77]. The basic technique used in the proof of those special cases is to consider

a conformal mapping 𝜙 ∶ 𝑊(𝑇)o → 𝔻 and then show that 𝜙(𝑇) must be similar to a contraction via

a similarity transformation with condition number at most 2.

In [61], Crouzeix and Palencia, improving earlier results of Delyon-Delyon [66] and Crouzeix

[57], showed that𝑊(𝑇) is always a (1 + √2)-spectral set for 𝑇, and this remains the best known

general estimate to date. The key ingredient in the Crouzeix-Palencia proof is the use of an integral

representation formula for operators based on the Cauchy transform and the so-called double layer

potential kernel. More precisely, given any smoothly bounded, open 𝛺 ⊂ ℂ, let 𝒜(𝛺) denote the

uniform algebra of continuous functions 𝑓 on 𝛺 that are holomorphic on 𝛺. Assuming 𝑓 ∈ 𝒜(𝛺)

and 𝑇 ∈ ℬ(𝐻) is such that 𝜎(𝑇) ⊂ 𝛺, we may consider the Cauchy transforms of 𝑓 and 𝑓

𝑓(𝑇) = (𝐶𝑓)(𝑇) = 1
2𝜋𝑖 ∫𝜕𝛺

𝑓(𝜎)(𝜎 − 𝑇)−1𝑑𝜎,

(𝐶𝑓)(𝑇) = 1
2𝜋𝑖 ∫𝜕𝛺

𝑓(𝜎)(𝜎 − 𝑇)−1𝑑𝜎.

We also define the transform of 𝑓 by the double-layer potential kernel

𝑆(𝑓, 𝑇) = ∫
𝜕𝛺

𝜇(𝜎(𝑠), 𝑇)𝑓(𝜎(𝑠))𝑑𝑠,

where 𝑠 denotes the arc length of 𝜎 = 𝜎(𝑠) on the (counter-clockwise) oriented boundary 𝜕𝛺 and

𝜇(𝜎(𝑠), 𝑇) is the self-adjoint operator defined (for 𝜎(𝑠) ∉ 𝜎(𝑇)) as

𝜇(𝜎(𝑠), 𝑇) = 1
2𝜋𝑖(𝜎

′(𝑠)(𝜎(𝑠) − 𝑇)−1 − 𝜎′(𝑠)(𝜎(𝑠) − 𝑇∗)−1).

Note that 𝑆(𝑓, 𝑇) = 𝑓(𝑇) + (𝐶𝑓)(𝑇)∗ and thus ∫𝜕𝛺 𝜇(𝜎, 𝑇)𝑑𝑠 = 2𝐼.

The double-layer potential kernel and the numerical range can then be related as follows: we

have𝑊(𝑇) ⊂ 𝛺 if and only if 𝜇(𝜎, 𝑇) is positive for every 𝜁 ∈ 𝜕𝛺. This leads to the estimate

||𝑓(𝑇) + (𝐶 ̄𝑓)(𝑇)∗|| ≤ 2 sup
𝑧∈𝛺

|𝑓(𝑧)|,

for every such 𝑇 and 𝑓 ∈ 𝒜(𝛺). An abstract functional analysis lemma (see [121][Lemma 1.1],

further developments in [53]) can then used, in conjuction with the fact that 𝑓 ↦ 𝐶𝑓 is contractive

for convex 𝛺, to estimate ||𝑓(𝑇)|| directly and conclude the Crouzeix-Palencia proof.
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A special class of functions that have played a vital role in recent investigations of the Crouzeix

conjecture, are the so-called extremal functions. Given 𝐴 ∈ ℂ𝑛×𝑛, 𝜎(𝐴) ⊂ 𝛺 convex, a function

𝑓 ∈ 𝐻∞(𝛺) is extremal for (𝐴,𝛺) if it maximizes ||𝑓(𝐴)||/||𝑓||𝛺 amongst all functions in 𝐻∞(𝛺).

Extremal functions always exist and, by Nevanlinna-Pick theory, must have the form 𝑓 = 𝐵 ∘ 𝜙,

where 𝜙 ∶ 𝛺 → 𝔻 is a conformal mapping and 𝐵 is a finite Blaschke product of degree at most 𝑛−1.

The structure and properties of these functions and associated operators 𝑓(𝐴) (e.g. the uniqueness

and possible degrees of 𝐵) have been studied in [120] and in [35], however many questions remain.

A very important result in this direction is the following orthogonality property: in the previous

setting, if we also have ||𝑓(𝐴)|| > 1 and ||𝑓(𝐴)𝑥|| = ||𝑓(𝐴)|| for the unit vector 𝑥, then

⟨𝑓(𝐴)𝑥, 𝑥⟩ = 0.

This characterizes extremal pairs (𝑓, 𝐴) in the 2 × 2 case (but not in the 3 × 3 case) and leads to a

very simple proof of Crouzeix’s conjecture in the case that𝑊(𝐴) is a disk (see [43]).

We mention one more application of the double-layer potential kernel, which will motivate

our investigations in Section 2.5. Let 𝜌 > 0. Denote by 𝒞𝜌 the class of all bounded Hilbert space

operators 𝑇 ∈ ℬ(𝐻) that have a unitary 𝜌-dilation, i.e. there exists a Hilbert space 𝐾 ⊃ 𝐻 and a

unitary 𝑈 ∈ ℬ(𝐾) such that

𝑇𝑛 = 𝜌𝑃𝐻𝑈𝑛|𝐻, 𝑛 = 1, 2,… ,

where 𝑃𝐻 is the orthogonal projection of 𝐾 onto 𝐻. The elements of 𝒞𝜌 are referred to as 𝜌-

contractions. 𝒞𝜌 was introduced by Sz.-Nagy and Foiaş [138] (see also [137, Chapter 1]) and has

subsequently been investigated by many authors (see e.g. [46] and the references therein). It is

known that 𝒞1 is precisely the set of contractions on 𝐻 [136], while 𝒞2 is the set of operators whose

numerical range is contained in 𝔻 (see [31], [33]). An alternate characterization of 𝒞𝜌 (see [47, p.

315]) then states that 𝑇 is a 𝜌-contraction if and only if the operator

𝑆𝔻,𝜌 ∶ 𝒜(𝔻) → ℬ(𝐻)

𝑓 ↦ 1
𝜌[𝑓(𝑇) + (𝐶𝑓)(𝑇)∗ +

(𝜌 − 2)
2𝜋𝑖 ∫

𝜕𝔻
𝑓(𝜁)𝑑𝜁] (2.1)
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= 1
𝜌[𝑓(𝑇) + (𝜌 − 1)𝑓(0)]

is contractive, where 𝐶𝑓 is taken over 𝔻. The mapping 𝑆𝔻,𝜌, a translate of the double-layer potential

integral operator, has proved itself a valuable tool for better understanding 𝒞𝜌. As a recent example,

Clouâtre, Ostermann and Ransford [53], building on ideas from [43], used the contractivity of

𝑆𝔻,𝜌 as a stepping stone for an alternative, simple proof of the fact that 𝔻 is a 𝜌-spectral set for 𝑇

whenever 𝑇 is a 𝜌-contraction (with 𝜌 ≥ 1), a result originally proved by Okubo and Ando [108].

2.1.3 The Annulus as a 𝐾-spectral Set

Let 𝑋 = 𝐴𝑅 ∶= {1/𝑅 ≤ |𝑧| ≤ 𝑅} (𝑅 > 1) denote the closed annulus, the intersection of the

two closed disks 𝐷1 = {|𝑧| ≤ 𝑅} and 𝐷2 = {|𝑧| ≥ 1/𝑅}. The intersection of two spectral sets is not

necessarily a spectral set; counterexamples for the annulus were presented in [104], [112] and [143].

However, the same question for 𝐾-spectral sets remains open (the counterexamples for the spectral

set case show that we will not, in general, be able to use the same constant for the intersection).

Regarding the annulus in particular, Shields proved that, given an invertible operator 𝑇 ∈ ℬ(𝐻)

with ||𝑇|| ≤ 𝑅 and ||𝑇−1|| ≤ 𝑅, 𝐴𝑅 is a 𝐾-spectral set for 𝑇 with 𝐾 = 2 + √(𝑅2 + 1)/(𝑅2 − 1),

see [133, Proposition 23] . This bound is large if 𝑅 is close to 1. In this context, Shields raised

the question of finding the smallest constant 𝐾 = 𝐾(𝑅) such that 𝐴𝑅 is 𝐾(𝑅)-spectral, see [133,

Question 7] . In particular, he asked whether this optimal constant 𝐾(𝑅) would remain bounded.

Motivated by Shields’ results, we define the quantum annulus ℚ𝔸𝑅 as the class of all operators

𝑇 ∈ ℬ(𝐻) with ||𝑇|| ≤ 𝑅 and ||𝑇−1|| ≤ 𝑅. Thus, 𝐾(𝑅) can be equivalently defined as the smallest

constant 𝐾 such that 𝐴𝑅 is a 𝐾-spectral set for every 𝑇 ∈ ℚ𝔸𝑅. The question whether 𝐾(𝑅) is

uniformly bounded was answered positively by Badea, Beckermann and Crouzeix in [27, Theorem

1.2], where they obtained that (for every 𝑅 > 1)

4
3 < 𝛾(𝑅) ∶= 2(1 − 𝑅−2)

∞

∏
𝑛=1

( 1 − 𝑅−8𝑛

1 − 𝑅4−8𝑛 )
2 ≤ 𝐾(𝑅) ≤ 2 + 𝑅 + 1

√𝑅2 + 𝑅 + 1
≤ 2 + 2

√3
.

The quantity 𝛾(𝑅) was numerically shown to be greater than or equal to 𝜋/2 (leading to the universal

lower bound 𝜋/2 for 𝐾(𝑅)) and, in addition, tends to 2 as 𝑅 tends to infinity.
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Two subsequent improvements were made to the upper bound for 𝐾(𝑅): the first one in [59,

Lemma 2.1] by Crouzeix and the most recent one in [63, p. 7] by Crouzeix and Greenbaum, where

it was proved that

𝐾(𝑅) ≤ 1 + √2, ∀𝑅 > 1.

As for the lower bound, Badea obtained in [26, p. 242] the statement

3

2 < 2 1 + 𝑅2 + 𝑅
1 + 𝑅2 + 2𝑅 ≤ 𝐾(𝑅), ∀𝑅 > 1,

where the quantity 2(1 + 𝑅2 + 𝑅)/(1 + 𝑅2 + 2𝑅) again tends to 2 as 𝑅 tends to infinity. In Section

2.2, we will improve the aforementioned estimates by showing that 2 is actually a universal lower

bound for 𝐾(𝑅), for every 𝑅 > 1.

What happens if we restrict 𝑇 to the smaller class

ℱ𝑅 ∶= {𝑇 ∈ ℬ(𝐻) ∶ 𝑅2𝑇−1(𝑇−1)∗ + 𝑅2𝑇𝑇∗ ≤ 𝑅4 + 1}? (2.2)

= {𝑇 ∈ ℬ(𝐻) ∶ 𝑞(𝑇, 𝑇∗) ≥ 0},

where 𝑞 is the hereditary Laurent polynomial 𝑞(𝑧, 𝑤) = (𝑅2 − 𝑧𝑤)(𝑅2 − 𝑧−1𝑤−1)? In Section 2.3,

we will show that 𝐴𝑅 is a √2-spectral set for any 𝑇 ∈ ℱ𝑅, the constant √2 being optimal.

In [30], Bello and Yakubovich asked whether a certain refinement of ℱ𝑅 is equal to the class of

all operators that have 𝐴𝑅 as a spectral set. In Section 2.4, we will show that the answer to their

question is negative.

Let us now briefly return to the above-mentioned CrouzGreen [63] upper bound for 𝐾(𝑅). The

CrouzGreen argument rests on an extension of the Crouzeix-Palencia proof to more general (not

necessarily convex) planar domains 𝛺, including the annulus. In particular, the key observation in

their proof is that the double-layer potential kernel 𝜇(𝜎, 𝑇) is positive on 𝜕𝐴𝑅 whenever 𝑇 lies in

the quantum annulus. Thus, if one wants to gain a better understanding of 𝐾-spectral estimates over

𝐴𝑅, the following question emerges naturally: for which operators 𝑇 will 𝜇(𝜎, 𝑇) be positive over

𝜕𝐴𝑅? In Section 2.5, which is joint work with Michael Jury, we will study the scale of operator
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classes 𝔻𝕃𝔸𝑅(𝑐), where 𝔻𝕃𝔸𝑅(0) is defined precisely as the set of all operators 𝑇 with spectrum in

the annulus that satisfy this positivity condition. We will obtain relevant 𝐾-spectral estimates which

will allow us to unify and generalize existing results from the literature on the annulus. For certain

2 × 2 matrices, we will also give sharp 𝐾-spectral constants that motivate the following conjecture:

Conjecture. Let 𝑐 ≥ 0. Then 𝐴𝑅 is a (2 + 𝑐)-spectral set for every 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐).

Note that a positive resolution of the above conjecture would imply that 𝐾(𝑅) = 2 for every 𝑅 > 1,

which is supported by numerical data.

2.2 Estimates for the QuantumAnnulus

Recall that

ℚ𝔸𝑅 = {𝑇 ∈ ℬ(𝐻) ∶ ||𝑇|| ≤ 𝑅, ||𝑇−1|| ≤ 𝑅},

for every 𝑅 > 1. Our objective is to show:

Theorem 2.2.1. Let 𝐾(𝑅) denote the smallest positive constant such that 𝐴𝑅 is a 𝐾(𝑅)-spectral set

for the bounded linear operator 𝑇 whenever 𝑇 ∈ ℚ𝔸𝑅.Then,

𝐾(𝑅) ≥ 2, ∀𝑅 > 1.

Proof. Fix 𝑅 > 1. For every 𝑛 ≥ 2, define

𝑔𝑛(𝑧) =
1
𝑅𝑛(

1
𝑧𝑛 + 𝑧𝑛) ∈ ℛ(𝐴𝑅).

It is easy to see that

||𝑔𝑛||𝐴𝑅 = 𝑔𝑛(𝑅) = 1 + 1
𝑅2𝑛 . (2.3)

To achieve the stated improvement, we will apply 𝑔𝑛 to a bilateral shift operator 𝑆 acting on a

particular weighted sequence space 𝐿2(𝛽). First, define the sequence {𝛽(𝑘)}𝑘∈ℤ of positive numbers

(weights) as follows:

𝛽(2𝑙𝑛 + 𝑞) = 𝑅𝑞, ∀𝑞 ∈ {0, 1,… , 𝑛}, ∀𝑙 ∈ ℤ;
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𝛽((2𝑙 + 1)𝑛 + 𝑞) = 𝑅𝑛−𝑞, ∀𝑞 ∈ {0, 1,… , 𝑛}, ∀𝑙 ∈ ℤ.

Consider now the space of sequences 𝑓 = { ̂𝑓(𝑘)}𝑘∈ℤ such that

||𝑓||2𝛽 ∶= ∑
𝑘∈ℤ

| ̂𝑓(𝑘)|2[𝛽(𝑘)]2 < ∞.

We shall use the notation 𝑓(𝑧) = ∑𝑘∈ℤ
̂𝑓(𝑘)𝑧𝑘 (formal Laurent series), whether or not the series

converges for any (complex) values of 𝑧. Our weighted sequence space will be denoted by

𝐿2(𝛽) ∶= {𝑓 = { ̂𝑓(𝑘)}𝑘∈ℤ ∶ ||𝑓||2𝛽 < ∞}.

This is a Hilbert space with the inner product

⟨𝑓, 𝑔⟩𝛽 ∶= ∑
𝑘∈ℤ

̂𝑓(𝑘) ̂𝑔(𝑘)[𝛽(𝑘)]2.

Consider also the linear transformation (bilateral shift) 𝑆 of multiplication by 𝑧 on 𝐿2(𝛽):

(𝑆𝑓)(𝑧) = ∑
𝑘∈ℤ

̂𝑓(𝑘)𝑧𝑘+1.

In other words, we have

(̂𝑆𝑓)(𝑘) = ̂𝑓(𝑘 − 1), ∀𝑘 ∈ ℤ.

Observe that

||𝑆|| = sup
𝑘∈ℤ

𝛽(𝑘 + 1)
𝛽(𝑘)

= 𝑅

and

||𝑆−1|| = sup
𝑘∈ℤ

𝛽(𝑘)
𝛽(𝑘 + 1)

= 𝑅.

Now, let 𝑚 ≥ 3 and define ℎ = { ̂ℎ(𝑘)}𝑘∈ℤ ∈ 𝐿2(𝛽) by putting:

̂ℎ(2𝑙𝑛) = 1
𝑚, ∀𝑙 ∈ {0, 1, 2… ,𝑚2};

̂ℎ(𝑘) = 0, in all other cases.

We calculate

||ℎ||2𝛽 =
𝑚2

∑
𝑙=0

1
𝑚2 [𝛽(2𝑙𝑛)]

2 =
𝑚2

∑
𝑙=0

1
𝑚2 ⋅ 1

2 = 𝑚2 + 1
𝑚2 ,
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hence

||ℎ||𝛽 =
√𝑚2 + 1

𝑚 . (2.4)

Also, put 𝑓 = (𝑆−𝑛 + 𝑆𝑛)ℎ and notice that

||(𝑆−𝑛 + 𝑆𝑛)ℎ||2𝛽 = ||𝑓||2𝛽

≥
𝑚2

∑
𝑙=1

| ̂𝑓((2𝑙 − 1)𝑛)|2[𝛽((2𝑙 − 1)𝑛)]2

=
𝑚2

∑
𝑙=1

( 2𝑚)
2
𝑅2𝑛

= 4𝑅2𝑛.

Thus,

||(𝑆−𝑛 + 𝑆𝑛)ℎ||𝛽 ≥ 2𝑅𝑛. (2.5)

Using (2.3), (2.4) and (2.5), we can now write

𝐾(𝑅) ≥
||𝑔𝑛(𝑆)||
||𝑔𝑛||𝐴𝑅

=
1

𝑅𝑛 ⋅
||𝑆−𝑛 + 𝑆𝑛||

1 + 𝑅−2𝑛

≥
1

𝑅𝑛 + 𝑅−𝑛 ⋅
||(𝑆−𝑛 + 𝑆𝑛)ℎ||𝛽

||ℎ||𝛽

≥
1

𝑅𝑛 + 𝑅−𝑛 ⋅
2𝑅𝑛

√𝑚2+1

𝑚

.

Letting 𝑚 → ∞, we obtain

𝐾(𝑅) ≥
1

𝑅𝑛 + 𝑅−𝑛 ⋅
2𝑅𝑛

1 =
2𝑅𝑛

𝑅𝑛 + 𝑅−𝑛
𝑛→∞
−−−−→ 2, as 𝑅 > 1.

The proof is complete.
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2.3 Estimates for ℱ𝑅

This section revolves around the spectral constant associated with the operator class ℱ𝑅 as

defined above (2.2). However, to more easily communicate with the setting of the paper where these

results are contained, we will instead work with the rescaled annulus 𝐴𝑟 = {𝑟 < |𝑧| < 1} (where

0 < 𝑟 < 1) and replace ℱ𝑅 by the updated class

ℱ𝑟 ∶= {𝑇 ∈ ℬ(𝐻) ∶ 𝑟2𝑇−1(𝑇−1)∗ + 𝑇𝑇∗ ≤ 𝑟2 + 1, 𝜎(𝑇) ⊂ 𝐴𝑟}.

We note that the spectral constant remains unchanged if we drop the assumption 𝜎(𝑇) ⊂ 𝐴𝑟; we

choose to include it in order not to have to add aproximation arguments to our proof.

To arrive at our estimates, we will apply standard positivity arguments to model formulas in the

setting of the holomorphic function spaceℋ2(𝐴𝑟) induced on 𝐴𝑟 by the kernel

𝑘𝐴𝑟(𝜆, 𝜇) ∶=
1 − 𝑟2

(1 − 𝜆𝜇̄)(1 − 𝑟2/𝜆𝜇̄)
, ∀𝜆, 𝜇 ∈ 𝐴𝑟.

Our main result is the following theorem, the proof of which is contained in subsection 2.3.3.

Theorem 2.3.1. For every 𝜙 ∈ 𝐻∞(𝐴𝑟),

sup
𝑇∈ℱ𝑟

||𝜙(𝑇)|| = ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ √2||𝜙||∞,

where the constant √2 is the best possible.

The fact that 𝑘𝐴𝑟 is a complete Pick kernel also allows us to show the following extension result.

Theorem 2.3.2. Let 0 < 𝑟 < 1. For every 𝜙 ∈ 𝐻∞(𝐴𝑟), the quantity

min{||𝜓||Mult(𝐻2
2)
∶ 𝜓 ∈ Mult(𝐻2

2) and 𝜓(
𝑧

√𝑟2 + 1
, 𝑟
√𝑟2 + 1

1
𝑧) = 𝜙(𝑧), ∀𝑧 ∈ 𝐴𝑟}

lies in the interval [||𝜙||∞, √2||𝜙||∞]. Moreover, the constant √2 is the best possible.

Here, 𝐻2
2 denotes the 2-dimensional Drury-Arveson space on the open unit ball 𝔹2 ⊆ ℂ2. We refer

the reader to Chapter 1 for background on reproducing kernel Hilbert spaces and complete Pick

kernels.
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2.3.1 Preliminaries

First, we record the following well-known result, which will be needed in the sequel. Suppose

𝑘(𝑦, 𝑥) = 1
1 − ⟨𝑏(𝑦), 𝑏(𝑥)⟩

is a complete Pick kernel on a set𝑋 embedding into the Drury-Arveson space𝐻2
𝑑,where 𝑏 ∶ 𝑋 → 𝔹𝑑.

Then, for every 𝜙 ∈ Mult(ℋ𝑘) we obtain that

||𝜙||Mult(ℋ𝑘) = 𝑚𝑖𝑛{||𝜓||Mult(𝐻2
𝑑)
∶ 𝜓 ∈ Mult(𝐻2

𝑑) and 𝜓(𝑏(𝑥)) = 𝜙(𝑥), ∀𝑥 ∈ 𝑋}. (2.6)

For the proof of Theorem 2.3.1, we will be making use of the Riesz-Dunford functional calculus

in the setting of the annulus 𝐴𝑟. Instead of employing the standard Cauchy integral formula, we will

adopt the equivalent Laurent series definition. Let 𝑇 ∈ ℬ(𝐻) and suppose that the spectrum 𝜎(𝑇)

of 𝑇 is contained in 𝐴𝑟. If 𝑓 = ∑𝑛∈ℤ 𝑎𝑛𝑧
𝑛 is any function holomorphic on 𝐴𝑟, then 𝑓(𝑇) ∈ ℬ(𝐻)

is defined as

𝑓(𝑇) = ∑
𝑛∈ℤ

𝑎𝑛𝑇𝑛.

Observe that since 𝜎(𝑇) ⊆ 𝐴𝑟, the convergence of the above Laurent series is guaranteed.

We now set up the hereditary functional calculus on 𝐴𝑟.We say that ℎ is a hereditary function

on 𝐴𝑟 if ℎ is a mapping from 𝐴𝑟 × 𝐴𝑟 to ℂ and has the property that

(𝜆, 𝜇) ↦ ℎ(𝜆, 𝜇̄) ∈ ℂ

is a holomorphic function on 𝐴𝑟 × 𝐴𝑟. The set Her(𝐴𝑟) of hereditary functions on 𝐴𝑟 forms a

complete metrizable locally convex topological vector space when equipped with the topology of

uniform convergence on compact subsets of 𝐴𝑟 × 𝐴𝑟.

If 𝑇 ∈ ℬ(𝐻) with 𝜎(𝑇) ⊆ 𝐴𝑟 and ℎ is a hereditary function on 𝐴𝑟, then we may define

ℎ(𝑇) ∈ ℬ(𝐻) by the following procedure. Expand ℎ into a double Laurent series

ℎ(𝜆, 𝜇) = ∑
𝑚,𝑛∈ℤ

𝑐𝑚𝑛𝜆𝑚𝜇̄𝑛 for all 𝜆, 𝜇 ∈ 𝐴𝑟,
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and then define ℎ(𝑇) by substituting 𝑇 for 𝜆 and 𝑇∗ for 𝜇̄:

ℎ(𝑇) = ∑
𝑚,𝑛∈ℤ

𝑐𝑚𝑛𝑇𝑚(𝑇∗)𝑛.

There is a natural involution ℎ ↦ ℎ∗ on Her(𝐴𝑟), defined by

ℎ∗(𝜆, 𝜇) = ℎ(𝜇, 𝜆), for all 𝜆, 𝜇 ∈ 𝐴𝑟.

It is easy to see that ℎ∗(𝑇) = ℎ(𝑇∗).

Finally, we record the following fundamental lemma (the counterpart of Theorem 2.88 in [14] for

the annulus) which is essentially the holomorphic version of Moore’s theorem on the factorisation

of positive semi-definite kernels. It will allow us to decompose positive semi-definite hereditary

functions as sums of dyads.

Lemma 2.3.3. Suppose 𝑈 is a positive semi-definite hereditary function on 𝐴𝑟, then there exists a

sequence {𝑓𝑛}𝑛∈ℕ of functions holomorphic on 𝐴𝑟 such that

𝑈(𝜆, 𝜇) =
∞

∑
𝑛=1

𝑓𝑛(𝜆)𝑓𝑛(𝜇), ∀𝜆, 𝜇 ∈ 𝐴𝑟,

the series converging uniformly on compact subsets of 𝐴𝑟 × 𝐴𝑟.

2.3.2 The Spaceℋ2(𝐴𝑟)

Fix 𝑟 < 1 and let 𝐴𝑟 = {𝑟 < |𝑧| < 1}. Denote by 𝐻2(𝐴𝑟) the classical Hardy space on an

annulus. This is the Hilbert function space

𝐻2(𝐴𝑟) = {𝑓 ∈ Hol(𝐴𝑟) ∶ sup
𝑟<𝜌<1

1
2𝜋 ∫

2𝜋

0
|𝑓(𝜌𝑒𝑖𝑡)|2 𝑑𝑡 < ∞}

equipped with the norm (for 𝑓 = ∑𝑛∈ℤ 𝑎𝑛𝑧
𝑛)

||𝑓||2𝐻2(𝐴𝑟)
=

∞

∑
−∞

(𝑟2𝑛 + 1)|𝑎𝑛|2.

83



An important observation is that the multiplier algebra Mult(𝐻2(𝐴𝑟)) is isometrically isomorphic to

the algebra 𝐻∞(𝐴𝑟) of bounded holomorphic functions on 𝐴𝑟.

Now, we define the spaceℋ2(𝐴𝑟) by equipping 𝐻2(𝐴𝑟) with a different norm:

||𝑓||2ℋ2(𝐴𝑟)
=

−1

∑
−∞

𝑟2𝑛|𝑎𝑛|2 +
∞

∑
0
|𝑎𝑛|2.

These two norms are equivalent, as

||𝑓||2ℋ2(𝐴𝑟)
≤ ||𝑓||2𝐻2(𝐴𝑟)

=
∞

∑
−∞

(𝑟2𝑛 + 1)|𝑎𝑛|2

≤ 2
−1

∑
−∞

𝑟2𝑛|𝑎𝑛|2 + 2
∞

∑
0
|𝑎𝑛|2 = 2||𝑓||2ℋ2(𝐴𝑟)

.

Hence,

||𝑓||ℋ2(𝐴𝑟) ≤ ||𝑓||𝐻2(𝐴𝑟) ≤ √2||𝑓||ℋ2(𝐴𝑟), (2.7)

for every 𝑓 ∈ ℋ2(𝐴𝑟). Notice also that the set

{𝑧
𝑛

𝑟𝑛 }𝑛≤−1
∪ {𝑧𝑛}

𝑛≥0

is an orthonormal basis forℋ2(𝐴𝑟).Applying Parseval’s identity, we can then calculate the kernel

function forℋ2(𝐴𝑟) as follows

𝑘𝐴𝑟(𝜆, 𝜇) = ⟨𝑘𝐴𝑟(⋅, 𝜇), 𝑘𝐴𝑟(⋅, 𝜆)⟩

=
−1

∑
−∞

⟨𝑘𝐴𝑟(⋅, 𝜇), 𝑧
𝑛/𝑟𝑛⟩⟨𝑧𝑛/𝑟𝑛, 𝑘𝐴𝑟(⋅, 𝜆)⟩ +

∞

∑
0
⟨𝑘𝐴𝑟(⋅, 𝜇), 𝑧

𝑛⟩⟨𝑧𝑛, 𝑘𝐴𝑟(⋅, 𝜆)⟩

=
−1

∑
−∞

𝜆𝑛
𝑟𝑛
𝜇̄𝑛

𝑟𝑛 +
∞

∑
0
𝜆𝑛𝜇̄𝑛

= (1 − 𝑟2) 1

(1 − 𝑟2

𝜆𝜇̄
)(1 − 𝜆𝜇̄)

, ∀𝜆, 𝜇 ∈ 𝐴𝑟.

There are a few interesting observations we can make here. Recall that 𝑎2(𝜆, 𝜇) (where 𝜆 = (𝜆1, 𝜆2)

and 𝜇 = (𝜇1, 𝜇2)) denotes the reproducing kernel of the Drury-Arveson space 𝐻2
2 defined on the
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2-dimensional complex unit ball 𝔹2 = {(𝑧1, 𝑧2) ∶ |𝑧1|2 + |𝑧2|2 < 1}. Denote also by 𝑠2(𝜆, 𝜇) the

kernel of the classical Hardy space 𝐻2(𝔻2) defined on the bidisk 𝔻2 = {(𝑧1, 𝑧2) ∶ |𝑧1|, |𝑧2| < 1},

𝑠2(𝜆, 𝜇) =
1

(1 − 𝜆1𝜇1)(1 − 𝜆2𝜇2)
.

A short calculation then leads us to the equalities

𝑘𝐴𝑟(𝜆, 𝜇) =

= (1 − 𝑟2

1 + 𝑟2)𝑎2((
𝜆

√𝑟2 + 1
, 𝑟
√𝑟2 + 1

1
𝜆), (

𝜇
√𝑟2 + 1

, 𝑟
√𝑟2 + 1

1
𝜇)) (2.8)

= (1 − 𝑟2)𝑠2((𝜆,
𝑟
𝜆), (𝜇,

𝑟
𝜇)), (2.9)

for every 𝜆 and 𝜇 in 𝐴𝑟.We can now apply the pull-back theorem for reproducing kernels (see e.g.

Theorem 5.7 in [113]) to obtain two new descriptions of the norm ofℋ2(𝐴𝑟). By (2.8), we obtain

that for every 𝑓 ∈ ℋ2(𝐴𝑟) ∶

||𝑓||ℋ2(𝐴𝑟) =√
1 + 𝑟2
1 − 𝑟2 min{||𝑔||𝐻2

2
∶ 𝑔 ∈ 𝐻2

2 and 𝑔(
𝑧

√1 + 𝑟2
, 𝑟
√1 + 𝑟2

1
𝑧) = 𝑓(𝑧), ∀𝑧 ∈ 𝐴𝑟},

while (2.9) gives us:

||𝑓||ℋ2(𝐴𝑟) =√
1

1 − 𝑟2 min{||𝑔||𝐻2(𝔻2) ∶ 𝑔 ∈ 𝐻2(𝔻2) and 𝑔(𝑧, 𝑟𝑧) = 𝑓(𝑧), ∀𝑧 ∈ 𝐴𝑟}.

We will now use (2.7) to compare the norm of the multipliers ofℋ2(𝐴𝑟) with the supremum norm

on 𝐻∞(𝐴𝑟).

Proposition 2.3.4. For every 𝜙 ∈ 𝐻∞(𝐴𝑟),

||𝜙||∞ ≤ ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ √2||𝜙||∞.

Moreover, the constant √2 is the best possible.

Proof. Sinceℋ2(𝐴𝑟) is a reproducing kernel Hilbert space, the inequality ||𝜙||∞ ≤ ||𝜙||Mult(ℋ2(𝐴𝑟))

is automatic, for all 𝜙 in Mult(ℋ2(𝐴𝑟)).

Now, fix 𝜙 ∈ 𝐻∞(𝐴𝑟). (2.7) allows us to write

||𝜙𝑓||ℋ2(𝐴𝑟) ≤ ||𝜙𝑓||𝐻2(𝐴𝑟) ≤ ||𝜙||∞||𝑓||𝐻2(𝐴𝑟) ≤ √2||𝜙||∞||𝑓||ℋ2(𝐴𝑟),
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for every 𝑓 ∈ ℋ2(𝐴𝑟). Hence, ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ √2||𝜙||∞, as desired.

Now, to prove that the constant √2 is the best possible, we define

𝑔𝑛(𝑧) =
𝑟𝑛
𝑧𝑛 + 𝑧𝑛, ∀𝑧 ∈ 𝐴𝑟, ∀𝑛 ≥ 1.

Then, for every 𝑧 ∈ 𝐴𝑟 ∶

|𝑔𝑛(𝑧)| ≤
𝑟𝑛
|𝑧|𝑛 + |𝑧|𝑛 ≤ 1 + 𝑟𝑛.

Hence, ||𝑔𝑛||∞ = 1 + 𝑟𝑛 for all 𝑛 ≥ 1. Notice also that

||𝑔𝑛||Mult(ℋ2(𝐴𝑟))

||𝑔𝑛||∞
=
||𝑔𝑛||Mult(ℋ2(𝐴𝑟))

1 + 𝑟𝑛

≥
||𝑔𝑛 ⋅ 1||ℋ2(𝐴𝑟)

1 + 𝑟𝑛

=
√2

1 + 𝑟𝑛
𝑛→∞
−−−−→ √2.

This concludes our proof.

We return to equality (2.8). This can be written equivalently as

𝑘𝐴𝑟(𝜆, 𝜇) =
1 − 𝑟2

1 + 𝑟2
1

1 − ⟨𝑏𝑟(𝜆), 𝑏𝑟(𝜇)⟩ℂ2
, ∀𝜆, 𝜇 ∈ 𝐴𝑟,

where

𝑏𝑟(𝜆) ∶= ( 𝜆
√𝑟2 + 1

, 𝑟
√𝑟2 + 1

1
𝜆)

and |𝑏𝑟(𝜆)| < 1 in 𝐴𝑟.

Hence, 𝑘𝐴𝑟 is a complete Pick kernel. This allows us to draw an interesting connection between

the supremum norm of 𝐻∞(𝐴𝑟) and the multiplier norm of Mult(𝐻2
2), formulated as an extension

result of holomorphic functions off a subvariety of 𝔹2. It is the content of Theorem 2.3.2, which we

now prove.

Proof of Theorem 2.3.2. Since
1+𝑟2

1−𝑟2
𝑘𝐴𝑟 is a (normalized) complete Pick kernel, we can use (2.6) to

deduce that for every 𝜙 ∈ Mult(ℋ2(𝐴𝑟)) = 𝐻∞(𝐴𝑟),

||𝜙||Mult(ℋ2(𝐴𝑟)) = 𝑚𝑖𝑛{||𝜓||Mult(𝐻2
2)
∶ 𝜓 ∈ Mult(𝐻2

2) and 𝜓(𝑏𝑟(𝑧)) = 𝜙(𝑧), ∀𝑧 ∈ 𝐴𝑟}.

Applying Proposition 2.3.4 then concludes the proof.
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Remark 2.3.5. A rescaled version of the spaceℋ2(𝐴𝑟) was also considered by Arcozzi, Rochberg,

Sawyer in [20]. There, the authors proved the much more general fact that every Hardy space over

a finitely connected domain with smooth boundary curves admits an equivalent norm originating

from a complete Pick kernel.

2.3.3 Proof of Theorem 2.3.1

Proof of Theorem 2.3.1. Since we have already established Proposition 2.3.4, it remains to show

that

sup
𝑇∈ℱ𝑟

||𝜙(𝑇)|| = ||𝜙||Mult(ℋ2(𝐴𝑟)),

for every 𝜙 ∈ 𝐻∞(𝐴𝑟).

First, suppose ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ 1. We then obtain the existence of a positive-semidefinite kernel

𝑈 ∶ 𝐴𝑟 × 𝐴𝑟 → ℂ such that

(1 − 𝜙(𝜆)𝜙(𝜇))𝑘𝐴𝑟(𝜆, 𝜇) = 𝑈(𝜆, 𝜇),

hence we have the model formula

1 − 𝜙(𝜆)𝜙(𝜇) =
𝑈(𝜆, 𝜇)
1 − 𝑟2 (1 + 𝑟2 − 𝑟2/𝜆𝜇̄ − 𝜆𝜇̄).

Evidently, 𝑈 is a positive semi-definite element of Her(𝐴𝑟). Applying Lemma 2.3.3, we obtain the

existence of a sequence {𝑓𝑛}𝑛∈ℕ of elements of Hol(𝐴𝑟) such that

1 − 𝜙(𝜆)𝜙(𝜇) = 1
1 − 𝑟2

∞

∑
𝑛=1

𝑓𝑛(𝜆)(1 + 𝑟2 − 𝑟2/𝜆𝜇̄ − 𝜆𝜇̄)𝑓𝑛(𝜇),

with uniform convergence on compact subsets of 𝐴𝑟 × 𝐴𝑟.

Now, let 𝑇 ∈ ℱ𝑟.We can view each side of our previous equality as a hereditary function on 𝐴𝑟 and

substitute 𝑇 into both sides using our hereditary functional calculus on 𝐴𝑟 (since 𝜎(𝑇) ⊆ 𝐴𝑟). This

results in the equality

1 − 𝜙(𝑇)𝜙(𝑇)∗ = 1
1 − 𝑟2

∞

∑
𝑛=1

𝑓𝑛(𝑇)(1 + 𝑟2 − 𝑟2𝑇−1(𝑇−1)∗ − 𝑇𝑇∗)𝑓𝑛(𝑇)∗. (2.10)
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However, observe that since 𝑇 ∈ ℱ𝑟 we can write

1 + 𝑟2 − 𝑟2𝑇−1(𝑇−1)∗ − 𝑇𝑇∗ ≥ 0

⇒ 𝑓𝑛(𝑇)(1 + 𝑟2 − 𝑟2𝑇−1(𝑇−1)∗ − 𝑇𝑇∗)𝑓𝑛(𝑇)∗ ≥ 0

⇒
∞

∑
𝑛=1

𝑓𝑛(𝑇)(1 + 𝑟2 − 𝑟2𝑇−1(𝑇−1)∗ − 𝑇𝑇∗)𝑓𝑛(𝑇)∗ ≥ 0.

By (2.10), we can then conlude that

1 − 𝜙(𝑇)𝜙(𝑇)∗ ≥ 0

⇒ ||𝜙(𝑇)|| ≤ 1.

We have showed that

sup
𝑇∈ℱ𝑟

||𝜙(𝑇)|| ≤ ||𝜙||Mult(ℋ2(𝐴𝑟)).

We now show the reverse inequality. First, we prove a lemma.

Lemma 2.3.6. Every 𝑇 ∈ ℬ(𝐻) such that 𝑟2𝑇−1(𝑇−1)∗ + 𝑇𝑇∗ ≤ 𝑟2 + 1 satisfies

𝑟2 ≤ 𝑇𝑇∗ ≤ 1.

Thus, we also have that 𝜎(𝑇) ⊂ 𝐴𝑟 for every such operator.

Proof of Lemma 2.3.6. Suppose instead that ||𝑇∗|| = ||𝑇|| = 1 + 𝛿 > 1. Thus, for any 𝜖 ∈ (0, 𝛿)

there exists 𝑦 ∈ 𝐻 with ||𝑦|| = 1 such that ||𝑇∗𝑦|| > 1 + 𝛿 − 𝜖. Since ||𝑇∗𝑥|| ≤ (1 + 𝛿)||𝑥||, we

also obtain
1

1+𝛿
||𝑥|| ≤ ||(𝑇−1)∗𝑥||, for every 𝑥 ∈ 𝐻.We can now write

𝑟2

(1 + 𝛿)2
+ (1 + 𝛿 − 𝜖)2 < 𝑟2||(𝑇−1)∗𝑦||2 + ||𝑇∗𝑦||2

= ⟨(𝑟2𝑇−1(𝑇−1)∗ + 𝑇𝑇∗)𝑦, 𝑦⟩ ≤ 𝑟2 + 1.

Letting 𝜖 → 0, we obtain
𝑟2

(1 + 𝛿)2
+ (1 + 𝛿)2 ≤ 𝑟2 + 1,

a contradiction. Hence, ||𝑇|| ≤ 1 and an analogous argument shows that ||𝑟𝑇−1|| ≤ 1 as well.
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Our next step will be to prove the following special case.

Lemma 2.3.7. Let 𝜙 be holomorphic in a neighborhood of 𝐴𝑟 with the property that ||𝜙(𝑇)|| ≤ 1

for all 𝑇 ∈ ℬ(𝐻) such that 𝑟2𝑇−1(𝑇−1)∗ + 𝑇𝑇∗ ≤ 𝑟2 + 1. Then, ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ 1.

Proof of Lemma 2.3.7. If 𝑇 ∈ ℬ(𝐻) is such that 𝑟2𝑇−1(𝑇−1)∗ + 𝑇𝑇∗ ≤ 𝑟2 + 1, then by Lemma

2.3.6 𝑇 also satisfies 𝑟2 ≤ 𝑇𝑇∗ ≤ 1. In particular, 𝜎(𝑇) has to lie in 𝐴𝑟 and so the operator 𝜙(𝑇) is

indeed well-defined whenever 𝜙 ∈ Hol(𝐴𝑟).

