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ABSTRACT OF THE DISSERTATION 

 

Inferring Function from Form: Subcortical Projection Cell Types in Rat Orbitofrontal Cortex 

by 

Suelynn Ren 

 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St Louis, 2024 

Professor Adam Kepecs, Chair 

 

 

Frontal cortex supports sophisticated behaviors by controlling phylogenetically older subcortical 

brain regions. Within the deep layers of cortex, subcortically projecting pyramidal neurons 

integrate local and long-range inputs along the entire depth of the cortical column. How 

subcortically projecting neurons might be fractionated into cell types and how their unique features 

constrain top-down communication is unknown. In this dissertation, I first established the output 

circuit architecture of subcortically projecting neurons in rat orbitofrontal cortex at a cellular 

resolution. I found that subcortically projecting neurons preferentially innervated a single target, 

demonstrating a one-neuron-one-target projection logic. Such target-defined projection neurons 

were molecularly distinct and spatially segregated into previously unappreciated, intermediate 

sublayers of L5b. These anatomical results suggest that subcortically projecting neurons represent 

connectivity defined cell types which are positioned to act as specialized information channels. To 

test the functional roles of OFC subcortical projections, I next developed two task variants that 

enable testing for (1) static and dynamic learning rate representations by manipulating the outcome 

distribution and (2) subjective value representations that could drive dopaminergic signaling and 
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in turn, momentary choice preferences. Taken together, this work reveals the higher-order 

organizational principles of rat orbitofrontal cortex, namely a “one neuron one target” projection 

logic and a “deeper farther” spatial logic. Such a highly structured circuit architecture bolters the 

hypothesis that subcortically projecting neurons might serve as the final arbiters, routing critical 

information that can drive both healthy and maladaptive behaviors. 
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Chapter 1 

 

Finding the right level of granularity in frontal 

cortex 

 

 
1.1 Introduction: a circuit-driven understanding of choice behaviors 

 
It is increasingly clear that there is no magic bullet for psychiatric disease (Fernandes et al., 2017; 

Insel, 2014; Insel and Quirion, 2005). Advanced technologies have pushed many fields of 

biomedicine towards precision medicine and targetable cell types. While the same technical 

advances enabled neuroscientists to uncover new neuronal cell types and characterize the genetic 

architecture of psychiatric diseases, the translational relevance of this progress has been less 

visible. First, this is because behavior arises from the complex interactions of networks of neuron 

and second, there is no true pathological cell type in psychiatric disease. Rather, maladaptive 

behaviors from poor decision making to anhedonia are likely the result of multiple circuit 
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dysfunctions that corrupt core computations within the brain (Gottesman and Gould, 2003; 

Montague et al., 2012). 

Aberrant decision-making is a core feature of nearly all psychiatric diseases (Bechara and 

Damasio, 2002; Bechara et al., 2002; Brand et al., 2005; Chamberlain et al., 2007; Ersche et al., 

2006; Heerey et al., 2008; Lawrence et al., 2006). Behavioral manifestations of mental 

dysfunctions can be incredibly varied and are thought to arise from subtle alterations of cortical 

circuits as well as impaired cortical-to-subcortical communication (i.e., top-down control) (Dalley 

et al., 2011; Groman and Jentsch, 2012; Gueguen et al., 2021; Petrovic and Castellanos, 2016; 

Renteria et al., 2018). OFC dysfunction is implicated in numerous psychiatric disorders and 

orbitofrontal cortex has recently been conceptualized as the hub of the valuation system. OFC is 

densely interconnected with critical subcortical valuation and associative learning centers (Gremel 

and Costa, 2013; Gremel et al., 2016; Harada et al., 2021; Hirokawa et al., 2019; Lichtenberg et 

al., 2017; Malvaez et al., 2019; Pascoli et al., 2018; Sias et al., 2021; Takahashi et al., 2009a). 

Neuroimaging studies point to metabolic and structural abnormalities and impaired 

communication with regions such as the basal ganglia but lack the resolution to pinpoint neural 

populations (Altshuler et al., 2005; Beucke et al., 2013; Bremner et al., 2002; Girgis et al., 2007; 

Levy and Dubois, 2006; Volkow et al., 2003, 2011). A relatively small population of projection 

neurons directs cortical-to-subcortical communication (Gabbott and Stewart, 1987; Zhang et al., 

2021). Residing within layer 5b, these subcortically projecting neurons constitute an information 

bottleneck that might influence behavior and if corrupted, might result in cascading dysfunction 

(Adesnik and Naka, 2018; Shepherd and Rowe, 2017; Sherman and Usrey, 2021; Tosches and 

Laurent, 2019). Subcortically projecting neurons are highly diverse in terms of their anatomy, 
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physiology and subcortical targets, it is unclear how many distinct types there are and how these 

might differentially contribute to choice behavior. 