Now, suppose that 𝜙 satisfies the given hypotheses and consider the bilateral shift operator (𝑆𝑓)(𝑧) =

𝑧𝑓(𝑧) defined onℋ2(𝐴𝑟).A standard computation shows that 𝑆∗𝑘𝐴𝑟(⋅, 𝜆) = ̄𝜆𝑘𝐴𝑟(⋅, 𝜆), for every

𝜆 ∈ 𝐴𝑟. Notice also that for every 𝜆, 𝜇 in 𝐴𝑟,

⟨(𝑟2 + 1 − 𝑟2𝑆−1(𝑆−1)∗ − 𝑆𝑆∗)𝑘𝐴𝑟(⋅, 𝜇), 𝑘𝐴𝑟(⋅, 𝜆)⟩

= (𝑟2 + 1)⟨𝑘𝐴𝑟(⋅, 𝜇), 𝑘𝐴𝑟(⋅, 𝜆)⟩ − 𝑟2⟨(𝑆−1)∗𝑘𝐴𝑟(⋅, 𝜇), (𝑆
−1)∗𝑘𝐴𝑟(⋅, 𝜆)⟩ − ⟨𝑆∗𝑘𝐴𝑟(⋅, 𝜇), 𝑆

∗𝑘𝐴𝑟(⋅, 𝜆)⟩

= (𝑟2 + 1)𝑘𝐴𝑟(𝜆, 𝜇) −
𝑟2
𝜆𝜇̄𝑘𝐴𝑟(𝜆, 𝜇) − 𝜆𝜇̄𝑘𝐴𝑟(𝜆, 𝜇)

= 1 − 𝑟2,

a (trivial) positive semi-definite kernel on 𝐴𝑟 × 𝐴𝑟.. Since linear combinations of kernel functions

are dense inℋ2(𝐴𝑟), our previous equality implies that

𝑟2 + 1 − 𝑟2𝑆−1(𝑆−1)∗ − 𝑆𝑆∗ ≥ 0.

But our hypotheses on 𝜙 then allow us to deduce that

||𝜙||Mult(ℋ2(𝐴𝑟)) = ||𝜙(𝑆)|| ≤ sup
𝑇∈ℱ𝑟

||𝜙(𝑇)|| ≤ 1,

which concludes the proof of the lemma.

To complete our main proof, we will apply an approximation argument to extend the previous

special case to every multiplier ofℋ2(𝐴𝑟).

Suppose 𝜙 ∈ Hol(𝐴𝑟) is such that sup𝑇∈ℱ𝑟
||𝜙(𝑇)|| ≤ 1. For 𝑛 > 2/(1 − 𝑟), define 𝐴𝑟,𝑛 ∶=
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{𝑟 + 1/𝑛 < |𝑧| < 1 − 1/𝑛}.We will be needing the following lemma, the proof of which is just a

simple calculation.

Lemma 2.3.8. The following two inequalities hold for all 𝑛 > 2/(1 − 𝑟):

(𝑟 + 1

𝑛
)2

1 + (
𝑟 + 1

𝑛

1 − 1

𝑛

)
2

≥ 𝑟2

1 + 𝑟2 ,

1

(1 − 1

𝑛
)2 + (𝑟 + 1

𝑛
)2
≥ 1
1 + 𝑟2 .

Now, define the classes of operators

ℱ𝑟,𝑛 = {𝑇 ∈ ℬ(𝐻) ∶ [𝑟 + (1/𝑛)]2𝑇−1(𝑇−1)∗ + [1/(1 − 𝑛)]2𝑇𝑇∗ ≤ 1+ [(𝑟 + (1/𝑛))/(1 − (1/𝑛))]2}

and also the family of kernels

𝑘𝑟,𝑛(𝜆, 𝜇) ∶=
1

(1 −
(𝑟 + 1/𝑛)2

𝜇̄𝜆 )(1 −
𝜇̄𝜆

(1 − 1/𝑛)2
)

=
1

(1 +
(𝑟 + 1/𝑛)2

(1 − 1/𝑛)2
−
(𝑟 + 1/𝑛)2

𝜇̄𝜆 −
𝜇̄𝜆

(1 − 1/𝑛)2
)

.

Each 𝑘𝑟,𝑛 is a positive-semidefinite kernel on 𝐴𝑟,𝑛 ×𝐴𝑟,𝑛, simply a rescaled version of 𝑘𝐴𝑟. Denote

byℋ2(𝐴𝑟,𝑛) the corresponding Hilbert space of holomorphic functions on 𝐴𝑟,𝑛.

Now, let 𝑇 ∈ ℱ𝑟,𝑛. By the appropriately rescaled version of Lemma 2.3.6, we obtain 𝜎(𝑇) ⊆ 𝐴𝑟,𝑛 ⊆

𝐴𝑟. Observe also that

[𝑟 + (1/𝑛)]2𝑇−1(𝑇−1)∗ + [1/(1 − 𝑛)]2𝑇𝑇∗ ≤ 1 + [(𝑟 + (1/𝑛))/(1 − (1/𝑛))]2
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⟺
(𝑟 + 1

𝑛
)2

1 + (
𝑟 + 1

𝑛

1 − 1

𝑛

)
2

||(𝑇−1)∗𝑥||2 + 1

(1 − 1

𝑛
)2 + (𝑟 + 1

𝑛
)2
||𝑇∗𝑥||2 ≤ ||𝑥||2,

for every 𝑥 ∈ 𝐻. Using our inequalities from Lemma 2.3.8, we obtain

𝑟2

𝑟2 + 1||(𝑇
−1)∗𝑥||2 +

1

𝑟2 + 1||𝑇
∗𝑥||2

≤
(𝑟 + 1

𝑛
)2

1 + (
𝑟 + 1

𝑛

1 − 1

𝑛

)
2

||(𝑇−1)∗𝑥||2 + 1

(1 − 1

𝑛
)2 + (𝑟 + 1

𝑛
)2
||𝑇∗𝑥||2

≤ ||𝑥||2, ∀𝑥 ∈ 𝐻.

Thus, 𝑟2𝑇−1(𝑇−1)∗ + 𝑇𝑇∗ ≤ 𝑟2 + 1, which means that 𝑇 ∈ ℱ𝑟. By our assumptions on 𝜙, we then

obtain that ||𝜙(𝑇)|| ≤ 1.

To sum up, we have proved (for every 𝑛 > 2/(1 − 𝑟)) that 𝜙, a function holomorphic on a neighbor-

hood of 𝐴𝑟,𝑛 , satisfies ||𝜙(𝑇)|| ≤ 1 for all 𝑇 ∈ ℬ(𝐻) such that

[𝑟 + (1/𝑛)]2(𝑇−1)∗𝑇−1 + [1/(1 − 𝑛)]2𝑇∗𝑇 ≤ 1 + [(𝑟 + (1/𝑛))/(1 − (1/𝑛))]2.

The appropriately rescaled version of Lemma 2.3.7 now allows us to conclude that ||𝜙||Mult(ℋ2(𝐴𝑟,𝑛)) ≤

1 and so there exists a positive semi-definite hereditary function ℎ𝑛 ∶ 𝐴𝑟,𝑛 × 𝐴𝑟,𝑛 → ℂ such that

1 − 𝜙(𝜆)𝜙(𝜇) = (1/𝑘𝑟,𝑛(𝜆, 𝜇))ℎ𝑛(𝜆, 𝜇)

= (1 +
(𝑟 + 1/𝑛)2

(1 − 1/𝑛)2
−
(𝑟 + 1/𝑛)2

𝜇̄𝜆 −
𝜇̄𝜆

(1 − 1/𝑛)2
)ℎ𝑛(𝜆, 𝜇), (2.11)

for all 𝜆, 𝜇 ∈ 𝐴𝑟,𝑛 and for every 𝑛 > 2/(1 − 𝑟).

Let 𝐾 ⊆ 𝐴𝑟 ×𝐴𝑟 be compact and fix 𝑁 > 2/(1 − 𝑟) large enough so that 𝐾 ⊆ 𝐴𝑟,𝑛 ×𝐴𝑟,𝑛 for every

𝑛 ≥ 𝑁. Then, for every such 𝑛 and for every 𝜆 ∈ 𝐾 we have

|ℎ𝑛(𝜆, 𝜆)| = ℎ𝑛(𝜆, 𝜆) = (1 − |𝜙(𝜆)|2)𝑘𝑟,𝑛(𝜆, 𝜆)
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≤ sup
𝑧∈𝐾

[(1 − |𝜙(𝑧)|2)
1

(1 − (𝑟 + 1/𝑛)2/|𝑧|2)(1 − |𝑧|2/(1 − 1/𝑛)2)
]

≤ sup
𝑧∈𝐾

[(1 − |𝜙(𝑧)|2)
1

(1 − (𝑟 + 1/𝑁)2/|𝑧|2)(1 − |𝑧|2/(1 − 1/𝑁)2)
]

= 𝑀 < ∞, (2.12)

where 𝑀 is independent of 𝑛. Notice now that by Lemma 2.3.3 there exists (for every 𝑛 ∈ ℕ) a

function 𝑢𝑛 ∶ 𝐴𝑟,𝑛 → 𝑙2 with the property that

ℎ𝑛(𝜆, 𝜇) = ⟨𝑢𝑛(𝜆), 𝑢𝑛(𝜇)⟩𝑙2, in 𝐴𝑟,𝑛 × 𝐴𝑟,𝑛.

Hence, using the Cauchy-Schwarz inequality and the bound (2.12) we can write

|ℎ𝑛(𝜆, 𝜇)|2 ≤ |ℎ𝑛(𝜆, 𝜆)||ℎ𝑛(𝜇, 𝜇)| ≤ 𝑀2,

for every 𝜆, 𝜇 ∈ 𝐾 and for every 𝑛 ≥ 𝑁. In other words, the sequence of holomorphic functions

{(𝜆, 𝜇) ↦ ℎ𝑛(𝜆, 𝜇̄)}𝑛≥𝑁 is uniformly bounded on 𝐾. By Montel’s theorem and the completeness

of Her(𝐴𝑟), we can then deduce the existence of an element ℎ ∈ Her(𝐴𝑟) with the property that

ℎ𝑛𝑘 → ℎ uniformly on compact subsets of 𝐴𝑟 × 𝐴𝑟 for some subsequence {𝑛𝑘}. Since every ℎ𝑛𝑘 is

positive semi-definite, the same must be true for ℎ as well. Now, equality (2.11) combined with the

convergence ℎ𝑛𝑘 → ℎ gives

1 − 𝜙(𝜆)𝜙(𝜇) = (1 + 𝑟2 − 𝑟2/𝜆𝜇̄ − 𝜆𝜇̄)ℎ(𝜆, 𝜇) on 𝐴𝑟 × 𝐴𝑟,

and so

(1 − 𝜙(𝜆)𝜙(𝜇))𝑘𝐴𝑟(𝜆, 𝜇) ≥ 0 on 𝐴𝑟 × 𝐴𝑟.

Thus, ||𝜙||Mult(ℋ2(𝐴𝑟)) ≤ 1 and our proof is complete.

Remark 2.3.9. The classℱ𝑟 was also considered in work of Bello, Yakubovich[30], where the authors

obtained, with an alternative approach, that 𝐴𝑟 is a complete √2-spectral set for every 𝑇 ∈ ℱ𝑟.
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Remark 2.3.10. By Lemma 2.3.6, every 𝑇 ∈ ℬ(𝐻) such that 𝑟2𝑇−1(𝑇−1)∗ + 𝑇𝑇∗ ≤ 𝑟2 + 1 also

satisfies 𝑟2 ≤ 𝑇𝑇∗ ≤ 1. The converse assertion is not true, even if we restrict ourselves to 2 × 2

matrices. Indeed, define 𝐴 ∈ ℬ(ℂ2) by

𝐴 = [
√𝑟 1 − 𝑟

0 √𝑟
] .

A short computations shows that ||𝐴|| = ||𝑟𝐴−1|| = 1. However, notice that

⟨(𝑟2 + 1 − 𝑟2𝐴−1(𝐴−1)∗ − 𝐴𝐴∗) [
1

√𝑟
] , [

1

√𝑟
] ⟩

= 𝑟2(𝑟 + 1 − 1/𝑟 − (2 − 1/𝑟)2),

which is negative for all 𝑟 ∈ (0, 1).

2.4 ACounterexample to a Question of Bello-Yakubovich

Define

Sp(𝐴𝑅) ∶= {𝑇 ∈ ℬ(𝐻) ∶ 𝑇 has 𝐴𝑅 as a spectral set},

ℱ𝑅 ∶= {𝑇 ∈ ℬ(𝐻) ∶ 𝑇𝑇∗ + 𝑇−1(𝑇−1)∗ ≤ 𝑅2 + 𝑅−2}.

In [30], Bello and Yakubovich showed the inclusion

Sp(𝐴𝑅) ⊆ ℱ𝑅 ∩ ℱ∗
𝑅 ,

where ℱ∗
𝑅 ∶= {𝑇 ∈ ℬ(𝐻) ∶ 𝑇∗ ∈ ℱ𝑅}. They then asked whether:

Sp(𝐴𝑅) = ℱ𝑅 ∩ ℱ∗
𝑅 ?

We show that the inclusion is strict, for every 𝑅 > 1.

Theorem 2.4.1. For 𝑅 > 1, Sp(𝐴𝑅) ⊊ ℱ𝑅 ∩ ℱ∗
𝑅 .
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Proof. Put 𝑔(𝑧) = 1

𝑅
( 1
𝑧
+ 𝑧), then ||𝑔||∞ = 1 + 1

𝑅2
. Notice that for every 𝑅 > 1 ∶

2
𝑅2 + 𝑅−2 < (𝑅 + 𝑅−1

2 )
2
< 𝑅2 + 𝑅−2

2 . (*)

Proof of (*). Put 𝑥 = 𝑅2 + 𝑅−2 > 2, since 𝑅 > 1. The above set of inequalities then becomes

2
𝑥 < 𝑥 + 2

4 < 𝑥
2 ,

which holds for every 𝑥 > 2.

We will now introduce a slight variation of the weighted shift presented in Section 2.2. First,

define the sequence {𝛽(𝑘)}𝑘∈ℤ of positive numbers (weights) as follows:

𝛽(2𝑙 + 𝑞) = 𝑃(𝑅)𝑞, ∀𝑞 ∈ {0, 1}, ∀𝑙 ∈ ℤ,

where 𝑃 is any function of 𝑅 > 1 with the property that (𝑅+𝑅
−1

2
)2 < (𝑃(𝑅))2 < 𝑅2+𝑅−2

2
.

Consider now the space of sequences 𝑓 = { ̂𝑓(𝑘)}𝑘∈ℤ such that

||𝑓||2𝛽 ∶= ∑
𝑘∈ℤ

| ̂𝑓(𝑘)|2[𝛽(𝑘)]2 < ∞.

We shall use the notation 𝑓(𝑧) = ∑𝑘∈ℤ
̂𝑓(𝑘)𝑧𝑘 (formal Laurent series), whether or not the series

converges for any (complex) values of 𝑧. Our weighted sequence space will be denoted by

𝐿2(𝛽) ∶= {𝑓 = { ̂𝑓(𝑘)}𝑘∈ℤ ∶ ||𝑓||2𝛽 < ∞}.

This is a Hilbert space with the inner product

⟨𝑓, 𝑔⟩𝛽 ∶= ∑
𝑘∈ℤ

̂𝑓(𝑘) ̂𝑔(𝑘)[𝛽(𝑘)]2.

Consider also the linear transformation 𝑆 of multiplication by 𝑧 on 𝐿2(𝛽):

(𝑆𝑓)(𝑧) = ∑
𝑘∈ℤ

̂𝑓(𝑛)𝑧𝑛+1.

𝑆 is a weighted bilateral shift. In particular, putting {𝑒𝑛}𝑛 ∶= {𝑧𝑛/||𝑧𝑛||𝛽}𝑛, we have that 𝑆𝑒𝑛 =

𝑤𝑛𝑒𝑛+1, where

𝑤2𝑙 = 𝑃(𝑅);
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𝑤2𝑙+1 =
1

𝑃(𝑅)
.

It is true that 𝑆 ∈ ℱ𝑅 ∩ ℱ∗
ℛ if and only if:

⎧⎪
⎨⎪
⎩

|𝑤𝑘|2 + | 1

𝑤𝑘−1
|2 ≤ 𝑅2 + 1

𝑅2
, ∀𝑘 ∈ ℤ;

|𝑤𝑘|2 + | 1

𝑤𝑘+1
|2 ≤ 𝑅2 + 1

𝑅2
, ∀𝑘 ∈ ℤ.

These are equivalent to the two inequalities

⎧⎪
⎨⎪
⎩

2(𝑃(𝑅))2 ≤ 𝑅2 + 1

𝑅2
,

2

(𝑃(𝑅))2
≤ 𝑅2 + 1

𝑅2
,

both of which hold because of (*) and the definition of P. Hence, 𝑆 ∈ ℱ𝑅 ∩ ℱ∗
ℛ for every 𝑅 > 1.

Now, let 𝑚 ≥ 3 and define ℎ = { ̂ℎ(𝑘)}𝑘∈ℤ ∈ 𝐿2(𝛽) by putting:

̂ℎ(2𝑙) = 1
𝑚, ∀𝑙 ∈ {0, 1, 2… ,𝑚2};

̂ℎ(𝑘) = 0, in all other cases.

We calculate

||ℎ||2𝛽 =
𝑚2

∑
𝑙=0

1
𝑚2 [𝛽(2𝑙)]

2 =
𝑚2

∑
𝑙=0

1
𝑚2 ⋅ 1

2 = 𝑚2 + 1
𝑚2 ,

hence

||ℎ||𝛽 =
√𝑚2 + 1

𝑚 . (2.13)

Also, put 𝑓 = (𝑆−1 + 𝑆)ℎ and notice that

||(𝑆−1 + 𝑆)ℎ||2𝛽 = ||𝑓||2𝛽

≥
𝑚2

∑
𝑙=1

| ̂𝑓(2𝑙 − 1)|2[𝛽(2𝑙 − 1)]2

=
𝑚2

∑
𝑙=1

( 2𝑚)
2
(𝑃(𝑅))2

= 4(𝑃(𝑅))2.
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Thus,

||(𝑆−1 + 𝑆)ℎ||𝛽 ≥ 2𝑃(𝑅). (2.14)

Using (2.13) and (2.14), we can now write

||𝑔(𝑆)||
||𝑔||∞

=
1

𝑅 ⋅
||𝑆−1 + 𝑆||

1 + 𝑅−2

≥
1

𝑅 + 𝑅−1 ⋅
||(𝑆−1 + 𝑆1)ℎ||𝛽

||ℎ||𝛽

≥
1

𝑅 + 𝑅−1 ⋅
2𝑃(𝑅)

√𝑚2+1

𝑚

.

Letting 𝑚 → ∞ and using the definition of 𝑃, we obtain

||𝑔(𝑆)||
||𝑔||∞

≥ 2𝑃(𝑅)
𝑅 + 𝑅−1 > 1.

Hence, for 𝑅 > 1 we have 𝑆 ∈ (ℱ𝑅 ∩ ℱ∗
ℛ ) ∖ Sp(𝐴𝑅).

2.5 Positivity Conditions on the Annulus via the Double-Layer

Potential Kernel

We now revisit our discussion that took place in the end of subsection 2.1.3. Let 𝐴𝑅 = { 1
𝑅
<

|𝑧| < 𝑅}, with 𝑅 > 1. In [63, Section 5] it was shown that the mapping

𝑆𝑅,0 ∶ 𝒜(𝐴𝑅) → ℬ(𝐻)

𝑓 ↦ 1
2[𝑓(𝑇) + (𝐶𝑓)(𝑇)∗],

where (𝐶𝑓)(𝑧) = 1

2𝜋𝑖
∫𝐴𝑅

𝑓(𝜁)

𝜁−𝑧
𝑑𝜁, will always be contractive if 𝑇 ∈ ℚ𝔸𝑅. This observation,

combined with the contractivity of 𝑓 ↦ 𝐶𝑓 over 𝐴𝑅 and an abstract functional analysis lemma (see
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[63, Theorem 2] or [121, Lemma 1.1]), suffices to establish that, given any 𝑇 ∈ ℚ𝔸𝑅, we must have

||𝑓(𝑇)|| ≤ (1 + √2) sup
𝑧∈𝐴𝑅

|𝑓(𝑧)|, ∀𝑓 ∈ 𝒜(𝐴𝑅),

i.e. 𝐴𝑅 will be a (1 + √2)-spectral set for 𝑇 whenever 𝑇 ∈ ℚ𝔸𝑅.

Now, observe that in the previous argument, the class ℚ𝔸𝑅 enters the picture only through the

contractivity of 𝑆𝑅,0. Thus, if one wants to gain a better understanding of 𝐾-spectral estimates over

𝐴𝑅, the following question emerges naturally: for which operators 𝑇 will 𝑆𝑅,0 be contractive? This

line of inquiry, together with the form of the mapping (2.1), is what motivates our definition of the

operator class 𝔻𝕃𝔸𝑅(𝑐) (where 𝑐 > −2); an operator 𝑇 ∈ ℬ(𝐻) with 𝜎(𝑇) ⊂ 𝐴𝑅 will belong to

𝔻𝕃𝔸𝑅(𝑐) if and only if the mapping

𝑆𝑅,𝑐 ∶ 𝒜(𝐴𝑅) → ℬ(𝐻)

𝑓 =
∞

∑
𝑛=−∞

𝑎𝑛𝑧𝑛 ↦
1

2 + 𝑐[𝑓(𝑇) + (𝐶𝑓)(𝑇)∗ + 𝑐𝑎0]

is contractive (see subsection 2.5.2 for the general definition and Theorem 2.5.17 for the equivalence

between the two when 𝜎(𝑇) ⊂ 𝐴𝑅). Our goal will be to study the operator class 𝔻𝕃𝔸𝑅(𝑐) and

its completely contractive analogue ℂ𝔻𝕃𝔸𝑅(𝑐) (see subsection 2.5.5). Note that the study of

completely bounded maps and dilations in the setting of the double-layer potential kernel and

Crouzeix’s conjecture has already been successfully initiated in the papers [118] and [53, Section 6].

Also, we point out that, while the inclusion ℂ𝔻𝕃𝔸𝑅(𝑐) ⊆ 𝔻𝕃𝔸𝑅(𝑐) follows immediately from the

definitions, it is not known to us whether it is strict or not (see Question 2.5.25).

To state our first main result, a characterization of ℂ𝔻𝕃𝔸𝑅(𝑐), we require the following general-

ization of the 𝒞𝜌 classes, introduced by Langer [137, p. 53] (see also [135]).

Definition 2.5.1. Assume 𝐴 ∈ ℬ(𝐻) is a bounded, positive operator that is also bounded below.

The class 𝒞𝐴 contains all operators 𝑇 ∈ ℬ(𝐻) with the property that there exists a Hilbert space

𝐾 ⊃ 𝐻 and a unitary 𝑈 ∈ ℬ(𝐾) such that

𝐴−1/2𝑇𝑛𝐴−1/2 = 𝑃𝐻𝑈𝑛|𝐻, 𝑛 = 1, 2,… .
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Our characterization then proceeds as follows. Note that the inequality 𝑇 ≥ 0 implies that the

Hilbert space operator 𝑇 is positive, while 𝑇 > 0 implies that it is strictly positive.

Theorem 2.5.2. Let 𝑇 ∈ ℬ(𝐻) and 𝑐 > −2, with 𝜎(𝑇) ⊂ 𝐴𝑅. Then, 𝑇 ∈ ℂ𝔻𝕃𝔸𝑅(𝑐) if and only if

𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴 and 𝑇−1/𝑅 ∈ 𝒞𝐴 for some 𝐴 ∈ ℬ(𝐻) such that 𝐴 > 0 and 2 + 𝑐 − 𝐴 > 0.

Dropping the assumption 𝜎(𝑇) ⊂ 𝐴𝑅 leads us to Theorem 2.5.22.

As remarked previously, the only way the class ℚ𝔸𝑅 enters in the proof of the 𝐾 = 1 + √2

spectral estimate in [63] is through the inclusion ℚ𝔸𝑅 ⊂ ℂ𝔻𝕃𝔸𝑅(0). This suggests that the spectral

constant for ℚ𝔸𝑅 may coincide with the one for ℂ𝔻𝕃𝔸𝑅(0). Utilizing the solution of an extremal

problem over 𝐴𝑅 due to McCullough and Shen [100], we are able to prove a partial result in the

setting of 2 × 2 matrices that supports this idea.

Theorem 2.5.3. Let 𝑐 ≥ 0 and assume 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐) is a 2 × 2 matrix with a single eigenvalue.

Then, 𝐴𝑅 will be a 𝐾(𝑅)-spectral set for 𝑇, where

𝐾(𝑅) = 2 + 𝑐𝑅
2 − 1

𝑅2 + 1 ≤ 2 + 𝑐.

Note that one can also take advantage of the machinery established in [43] and [63] to prove

general 𝐾-spectral estimates for 𝔻𝕃𝔸𝑅(𝑐) and ℂ𝔻𝕃𝔸𝑅(𝑐); see Theorem 2.5.28 (see also Remark

2.5.30). In fact, our approach yields sharper estimates for certain operator classes; see Remark

2.5.29.

The rest of Section 2.5 is organized as follows: subsection 2.5.1 contains a few preliminary

lemmata on the 𝒞𝐴 classes. In subsections 2.5.2, 2.5.3.2.5.4, we explore basic properties of𝔻𝕃𝔸𝑅(𝑐)

and demonstrate its connection with the double-layer potential. In subsection 2.5.5, we characterize

ℂ𝔻𝕃𝔸𝑅(𝑐) through Theorems 2.5.2 and 2.5.22. Finally, subsection 2.5.6 contains the proofs of

Theorems 2.5.3 and 2.5.28.
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2.5.1 Preliminaries

We first record an alternate characterization of 𝒞𝐴 that is usually easier to work with. We have

included proofs for the convenience of the reader.

Lemma 2.5.4. Assume 𝐴 ∈ ℬ(𝐻) is a bounded, strictly positive operator and let 𝑇 ∈ ℬ(𝐻). Then,

𝑇 ∈ 𝒞𝐴 if and only if 𝜎(𝑇) ⊂ 𝔻 and

2ℜ(1 − 𝑧𝑇)−1 + 𝐴 − 2 ≥ 0, ∀𝑧 ∈ 𝔻. (2.15)

Proof. Assume first that 𝑇 ∈ 𝒞𝐴. Since 𝒞𝐴 ⊂ 𝒞||𝐴||, we must have 𝜎(𝑇) ⊂ 𝔻 (see e.g. [137, p.

43]). Also, in view of [137, p. 53], 𝑇 ∈ 𝒞𝐴 is equivalent to

⟨𝐴ℎ, ℎ⟩ − 2ℜ⟨𝑧(𝐴 − 𝐼)𝑇ℎ, ℎ⟩ + |𝑧|2⟨(𝐴 − 2𝐼)𝑇ℎ, 𝑇ℎ⟩ ≥ 0,

for all ℎ ∈ 𝐻, |𝑧| ≤ 1. This inequality can be rewritten as

⟨𝐴(𝐼 − 𝑧𝑇)ℎ, (𝐼 − 𝑧𝑇)ℎ⟩ − 2⟨(𝐼 − 𝑧𝑇)ℎ, (𝐼 − 𝑧𝑇)ℎ⟩ + 2ℜ⟨(𝐼 − 𝑧𝑇)ℎ, ℎ⟩ ≥ 0

for all ℎ ∈ 𝐻, |𝑧| ≤ 1. Setting ℎ = (𝐼 − 𝑧𝑇)−1ℎ, we obtain

⟨(𝐴 − 2 + (𝐼 − 𝑧𝑇)−1 + (1 − 𝑧𝑇∗)−1)ℎ, ℎ⟩ ≥ 0

for all ℎ ∈ 𝐻, |𝑧| ≤ 1, which is the desired conclusion.

For the converse, simply roll back the previous steps.

Note that one could define 𝒞𝐴 more generally, for 𝐴 bounded and self-adjoint, through (2.15).

Using this definition, it is easy to see that 𝒞𝐴 is non-empty if and only if 𝐴 ≥ 0 (in which case it

will contain the zero operator).

Lemma 2.5.5. Assume 𝐴 ∈ ℬ(𝐻) is a bounded, strictly positive operator and let 𝑇 ∈ ℬ(𝐻) be

such that 𝜎(𝑇) ⊂ 𝔻 . Then, 𝑇 ∈ 𝒞𝐴 if and only if

(1 − 𝑒𝑖𝜃𝑇)−1 + (1 − 𝑒−𝑖𝜃𝑇∗)−1 + 𝐴 − 2 ≥ 0, ∀𝜃 ∈ [0, 2𝜋). (2.16)
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Proof. Fix an arbitrary ℎ ∈ 𝐻 and define

𝛷ℎ ∶ 𝔻 → ℂ

𝑧 ↦ ⟨(2ℜ(1 − 𝑧𝑇)−1 + 𝐴 − 2)ℎ, ℎ⟩.

Since 𝜎(𝑇) ⊂ 𝔻, 𝛷ℎ will be a harmonic function on 𝔻 that extends continuously to 𝔻. By the

minimum principle for harmonic functions, we then obtain that 𝛷ℎ(𝑧) ≥ 0, for all 𝑧 ∈ 𝔻, if and

only if

𝛷ℎ(𝑒𝑖𝜃) = ⟨(2ℜ(1 − 𝑒𝑖𝜃𝑇)−1 + 𝐴 − 2)ℎ, ℎ⟩ ≥ 0, ∀𝜃 ∈ [0.2𝜋).

Since ℎ was arbitrary, we are done.

Next, we record a few basic facts concerning completely bounded maps. Let 𝐴 ⊂ ℬ(𝐻)

denote an operator algebra, i.e. a unital subalgebra of the 𝐶∗-algebra of bounded linear operators

on some Hilbert space 𝐻. Given a natural number 𝑛 ≥ 1, we denote by 𝑀𝑛(𝐴) the algebra of

𝑛 × 𝑛 matrices with entries from 𝐴, which we view as a subalgebra of bounded linear operators

acting on 𝐻(𝑛) = 𝐻 ⊕ 𝐻 ⊕ ⋯ ⊕ 𝐻. In particular, 𝑀𝑛(𝐴) is endowed with a norm under this

identification. Given a map 𝛷 ∶ 𝐴 → ℬ(𝐻), for each 𝑛 ≥ 1, we may define the coordinate-wise

map 𝛷(𝑛) ∶ 𝑀𝑛(𝐴) → ℬ(𝐾(𝑛)) as

𝛷(𝑛)([𝑎𝑖𝑗]) = [𝛷(𝑎𝑖𝑗)], [𝑎𝑖𝑗] ∈ 𝑀𝑛(𝐴).

If 𝛷 is linear (or anti-linear), we say that 𝛷 is completely bounded if the quantity

||𝛷||𝑐𝑏 = sup
𝑛
||𝛷(𝑛)||

is finite. We say that𝛷 is completely contractive if ||𝛷||𝑐𝑏 ≤ 1. Furthermore,𝛷will be called positive

if it maps positive elements of 𝐴 to positive operators in ℬ(𝐾). 𝛷 will be said to be completely

positive if 𝛷(𝑛) is positive for every 𝑛 ≥ 1. For more details on these concepts, see [111].
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2.5.2 𝒞𝑠,𝑡(𝑅)

Before we dive into the study of 𝔻𝕃𝔸𝑅(𝑐), we will establish some basic properties of 𝒞𝑠,𝑡(𝑅).

These are operator classes that generate special examples of 𝔻𝕃𝔸𝑅(𝑐) operators.

Definition 2.5.6. Let 𝑅 > 1 and 𝑠, 𝑡 > 0. Define

𝒞𝑠,𝑡(𝑅) = {𝑇 ∈ ℬ(𝐻) | 𝑇/𝑅 ∈ 𝒞𝑠 and 𝑇−1/𝑅 ∈ 𝒞𝑡}.

First, we record 𝒞𝑠,𝑡(𝑅)-membership criteria concerning normal matrices. These are easy

consequences of known results about 𝒞𝜌.

Lemma 2.5.7. Let 𝑠 > 0 and assume 𝑇 ∈ ℬ(𝐻) is in 𝒞𝑠.

(i) If 𝑠 ≥ 1, then 𝜎(𝑇) ⊂ {|𝑧| ≤ 1}.

(ii) If 𝑠 ≤ 1, then 𝜎(𝑇) ⊂ {|𝑧| ≤ 𝑠/(2 − 𝑠)}.

Proof. This is Lemma 5 in [32].

Proposition 2.5.8. Fix 𝑅 > 1 and assume 𝑠, 𝑡 > 0. Also, let 𝑁 ∈ ℬ(𝐻) be normal.

(i) If 𝑠, 𝑡 ≥ 1, then 𝒞𝑠,𝑡(𝑅) will always be non-empty. Moreover, 𝑁 ∈ 𝒞𝑠,𝑡(𝑅) if and only if

1

𝑅2
≤ 𝑁∗𝑁 ≤ 𝑅2.

(ii) If 𝑠 ≥ 1 and 𝑡 ≤ 1, then 𝒞𝑠,𝑡(𝑅) will be non-empty if and only if

2
𝑅2 + 1 ≤ 𝑡.

Moreover, 𝑁 ∈ 𝒞𝑠,𝑡(𝑅) if and only if
(2−𝑡)2

𝑅2𝑡2
≤ 𝑁∗𝑁 ≤ 𝑅2.

(iii) If 𝑠 ≤ 1 and 𝑡 ≥ 1, then 𝒞𝑠,𝑡(𝑅) will be non-empty if and only if

2
𝑅2 + 1 ≤ 𝑠.

Moreover, 𝑁 ∈ 𝒞𝑠,𝑡(𝑅) if and only if
1

𝑅2
≤ 𝑁∗𝑁 ≤ 𝑅2 𝑠2

(2−𝑠)2
.
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(iv) If 𝑠 ≤ 1 and 𝑡 ≤ 1, then 𝒞𝑠,𝑡(𝑅) will be non-empty if and only if

1
𝑅
2 − 𝑡
𝑡 ≤ 𝑅 𝑠

2 − 𝑠.

Moreover, 𝑁 ∈ 𝒞𝑠,𝑡(𝑅) if and only if
1

𝑅2
(2−𝑡)2

𝑡2
≤ 𝑁∗𝑁 ≤ 𝑅2 𝑠2

(2−𝑠)2
.

Proof. We only consider the case 𝑠 ≥ 1, 𝑡 ≤ 1 (the remaining three cases can be proved in

essentially identical ways). The assertion about 𝑁 is an immediate consequence of [32, Theorem

6]. Note also that, if
2

𝑅2+1
≤ 𝑡, there exists a scalar 𝑎 ∈ ℂ satisfying

2−𝑡

𝑅𝑡
≤ |𝑎| ≤ 𝑅. This

scalar lies in 𝒞𝑠,𝑡(𝑅), hence the class will be non-empty. Conversely, assume that
2

𝑅2+1
> 𝑡 and

that there exists 𝑇 ∈ 𝒞𝑠,𝑡(𝑅). Since 𝑇/𝑅 ∈ 𝒞𝑠, Lemma 2.5.7 tells us that 𝜎(𝑇/𝑅) ⊂ {|𝑧| ≤ 1},

hence 𝜎(𝑇) ⊂ {|𝑧| ≤ 𝑅}.Also, the fact that 𝑇−1/𝑅 ∈ 𝒞𝑡 implies (in view of the same lemma) that

𝜎((2 − 𝑡)𝑡−1𝑇−1/𝑅) ⊂ {|𝑧| ≤ 1}. Thus, we can conclude

𝜎(𝑇) ⊂ {𝑅−1(2 − 𝑡)𝑡−1 ≤ |𝑧| ≤ 𝑅} = ∅,

as
2

𝑅2+1
> 𝑡, a contradiction. Thus, 𝒞𝑠,𝑡(𝑅) must be empty.

We now show that the𝒞𝑠,𝑡(𝑅) classes are, in a certain sense, “rigid” with respect to the parameters

𝑠, 𝑡. To do this, we require 𝒞𝑠,𝑡(𝑅)-membership conditions for 2×2matrices with a single eigenvalue.

Lemma 2.5.9. Fix 𝑅 > 1. Also, let 𝑠, 𝑡 > 0 and 𝑇 = (
𝑎 𝑏

0 𝑎
), where 𝑎, 𝑏 ∈ ℂ.

(i) Assume 𝑠, 𝑡 ≥ 1. Then, 𝑇 ∈ 𝒞𝑠,𝑡(𝑅) if and only if
1

𝑅
≤ |𝑎| ≤ 𝑅 and

𝑅|𝑏| − 𝑠𝑅2 + (2 − 𝑠)|𝑎|2 ≤ 2(1 − 𝑠)𝑅|𝑎|

and

𝑅|𝑏| − 𝑡|𝑎|2𝑅2 + (2 − 𝑡) ≤ 2(1 − 𝑡)𝑅|𝑎|.

(ii) Assume 𝑠 ≥ 1 and 𝑡 ≤ 1. Then, 𝑇 ∈ 𝒞𝑠,𝑡(𝑅) if and only if
1

𝑅

2−𝑡

𝑡
≤ |𝑎| ≤ 𝑅 and

𝑅|𝑏| − 𝑠𝑅2 + (2 − 𝑠)|𝑎|2 ≤ 2(1 − 𝑠)𝑅|𝑎|
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and

𝑅|𝑏| − 𝑡|𝑎|2𝑅2 + (2 − 𝑡) ≤ 2(𝑡 − 1)𝑅|𝑎|.

(iii) Assume 𝑠 ≤ 1 and 𝑡 ≥ 1. Then, 𝑇 ∈ 𝒞𝑠,𝑡(𝑅) if and only if
1

𝑅
≤ |𝑎| ≤ 𝑅 𝑠

2−𝑠
and

𝑅|𝑏| − 𝑠𝑅2 + (2 − 𝑠)|𝑎|2 ≤ 2(𝑠 − 1)𝑅|𝑎|

and

𝑅|𝑏| − 𝑡|𝑎|2𝑅2 + (2 − 𝑡) ≤ 2(1 − 𝑡)𝑅|𝑎|.

(iv) Assume 𝑠 ≤ 1 and 𝑡 ≤ 1. Then, 𝑇 ∈ 𝒞𝑠,𝑡(𝑅) if and only if
1

𝑅

2−𝑡

𝑡
≤ |𝑎| ≤ 𝑅 𝑠

2−𝑠
and

𝑅|𝑏| − 𝑠𝑅2 + (2 − 𝑠)|𝑎|2 ≤ 2(𝑠 − 1)𝑅|𝑎|

and

𝑅|𝑏| − 𝑡|𝑎|2𝑅2 + (2 − 𝑡) ≤ 2(𝑡 − 1)𝑅|𝑎|.

Proof. The lemma is a consequence of the following observation: if 𝑠 ≥ 1, then (
𝑎/𝑅 𝑏/𝑅

0 𝑎/𝑅
) ∈ 𝒞𝑠

if and only if |𝑎| ≤ 𝑅 and

𝑅|𝑏| − 𝑠𝑅2 + (2 − 𝑠)|𝑎|2 ≤ 2(1 − 𝑠)𝑅|𝑎|, (2.17)

while if 0 < 𝑠 < 1 we have (
𝑎/𝑅 𝑏/𝑅

0 𝑎/𝑅
) ∈ 𝒞𝑠 if and only if |𝑎| ≤ 𝑅 𝑠

2−𝑠
and

𝑅|𝑏| − 𝑠𝑅2 + (2 − 𝑠)|𝑎|2 ≤ 2(𝑠 − 1)𝑅|𝑎|. (2.18)

So, assume first that 𝑠 ≥ 1. In view of [109, Theorem 3.1], we have that (
𝑎/𝑅 𝑏/𝑅

0 𝑎/𝑅
) ∈ 𝒞𝑠 if and

only if |𝑎| ≤ 𝑅 and

|𝑏|2/𝑅2 ≤ ||𝑠 + (𝑠 − 2)|𝑎|2/𝑅2 − 2(𝑠 − 1)|𝑎|/𝑅||2. (2.19)

Observe that

𝑠 + (𝑠 − 2)|𝑎|2/𝑅2 − 2(𝑠 − 1)|𝑎|/𝑅
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= (𝑠 − 1)(|𝑎| − 𝑅)2/𝑅2 + 1 − |𝑎|2/𝑅2,

which is non-negative because |𝑎| ≤ 𝑅. We thus obtain, after taking square roots, that (2.19) is

equivalent to (2.17), as desired.

Assume now that 0 < 𝑠 < 1. Using [109, Theorem 3.1] again, we obtain that (
𝑎/𝑅 𝑏/𝑅

0 𝑎/𝑅
) ∈ 𝒞𝑠

if and only if |𝑎| ≤ 𝑅 𝑠

2−𝑠
and

|𝑏|2/𝑅2 ≤ ||𝑠 + (𝑠 − 2)|𝑎|2/𝑅2 − 2(1 − 𝑠)|𝑎|/𝑅||2. (2.20)

Observe that

𝑠 + (𝑠 − 2)|𝑎|2/𝑅2 − 2(1 − 𝑠)|𝑎|/𝑅

= (𝑠 − 1)(|𝑎| + 𝑅)2/𝑅2 + 1 − |𝑎|2/𝑅2

= (|𝑎|/𝑅 + 1)((𝑠 − 1)(|𝑎|/𝑅 + 1) + 1 − |𝑎|/𝑅)

= (|𝑎|/𝑅 + 1)((𝑠 − 2)|𝑎|/𝑅 + 𝑠)

which is non-negative because |𝑎| ≤ 𝑅 𝑠

2−𝑠
. Hence, (2.20) is equivalent to (2.18) and the proof is

complete.

Theorem 2.5.10. Assume 𝑠, 𝑡 > 0 and 𝑅 > 1 are such that 𝒞𝑠,𝑡(𝑅) is non-empty. Then, there exists

𝑇 ∈ 𝒞𝑠,𝑡(𝑅) such that for every 𝜖 > 0 and every 𝑠′, 𝑡′ > 0 we have

𝑇 ∉ 𝒞𝑠′,𝑡−𝜖(𝑅) and 𝑇 ∉ 𝒞𝑠−𝜖,𝑡′(𝑅).

Proof. We only deal with the case 𝑠 ≥ 1, 𝑡 ≤ 1, as the computations required for the remaining

three cases are very similar in nature.

So, let 𝑠 ≥ 1, 𝑡 ≤ 1 and assume also that (2 − 𝑡)/(𝑅𝑡) ≤ 𝑅, hence 𝒞𝑠,𝑡(𝑅) is non-empty. Note

that if (2 − 𝑡)/(𝑅𝑡) = 𝑅, then any class either of the form 𝒞𝑠′,𝑡−𝜖(𝑅) or of the form 𝒞𝑠−𝜖,𝑡′(𝑅) will

be empty. Obviously, the conclusion of the theorem will hold in this case. Thus, we may actually

assume that (2 − 𝑡)/(𝑅𝑡) < 𝑅.We are looking for an operator that satisfies the conditions in the
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statement of the theorem and has the form 𝑇 = (
𝑎 𝑏

0 𝑎
), where 𝑎, 𝑏 ∈ ℂ. In view of Lemma (2.5.9),

we know that such a 𝑇 will belong to 𝒞𝑠,𝑡(𝑅) if and only if
1

𝑅

2−𝑡

𝑡
≤ |𝑎| ≤ 𝑅 and

𝑅|𝑏| − 𝑠𝑅2 + (2 − 𝑠)|𝑎|2 ≤ 2(1 − 𝑠)𝑅|𝑎| (2.21)

and

𝑅|𝑏| − 𝑡|𝑎|2𝑅2 + (2 − 𝑡) ≤ 2(𝑡 − 1)𝑅|𝑎|. (2.22)

Our goal is to find a pair (𝑎0, 𝑏0) such that (2 − 𝑡)/(𝑅𝑡) < |𝑎0| < 𝑅 and both (2.21) and (2.22)

become equalities. Indeed, assuming such 𝑎0 and 𝑏0 exist, let 𝑇0 denote the corresponding operator

and consider any 𝜖 > 0.We will then have that 𝑇0 ∈ 𝒞𝑠,𝑡(𝑅) and also that

𝑅|𝑏0| − (𝑠 − 𝜖)𝑅2 + (2 − (𝑠 − 𝜖))|𝑎0|2 + 2((𝑠 − 𝜖) − 1)𝑅|𝑎0|

= 𝑅|𝑏0| − 𝑠𝑅2 + (2 − 𝑠)|𝑎0|2 + 2(𝑠 − 1)𝑅|𝑎0| + 𝜖(𝑅2 + |𝑎0|2 − 2𝑅|𝑎0|)

= 𝜖(𝑅 − |𝑎0|)2 > 0,

which shows that 𝑇0 ∉ 𝒞𝑠−𝜖,𝑡′(𝑅), for any 𝑡′ > 0. An analogous argument involving the second

inequality also shows that 𝑇0 ∉ 𝒞𝑠′,𝑡−𝜖(𝑅) for any 𝑠′ > 0, as desired.

Now, assume that we have equality in both (2.21) and (2.22) (without any extra restrictions).

We can then extract a quadratic equation involving |𝑎| only:

(𝑠 − 𝑡𝑅2 − 2)|𝑎|2 + 2(2 − 𝑠 − 𝑡)𝑅|𝑎| + 2 − 𝑡 + 𝑠𝑅2 = 0 (2.23)

Notice that, if we are able to find a solution |𝑎0| of the above equation that also satisfies (2−𝑡)/(𝑅𝑡) <

|𝑎0| < 𝑅, our proof will be complete. Indeed, |𝑏0| will then be uniquely determined as

|𝑏0| = 𝑠𝑅 +
(𝑠 − 2)|𝑎0|2

𝑅 + 2(1 − 𝑠)|𝑎0| = 𝑡|𝑎0|2𝑅 +
𝑡 − 2
𝑅 + 2(𝑡 − 1)|𝑎0|

and the associated 𝑇0 will have the desired properties.

Assume first that 𝑠 = 𝑡𝑅2 + 2. (2.23) then turns into the linear equation

2(2 − 𝑠 − 𝑡)𝑅|𝑎| + 2 − 𝑡 + 𝑠𝑅2 = 0,
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where 𝑠 = 𝑡𝑅2 + 2. Let 𝑎0 be any number satisfying the previous equation, i.e.

|𝑎0| =
2(𝑅2 + 1) + 𝑡(𝑅4 − 1)

2𝑅(𝑅2 + 1)𝑡
.

One can then verify that |𝑎0| < 𝑅 is equivalent to the inequality
2

𝑅2+1
< 𝑡, which is equivalent

to (2 − 𝑡)/(𝑅𝑡) < 𝑅, hence it must be true. An analogous argument applies for the inequality

|𝑎0| > (2 − 𝑡)/(𝑅𝑡).

Assume now that 𝑠 ≠ 𝑡𝑅2 + 2. After some calculations, we obtain (for equation (2.23)) the

(non-negative) discriminant

𝛥 = 4[(𝑅2 + 1)2𝑠𝑡 − 2(𝑅2 + 1)(𝑠 + 𝑡) + 4(𝑅2 + 1)].

Choose 𝑎0 to be any number satisfying

|𝑎0| =
2𝑅(𝑠 + 𝑡 − 2) − √𝛥
2(𝑠 − 𝑡𝑅2 − 2)

.

Suppose first that 𝑠 > 𝑡𝑅2 + 2. The inequality |𝑎0| < 𝑅 is equivalent to

𝑡𝑅2 + 2 = 𝑅2(𝑅2 + 1)2𝑡2 + 2(𝑅2 + 1)𝑡 − 4(𝑅2 + 1)
(𝑅2 + 1)((𝑅2 + 1)𝑡 − 2)

< 𝑠,

hence it must be true. The proof in the case that 𝑠 < 𝑡𝑅2 + 2 is entirely analogous.

We now prove that |𝑎0| > (2 − 𝑡)/(𝑡𝑅). The computations here are somewhat more unpleasant.

First, we assume that 𝑠 > 𝑡𝑅2 + 2, in which case |𝑎0| > (2 − 𝑡)/(𝑡𝑅) is equivalent to the inequality

[(𝑅2 + 1)𝑡 − 2]2

𝑅2 𝑠2 + ( − 16
𝑅2 +

8
𝑅2 (𝑅

2 + 2)𝑡 + 2(𝑅2 + 1)[1 − 2/𝑅2]𝑡2 − (𝑅2 + 1)2𝑡3)𝑠

+16𝑅2 −
16
𝑅2 𝑡 + 4(1/𝑅2 − 𝑅2 − 1)𝑡2 + 2(𝑅2 + 1)𝑡3 > 0.

But this last inequality can be rewritten as

1
𝑅2 ((𝑅

2 + 1)𝑡 − 2)(𝑠 − 𝑡𝑅2 − 2)([(𝑅2 + 1)𝑡 − 2]𝑠 + 2(2 − 𝑡)) ≥ 0,

which holds for 𝑠 > 𝑡𝑅2 + 2 and (𝑅2 + 1) > (𝑅2 + 1)𝑡 > 2, as desired. The proof in the case that

𝑠 < 𝑡𝑅2 + 2 is entirely analogous.
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2.5.3 𝔻𝕃𝔸𝑅(𝑐)

We now define a new operator class attached to the annulus 𝐴𝑅.

Definition 2.5.11. Let 𝑐 ∈ ℝ and 𝑅 > 1. 𝔻𝕃𝔸𝑅(𝑐) denotes the class of all operators 𝑇 ∈ ℬ(𝐻)

such that

(i) 𝜎(𝑇) ⊂ 𝐴𝑅 and

(ii) 2ℜ[(1 − 𝑧𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐 ≥ 0, ∀𝑧, 𝑤 ∈ 𝔻.

First, we prove a few elementary properties of 𝔻𝕃𝔸𝑅(𝑐), including membership criteria for

normal operators.

Lemma 2.5.12. Let 𝑐 > −2, 𝑅 > 1 and assume𝐴 ∈ ℬ(𝐻) is a self-adjoint operator such that𝐴 > 0

and 2 + 𝑐 − 𝐴 > 0. If 𝑇 ∈ ℬ(𝐻) is such that 𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴 and 𝑇−1/𝑅 ∈ 𝒞𝐴, then 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐).

Proof. Assume 𝑇 ∈ ℬ(𝐻) satisfies our hypotheses. Lemma 2.5.4 allows us to deduce that

𝜎(𝑇/𝑅), 𝜎(𝑇−1/𝑅) ⊂ 𝔻, hence 𝜎(𝑇) ⊂ 𝐴𝑅. Also, (2.15) gives us

2ℜ(1 − 𝑧𝑇/𝑅)−1 + 2 + 𝑐 − 𝐴 − 2 ≥ 0

and

2ℜ(1 − 𝑤𝑇−1/𝑅)−1 + 𝐴 − 2 ≥ 0,

for all 𝑧, 𝑤 ∈ 𝔻.Adding these two inequalities concludes the proof.

Proposition 2.5.13. Let 𝑐 ∈ ℝ, 𝑅 > 1 and assume 𝑁 ∈ ℬ(𝐻) is normal.

(i) If 𝑐 ≥ 0, then 𝔻𝕃𝔸𝑅(𝑐) will be non-empty for every 𝑅 > 1.

(ii) If −2 < 𝑐 < 0, then 𝔻𝕃𝔸𝑅(𝑐) will be non-empty if and only if there exists 𝑠 ∈ (0, 2 + 𝑐) such

that

max {1, 2 − 𝑠
𝑠 } ≤ 𝑅2min {1, 2 + 𝑐 − 𝑠

𝑠 − 𝑐 }.

In fact, 𝔻𝕃𝔸𝑅(𝑐) is non-empty if and only if it contains a scalar 𝑎 ∈ ℂ.
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(iii) If 𝑐 ≤ −2, then 𝔻𝕃𝔸𝑅(𝑐) will be empty for every 𝑅 > 1.

(iv) 𝔻𝕃𝔸𝑅(𝑐) ⊂ 𝒞2−𝑐,2−𝑐(𝑅), for every 𝑐 > −2.

(v) Assume 𝑐 > −2. Then, 𝑁 ∈ 𝔻𝕃𝔸𝑅(𝑐) if and only if

𝜎(𝑁) ⊂ ⋃
0<𝑠<2+𝑐

𝒞2+𝑐−𝑠,𝑠(𝑅).

(vi) If, in addition, we assume 𝑐 ≥ 0, then 𝑁 ∈ 𝔻𝕃𝔸𝑅(𝑐) is equivalent to 𝑅−2 ≤ 𝑁∗𝑁 ≤ 𝑅2.

Proof. First, we will prove that if 𝑐 > −2, then 𝔻𝕃𝔸𝑅(𝑐) is non-empty if and only if there exists

𝑠 ∈ (0, 2 + 𝑐) such that 𝒞2+𝑐−𝑠,𝑠(𝑅) is non-empty. Once this has been shown, the last assertion in

(ii) will follow immediately from Lemma 2.5.12 and the fact that 𝒞2+𝑐−𝑠,𝑠(𝑅) is non-empty if and

only if it contains a scalar (see Proposition 2.5.8).

First, observe that Lemma 2.5.12 implies 𝒞2+𝑐−𝑠,𝑠(𝑅) ⊂ 𝔻𝕃𝔸𝑅(𝑐) for every 𝑠 ∈ (0, 2 + 𝑐),

hence one direction is obvious. For the converse, assume 𝔻𝕃𝔸𝑅(𝑐) is non-empty. Thus, there exists

𝑇 ∈ ℬ(𝐻) such that

⟨(2ℜ[(1 − 𝑧𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐)ℎ, ℎ⟩ ≥ 0, (2.24)

for all 𝑧, 𝑤 ∈ 𝔻 and 𝑥 ∈ 𝐻. Now, let 𝜆 ∈ ℂ∗ be in the approximate point spectrum of 𝑇 (this is

always non-empty, as it contains the topological boundary of 𝜎(𝑇); see [78, Problem 63]). Thus,

there exists a sequence {ℎ𝑛} ⊂ 𝐻 such that ||ℎ𝑛|| = 1 (𝑛 = 1, 2,… ) and (𝜆 − 𝑇)ℎ𝑛 → 0 as 𝑛 → ∞.

From this last limit we easily obtain

lim
𝑛
(𝜆𝑘 − 𝑇𝑘)ℎ𝑛 = 0,

for all 𝑘 ∈ ℤ. Thus, we can write ⟨𝑇𝑘ℎ𝑛, ℎ𝑛⟩ → 𝜆𝑘, for all 𝑘 ∈ ℤ, and so

⟨
𝑚

∑
𝑘=0

(𝑧𝑇/𝑅)𝑘ℎ𝑛, ℎ𝑛⟩ →
𝑚

∑
𝑘=0

(𝑧𝜆/𝑅)𝑘 (2.25)

and

⟨
𝑚

∑
𝑘=0

(𝑤𝑇−1/𝑅)𝑘ℎ𝑛, ℎ𝑛⟩ →
𝑚

∑
𝑘=0

(𝑤/(𝑅𝜆))𝑘, (2.26)
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as 𝑛 → ∞, for all 𝑚 ≥ 0 and 𝑧, 𝑤 ∈ 𝔻.

Now, fix 𝑧, 𝑤 ∈ 𝔻. We have convergence∑𝑚
𝑘=0(𝑧𝑇/𝑅)

𝑘 → (1−𝑧𝑇/𝑅)−1 and∑𝑚
𝑘=0(𝑤𝑇

−1/𝑅)𝑘 →

(1−𝑤𝑇−1/𝑅)−1 as𝑚 → ∞ in the operator norm, since 𝜎(𝑧𝑇/𝑅), 𝜎(𝑤𝑇−1/𝑅) ⊂ 𝔻. Hence, in view

of (2.25)-(2.26), we can conclude that

lim
𝑛→∞

⟨(1 − 𝑧𝑇/𝑅)−1ℎ𝑛, ℎ𝑛⟩ = lim
𝑚,𝑛→∞

⟨
𝑚

∑
𝑘=0

(𝑧𝑇/𝑅)𝑘ℎ𝑛, ℎ𝑛⟩

= (1 − 𝑧𝜆/𝑅)−1 (2.27)

and

lim
𝑛→∞

⟨(1 − 𝑤𝑇−1/𝑅)−1ℎ𝑛, ℎ𝑛⟩ = lim
𝑚,𝑛→∞

⟨
𝑚

∑
𝑘=0

(𝑤𝑇−1/𝑅)𝑘ℎ𝑛, ℎ𝑛⟩

= (1 − 𝑤/(𝑅𝜆))−1. (2.28)

We now set ℎ = ℎ𝑛 in (2.24) and let 𝑛 → ∞. In view of the real-part versions of (2.27)-(2.28), we

obtain

2ℜ[(1 − 𝑧𝜆/𝑅)−1 + (1 − 𝑤/(𝜆𝑅))−1] − 2 + 𝑐 ≥ 0,

for all 𝑧, 𝑤 ∈ 𝔻. This last inequality can also be written as

inf
𝑧∈𝔻

[2ℜ(1 − 𝑧𝜆/𝑅)−1 + 𝑐] ≥ sup
𝑤∈𝔻

[ − 2ℜ(1 − 𝑤/(𝜆𝑅))−1 + 2]

and thus we can deduce the existence of 𝑠 ∈ ℝ such that

2ℜ(1 − 𝑧𝜆/𝑅)−1 + (1 − 𝑤/(𝜆𝑅))−1 + 𝑐 ≥ 𝑠 ≥ −2ℜ(1 − 𝑤/(𝜆𝑅))−1 + 2,

for all 𝑧, 𝑤 ∈ 𝔻. In view of Lemma 2.5.4, we obtain 𝜆/𝑅 ∈ 𝒞2+𝑐−𝑠 and 1/(𝜆𝑅) ∈ 𝒞𝑠, which

concludes the proof of our assertion in the beginning. If 𝑐 ≥ 0, then we can always choose 𝑠 = 1, as

𝒞2+𝑐−1,1(𝑅) will be non-empty by Lemma 2.5.8(i). This gives us (i) and if −2 < 𝑐 < 0, we obtain

(ii) by the same lemma.

For (iii), assume 𝑐 ≤ −2 and let 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐). Set 𝑤 = 0 in the definition of 𝔻𝕃𝔸𝑅(𝑐) to

obtain 𝑇/𝑅 ∈ 𝒞𝑐+2, which implies that 𝑐 = −2 (since 𝒞𝜌 is empty for 𝜌 < 0). But then, we obtain
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𝑇/𝑅 ∈ 𝒞0 and so 𝑇 ≡ 0, which contradicts the inclusion 𝜎(𝑇) ⊂ 𝐴𝑅. Thus, 𝔻𝕃𝔸𝑅(𝑐) must be

empty.

For (iv), assume 𝑐 > −2 and let 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐). Setting 𝑤 = 0 in the definition of 𝔻𝕃𝔸𝑅(𝑐)

gives us 𝑇/𝑅 ∈ 𝒞2−𝑐, while setting 𝑧 = 0 (and letting 𝑤 ∈ 𝔻) gives us 𝑇−1/𝑅 ∈ 𝒞2−𝑐. Thus,

𝔻𝕃𝔸𝑅(𝑐) ⊂ 𝒞2−𝑐,2−𝑐(𝑅).

For (v), let 𝑐 > −2. Since 𝑁 is normal, it has a spectral decomposition (see [55, Chapter IX])

𝑁 = ∫
𝜍(𝑁)

𝜆 𝑑𝐸(𝜆).

Using this, we obtain that 𝑁 ∈ 𝔻𝕃𝔸𝑅(𝑐) if and only if its spectrum is contained in 𝐴𝑅 and

2ℜ[(1 − 𝑧𝑁/𝑅)−1 + (1 − 𝑤𝑁−1/𝑅)−1] − 2 + 𝑐

= ∫
𝜍(𝑁)

(2ℜ[(1 − 𝑧𝜆/𝑅)−1 + (1 − 𝑤/(𝜆𝑅))−1] − 2 + 𝑐) 𝑑𝐸(𝜆) ≥ 0,

for all 𝑧, 𝑤 ∈ 𝔻, which can be equivalently restated as

2ℜ[(1 − 𝑧𝜆/𝑅)−1 + (1 − 𝑤/(𝜆𝑅))−1] − 2 + 𝑐 ≥ 0,

for all 𝑧, 𝑤 ∈ 𝔻 and all 𝜆 ∈ 𝜎(𝑁).Mimicking our argument from the proof of (i), we deduce, for

every 𝜆 ∈ 𝜎(𝑁), the existence of 𝑠 ∈ (0, 2 + 𝑐) (depending on 𝜆) such that 𝜆 ∈ 𝒞2+𝑐−𝑠,𝑠(𝑅). Hence,

we can write

𝜎(𝑁) ⊂ ⋃
0<𝑠<2+𝑐

𝒞2+𝑐−𝑠,𝑠(𝑅),

which concludes the proof.

For (vi), assume 𝑐 ≥ 0. Since 𝑁 is normal, the condition 𝑅−2 ≤ 𝑁∗𝑁 ≤ 𝑅2 is equivalent to

𝜎(𝑁) ⊂ 𝐴𝑅, which is necessary for membership in 𝔻𝕃𝔸𝑅(𝑐). Conversely, if 𝑅−2 ≤ 𝑁∗𝑁 ≤ 𝑅2, then

𝜎(𝑁) ⊂ 𝒞1,1(𝑅) ⊂ ⋃
0<𝑠<2+𝑐

𝒞2+𝑐−𝑠,𝑠(𝑅),

where the last inclusion holds because 𝑐 ≥ 0. Thus, we must have 𝑁 ∈ 𝔻𝕃𝔸𝑅(𝑐).

Under the extra assumption 𝜎(𝑇) ⊂ 𝐴𝑅, we can restrict the parameters 𝑧, 𝑤 in the definition of

𝔻𝕃𝔸𝑅(𝑐) to the boundary of the disk (this is the 𝔻𝕃𝔸𝑅(𝑐)-version of Lemma 2.16).
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Lemma 2.5.14. Assume 𝑐 > −2 and 𝑇 ∈ ℬ(𝐻) is such that 𝜎(𝑇) ⊂ 𝐴𝑅. Then, 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐) if

and only if

2ℜ[(1 − 𝑒𝑖𝜃𝑇/𝑅)−1 + (1 − 𝑒𝑖𝜓𝑇−1/𝑅)−1] − 2 + 𝑐 ≥ 0, ∀𝜃, 𝜓 ∈ [0, 2𝜋).

Proof. First, assume 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐). Fix an arbitrary ℎ ∈ 𝐻 and 𝑤 ∈ 𝔻 and define

𝛷ℎ,𝑤 ∶ 𝔻 → ℂ

𝑧 ↦ ⟨(2ℜ[(1 − 𝑧𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐)ℎ, ℎ⟩.

Since 𝜎(𝑇) ⊂ 𝐴𝑅, 𝛷ℎ,𝑤 will be a harmonic function on 𝔻 that extends continuously to 𝔻. By the

minimum principle for harmonic functions, we then obtain that

𝛷ℎ,𝑤(𝑧) = ⟨(2ℜ[(1 − 𝑧𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐)ℎ, ℎ⟩ ≥ 0,

for all 𝑧 ∈ 𝔻, if and only if

𝛷ℎ,𝑤(𝑒𝑖𝜃) = ⟨(2ℜ[(1 − 𝑒𝑖𝜃𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐)ℎ, ℎ⟩ ≥ 0,

for all 𝜃 ∈ [0, 2𝜋). Since ℎ and 𝑤 were arbitrary, we conclude that

2ℜ[(1 − 𝑒𝑖𝜃𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐 ≥ 0,

for all 𝜃 ∈ [0, 2𝜋) and all 𝑤 ∈ 𝔻.We can now apply the minimum principle to the function

𝑤 ↦ ⟨(2ℜ[(1 − 𝑒𝑖𝜃𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐)ℎ, ℎ⟩

to conclude the proof.

For the converse, simply roll back the steps in the previous proof.

Now, recall that the 𝒞𝜌 classes are strictly monotone with respect to 𝜌, i.e. 𝜌 < 𝜌′ implies

𝒞𝜌 ⊊ 𝒞𝜌′. We are going to prove an analogous monotonicity result for 𝔻𝕃𝔸𝑅(𝑐).

Theorem 2.5.15. If −2 < 𝑐 < 𝑐′ and 𝔻𝕃𝔸𝑅(𝑐′) is non-empty, then

𝔻𝕃𝔸𝑅(𝑐) ⊊ 𝔻𝕃𝔸𝑅(𝑐′).
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Proof. If 𝑐 < 𝑐′, it is obvious by the definition of 𝔻𝕃𝔸𝑅(𝑐) that 𝔻𝕃𝔸𝑅(𝑐) ⊆ 𝔻𝕃𝔸𝑅(𝑐′). To show

that the inclusion is actually strict, we are going to divide the proof into two cases.

First, assume that there exist 𝑠, 𝑡 > 0 such that 𝑠 ≥ 1, 𝑠 + 𝑡 = 2 + 𝑐′ and 𝒞𝑠.𝑡(𝑅) is non-empty.

Note that (in view of Lemma 2.5.8 and the monotonicity of the 𝒞𝜌 classes), if such 𝑠, 𝑡 exist and

𝑡 ≥ 1, we can replace them by new parameters 𝑠′, 𝑡′ such that 𝑠′ ≥ 1, 𝑡′ < 1, 𝑠′ + 𝑡′ = 2 + 𝑐′,
2

𝑅2+1
< 𝑡 and 𝒞𝑠′.𝑡′(𝑅) is non-empty. So, we may also assume that 𝑡 < 1 and 2

𝑅2+1
< 𝑡.

Now, we will take advantage of the matrices we calculated in the proof of Theorem 2.5.10.

Recall first that, in view of Lemma 2.5.9, a matrix

𝑇 = (
𝑎 𝑏

0 𝑎
)

with 𝑎, 𝑏 > 0 lies in 𝒞𝑠,𝑡(𝑅) if and only if (2 − 𝑡)/(𝑅𝑡) ≤ 𝑎 ≤ 𝑅 and

2ℜ[ 1
1 − 𝑎𝑒𝑖𝜃/𝑅

] + (𝑠 − 2) ≥ 𝑏
𝑅|1 − 𝑎𝑒𝑖𝜃/𝑅|2

(2.29)

holds for 𝜃 = 0 and

2ℜ[ 1
1 − 𝑒𝑖𝜓/(𝑎𝑅)

] + (𝑡 − 2) ≥ 𝑏
𝑎2

1
𝑅|1 − 𝑒𝑖𝜓/(𝑎𝑅)|2

(2.30)

holds for 𝜓 = 𝜋. Since 2

𝑅2+1
< 𝑡, the proof of Theorem 2.5.10 tells us that we can find 𝑎, 𝑏 such

that (2 − 𝑡)/(𝑅𝑡) < 𝑎 < 𝑅 and we have equality in (2.29) for 𝜃 = 0 and in (2.30) for 𝜓 = 𝜋.

Since, for these values of 𝑎, 𝑏, we have 𝑇 ∈ 𝒞𝑠,𝑡(𝑅) and 𝑠 + 𝑡 = 2 + 𝑐′, Lemma 2.5.12 tells us that

𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐′).

Now, we claim that𝑇 cannot lie in𝔻𝕃𝔸𝑅(𝑐). Indeed, assume𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐). Taking determinants

in the inequality

2ℜ[(1 − 𝑧𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐 ≥ 0

implies that

2ℜ[ 1
1 − 𝑎𝑒𝑖𝜃/𝑅

+ 1
1 − 𝑒𝑖𝜓/(𝑎𝑅)

] − 2 + 𝑐

≥ |||
𝑏𝑒𝑖𝜃

𝑅(1 − 𝑎𝑒𝑖𝜃/𝑅)2
− 𝑏
𝑎2

𝑒𝑖𝜓

𝑅(1 − 𝑒𝑖𝜓/(𝑎𝑅))2
|||
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for all 𝜃 and 𝜓. In particular, we can choose 𝜃0 = 0 and 𝜓0 = 𝜋, which implies (since we have

equality in both (2.29) and (2.30))

2ℜ[ 1
1 − 𝑎𝑒𝑖𝜃0/𝑅

+ 1
1 − 𝑒𝑖𝜓0/(𝑎𝑅)

] − 2 + 𝑐

≥ |||
𝑏𝑒𝑖𝜃0

𝑅(1 − 𝑎𝑒𝑖𝜃0/𝑅)2
− 𝑏
𝑎2

𝑒𝑖𝜓0
𝑅(1 − 𝑒𝑖𝜓0/(𝑎𝑅))2

|||

= |||
𝑏𝑒𝑖𝜃0

𝑅(1 − 𝑎𝑒𝑖𝜃0/𝑅)2
||| +

|||
𝑏
𝑎2

𝑒𝑖𝜓0
𝑅(1 − 𝑒𝑖𝜓0/(𝑎𝑅))2

|||

= 2ℜ[ 1
1 − 𝑎𝑒𝑖𝜃0/𝑅

] + (𝑠 − 2) + 2ℜ[ 1
1 − 𝑒𝑖𝜓0/(𝑎𝑅)

] + (𝑡 − 2)

= 2ℜ[ 1
1 − 𝑎𝑒𝑖𝜃0/𝑅

] + 2ℜ[ 1
1 − 𝑒𝑖𝜓0/(𝑎𝑅)

] + 𝑐′ − 2,

a contradiction, since 𝑐 < 𝑐′. Thus, 𝑇 ∉ 𝔻𝕃𝔸𝑅(𝑐′).

Now, assume that there do not exist 𝑠, 𝑡 > 0 such that 𝑠 ≥ 1, 𝑠 + 𝑡 = 2 + 𝑐′ and 𝒞𝑠.𝑡(𝑅) is

non-empty. Since 𝑇 ∈ 𝒞𝑠,𝑡(𝑅) if and only if 𝑇−1 ∈ 𝒞𝑡,𝑠(𝑅), we also deduce that there do not exist

𝑠, 𝑡 > 0 such that 𝑡 ≥ 1, 𝑠+𝑡 = 2+𝑐′ and 𝒞𝑠.𝑡(𝑅) is non-empty. Thus, −2 < 𝑐′ < 0. Now, 𝔻𝕃𝔸𝑅(𝑐′)

is non-empty, so Proposition 2.5.13(i) tells us that there exists 𝑠 ∈ (0, 2 + 𝑐′) such that 𝒞𝑠,2+𝑐′−𝑠(𝑅)

is non-empty. In view of our previous remarks, we must have 𝑠, 2 + 𝑐′ − 𝑠 < 1. Lemma 2.5.8 then

tells us that

1
𝑅

𝑠 − 𝑐′
2 + 𝑐′ − 𝑠 ≤ 𝑅 𝑠

2 − 𝑠.

Note that the right-hand side tends to 0 as 𝑠 → 0, while the left-hand side remains bounded below

by a strictly positive number. Thus, shrinking 𝑠, we may replace it by a positive number 𝛿 such that
1

𝑅

𝛿−𝑐′

2+𝑐′−𝛿
= 𝑅 𝛿

2−𝛿
. In view again of Lemma 2.5.8, we obtain that 𝒞𝛿,2+𝑐′−𝛿(𝑅) is non-empty. Setting

𝑎 = 𝑅 𝛿

2−𝛿
, we obtain, from the same Lemma, that 𝑎 ∈ 𝒞𝛿,2+𝑐′−𝛿(𝑅) ⊂ 𝔻𝕃𝔸𝑅(𝑐′).

Now, we shall show that 𝑎 ∉ 𝔻𝕃𝔸𝑅(𝑐). Assume instead that 𝑎 ∈ 𝔻𝕃𝔸𝑅(𝑐). Proposition 2.5.13

then implies that we can find 𝑠0 ∈ (0, 2 + 𝑐) such that 𝑎 ∈ 𝒞𝑠0,2+𝑐−𝑠0(𝑅). But 𝑐 < 𝑐′, hence we

must have either 𝑠0 < 𝛿 or 2 + 𝑐 − 𝑠0 < 2 + 𝑐′ − 𝛿. Assume that 𝑠0 < 𝛿, then

𝑅
𝑠0

2 − 𝑠0
< 𝑅 𝛿

2 − 𝛿 = 𝑎,
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which contradicts 𝑎 ∈ 𝒞𝑠0,2+𝑐−𝑠0(𝑅). Similarly, if 2 + 𝑐 − 𝑠0 < 2 + 𝑐′ − 𝛿 we can write

1
𝑅
2 − (2 + 𝑐 − 𝑠0)
2 + 𝑐 − 𝑠0

> 1
𝑅
2 − (2 + 𝑐′ − 𝛿)
2 + 𝑐′ − 𝛿 = 1

𝑅
𝛿 − 𝑐′

2 + 𝑐′ − 𝛿 = 𝑎,

which again contradicts 𝑎 ∈ 𝒞𝑠0,2+𝑐−𝑠0(𝑅). Thus, 𝑎 ∉ 𝔻𝕃𝔸𝑅(𝑐) and we are done.

It is well-known (see e.g. [144]) that given any 𝑇 ∈ 𝒞𝜌 (𝜌 > 0) and any 𝑓 ∈ 𝒜(𝔻) such that

||𝑓||∞ ≤ 1 and 𝑓(0) = 0, we must have 𝑓(𝑇) ∈ 𝒞𝜌.We end this subsection with a proposition that

is motivated by this result.

Proposition 2.5.16. Assume 𝑐 > −2 and 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐). Then, for any 𝑓, 𝑔 ∈ 𝒜(𝔻) that are

bounded by 1 and satisfy 𝑓(0) = 𝑔(0) = 0, we have

2ℜ[(1 − 𝑧𝑓(𝑇/𝑅))−1 + (1 − 𝑤𝑔(𝑇−1/𝑅))−1] − 2 + 𝑐 ≥ 0,

for all 𝑧, 𝑤 ∈ 𝔻.

Proof. By assumption, we know that

ℜ[
∞

∑
𝑛=1

(𝑇𝑧𝑅 )
𝑛
+ 1 +

∞

∑
𝑛=1

(𝑇
−1𝑤
𝑅 )

𝑛

] ≥ −𝑐
2 , (2.31)

for all 𝑧, 𝑤 ∈ 𝔻. Fix 𝑤 ∈ 𝔻, let 𝑥 ∈ 𝐻 and choose a decreasing null sequence {𝜖𝑘}. Set

𝑆𝑘 = 𝑆𝑘(𝑤) = 1 + 𝑐/2 + 𝜖𝑘 +ℜ
∞

∑
𝑛=1

(𝑇
−1𝑤
𝑅 )

𝑛
∈ ℬ(𝐻).

(2.31) now tells us that the holomorphic function

𝐹𝑘 ∶ 𝔻 → ℂ

𝑧 ↦
∞

∑
𝑛=1

𝑧𝑛
𝑅𝑛 ⟨𝑇

𝑛𝑥, 𝑥⟩ + ⟨𝑆𝑘𝑥, 𝑥⟩

has positive real part and satisfies 𝐹𝑘(0) = ⟨𝑆𝑘𝑥, 𝑥⟩ > 0 (put 𝑧 = 0 in (2.31)). Thus, Herglotz’s

theorem implies the existence of a positive measure 𝜇𝑥,𝑤,𝑘 on the unit circle such that

𝐹𝑘(0) +
∞

∑
𝑛=1

𝑧𝑛
𝑅𝑛 ⟨𝑇

𝑛𝑥, 𝑥⟩ = ∫ 1 + 𝑧𝑒−𝑖𝜃

1 − 𝑧𝑒−𝑖𝜃
𝑑𝜇𝑥,𝑤,𝑘(𝜃),
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for all 𝑧 ∈ 𝔻. Expanding the integrand and equating coefficients, we obtain

1
𝑅𝑛 ⟨𝑇

𝑛𝑥, 𝑥⟩ = 2∫𝑒−𝑖𝑛𝜃𝑑𝜇𝑥,𝑤,𝑘(𝜃),

for every 𝑛 ≥ 1. Thus, if 𝑝 is any polynomial such that 𝑝(0) = 0, we can write

⟨𝑝(𝑇/𝑅)𝑥, 𝑥⟩ = 2∫𝑝(𝑒−𝑖𝜃)𝑑𝜇𝑥,𝑤,𝑘(𝜃).

Replacing 𝑝 by 𝑝𝑛, we obtain

⟨𝑝𝑛(𝑇/𝑅)𝑥, 𝑥⟩ = 2∫𝑝𝑛(𝑒−𝑖𝜃)𝑑𝜇𝑥,𝑤,𝑘(𝜃),

for every 𝑛 ≥ 1. Thus, if we also assume that |𝑝| ≤ 1, we obtain that 𝑝(𝑇/𝑅) has its spectrum inside

𝔻 (since the same must be true for 𝑇/𝑅) and we can write

⟨(𝑆𝑘 +
∞

∑
𝑛=1

𝑧𝑛𝑝𝑛(𝑇/𝑅))𝑥, 𝑥⟩

= 𝐹𝑘(0) + 2
∞

∑
𝑛=1

𝑧𝑛∫𝑝(𝑒−𝑖𝜃)𝑛𝑑𝜇𝑥,𝑤,𝑘(𝜃) = ∫
1 + 𝑧𝑝(𝑒−𝑖𝜃)
1 − 𝑧𝑝(𝑒−𝑖𝜃)

𝑑𝜇𝑥,𝑤,𝑘(𝜃).

Now, if 𝑓 ∈ 𝒜(𝔻) is bounded by 1 and satisfies 𝑓(0) = 0, a standard approximation argument

shows that

⟨(𝑆𝑘 +
∞

∑
𝑛=1

𝑧𝑛𝑓𝑛(𝑇/𝑅))𝑥, 𝑥⟩ = ∫
1 + 𝑧𝑓(𝑒𝑖𝜃)
1 − 𝑧𝑓(𝑒𝑖𝜃)

𝑑𝜇𝑥,𝑤,𝑘(𝜃).

The integrand has positive real part for all 𝑧 and 𝜃, hence

ℜ[
∞

∑
𝑛=1

(𝑧𝑓(𝑇/𝑅))𝑛 + 1 + 𝜖𝑘 +
∞

∑
𝑛=1

(𝑤𝑇−1/𝑅)𝑛] ≥ −𝑐
2 ,

for all 𝑘 and for all 𝑧, 𝑤 ∈ 𝔻. Letting 𝑘 → ∞, we obtain

ℜ[
∞

∑
𝑛=1

(𝑧𝑓(𝑇/𝑅))𝑛 + 1 +
∞

∑
𝑛=1

(𝑤𝑇−1/𝑅)𝑛] ≥ −𝑐
2 ,

for all 𝑧, 𝑤 ∈ 𝔻. Using this last inequality, we may repeat the previous argument with the roles of 𝑧

and 𝑤 swapped, thus obtaining the desired result.
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2.5.4 The Double-Layer Potential Kernel

In this subsection, we finally exhibit the connection between 𝔻𝕃𝔸𝑅(𝑐) and the double-layer

potential kernel over the annulus. Given any smoothly bounded, open 𝛺 ⊂ ℂ and any 𝑇 ∈ ℬ(𝐻)

such that 𝜎(𝑇) ⊂ 𝛺, recall that the transform of 𝑓 by the double-layer potential kernel is defined as

𝑆(𝑓, 𝑇) = ∫
𝜕𝛺

𝜇(𝜎(𝑠), 𝑇)𝑓(𝜎(𝑠))𝑑𝑠,

where 𝑠 denotes the arc length of 𝜎 = 𝜎(𝑠) on the (counter-clockwise) oriented boundary 𝜕𝛺 and

𝜇(𝜎(𝑠), 𝑇) is the self-adjoint operator defined (for 𝜎(𝑠) ∉ 𝜎(𝑇)) as

𝜇(𝜎(𝑠), 𝑇) = 1
2𝜋𝑖(𝜎

′(𝑠)(𝜎(𝑠) − 𝑇)−1 − 𝜎′(𝑠)(𝜎(𝑠) − 𝑇∗)−1).

Note that 𝑆(𝑓, 𝑇) = 𝑓(𝑇) + (𝐶𝑓)(𝑇)∗ and thus ∫𝜕𝛺 𝜇(𝜎, 𝑇)𝑑𝑠 = 2𝐼.

The definition of 𝔻𝕃𝔸𝑅(𝑐) can now be recast (for 𝜎(𝑇) ⊂ 𝐴𝑅) as follows.

Theorem 2.5.17. Assume 𝑅 > 1, 𝑐 > −2 and 𝑇 ∈ ℬ(𝐻) satisfies 𝜎(𝑇) ⊂ 𝐴𝑅. Then, 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐)

if and only if the mapping

𝑆𝑅,𝑐 ∶ 𝒜(𝐴𝑅) → ℬ(𝐻)

𝑓 = ∑
𝑛∈ℤ

𝑎𝑛𝑧𝑛 ↦
1

2 + 𝑐[∫𝜕𝐴𝑅

𝜇(𝜎, 𝑇)𝑓(𝜎)𝑑𝑠 + 𝑐𝑎0]

is contractive.

Proof. Write 𝜕𝐴𝑅 = 𝛤1 ∪ 𝛤−1, where 𝛤1 (the outer circle) is counter-clockwise oriented, while 𝛤−1

(the inner circle) is clockwise oriented. Also, in view of [111, Corollary 2.9] and [111, Proposition

2.12], the fact that 𝑆𝑅,𝑐 is unital allows us to deduce that 𝑆𝑅,𝑐 is contractive if and only if

𝑆′𝑅,𝑐 ∶ 𝒜(𝐴𝑅) + 𝒜(𝐴𝑅)∗ → ℬ(𝐻) (2.32)

𝑓 + 𝑔 = ∑
𝑛∈ℤ

𝑎𝑛𝑧𝑛 + ∑
𝑛∈ℤ

𝑏𝑛𝑧
𝑛 ↦ 𝑆𝑅,𝑐(𝑓) + 𝑆𝑅,𝑐(𝑔)∗

= 1
2 + 𝑐[∫𝜕𝐴𝑅

𝜇(𝜎, 𝑇)(𝑓 + 𝑔)(𝜎)𝑑𝑠 + 𝑐(𝑎0 + 𝑏0)]
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is positive. Let 𝐶(𝜕𝐴𝑅) denote the algebra of continuous functions on 𝜕𝐴𝑅 and recall that the closure

of 𝒜(𝐴𝑅) + 𝒜(𝐴𝑅)∗ in 𝐶(𝜕𝐴𝑅) is the codimension one subspace (see [111, p. 80])

ℳ𝑅 = {𝑓 ∈ 𝐶(𝜕𝐴𝑅) ∶
1

2𝜋𝑅 ∫𝛤1
𝑓(𝜎)𝑑𝑠 = 𝑅

2𝜋 ∫𝛤−1
𝑓(𝜎)𝑑𝑠}.

Thus, our goal will be to show that 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐) if and only if ̃𝑆𝑅,𝑐 is positive overℳ𝑅, where

̃𝑆𝑅,𝑐 ∶ ℳ𝑅 → ℬ(𝐻)

𝑓 ↦ 1
2 + 𝑐[∫𝜕𝐴𝑅

𝜇(𝜎, 𝑇)𝑓(𝜎)𝑑𝑠 + 𝑐
2𝜋𝑖 ∫𝛤1

𝑓
𝜎𝜎

′𝑑𝑠]

(note that 𝑆′𝑅,𝑐 ≡ ̃𝑆𝑅,𝑐 over 𝒜(𝐴𝑅) + 𝒜(𝐴𝑅)∗). We require the following lemma.

Lemma 2.5.18. In the setting of Theorem 2.5.17, 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐) if and only if

𝑅𝜇(𝜎1, 𝑇) + 𝑅−1𝜇(𝜎2, 𝑇) +
𝑐
2𝜋 ≥ 0,

for all 𝜎1 ∈ 𝛤1 and 𝜎2 ∈ 𝛤−1.

Proof of Lemma 2.5.18. For 𝜎1 ∈ 𝛤1, the arc-length parametrization gives 𝜎1 = 𝑅𝑒𝑖𝜃, 𝜎′1 = 𝑖𝑒𝑖𝜃,

while for 𝜎2 ∈ 𝛤−1 we obtain 𝜎2 = 𝑅−1𝑒−𝑖𝜓, 𝜎′2 = −𝑖𝑒−𝑖𝜓, where 𝜃, 𝜓 ∈ [0, 2𝜋). Thus, we may

write

2𝜋[𝑅𝜇(𝜎1, 𝑇) + 𝑅−1𝜇(𝜎2, 𝑇)] + 𝑐

= 2ℜ[𝑅𝑒𝑖𝜃(𝑅𝑒𝑖𝜃 − 𝑇)−1] + 2ℜ[ − 𝑅−1𝑒−𝑖𝜓(𝑅−1𝑒−𝑖𝜓 − 𝑇)−1] + 𝑐

= 2ℜ[(1 − 𝑒−𝑖𝜃𝑇/𝑅)−1 + (1 − 𝑒−𝑖𝜓𝑇−1/𝑅)−1] + 𝑐 − 2,

which is positive for all 𝜃, 𝜓 ∈ [0, 2𝜋) if and only if 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐).