The goals of this work are to first, establish a blueprint of projection cell types within orbitofrontal 

cortex and second, to develop a rich family of choice behaviors that can be used to determine if 

such cell types encode stable representations and contribute to different behavioral processes. 

Here, I establish the output architecture of orbitofrontal cortex and its higher-order organizational 

principles, revealing a previously unappreciated “deeper further” sublaminar structure that might 

reflect “inside out” development. Further, I developed a family of choice behaviors and 

reinforcement learning models that can be used to fractionate choice behaviors into their 

underlying quantifiable processes and parameters (i.e., decision variables), which in future, can be 

mapped to cell type specific representations. Such a descriptive language constitutes a 

computational fingerprint that can be tracked across learning stages, task contexts, and healthy and 

diseased states. Together, this work lays the foundation to generate a functional cell type map that 

can used to both make and test mechanistic hypotheses about orbitofrontal cortex. 

1.2 Projection patterns as the first plane of dissection for functional cell 
types 

 
Technical advances in single cell technologies have revealed immense diversity within 

developmental neuron classes, raising the question as to what represents a meaningful neuron type 

(or subtype) (Fishell and Heintz, 2013; Gouwens et al., 2019; Muñoz-Castañeda et al., 2020; 

Usoskin et al., 2015; Zhang et al., 2021). Indeed, the criteria to subdivide cell types is open. From 

an evolutionary perspective, a cell type can be defined by its regulatory independence (Arendt et 

al., 2016; Tosches et al., 2018). That is, a cell type has unique transcriptional responses that 
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required the recruitment of an additional transcription factor. Importantly, while this definition is 

the useful for cross-species comparisons, it does not assume a unified function. On the other hand, 

from a utilitarian and systems neuroscience perspective, a cell type’s circuit function is the defining 

feature that should arise from the others. This functional definition of a cell type brings together 

fields from neuroanatomy and developmental biology to systems neuroscience as it aims to 

establish an evolutionary prior for the distribution of information in the brain. Here, we argue that 

projection patterns are a principled means for dissecting functionally relevant cell types. 

The six-layered structure of mammalian cortex is its most striking architectural feature and was 

the first evidence of distinct neuronal types (DeFelipe, Javier, and Edward G. Jones., 1988). 

Pyramidal neurons are the main excitatory neurons in cortex with distinct neuron types constituting 

each layer. First-born neurons are destined for the deepest layer and later born neurons migrate 

sequentially to more superficial layers in an inside-out manner (McConnell and Kaznowski, 1991a; 

O’Leary and Koester, 1993; Rakic, 1974). The environmental factors present at the time of a 

neuron’s birth (or more precisely, its final mitotic division) are thought to drive neurons down a 

pre-set developmental path that restricts its gene expression patterns and laminar fate. For instance, 

Fezf2 regulates the differentiation of extra-telencephalic neurons in deep layer 5b and prevents the 

expression of intra-telencephalic transcription factors like Satb2, but beyond these early 

developmental branchpoints, it is unclear how subtype identity might be further refined (Alcamo 

et al., 2008; Britanova et al., 2008; Chen et al., 2005, 2008; McConnell and Kaznowski, 1991a; 

Yao et al., 2021). Indeed, broad classes of projection neurons can be differentiated by their 

stereotyped laminar position, dendritic morphology, and electrophysiological properties. Less is 

known, however, about how many subtypes exist across cortex. 
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The advent of single cell sequencing technologies rapidly propelled the discovery of novel 

neuronal subtypes. High-throughput approaches such as droplet-based and nuclear single cell 

sequencing made it possible to capture the transcriptomes of tens of thousands of neurons across 

species, from jellyfish to mice to humans (Kebschull et al., 2016a; Lake et al., 2016a; Tasic et al., 

2016; Weissbourd et al., 2021; Yao et al., 2021; Zeng et al., 2012; Zhang et al., 2021). Yet, it is 

not obvious how to faithfully map such genetically identified subtypes to their circuit functions. 

This is in part methodological as there are ambiguous decision boundaries in clustering, but a more 

difficult problem, is what to do when there are conflicting sources of information. What does it 

mean when transcriptomic and projection identities clash? Lui et al. reported no one-to-one 

mapping from transcriptomic to projection neuron types in mouse prefrontal cortex, such that most 

projection defined cells included multiple transcriptomic types (Lui et al., 2021). In contrast, 

Murugan et al. identified largely non-overlapping, anatomically and molecularly distinct 

projection populations to some of the same targets in Lui et al (Murugan et al., 2017). One of the 

major differences between these studies is the primary definition of a cell type. That is, cell types 

were identified first by their transcriptomic identities in Lui et al, and their projection identities in 

Murugan et al. Though this might seem to be subtle distinct, structure is often more visible in one 

plane versus another, a basic concept that underlies dimensionality reduction. As such, finding the 

right plane that aligns multiple information modalities from genetics to projection patterns to 

electrophysiological properties is critical to identify functional cell types. From these distinct 

vantage points, Lui et al. found that most behaviorally relevant representations were mixed and 

distributed across cell types, whereas Murugan et al. found cell type specific tuning for spatial- 

social information. Such findings point to different hypotheses for how single neurons in prefrontal 
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cortex perform their computations but are only interpretable if the definition of cell type is reliable 

and not artifactual. 

Temporally regulated gene expression might underlie conflicting genetic and projection identity 

(Klingler et al., 2021; Sahni et al., 2021a, 2021b). Transcription factors and cell-surface molecules 

that mediate cell-environment interactions are thought to shape neuronal fate (Frantz and 

McConnell, 1996; McConnell, 1988). However, such genetic heterogeneity peaks during circuit 

assembly and rapidly drops-off once mature connections are established (Li et al., 2017). Such 

reduction in genetic variation presents a challenge for using transcriptome clustering analyses to 

identify reliable clusters, particularly as most single cell sequencing experiments are in adults. 

Further, it is possible that there are simply no unique genes that shape projection identity. For 

instance, Klinger et al. (2021) recently demonstrated that some distinct projection populations 

cannot be identified as molecularly distinct during postnatal development. Rather, such subtypes 

arise from a single generic program that unfolds at different paces. Together, these findings argue 

that rather than subdivide neuron types by their transcriptomic differences, their outputs or 

projection patterns might lend insight into mature circuit functions. 

Mesoscale projection patterns might be principled means to segregate functionally relevant neuron 

subtypes in adults (Harris et al., 2019; Muñoz-Castañeda et al., 2020; Oh et al., 2014; Zingg et al., 

2014). Projection mapping experiments reveal reproducible, highly complex innervation patterns 

that provide insight into both function and developmental origins (Gergues et al., 2020; Kebschull 

et al., 2016a; Ren et al., 2019; Senn et al., 2014). For instance, within the basolateral amygdala, 

projections to the nucleus accumbens, medial central amygdala, and ventral hippocampus mediate 

distinct aspects of motivated behavior (Beyeler et al., 2018). These anatomical projection 

populations are topologically organized and form a valency map. Even basal forebrain cholinergic 
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neurons that historically, were thought function in a more diffuse manner, can be subdivided into 

types based on their projections to superficial and deep cortical laminae, a pattern that reflects their 

birth order (Allaway et al., 2020). Such organization seems to defy random connectivity, but the 

rules of target selection vary considerably by neuron type and region (Dahmen et al., 2022; 

Sosulski et al., 2011; Yuste, 2011). 

At the extremes, projection neurons can either “broadcast” information to multiple targets or act 

as dedicated lines that preferentially route information to a single target (Han et al., 2018a). Though 

there are abundant broadcasting cells in primary motor and visual cortices, it is not obvious how 

this mode of information distribution shapes circuit function (Han et al., 2018a; Kita and Kita, 

2012; Muñoz-Castañeda et al., 2020; Shepherd, 2013; Winnubst et al., 2019). That is, it is unclear 

if a subtype’s circuit function is derived from their connections in toto or from a subset of branches; 

it remains unknown to what degree branching patterns are stochastic and a higher-order projection 

logic has yet to be established. Amongst broadcasting cells, there is some evidence to suggest that 

there might be a “primary” target that drives a cell type’s function. In primary motor cortex, 

projection neurons to the thalamus and medulla were both spatially and molecularly distinct, and 

had specialized roles in motor control, despite their varied connections to cortex and striatum 

(Economo et al., 2018a; Muñoz-Castañeda et al., 2020; Yao et al., 2021; Zhang et al., 2021). 