Now, assume that ̃𝑆𝑅,𝑐 is positive and that 𝑇 ∉ 𝔻𝕃𝔸𝑅(𝑐). In view of Lemma 2.5.18, there exist

𝜂1 ∈ 𝛤1, 𝜂2 ∈ 𝛤−1 and a unit vector 𝑣 ∈ 𝐻 such that

⟨(𝑅𝜇(𝜂1, 𝑇) + 𝑅−1𝜇(𝜂2, 𝑇) +
𝑐
2𝜋)𝑣, 𝑣⟩ = 2𝑘 < 0. (2.33)
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Since 𝜎(𝑇) ⊂ 𝐴𝑅, we know that both of the maps 𝜎1 ↦ ⟨𝜇(𝜎1, 𝑇)𝑣, 𝑣⟩ and 𝜎2 ↦ ⟨𝜇(𝜎2, 𝑇)𝑣, 𝑣⟩ are

continuous. Thus, in view of (2.33), we can find small arcs 𝐼1 ⊂ 𝛤1 and 𝐼−1 ⊂ 𝛤−1 of equal length

and centered at 𝜂1 and 𝜂2 respectively such that

⟨(𝑅𝜇(𝜎1, 𝑇) + 𝑅−1𝜇(𝜎2, 𝑇) +
𝑐
2𝜋)𝑣, 𝑣⟩ ≤ 𝑘 < 0,

for all 𝜎1 ∈ 𝐼1 and all 𝜎2 ∈ 𝐼−1. From this, we easily deduce the existence of 𝑡 ∈ ℝ such that

⟨(𝑅𝜇(𝜎1, 𝑇) +
𝑐
2𝜋)𝑣, 𝑣⟩ ≤ 𝑘/2 + 𝑡 (2.34)

and

⟨𝑅−1𝜇(𝜎2, 𝑇)𝑣, 𝑣⟩ ≤ 𝑘/2 − 𝑡, (2.35)

for all 𝜎1 ∈ 𝐼1 and all 𝜎2 ∈ 𝐼−1. Now, take 𝑔 ∶ 𝜕𝐴𝑅 → ℂ to be a continuous function such that

0 ≤ 𝑔 ≤ 1, 𝑔(𝑧) = 0 for 𝑧 outside 𝐼1 ∪ 𝐼−1 and also 𝑑 = 1

2𝜋𝑅
∫𝛤1 𝑔(𝜎)𝑑𝑠 =

𝑅

2𝜋
∫𝛤−1 𝑔(𝜎)𝑑𝑠 > 0.

Then, 𝑔 ∈ ℳ𝑅 and so ̃𝑆𝑅,𝑐(𝑔) must be a positive operator. However, observe that by (2.34) and

(2.35),

(2 + 𝑐)⟨ ̃𝑆𝑅,𝑐(𝑔)𝑣, 𝑣⟩ = ∫
𝜕𝐴𝑅

⟨𝜇(𝜎, 𝑇)𝑣, 𝑣⟩𝑔(𝜎)𝑑𝑠 + 𝑐
2𝜋𝑅 ∫𝛤1

𝑔(𝜎1)𝑑𝑠

= ∫
𝛤1

⟨𝑅𝜇(𝜎1, 𝑇)𝑣, 𝑣⟩
𝑔(𝜎1)
𝑅 𝑑𝑠 +∫

𝛤−1

⟨𝑅−1𝜇(𝜎2, 𝑇)𝑣, 𝑣⟩𝑅𝑔(𝜎2)𝑑𝑠 +
𝑐

2𝜋𝑅 ∫𝛤1
𝑔(𝜎1)𝑑𝑠

≤ (𝑘/2 + 𝑡) 1𝑅 ∫𝛤1
𝑔(𝜎1)𝑑𝑠 + (𝑘/2 − 𝑡)𝑅∫

𝛤−1

𝑔(𝜎2)𝑑𝑠

= 2𝜋𝑑𝑘 < 0,

a contradiction. Thus, we must have 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐).

Conversely, assume 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐). Fix 𝑣 ∈ 𝐻. Lemma 2.5.18 tells us that we can find 𝑡 ∈ ℝ

such that

⟨(𝑅𝜇(𝜎1, 𝑇) +
𝑐
2𝜋)𝑣, 𝑣⟩ ≥ 𝑡 (2.36)

and

⟨𝑅−1𝜇(𝜎2, 𝑇)𝑣, 𝑣⟩ ≥ −𝑡, (2.37)
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for all 𝜎1 ∈ 𝛤1 and all 𝜎2 ∈ 𝛤−1. Now, let 𝑓 ∈ ℳ𝑅 be positive. Since
1

2𝜋𝑅
∫𝛤1 𝑓(𝜎)𝑑𝑠 =

𝑅

2𝜋
∫𝛤−1 𝑓(𝜎)𝑑𝑠, we may write (in view of (2.36)-(2.37))

(2 + 𝑐)⟨ ̃𝑆𝑅,𝑐(𝑓)𝑣, 𝑣⟩

= ∫
𝛤1

⟨(𝑅𝜇(𝜎1, 𝑇) +
𝑐
2𝜋)𝑣, 𝑣⟩

𝑓(𝜎1)
𝑅 𝑑𝑠 +∫

𝛤−1

⟨𝑅−1𝜇(𝜎2, 𝑇)𝑣, 𝑣⟩𝑅𝑓(𝜎2)𝑑𝑠

≥ 𝑡
𝑅 ∫𝛤1

𝑓(𝜎1)𝑑𝑠 − 𝑡𝑅∫
𝛤−1

𝑓(𝜎2)𝑑𝑠

= 0.

Since 𝑣 ∈ 𝐻 was arbitrary, ̃𝑆𝑅,𝑐(𝑓) has to be a positive operator and we are done.

2.5.5 ACompletely Contractive Analogue of 𝔻𝕃𝔸𝑅(𝑐)

We now introduce and characterize ℂ𝔻𝕃𝔸𝑅(𝑐), the “complete version” of 𝔻𝕃𝔸𝑅(𝑐). Our

main result is Theorem 2.5.2. One can also work with operators satisfying 𝜎(𝑇) ⊂ 𝐴𝑅 to obtain the

more general Theorem 2.5.22.

Definition 2.5.19. Assume 𝑅 > 1, 𝑐 > −2 and 𝑇 ∈ ℬ(𝐻) satisfies 𝜎(𝑇) ⊂ 𝐴𝑅. Then, 𝑇 ∈

ℂ𝔻𝕃𝔸𝑅(𝑐) if the mapping

𝑆𝑅,𝑐 ∶ 𝒜(𝐴𝑅) → ℬ(𝐻)

𝑓 = ∑
𝑛∈ℤ

𝑎𝑛𝑧𝑛 ↦
1

2 + 𝑐[∫𝜕𝐴𝑅

𝜇(𝜎, 𝑇)𝑓(𝜎)𝑑𝑠 + 𝑐𝑎0]

is completely contractive.

We first establish one direction of Theorem 2.5.2.

Lemma 2.5.20. Assume 𝑅 > 1, 𝑐 > −2 and 𝑇 ∈ ℬ(𝐻) satisfies 𝜎(𝑇) ⊂ 𝐴𝑅. If there exists

𝐴 ∈ ℬ(𝐻) such that 𝐴 > 0, 2 + 𝑐 − 𝐴 > 0 and 𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴 and 𝑇−1/𝑅 ∈ 𝒞𝐴, then

𝑇 ∈ ℂ𝔻𝕃𝔸𝑅(𝑐).
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Proof. Assume 𝑇 and 𝐴 satisfy the given hypotheses. We again write 𝜕𝐴𝑅 = 𝛤1 ∪ 𝛤−1, where 𝛤1

(the outer circle) is counter-clockwise oriented, while 𝛤−1 (the inner circle) is clockwise oriented.

Now, define the self-adjoint operator

𝜈𝐴(𝜎, 𝑇) ∶= 𝜇(𝜎, 𝑇) + 𝜎′
𝜎
(𝑐 − 𝐴)
2𝜋𝑖 , ∀𝜎 ∈ 𝜕𝛤1,

and

𝜈𝐴(𝜎, 𝑇) ∶= 𝜇(𝜎, 𝑇) − 𝜎′
𝜎

𝐴
2𝜋𝑖, ∀𝜎 ∈ 𝜕𝛤−1.

Note that, if 𝜎 ∈ 𝛤1, we have 𝜎 = 𝑅𝑒𝑖𝜃 and 𝑠 = 𝑅𝜃, thus

𝜈𝐴(𝜎, 𝑇) = 𝜇(𝑅𝑒𝑖𝜃, 𝑇) + 𝑐 − 𝐴
2𝜋𝑅 ≥ 0,

for all 𝜃, as 𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴. Also, if 𝜎 ∈ 𝛤−1, we can write 𝜎 = 𝑅−1𝑒−𝑖𝜙 and 𝑠 = 𝑅−1𝜙, hence

𝜈𝐴(𝜎, 𝑇) = 𝜇(𝑅−1𝑒−𝑖𝜙, 𝑇) + 𝑅
2𝜋𝐴

= 1
2𝜋( − 𝑒−𝑖𝜙(𝑅−1𝑒−𝑖𝜙 − 𝑇)−1 + 𝑒𝑖𝜙(𝑅−1𝑒𝑖𝜙 − 𝑇∗)−1) + 𝑅

2𝜋𝐴

= 𝑅
2𝜋(2ℜ(𝑅

−1𝑇−1𝑒−𝑖𝜙(𝐼 − 𝑇−1𝑒−𝑖𝜙𝑅−1)−1) + 𝐴)

= 𝑅
2𝜋(2ℜ(𝐼 − 𝑇−1𝑒−𝑖𝜙𝑅−1)−1 + 𝐴 − 2) ≥ 0,

for all 𝜙, as 𝑇−1/𝑅 ∈ 𝒞𝐴.

Next, we consider the coordinate-wise map 𝑆(𝑚)
𝑅,𝑐 ∶ 𝑀𝑚(𝒜(𝐴𝑅)) → ℬ(𝐻(𝑚)), for 𝑚 ≥ 1. Here,

𝑀𝑚(𝒜(𝐴𝑅)) denotes the algebra of all matrix-valued 𝐹 ∶ 𝐴𝑅 → ℂ𝑚×𝑚 that are (coordinate-wise)

analytic and admit a continuous extension to 𝐴𝑅. For any such 𝐹 = ∑𝑛∈ℤ 𝐴𝑛 ⊗ 𝑧𝑛, we can write

(2 + 𝑐)𝑆(𝑚)
𝑅,𝑐 (𝐹) = ∫

𝜕𝐴𝑅

𝐹(𝜎) ⊗ 𝜇(𝜎, 𝑇)𝑑𝑠 + 𝑐𝐴0 ⊗ 𝐼

= ∫
𝜕𝐴𝑅

𝐹(𝜎) ⊗ 𝜇(𝜎, 𝑇) 𝑑𝑠 + 𝑐
2𝜋𝑖 ∫𝛤1

𝜎′
𝜎 𝐹(𝜎) ⊗ 𝐼 𝑑𝑠

= ∫
𝜕𝐴𝑅

𝐹(𝜎) ⊗ 𝜇(𝜎, 𝑇) 𝑑𝑠 + 𝑐
2𝜋𝑖 ∫𝛤1

𝜎′
𝜎 𝐹(𝜎) ⊗ 𝐼 𝑑𝑠 − 𝐴

2𝜋𝑖 ∫𝜕𝐴𝑅

𝜎′
𝜎 𝐹(𝜎) ⊗ 𝐼 𝑑𝑠,
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= ∫
𝜕𝐴𝑅

𝐹(𝜎) ⊗ 𝜈𝐴(𝜎, 𝑇) 𝑑𝑠.

But now, since 𝜈𝐴(𝜎, 𝑇) ≥ 0 for every 𝜎 in 𝜕𝐴𝑅 and also ∫𝐴𝑅
𝜈𝐴(𝜎, 𝑇) 𝑑𝑠 = (2 + 𝑐)𝐼, one can

show (see e.g. the proof of Lemma 2.2 in [60]) that 𝑆(𝑚)
𝑅,𝑐 is contractive, for every 𝑚 ≥ 1. This

concludes the proof.

We now prove a lemma; the 𝒞𝐴 classes do not contain any invertible operators if 𝐴 is not

invertible.

Lemma 2.5.21. Let 𝐴 ∈ ℬ(𝐻) be a positive operator that is not invertible. Assume also that

𝑇 ∈ ℬ(𝐻) satisfies 𝜎(𝑇) ⊂ 𝔻 and

2ℜ(1 − 𝑧𝑇)−1 + 𝐴 − 2 ≥ 0, ∀𝑧 ∈ 𝔻.

Then, 𝑇 is not invertible.

Proof. Arguing as in the proof of Theorem 2.5.17, one can show that 𝑇 satisfies

2ℜ(1 − 𝑧𝑇)−1 + 𝐴 − 2 ≥ 0, ∀𝑧 ∈ 𝔻.

if and only if the mapping

𝑆𝐴 ∶ 𝒜(𝔻) → ℬ(𝐻)

𝑓 ↦ ∫
𝜕𝔻

𝜇(𝜎, 𝑇)𝑓(𝜎)𝑑𝑠 + 𝑓(0)(𝐴 − 2)

is contractive. But then, we know (see e.g. [111, Chapters 2-3]) that 𝑆𝐴 is contractive if and only

if it has a completely positive extension to all of 𝐶(𝜕𝔻). Let ̃𝑆𝐴 denote such an extension. The

non-unital version of Stinespring’s Theorem [111, Theorem 4.1] then implies the existence of a

Hilbert space 𝐾 ⊃ 𝐻, a unital ∗-homomorphism 𝜋 ∶ 𝐶(𝜕𝔻) → ℬ(𝐾) and a bounded operator

𝑉 ∶ 𝐻 → 𝐾 such that

̃𝑆𝐴(𝑓) = 𝑉∗𝜋(𝑓)𝑉, ∀𝑓 ∈ 𝐶(𝜕𝔻). (2.38)

Set 𝑈 = 𝜋(𝑧). It is easy to see that 𝑈 will then be a unitary operator. Setting 𝑓 ≡ 1 in (2.38) gives

us 𝐴 = 𝑉∗𝑉, thus the polar decomposition of 𝑉 will be given by 𝑌𝐴1/2, where 𝑌 is some partial
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isometry. But observe also that putting 𝑓 = 𝑧 in (2.38) gives us

𝑇 = 𝐴1/2𝑌∗𝑈𝑌𝐴1/2.

Since 𝐴1/2 is not invertible, we conclude that 𝑇 cannot be invertible.

Before we finish off the proof of Theorem 2.5.2, a few dilation-theoretic observations are in

order. Assume 𝑇 ∈ ℬ(𝐻), with 𝜎(𝑇) ⊂ 𝐴𝑅. It is then well-known that 𝑇 ∈ ℂ𝔻𝕃𝔸𝑅(𝑐) if and only

if the mapping (2.32) is completely positive. Further, by Stinespring’s Theorem, this is equivalent

to the existence of a Hilbert space 𝐾 ⊃ 𝐻 and a unital ∗-homomorphism 𝜋 ∶ 𝐶(𝜕𝐴𝑅) → ℬ(𝐾) such

that, for 𝑓 = ∑𝑎𝑛𝑧𝑛 ∈ 𝒜(𝐴𝑅),

(2 + 𝑐)𝑆𝑅,𝑐(𝑓) = 𝑓(𝑇) + (𝐶𝑓)(𝑇)∗ + 𝑐𝑎0 = (2 + 𝑐)𝑃𝐻𝜋(𝑓)|𝐻.

Set 𝜋(𝑧) = 𝑁. Then, 𝑁 will be a normal operator satisfying 𝜎(𝑁) ⊂ 𝜕𝐴𝑅 and our previous equality

becomes, for 𝑓(𝑧) = 𝑧𝑛,

𝑇𝑛 + (𝐶𝑧𝑛)(𝑇)∗ = (2 + 𝑐)𝑃𝐻𝑁𝑛|𝐻, ∀𝑛 ≠ 0.

After some computations, one verifies that

(𝐶𝑧𝑛)(𝜁) = 1
2𝜋𝑖 ∫𝜕𝐴𝑅

𝑧𝑛
𝑧 − 𝜁

𝑑𝑧 = 𝑅−2|𝑛|𝜁−𝑛,

hence

𝑇𝑛 + 𝑅−2|𝑛|𝑇−𝑛∗ = (2 + 𝑐)𝑃𝐻𝑁𝑛|𝐻, ∀𝑛 ≠ 0. (2.39)

On the other hand, Theorem 2.5.2 tells us that 𝑇 ∈ ℂ𝔻𝕃𝔸𝑅(𝑐) if and only if there exists 𝐴 ∈ ℬ(𝐻)

such that 𝐴 > 0, 2 + 𝑐 − 𝐴 > 0 and 𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴 and 𝑇−1/𝑅 ∈ 𝒞𝐴. In view of Definition 2.5.1,

this is equivalent to the existence of a Hilbert space 𝐾′ ⊃ 𝐻 and unitaries 𝑈1, 𝑈−1 ∈ ℬ(𝐾′) such

that

𝑅−𝑛𝑇𝑛 = (2 + 𝑐 − 𝐴)1/2𝑃𝐻𝑈𝑛
1 (2 + 𝑐 − 𝐴)1/2|𝐻, ∀𝑛 ≥ 1, (2.40)

and

𝑅−𝑛𝑇−𝑛 = 𝐴1/2𝑃𝐻𝑈𝑛
−1𝐴1/2|𝐻, ∀𝑛 ≥ 1. (2.41)
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Thus, the content of Theorem 2.5.2 is that 2.39 holds if and only if there exists 𝐴 ∈ ℬ(𝐻) with

0 < 𝐴 < 2 + 𝑐 such that (2.40) and (2.41) hold. It would be of interest to find a direct proof of this

assertion, using only the dilations 𝑈1, 𝑈−1 and 𝑁.

Proof of Theorem 2.5.2. All that is left is to establish the converse of Lemma 2.5.20.

Accordingly, assume 𝑇 ∈ ℂ𝔻𝕃𝔸𝑅(𝑐), with 𝜎(𝑇) ⊂ 𝐴𝑅. By Arveson’s Theorem, 𝑆𝑅,𝑐 extends to

a completely positive map 𝛹𝑅,𝑐 ∶ 𝐶(𝜕𝐴𝑅) → ℬ(𝐻). Next, consider the mapping

𝜓𝑅,𝑐 ∶ 𝐶(𝜕𝐴𝑅) → ℬ(𝐻)

𝑓 ↦ 1
2 + 𝑐[∫𝜕𝐴𝑅

𝜇(𝜎, 𝑇)𝑓(𝜎)𝑑𝑠 + 𝑐
2𝜋𝑖 ∫𝛤1

𝑓
𝜎𝜎

′𝑑𝑠],

which is an alternate (not necessarily positive) extension of 𝑆𝑅,𝑐. Since ||𝜇(𝜎, 𝑇)|| is uniformly

bounded with respect to 𝜎 (because of the assumption 𝜎(𝑇) ⊂ 𝐴𝑅), we can estimate

|||
|||∫

𝜕𝐴𝑅

𝜇(𝜎, 𝑇)𝑓(𝜎)𝑑𝑠|||
||| ≤ ||𝑓||∞∫

𝜕𝐴𝑅

||𝜇(𝜎, 𝑇)||𝑑𝑠 ≤ 𝑀||𝑓||∞, ∀𝑓 ∈ 𝐶(𝜕𝐴𝑅).

Thus,𝜓𝑅,𝑐 is bounded. Observe also that both𝜓𝑅,𝑐 and𝛹𝑅,𝑐 are actually extensions of the (completely

positive) map ̃𝑆𝑅,𝑐 ∶ ℳ𝑅 → ℂ defined in the proof of Theorem 2.5.17. For 𝜓𝑅,𝑐 this is obvious,

while for𝛹𝑅,𝑐 it holds because the completely contractive map 𝑆𝑅,𝑐 has a unique completely positive

extension to the closure of 𝒜(𝐴𝑅) + 𝒜(𝐴𝑅)∗.

Now, define 𝑆 ∶ 𝐶(𝜕𝐴𝑅) → ℬ(𝐻) as 𝑆 = 𝜓𝑅,𝑐 − 𝛹𝑅,𝑐. Fix an orthonormal basis {𝑒𝑗} of 𝐻 and

put

𝑆𝑖𝑗 ∶ 𝐶(𝜕𝐴𝑅) → ℂ

𝑓 ↦ ⟨𝑆(𝑓)𝑒𝑗, 𝑒𝑖⟩.

𝑆𝑖𝑗 will then be a bounded linear functional that vanishes on ℳ𝑅, which is a codimension one

subspace of 𝐶(𝜕𝐴𝑅). Hence, each 𝑆𝑖𝑗 lies in the one-dimensional annihilator Ann[ℳ𝑅] ⊂ {𝐿 ∶

𝐶(𝜕𝐴𝑅) → ℂ linear, bounded} ofℳ𝑅. But we also know that the (nonzero) map

𝜙 ∶ 𝐶(𝜕𝐴𝑅) → ℂ
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𝑓 ↦ 1
(2 + 𝑐)

1
2𝜋𝑖 ∫𝜕𝐴𝑅

𝑓(𝜁)
𝜁

𝑑𝜁

lies in Ann[ℳ𝑅]. Thus, for every 𝑖, 𝑗, there exists 𝑘𝑖𝑗 ∈ ℂ such that 𝑆𝑖𝑗 = 𝑘𝑖𝑗𝜙. Define the (a priori

unbounded) operator 𝐴 acting on 𝐻 by ⟨𝐴𝑒𝑗, 𝑒𝑖⟩ = 𝑘𝑖𝑗, for all 𝑖, 𝑗, and let 𝐴𝐽 denote its compression

to 𝐻𝐽 ∶= span{𝑒𝑗 ∶ 𝑗 ∈ 𝐽}, where 𝐽 is any finite subset of ℕ. Hence, we obtain

1
2 + 𝑐[

1
2𝜋𝑖 ∫𝜕𝐴𝑅

𝑓(𝜁)
𝜁

𝑑𝜁]𝐴𝐽 = 𝑃𝐻𝐽𝑆(𝑓)|𝐻𝐽, (2.42)

for every 𝑓 ∈ 𝐶(𝜕𝐴𝑅) and every 𝐽. Set 𝑓 = 𝑓0 in this last equality, where 𝑓0 ≡ 1 on 𝛤1 and 𝑓0 ≡ 0

on 𝛤−1. This gives us

𝐴𝐽 = (2 + 𝑐)𝑃𝐻𝐽𝑆(𝑓0)|𝐻𝐽,

for all 𝐽. Since 𝑆(𝑓0) = 𝜓(𝑓0) − 𝛹(𝑓0) is bounded and self-adjoint, we obtain that 𝐴 is a bounded,

self-adjoint operator. Also, in view of (2.42), we may deduce that

𝛹𝑅,𝑐(𝑓) = 𝜓𝑅,𝑐(𝑓) − 𝑆(𝑓) = ∫
𝜕𝐴𝑅

𝜈𝐴,𝑐(𝜎, 𝑇)𝑓(𝜎)𝑑𝑠

for every continuous 𝑓, where

𝜈𝐴,𝑐(𝜎, 𝑇) =
⎧⎪
⎨⎪
⎩

𝜇(𝜎, 𝑇) + 1

2𝜋𝑖

𝜍′

𝜍
(𝑐 − 𝐴), for 𝜎 ∈ 𝛤1,

𝜇(𝜎, 𝑇) − 1

2𝜋𝑖

𝜍′

𝜍
(𝐴), for 𝜎 ∈ 𝛤−1.

Since 𝛹𝑅,𝑐 is (completely) positive on 𝐶(𝜕𝐴𝑅), we easily obtain that

𝜈𝐴,𝑐(𝜎, 𝑇) ≥ 0 for every 𝜎 ∈ 𝜕𝐴𝑅, hence (as in the proof of Lemma 2.5.20) 𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴 and

𝑇−1/𝑅 ∈ 𝒞𝐴. The fact that 𝒞2+𝑐−𝐴 and 𝒞𝐴 are non-empty immediately implies 0 ≤ 𝐴 ≤ 2 + 𝑐 (see

the remark after Lemma 2.15). But we also know that 𝑇 is invertible, so Lemma 2.5.21 tells us that

both 𝐴 and 2 + 𝑐 − 𝐴 have to be invertible as well. This concludes the proof.

We now drop the assumption 𝜎(𝑇) ⊂ 𝐴𝑅.

Theorem 2.5.22. Assume 𝑅 > 1, 𝑐 > −2 and 𝑇 ∈ ℬ(𝐻) satisfies 𝜎(𝑇) ⊂ 𝐴𝑅. Then, there exists

𝐴 ∈ ℬ(𝐻) such that 𝐴 > 0, 2 + 𝑐 − 𝐴 > 0 and 𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴 and 𝑇−1/𝑅 ∈ 𝒞𝐴 if and only if

𝑇 ∈ ℂ𝔻𝕃𝔸𝑅′(𝑐) for every 𝑅′ > 𝑅.
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Proof. First, assume 𝑇 ∈ ℂ𝔻𝕃𝔸𝑅′(𝑐) for every 𝑅′ > 𝑅 and fix a decreasing sequence 𝜖𝑘 → 0. Put

𝑅𝑘 = 𝑅 + 𝜖𝑘. Since 𝜎(𝑇) ⊂ 𝐴𝑅𝑘, Theorem 2.5.2 tells us that there exists a sequence {𝐴𝑘} ⊂ ℬ(𝐻)

such that 0 < 𝐴𝑘 < 2 + 𝑐 and 𝑇/𝑅𝑘 ∈ 𝒞2+𝑐−𝐴𝑘
and 𝑇−1/𝑅𝑘 ∈ 𝒞𝐴𝑘

, for all 𝑘 ≥ 1. Now, from

𝑇/𝑅𝑘 ∈ 𝒞2+𝑐−𝐴𝑘
we get

⟨(2ℜ(1 − 𝑧𝑇/𝑅𝑘)−1 + 𝑐 − 𝐴𝑘)𝑣, 𝑣⟩ ≥ 0, (2.43)

for all 𝑧 ∈ 𝔻, 𝑣 ∈ 𝐻 and 𝑘 ≥ 1. Since {𝐴𝑘} is uniformly bounded, we may replace it, without loss

of generality, by aWOT-convergent subsequence. Note also that 𝜎(𝑧𝑇/𝑅𝑘) ⊂ 𝔻, for all 𝑧, 𝑘. Letting

𝑘 → ∞ in (2.43) (while keeping 𝑧 and 𝑣 fixed) is then easily seen to imply

⟨(2ℜ(1 − 𝑧𝑇/𝑅)−1 + 𝑐 − 𝐴)𝑣, 𝑣⟩ ≥ 0,

where 𝐴 is the WOT limit of {𝐴𝑘} (notice that 𝐴 has to be self-adjoint, being the WOT limit of

self-adjoint operators). Since this last inequality holds for any 𝑧 ∈ 𝔻 and 𝑣 ∈ 𝐻, we conclude that

𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴, while an entirely analogous argument shows that 𝑇−1/𝑅 ∈ 𝒞𝐴. Finally, the fact that

both 𝒞2+𝑐−𝐴 and 𝒞𝐴 contain an invertible operator implies, as seen previously, that 0 < 𝐴 < 2 + 𝑐.

For the converse, observe that (in view of Lemma 2.15) having 𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴 and 𝑇−1/𝑅 ∈ 𝒞𝐴

implies that 𝑇/𝑅′ ∈ 𝒞2+𝑐−𝐴 and 𝑇−1/𝑅′ ∈ 𝒞𝐴 for every 𝑅′ > 𝑅. Since 𝜎(𝑇) ⊂ 𝐴𝑅′, Theorem 2.5.2

allows us to deduce that 𝑇 ∈ ℂ𝔻𝕃𝔸𝑅′(𝑐) for every 𝑅′ > 𝑅.

Now, we record the following analogue of Proposition 2.5.13 for ℂ𝔻𝕃𝔸𝑅(𝑐). The proof is

essentially an application of Proposition 2.5.13 combined with Lemma 2.5.20, so we omit the

details.

Proposition 2.5.23. Let 𝑐 ∈ ℝ, 𝑅 > 1 and assume 𝑁 ∈ ℬ(𝐻) is normal.

(i) If 𝑐 > −2, then ℂ𝔻𝕃𝔸𝑅(𝑐) will be non-empty if and only if there exists 𝑠 ∈ (0, 2 + 𝑐) such

that 𝒞2+𝑐−𝑠,𝑠(𝑅) is non-empty.

In particular, if 𝑐 ≥ 0, then ℂ𝔻𝕃𝔸𝑅(𝑐) will be non-empty for every 𝑅 > 1.

(ii) If 𝑐 ≤ −2, then ℂ𝔻𝕃𝔸𝑅(𝑐) will be empty for every 𝑅 > 1.
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(iii) ℂ𝔻𝕃𝔸𝑅(𝑐) ⊂ 𝒞2−𝑐,2−𝑐(𝑅), for every 𝑐 > −2.

(iv) If, in addition, we assume 𝑐 ≥ 0, then 𝑁 ∈ ℂ𝔻𝕃𝔸𝑅(𝑐) is equivalent to 𝑅−2 ≤ 𝑁∗𝑁 ≤ 𝑅2.

It is also worth noting that, like 𝔻𝕃𝔸𝑅(𝑐), ℂ𝔻𝕃𝔸𝑅(𝑐), is (eventually) strictly monotone with

respect to 𝑐. This has essentially already been given to us by the proof of Theorem 2.5.15 plus

Lemma 2.5.20.

Theorem 2.5.24. If −2 < 𝑐 < 𝑐′ and ℂ𝔻𝕃𝔸𝑅(𝑐′) is non-empty, then

ℂ𝔻𝕃𝔸𝑅(𝑐) ⊊ ℂ𝔻𝕃𝔸𝑅(𝑐′).

Proof. If 𝑐 < 𝑐′, it is obvious by the definition of ℂ𝔻𝕃𝔸𝑅(𝑐) that ℂ𝔻𝕃𝔸𝑅(𝑐) ⊆ ℂ𝔻𝕃𝔸𝑅(𝑐′). To

show that the inclusion is actually strict, we divide the proof into two cases, like with Theorem

2.5.15.

First, assume that there exist 𝑠, 𝑡 > 0 such that 𝑠 ≥ 1, 𝑠 + 𝑡 = 2 + 𝑐′ and 𝒞𝑠.𝑡(𝑅) is non-empty.

As in the proof of Theorem 2.5.15, we may assume that 𝑡 < 1 and 2

𝑅2+1
< 𝑡. In this setting, we were

able to construct 𝑇 ∈ 𝒞𝑠,𝑡(𝑅) ⊂ ℂ𝔻𝕃𝔸𝑅(𝑐′) such that 𝑇 ∉ 𝔻𝕃𝔸𝑅(𝑐), hence also 𝑇 ∉ ℂ𝔻𝕃𝔸𝑅(𝑐).

We thus obtain strict inclusion.

On the other hand, assume that there do not exist 𝑠, 𝑡 > 0 such that 𝑠 ≥ 1, 𝑠+𝑡 = 2+𝑐′ and𝒞𝑠.𝑡(𝑅)

is non-empty. In this setting, we found 𝛿 > 0 and 𝑎 ∈ ℂ such that 𝑎 ∈ 𝒞𝛿,2+𝑐′−𝛿(𝑅) ⊂ ℂ𝔻𝕃𝔸𝑅(𝑐′),

but 𝑎 ∉ ℂ𝔻𝕃𝔸𝑅(𝑐), as desired.

We end with a question. While the inclusion ℂ𝔻𝕃𝔸𝑅(𝑐) ⊆ 𝔻𝕃𝔸𝑅(𝑐) is obvious, we have not

been able to determine whether it is actually strict or not.

Question 2.5.25. Let 𝑅 > 1, 𝑐 > −2 and assume ℂ𝔻𝕃𝔸𝑅(𝑐) is non-empty. Is it true that

ℂ𝔻𝕃𝔸𝑅(𝑐) ⊊ 𝔻𝕃𝔸𝑅(𝑐)?

A negative answer to the above question would imply that, given 𝜎(𝑇) ⊂ 𝐴𝑅, having

2ℜ[(1 − 𝑧𝑇/𝑅)−1 + (1 − 𝑤𝑇−1/𝑅)−1] − 2 + 𝑐 ≥ 0, ∀𝑧, 𝑤 ∈ 𝔻,
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is equivalent to the existence of 0 < 𝐴 < 2 + 𝑐 such that

2ℜ(1 − 𝑧𝑇/𝑅)−1 + 𝑐 − 𝐴 ≥ 0, ∀𝑧 ∈ 𝔻,

and

2ℜ(1 − 𝑤𝑇−1/𝑅)−1 + 𝐴 − 2 ≥ 0, ∀𝑤 ∈ 𝔻.

While this seems unlikely to hold, the computational difficulty in verifying membership conditions

of the form 𝑇/𝑅 ∈ 𝒞2+𝑐−𝐴(𝑅) and 𝑇−1/𝑅 ∈ 𝒞𝐴(𝑅), for arbitrary 0 < 𝐴 < 2 + 𝑐 and 𝑇 non-normal,

does not make it easy to come up with a counterexample.

2.5.6 𝐾-spectral Estimates

In this subsection, we show how the methods established in [43] and [63] can be used to derive

𝐾-spectral estimates for 𝔻𝕃𝔸𝑅(𝑐) and ℂ𝔻𝕃𝔸𝑅(𝑐). We shall need a few preliminary lemmata, the

scalar-valued versions of which are all contained in [63].

Lemma 2.5.26. The map

𝛼 ∶ 𝒜(𝐴𝑅) → 𝒜(𝐴𝑅)

𝑓 ↦ 𝐶𝑓

is completely contractive, for every 𝑅 > 1.

Proof. By [63, Lemma 8], we know that ||𝛼(𝑓)|| ≤ ||𝑓|| whenever 𝑓 is a scalar-valued rational

function in 𝐴𝑅 that is bounded by 1. A standard approximation argument shows that 𝛼 must be

contractive. The proof of [60, Lemma 2.1] then implies that 𝛼 is completely contractive.

Lemma 2.5.27. Let 𝑅 > 1 and 𝑇 ∈ ℬ(𝐻) be such that 𝜎(𝑇) ⊂ 𝐴𝑅. Assume that there exists a

bounded linear functional 𝛾 ∶ 𝒜(𝐴𝑅) → ℂ and a constant 𝑝 > 0 such that the mapping

𝑓 ↦ 1
2𝑝(𝑓(𝑇) + 𝛼(𝑓)(𝑇)∗ + 𝛾(𝑓))

is completely contractive on 𝒜(𝐴𝑅). Then, 𝐴𝑅 is a complete 𝐾-spectral set for 𝑇 with constant

𝐾 = 𝑝 + √1 + 𝑝2 + ||𝛾||cb.
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Proof. In the setting of [63, Theorem 2], replace 𝛺 by 𝐴𝑅, 𝑐1 by 1 (this is possible because of

Lemma 2.5.26), 𝑐2 by 𝑝 and ̂𝛾 by ||𝛾||cb. While the proof of Theorem 2 in [63] was given in the

scalar-valued setting, it can be repeated, mutatis mutandis, in the matrix-valued setting to give the

exact same 𝐾-spectral estimate (see also Remark (i) after the proof of Theorem 1.1 in [53]), where

𝐾 = 𝑐2 +√𝑐22 + 𝑐1 + ̂𝛾 = 𝑝 + √1 + 𝑝2 + ||𝛾||cb.

We are now in a position to show:

Theorem 2.5.28. Let 𝑐 > −2 and assume 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐) (resp. 𝑇 ∈ ℂ𝔻𝕃𝔸𝑅(𝑐)). Then, 𝐴𝑅 will be

a 𝐾-spectral (resp. complete 𝐾-spectral) set for 𝑇, where

𝐾 = 1 + 𝑐
2 +√(1 + 𝑐

2)
2
+ 1 + |𝑐|.

Proof. Let 𝑇 ∈ ℂ𝔻𝕃𝔸𝑅(𝑐) (the case 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐) is essentially contained in [63, Theorem 2]).

By assumption, the mapping

𝑓 ↦ 1
2 + 𝑐(𝑓(𝑇) + 𝛼(𝑓)(𝑇)∗ + 𝑐𝑎0)

is completely contractive on 𝒜(𝐴𝑅). If 𝛾 ∶ 𝒜(𝐴𝑅) → ℂ is given by 𝛾(∑𝑎𝑛𝑧𝑛) = 𝑐𝑎0, it can be

easily verified that ||𝛾||cb = |𝑐|. Thus, one can apply Lemma 2.5.27 with 𝑝 = 1+𝑐/2 and 𝛾(𝑓) = 𝑐𝑎0

to deduce the desired result.

Remark 2.5.29. Let ℕ𝔸𝑅 denote the numerical annulus, i.e. the class of all 𝑇 ∈ ℬ(𝐻) such that

𝑤(𝑇) ≤ 𝑅 and 𝑤(𝑇−1) ≤ 𝑅. 𝐾-spectral estimates for ℕ𝔸𝑅 have been studied in [59] and, more

recently, in [63]. Since

ℕ𝔸𝑅 ≡ 𝒞2,2(𝑅) ⊂ 𝔻𝕃𝔸𝑅(2),

Theorem 2.5.28 tells us that 𝐴𝑅 is a (2 + √7)-spectral set for 𝑇 whenever 𝑇 ∈ ℕ𝔸𝑅. This improves

on the estimates from [63, Section 6].
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Remark 2.5.30. The main result of [125] can be used to obtain sharper spectral estimates in certain

cases. Indeed, let 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐) be a matrix with 𝜎(𝑇) ⊂ 𝐴𝑅. In the setting of [125, Theorem 5],

choose 𝐴 = 𝒜(𝐴𝑅) and set 𝛾(𝑓) = 𝑓(𝑇) and 𝛷(𝑓) = 𝐶𝑓. Since 𝑐 ≥ 0, we have ℚ𝔸𝑅 ⊂ 𝔻𝕃𝔸𝑅(𝑐),

which implies that ||𝛾|| ≥ 2 (see [141]). Now, assume, in addition, the existence of an extremal pair

(𝑓0, 𝑥0) ∈ 𝒜(𝐴𝑅) × 𝐻 for 𝛾 (see [125, p. 2]). We have ||𝑓0|| = ||𝑥0|| = 1 and ||𝛾|| = ||𝛾(𝑓0)𝑥0||.

Also, there exists an extremal measure associated with (𝑓0, 𝑥0) (see [125, Proposition 3] and the

discussion afterwards). This observation, combined with the contractivity of 𝛷 (Lemma 2.5.26),

allows us to deduce that |⟨𝛾(𝛷(𝑓0)𝑓0)𝑥0, 𝑥0⟩| ≤ 1, see e.g. the proof of [125, Theorem 11]). Thus,

if we define 𝜔 in the dual of 𝒜(𝐴𝑅) as 𝜔(∑𝑛 𝑎𝑛𝑧
𝑛) = −𝑐𝑎0, [125, Theorem 5] implies that

||𝛾|| ≤ 1
2||𝛾𝛷 − 𝜔|| +

√
(12||𝛾𝛷 − 𝜔||)

2
+ |⟨𝛾(𝛷(𝑓0)𝑓0)𝑥0, 𝑥0⟩|

≤ 2 + 𝑐
2 ||𝑆𝑅,𝑐|| +√

(2 + 𝑐
2 ||𝑆𝑅,𝑐||)

2
+ 1

≤ 1 + 𝑐
2 +√

(1 + 𝑐
2)

2
+ 1,

which gives us the sharper constant 𝐾′ = 1 + 𝑐

2
+ √(1 + 𝑐

2
)2 + 1. Note that if 𝑇 has distinct

eigenvalues, then the existence of an extremal function 𝑓0 (that extends continuously to the boundary)

can be obtained as in the proof of [62, Theorem 2.1] (see [98, Section 3] and [70, Exercise 5, p.162]

for the structure of solutions to extremal Pick problems over the annulus). While the authors deem

it very likely that the extremal function continues to enjoy boundary continuity even in mixed

Carathéodory-Pick interpolation problems (corresponding to the general case where one might have

repeated eigenvalues), they are not aware of any reference that describes the properties of extremal

functions for such problems.

We now show Theorem 2.5.3 from the introduction, which offers improved 𝐾-spectral estimates

for 2 × 2 matrices with a single eigenvalue. The key ingredient of the proof will be a function-

theoretic result from [100]. To more easily connect with the setting of that paper, we will work with
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the annulus,

𝒜𝑞 ∶= {𝑞 < |𝑧| < 1},

which is conformally equivalent to 𝐴1/√𝑞. The definition of𝔻𝕃𝔸𝑅(𝑐) can then be updated as follows:

Definition 2.5.31. Let 𝑐 ∈ ℝ and 0 < 𝑞 < 1. 𝒟ℒ𝒜𝑞(𝑐) denotes the class of all operators 𝑇 ∈ ℬ(𝐻)

such that

(i) 𝜎(𝑇) ⊂ 𝒜𝑞 and

(ii) 2ℜ[(1 − 𝑧𝑇)−1 + (1 − 𝑤𝑞𝑇−1)−1] − 2 + 𝑐 ≥ 0, ∀𝑧, 𝑤 ∈ 𝔻.

Now, for 𝑤 ∈ 𝔻 and 𝑎 ∈ 𝒜𝑞, define 𝜓𝑤(𝑧) =
𝑧−𝑤

1−𝑤𝑧
and

ℱ𝑎,𝑤 = {𝑓 ∶ 𝒜𝑞 → 𝔻 | 𝑓 analytic and 𝑓(𝑎) = 𝑤}.