Likewise, in primary visual cortex, projection neurons to higher order visual areas such as AL 

(anterolateral) and PM (posteromedial) were largely non-overlapping in both their local and long- 

range connections (Han et al., 2018a; Kim et al., 2018). Though these projection subtypes had 

similar stimulus response properties, they formed functional subcircuits that would allow for the 

independent transmission of sensory information. It is a challenge to determine the right degree of 

granularity from ‘every neuron is unique’ to broad projection classes (Migliore and Shepherd, 
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2005; Muñoz-Castañeda et al., 2020; Zeng and Sanes, 2017). Large-scale projection mapping 

might reveal an overarching logic that can be used to classify functional cell types. 

 

 

 

1.3 Subcortical projection neuron types: the bottleneck layer between the 

new and the old 

 
As in other cortical areas, neurons in orbitofrontal cortex are organized into distinct 

layers. Neurons projecting subcortically are enriched in cortical layer 5 (L5) and layer 6 (L6) 

(Angevine and Sidman, 1961; Caviness and Rakic, 1978; Frantz and McConnell, 1996; Gilbert 

and Kelly, 1975; McConnell and Kaznowski, 1991a). Layer 5 pyramidal neurons are thought to 

integrate inputs from multiple sources, including intra-columnar and long-range inputs, and 

constitute the sole output to subcortical areas , outside of the cortico-thalamic loop (Bourassa and 

Descheˆnes, 1995; Bourassa et al., 1995; Chen et al., 2005; Constantinople and Bruno, 2013; 

Deschênes et al., 1994; Economo et al., 2018; Harris and Mrsic-Flogel, 2013; Kim et al., 2015; 

Koester and O’Leary, 1993; Lai et al., 2008; Li et al., 2015; Lur et al., 2016; Mao et al., 2011). 

Projection neurons in layer 5 are typically categorized into two major classes: intratelencephalic 

(IT) neurons in upper sublayer 5a and extratelencephalic (ET) neurons in deep layer 5b. Projection 

neurons that target the midbrain and brainstem reside in layer 5b and projection neurons that target 

the striatum reside in layer 5a. While these broad projection classes are often treated as categorical 

cell types, their diverse projection targets defy this simplistic view (Bourassa and Descheˆnes, 

1995; Chen et al., 2019; Deschênes et al., 1994; Ghosh et al., 2011; Han et al., 2018; Koester and 

O’Leary, 1993; Muñoz-Castañeda et al., 2020; Oh et al., 2014; O’Leary and Stanfield, 1985; 

Wilson, 1987; Winnubst et al., 2019). First, layer 5b neurons project to an array of highly 
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specialized subcortical brain structures and their anatomical and molecular diversity remains little 

explored (Gabbott et al., 2005; Lui et al., 2021; Murugan et al., 2017). Second, a lack of single- 

cell tracing studies leaves open the question whether subcortical projection neurons can be defined 

by their target and constitute distinct neuronal types. 

Making up only ~5% of the projection neurons, L5b subcortically projecting neurons are 

morphologically distinct, representing the largest neurons in cortex with extensive dendritic arbors 

that span all layers of cortex (Brown and Hestrin, 2009; Kasper et al., 1994; Larkum et al., 2009; 

Mason and Larkman, 1990; Petreanu et al., 2009; Ramaswamy and Markram, 2015; Zhang et al., 

2021). Their highly branched, thick-tufted apical dendrite that reaches to the cortical surface 

underlies characteristic electrophysiological properties, such as bursting (Chagnac-Amitai et al., 

1990; Guan et al., 2015; Hattox and Nelson, 2007; Shai et al., 2015; Wang and McCormick, 1993). 

These neurons are not only connected across cortical layers, but also are heavily interconnected 

within L5 itself (Beul and Hilgetag, 2015; Brown and Hestrin, 2009; Dani and Nelson, 2009; 

Otsuka and Kawaguchi, 2011). Thus, positioned to integrate diverse inputs from all layers of 

cortex, these neurons act as an information bottleneck and mediate all cortical-subcortical 

communication, outside of the cortico-thalamic system (Arlotta et al., 2005; Lai et al., 2008; 

O’Leary and Koester, 1993). These subcortical projections must be precisely organized to route 

information relevant to the appropriate downstream regions. One possible mechanism is to directly 

constrain the flow of information through different projection patterns that serve as specialized 

information channels. Such a division-of-labor across distinct types of subcortical projection 

neurons has been previously proposed, but immense projection pattern diversity obscures the logic 

of target selection. 
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The advent of single cell technologies enabled the first large-scale interrogation of projection 

neurons (Muñoz-Castañeda et al., 2020; Yao et al., 2021; Zhang et al., 2021). Most studies on 

projection patterns and target selection are on a subtype of subcortically projecting neurons within 

motor cortex, pyramidal tract (PT) neurons. There is incredible diversity in their projection 

patterns, with neurons sending collaterals to structures in seemingly random combinations (Kita 

and Kita, 2012; Lévesque et al., 1996a). However, large-scale circuit mapping in mouse motor 

cortex looking at hundreds of single neuron reconstructions demonstrated that pyramidal tract 

neurons follow a one-to-many projection logic, distributing information to diverse, but non- 

random combinations of targets (Economo et al., 2018a; Muñoz-Castañeda et al., 2020; Winnubst 

et al., 2019). These data suggest the existence of brain-wide organizational principles that guide 

target selection, but the rules and the degree to which these are shared across cortex are unknown. 

1.4 From form to function: a cell type specific approach to parsing 

complexity in prefrontal cortex 

 
Neurons in frontal cortex correlate with a seemingly endless number of features - from sensory 

and spatial information to decisions and economic value to abstract concepts and rules (Bicks et 

al., 2015; Fleming and Dolan, 2012; Fuster, 2001; Miller, 2000). It is unknown, however, whether 

these diverse neural activity patterns might be organized into a set of conserved, core functions. 

Neurons are the basic computational units in the brain, representing vast inter-connected networks. 

Determining how complex behavior arises from such networks is a major goal in neuroscience and 

biological psychiatry, and one that has largely been driven by the concept of cell types (Gandal et 

al., 2016; Gordon, 2016; Steinberg et al., 2015). A cell type – a group of neurons that share similar 

anatomic, molecular, and physiological properties – represents not only a repeatable circuit 

component that constrains the flow of information across the brain, but also one that can be 



11  

targeted to probe internal computations and behavioral processes. Recent technical advances have 

enabled large-scale circuit mapping at a cellular resolution (Han et al., 2018a; Kebschull et al., 

2016a; Muñoz-Castañeda et al., 2020; Winnubst et al., 2019), but the path from form to function 

is precarious. First, because the recent surge of anatomical studies has raised questions as to the 

definition of a cell type (Kepecs and Fishell, 2014; Miller et al., 2020a; Mukamel and Ngai, 2019). 

Second, because questions of form and function are largely addressed in disparate literatures at 

different resolutions, with the former focused more on broad developmental neuronal classes and 

the latter on anonymous neural recordings in complex behaviors. As such, the seemingly intimate 

link from a cell’s identity to its functional circuit role has only just begun to be explored. 

Across prefrontal cortex, neurons are incredibly diverse in their behavioral correlates, which is 

thought to reflect varied cognitive functions from long-term planning to self-reflection (Bicks et 

al., 2015; Fleming and Dolan, 2012; Fuster, 2001; Miller, 2000). This diversity, however, has made 

it difficult to understand how neurons carry out specific computations. For instance, neurons often 

respond to behavioral variables in different combinations (e.g., mixed selectivity) (Rigotti et al., 

2013). Sophisticated, population-based approaches have been used to decode behaviorally relevant 

variables (Duncker and Sahani, 2021; Jazayeri and Ostojic, 2021; Vyas et al., 2020); recent studies 

suggest that such diverse neural responses could arise from neuron subtypes with distinct 

connectivity patterns, a possibility that is beginning to be understood in motor cortex (Economo 

et al., 2018a; Hirokawa et al., 2019; Lui et al., 2021; Spellman et al., 2021; Terra et al., 2020). As 

such, diverse representations might be organized across core conserved subnetworks and recruited 

to support varied behavioral processes. The contribution of distinct cell types, however, has not 

been widely explored in frontal cortex. This is because first, most neurons are recorded agnostic 
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to their anatomic and molecular features and second, there is no census of projection neuron types 

in prefrontal cortex. 