Lemma 2.5.32. Let 𝑤 ∈ 𝔻 and 𝑎 ∈ 𝒜𝑞. Then,

sup{|𝑓′(𝑎)| | 𝑓 ∈ ℱ𝑎,𝑤} ≤ (1 − |𝑤|2)( 1
1 − |𝑎|2 +

𝑞
|𝑎|2 − 𝑞2).

Proof. Put 𝑘𝑞(𝑎, 𝑎) = ∑𝑛∈ℤ
|𝑎|2𝑛

1+𝑞2𝑛+1
. The solution to the above extremal problem for 𝑤 = 0 can

be found in [100, p. 1119]. In particular, it is known that

sup{|𝑓′(𝑎)| | 𝑓 ∈ ℱ𝑎,0} = 𝑘𝑞(𝑎, 𝑎).

Now, if ℎ ∈ ℱ𝑎,𝑤, it can be easily verified that 𝜓𝑤 ∘ ℎ ∈ ℱ𝑎,0, hence

|ℎ′(𝑎)|
1 − |𝑤|2 = |(𝜓𝑤 ∘ ℎ)′(𝑎)| ≤ 𝑘𝑞(𝑎, 𝑎).

Since ℎ ∈ ℱ𝑎,𝑤 was arbitrary, we can deduce that

sup{|𝑓′(𝑎)| | 𝑓 ∈ ℱ𝑎,𝑤} ≤ (1 − |𝑤|2)𝑘𝑞(𝑎, 𝑎)

= (1 − |𝑤|2)(
∞

∑
𝑛=0

|𝑎|2𝑛

1 + 𝑞2𝑛+1 +
−∞

∑
𝑛=−1

|𝑎|2𝑛

1 + 𝑞2𝑛+1)

≤ (1 − |𝑤|2)(
∞

∑
𝑛=0

|𝑎|2𝑛 + 1
𝑞

∞

∑
𝑛=1

𝑞2𝑛

|𝑎|2𝑛)

= (1 − |𝑤|2)( 1
1 − |𝑎|2 +

𝑞
|𝑎|2 − 𝑞2).
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We also require the following computational lemmata.

Lemma 2.5.33. Let 𝑎, 𝑢 ∈ ℂ and assume 𝑇 = (
𝑎 𝑢

0 𝑎
) ∈ 𝒟ℒ𝒜𝑞(𝑐) with 𝑞 < |𝑎| < 1. Then,

|||
𝑒𝑖𝜃

(1 − 𝑎𝑒𝑖𝜃)2
−

𝑞𝑒𝑖𝜓

𝑎2(1 − 𝑞𝑒𝑖𝜓𝑎−1)2
||||𝑢| ≤ 2ℜ( 1

1 − 𝑎𝑒𝑖𝜃
+ 1
1 − 𝑞𝑒𝑖𝜓𝑎−1

) + 𝑐 − 2,

for all 𝜃 and 𝜓.

Proof. The proof of Lemma 2.5.14 carries over to the 𝒟ℒ𝒜𝑞(𝑐) setting. Thus, the fact that 𝑇 ∈

𝒟ℒ𝒜𝑞(𝑐) and 𝜎(𝑇) = {𝑎} ⊂ 𝒜𝑞 allows us to deduce

2ℜ[(1 − 𝑒𝑖𝜃𝑇)−1 + (1 − 𝑒𝑖𝜓𝑞𝑇−1)−1] − 2 + 𝑐 ≥ 0, ∀𝜃, 𝜓 ∈ [0, 2𝜋).

Taking determinants then leads to the desired inequality.

Lemma 2.5.34. Let 𝐶 > 0 and 𝑤 ∈ 𝔻. Then,

|||
||| (
𝑤 𝐶(1 − |𝑤|2)

0 𝑤
) |||
||| ≤ max{1, 𝐶}.

Proof. Given any matrix of the form 𝑃 = (
𝑒 𝑓

0 𝑒
), it is well-known that ||𝑃|| ≤ 1 if and only if

|𝑓| ≤ 1 − |𝑒|2. Thus, if 𝐶 ≤ 1, we immediately obtain that

|||
||| (
𝑤 𝐶(1 − |𝑤|2)

0 𝑤
) |||
||| ≤ 1.

Now, assume 𝐶 > 1. Note that

𝐶2 − (
𝑤 𝐶(1 − |𝑤|2)

0 𝑤
)(

𝑤 𝐶(1 − |𝑤|2)

0 𝑤
)

∗

= (
−|𝑤|2 + 𝐶2(2 − |𝑤|2)|𝑤|2 −𝐶𝑤(1 − |𝑤|2)

−𝐶𝑤(1 − |𝑤|2) 𝐶2 − |𝑤|2
) ≥ 0,
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since the (1, 1)-entry of this last matrix is clearly positive, while its determinant is equal to

|𝑤|2(𝐶2 − |𝑤|2)(2𝐶2 − 𝐶2|𝑤|2 − 1) − 𝐶2|𝑤|2(1 − |𝑤|2)2

= |𝑤|2(𝐶2 − 1)(2𝐶2 − |𝑤|2(1 + 𝐶2)) > 0.

This concludes the proof.

We are now prepared for the main result of this subsection.

Proof of Theorem 2.5.3. First, we will prove the theorem in the setting of 𝒜𝑞.

Let 𝑇 ∈ 𝒟ℒ𝒜𝑞(𝑐) be a 2×2matrix with a single eigenvalue. Since unitary equivalence respects

𝐾-spectral estimates (see e.g. [28, Example 4, p. 107-5]), we may assume that 𝑇 is of the form

(
𝑎 𝑢

0 𝑎
). We may also take 𝑎 > 0 (as 𝒜𝑞 is invariant under rotations). Finally, it suffices to work

with 𝑞 < 𝑎 < 1 (the general case follows by a standard approximation argument).

Now, let 𝑓 ∶ 𝒜𝑞 → 𝔻 be analytic. We may write

||𝑓(𝑇)|| = |||
||| (
𝑓(𝑎) 𝑓′(𝑎)𝑢

0 𝑓(𝑎)
) |||
|||

= |||
||| (
𝑓(𝑎) |𝑓′(𝑎)𝑢|

0 𝑓(𝑎)
) |||
|||

= |||
||| (
𝑓(𝑎) |𝑓′(𝑎)ᵆ|

1−|𝑓(𝑎)|2
(1 − |𝑓(𝑎)|2)

0 𝑓(𝑎)
) |||
|||.

If
|𝑓′(𝑎)ᵆ|

1−|𝑓(𝑎)|2
≤ 1, Lemma 2.5.34 gives us ||𝑓(𝑇)|| ≤ 1, which is stronger than the desired estimate.

On the other hand, if
|𝑓′(𝑎)ᵆ|

1−|𝑓(𝑎)|2
> 1, Lemmata 2.5.32 and 2.5.34 imply that

||𝑓(𝑇)|| = |||
||| (
𝑓(𝑎) |𝑓′(𝑎)ᵆ|

1−|𝑓(𝑎)|2
(1 − |𝑓(𝑎)|2)

0 𝑓(𝑎)
) |||
|||

≤
|𝑓′(𝑎)|

1 − |𝑓(𝑎)|2
|𝑢|
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≤ ( 1
1 − 𝑎2 +

𝑞
𝑎2 − 𝑞2)|𝑢|.

Assume that 𝑎 ≥ √𝑞. In Lemma 2.5.33, take 𝜃 = 0, 𝜓 = 𝜋. The resulting bound on |𝑢| then allows

us to write:

||𝑓(𝑇)||

≤ ( 1
1 − 𝑎2 +

𝑞
𝑎2 − 𝑞2)(

1
(1 − 𝑎)2

+
𝑞

𝑎2(1 + 𝑞/𝑎)2)
−1

( 2
1 − 𝑎 +

2
1 + 𝑞/𝑎 + 𝑐 − 2)

≤ 2 + 𝑐
1 − 𝑞
1 + 𝑞,

where the last inequality can be seen (after some computations) to be equivalent to 𝑎 ≥ √𝑞. This

concludes the proof in this case. If 𝑎 < √𝑞, one can choose 𝜃 = 𝜋 and 𝜓 = 0 in the above

calculation and argue in an analogous manner. Thus, we have shown that 𝒜𝑞 is a 𝐾𝑞-spectral for

𝑇 ∈ 𝒟ℒ𝒜𝑞(𝑐) whenever 𝑇 is a 2 × 2 matrix with a single eigenvalue, where 𝐾𝑞 = 2 + 𝑐1−𝑞
1+𝑞

.

We now convert this estimate to the 𝐴𝑅-setting. Assume 𝑇 ∈ 𝔻𝕃𝔸𝑅(𝑐) is a 2 × 2 matrix with

a single eigenvalue and set 𝑞 = 𝑅−2. Then, ̃𝑇 ∶= 𝑇/𝑅 ∈ 𝒟ℒ𝒜𝑞(𝑐) and is also, evidently, still a

2 × 2 matrix with a single eigenvalue. In view of our previous result, 𝒜𝑞 will be a 𝐾-spectral set for

̃𝑇, where

𝐾 = 2 + 𝑐
1 − 𝑞
1 + 𝑞 = 2 + 𝑐𝑅

2 − 1
𝑅2 + 1.

This is easily seen to imply (see e.g. [28, Fact 2, p. 107-3]) that 𝐴𝑅 is a 𝐾-spectral set for 𝑇, which

concludes our proof.
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Chapter 3

Denjoy-Wolff Points on the Bidisk

The material contained in this chapter originates in the following paper:

Paper VI M. T. Jury and G. Tsikalas. “Denjoy-Wolff points on the bidisk via models”. In: Integral

Equations Operator Theory (to appear)

3.1 Introduction

Let 𝔻 denote the open unit disk. Given a holomorphic map 𝑓 ∶ 𝔻 → 𝔻 without fixed points,

a theorem of Wolff [148] states that there exists a boundary point 𝜏 ∈ 𝜕𝔻 such that every closed

disk internally tangent to 𝔻 at 𝜏 (in other words, every horocycle containing 𝜏) is invariant under 𝑓.

From this, one can deduce the classical Denjoy-Wolff Theorem [67], [146], [147]: the sequence of

iterates

𝑓𝑛 ∶= 𝑓 ∘ 𝑓 ∘ ⋯ ∘ 𝑓⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 times

converges to 𝜏 uniformly on compact subset of 𝔻. In this setting, the (unique) point 𝜏 is termed the

Denjoy-Wolff point of 𝑓. See [42] for a nice exposition of the details and many historical remarks.

A lot of work has been devoted to obtaining higher-dimensional generalizations of the Denjoy-

Wolff Theorem. The first such result is due to Hervé [81], who proved an exact analogue of the

Denjoy-Wolff Theorem for fixed-point-free self-maps of the unit ball 𝔹𝑛 ⊂ ℂ𝑛 (see also [90]). Later,

Abate [1] (see also the excellent survey [2]) achieved a generalization of this result to all smoothly

bounded strongly convex domains in ℂ𝑛, paving the way for further extensions to smoothly bounded

pseudoconvex domains of both finite and infinite type (see [89] and the references therein). More
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recently, Budzyńska [40] (see also [39] and [41]) showed that the smoothness assumption can be

dropped if one restricts to strictly convex domains.

Unfortunately, the situation becomes considerably more complicated in general bounded do-

mains. The proofs of the above results utilize certain 𝑓-invariant domains (usually termed horo-

spheres, as they generalize Wolff’s horocycles) which may have too large intersections with the

boundary of the domain in the general case, making it difficult to control the behavior of the iterates.

Indeed, even though several different types of horospheres have been considered in the literature

with varying degrees of generality (see e.g. [2], [4], [40], [51], [72], [102], where the focus is either

on bounded convex or bounded symmetric domains), boundary smoothness or extra convexity

assumptions (or a mixture of both) are generally required to control the size of the intersection with

the boundary. This is true even in very simple finite-dimensional domains, such the unit polydisk

𝔻𝑛, where the presence (for 𝑛 ≥ 2) of large “flat” boundary components prevents the iterates from

converging. In such a case, one seeks to understand the cluster points of {𝑓𝑛}.Although holomorphic

dynamics on 𝔻𝑛 (for general 𝑛) have been studied by a number of authors (see e.g. [3],[4], [25],

[52], [72], [103]), progress on iteration-theoretic questions remains limited.

Somewhat stronger conclusions can be drawn if one restricts their attention to the bidisk. Let

𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 be holomorphic and without fixed points. The best known general results

regarding the behavior of the iterates {𝐹𝑛} in this setting can be found in the classical paper [80] of

Hervé (see also [72], [74], [107], [134] for more recent work concerning the bidisk). Hervé observed

that all holomorphic maps 𝜙 ∶ 𝔻2 → 𝔻 (that are not coordinate projections) can be classified into

two separate categories (see Definition 3.2.6) based on the location of the Denjoy-Wolff points of

the slice functions 𝜙𝜇 ∶ 𝔻 → 𝔻, where 𝜙𝜇(𝜆) = 𝜙(𝜆, 𝜇) for all 𝜆, 𝜇 ∈ 𝔻. He then gave a description

of the cluster points of {𝐹𝑛} by considering three distinct cases (see Theorem 3.2.7), depending

on the categories that the coordinate functions 𝜙 and 𝜓 belong to. [80] also contains numerous

examples demonstrating that, from a certain viewpoint, these results are optimal.

In this chapter, motivated by the model-theoretic techniques of [12] and [124], we propose new
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definitions for Denjoy-Wolff-type points of holomorphic functions 𝜙 ∶ 𝔻2 → 𝔻 (see Definition

3.2.8). These will be boundary points where 𝜙 satisfies a mild regularity condition (termed B-points

following [12], see Section 3.2 for definitions) and appropriate contractivity assumptions stated in

terms of the model function. We prove several equivalent characterizations of our Denjoy-Wolff

points, some of which are particularly easy to verify in practice and involve certain directional

derivatives of 𝜙 at the points in question (see Theorems 3.2.9, 3.2.10 and 3.2.11). This constitutes a

departure from the usual criteria for Denjoy-Wolff points used in the setting of 𝔻2, which depend on

the existence of invariant horospheres. With these tools in our disposal, we are able to refine Hervé’s

theorem. Among several results, we show that if the coordinate functions 𝜙 and 𝜓 of 𝐹 possess

certain Denjoy-Wolff points but don’t have angular gradients there (i.e. the points in question

are B- but not C-points), then one gains much tighter control over the behavior of the iterates

{𝐹𝑛}(see Theorems 3.2.12 and 3.2.13). Roughly, this is because the structure of the model function

at Denjoy-Wolff points that are not C-points allows one to deduce many different (contractive)

versions of Julia’s inequality there, thus increasing the supply of invariant horospheres available

(see Corollaries 3.4.5 and 3.4.9). We also provide examples to illustrate the different cases contained

in our theorems.

Our work is arranged as follows. Section 3.2 contains the necessary background on the notions

of a model of a function, B-points and C-points and the main result of [80]. It also presents our

new definitions of Denjoy-Wolff points and the main results of this paper. In Section 3.3, we

prove general results concerning the relation between the model function and certain directional

derivatives at B-points, as well as a refined version of Julia’s inequality for the bidisk (see Theorem

3.3.10). These will be much needed in the sequel but are also of independent interest. In Section

3.4, we prove several equivalent characterizations of our Denjoy-Wolff points (see Theorems 3.2.9,

3.2.10 and 3.2.11), uniqueness results (Propositions 3.4.4 and 3.4.8) and useful corollaries involving

weighted Julia inequalities (Corollaries 3.4.5 and 3.4.9). Next, in Section 3.5, we revisit Hervé’s

Theorem and establish several partial refinements using our tools from the previous sections. These
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refinements include Theorems 3.2.12, 3.2.13 and 3.5.2. We also provide relevant examples (see

Examples 3.5.2 and 3.5.3). Finally, in Section 3.6, we discuss Frosini’s work on Denjoy-Wolff-type

points on the bidisk and show how our main results can be used to recover a theorem from [72] on

the classification of a certain type of these points.

3.2 Background and Main Results

3.2.1 Models

Let 𝒮 and 𝒮2 denote the one- and two-variable Schur classes, i.e. the sets of analytic functions

on 𝔻 and 𝔻2 respectively that are bounded by 1 in modulus. We require the notion of a model of a

Schur-class function, as seen in [12]. It is well known that every function in 𝒮2 possesses such a

model, however this ceases to be the case in higher-dimensional polydisks (this is a consequence of

the fact that von Neumann’s inequality fails in more than two variables, see also [14, Section 9.7]).

Definition 3.2.1. Let 𝜙 ∈ 𝒮2. We say that (𝑀, 𝑢) is a model for 𝜙 if 𝑀 = 𝑀1 ⊕ 𝑀2 is an

orthogonally decomposed separable Hilbert space and 𝑢 ∶ 𝔻2 → 𝑀 is an analytic map such that,

for all 𝜆 = (𝜆1, 𝜆2), 𝜇 = (𝜇1, 𝜇2) ∈ 𝔻2,

1 − 𝜙(𝜆)𝜙(𝜇) = (1 − 𝜆1𝜇1)⟨𝑢1𝜆, 𝑢
1
𝜇⟩ + (1 − 𝜆2𝜇2)⟨𝑢2𝜆, 𝑢

2
𝜇⟩. (3.1)

In equation (3.1) we have written 𝑢𝜆 for 𝑢(𝜆), 𝑢1(𝜆) = 𝑃𝑀1𝑢(𝜆), and 𝑢2(𝜆) = 𝑃𝑀2𝑢(𝜆). In

general, given 𝑣 ∈ 𝑀, we will write 𝑣1 for 𝑃𝑀1𝑣 and 𝑣2 for 𝑃𝑀2𝑣. Note that we may suppose,

without loss of generality, that {𝑢𝑗(𝜆) ∶ 𝜆 ∈ 𝔻2} spans a dense subspace of 𝑀𝑗 , since otherwise

we may replace𝑀𝑗 by this span. However, it needn’t be true that {𝑢(𝜆) ∶ 𝜆 ∈ 𝔻2} spans a dense

subspace of𝑀 (these observations can be found in [12, Section 3]).
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3.2.2 B-points and C-points

If 𝑆 ⊂ 𝔻2 and 𝜏 ∈ 𝜕𝔻2, we say that 𝑆 approaches 𝜏 nontangentially if 𝜏 ∈ cl(𝑆) (where cl(𝑆)

denotes the topological closure of 𝑆) and there exists a constant 𝑐 > 0 such that

||𝜏 − 𝜆|| ≤ 𝑐(1 − ||𝜆||), (3.2)

for all 𝜆 ∈ 𝑆, where ||(𝜆1, 𝜆2)|| = max{|𝜆1|, |𝜆2|}.

Now, let 𝜙 ∈ 𝒮2 and 𝜏 ∈ 𝜕𝔻2. 𝜏 is said to be a B-point for 𝜙 if the Carathéodory condition

lim inf
𝜆→𝜏

1 − ||𝜙(𝜆)||
1 − ||𝜆|| < ∞ (3.3)

holds. The nontangential limit of 𝜙 at any such 𝜏 always exists [3] and will be denoted by 𝜙(𝜏).

While in one variable the Julia-Carathéodory Theorem [44] tells us that a function in 𝑆 has an

angular derivative at any B-point 𝜏, a function 𝜙 ∈ 𝒮2 does not necessarily have an angular gradient

at all of its B-points. If 𝜙 does have an angular gradient at 𝜏, we will say that 𝜏 is a C-point for

𝜙. In any case, 𝜙 will always have a directional derivative at a 𝐵-point in any direction pointing

into the bidisk. Moreover, as was shown in [12], the directional derivatives in question will vary

holomorphically with respect to direction (actually, the derivatives can be described in terms of

certain one-variable Pick functions [9], though we won’t be needing this result here).

To state the relevant theorems, we need some notation. Let (𝑀, 𝑢) be a model for 𝜙 ∈ 𝒮2 and

define the nontangential cluster set 𝑋𝜏 of the model at a B-point 𝜏 of 𝜙 to be the set of weak limits

of weakly convergent sequences {𝑢𝜆𝑛} over all sequences {𝜆𝑛} that converge nontangentially to 𝜏 in

𝔻2. 𝑋𝜏 turns out to be a subset of the cluster set of (𝑀, 𝑢) at 𝜏, which is defined as the set of limits

in𝑀 of the weakly convergent sequences {𝑢𝜆𝑛} as {𝜆𝑛} ranges over all sequences in 𝔻
2 that tend to

𝜏 in such a way that
1 − |𝜙(𝜆𝑛)|
1 − ||𝜆𝑛||

(3.4)

remains bounded. The cluster set at 𝜏will be denoted by𝑌𝜏.Also, letℍ = {𝑧 ∈ ℂ ∶ ℜ𝑧 > 0}, 𝕋 = 𝜕𝔻
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and define, for every 𝜏 ∈ 𝜕𝔻2,

ℍ(𝜏) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜏1ℍ × 𝜏2ℍ if 𝜏 ∈ 𝕋2,

𝜏1ℍ × ℂ if 𝜏 ∈ 𝕋 × 𝔻,

ℂ × 𝜏2ℍ if 𝜏 ∈ 𝔻 × 𝕋.

For the remainder of this subsection, fix a function 𝜙 ∈ 𝒮2 with model (𝑀, 𝑢) and a B-point

𝜏 ∈ 𝜕𝔻2. The next lemma can be easily obtained from (3.1).

Lemma 3.2.2 (see [12], Proposition 4.2). We have 𝑋𝜏 ≠ ∅. Moreover, for all 𝑥 ∈ 𝑌𝜏 and 𝜆 ∈ 𝔻2,

1 − 𝜙(𝜆)𝜙(𝜏) = ∑
|𝜏𝑗|=1

(1 − 𝜆𝑗𝜏𝑗)⟨𝑢𝑗𝜆, 𝑥
𝑗⟩. (3.5)

As a consequence, we obtain:

Lemma 3.2.3 (see [12], Lemma 8.10). If |𝜏𝑗| < 1 for 𝑗 = 1 or 2, then

𝑌𝜏 = {𝑢𝜏}, where 𝑢𝑗𝜏 = 0.

A consequence of the following theorem is that facial B-points are always C-points (see [13] for

more results in that direction).

Theorem 3.2.4 (see [12], Corollary 8.11). 𝜏 is a C-point for 𝜙 if and only if 𝑋𝜏 is a singleton set.

Now, since 𝜏 is a B-point for 𝜙, we know that for every 𝛿 ∈ ℍ(𝜏) the directional derivative

𝐷−𝛿𝜙(𝜏) = lim
𝑡→0+

𝜙(𝜏 − 𝑡𝛿) − 𝜙(𝜏)
𝑡

exists. Much more can be said.

Theorem 3.2.5 (see [12], Theorems 7.1, 7.8). For any 𝛿 ∈ ℍ(𝜏), the nontangential limit (in the

norm of𝑀)

𝑥𝜏(𝛿) = lim

𝜏−𝑧𝛿
𝑛𝑡
−→𝜏

𝑢𝜏−𝑧𝛿

exists in𝑀. In addition,
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(1) 𝑥𝜏(⋅) is a holomorphic𝑀-valued function on ℍ(𝜏);

(2) 𝑥𝜏(𝛿) ∈ 𝑋𝜏 for all 𝛿 ∈ ℍ(𝜏);

(3) 𝑥𝜏(𝑧𝛿) = 𝑥𝜏(𝛿) for all 𝑧 ∈ ℂ such that 𝛿, 𝑧𝛿 ∈ ℍ(𝜏) (i.e. 𝑥𝜏(⋅) is homogeneous of degree 0

in 𝛿);

(4) 𝐷−𝛿𝜙(𝜏) is analytic, homogeneous of degree 1 in 𝛿 and satisfies

𝐷−𝛿𝜙(𝜏) = −𝜙(𝜏) ∑
|𝜏𝑗|=1

𝜏𝑗𝛿𝑗||𝑥𝑗𝜏(𝛿)||2.

3.2.3 Horocycles and Horospheres

The language of horospheres and horocycles will be required for our iteration-theoretic results.

Recall that a horocycle in 𝔻 is a set of the form 𝐸(𝜏, 𝑅) for some 𝜏 ∈ cl(𝔻) and 𝑅 > 0, where

𝐸(𝜏, 𝑅) = {𝜆 ∈ 𝔻 ∶
|𝜆 − 𝜏|2

1 − |𝜆|2 < 𝑅}

for 𝜏 ∈ 𝕋, while 𝐸(𝜏, 𝑅) = 𝔻 otherwise. Letting 𝐷(𝑧, 𝑟) denote the Euclidean disk in ℂ with centre

𝑧 and radius 𝑟 > 0, it is not hard to see that, given any 𝜏 ∈ 𝕋, we always have

𝐸(𝜏, 𝑅) = 𝐷( 𝜏
𝑅 + 1,

𝑅
𝑅 + 1).

Also, for 𝜏 = (𝜏1, 𝜏2) ∈ 𝜕𝔻2 and 𝑅1, 𝑅2 > 0, we define the (weighted) horosphere 𝐸(𝜏, 𝑅1, 𝑅2) to

be the set 𝐸(𝜏1, 𝑅1) × 𝐸(𝜏2, 𝑅2).

Now, given 𝜙 ∈ 𝒮 and a B-point 𝜏 ∈ 𝕋, it is known that

𝛼 ∶= lim
𝜆

nt

−→𝜏

1 − |𝜙(𝜆)|
1 − |𝜆| ≥ 0

exists. Julia’s inequality [44], [84] (see also the more modern [132]) then states that

𝜙(𝐸(𝜏, 𝑅)) ⊂ 𝐸(𝜙(𝜏), 𝛼𝑅), (3.6)

for all 𝑅 > 0. Generalizations of this result to the bidisk are contained in [2] and [145] (see also [12,

Section 4] for a model-theoretic proof). In particular, given 𝜙 ∈ 𝒮2 and a B-point 𝜏 ∈ 𝜕𝔻2, it is
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known that, for any 𝛼 ≥ 0, we have

lim inf
𝜆→𝜏

1 − |𝜙(𝜆)|
1 − ||𝜆|| ≤ 𝛼

if and only if

𝜙(𝐸(𝜏, 𝑅, 𝑅)) ⊂ 𝐸(𝜙(𝜏), 𝛼𝑅), (3.7)

for all 𝑅 > 0 (if 𝛼 = 0, then 𝜙 is constant). In Section 3.3, we use ideas from [12] to establish a

refined version of the previous equivalence, one that is expressed in terms of weighted horospheres

(see Theorem 3.3.10).

Lastly, we will occasionally be making use of the horospheric topology on cl(𝔻2), which is the

topologywith base consisting of all open sets of𝔻2 together with all sets of the form {𝜏}∪𝐸(𝜏, 𝑅1, 𝑅2),

where 𝜏 ∈ 𝜕𝔻2 and 𝑅1, 𝑅2 > 0 (see [12, Section 4] for more details). Note that (3.7) tells us that

𝜙(𝜆) → 𝜙(𝜏) whenever 𝜏 is a B-point and 𝜆 → 𝜏 horospherically.

3.2.4 Hervé’s Result

For 𝑖 ∈ {1, 2}, define the coordinate projections 𝜋𝑖 ∶ 𝔻2 → 𝔻,𝜋𝑖(𝜆) = 𝜆𝑖. Given 𝜙 ∈ 𝒮2 and

𝜇 ∈ 𝔻, we will denote by 𝜙𝜇 ∈ 𝒮 the slice function

𝜙𝜇(𝜆) = 𝜙(𝜆, 𝜇) (𝜆 ∈ 𝔻).

Also, we let 𝜙 ∈ 𝒮2 denote the function 𝜙(𝜆) = 𝜙(𝜆2, 𝜆1), for obtained from 𝜙 by interchanging

the arguments.

Holomorphic functions 𝜙 ∶ 𝔻2 → 𝔻 can be classified according to the Denjoy-Wolff points of

their slices.

Definition 3.2.6. Assume 𝜙 ∈ 𝒮2. 𝜙 is said to be a:

(i) left Type I function if 𝜙 ≠ 𝜋1 and there exists 𝜏1 ∈ 𝕋 such that 𝜏1 is the common Denjoy-Wolff

point of the maps 𝜙𝜇 ∈ 𝒮, for all 𝜇 ∈ 𝔻;

(ii) right Type I function if 𝜙 is a left Type I function;
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(iii) left Type II function if 𝜙 ≠ 𝜋1 and there exists a holomorphic map 𝜉 ∶ 𝔻 → 𝔻 such that, for

all 𝜆, 𝜇 ∈ 𝔻, we have 𝜙𝜇(𝜆) = 𝜆 if and only if 𝜉(𝜇) = 𝜆;

(iv) right Type II function if 𝜙 is a left Type II function.

Surprisingly, it turns out that any 𝜙 ∈ 𝒮2 that is not a coordinate projection will either be a left

Type I or a left Type II function (respectively, either a right Type I or a right Type II function), a

result originally proved by Hervé in [80]. In Section 3.4, we give a new proof of this using purely

model-theoretic methods (see Theorem 3.4.3).

Using the Type I/Type II terminology, the main result of [80] can be stated as follows.

Theorem 3.2.7 (Hervé). Let 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 be a holomorphic self-map of the bidisk without

fixed points. Then, one and only one of the following cases occurs:

(i) if 𝜓 ≡ 𝜋2 (respectively, 𝜙 ≡ 𝜋1), then {𝐹𝑛} converges uniformly on compact sets to (𝜏1, 𝜋2),

where 𝜏1 ∈ 𝕋 (respectively, to (𝜋1, 𝜏2), where 𝜏2 ∈ 𝕋);

(ii) if 𝜙 is a left Type I and 𝜓 is right Type I function, then there exist 𝜏1, 𝜏2 ∈ 𝕋 such that

(a) either every cluster point of {𝐹𝑛} has the form (𝜏1, ℎ), where ℎ is either a holomorphic

function 𝔻2 → 𝔻 or the constant 𝜏2,

(b) or every cluster point of {𝐹𝑛} has the form (𝑔, 𝜏2), where 𝑔 is either a holomorphic

function 𝔻2 → 𝔻 or the constant 𝜏1;

(iii) if 𝜙 is a left Type I function and 𝜓 is a right Type II function (respectively, 𝜙 is a left Type II

function and 𝜓 is a right Type I function), there exists 𝜏1 ∈ 𝕋 such that every cluster point

of {𝐹𝑛} has the form (𝜏1, ℎ), where ℎ ∈ 𝒮2 (respectively, there exists 𝜏2 ∈ 𝕋 such that every

cluster point of {𝐹𝑛} has the form (𝑔, 𝜏2), where 𝑔 ∈ 𝒮2);

(iv) if 𝜙 is a left Type II and 𝜓 is a right Type II function, then there exist 𝜏1, 𝜏2 ∈ 𝕋 such that {𝐹𝑛}

converges uniformly on compact sets to (𝜏1, 𝜏2).

142



3.2.5 Principal Results

We begin with our model-theoretic definitions of Denjoy-Wolff-type points.

Definition 3.2.8. Let 𝜙 ∈ 𝒮2 with model (𝑀, 𝑢).Assume first that 𝜙 ≠ 𝜋1.

(i) A point (𝜏1, 𝜎) ∈ 𝕋 × cl(𝔻) will be called a left Type I DW point for 𝜙 if it is a B-point,

𝜙(𝜏1, 𝜎) = 𝜏1 and there exists 𝑢(𝜏1,𝜍) ∈ 𝑌(𝜏1,𝜍) such that ||𝑢1(𝜏1,𝜍)|| ≤ 1 and 𝑢2(𝜏1,𝜍) = 0.

(ii) A point 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2 will be called a left Type II DW point for 𝜙 if it is a B-point,

𝜙(𝜏) = 𝜏1, there exists 𝑢𝜏 ∈ 𝑌𝜏 such that ||𝑢1𝜏|| < 1 and 𝜏 is not a left Type I DW point for 𝜙.

In particular, if 𝐾 > 0 is any constant such that

||𝑢1𝜏||2 + 𝐾||𝑢2𝜏||2 ≤ 1,

we will say that 𝜏 is a left Type II DW point with constant 𝐾.

Now, assume instead that 𝜙 ≠ 𝜋2.

(iii) A point (𝜎, 𝜏2) ∈ cl(𝔻) × 𝕋 will be called a right Type I DW point for 𝜙 if (𝜏2, 𝜎) is a left

Type I DW point for 𝜙.

(iv) A point 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2 will be called a right Type II DW point for 𝜙 (with constant 𝐾 > 0)

if ̃𝜏 = (𝜏2, 𝜏1) is a left Type II DW point for 𝜙 (with constant 𝐾 > 0).

An immediate consequence of Definition 3.2.8 is that every left (resp., right) Type II DW point

is a left (resp., right) Type II DW point with constant 𝐾, for some 𝐾 > 0.

The following characterizations are proved in Section 3.4 (notice that the property of being a

Type I/Type II point turns out not to depend on the model of the function).

Theorem 3.2.9. Let 𝜙 ∈ 𝒮2 with model (𝑀, 𝑢) and 𝜏1 ∈ 𝕋. Assume also that 𝜙 ≠ 𝜋1. The following

assertions are equivalent:

(i) there exists 𝜎 ∈ cl(𝔻) such that (𝜏1, 𝜎) is a left Type I DW point for 𝜙;

(ii) every point in {𝜏1} × cl(𝔻) is a left Type I DW point for 𝜙;
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(iii) 𝜙 is a left Type I function and the common Denjoy-Wolff point of all slice functions 𝜙𝜇 ∈ 𝒮 is

𝜏1;

(iv) there exists 𝜎 ∈ cl(𝔻) such that (𝜏1, 𝜎) is a B-point, 𝜙(𝜏1, 𝜎) = 𝜏1 and

𝐷−(𝜏1,𝜍𝑀)𝜙(𝜏1, 𝜎)
−𝜏1 ≤ 1, ∀𝑀 > 0;

(v) for every 𝜎 ∈ cl(𝔻), (𝜏1, 𝜎) is a B-point, 𝜙(𝜏1, 𝜎) = 𝜏1 and

𝐷−(𝜏1,𝜍𝑀)𝜙(𝜏1, 𝜎)
−𝜏1 ≤ 1, ∀𝑀 > 0.

Moreover, assuming that any of the above statements holds and letting 𝜙′𝜇(𝜏1) denote the angular

derivative of 𝜙𝜇 at 𝜏1, we obtain

lim
𝑀→∞

𝐷−(𝜏1,𝜍𝑀)𝜙(𝜏1, 𝜎) = −𝜏1𝜙′𝜇(𝜏1),

for all 𝜇 ∈ 𝔻 and all |𝜎| ≤ 1.

There is an analogous statement for right Type I DW points (we need to assume that 𝜙 ≠ 𝜋2).

Theorem 3.2.10. Let 𝜙 ∶ 𝔻2 → 𝔻 be holomorphic with model (𝑀, 𝑢). Also, let 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2,

𝐾 > 0 and assume that 𝜙 ≠ 𝜋1. The following assertions are equivalent:

(i) 𝜏 is a left Type II DW point for 𝜙 with constant 𝐾;

(ii) 𝜙 is a left Type II function. Also, letting 𝜉 ∶ 𝔻 → 𝔻 denote the holomorphic function such

that 𝜙(𝜉(𝜇), 𝜇) = 𝜉(𝜇), for all 𝜇 ∈ 𝔻, we have that 𝜏2 is a B-point for 𝜉, 𝜉(𝜏2) = 𝜏1 and

lim inf
𝑧→𝜏2

1 − |𝜉(𝑧)|
1 − |𝑧| ≤ 1

𝐾;

(iii) 𝜏 is a B-point for 𝜙, 𝜙(𝜏) = 𝜏1, the quantity 𝐷−(𝜏1,𝜏2𝑀)𝜙(𝜏) is not constant with respect to

𝑀 > 0 and also there exists 𝐴 ≥ 𝐾 such that

𝐷−(𝜏1,𝜏2𝐴)𝜙(𝜏)
−𝜏1 = 1.

Moreover, assuming that any of the above statements holds,

𝐴 = [ lim inf
𝑧→𝜏2

1 − |𝜉(𝑧)|
1 − |𝑧| ]

−1
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will be the maximum among all constants 𝐾 > 0 such that 𝜏 is a left Type II DW point for 𝜙 with

constant 𝐾. It will also be the unique positive number such that 𝐷−(𝜏1,𝜏2𝐴)𝜙(𝜏)/(−𝜏1) = 1.

There is an analogous statement for right Type II DW points (we need to assume that 𝜙 ≠ 𝜋2).

A consequence of Theorem 3.2.10 is that not all Type II functions have Type II DW points (just

choose e.g. any left Type II function such that 𝜉 has no B-points). However, Type II DW points

do appear naturally when investigating iteration-theoretic questions. In particular, if 𝐹 = (𝜙, 𝜓) ∶

𝔻2 → 𝔻2 has no fixed points, 𝜙 is left Type II and 𝜓 is right Type II, then both 𝜙 and 𝜓 will have

Type II DW points (see Theorem 3.5.1 for details).

Theorems 3.2.9-3.2.10 allow us to give a simple, unified characterization of Type I/II DW

points, one that is expressed in terms of directional derivatives and is easier to verify in practice

than checking for invariant horospheres. To state it, set (for any function 𝜙 ∈ 𝒮2 such that 𝜏 ∈ 𝜕𝔻2

is a B-point)

𝐾𝜏(𝑀) =
𝐷−(𝜏1,𝜏2𝑀)𝜙(𝜏)

−𝜙(𝜏)
(𝑀 > 0).

It can be shown (see Proposition 3.3.5) that 𝐾𝜏(𝑀) is nonnegative and increasing with respect to𝑀.

This observation, combined with Theorems 3.2.9-3.2.10, leads to:

Theorem 3.2.11. Let 𝜙 ∈ 𝒮2 and assume 𝜏 = (𝜏1, 𝜏2) ∈ 𝜕𝔻2 is a B-point for 𝜙 such that 𝜙(𝜏) = 𝜏1.

Assume also that 𝜙 ≠ 𝜋1.

(a) If |𝜏2| < 1, then 𝜏 is a left Type I DW point that is also a C-point for 𝜙 if and only if

𝐾𝜏(𝑀) = 𝛼 ≤ 1, ∀𝑀 > 0.

In any other case, 𝜏 will be neither a left Type I nor a left Type II DW point.

(b) If |𝜏2| = 1, then 𝜏 is a:

(i) left Type I DW point that is also a C-point if and only if

𝐾𝜏(𝑀) = 𝛼 ≤ 1, ∀𝑀 > 0;
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(ii) left Type I DW point that is not a C-point if and only if {𝐾𝜏(𝑀)}𝑀 is non-constant and

𝐾𝜏(𝑀) < 1, ∀𝑀 > 0;

(iii) left Type II DW point if and only if {𝐾𝜏(𝑀)}𝑀 is non-constant and there exists 𝐴 > 0

such that

𝐾𝜏(𝐴) = 1;

(iv) neither a left Type I nor a left Type II DW point if and only if

𝐾𝜏(𝑀) > 1, ∀𝑀 > 0.

There is an analogous statement for right Type I/II DW points (we need to assume that 𝜙 ≠ 𝜋2).

Using our work on DW points, we are able to offer the following refinements of Theorem 3.2.7.

Theorem 3.2.12. Assume 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 is holomorphic, 𝜙 is left Type I and 𝜓 is right Type

II. Let 𝜏1 denote the common Denjoy-Wolff point of all slice functions 𝜙𝜇. If there exists 𝜎 ∈ 𝕋 such

that (𝜏1, 𝜎) is a right Type II DW point for 𝜓 but not a C-point for 𝜙, then 𝐹𝑛 → (𝜏1, 𝜎) uniformly

on compact subsets of 𝔻2.

Theorem 3.2.13. Assume 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 is holomorphic, 𝜙 is left Type I and 𝜓 is right Type

I. Let 𝜏1 and 𝜏2 denote the common Denjoy-Wolff points of all slice functions 𝜙(⋅, 𝜇) and 𝜓(𝜆, ⋅),

respectively. If 𝜏 = (𝜏1, 𝜏2) is not a C-point for 𝜙, then every cluster point of {𝐹𝑛} will have the

form (𝜏1, ℎ), where ℎ is either a holomorphic function 𝔻2 → 𝔻 or the constant 𝜏2. An analogous

conclusion can be reached if 𝜏 is not a C-point for 𝜓.

Applications are contained in Examples 3.5.2 and 3.5.3. A further refinement can be found in

Theorem 3.5.2.
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3.3 B-points and Directional Derivatives along (𝜏1, 𝜏2𝑀)

This section contains several technical results that build upon the model theory of [12] and

[13], the highlights being Theorems 3.3.3 and 3.3.9-3.3.10. These will be critical for our work in

Sections 3.4, 3.5, but are also interesting in their own right.

Now, choose an arbitrary 𝜙 ∈ 𝒮2 with model (𝑀, 𝑢) and a B-point 𝜏 = (𝜏1, 𝜏2) ∈ 𝜕𝔻2. These

will be fixed for the remainder of this section. Recall that we can define

𝑥𝜏(𝛿) = lim

𝜏−𝑧𝛿
𝑛𝑡
−→𝜏

𝑢𝜏−𝑧𝛿,

for any 𝛿 ∈ ℍ(𝜏), where the limit is with respect to the norm of𝑀. The following easy consequence

of (3.5) will be used repeatedly throughout the paper.

Lemma 3.3.1. Assume 𝜏 ∈ 𝕋2. Then, for any 𝑢𝜏 ∈ 𝑌𝜏 we have

⟨𝑥1𝜏(𝛿), 𝑢1𝜏⟩ +
𝜏2𝛿2

𝜏1𝛿1
⟨𝑥2𝜏(𝛿), 𝑢2𝜏⟩ = ||𝑥1𝜏(𝛿)||2 +

𝜏2𝛿2

𝜏1𝛿1
||𝑥2𝜏(𝛿)||2,

for all 𝛿 ∈ ℍ(𝜏).