Part of prefrontal cortex, orbitofrontal cortex contains heterogeneous neurobiological cell types 

that may partly account for its striking functional response diversity (Gabbott et al., 2005a). Within 

orbitofrontal cortex, cell type specific recordings in rats reveal an intimate relationship between a 

cell’s identity and its functional role (Groman et al., 2019; Hirokawa et al., 2019; Pascoli et al., 

2018). In a recent study, Hirokawa et al found that single neuron responses in orbitofrontal cortex 

were highly structured and fell into distinct clusters, with each encoding decision variables, such 

as reward magnitude and previous trial outcome. Recording from an anatomically defined 

projection population, these authors further found that this population was highly uniform and 

encoded past trial outcome, with markedly sustained activity from the receipt of reward to the 

onset of the next trial. Recordings from other subcortically projecting populations demonstrate that 

OFC outputs encode behaviorally relevant information and mediate dissociable functions for 

learning and decision-making (Bariselli et al., 2020; Groman et al., 2019; Hirokawa et al., 2019; 

Izquierdo, 2017; Lui et al., 2021; Malvaez et al., 2019; Namboodiri et al., 2019; Pascoli et al., 

2018). Further, such target defined subcortically projecting neurons can be mapped to separable 

reinforcement learning computations and causally linked to maladaptive behaviors that maintain 

psychiatric diseases like drug addiction (Groman et al., 2019). This hints at an underlying logic 

wherein neural representations are sorted to distinct subcortical structures, a form of information 

distribution that requires distinct output tracts and ordered subcortical target selection. These 

findings are suggestive of a circuit module that can be recruited across different tasks. This 

functional division-of-labor, however, needs anatomically distinct output channels as a structural 

prerequisite. 
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1.5 Running the table from cell types to reinforcement learning models 

 
From the premise that the brain has evolved to solve computational problems, reinforcement 

learning models have provided mechanistic insight into healthy and aberrant choice behaviors 

(Daw et al., 2006; Dorris and Glimcher, 2004; Groman et al., 2019; Keramati and Gutkin, 2014; 

Lak et al., 2020; Rutledge et al., 2009). Reinforcement learning models provide a proven, 

principled framework both for explaining behavior and relating it to neural activity (Sutton and 

Barto, 2018); paired with high-dimensional, well-controlled behaviors, such an approach enables 

fractionating choice behavior into their underlying quantifiable processes. For instance, in both 

mice and humans, hallucination-like perception was established as a quantitative behavior in a 

two-alternative forced choice task that included single trial time investments (Schmack et al., 

2021). Within a reinforcement learning framework, these hallucination-like percepts were cast as 

high-confidence false alarms and this phenotype could be described via a limited set of parameters 

(i.e., decision variables) across individuals and species. Importantly, such quantifiable processes 

and parameters can be mapped to neural representations, lending insight as to how such 

computations are instantiated in neural circuits. 

Hirokawa et al. identified highly structured representations in orbitofrontal cortex that encoded 

reinforcement learning components such as decision confidence and reward magnitude (Hirokawa 

et al., 2019). Such a finding suggests that the right analytical lens can organize diverse frontal 

cortical representations. Armed with a foundational understanding of anatomical cell types, an 

approach that combines high-dimensional behaviors and computational modelling enables 

mapping decision variables to their underlying neural substrate. This is critical for future 

experiments to determine if such representations are stable across a variety of task contexts and 
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for bi-directional causal manipulations to both induce and rescue maladaptive behaviors. To test 

the hypothesis that OFC projection types encode distinct decision variables, we developed a novel 

behavioral task that includes perceptual and outcome uncertainty, with a focus on ventral tegmental 

area projection types (Chapter 4). The ventral tegmental area projection type was particularly 

intriguing because OFC input (Takahashi et al., 2009a, 2011) is thought to be required for a critical 

function of ventral tegmental area dopamine neurons, namely reward prediction error (Schultz et 

al., 1997). However, precisely what messages the OFC sends to the ventral tegmental area, and 

how this impacts choice behavior is unknown. 

 

 

 

1.6 Ventral striatal dopamine release and its relationship to value 

 
Dopamine is famously related to value (Berridge and Robinson, 1998; Hamid et al., 2016; Kim et 

al., 2020; Mohebi et al., 2019; Schultz et al., 1997; Wise and Rompre, 1989), but precisely what 

information is encoded and its relationship to choice remains widely debated. Advances in high 

resolution and high throughput techniques from genetically encoded dopamine sensors to 

voltammetry allowed for measuring dopamine release across multiple timescales in behaving 

animals (Hamid et al., 2016; Patriarchi et al., 2018, 2020; Robinson et al., 2003). Classically, 

dopamine is thought to reflect reward prediction error, an important signal in temporal difference 

learning (Schultz et al., 1997; Sutton and Barto, 2018). It is often challenging, however, to 

disentangle value from reward prediction error signals. In other words, motivational signals that 

“look forward” versus prediction error that “looks backwards” (Berke, 2018). Specifically, 

observations of ramping dopamine signals in the ventral striatum have been proposed to reflect 

either value related signals related to motivation or prediction error signals (Hamid et al., 2016; 
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Howe et al., 2013; Kim et al., 2020; Mikhael et al., 2022). Distinguishing these possibilities and 

the role of dopamine in different types of decisions is further complicated by regional differences 

in the striatum and heterogeneous dopaminergic cell types (Beier et al., 2015a, 2019; Clatworthy 

et al., 2009; Di Ciano et al., 2008; Gokce et al., 2016; Hamid et al., 2016; Lynd-Balta and Haber, 

1994; Märtin et al., 2019). 

There is substantial evidence that dopamine release in the ventral striatum reflects expected value 

for an upcoming reward and invigorates approach behavior (Bromberg-Martin et al., 2010; Schultz 

et al., 2015; Wise, 2004). Such expected value signals are modulated by subjective factors such as 

effort, delay to reward and even conspecific distress (Hollon et al., 2014; Lak et al., 2014a; 

Lichtenberg et al., 2018; Saddoris et al., 2015; Varazzani et al., 2015). Such findings make it a 

strong neural candidate for subjective value coding. 

Subjective value is derived from the inherent and fluctuating preferences of the chooser. The 

determination of subjective value is commonly assessed via a series of choices across inherently 

different reward types, such as apples and oranges. As most reward types are not directly 

comparable and there is no “right” answer, it is thought that such economic decisions are made by 

comparing a “common currency” value. This “common currency” allows one to rank different 

rewards relative to a common reference point. However, precisely how neurons might integrate 

and transform objective information about a reward into subjective value remains unclear. A better 

understanding of the neural representation of subjective might disentangle these processes. 

Classically, subjective value is inferred through a series of choices, such as progressive ratio break 

points or psychophysical indifference points (Gardner et al., 2018, 2017; Padoa-Schioppa and 

Assad, 2006a). This is often framed as an entirely separate process from the value described in 
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learning theory (which in some cases, is identical to prediction error) (Padoa-Schioppa and 

Schoenbaum, 2015). In learning theory, single trial estimates can be inferred from reinforcement 

learning models that quantify how past information is integrated and updates current value 

estimates (Delgado et al., 2011; Sutton and Barto, 2018). Such value estimates are then pit against 

one another and mapped to a choice. In Chapter 5, we propose a novel framework to bring together 

these distinct measures of subjective value, revealed choice preference and model inferred value. 

1.7 Purpose and organization of this thesis 

 
The purpose of this thesis is to bridge anatomy, neural circuits, and behavioral modelling to drive 

a biologically grounded and mechanistic understanding of decision making. The overarching goal 

is to fractionate choice behavior into discrete processes and decision variables that can be mapped 

to distinct cell types. The findings in this thesis represent the first blueprint of subcortically 

projecting neurons in orbitofrontal cortex and demonstrate that these neurons are distinct cell types, 

as described in Chapter 2. The developmental implications of such an organization are outlined in 

Chapter 3. Importantly, an output architecture in which subcortically projecting neurons can be 

subdivided into target defined subtypes, is suggestive of segregated functional circuits that are 

positioned to selectively route information to downstream structures. Such a subcortical sorting 

principle has long been hypothesized but has yet to be demonstrated in any forebrain region. 

From this anatomical framework, I next developed a set of high-dimensional behaviors that can be 

used to test the generalizability of decision variables in future. These include a classic matching 

task with trial-by-trial time investment that captures fluctuations in subjective value (Chapter 6) 

and a variance task (Chapter 4) that can de-couple sensory and value uncertainty, and test for 
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dynamic representations of learning rate. Such choice paradigms combined with reinforcement 

learning models can fractionate choice behaviors into their underlying quantifiable processes, 

generating a vocabulary of decision variables that can be used to quantify individual behavioral 

variability and in turn, track parameters over time and across healthy and disease states. Such an 

approach can generate a “computational fingerprint” which can be used as a proof-of-principle for 

novel behavioral diagnostics and cell type driven therapeutics. 
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Abstract 

 
Frontal cortex supports sophisticated behaviors by controlling evolutionarily more ancient brain 

regions through subcortically projecting neurons. There are diverse subcortically projecting 

pyramidal neurons, but the organizational principles of their projection logic remains unknown. 