Proof. Applying (3.5) twice gives us

⟨𝑢1𝜆, 𝑢
1
𝜏⟩ +

1 − 𝜆2𝜏2

1 − 𝜆1𝜏1
⟨𝑢2𝜆, 𝑢

2
𝜏⟩ = ⟨𝑢1𝜆, 𝑥

1
𝜏(𝛿)⟩ +

1 − 𝜆2𝜏2

1 − 𝜆1𝜏1
⟨𝑢2𝜆, 𝑥

2
𝜏(𝛿)⟩,

for all 𝜆 ∈ 𝔻2 and 𝛿 ∈ ℍ(𝜏). Setting 𝜆 = 𝜏 − 𝑟𝛿 and letting 𝑟 → 0+ then finishes off the proof.

We also require the following lemma.

Lemma 3.3.2. Assume 𝜏 ∈ 𝕋2. If 𝑢𝜏, 𝑣𝜏 ∈ 𝑌𝜏 are such that 𝑢𝑖𝜏 = 𝑣𝑖𝜏 = 0 for some 𝑖 ∈ {1, 2}, we

must have 𝑢𝜏 = 𝑣𝜏.

Proof. Without loss of generality, assume 𝑖 = 2.Applying (3.5) twice, we obtain

1 − 𝜙(𝜆)𝜙(𝜏) = (1 − 𝜆1𝜏1)⟨𝑢1𝜆, 𝑢
1
𝜏⟩,

= (1 − 𝜆1𝜏1)⟨𝑢1𝜆, 𝑣
1
𝜏⟩,
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for all 𝜆 ∈ 𝔻2. Thus, ⟨𝑢1𝜆, 𝑢
1
𝜏 − 𝑣1𝜏⟩ = 0 for all 𝜆. This equality, combined with the fact that both 𝑣1𝜏

and 𝑣1𝜏 are weak limits of vectors in the span of {𝑢1𝜆 ∶ 𝜆 ∈ 𝔻2} implies that

||𝑢1𝜏||2 = ||𝑣1𝜏||2 = ⟨𝑢1𝜏, 𝑣1𝜏⟩.

Thus, 𝑣1𝜏 = 𝑢1𝜏 and we are done.

Our next result shows that the presence of vectors with null components in 𝑋𝜏 has a surprisingly

strong impact on the boundary regularity of the function. We exclude facial B-points from our

theorem, since they are automatically C-points.

Theorem 3.3.3. Assume 𝜏 ∈ 𝕋2 and also that there exists 𝑥𝜏(𝛿) ∈ 𝑋𝜏 with 𝑥𝑖𝜏(𝛿) = 0 for some

𝑖 ∈ {1, 2}. Then, 𝜏 is a C-point for 𝜙.

Proof. Without loss of generality, assume that there exists 𝑥𝜏(𝛿0) ∈ 𝑋𝜏 with 𝑥2𝜏(𝛿0) = 0. We may

assume that 𝑥1𝜏(𝛿0) ≠ 0, else 𝜙 would be a unimodular constant. In view of Lemma 3.3.1, we obtain

⟨𝑥1𝜏(𝛿), 𝑥1𝜏(𝛿0)⟩ = ||𝑥1𝜏(𝛿)||2 +
𝜏2𝛿2

𝜏1𝛿1
||𝑥2𝜏(𝛿)||2, (3.8)

for all 𝛿 ∈ ℍ(𝜏). Choose any open subset 𝛺 of ℍ(𝜏) with the property that 𝜏
2𝛿2

𝜏1𝛿1
has positive real

part for all 𝛿 ∈ 𝛺. (3.8) then implies that

||𝑥1𝜏(𝛿)|| ≤ ||𝑥1𝜏(𝛿0)||

for all 𝛿 ∈ 𝛺. Indeed, if this were not the case, we would be able to write

ℜ⟨𝑥1𝜏(𝛿), 𝑥1𝜏(𝛿0)⟩ ≤ ||𝑥1𝜏(𝛿)|| ⋅ ||𝑥1𝜏(𝛿0)||

< ||𝑥1𝜏(𝛿)||2

≤ ||𝑥1𝜏(𝛿)||2 +ℜ(𝜏
2𝛿2

𝜏1𝛿1
)||𝑥2𝜏(𝛿)||2

whenever 𝛿 ∈ 𝛺, a contradiction.
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Now, assume ||𝑥1𝜏(𝛿)|| = ||𝑥1𝜏(𝛿0)|| for all 𝛿 ∈ 𝛺. The previous chain of inequalities then implies

that

⟨𝑥1𝜏(𝛿), 𝑥1𝜏(𝛿0)⟩ = ||𝑥1𝜏(𝛿)||2 = ||𝑥1𝜏(𝛿0)||2,

for all 𝛿 ∈ 𝛺. This gives us 𝑥1𝜏(𝛿) = 𝑥1𝜏(𝛿0) on 𝛺, and hence also on ℍ(𝜏). In view of (3.8), we

obtain that 𝑥2𝜏(⋅) must be identically zero. Hence, 𝑋𝜏 = {(𝑥1𝜏(𝛿0), 0)} and we obtain (by Lemma

3.2.4) that 𝜏 is a C-point.

Assume, on the other hand, that we can find 𝛿1 ∈ ℍ(𝜏) such that ||𝑥1𝜏(𝛿1)|| < ||𝑥1𝜏(𝛿0)||. Applying

(3.5) again, with 𝛿 = 𝛿0 and 𝑢𝜏 = 𝑥𝜏(𝛿1), we deduce that

⟨𝑥1𝜏(𝛿0), 𝑥1𝜏(𝛿1)⟩ = ||𝑥1𝜏(𝛿0)||2,

a contradiction. This concludes the proof.

Remark 3.3.4. If we merely assume the existence of 𝑢𝜏 ∈ 𝑌𝜏 such that 𝑢𝑖𝜏 = 0 for some 𝑖 ∈ {1, 2}, 𝜏

will not necessarily be a C-point; see Example 3.5.2.

Next, we show that the directional derivatives of 𝜙 along (𝜏1, 𝜏2𝑀) can be naturally associated

with an increasing (with respect to𝑀) sequence of positive numbers. Indeed, put 𝛿𝑀 = (𝜏1, 𝜏2𝑀)

and define

𝐾𝜏(𝑀) ∶=
𝐷−𝛿𝑀𝜙(𝜏)
−𝜙(𝜏)

= ||𝑥1𝜏(𝛿𝑀)||2 +𝑀||𝑥2𝜏(𝛿𝑀)||2,

for all𝑀 > 0.

Proposition 3.3.5. For any 𝑢𝜏 ∈ 𝑌𝜏 we have

𝐾𝜏(𝑀) ≤ ||𝑢1𝜏||2 +𝑀||𝑢2𝜏||2, ∀𝑀 > 0,

with equality if and only if 𝑥𝜏(𝛿𝑀) = 𝑢𝜏. In particular, 𝐾𝜏(𝑀) is increasing with respect to𝑀. It

will be strictly increasing if and only if 𝑋𝜏 ≠ {(𝑥1𝜏, 0)}.

Proof. First, assume 𝜏 is a facial B-point. If |𝜏2| < 1, then Lemma 3.2.3 tells us that 𝑌𝜏 = 𝑋𝜏 =

{(𝑥1𝜏, 0)}, hence 𝐾𝜏(𝑀) is constant and there is nothing to prove. If |𝜏1| < 1, then 𝑌𝜏 = 𝑋𝜏 = {(0, 𝑥2𝜏)},

𝐾𝜏(𝑀) is strictly increasing with respect to𝑀 and the theorem obviously holds.
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Now, assume 𝜏 ∈ 𝕋2 and fix 𝑢𝜏 ∈ 𝑌𝜏,𝑀 > 0. In view of Lemma 3.3.1, we can apply Cauchy-

Schwarz to obtain

𝐾𝜏(𝑀) = ⟨𝑥1𝜏(𝛿𝑀), 𝑢1𝜏⟩ + 𝑀⟨𝑥2𝜏(𝛿𝑀), 𝑢2𝜏⟩

≤ ||𝑥1𝜏(𝛿𝑀)|| ⋅ ||𝑢1𝜏|| + (√𝑀||𝑥2𝜏(𝛿𝑀)||)(√𝑀||𝑢2𝜏||) (3.9)

≤ √𝐾𝜏(𝑀)√||𝑢1𝜏||2 +𝑀||𝑢2𝜏||2. (3.10)

Thus, 𝐾𝜏(𝑀) ≤ ||𝑢1𝜏||2 +𝑀||𝑢2𝜏||2.

When does equality hold? For (3.9) to hold as an equality, we must have 𝑐𝑖 ∈ ℝ+ ∪ {0} such

that 𝑐𝑖𝑥𝑖𝜏(𝛿𝑀) = 𝑢𝑖𝜏, for 𝑖 ∈ {1, 2}. For (3.10), we need

||𝑥1𝜏(𝛿𝑀)|| ⋅ ||𝑢2𝜏|| = ||𝑥2𝜏(𝛿𝑀)|| ⋅ ||𝑢1𝜏||. (3.11)

Now, assume that either 𝑥𝑖𝜏(𝛿𝑀) = 0 or 𝑢𝑖𝜏 = 0 for some 𝑖. For definiteness, let us assume

𝑢2𝜏 = 0 (the other cases are proved in an identical way). In view of (3.11), we must have either

𝑥2𝜏(𝛿𝑀) = 0 or 𝑢1𝜏 = 0. If the latter holds, we obtain 𝑢𝜏 = 0, hence 𝜙 is a unimodular constant and

there is nothing to prove. Thus, we may assume 𝑥2𝜏(𝛿𝑀) = 0. In this case, we may replace 𝑢1𝜏 by

𝑐1𝑥1𝜏(𝛿) in the equality

||𝑥1𝜏(𝛿𝑀)||2 = 𝐾𝜏(𝑀) = ⟨𝑥1𝜏(𝛿𝑀), 𝑢1𝜏⟩ + 𝑀⟨𝑥2𝜏(𝛿𝑀), 𝑢2𝜏⟩ = ⟨𝑥1𝜏(𝛿𝑀), 𝑢1𝜏⟩

to obtain ||𝑥1𝜏(𝛿𝑀)||2 = 𝑐1||𝑥1𝜏(𝛿𝑀)||2. If 𝑥1𝜏(𝛿𝑀) = 0,we again obtain that 𝜙 is a unimodular constant,

while 𝑥1𝜏(𝛿𝑀) ≠ 0 implies 𝑐1 = 1, hence 𝑥𝜏(𝛿𝑀) = 𝑢𝜏.

On the other hand, assume 𝑥1𝜏(𝛿𝑀), 𝑥2𝜏(𝛿𝑀), 𝑢1𝜏, 𝑢2𝜏 are all nonzero. (3.11) then gives us 𝑐1 =

𝑐2 = 𝑐. Replacing 𝑢𝑖𝜏 by 𝑐𝑥𝑖𝜏(𝛿𝑀) in the equality

𝐾𝜏(𝑀) = ⟨𝑥1𝜏(𝛿𝑀), 𝑢1𝜏⟩ + 𝑀⟨𝑥2𝜏(𝛿𝑀), 𝑢2𝜏⟩,

we obtain 𝑐 = 1, hence 𝑥𝜏(𝛿𝑀) = 𝑢𝜏.

Now, we show that 𝐾𝜏(𝑀) is increasing with respect to 𝑀. Indeed, let 𝑁 > 𝑀 > 0. Setting

𝑢𝜏 = 𝑥𝜏(𝛿𝑁) in our previous result implies

𝐾𝜏(𝑀) ≤ ||𝑥1𝜏(𝛿𝑁)|| + 𝑀||𝑥2𝜏(𝛿𝑁)|| ≤ 𝐾𝜏(𝑁),
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as desired.

Now, if 𝑋𝜏 = {(𝑥1𝜏, 0)}, it is evident that 𝐾𝜏(𝑀) will be constant (and equal to ||𝑥1𝜏||2 for

all 𝑀). On the other hand, assume 𝑋𝜏 is not a singleton of the form {(𝑥1𝜏, 0)} but that we can

also find positive numbers 𝑀 < 𝑁 such that 𝐾𝜏(𝑀) = 𝐾𝜏(𝑁). As we have already seen, this

implies that 𝑥𝜏(𝛿𝑀) = 𝑥𝜏(𝛿𝑁), which, combined with 𝐾𝜏(𝑀) = 𝐾𝜏(𝑁), allows us to deduce that

𝑥2𝜏(𝛿𝑀) = 𝑥2𝜏(𝛿𝑁) = 0. Theorem 3.3.3 then tells us that 𝑋𝜏 = {(𝑥1𝜏(𝛿𝑀), 0)}, a contradiction.

We now explore some consequences of Proposition 3.3.5.

Corollary 3.3.6. Given any 𝑀 > 0 and 𝑢𝜏 ∈ 𝑌𝜏, we must either have ||𝑥1𝜏(𝛿𝑀)|| ≤ ||𝑢1𝜏|| or

||𝑥2𝜏(𝛿𝑀)|| ≤ ||𝑢2𝜏||. Moreover, if

(i) ||𝑥1𝜏(𝛿𝑀)|| = ||𝑢1𝜏|| (resp., ||𝑥2𝜏(𝛿𝑀)|| = ||𝑢2𝜏||), then ||𝑥2𝜏(𝛿𝑀)|| ≤ ||𝑢2𝜏|| (resp., ||𝑥1𝜏(𝛿𝑀)|| ≤

||𝑢1𝜏||);

(ii) ||𝑥𝜏(𝛿𝑀)|| = ||𝑢𝜏||, then 𝑥𝜏(𝛿𝑀) = 𝑢𝜏.

Proof. Assume that ||𝑥𝑖𝜏(𝛿𝑀)|| > |𝑢𝑖𝜏|| for all 𝑖 ∈ {1, 2}. Thus, 𝐾𝜏(𝑀) > ||𝑢1𝜏||2 +𝑀||𝑢2𝜏||2, which

contradicts Proposition 3.3.5. The rest of the corollary is proved by applying Proposition 3.3.5 in an

analogous manner.

Corollary 3.3.7. Given any𝑀,𝑁 > 0, one and only one of the following cases can occur:

(i) ||𝑥1𝜏(𝛿𝑀)|| < ||𝑥1𝜏(𝛿𝑁)|| (resp., ||𝑥2𝜏(𝛿𝑀)|| < ||𝑥2𝜏(𝛿𝑁)|| ) and

||𝑥2𝜏(𝛿𝑀)|| > ||𝑥2𝜏(𝛿𝑁)|| (resp., ||𝑥1𝜏(𝛿𝑀)|| > ||𝑥1𝜏(𝛿𝑁)||);

(ii) 𝑥𝜏(𝛿𝑀) = 𝑥𝜏(𝛿𝑁).

Proof. Suppose first that ||𝑥1𝜏(𝛿𝑀)|| < ||𝑥1𝜏(𝛿𝑁)||. If ||𝑥2𝜏(𝛿𝑀)|| ≤ ||𝑥2𝜏(𝛿𝑁)||, one obtains

𝐾𝜏(𝑁) > ||𝑥1𝜏(𝛿𝑀)||2 + 𝑁||𝑥2𝜏(𝛿𝑀)||2,

which contradicts Proposition 3.3.5. Thus, ||𝑥2𝜏(𝛿𝑀)|| > ||𝑥2𝜏(𝛿𝑁)||. The proof in the case that

||𝑥2𝜏(𝛿𝑀)|| < ||𝑥2𝜏(𝛿𝑁)|| proceeds in an entirely analogous manner.

151



Now, assume ||𝑥1𝜏(𝛿𝑀)|| = ||𝑥1𝜏(𝛿𝑁)||. If ||𝑥2𝜏(𝛿𝑀)|| < ||𝑥2𝜏(𝛿𝑁)||, then we again obtain 𝐾𝜏(𝑁) >

||𝑥1𝜏(𝛿𝑀)||2 + 𝑁||𝑥2𝜏(𝛿𝑀)||2, a contradiction (the inequality ||𝑥2𝜏(𝛿𝑀)|| > ||𝑥2𝜏(𝛿𝑁)|| can be ruled out

in an analogous way). Thus, we must have ||𝑥𝜏(𝛿𝑀)|| = ||𝑥𝜏(𝛿𝑁)||, which, by Proposition 3.3.5,

gives us 𝑥𝜏(𝛿𝑀) = 𝑥𝜏(𝛿𝑁).

Our next proposition (while fitting the theme of this section) will not be used in the sequel, so

we record it without a proof (one can use Proposition 3.3.5 in combination with the previous two

lemmas).

Proposition 3.3.8. Assume 𝜏 ∈ 𝕋2. Then,

lim
𝑀→0+

||𝑥1𝜏(𝛿𝑀)|| = lim
𝑀→0+√

𝐾𝜏(𝑀) = inf
𝑀>0

{||𝑥1𝜏(𝛿𝑀)||}

(resp., lim𝑀→+∞ ||𝑥2𝜏(𝛿𝑀)|| = lim𝑀→+∞√𝐾𝜏(𝑀) = inf𝑀>0 {||𝑥2𝜏(𝛿𝑀)||}).

Moreover, if there exist 𝑢 ∈ 𝑌𝜏 and a sequence {𝑀𝑘} of positive numbers such that𝑀𝑘 → 0 (resp.

𝑀𝑘 →∞) and ||𝑢1𝜏|| ≤ ||𝑥1𝜏(𝛿𝑀𝑘
)|| (resp., ||𝑢2𝜏|| ≤ ||𝑥2𝜏(𝛿𝑀𝑘

)||) for all 𝑘, then

lim
𝑘
𝑥1𝜏(𝛿𝑀𝑘

) = 𝑢1𝜏 in norm

(resp., lim𝑘 𝑥2𝜏(𝛿𝑀𝑘
) = 𝑢2𝜏 in norm).

We now prove a theorem that describes those vectors in 𝑌𝜏 with null components (recall that, by

Lemma 3.3.2, these vectors, if they exist, must be unique).

Theorem 3.3.9. Assume the B-point 𝜏 ∈ 𝕋2 is such that there exists 𝑢𝜏 ∈ 𝑌𝜏 with 𝑢2𝜏 = 0. Then,

lim
𝑀→+∞

𝐾𝜏(𝑀) = ||𝑢1𝜏||2

and also

lim
𝑀→+∞

𝑥𝜏(𝛿𝑀) = 𝑢𝜏

in norm.

Moreover, 𝜏 is a C-point for 𝜙 if and only if 𝑋𝜏 = {𝑢𝜏}. In this case, every 𝑣𝜏 ∈ 𝑌𝜏 such that

𝑣𝜏 ≠ 𝑢𝜏 must satisfy ||𝑣1𝜏|| > ||𝑢1𝜏|| and 𝑣2𝜏 ≠ 0.
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Proof. We prove the C-point portion of the theorem first. If 𝑋𝜏 = {𝑢𝜏}, Theorem 3.2.4 implies that

𝜏 is a C-point. Conversely, assume that 𝜏 is a C-point. Write 𝑋𝜏 = {𝑥𝜏}. Proposition 3.3.5 then

implies that

||𝑥1𝜏||2 +𝑀||𝑥2𝜏||2 ≤ ||𝑢1𝜏||2,

for all𝑀 > 0. Thus, 𝑥2𝜏 = 0. Lemma 3.3.2 then gives us 𝑥𝜏 = 𝑢𝜏 and we can also write

1 − 𝜙(𝜆)𝜙(𝜏) = (1 − 𝜆1𝜏1)⟨𝑢1𝜆, 𝑥
1
𝜏⟩ (𝜆 ∈ 𝔻2). (3.12)

Assume 𝑥1𝜏 ≠ 0 (else the result will be be trivial) and let 𝑣𝜏 ∈ 𝑌𝜏. Lemma 3.3.1 implies that

⟨𝑥1𝜏, 𝑣1𝜏⟩ = ||𝑥1𝜏||2.

Thus, either ||𝑣1𝜏|| > ||𝑥1𝜏||, or ||𝑣1𝜏||2 = ||𝑥1𝜏||2 = ⟨𝑥1𝜏, 𝑣1𝜏⟩, which leads to 𝑣1𝜏 = 𝑥1𝜏. But then,

comparing

1 − 𝜙(𝜆)𝜙(𝜏) = (1 − 𝜆1𝜏1)⟨𝑢1𝜆, 𝑣
1
𝜏⟩ + (1 − 𝜆2𝜏2)⟨𝑢2𝜆, 𝑣

2
𝜏⟩

with (3.12) gives us 𝑣2𝜏 = 0, thus 𝑣𝜏 = 𝑥𝜏 as desired. Finally, if 𝑣2𝜏 = 0, we can apply Lemma 3.3.2

to conclude that 𝑣𝜏 = 𝑥𝜏.

Now, we prove the first part of the theorem. If 𝜏 is a C-point, the theorem follows by our previous

result. So, assume that 𝜏 is not a C-point, in which case Proposition 3.3.5 implies that 𝐾𝜏(𝑀) is

strictly increasing. The bound𝐾𝜏(𝑀) ≤ ||𝑢1𝜏||2, for every𝑀 > 0, implies that lim𝑀→+∞ 𝑥2𝜏(𝛿𝑀) = 0

in norm and also that {||𝑥1𝜏(𝛿𝑀)||} is bounded with respect to𝑀.

Now, let {𝑀𝑘} be any sequence converging to+∞ such that 𝑥1𝜏(𝛿𝑀𝑘
) converges to some 𝑥1 ∈ 𝑀1

weakly. Also, fix a decreasing null sequence {𝜖𝑘}. In view of Theorem 3.2.5, we can find {𝜆𝑘} ⊂ 𝔻2

that converges to 𝜏 and such that |𝜙(𝜆𝑘) − 𝜙(𝜏)| < 𝜖𝑘 and also ||𝑥𝜏(𝛿𝑀𝑘
) − 𝑢𝜆𝑘|| < 𝜖𝑘, for all 𝑘.

Thus, lim𝑘 𝜙(𝜆𝑘) = 𝜙(𝜏), 𝑢1𝜆𝑘 converges weakly to 𝑥
1 and 𝑢2𝜆𝑘 converges to 0 in norm. Now, the

model formula (3.1) implies that

1 − 𝜙(𝜆)𝜙(𝜆𝑘) = (1 − 𝜆1𝜆1𝑘)⟨𝑢
1
𝜆, 𝑢

1
𝜆𝑘
⟩ + (1 − 𝜆2𝜆2𝑘)⟨𝑢

2
𝜆, 𝑢

2
𝜆𝑘
⟩,
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for all 𝑘 and 𝜆 ∈ 𝔻2. Letting 𝑘 → ∞ then gives us,

1 − 𝜙(𝜆)𝜙(𝜏) = (1 − 𝜆1𝜏1)⟨𝑢1𝜆, 𝑥
1⟩, (3.13)

for all 𝜆. However, since 𝑢𝜏 ∈ 𝑌𝜏 we can also write (in view of (3.5))

1 − 𝜙(𝜆)𝜙(𝜏) = (1 − 𝜆1𝜏1)⟨𝑢1𝜆, 𝑢
1
𝜏⟩,

for all 𝜆. Comparing this equality with (3.13) then gives us ⟨𝑢1𝜆, 𝑢
1
𝜏⟩ = ⟨𝑢1𝜆, 𝑥

1⟩ for all 𝜆. Since both

vectors 𝑢1𝜏, 𝑥1 are weak limits of elements from {𝑢1𝜆 ∶ 𝜆 ∈ 𝔻2}, we may conclude that 𝑢1𝜏 = 𝑥1. But

then, observe that (by a standard property of weak limits)

||𝑢1𝜏||2 = ||𝑥1||2

≤ lim inf
𝑘

||𝑥1𝜏(𝛿𝑀𝑘
)||2

≤ lim sup
𝑘

||𝑥1𝜏(𝛿𝑀𝑘
)||2

≤ lim sup
𝑘

𝐾𝜏(𝑀𝑘)

≤ ||𝑢1𝜏||2,

which implies that lim𝑘 𝑥1𝜏(𝛿𝑀𝑘
) = 𝑥1 in norm and also that lim𝑘 𝐾𝜏(𝑀𝑘) = ||𝑢1𝜏||2. We conclude

that 𝑥1𝜏(𝛿𝑀) converges to 𝑢1𝜏 in norm and also that lim𝑀→+∞ 𝐾𝜏(𝑀) = ||𝑢1𝜏||2, as desired.

We end this section with a weighted version of Julia’s inequality for the bidisk, which will be of

critical importance in Section 3.5. Our methods are motivated by the proof of [12, Theorem 4.9].

Theorem 3.3.10. Let 𝜙 ∈ 𝒮2 and 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2. Assume also that 𝛼 and𝑀 are positive numbers.

The following assertions are equivalent:

(i) 𝜏 is a B-point for 𝜙 and

𝐷−(𝜏1,𝜏2𝑀)𝜙(𝜏)
−𝜙(𝜏)

≤ 𝛼;
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(ii) There exists a sequence {𝜆𝑛} ⊂ 𝔻2 such that 𝜆𝑛 → 𝜏, lim𝑛
1−|𝜆2𝑛|

1−|𝜆1𝑛|
= 𝑀 and

lim
𝑛

1 − |𝜙(𝜆𝑛)|
1 − ||𝜆𝑛||

≤
⎧⎪
⎨⎪
⎩

𝛼 if𝑀 ≥ 1;

𝛼

𝑀
if𝑀 < 1;

(iii) There exists 𝜔 ∈ 𝕋 such that

𝜙(𝐸(𝜏, 𝑅1, 𝑅2)) ⊂ 𝐸(𝜔,max{𝑎𝑅1, 𝑎𝑅2/𝑀}), ∀𝑅1, 𝑅2 > 0.

If (iii) holds, 𝜔 will necessarily be equal to 𝜙(𝜏).

Proof. Let (𝑀, 𝑢) be a model for 𝜙.

First, we show that (i) implies (ii). Assuming (i) holds, set 𝛿𝑀 = (𝜏1, 𝜏2𝑀) and fix a decreasing

null sequence {𝑟𝑛}. Since 𝜏 is a B-point, Theorem 3.2.5 allows us to deduce that

||𝑥1𝜏(𝛿𝑀)||2 +𝑀||𝑥2𝜏(𝛿𝑀)||2 ≤ 𝛼, (3.14)

and also lim𝑛 𝑢𝜏−𝑟𝑛𝛿𝑀 = 𝑥𝜏(𝛿𝑀) (in norm). Now, assume 𝑀 ≥ 1 and put 𝜆𝑛 = 𝜏 − 𝑟𝑛𝛿𝑀. (3.1)

allows us to write:

lim
𝑛

1 − |𝜙(𝜆𝑛)|
1 − ||𝜆𝑛||

= lim
𝑛

1 − |𝜙(𝜆𝑛)|2

1 − ||𝜆𝑛||2

= lim
𝑛

1 − |𝜙(𝜆𝑛)|2

1 − |𝜆1𝑛|2

= lim
𝑛
(||𝑢1𝜆𝑛||

2 +
1 − |𝜆2𝑛|2

1 − |𝜆1𝑛|2
||𝑢2𝜆𝑛||

2)

= ||𝑥1𝜏(𝛿𝑀)||2 +𝑀||𝑥2𝜏(𝛿𝑀)||2,

which, combined with (3.14), gives us (ii). The proof for𝑀 < 1 is entirely analogous and is omitted.

Next, we show that (ii) implies (iii). The assumptions in (ii) clearly imply that 𝜏 is a B-point for

𝜙. But then, we can argue as above to deduce that (3.14) holds. Thus, we can use (3.5) to obtain

|1 − 𝜙(𝜆)𝜙(𝜏)| ≤ |1 − 𝜆1𝜏1| ⋅ ||𝑥1(𝛿𝑀)|| ⋅ ||𝑢1𝜆|| + |1 − 𝜆2𝜏2| ⋅ ||𝑥2(𝛿𝑀)|| ⋅ ||𝑢2𝜆||,
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for all 𝜆 ∈ 𝔻2. Setting 𝑅𝑗 =
|𝜏𝑗−𝜆𝑗|2

1−|𝜆𝑗|2
(𝑗 = 1, 2) and applying Cauchy-Schwarz then gives us

|𝜙(𝜏) − 𝜙(𝜆)|2 ≤ (||𝑥1(𝛿𝑀)||2 +𝑀||𝑥2(𝛿𝑀)||2)(|𝜏1 − 𝜆1|2||𝑢1𝜆||
2 +

|𝜏2 − 𝜆2|2

𝑀 ||𝑢2𝜆||
2)

≤ 𝛼max{𝑅1, 𝑅2/𝑀}((1 − |𝜆1|2)||𝑢1𝜆||
2 + (1 − |𝜆2|2)||𝑢2𝜆||

2)

= max{𝛼𝑅1, 𝛼𝑅2/𝑀}(1 − |𝜙(𝜆)|2),

which implies

|𝜙(𝜏) − 𝜙(𝜆)|2

1 − |𝜙(𝜆)|2
≤ max{𝛼𝑅1, 𝛼𝑅2/𝑀} (𝜆 ∈ 𝔻2)

and our proof is complete.

Lastly, we show that (iii) implies (i). Set 𝜆𝑛 = 𝜏−𝑟𝑛𝛿𝑀, where {𝑟𝑛} is a decreasing null sequence.

Assuming (iii) holds, we obtain

|𝜔 − 𝜙(𝜆𝑛)|2

1 − |𝜙(𝜆𝑛)|2
≤ 𝛼max {

|𝜏1 − 𝜆1𝑛|2

1 − |𝜆1𝑛|2
, 1𝑀

|𝜏2 − 𝜆2𝑛|2

1 − |𝜆2𝑛|2
}

= 𝛼max {
𝑟𝑛

2 − 𝑟𝑛
,

𝑟𝑛
2 − 𝑀𝑟𝑛

}

= 𝑅𝑛.

Thus, we can write

𝜙(𝜆𝑛) ∈ cl(𝐸(𝜔, 𝑅𝑛)) = cl(𝐷( 𝜔
𝑅𝑛 + 1,

𝑅𝑛
𝑅𝑛 + 1)),

for all 𝑛 ≥ 1.

Now, assume 𝑀 ≥ 1 (the proof in the case where 𝑀 < 1 will be entirely analogous). Then,

𝑅𝑛 =
𝛼𝑟𝑛

2−𝑀𝑟𝑛
, ||𝜆𝑛|| = 1 − 𝑟𝑛 and we can compute

1 − |𝜙(𝜆𝑛)|
1 − ||𝜆𝑛||

=
1 − |𝜙(𝜆𝑛)|

𝑟𝑛

≤
|𝜙(𝜆𝑛) − 𝜔|

𝑟𝑛

≤ 2
𝑟𝑛

𝑅𝑛
𝑅𝑛 + 1

= 2𝛼
2 + (𝛼 −𝑀)𝑟𝑛

→ 𝛼,
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as 𝑛 → ∞. This implies that 𝜏 is a B-point for 𝜙 and 𝜔 = 𝜙(𝜏). Also, since

lim
𝑛

1 − |𝜙(𝜆𝑛)|
1 − ||𝜆𝑛||

= ||𝑥1𝜏(𝛿𝑀)||2 +𝑀||𝑥2𝜏(𝛿𝑀)||2,

we obtain that (3.14) holds. Theorem 3.2.5 then finishes off the proof.

Remark 3.3.11. In this theorem, we only considered points 𝜏 in the distinguished boundary. For

facial B-points, the situation is more straightforward; see [13, Theorem 3.2].

Remark 3.3.12. Observe that if we assume

lim
𝑟→1−

1 − |𝜙(𝑟𝜏)|
1 − ||𝑟𝜏|| = lim inf

𝜆→𝜏

1 − |𝜙(𝜆)|
1 − ||𝜆|| ≤ 𝛼,

we obtain that (ii) holds with𝑀 = 1. Hence,

𝜙(𝐸(𝜏, 𝑅, 𝑅)) ⊂ 𝐸(𝜙(𝜏), 𝛼max{𝑅, 𝑅}) = 𝐸(𝜙(𝜏), 𝛼𝑅),

for all 𝑅 > 0, which is the usual statement of Julia’s inequality over the bidisk.

Remark 3.3.13. Julia-type inequalities like the one in Theorem 3.3.10(iii) were also considered by

Frosini in [72], where she used Busemann sublevel sets to obtain analogous statements. Specifically,

her Julia-type lemma [72, Theorem 1] depends on the behavior of 𝜙 along chosen complex geodesics

that approach the boundary point 𝜏. Theorem 3.3.10 can then be viewed as a refinement of that

result, as it essentially says that every “weighted” version of Julia’s inequality is equivalent to an

inequality involving certain directional derivatives of 𝜙 at the corresponding boundary B-point.

3.4 Criteria for Denjoy-Wolff points

Wewill now use our work from Section 3.3 to study Type I/II DWpoints, as defined in subsection

3.2.5.

We start with two lemmas.

Lemma 3.4.1. Let 𝜙 ∈ 𝒮2 with model (𝑀, 𝑢) and assume 𝜉(𝜇), 𝜇 are points in 𝔻 such that

𝜙(𝜉(𝜇), 𝜇) = 𝜉(𝜇). Then, ||𝑢1(𝜉(𝜇),𝜇)|| ≤ 1. Also, ||𝑢1(𝜉(𝜇),𝜇)|| = 1 if and only if 𝑢2(𝜉(𝜇),𝜇) = 0.
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Proof. In (3.1), set (𝜆1, 𝜆2) = (𝜇1, 𝜇2) = (𝜉(𝜇), 𝜇) to obtain

1 − |𝜉(𝜇)|2 = 1 − |𝜙(𝜉(𝜇), 𝜇)|2 = (1 − |𝜉(𝜇)|2)||𝑢1(𝜉(𝜇),𝜇)||
2 + (1 − |𝜇|2)||𝑢2(𝜉(𝜇),𝜇)||

2.

Since |𝜉(𝜇)|, |𝜇| < 1, the conclusions of the lemma follow easily.

The next lemma is well-known (e.g. it appears as Theorem 2 in [80]). We include a proof for

the sake of completeness.

Lemma 3.4.2. Assume 𝜙 ∈ 𝒮2 and that there exists 𝜇0 ∈ 𝔻 such that the slice function 𝜙𝜇0 is the

identity on 𝔻. Then, 𝜙 ≡ 𝜋1.

Proof. Let (𝑀, 𝑢) be a model for 𝜙.We can use (3.1) to obtain

1 =
1 − |𝜙(𝜆, 𝜇0)|2

1 − |𝜆|2 = ||𝑢1(𝜆,𝜇0)||
2 +

1 − |𝜇0|2

1 − |𝜆2| ||𝑢
2
(𝜆,𝜇0)

||2, (3.15)

for all 𝜆 ∈ 𝔻. Thus, ||𝑢1(𝜆,𝜇0)|| ≤ 1, for all 𝜆 ∈ 𝔻, with equality if and only if 𝑢2(𝜆,𝜇0) = 0.

Now, fix 𝜏1 ∈ 𝕋 and let 𝜆 → 𝜏1 in (3.15) to obtain that (𝜏1, 𝜇0) is a B-point for 𝜙, 𝜙(𝜏1, 𝜇0) = 𝜏1

and also that there exists 𝑢(𝜏1,𝜇0) ∈ 𝑌(𝜏1,𝜇0) such that ||𝑢
1
(𝜏1,𝜇0)

|| ≤ 1 and 𝑢2(𝜏1,𝜇0) = 0. (3.5) then

implies that

1 − 𝜙(𝜆, 𝜇)𝜏1 = (1 − 𝜆𝜏1)⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝜏1,𝜇0)

⟩, (3.16)

for all 𝜆, 𝜇 ∈ 𝔻. Setting 𝜇 = 𝜇0 then gives us

1 − 𝜆𝜏1 = (1 − 𝜆𝜏1)⟨𝑢1(𝜆,𝜇0), 𝑢
1
(𝜏1,𝜇0)

⟩,

hence

⟨𝑢1(𝜆,𝜇0), 𝑢
1
(𝜏1,𝜇0)

⟩ = 1 ≥ ||𝑢1(𝜆,𝜇0)||
2, ||𝑢1(𝜏1,𝜇0)||

2.

This implies that 𝑢1(𝜆,𝜇0) = 𝑢1(𝜏1,𝜇0) (and both have to be unit vectors) and also 𝑢
2
(𝜆,𝜇0)

= 0, for all

𝜆 ∈ 𝔻 . Hence,

1 − 𝜙(𝜆, 𝜇)𝜆′ = 1 − 𝜙(𝜆, 𝜇)𝜙(𝜆′, 𝜇0)

= (1 − 𝜆𝜆′)⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝜆′,𝜇0)

⟩ =
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= (1 − 𝜆𝜆′)⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝜏1,𝜇0)

⟩,

for all 𝜆, 𝜇, 𝜆′ ∈ 𝔻. Since both sides are affine functions of 𝜆′, we obtain 𝜙(𝜆, 𝜇) = 𝜆, for all

𝜆, 𝜇 ∈ 𝔻, as desired.

Now, we use model theory to give a new proof of the fact that every 𝜙 ∈ 𝒮2 (that is not a

coordinate projection) must either be a Type I or a Type II function, a result originally due to Hervé

(see [80, Theorem 1]).

Theorem 3.4.3. Every 𝜙 ∈ 𝒮2 such that 𝜙 ≠ 𝜋1 (resp., 𝜙 ≠ 𝜋2) is either a left Type I (resp. right

Type I) or a left Type II (resp. right Type II) function.

Proof. First, we prove the left Type I/II version of the theorem. Note that, since 𝜙 ≠ 𝜋1, Lemma

3.4.2 implies that 𝜙𝜇 is not the identity on 𝔻, for any 𝜇 ∈ 𝔻. Thus, every such slice function will

have a unique Denjoy-Wolff point (either on the interior of the disk or on the boundary).

To begin, assume that there exists some 𝜇0 ∈ 𝔻 such that the slice 𝜙𝜇0 has its Denjoy-Wolff

point 𝜏1 on 𝕋. Let 𝜆𝑛 = 𝜌𝑛𝜏1, where {𝜌𝑛} is an increasing sequence of positive numbers tending to

1. By the single-variable theory of Denjoy-Wolff points, we have lim𝑛 𝜙𝜇0(𝜆𝑛) = 𝜏1 and

1 − |𝜙(𝜆𝑛, 𝜇0)|2

1 − ||(𝜆𝑛, 𝜇0)||2
=
1 − |𝜙𝜇0(𝜆𝑛)|

2

1 − |𝜆𝑛|2
→ 𝛼𝜇0 ≤ 1,

as 𝑛 → ∞. Thus, (𝜏1, 𝜇0) is a B-point for 𝜙. Using the model formula for 𝜙, we also see that

||𝑢1(𝜆𝑛,𝜇0)||
2 +

1 − |𝜇0|2

1 − |𝜆𝑛|2
||𝑢2(𝜆𝑛,𝜇0)||

2 =
1 − |𝜙𝜇0(𝜆𝑛)|

2

1 − |𝜆𝑛|2
, ∀𝑛 ≥ 1.

Letting 𝑛 → ∞ and taking into account that
1−|𝜇0|2

1−|𝜆𝑛|2
→ ∞, we obtain the existence of 𝑢(𝜏1,𝜇0) ∈

𝑌(𝜏1,𝜇0) satisfying ||𝑢
1
(𝜏1,𝜇0)

|| ≤ 𝛼𝜇0 ≤ 1 and 𝑢2(𝜏1,𝜇0) = 0. In view of (3.5), we can write

1 − 𝜙(𝜆, 𝜇)𝜏1 = (1 − 𝜆𝜏1)⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝜏1,𝜇0)

⟩, (3.17)

for all 𝜆, 𝜇 ∈ 𝔻.
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Now, assume there exists some slice 𝜙𝜇1 such that 𝜇1 ≠ 𝜇0 and 𝜙𝜇1 has an interior fixed point

𝑝 ∈ 𝔻. Set (𝜆, 𝜇) = (𝑝, 𝜇1) in (3.17) to obtain

1 − 𝑝𝜏1 = (1 − 𝑝𝜏1)⟨𝑢1(𝑝,𝜇1), 𝑢
1
(𝜏1,𝜇0)

⟩,

hence ⟨𝑢1(𝑝,𝜇1), 𝑢
1
(𝜏1,𝜇0)

⟩ = 1. Lemma 3.4.1 then implies that 𝑢1(𝑝,𝜇1) = 𝑢1(𝜏1,𝜇0) (and both will be unit

vectors) and 𝑢2(𝑝,𝜇1) = 0. Thus, we may substitute (𝜇1, 𝜇2) = (𝑝, 𝜇1) in (3.1) to obtain

1 − 𝜙(𝜆, 𝜇)𝑝 = (1 − 𝜆𝑝)⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝑝,𝜇1)

⟩ = (1 − 𝜆𝑝)⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝜏1,𝜇0)

⟩, (3.18)

for all 𝜆, 𝜇 ∈ 𝔻. Comparing (3.18) with (3.17) then allows us to deduce that 𝜙 is equal to the identity,

a contradiction.

So far, we have proved that every slice function 𝜙𝜇 must have its Denjoy-Wolff point on the

boundary of 𝔻 (under the assumption that at least one of them does). We now show that 𝜏1 (the

Denjoy-Wolff point of the slice 𝜙𝜇0 we started with) is actually the Denjoy-Wolff point of all slices

𝜙𝜇. Indeed, suppose we can find a slice 𝜙𝜇1 with a different Denjoy-Wolff point 𝜎1 ∈ 𝕋.Arguing as

in the beginning of the proof, we obtain that (𝜎1, 𝜇1) is a B-point for 𝜙, its value at (𝜎1, 𝜇1) is 𝜎1 and

also there exists 𝑢(𝜍1,𝜇1) ∈ 𝑌(𝜍1,𝜇1) satisfying ||𝑢
1
(𝜍1,𝜇1)

|| ≤ 1 and 𝑢2(𝜍1,𝜇1) = 0. (3.5) implies that

1 − 𝜙(𝜆, 𝜇)𝜎1 = (1 − 𝜆𝜎1)⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝜍1,𝜇1)

⟩, ∀𝜆, 𝜇 ∈ 𝔻. (3.19)

If in (3.19) we let (𝜆, 𝜇) → (𝜏1, 𝜇0) in such a way that 𝑢1(𝜆,𝜇) converges weakly to 𝑢
1
(𝜏1,𝜇0)

, we obtain

(since 𝜙(𝜏1, 𝜇0) = 𝜏1 and 𝜎1 ≠ 𝜏1)

⟨𝑢1(𝜍1,𝜇1), 𝑢
1
(𝜏1,𝜇0)

⟩ = 1 ≥ ||𝑢1(𝜍1,𝜇1)||
2, ||𝑢1(𝜏1,𝜇0)||

2,

hence 𝑢1(𝜍1,𝜇1) = 𝑢1(𝜏1,𝜇0). Comparing (3.17) with (3.19) then gives us that 𝜙 is equal to the identity,

a contradiction.

On the other hand, assume that every slice 𝜙𝜇 has a (necessarily unique) interior fixed point

𝜉(𝜇). To show that 𝜙 is a left Type II function, it suffices to prove that 𝜉 ∶ 𝔻 → 𝔻 is actually a

holomorphic function. First, note that putting (𝜆1, 𝜆2) = (𝜉(𝜇), 𝜇) and (𝜇1, 𝜇2) = (𝜉(𝜇′), 𝜇′) in (3.1)
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gives us

1 − 𝜉(𝜇)𝜉(𝜇′)

= (1 − 𝜉(𝜇)𝜉(𝜇′))⟨𝑢1(𝜉(𝜇),𝜇), 𝑢
1
(𝜉(𝜇′),𝜇′)⟩ + (1 − 𝜇𝜇′)⟨𝑢2(𝜉(𝜇),𝜇), 𝑢

2
(𝜉(𝜇′),𝜇′)⟩, (3.20)

for all 𝜇, 𝜇′ ∈ 𝔻.

Now, if ||𝑢1(𝜉(𝜇′),𝜇′)|| = 1 for some 𝜇′ ∈ 𝔻, the model formula for 𝜙 yields (since 𝑢2(𝜉(𝜇′),𝜇′) = 0

in view of Lemma 3.4.1)

1 − 𝜙(𝜆, 𝜇)𝜉(𝜇′) = (1 − 𝜆𝜉(𝜇′))⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝜉(𝜇′),𝜇′)⟩, (3.21)

for all 𝜆, 𝜇. Plugging in (𝜆, 𝜇) = (𝜉(𝜇), 𝜇) gives us ⟨𝑢1(𝜉(𝜇),𝜇), 𝑢
1
(𝜉(𝜇′),𝜇′)⟩ = 1, for all 𝜇, hence

𝑢1(𝜉(𝜇),𝜇) = 𝑢1𝜉 =constant (of norm 1) and 𝑢2(𝜉(𝜇),𝜇) = 0 for all 𝜇. Thus, we obtain

1 − 𝜙(𝜆, 𝜇)𝜉(𝜎) = (1 − 𝜆𝜉(𝜎))⟨𝑢1(𝜆,𝜇), 𝑢
1
𝜉⟩, (3.22)

for all 𝜆, 𝜇, 𝜎 ∈ 𝔻.

There are now two separate cases to examine. Either 𝜙(𝜆, 𝜇) = 𝜆⟨𝑢1(𝜆,𝜇), 𝑢
1
𝜉⟩ for all 𝜆, 𝜇, in

which case (3.22) implies that ⟨𝑢1(𝜆,𝜇), 𝑢
1
𝜉⟩ = 1 (for all 𝜆, 𝜇), hence 𝜙 = 𝜋1, a contradiction, or we

can find 𝜆0, 𝜇0 ∈ 𝔻 such that 𝜙(𝜆0, 𝜇0) ≠ 𝜆0⟨𝑢1(𝜆0,𝜇0), 𝑢
1
𝜉⟩. Then, (3.22) implies that

𝜉(𝜎) =
⟨𝑢1(𝜆0,𝜇0), 𝑢

1
𝜉⟩ − 1

𝜆0⟨𝑢1(𝜆0,𝜇0), 𝑢
1
𝜉⟩ − 𝜙(𝜆0, 𝜇0)

,

for all 𝜎 ∈ 𝔻. Thus, 𝜉 is constant (and trivialy holomorphic).

There is one more possibility to consider: suppose that ||𝑢1(𝜉(𝜇′),𝜇′)|| < 1 for all 𝜇′. (3.20) then

becomes

1 − 𝜉(𝜇)𝜉(𝜇′) = (1 − 𝜇𝜇′)
⟨𝑢2(𝜉(𝜇),𝜇), 𝑢

2
(𝜉(𝜇′),𝜇′)⟩

1 − ⟨𝑢1(𝜉(𝜇),𝜇), 𝑢
1
(𝜉(𝜇′),𝜇′)⟩

, (3.23)

for all 𝜇, 𝜇′ ∈ 𝔻. In other words,
1 − 𝜉(𝜇)𝜉(𝜇′)

1 − 𝜇𝜇′

is the Schur product of the positive-semidefinite kernels

⟨𝑢2(𝜉(𝜇),𝜇), 𝑢
2
(𝜉(𝜇′),𝜇′)⟩
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and

1
1 − ⟨𝑢1(𝜉(𝜇),𝜇), 𝑢

1
(𝜉(𝜇′),𝜇′)⟩

(the latter is actually a complete Pick kernel, see [8, Chapter 8]), hence it must be positive semi-

definite as well. Automatic holomorphy of models (see [14, Proposition 2.32]) then implies that 𝜉

is a holomorphic function on 𝔻, concluding the proof.

The right Type I/II version of the theorem follows by applying the left Type I/II version to the

function 𝜙 ∶ 𝔻2 → 𝔻 defined by 𝜙(𝜆) = 𝜙(𝜆2, 𝜆1), for all 𝜆 ∈ 𝔻2.

Next, we provide criteria for Type I DW points, as stated in subsection 3.2.5. Recall that, given

𝜙 ∈ 𝒮2 with model (𝑀, 𝑢) and a B-point 𝜏 ∈ 𝕋2, we have defined 𝛿𝑀 = (𝜏1, 𝜏2𝑀) and

𝐾𝜏(𝑀) = ||𝑥1𝜏(𝛿𝑀)||2 +𝑀||𝑥2𝜏(𝛿𝑀)||2,

for all𝑀 > 0.

Proof of Theorem 3.2.9. First, we show that (iii) implies (ii). Indeed, assume that 𝜏1 is the common

Denjoy-Wolff point of all slice functions 𝜙𝜇 and let |𝜎| ≤ 1.We will show that (𝜏1, 𝜎) is a left Type

I DW point for 𝜙.

Fix a sequence {𝜇𝑛} ⊂ 𝔻 tending to 𝜎. Now, since 𝜏1 is the Denjoy-Wolff point of 𝜙𝜇, we obtain

that 𝜏1 is a B-point for 𝜙𝜇, 𝜙𝜇(𝜏1) = 𝜏1 and also

lim
𝜆

nt

−→𝜏1

1 − |𝜙𝜇(𝜆)|2

1 − |𝜆|2 ≤ 1,

for all 𝜇 ∈ 𝔻. Thus, it is possible to choose a sequence {𝜆𝑛} ⊂ 𝔻 converging to 𝜏1 nontangentially,

and sufficiently fast, so that we obtain lim𝑛 𝜙𝜇𝑛(𝜆𝑛) = 𝜏1, lim𝑛
1−|𝜆𝑛|2

1−|𝜇𝑛|2
= 0 and also

lim sup
𝑛

1 − |𝜙(𝜆𝑛, 𝜇𝑛)|2

1 − ||(𝜆𝑛, 𝜇𝑛)||2
= lim sup

𝑛

1 − |𝜙𝜇𝑛(𝜆𝑛)|
2

1 − |𝜆𝑛|2
≤ 1, (3.24)

which implies that (𝜏1, 𝜎) is a B-point for 𝜙 and also 𝜙(𝜏1, 𝜎) = 𝜏1.Moreover, the model formula

for 𝜙 tells us

||𝑢1(𝜆𝑛,𝜇𝑛)||
2 +

1 − |𝜇𝑛|2

1 − |𝜆𝑛|2
||𝑢2(𝜆𝑛,𝜇𝑛)||

2 =
1 − |𝜙(𝜆𝑛, 𝜇𝑛)|2

1 − |𝜆𝑛|2
,
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for all 𝑛. Letting 𝑛 → ∞ and taking into account the limits lim𝑛
1−|𝜆𝑛|2

1−|𝜇𝑛|2
= 0 and (3.24), we can

deduce the existence of 𝑢(𝜏1,𝜍) ∈ 𝑌(𝜏1,𝜍) such that ||𝑢1(𝜏1,𝜍)|| ≤ 1 and 𝑢2(𝜏1,𝜍) = 0. This implies that

(𝜏1, 𝜎) is a left Type I DW point for 𝜙. Since 𝜎 was arbitrary, (ii) has been established.

That (ii) implies (i) is obvious.

Now, we prove that (i) implies (iii). So, assume that there exists |𝜎| ≤ 1 such that (𝜏1, 𝜎) is

a B-point for 𝜙, 𝜙(𝜏1, 𝜎) = 𝜏1 and also there exists 𝑢(𝜏1,𝜍) ∈ 𝑌(𝜏1,𝜍) such that ||𝑢1(𝜏1,𝜍)|| ≤ 1 and

𝑢2(𝜏1,𝜍) = 0. We obtain

1 − 𝜙𝜇(𝜆)𝜏1 = 1 − 𝜙(𝜆, 𝜇)𝜏1 = (1 − 𝜆𝜏1)⟨𝑢1(𝜆,𝜇), 𝑢
1
(𝜏1,𝜍)⟩, (3.25)

for all 𝜆, 𝜇 ∈ 𝔻. If we fix 𝜇, we may repeat the proof of “(ii) implies (iii)” from Theorem 3.3.10 to

obtain

|𝜏1 − 𝜙𝜇(𝜆)|2

1 − |𝜙𝜇(𝜆)|2
=
|𝜏1 − 𝜙(𝜆, 𝜇)|2

1 − |𝜙(𝜆, 𝜇)|2
≤ 𝛼𝜍

|𝜏1 − 𝜆|2

1 − |𝜆|2 ,

for all 𝜆, 𝜇 ∈ 𝔻, where 𝛼𝜍 = ||𝑢1(𝜏1,𝜍)||
2. Such an equality is then known to imply (see subsection

3.2.2) that 𝜏1 is a B-point for 𝜙𝜇, 𝜙𝜇(𝜏1) = 𝜏1 and also that the angular derivative of 𝜙𝜇 at 𝜏1 is

equal to 𝛼𝜍 ≤ 1, for all 𝜇 ∈ 𝔻. Since we also know (in view of Lemma 3.4.2) that 𝜙𝜇 ≠ Id𝔻, for all

𝜇 ∈ 𝔻, we can conclude that 𝜏1 is the common Denjoy-Wolff point of every slice function, i.e. (iii)

holds.

Before we proceed, a few important observations are in order. Our previous arguments show

that, if at least one point in the closed face {𝜏1} × cl(𝔻) is a left Type I DW point for 𝜙, then for

every |𝜎| ≤ 1 there exists 𝑢(𝜏1,𝜍) = (𝑢1(𝜏1,𝜍), 0) ∈ 𝑌(𝜏1,𝜍) such that ||𝑢1(𝜏1,𝜍)|| ≤ 1 and also (3.25)

holds, for all 𝜆, 𝜇 ∈ 𝔻. Since 𝜎 was arbitrary, (3.25) implies that the vectors 𝑢1(𝜏1,𝜍) do not actually

depend on 𝜎, thus 𝑢(𝜏1,𝜍) = 𝑢𝜏1 = (𝑢1𝜏1, 0) for all 𝜎 ∈ cl(𝔻). In particular, letting 𝜙′𝜇(𝜏1) denote the

angular derivative of 𝜙𝜇 at 𝜏1, we obtain

𝜙′𝜇(𝜏1) = ||𝑢𝜏1||2 ≤ 1, (3.26)

for all |𝜇| < 1.Also, notice that, in view of Lemma 3.3.2, 𝑢𝜏1 will be the unique vector in 𝑌(𝜏1,𝜍)

with𝑀2-component equal to 0, for all |𝜎| ≤ 1.
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Next, we show that (iii) implies (v). Fix an arbitrary 𝜎 ∈ cl(𝔻). By our previous results, (𝜏1, 𝜎)

is a B-point for 𝜙, 𝜙(𝜏1, 𝜎) = 𝜏1 and also there exists 𝑢𝜏1 = (𝑢1𝜏1, 0) ∈ 𝑌(𝜏1,𝜍) (not depending on 𝜎)

such that ||𝑢𝜏1|| ≤ 1. If we also assume |𝜎| < 1, then (𝜏1, 𝜎) is a facial B-point, so [13, Theorem

3.2] implies that 𝑌(𝜏1,𝜍) = {𝑢𝜏1} and also

𝐷−(𝜏1,𝜍𝑀)𝜙(𝜏1, 𝜎)
−𝜏1 =

𝐷−(𝜏1,𝜍𝑀)𝜙(𝜏1, 𝜎)
−𝜙(𝜏1, 𝜎)

= ||𝑢𝜏1||2 ≤ 1,

for all𝑀 > 0, as desired. On the other hand, assume that |𝜎| = 1. We may apply Theorems 3.2.5

and 3.3.9 to obtain that

𝐷−(𝜏1,𝜍𝑀)𝜙(𝜏1, 𝜎)
−𝜏1 = 𝐾(𝜏1,𝜍)(𝑀) ≤ ||𝑢𝜏1||2 ≤ 1,

for all𝑀 > 0. Actually, one can deduce the even stronger statement

lim
𝑀→∞

𝐷−(𝜏1,𝜍𝑀)𝜙(𝜏1, 𝜎)
−𝜏1 = lim

𝑀→∞
𝐾(𝜏1,𝜍)(𝑀) = ||𝑢𝜏1||2 = 𝜙′𝜇(𝜏1),

for all 𝜇 ∈ 𝔻. Since 𝜎 was arbitrary, we have established (v).

That (v) implies (iv) is evident, so all that remains is to show that (iv) implies (iii). So, assume

there exists (𝜏1, 𝜎) ∈ 𝕋 × cl(𝔻) such that the assumptions of (iv) are satisfied. If |𝜎| < 1, then

𝑌(𝜏1,𝜍) = {(𝑢1(𝜏1,𝜍), 0)} and for any𝑀 > 0 we have

||𝑢(𝜏1,𝜍)||2 =
𝐷−(𝜏1,𝜍𝑀)𝜙(𝜏1, 𝜎)

−𝜏1 ≤ 1.

This shows that (𝜏1, 𝜎) is a left Type I DW point for 𝜙, which gives us (i), hence (iii) holds. On the

other hand, assume |𝜎| = 1. Fix an increasing sequence {𝑀𝑘} tending to∞. Since, by assumption,

we have

𝐷−(𝜏1,𝜍𝑀𝑘)𝜙(𝜏
1, 𝜎)

−𝜏1 ≤ 1,

for all 𝑘, Theorem 3.3.10 implies that

𝜙(𝐸((𝜏1, 𝜎), 𝑅1, 𝑅2)) ⊂ 𝐸(𝜏1,max{𝑅1, 𝑅2/𝑀𝑘}),

for all 𝑘 ≥ 1 and 𝑅1, 𝑅2 > 0. Letting 𝑘 → ∞ yields

𝜙(𝐸((𝜏1, 𝜎), 𝑅1, 𝑅2)) ⊂ 𝐸(𝜏1, 𝑅1}),
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for all 𝑅1, 𝑅2 > 0, which translates into the inequality

|𝜏1 − 𝜙𝜇(𝜆)|2

1 − |𝜙𝜇(𝜆)|2
≤
|𝜏1 − 𝜆|2

1 − |𝜆|2 ,

for all 𝜆, 𝜇 ∈ 𝔻.As already mentioned during the proof of “(i) implies (iii)”, this implies that 𝜏1 is

the Denjoy-Wolff point of 𝜙𝜇, for all 𝜇, hence (iii) holds.

Finally, to prove the right Type I-version of the theorem, notice that the function 𝜙 ∶ 𝔻2 → 𝔻

defined by 𝜙(𝜆) = 𝜙(𝜆2, 𝜆1) (𝜆 ∈ 𝔻2) has (𝑀̃, 𝑢̃) as a model, where ̃𝑢 ∶ 𝔻2 → 𝑀̃ = 𝑀2 ⊕𝑀1 is

defined as

̃𝑢(𝜆) = ⟨𝑢̃1𝜆, 𝑢̃
2
𝜆, ⟩ = ⟨𝑢2(𝜆2,𝜆1), 𝑢

1
(𝜆2,𝜆1)⟩,

for all 𝜆 ∈ 𝔻2. By definition, (𝜎, 𝜏2) is a right Type I DW point for 𝜙 if and only if (𝜏2, 𝜎) is a left

Type I DW point for 𝜙. Thus, to obtain the right Type I-version of Theorem 3.2.9, one simply has to

apply the left Type I-version of that same theorem to 𝜙.

We also establish a uniqueness result for Type I DW points.

Proposition 3.4.4. Let 𝜙 ∈ 𝒮2 be a left Type I function with model (𝑀, 𝑢) such that 𝜙 ≠ 𝜋1 and

𝜏1 ∈ 𝕋 is the common Denjoy-Wolff point of all maps 𝜙𝜇. Then, there exists 𝑢𝜏1 = (𝑢1𝜏1, 0) ∈ 𝑀

such that ||𝑢𝜏1||2 = 𝜙′𝜇(𝜏1) ≤ 1, for all 𝜇. Moreover, given any 𝜎 = (𝜎1, 𝜎2) ∈ 𝕋 × cl(𝔻), if

(i) 𝜎1 = 𝜏1 and |𝜎2| = 1, we have 𝑢𝜏1 ∈ 𝑌𝜍. Also, given any 𝑣𝜍 ∈ 𝑌𝜍, we have 𝑣2𝜍 = 0 if and

only if 𝑣𝜍 = 𝑢𝜏1. If, in addition, we assume that 𝜎 is a C-point, we obtain that every 𝑣𝜍 ∈ 𝑌𝜍

that is not equal to 𝑢𝜏1 must satisfy ||𝑣1𝜍|| > ||𝑢𝜏1|| and 𝑣2𝜍 ≠ 0;

(ii) 𝜎1 = 𝜏1 and |𝜎2| < 1, we have 𝑌𝜍 = {𝑢𝜏1};

(iii) 𝜎1 ≠ 𝜏1, 𝜎 is a B-point for 𝜙 and 𝜙(𝜎) = 𝜎1, then every 𝑣𝜍 ∈ 𝑌𝜍 must satisfy either ||𝑣1𝜍|| > 1

or ||𝑣1𝜍|| = 1 and 𝑣2𝜍 ≠ 0.

Consequently, if 𝜎 = (𝜎1, 𝜎2) ∈ 𝕋 × cl(𝔻), then 𝜎 is a left Type I DW point for 𝜙 if and only if

𝜎1 = 𝜏1. Also, no point in 𝕋 × cl(𝔻) can be a left Type II DW point for 𝜙.

There is an analogous statement for right Type I DW points (we need to assume that 𝜙 ≠ 𝜋2).
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Proof. Let 𝜙 be a left Type I function satisfying our assumptions and denote by 𝑢𝜏1 ∈ 𝑌(𝜏1,𝜍) (for

all |𝜎| ≤ 1) the vector described after the “(i) implies (iii)” part of the proof of Theorem 3.2.9. Also,

let 𝜎 = (𝜎1, 𝜎2) ∈ 𝕋 × cl(𝔻).

First, assume 𝜎1 = 𝜏1 and |𝜎2| = 1. The conclusions of (i) then follow by invoking Lemma

3.3.2 and Theorem 3.3.9.

On the other hand, if 𝜎1 = 𝜏1 and |𝜎2| < 1, an application of Theorem 3.2.4 does the job.

Now, assume 𝜎1 ≠ 𝜏1, 𝜎 is a B-point for 𝜙 and 𝜙(𝜎) = 𝜎1. Let 𝑣𝜍 ∈ 𝑌𝜍 be such that

||𝑣1𝜍|| ≤ 1 and choose {(𝜆𝑛, 𝜇𝑛)} ⊂ 𝔻2 that converges to 𝜎 and also satisfies lim𝑛 𝜙(𝜆𝑛, 𝜇𝑛) = 𝜎1

and 𝑢(𝜆𝑛,𝜇𝑛) → 𝑣𝜍 weakly as 𝑛 → ∞. Setting (𝜆, 𝜇) = (𝜆𝑛, 𝜇𝑛) in (3.25) and letting 𝑛 → ∞ then

allows us to obtain

1 − 𝜎1𝜏1 = (1 − 𝜎1𝜏1)⟨𝑣1𝜍, 𝑢1𝜏1⟩.

Since 𝜎1 ≠ 𝜏1, we obtain

⟨𝑣1𝜍, 𝑢1𝜏1⟩ = 1 ≥ ||𝑣1𝜍||2, ||𝑢1𝜏1||
2,

which implies that 𝑣1𝜍 = 𝑢1𝜏1 and both have to be unit vectors. However, if we also assume that

𝑣2𝜍 = 0, we obtain that 𝜎 is a left Type I DW point for 𝜙. In view of Theorem 3.2.9, this implies that

the common Denjoy-Wolff point of all maps 𝜙𝜇 is 𝜎1 ≠ 𝜏1, a contradiction (since 𝜙 ≠ 𝜋1). Thus,

we must have 𝑣2𝜍 ≠ 0 and the proof of (iii) is complete.

Finally, to prove the right Type I-version of the theorem, apply the left Type I-version to 𝜙.

Note also the following consequence of Theorem 3.2.9, which (especially the second part) will

be instrumental in Section 3.5.

Corollary 3.4.5. Let 𝜙 ∶ 𝔻2 → 𝔻, 𝜙 ≠ 𝜋1, be holomorphic. Then, 𝜙 has a left Type I DW point of

the form (𝜏1, 𝜎) ∈ 𝕋 × cl(𝔻) if and only if

|𝜏1 − 𝜙(𝜆, 𝜇)|2

1 − |𝜙(𝜆, 𝜇)|2
≤
|𝜏1 − 𝜆2|2

1 − |𝜆|2 , ∀(𝜆, 𝜇) ∈ 𝔻2.

If, in addition, we assume that 𝜏 = (𝜏1, 𝜏2) is not a C-point for some 𝜏2 ∈ 𝕋, then for any

increasing sequence {𝑀𝑘} ⊂ ℝ+ tending to∞ one can find a sequence {𝑟𝑘} such that 𝑟𝑘 > 1, 𝑟𝑘 → 1
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and

|𝜏1 − 𝜙(𝜆, 𝜇)|2

1 − |𝜙(𝜆, 𝜇)|2
≤ max { 1𝑟𝑘

|𝜏1 − 𝜆|2

1 − |𝜆|2 ,
1
𝑀𝑘

|𝜏1 − 𝜆|2

1 − |𝜆|2 },

for all 𝜆, 𝜇 ∈ 𝔻 and 𝑘 ≥ 1.

There is an analogous statement for right Type I DW points.

Proof. We only prove the left Type I-version. Since 𝜏1 will be the Denjoy-Wolff point of every

map 𝜙𝜇, to obtain the first part of the theorem it suffices (in view of Theorem 3.2.9) to apply the

one-variable Julia’s inequality to every 𝜙𝜇.

To prove the second part, assume that there exists 𝜏2 ∈ 𝕋 such that 𝜏 = (𝜏1, 𝜏2) is not a C-point

(it will necessarily be a B-point). In view of Proposition 3.3.5 and Theorem 3.3.9, {𝐾𝜏(𝑀𝑘)}𝑘 will

be strictly increasing, hence

||𝑥1𝜏(𝛿𝑀𝑘
)||2 +𝑀𝑘||𝑥2𝜏(𝛿𝑀𝑘

)||2 < 1,

for all 𝑘 ≥ 1. In particular, we can find 𝑟𝑘 > 1 such that

𝐾𝜏(
𝑀𝑘
𝑟𝑘
) ≤ 1

𝑟𝑘

for all 𝑘 ≥ 1. Theorems 3.2.5 and 3.3.10 then allows us to deduce the desired inequality.

Next, we turn to Type II DW points.

Proof of Theorem 3.2.10. Let (𝑀, 𝑢) be a model for 𝜙.

First, we show that (i) implies (ii). By assumption, 𝜏 is a B-point for 𝜙 that is not a left Type I

DW point, 𝜙(𝜏) = 𝜏1 and also there exists 𝑢𝜏 ∈ 𝑌𝜏 such that ||𝑢1𝜏|| < 1 and

||𝑢1𝜏||2 + 𝐾||𝑢2𝜏||2 ≤ 1. (3.27)

To begin, we show that 𝜙 has to be a left Type II function. Indeed, assume instead that 𝜙 is a left

Type I function, 𝜎1 ∈ 𝕋 being the common Denjoy-Wolff point of all maps 𝜙𝜇.We cannot have

𝜎1 = 𝜏1, since then 𝜏 would be (in view of Theorem 3.2.9) a left Type I DW point, contradicting

the definition of a left Type II DW point. On the other hand, if 𝜎1 ≠ 𝜏1, we obtain a contradiction
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in view of Proposition 3.4.4(iii). Thus, 𝜙 cannot be a left Type I function and we conclude (by

Theorem 3.4.3) that 𝜙 is a left Type II function.

Now, let 𝜉 ∶ 𝔻 → 𝔻 denote the holomorphic function that keeps track of the unique (interior)

fixed point of each slice 𝜙𝜇, i.e. we have 𝜙(𝜉(𝜇), 𝜇) = 𝜉(𝜇), for all 𝜇 ∈ 𝔻. Let 0 < 𝐾′ < 𝐾. Since

(3.27) holds and 𝑢2𝜏 ≠ 0, we must have 𝑟||𝑢1𝜏||2 + 𝐾′||𝑢2𝜏||2 ≤ 1 whenever 𝑟 > 1 is sufficiently close

to 1, hence

||𝑢1𝜏||2 +
𝐾′

𝑟 ||𝑢
2
𝜏||2 ≤

1
𝑟 .

Proposition 3.3.5 then implies that

𝐷−(𝜏1,𝜏2𝐾′/𝑟)𝜙(𝜏)
−𝜏1 = 𝐾𝜏(𝐾′/𝑟) ≤ 1/𝑟.

In view of Theorem 3.3.10, we obtain

|𝜏1 − 𝜙(𝜆, 𝜇)|2

1 − |𝜙(𝜆, 𝜇)|2
≤ max {1𝑟

|𝜏1 − 𝜆|2

1 − |𝜆|2 ,
1
𝐾′
|𝜏2 − 𝜇|2

1 − |𝜇|2 }, (3.28)

for all 𝜆, 𝜇 ∈ 𝔻. Plugging in 𝜆 = 𝜉(𝜇) in (3.28) then gives us

|𝜏1 − 𝜉(𝜇)|2

1 − |𝜉(𝜇)|2
≤ max {1𝑟

|𝜏1 − 𝜉(𝜇)|2

1 − |𝜉(𝜇)|2
, 1𝐾′

|𝜏2 − 𝜇|2

1 − |𝜇|2 },

for all 𝜇 ∈ 𝔻. Since 1/𝑟 < 1, this last inequality implies

1
𝑟
|𝜏1 − 𝜉(𝜇)|2

1 − |𝜉(𝜇)|2
≤ 1
𝐾′
|𝜏2 − 𝜇|2

1 − |𝜇|2

whenever 𝑟 > 1 is sufficiently close to 1. Letting 𝑟 → 1 first and 𝐾′ → 𝐾 afterwards yields

|𝜏1 − 𝜉(𝜇)|2

1 − |𝜉(𝜇)|2
≤ 1
𝐾
|𝜏2 − 𝜇|2

1 − |𝜇|2 ,

for all 𝜇 ∈ 𝔻. The one-variable Julia’s inequality (see Section 3.2) then allows us to deduce that 𝜏2

is a B-point for 𝜉, 𝜉(𝜏2) = 𝜏1 and also

𝐴 ∶= ( lim inf
𝜇→𝜏1

1 − |𝜉(𝜇)|
1 − |𝜇| )

−1
≥ 𝐾. (3.29)
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To show that (ii) implies (i), assume that 𝜙 is a left Type II function and 𝜉 satisfies the given

hypotheses. Substituting 𝜆 = 𝜉(𝜇) into the model formula

1 − |𝜙(𝜆, 𝜇)|2 = (1 − |𝜆|2)||𝑢1(𝜆,𝜇)||
2 + (1 − |𝜇|2)||𝑢2(𝜆,𝜇)||

2

yields

1 − |𝜙(𝜉(𝜇), 𝜇)|2

1 − |𝜇|2 =
1 − |𝜉(𝜇)|2

1 − |𝜇|2

=
1 − |𝜉(𝜇)|2

1 − |𝜇|2 ||𝑢1(𝜉(𝜇),𝜇)||
2 + ||𝑢2(𝜉(𝜇),𝜇)||

2, (3.30)

for all 𝜇 ∈ 𝔻. By assumption, we can find a (radial) sequence {𝜇𝑛} ⊂ 𝔻 such that lim𝑛 𝜇𝑛 = 𝜏2,

lim𝑛 𝜉(𝜇𝑛) = lim𝑛 𝜙(𝜉(𝜇𝑛), 𝜇𝑛) = 𝜏1 and

lim
𝑛

1 − |𝜉(𝜇𝑛)|
1 − |𝜇𝑛|

= lim
𝑛

1 − |𝜉(𝜇𝑛)|2

1 − |𝜇𝑛|2
≤ 1
𝐾.

Note also that lim𝑛
1−|𝜉(𝜇𝑛)|

1−|𝜇𝑛|
> 0, else the single-variable Julia’s inequality would imply that 𝜉 is a

unimodular constant, a contradiction. Thus, plugging in 𝜇 = 𝜇𝑛 in (3.30) and letting 𝑛 → ∞ allows

us to conclude that 𝜏 is a B-point for 𝜙, 𝜙(𝜏) = 𝜏1 and also there exists 𝑢𝜏 ∈ 𝑌𝜏 such that

||𝑢1𝜏||2 + 𝐾||𝑢2𝜏||2 ≤ 1.

Moreover, since 𝜙 is a left Type II function, Theorem 3.2.9 implies that 𝜏 cannot be a left Type I

DW point and 𝑢2𝜏 ≠ 0, hence ||𝑢1𝜏|| < 1 and we are done.

Note that the previous argument actually shows that 𝐴 (as defined in (3.29)) is the maximum

among all constants 𝐾 > 0 such that 𝜏 is a left Type II DW point for 𝜙 with constant 𝐾.

Next, we show that (i) implies (iii). So, assume that all relevant assumptions are satisfied. Note

that we cannot have

𝐷−(𝜏1,𝜏2𝑀)𝜙(𝜏)
−𝜏1 = 𝐾𝜏(𝑀) ≤ 1

for all 𝑀 > 0, as in such a case Theorem 3.2.9 would imply that 𝜏 is a left Type I DW point, a

contradiction. Since 𝐾𝜏(𝑀) is continuous, increasing and 𝐾𝜏(𝐾) ≤ 1, there must exist 𝐶 ≥ 𝐾 such

that 𝐾𝜏(𝐶) = 1. Moreover, 𝐾𝜏(𝑀) cannot be constant (again by Theorem 3.2.9), hence (iii) holds.
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We now prove the converse. Assume 𝜏 is a B-point for 𝜙, 𝜙(𝜏) = 𝜏1, 𝐾𝜏(𝑀) is not constant with

respect to𝑀 and also there exists 𝐶 ≥ 𝐾 such that 𝐾𝜏(𝐶) = 1, hence

||𝑥1𝜏(𝛿𝐶)||2 + 𝐶||𝑥2𝜏(𝛿𝐶)||2 = 1.

We cannot have 𝑥2𝜏(𝛿𝐶) = 0 (else, Theorem 3.3.3 would imply that 𝐾𝜏(𝑀) is constant), thus

||𝑥1𝜏(𝛿𝐶)|| < 1. Moreover, 𝜏 cannot be a left Type I DW point, as, in view of Theorem 3.2.9 and

the equality 𝐾𝜏(𝐶) = 1, the only way for this to be possible would be having 𝐾𝜏(𝑀) = 1, for all

𝑀 > 0, a contradiction. Thus, 𝜏 is a left Type II DW point with constant 𝐶 ≥ 𝐾 and we are done.

We can say more about the constant 𝐶 (which is uniquely determined, as 𝐾𝜏(𝑀) is strictly

increasing). Indeed, our previous argument shows that 𝜏 is a left Type II DW point with constant 𝐶.

Now, if 𝐶′ > 𝐶, then

1 = 𝐾𝜏(𝐶) < 𝐾𝜏(𝐶′),

and thus, in view of “(i) implies (iii)”, we obtain that 𝜏 cannot be a left Type II DW point with

costant 𝐶′. This means that 𝐶 is the largest constant with this property, hence 𝐶 = 𝐴, as defined in

(3.29).

Finally, as seen in the end of the proof of Theorem 3.2.9, to show the right Type II-version of

the theorem we only need apply the left Type II-version to 𝜙.

Proof of Theorem 3.2.11. Combine Theorems 3.2.9-3.2.10 with Lemma 3.2.3, Theorem 3.3.3 and

Proposition 3.3.5.

Remark 3.4.6. Let 𝜉 ∶ 𝔻 → 𝔻 be holomorphic. Then, one can always find 𝜙 ∈ 𝒮2 (that will

necessarily be a left Type II function) such that 𝜙(𝜉(𝜇), 𝜇) = 𝜉(𝜇) for all 𝜇 ∈ 𝔻. Indeed, it can be

easily verified that the function

𝜙(𝜆, 𝜇) ∶=
𝜆 + 𝜉(𝜇)

2

has the property in question.

Remark 3.4.7. As already mentioned in subsection 3.2.5, there exist left Type II functions that do

not have left Type II DW points. Indeed, if e.g. 𝜙 is any left Type II function such that the map 𝜉
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satisfies 𝜉(𝔻) ⊂ 𝑟𝔻 for some 𝑟 ∈ (0, 1), then Theorem 3.2.10 implies that 𝜙 does not have any left

Type II DW points (on account of 𝜉 not having any B-points).

We can also prove certain uniqueness results for Type II DW points.

Proposition 3.4.8. Let 𝜙 ∶ 𝔻2 → 𝔻 with model (𝑀, 𝑢) be such that 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2 is a left Type

II DW point, with 𝜉 ∶ 𝔻 → 𝔻 satisfying 𝜙(𝜉(𝜇), 𝜇) = 𝜉(𝜇), for all 𝜇 ∈ 𝔻, and 𝐴 > 0 defined as in

(3.29). Then, the following assertions all hold.

(i) 𝑥𝜏(𝛿𝐴) is the unique vector 𝑢𝜏 ∈ 𝑌𝜏 such that

||𝑢1𝜏||2 + 𝐴||𝑢2𝜏||2 ≤ 1. (3.31)

(ii) No point in 𝕋 × cl(𝔻) can be a left Type I DW point for 𝜙.

(iii) If 𝜎 ∈ 𝕋 and 𝜎 ≠ 𝜏1, then (𝜎, 𝜏2) is not a left Type II DW point for 𝜙.

There is an analogous result for right Type II DW points.

Proof. First, we prove (i). Note that 𝑥𝜏(𝛿𝐴) certainly satifies

||𝑥1𝜏(𝛿𝐴)||2 + 𝐴||𝑥2𝜏(𝛿𝐴)||2 = 1,

as 𝐾𝜏(𝐴) = 1. Also, if 𝑢𝜏 ∈ 𝑌𝜏 is such that (3.31) holds, Proposition 3.3.5 implies that ||𝑢1𝜏||2 +

𝐴||𝑢2𝜏||2 = 1 and 𝑥𝜏(𝛿𝐴) = 𝑢𝜏, as desired.

(ii) is an immediate consequence of Proposition 3.4.4.

Finally, (iii) is a simple application of Theorem 3.2.10, since 𝜉 cannot have two distinct values

(at least not in the sense of nontangential limits) at its B-point 𝜏2.

The following Julia-type inequalities are obtained as a consequence of Theorem 3.2.10. The

significance of parts (ii) and (iii) will be made apparent in Section 3.5.

Corollary 3.4.9. Assume 𝜙 ∶ 𝔻2 → 𝔻 has a left Type II DW point 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2 and let 𝐴 > 0

be defined as in (3.29). Also, fix 𝐴− < 𝐴 and 𝑟1 < 1.
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(i) For all (𝜆, 𝜇) ∈ 𝔻2, we have

|𝜏1 − 𝜙(𝜆, 𝜇)|2

1 − |𝜙(𝜆, 𝜇)|2
≤ max {

|𝜏1 − 𝜆|2

1 − |𝜆|2 ,
1
𝐴
|𝜏2 − 𝜇|2

1 − |𝜇|2 };

(ii) Moreover, if 𝑟2 > 1 is sufficiently close to 1, then

|𝜏1 − 𝜙(𝜆, 𝜇)|2

1 − |𝜙(𝜆, 𝜇)|2
≤ max { 1𝑟2

|𝜏1 − 𝜆|2

1 − |𝜆|2 ,
1
𝐴−

|𝜏2 − 𝜇|2

1 − |𝜇|2 },

for all (𝜆, 𝜇) ∈ 𝔻2;

(iii) Finally, if 𝑥1𝜏(𝛿𝐴) ≠ 0 and 𝐴 < 𝐴+ is sufficiently close to 𝐴, then

|𝜏1 − 𝜙(𝜆, 𝜇)|2

1 − |𝜙(𝜆, 𝜇)|2
≤ max { 1𝑟1

|𝜏1 − 𝜆|2

1 − |𝜆|2 ,
1
𝐴+

|𝜏2 − 𝜇|2

1 − |𝜇|2 },

for all (𝜆, 𝜇) ∈ 𝔻2.

There is an analogous result for right Type II DW points.

Proof. To prove (i), combine Theorems 3.3.10 and 3.2.10.

For (ii), note that, since ||𝑥1𝜏(𝛿𝐴)||2 + 𝐴||𝑥2𝜏(𝛿𝐴)||2 = 1, 𝐴− < 𝐴 and 𝑥2𝜏(𝛿𝐴) ≠ 0 (by definition

of a left Type II DW point), one obtains that

𝑟2||𝑥1𝜏(𝛿𝐴)||2 + 𝐴−||𝑥2𝜏(𝛿𝐴)||2 ≤ 1,

for all 𝑟2 > 1 sufficiently close to 1, hence 𝐾𝜏(𝐴−/𝑟2) ≤ 1/𝑟2. An application of Theorem 3.3.10

then finishes the job.

(iii) is proved in an analogous manner (note that we have to assume 𝑥1𝜏(𝛿𝐴) ≠ 0, since not all

left Type II DW points have this property).

3.5 Refining Hervé’s Theorem

Let 𝐹 = (𝜙, 𝜓) denote a holomorphic self-map of 𝔻2 without interior fixed points. We use

𝐹𝑛 = (𝜙𝑛, 𝜓𝑛) = 𝐹 ∘ 𝐹 ∘ ⋯ ∘ 𝐹⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 times
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to denote the sequence of iterates of 𝐹. Note that 𝜙 ∘ 𝐹𝑛 = 𝜙𝑛+1 and 𝜓 ∘ 𝐹𝑛 = 𝜓𝑛+1, for all 𝑛 ≥ 1.

Hervé analysed the behavior of {𝐹𝑛} by looking at three separate cases, depending on the Type

of 𝜙 and 𝜓. In this section, we study the connection between Hervé’s results from [80] and the DW

points we defined in Section 3.4. In particular, we will show how the conclusions of Theorem 3.2.7

can be strengthened if one assumes that the DW points of 𝜙 and/or 𝜓 are not C-points (i.e. the

functions do not possess angular gradients there).

3.5.1 The (Type II, Type II) case

We begin with the case where 𝜙 and 𝜓 are left Type II and right Type II functions, respectively.

Even though not every Type II function will, in general, have Type II DW points (see Remark

3.4.7), 𝐹 having no interior fixed points changes the situation dramatically, as seen in the following

theorem. A proof of it (without the model terminology) is essentially contained in [73, Theorem 2]

(see also [80, Section 16]). We give an alternative proof by using the results we have developed so

far.

Theorem 3.5.1. Assume 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 is holomorphic and 𝜙, 𝜓 are left Type II and right

Type II functions, respectively. Also, let 𝜉, 𝜂 ∶ 𝔻 → 𝔻 denote the (unique) functions such that

𝜙(𝜉(𝜇), 𝜇) = 𝜉(𝜇) and 𝜓(𝜆, 𝜂(𝜆)) = 𝜂(𝜆), for all 𝜆, 𝜇 ∈ 𝔻. Then, 𝐹 has no interior fixed points if

and only if

(i) there exist 𝜏 ∈ 𝕋2 and 𝐾 > 0 such that 𝜏 is simultaneously a left Type II DW point for 𝜙 with

constant 𝐾 and a right Type II DW point for 𝜓 with constant 1/𝐾 and also

(ii) 𝜙 ∘ 𝜂 ≠ Id𝔻 and 𝜂 ∘ 𝜙 ≠ Id𝔻.

Moreover, assuming 𝐹 has no interior fixed points, the point 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2 above is uniquely

determined: 𝜏1 is the Denjoy-Wolff point of 𝜉 ∘ 𝜂, while 𝜏2 is the Denjoy-Wolff point of 𝜂 ∘ 𝜉.

Proof. Let (𝑀, 𝑢), (𝑁, 𝑣) be models for 𝜙 and 𝜓, respectively. Also, for 𝜏 ∈ 𝜕𝔻2, we will denote

the corresponding cluster sets by 𝑌𝜙
𝜏 and 𝑌𝜓

𝜏 .
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First, assume 𝐹 has no interior fixed points. Let 0 < 𝑟𝑛 ↑ 1 and consider the functions 𝑟𝑛 ⋅ 𝐹.

Since cl(𝑟𝑛𝐹(𝔻2)) ⊂ 𝔻2, for every 𝑛, the Earle-Hamilton Theorem [69] implies that each 𝑟𝑛𝐹 has a

fixed point (𝜆𝑛, 𝜇𝑛) ∈ 𝔻2. Since 𝐹 has no fixed points in 𝔻2, we obtain that (𝜆𝑛, 𝜇𝑛) → 𝜕𝔻2. There

are three possible cases to examine.

If lim𝑛
1−|𝜆𝑛|2

1−|𝜇𝑛|2
= 0, then (𝜆𝑛, 𝜇𝑛) → 𝜏 = (𝜏1, 𝜎) ∈ 𝕋 × cl(𝔻). We can use the model formula

for 𝜙 to write

1 − |𝜆𝑛|2 ≥ 1 − 1
𝑟2𝑛
|𝜆𝑛|2 = 1 − |𝜙(𝜆𝑛, 𝜇𝑛)|2

= (1 − |𝜆𝑛|2)||𝑢1(𝜆𝑛,𝜇𝑛)||
2 + (1 − |𝜇𝑛|2)||𝑢2(𝜆𝑛,𝜇𝑛)||

2.

Thus, for 𝑛 large enough, we deduce

1 ≥
1 − |𝜙(𝜆𝑛, 𝜇𝑛)|2

1 − ||(𝜆𝑛, 𝜇𝑛)||2
=
1 − |𝜙(𝜆𝑛, 𝜇𝑛)|2

1 − |𝜆𝑛|2

= ||𝑢1(𝜆𝑛,𝜇𝑛)||
2 +

1 − |𝜇𝑛|2

1 − |𝜆𝑛|2
||𝑢2(𝜆𝑛,𝜇𝑛)||

2. (3.32)

Letting 𝑛 → ∞, we obtain (in view of lim𝑛
1−|𝜆𝑛|2

1−|𝜇𝑛|2
= 0 and lim𝑛 𝜙(𝜆𝑛, 𝜇𝑛) = 𝜏1) that 𝜏 = (𝜏1, 𝜎) is

a B-point for 𝜙, 𝜙(𝜏) = 𝜏1 and also there exists a weak limit 𝑢𝜏 ∈ 𝑌𝜙
𝜏 such that ||𝑢1𝜏|| ≤ 1, 𝑢2𝜏 = 0.

This implies that 𝜏 is a left Type I DW point for 𝜙, contradicting the fact that 𝜙 is a left Type II

function.

If lim𝑛
1−|𝜆𝑛|2

1−|𝜇𝑛|2
= ∞, one can argue in a manner analogous to the previous case to deduce that 𝜓

has a right Type I DW point, which is again a contradiction.

Finally, assume that lim𝑛
1−|𝜆𝑛|2

1−|𝜇𝑛|2
= 1

𝐾
∈ (0,∞). Hence, (𝜆𝑛, 𝜇𝑛) → 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2. Letting

𝑛 → ∞ in (3.32) then yields that 𝜏 is a 𝐵-point for 𝜙, 𝜙(𝜏) = 𝜏1 and also there exists 𝑢𝜏 ∈ 𝑌𝜙
𝜏 such

that ||𝑢1𝜏||2 + 𝐾||𝑢2𝜏||2 ≤ 1. Note that 𝑢2𝜏 ≠ 0, else 𝜏 would be a left Type I DW point. Thus, since

𝜙 is a left Type II function, 𝜏 must be a left Type II DW point for 𝜙 with constant 𝐾. Further, an

analogous argument involving the model formula for 𝜓 shows that 𝜏 is a 𝐵-point for 𝜓, 𝜙(𝜏) = 𝜏2

and also there exists 𝑣𝜏 ∈ 𝑌𝜓
𝜏 such that (1/𝐾)||𝑣1𝜏||2 + ||𝑣2𝜏||2 ≤ 1. Also, 𝑣1𝜏 ≠ 0, since 𝜓 is not a

right Type I function. Thus, 𝜏 must be a right Type II DW point for 𝜓 with constant 1/𝐾, which
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proves (i). To show that (ii) holds, note that if e.g. 𝜉(𝜂(𝜆)) = 𝜆 for some 𝜆 ∈ 𝔻, then

𝐹(𝜉(𝜂(𝜆)), 𝜂(𝜆)) = (𝜙(𝜉(𝜂(𝜆)), 𝜂(𝜆)), 𝜓(𝜉(𝜂(𝜆)), 𝜂(𝜆)))

= (𝜉(𝜂(𝜆)), 𝜂(𝜆)),

a contradiction. In particular, we obtain the even stronger conclusion that neither 𝜉 ∘ 𝜂 nor 𝜂 ∘ 𝜉 can

have interior fixed points.

Conversely, assume that (i) and (ii) both hold. In view of Theorem 3.2.10, (i) implies that 𝜏1

and 𝜏2 are B-points for 𝜂 and 𝜉 respectively, 𝜉(𝜏2) = 𝜏1, 𝜂(𝜏1) = 𝜏2 and also (by the single-variable

Julia’s inequality)

𝜉(𝐸(𝜏2, 𝑅)) ⊂ 𝐸(𝜏1, 𝑅/𝐾) and 𝜂(𝐸(𝜏1, 𝑅)) ⊂ 𝐸(𝜏2, 𝐾𝑅),

for all 𝑅 > 0. Thus, (𝜉 ∘ 𝜂)(𝐸(𝜏1, 𝑅)) ⊂ 𝜉(𝐸(𝜏2, 𝐾𝑅)) ⊂ 𝐸(𝜏1, 𝑅), for all 𝑅 > 0, which (combined

with the fact that 𝜉 ∘ 𝜂 ≠ Id𝔻 must have a unique Denjoy-Wolff point) allows us to deduce that

𝜏1 is the Denjoy-Wolff point of 𝜉 ∘ 𝜂. An analogous argument shows that 𝜏2 is the Denjoy-Wolff

point of 𝜂 ∘ 𝜉. Thus, the point 𝜏 is indeed uniquely determined. Also, notice that, in view of these

observations, neither 𝜉 ∘ 𝜂 nor 𝜂 ∘ 𝜉 can have interior fixed points. Now, let (𝜆0, 𝜇0) be an interior

fixed point of 𝐹. We obtain

𝜙(𝜆0, 𝜇0) = 𝜆0 and 𝜓(𝜆0, 𝜇0) = 𝜇0.

Thus, 𝜉(𝜇0) = 𝜆0 and 𝜂(𝜆0) = 𝜇0, which implies that 𝜉(𝜂(𝜆0)) = 𝜆0, a contradiction.

Now, let 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2, 𝜏 ∈ 𝕋2 and 𝐾 > 0 be as in Theorem 3.5.1, with 𝐹 having no

interior fixed points. Recall that, in this setting, one obtains a perfect analogue of the one-variable

Denjoy-Wolff Theorem, i.e. the sequence of iterates {𝐹𝑛} converges uniformly on compact sets to 𝜏

(Theorem 3.2.7(iv)). A crucial ingredient for Hervé’s proof of this fact is given by the invariant

horospheres

𝐹(𝐸(𝜏, 𝑅, 𝐾𝑅)) ⊂ 𝐸(𝜏, 𝑅, 𝐾𝑅), (3.33)
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obtained as an application of Corollary 3.4.9.

So, we know that the entire sequence {𝐹𝑛} has to converge to 𝜏, but can we use (3.33) to say

more? Our main result in this subsection is a refinement of [80, Lemme 2], which concerns the

location of the orbits {𝐹𝑛(𝜆, 𝜇)}𝑛 with respect to the boundary of the invariant horospheres (3.33).

To set up the statement, fix (𝜆0, 𝜇0) ∈ 𝔻2. For convenience, we will write 𝐹𝑛 = (𝜙𝑛, 𝜓𝑛) in place

of 𝐹𝑛(𝜆0, 𝜇0) = (𝜙𝑛(𝜆0, 𝜇0), 𝜓𝑛(𝜆0, 𝜇0)). We also define:

𝐴𝑛 =
|𝜏1 − 𝜙𝑛|2

1 − |𝜙𝑛|2
and 𝐵𝑛 =

|𝜏2 − 𝜓𝑛|2

1 − |𝜓𝑛|2
.

Theorem 3.5.2. Let 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2, 𝜏 ∈ 𝕋2 and 𝐾 > 0 be as in Theorem 3.5.1, with 𝐹

having no interior fixed points. Then, either 𝐹𝑛 → 𝜏 in the horospheric topology or there exist

𝜌0, 𝜌1 ≥ 0 (depending on (𝜆0, 𝜇0)) that are not both 0 such that

𝐴2𝑛 → 𝜌0, 𝐴2𝑛+1 → 𝜌1, 𝐵2𝑛+1 → 𝐾𝜌0, 𝐵2𝑛 → 𝐾𝜌1.

Moreover, if 𝜏 is not a C-point for either 𝜙 or 𝜓, we can take 𝜌0 = 𝜌1.

Proof. For every 𝑛 ≥ 1, let 𝑅𝑛 denote the smallest radius such that 𝐹𝑛 ∈ 𝐸𝑛 ∶= cl(𝐸(𝜏, 𝑅𝑛, 𝐾𝑅𝑛)).

In view of (3.33), the sequence {𝑅𝑛} is non-increasing. {𝐴𝑛}, {𝐵𝑛} needn’t also be non-increasing,

however they have to satisfy (by definition of 𝑅𝑛) max{𝐾𝐴𝑛, 𝐵𝑛} = 𝐾𝑅𝑛, for all 𝑛.

Now, if 𝑅𝑛 → 0, then 𝐴𝑛, 𝐵𝑛 → 0 and we conclude that 𝐹𝑛 → 𝜏 in the horospheric topology.

So, assume 𝑅𝑛 converges to 𝜌 > 0.

First, consider the case where 𝜏 is not a C-point for either 𝜙 or 𝜓.Without loss of generality, we

may suppose that 𝜏 is not a C-point for 𝜙. Let 𝑢𝜏 denote any vector in 𝑌
𝜙
𝜏 such that ||𝑢1𝜏||2+𝐾||𝑢2𝜏||2 ≤

1 (its existence is guaranteed by Theorem 3.2.10). In view of Theorem 3.3.3, it must be true that

𝑢1𝜏 ≠ 0.We will show that 𝐴𝑛 → 𝜌 and 𝐵𝑛 → 𝐾𝜌.

Indeed, aiming towards a contradiction, assume 𝐵𝑛↛𝐾𝜌 (the case where 𝐴𝑛↛𝜌 can be treated

in an analogous manner). In view of the equality max{𝐾𝐴𝑛, 𝐵𝑛} = 𝐾𝑅𝑛, there exists a subsequence

{𝑛𝑘} and 𝑟 ∈ (0, 𝜌) such that 𝐵𝑛𝑘 ≤ 𝐾𝑟 for all 𝑘. This implies that 𝐴𝑛𝑘 = 𝑅𝑛𝑘 for all 𝑘. Now,
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given 0 < 𝐾− < 𝐾 sufficiently close to 𝐾, we can choose 𝑟2 > 1 sufficiently close to 1 such that

𝐾𝑟/𝐾− < 𝜌/𝑟2 and also, in view of Corollary 3.4.9(ii),

|𝜏1 − 𝜙(𝜆, 𝜇)|2

1 − |𝜙(𝜆, 𝜇)|2
≤ max { 1𝑟2

|𝜏1 − 𝜆|2

1 − |𝜆|2 ,
1
𝐾−

|𝜏2 − 𝜇|2

1 − |𝜇|2 },

for all 𝜆, 𝜇 ∈ 𝔻. In particular, we have

𝐴𝑛𝑘+1 =
|𝜏1 − 𝜙𝑛𝑘+1|

2

1 − |𝜙𝑛𝑘+1|2

≤ max { 1𝑟2
𝐴𝑛𝑘,

1
𝐾−

𝐵𝑛𝑘}

≤ max { 1𝑟2
𝑅𝑛𝑘,

1
𝐾−

𝐾𝑟}

=
𝑅𝑛𝑘
𝑟2
, (3.34)

as
𝐾𝑟

𝐾−
< 𝜌

𝑟2
≤

𝑅𝑛𝑘
𝑟2
, for all 𝑘. Now, let 𝑣𝜏 denote any vector in 𝑌

𝜓
𝜏 such that ̃𝐾||𝑣1𝜏||2 + ||𝑣2𝜏||2 ≤ 1,

where ̃𝐾 = 1/𝐾 (as in the case of 𝑢𝜏, we obtain the existence of this vector by Theorem 3.2.10). We

look at two separate cases, depending on whether 𝑣2𝜏 ≠ 0.

So, assume 𝑣2𝜏 ≠ 0. In this case, given 𝑟1 < 1 sufficiently close to 1, we can find ̃𝐾 < ̃𝐾+

sufficiently close to ̃𝐾 such that
𝐾̃+𝑟

𝑟1
< ̃𝐾𝜌 and also, in view of the right Type II version of Corollary

3.4.9(iii),

|𝜏2 − 𝜓(𝜆, 𝜇)|2

1 − |𝜓(𝜆, 𝜇)|2
≤ max { 1

̃𝐾+
|𝜏1 − 𝜆|2

1 − |𝜆|2 ,
1
𝑟1
|𝜏2 − 𝜇|2

1 − |𝜇|2 },

for all 𝜆, 𝜇 ∈ 𝔻. In particular, we have

𝐵𝑛𝑘+1 ≤ max {
𝐴𝑛𝑘
̃𝐾+
,
𝐵𝑛𝑘
𝑟1
}

≤ max {
𝑅𝑛𝑘
̃𝐾+
, 𝑟
̃𝐾𝑟1
}

=
𝑅𝑛𝑘
̃𝐾+
, (3.35)

as
𝑟

𝐾̃𝑟1
< 𝜌

𝐾̃+
≤

𝑅𝑛𝑘
𝐾̃+

, for all 𝑘. Combining (3.34) with (3.35), we obtain

𝐾𝑅𝑛𝑘+1 = max{𝐾𝐴𝑛𝑘+1, 𝐵𝑛𝑘+1} < 𝑐𝐾𝑅𝑛𝑘,
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for some 𝑐 ∈ (0, 1) and all 𝑘 large enough. Letting 𝑘 → ∞ then leads to a contradiction.

Now, assume 𝑣2𝜏 = 0. In view of (3.34), we can find 𝑟′ < 𝜌 such that for all 𝑘 large enough

we have 𝐴𝑛𝑘+1 ≤ 𝑟′ < 𝜌. Also, since 𝑣1𝜏 ≠ 0, we can mimic the proof of (3.34) (with 𝜓 in

place of 𝜙) to obtain 𝐵𝑛𝑘+2 < 𝑐1𝐾𝑅𝑛𝑘+1 for some 𝑐1 ∈ (0, 1) and all 𝑘 large enough. Similarly,

since 𝑢1𝜏 ≠ 0, we can mimic the proof of (3.35) (with 𝜙 in place of 𝜓) to obtain the existence of

𝑐2 ∈ (0, 1) such that 𝐴𝑛𝑘+2 ≤ 𝑐2𝑅𝑛𝑘+1, for all 𝑘 large enough. Thus, we arrive at the conclusion

𝐾𝑅𝑛𝑘+2 = max{𝐾𝐴𝑛𝑘+2, 𝐵𝑛𝑘+2} < max{𝑐1, 𝑐2}𝐾𝑅𝑛𝑘+1, for all 𝑘 large enough, which yields a

contradiction when we let 𝑘 → ∞.

The only case left to examine is when 𝑅𝑛 → 𝜌 > 0 and 𝑢1𝜏 = 𝑣2𝜏 = 0.Mimicking the proof of

“(ii) implies (iii)” from Theorem 3.3.10, we may conclude that

𝐴𝑛+1 ≤
𝐵𝑛
𝐾 and 𝐵𝑛+1 ≤ 𝐾𝐴𝑛,

for all 𝑛 ≥ 1. Thus,

𝐴𝑛+2 ≤ 𝐴𝑛 and 𝐵𝑛+2 ≤ 𝐵𝑛,

which means that the sequences {𝐴2𝑛}, {𝐴2𝑛+1}, {𝐵2𝑛} and {𝐵2𝑛+1} are all non-increasing. Thus,

there exist nonnegative numbers 𝜌0, 𝜌1, 𝜌′0, 𝜌′1 such that 𝐴2𝑛 → 𝜌0, 𝐴2𝑛+1 → 𝜌1, 𝐵2𝑛+1 → 𝜌′1 and

𝐵2𝑛 → 𝜌′0. The inequalities 𝐴2𝑛+1 ≤
𝐵2𝑛
𝐾

and 𝐵2𝑛 ≤ 𝐾𝐴2𝑛−1 give us 𝜌1 ≤ 𝜌′0/𝐾 and 𝜌′0 ≤ 𝐾𝜌1,

respectively. Thus, 𝜌′0 = 𝐾𝜌1 and an entirely analogous argument shows that 𝜌′1 = 𝐾𝜌0. We

conclude that

𝐴2𝑛 → 𝜌0, 𝐴2𝑛+1 → 𝜌1, 𝐵2𝑛+1 → 𝐾𝜌0, 𝐵2𝑛 → 𝐾𝜌1,

where max{𝜌0, 𝜌1} = 𝜌 (by definition of 𝜌) and so 𝜌0, 𝜌1 cannot be zero at the same time. This

concludes the proof.

3.5.2 The (Type I,Type II) case

Assume now that 𝜙 and 𝜓 are left Type I and right Type II functions, respectively. This

immediately implies that 𝐹 = (𝜙, 𝜓) does not have any interior fixed points. In this setting, Hervé
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proved that any cluster point of the sequence of iterates {𝐹𝑛} must be of the form (𝜏1, ℎ), where ℎ is

either a holomorphic function𝔻2 → 𝔻 or a unimodular constant and 𝜏1 is the common Denjoy-Wolff

point of all slices 𝜙𝜇 (Theorem 3.2.7(iii)). Examples showing that this conclusion cannot, in general,

be improved, are contained in [80, Section 11].

Now, if we, in addition, assume the existence of 𝜎 ∈ 𝕋 such that (𝜏1, 𝜎) is a right Type II DW

point for 𝜓, stronger conclusions can be drawn about the cluster set of {𝐹𝑛}.

Proposition 3.5.3. Assume 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 is such that 𝜙 is a left Type I function (with 𝜏1

being the common Denjoy-Wolff point of all slices 𝜙𝜇) and 𝜓 has a right Type II DW point of the

form 𝜏 = (𝜏1, 𝜎) ∈ 𝕋2. Then, there exists 𝐾 > 0 such that

𝐹(𝐸(𝜏, 𝑅, 𝐾𝑅)) ⊂ 𝐸(𝜏, 𝑅, 𝐾𝑅),

for all 𝑅 > 0. Thus, any cluster point of the sequence of iterates {𝐹𝑛} must be of the form (𝜏1, ℎ),

where ℎ is either a holomorphic function 𝔻2 → 𝔻 or the constant 𝜎.

Proof. Assuming 𝜓 has a right Type II DW point of the form 𝜏 = (𝜏1, 𝜎), one can combine Corollary

3.4.5 with Corollary 3.4.9 to conclude that

𝐹(𝐸(𝜏, 𝐴𝑅, 𝑅)) ⊂ 𝐸(𝜏, 𝐴𝑅, 𝑅),

for all 𝑅 > 0, where 𝐴 = ( lim inf𝜆→𝜏1
1−|𝜂(𝜆)

1−|𝜆|
)
−1

> 0 and 𝜂 ∶ 𝔻 → 𝔻 is the holomorphic function

satisfying 𝜓(𝜆, 𝜂(𝜆)) = 𝜂(𝜆) for all 𝜆 ∈ 𝔻.

To obtain the conclusion regarding the behavior of the iterates, combine the previous result with

Theorem 3.2.7(iii) and the observation that, for any 𝑅 > 0, cl(𝐸(𝜏, 𝐴𝑅, 𝑅)) ∩ 𝕋2 = 𝜏.

Remark 3.5.4. In the absence of a right Type II DW of the form (𝜏1, 𝜎) for 𝜓, the behavior of

{𝐹𝑛} could be considerably more complicated. Indeed, it could even happen that infinitely many

unimodular constants {𝜎(𝑖) | 𝑖 ∈ 𝐼} exist such that the constant (𝜏1, 𝜎(𝑖)) is a cluster point of {𝐹𝑛},

for every 𝑖 ∈ 𝐼; see the 2nd example in [80, Section 11].
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In the setting of Proposition 3.5.3, it is clear (in view of Theorem 3.2.9) that (𝜏1, 𝜎) will always

be a left Type I DW point for 𝜙, no matter the value of 𝜎. Surprisingly, having (𝜏1, 𝜎) not be a C-point

for 𝜙 will force the entire sequence {𝐹𝑛} to converge to (𝜏1, 𝜎). This is the content of Theorem

3.2.12, the proof of which does not make use of Hervé’s results.

Proof of Theorem 3.2.12. Assume 𝜏 = (𝜏1, 𝜎) ∈ 𝕋2 satisfies the hypotheses of the theorem. Clearly,

𝜙 and 𝜓 will be left Type I and right Type II functions, respectively, with the common Denjoy-Wolff

point of all slices 𝜙𝜇 being 𝜏1. By Proposition 3.5.3, there exists 𝐾 > 0 such that

𝐹(𝐸(𝜏, 𝐾𝑅, 𝑅)) ⊂ 𝐸(𝜏, 𝐾𝑅, 𝑅), (3.36)

for all 𝑅 > 0. Now, fix (𝜆0, 𝜇0) ∈ 𝔻2. For convenience, we will write 𝐹𝑛 = (𝜙𝑛, 𝜓𝑛) in place of

𝐹𝑛(𝜆0, 𝜇0) = (𝜙𝑛(𝜆0, 𝜇0), 𝜓𝑛(𝜆0, 𝜇0)). We also define:

𝐴𝑛 =
|𝜏1 − 𝜙𝑛|2

1 − |𝜙𝑛|2
and 𝐵𝑛 =

|𝜎 − 𝜓𝑛|2

1 − |𝜓𝑛|2
,

for all 𝑛 ≥ 1. Corollary 3.4.5 then yields that {𝐴𝑛} is non-increasing.

First, we show that 𝐴𝑛 → 0. Indeed, assume instead that 𝐴𝑛 → 𝜌 > 0. (3.36) implies that there

exists 𝐵 > 0 such that 𝐵𝑛 < 𝐵, for all 𝑛 ≥ 1. Also, let {𝑀𝑘} ⊂ ℝ+ be any increasing sequence

tending to∞. Corollary 3.4.5 implies that we can find a decreasing sequence {𝑟𝑘}, 𝑟𝑘 → 1 such that

𝐴𝑛+1 ≤ max {
𝐴𝑛
𝑟𝑘
,
𝐵𝑛
𝑀𝑘

}, (3.37)

for all 𝑛, 𝑘 ≥ 1. Let 𝜖 > 0 and choose 𝑘 = 𝑘0 to be such that 𝐵/𝑀𝑘0 < 𝜌.Also, since 𝑟𝑘0 > 1, we

can find 𝑁 ≥ 1 such that 𝐴𝑁/𝑟𝑘0 < 𝜌. Thus, (3.37) yields

𝐴𝑁+1 ≤ max {
𝐴𝑁
𝑟𝑘0

, 𝐵𝑁𝑀𝑘0
} < 𝜌,

a contradiction. Hence, 𝐴𝑛 → 0.We will show that 𝐵𝑛 → 0 as well. Indeed, assume that 𝐵𝑛↛0.

(3.36) combined with the fact that𝐴𝑛 → 0 implies that lim inf𝑛 𝐵𝑛 = 𝑠 > 0.Also, given 0 < 𝐾− < 𝐾,

Corollary 3.4.9 yields that for any 𝑡2 > 1 sufficiently close to 1 one obtains

𝐵𝑛+1 ≤ max {
𝐴𝑛
𝐾−

,
𝐵𝑛
𝑡2
}, (3.38)
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for all 𝑛 ≥ 1. Now, choose 𝑛0 such that 𝐴𝑛0/𝐾− < 𝑠/2 and also 𝐵𝑛0/𝑡2 < 𝑠. In view of (3.38), we

obtain

𝐵𝑛0+1 ≤ max {
𝐴𝑛0
𝐾−

,
𝐵𝑛0
𝑡2
} < 𝑠,

a contradiction. We conclude that 𝐴𝑛, 𝐵𝑛 → 0, which gives us 𝐹𝑛 = 𝐹𝑛(𝜆0, 𝜇0) → (𝜏1, 𝜎). Since

(𝜆0, 𝜇0) was arbitrary, we are done.

Remark 3.5.5. We have actually reached the even stronger conclusion that, in the setting of Theorem

3.2.12, the iterates 𝐹𝑛(𝜆) converge to (𝜏1, 𝜎) in the horospheric topology, for any 𝜆 ∈ 𝔻2.

Example. Define 𝜙, 𝜓 ∶ 𝔻2 → 𝔻 by

𝜙(𝜆) = 1 − 𝜆1𝜆2

2 − 𝜆1 − 𝜆2

and

𝜓(𝜆) =
⎧⎪
⎨⎪
⎩

(𝜆2−𝜆1)−2(1−𝜆1)(1−𝜆2) log ( 1+𝜆2
1−𝜆2

1−𝜆1

1+𝜆1
)

(𝜆2−𝜆1)+2(1−𝜆1)(1−𝜆2) log ( 1+𝜆2
1−𝜆2

1−𝜆1

1+𝜆1
)

if 𝜆1 ≠ 𝜆2,

−3+5𝜆1

5−3𝜆1
if 𝜆1 = 𝜆2,

for all 𝜆 ∈ 𝔻2 (𝜓 has been taken from [96]).

Since the slice function 𝜙0 has 1 as its Denjoy-Wolff point, Theorem 3.2.9 implies that the entire

closed face {1} × cl(𝔻) consists of B-points for 𝜙 and also 𝜙(1, 𝜎) = 1, for all |𝜎| ≤ 1.Actually, it

is easy to see that 𝜙 extends analytically across (1, 𝜎) whenever 𝜎 ≠ 1. Now, for 𝜎 = 1, it can be

verified that

𝐷−(1,𝑀)𝜙(1, 1)
−𝜙(1, 1)

= −𝐷−(1,𝑀)𝜙(1, 1) =
𝑀

𝑀 + 1 < 1,

for all𝑀 > 0. Thus, (1, 1) is not a C-point for 𝜙 and also, since

lim𝑀→∞𝑀/(𝑀+1) = 1, the angular derivative of every slice function 𝜙𝜇 at its Denjoy-Wolff point

1 has to be equal to 1 (this can be also verified directly, as the slice functions are easy to compute in

this case).

Now, we look at 𝜓. Since 𝜓(0, 0) = 0, 𝜓 is clearly a left (also a right) Type II function. Also, as

shown in [96], (1, 1) is a B-point for 𝜓 that is not a C-point and 𝜓(1, 1) = 1.We wish to determine
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whether (1, 1) is also a left Type II DW point for 𝜓. However, computing the function 𝜉 ∶ 𝔻 → 𝔻

such that 𝜓(𝜉(𝜇), 𝜇) = 𝜉(𝜇), for all 𝜇 ∈ 𝔻, seems impractical here. Instead, we will look at the

directional derivatives of 𝜓 at (1, 1) along 𝛿𝑀 = (1,𝑀) and then use Theorem 3.2.11. Indeed, in

[96, Section 4] it was determined that

𝐾(1,1)(𝑀) =
𝐷−(1,𝑀)𝜓(1, 1)
−𝜓(1, 1)

= −𝐷−(1,𝑀)𝜓(1, 1)

= 4𝑀∫
1

−1

𝑑𝑡
(1 − 𝑡) + (1 + 𝑡)𝑀

=
⎧⎪
⎨⎪
⎩

4𝑀 ln𝑀

𝑀−1
if𝑀 ≠ 1,

4 if𝑀 = 1.

Since 𝐾(1,1)(1) > 1 and lim𝑀→0+ 𝐾(1,1)(𝑀) = 0, there exists 𝐶 > 0 such that 𝐾(1,1)(𝐶) = 1.

Theorem 3.2.11 then implies that (1, 1) is a left Type II DW point for 𝜓. Also, since 𝜓(𝜆1, 𝜆2) =

𝜓(𝜆2, 𝜆1), (1, 1) must also be a right Type II DW point for 𝜓.

Now, define 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2. In view of our previous observations, we have that (1, 1)

is a left Type I DW point for 𝜙 that is not a C-point and it is also a right Type II DW point for 𝜓.

Theorem 3.2.12 then allows us to conclude that 𝐹𝑛 → (1, 1) uniformly on compact subsets of 𝔻2.

Before ending this subsection, we remark that the (Type II, Type I) case can be treated in an

entirely analogous way.

3.5.3 The (Type I, Type I) case

Finally, assume that 𝜙 and 𝜓 are left Type I and right Type I functions, respectively, hence

𝐹 = (𝜙, 𝜓) does not have any interior fixed points. The following characterization is an easy

consequence of Theorem 3.2.9, so we omit the proof.

Proposition 3.5.6. Let 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 be holomorphic. Then, 𝜙 and 𝜓 are left Type I and

right Type I functions, respectively, if and only if there exists 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2 that is a left Type I

DW point for 𝜙 and a right Type I DW point for 𝜓.
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Now, let 𝜏1 and 𝜏2 be as in Proposition 3.5.6. In this setting, Hervé proved that either every

cluster point of {𝐹𝑛} will be of the form (𝜏1, ℎ), where ℎ is either a holomorphic function 𝔻2 → 𝔻

or the constant 𝜏2, or every cluster point will be of the form (𝑔, 𝜏2), where 𝑔 is either a holomorphic

function 𝔻2 → 𝔻 or the constant 𝜏1 (Theorem 3.2.7(ii)). Also, it is not hard to see that in e.g. the

former case, there exists a (parabolic) fractional linear transformation 𝑇 with Denjoy-Wolff point 𝜏2

such that, whenever both (𝜏1, ℎ1) and (𝜏1, ℎ2) appear as non-constant cluster points of {𝐹𝑛}, it must

be true that ℎ1 = 𝑇 ∘ ℎ2 (see the 2nd remark in [80, Section 14]). Examples showing that these

conclusions cannot, in general, be improved are contained in [80, Section 15].

Unfortunately, the proof of Theorem 3.2.7(ii) (to be found in [80, Sections 12-13]) does not

make it clear whether it is possible to determine “beforehand” which of the two constants (𝜏1 or

𝜏2) will be the one that appears as a coordinate in every cluster point of {𝐹𝑛}.We will show that,

under the extra assumption of (𝜏1, 𝜏2) not being a C-point for either 𝜙 or 𝜓, one can draw stronger

conclusions. Our proof is independent of Hervé’s result.

Proof of Theorem 3.2.13. Assume 𝜏 = (𝜏1, 𝜏2) ∈ 𝕋2 satisfies the hypotheses of the theorem.

Clearly, 𝜙 and 𝜓 will be left Type I and right Type I functions, respectively. Also, Corollary

3.4.9 tells us that

𝐹(𝐸(𝜏, 𝑅1, 𝑅2)) ⊂ 𝐸(𝜏, 𝑅1, 𝑅2), (3.39)

for all 𝑅1, 𝑅2 > 0. For any fixed (𝜆0, 𝜇0) ∈ 𝔻2, define:

𝐴𝑛 =
|𝜏1 − 𝜙𝑛(𝜆0, 𝜇0)|2

1 − |𝜙𝑛(𝜆0, 𝜇0)|2
and 𝐵𝑛 =

|𝜏2 − 𝜓𝑛(𝜆0, 𝜇0)|2

1 − |𝜓𝑛(𝜆0, 𝜇0)|2
,

for all 𝑛 ≥ 1. (3.39) then implies that both {𝐴𝑛} and {𝐵𝑛} are non-increasing. We can then argue as

in the proof of Theorem 3.2.12 to deduce that 𝐴𝑛 → 0 (assuming 𝜏 is not a C-point for 𝜙). Thus,

every cluster point of {𝐹𝑛} will be of the form (𝜏1, ℎ), where ℎ is holomorphic on 𝔻2 and bounded

by 1.Moreover, since {𝐵𝑛} is bounded, one can deduce that ℎ will have to be either a holomorphic

map 𝔻2 → 𝔻 or the constant 𝜏2.
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Remark 3.5.7. We have actually reached the even stronger conclusion that, in the setting of Theorem

3.2.13 with e.g. 𝜏 not being a C-point for 𝜙, the points 𝜙𝑛(𝜆) converge to 𝜏1 in the horospheric

topology of the unit disk, for any 𝜆 ∈ 𝔻2.

Example. Define 𝜙 ∶ 𝔻2 → 𝔻 by

𝜙(𝜆) = −3𝜆
1𝜆2 − 𝜆1 − 𝜆2 − 1

3 − 𝜆1 − 𝜆2 − 𝜆1𝜆2 ,

for all 𝜆 ∈ 𝔻2 (this example appears in [134]). It can be easily verified that the Denjoy-Wolff point

of the slice function 𝜙0(𝑧) = (𝑧 + 1)/(3 − 𝑧) is equal to 1. Theorem 3.2.9 then implies that the

closed face {1} × cl(𝔻) consists of B-points for 𝜙 and also 𝜙(1, 𝜎) = 1, for all |𝜎| ≤ 1. Moreover,

we can compute

𝐷−(1,𝑀)𝜙(1, 1)
−𝜙(1, 1)

= −𝐷−(1,𝑀)𝜙(1, 1) =
𝑀

𝑀 + 1,

for all𝑀 > 0. Thus, (1, 1) is not a C-point for 𝜙 (and also 𝜙′𝜇(1) = lim𝑀→∞𝑀/(𝑀 + 1) = 1, for

all 𝜇 ∈ 𝔻).

Now, let 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2, where 𝜓 is any (holomorphic) right Type I function such

that the Denjoy-Wolff point of all slice functions 𝜓(𝜆, ⋅) is equal to 1. Theorem 3.2.13 then implies

that every cluster point of {𝐹𝑛} will be of the form (1, ℎ), where ℎ is either a holomorphic function

𝔻2 → 𝔻 or the constant 1. Now, if we take 𝜓 to be e.g.

𝜓(𝜆1, 𝜆2) = 1 − 𝜆1𝜆2

2 − 𝜆1 − 𝜆2 ,

our observations from Example 3.5.2 (and the fact that 𝜓(𝜆1, 𝜆2) = 𝜓(𝜆2, 𝜆1)) show that (1, 1) will

be a right Type I DW point for 𝜓 that is not a C-point. Applying Theorem 3.2.13 again then yields

(for this particular choice of 𝜓) that 𝐹𝑛 → (1, 1) uniformly on compact subsets of 𝔻2.

3.6 Connection with Frosini’s Work

Points of Denjoy-Wolff type for holomorphic maps 𝐹 ∶ 𝔻2 → 𝔻2 have been investigated by

Frosini in [72], [73], [74]. She defined Denjoy-Wolff points for 𝐹 as those fixed boundary points
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where 𝐹-invariant horospheres are centered, with the exact definition depending on the kind of

horospheres in question. In particular, motivated by the definition of “small” and “big” horospheres

found in [3], she defined (see [74, Definitions 3.2-3.3]) quasi-Wolff and Wolff points for 𝐹 as those

fixed boundary points where small horospheres are mapped into big ones and small horospheres

are mapped into small ones, respectively. Unfortunately, the existence of quasi-Wolff points is, in

general, not very helpful for describing the behavior of {𝐹𝑛}, as big horospheres offer very limited

control over the iterates. On the other hand, while Wolff points do offer much more restrictive

Julia-type inequalities, they do not always exist (see [74, Theorem 4.1] for a characterization of

the set of Wolff points for any self-map 𝐹 of 𝔻2). Finally, in [72, Section 8], Frosini considered

generalized Wolff points, which motivate our next definition.

Definition 3.6.1. Let 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 be holomorphic with 𝜏 ∈ 𝜕𝔻2. If there exists

𝑀 ∈ (0,∞) such that

𝐹(𝐸(𝜏, 𝑅,𝑀𝑅)) ⊂ 𝐸(𝜏, 𝑅,𝑀𝑅),

for all 𝑅 > 0, 𝜏 will be called a generalized Denjoy-Wolff point for 𝐹.

As a consequence of Julia’s inequality for the bidisk, any generalized Denjoy-Wolff point

𝜏 ∈ 𝜕𝔻2 of 𝐹 must be a B-point point for both 𝜙 and 𝜓 such that 𝐹(𝜏) = 𝜏. Notice also that, in

contrast to [72, Definition 33], we do not assume the existence of any complex geodesics, instead

relying only on the existence of 𝐹-invariant “weighted” horospheres (although the definitions turn

out to be equivalent, see Remark 3.3.13).

Let𝑊(𝐹) denote the set of all generalized Denjoy-Wolff points of 𝐹. Our next result is a slight

refinement of [72, Theorem 39], obtained as a straightforward application of the results developed

in this paper. Note that 𝜏1, 𝜏2 will always denote points in 𝕋.

Theorem 3.6.2. Let 𝐹 = (𝜙, 𝜓) ∶ 𝔻2 → 𝔻2 be holomorphic such that 𝜙 ≠ 𝜋1, 𝜓 ≠ 𝜋2 and without

any interior fixed points. Then, one and only one of the following three cases is possible:

(i) 𝑊(𝐹) = {(𝜏1, 𝜏2)} if and only if 𝜙 is left Type II and 𝜓 is right Type II;
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(ii) {𝜏1}×𝔻 ⊂ 𝑊(𝐹) ⊂ ({𝜏1}×𝔻)∪ {(𝜏1, 𝜏2)} (resp., 𝔻×{𝜏2} ⊂ 𝑊(𝐹) ⊂ (𝔻× {𝜏2}) ∪ {(𝜏1, 𝜏2)})

if and only if 𝜙 is left Type I and 𝜓 is right Type II (resp., 𝜙 is left Type II and 𝜓 is right Type

I);

(iii) 𝑊(𝐹) = ({𝜏1} ×𝔻) ∪ {(𝜏1, 𝜏2)} ∪ (𝔻× {𝜏2}) if and only if 𝜙 is left Type I and 𝜓 is right Type I.

Proof. Theorem 3.4.3 implies that (i)-(iii) contain all possible cases.

First, assume 𝜙 is left Type II and 𝜓 is right Type II. Theorem 3.5.1 and Corollary 3.4.9 imply

that 𝑊(𝐹) ⊃ {(𝜏1, 𝜏2)} for some 𝜏1, 𝜏2 ∈ 𝕋, where (𝜏1, 𝜏2) is simultaneously a left Type II DW

point for 𝜙 with constant𝑀 and a right Type II DW point for 𝜓 with constant 1/𝑀. Now, assume

(𝜎1, 𝜎2) ∈ 𝑊(𝐹). If either 𝜎1 ∈ 𝔻 or 𝜎2 ∈ 𝔻, Corollary 3.4.5 would imply that either 𝜓 is right

Type I or 𝜙 is left Type I, respectively, a contradiction. Thus, (𝜎1, 𝜎2) ∈ 𝕋2. But then, Theorems

3.3.10 and 3.2.10 yield that (𝜎1, 𝜎2) is simultaneously a left Type II DW point for 𝜙 with constant

𝑀′ > 0 and a right Type II DW point for 𝜓 with constant 1/𝑀′. In view of Theorem 3.5.1, we

obtain (𝜎1, 𝜎2) = (𝜏1, 𝜏2), hence𝑊(𝐹) = {(𝜏1, 𝜏2)}.

Conversely, if𝑊(𝐹) = {(𝜏1, 𝜏2)}, Corollary 3.4.5 implies that 𝜙 cannot be a left Type I function

and 𝜓 cannot be a right Type I function (else, 𝑊(𝐹) would also have to contain facial boundary

points). Theorem 3.4.3 then yields that 𝜙 is left Type II and 𝜓 is right Type II.

Next, we prove (ii). We will only deal with the (Type I, Type II) version. First, assume that 𝜙 is

left Type I and 𝜓 is right Type II, with 𝜏1 being the common Denjoy-Wolff point of all functions

𝜙𝜇. Corollary 3.4.5 implies that {𝜏1} × 𝔻 ⊂ 𝑊(𝐹). If𝑊(𝐹) = {𝜏1} × 𝔻, we are done. Otherwise,

assume that we can find a different point (𝜎1, 𝜎2) ∈ 𝑊(𝐹).We must have 𝜎1 ∈ 𝕋, else 𝜓 would

be a right Type I function. Also, we may assume 𝜎2 ∈ 𝕋 (else we would have 𝜎1 = 𝜏1, in view

of Corollary 3.4.5). Now, Theorem 3.3.10 (specifically, the fact that (iii) implies (i)) yields that

(𝜎1, 𝜎2) must be either a left Type I or a left Type II DW point for 𝜙. Proposition 3.4.4 then tells

us that 𝜎1 = 𝜏1. Note that (𝜏1, 𝜎2) will have to be (in view of Theorem 3.3.10) a right Type II DW

point for 𝜓.Also, if (𝑡1, 𝑡2) ∈ 𝑊(𝐹) is not contained in {𝜏1} × 𝔻, our previous arguments show that

𝑡1 = 𝜏1 and (𝑡1, 𝑡2) is, in addition, a right Type II DW point for 𝜓. Proposition 3.4.8 then implies
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𝜎2 = 𝜏2.We conclude that {𝜏1} × 𝔻 ⊂ 𝑊(𝐹) ⊂ ({𝜏1} × 𝔻) ∪ {(𝜏1, 𝜎2)}, where 𝜎2 ∈ 𝕋.

Conversely, assume {𝜏1} × 𝔻 ⊂ 𝑊(𝐹) ⊂ ({𝜏1} × 𝔻) ∪ {(𝜏1, 𝜏2)}, where 𝜏1, 𝜏2 ∈ 𝕋. Corollary

3.4.5 then implies that 𝜙 is a left Type I and 𝜓 is a right Type II function (else,𝑊(𝐹) would have to

contain a face of the form 𝔻 × {𝜎2}), as desired.

Finally, the proof of (iii) rests on Corollary 3.4.5, Proposition 3.4.4 and Theorem 3.3.10; one

can argue in a manner analogous to the proof of (ii). We omit the details.

Remark 3.6.3. As seen in the previous proof, the point (𝜏1, 𝜏2) in (ii) will belong to W(F) if and

only if it is a right Type II DW point for 𝜓.
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