Here, we combined viral tracing, single-cell resolution projection mapping and RNA sequencing 

to comprehensively map the subcortical outputs of rat orbitofrontal cortex to establish a blueprint 

for the organization of its long-range projecting neuron types. At a single neuron resolution, we 

characterize the connectivity of ~450,000 neurons and demonstrate that most neurons project to 

single subcortical targets, representing dedicated lines of communication. Neurons projecting to 

multiple target structures are rare, but represent non-random projection motifs. These single-target 

projection neurons are organized into intermediate sublayers beyond the classical layer 5a and 5b 

distinction, and express unique sets of genes, including transcription factors and surface receptors. 

These refined sublayers are ordered according to the distance of their projection target in a “deeper 

further” pattern, which may reflect the inside-out developmental sequence of cortex. Taken 

together, subcortically projecting neurons in orbitofrontal cortex represent distinct neuron types 

that are positioned as segregated information channels, an architecture that hints at differential 

information routing from frontal cortex. 

 

Highlights 

 

• Extra-telencephalic projection neurons in rat orbitofrontal cortex constitute target-defined 

neuron types 

• Brainwide single-neuron projection maps reveal mostly one-neuron-one-target 

connectivity 
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• Laminar position in refined sublayers of layer 5b correlates with distance to projection 

target in a “deeper further” pattern 

• Target-defined subcortical projection populations represent molecularly distinct subtypes 

 

 

 

Introduction 

 
Neocortex must communicate with evolutionarily older subcortical structures to provide the 

additional layer of control that enables greater behavioral repertoire and flexibility in mammals. 

Communication from the neocortex to subcortex takes place through large pyramidal cells located 

in the deep layers of cortex. Positioned at the interface between the new and old brain, these long- 

range projection neurons make up cortical layer 5 (L5) and comprise two broad classes of 

pyramidal cells: intra-telencephalic (IT) neurons that project within the telencephalon, located 

mostly in superficial layer 5a, and extra-telencephalic (ET) neurons in deep layer 5b, which project 

to many subcortical structures including the superior colliculus and various brainstem nuclei 

(Bates and Killackey, 1984; Killackey et al., 1989; McGeorge and Faull, 1989; Morishima et al., 

2011; Muñoz-Castañeda et al., 2020; Oh et al., 2014; O’Leary and Koester, 1993; Winnubst et al., 

2019; Wise and Jones, 1977). Long-range projection neurons are specialized to integrate and 

transform diverse cortical input sources. For instance, ET neurons have large dendritic arbors that 

span across all cortical layers (Constantinople and Bruno, 2013; Fletcher and Williams, 2019; 

Larkum et al., 2009; Markram et al., 1997; Petreanu et al., 2009; Zarrinpar and Callaway, 2016). 

These long-range projection neurons are well positioned to coordinate the flow of information to 

subcortex. The organizational principles, or projection patterns, that govern these cortical outputs 

are, however, unclear. For instance, it is unknown whether individual projection neurons target 

single subcortical structures, or target a random mixture of downstream areas. 
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Our understanding of subcortical projection patterns has been mostly derived from pyramidal tract 

(PT) neurons, an ET subtype within motor cortex that typically sends collateral branches to 

multiple structures (Akintunde and Buxton, 1992; Hirai et al., 2012; Kita and Kita, 2012; Muñoz- 

Castañeda et al., 2020; Rojas-Piloni et al., 2017; Winnubst et al., 2019). The projection patterns of 

ET neurons might be a principled means by which to segregate neuronal subtypes, a lens which 

brings anatomy, genetics, and circuit function into focus on a single plane. For instance, some PT 

subtypes selectively target discrete spinal segments and can be anatomically differentiated, even 

at the earliest stages of axon extension (Sahni et al., 2021a, 2021b). Such a foundation is critical 

for identifying hodological molecular controls, beyond the specification of broad projection 

classes (Arlotta et al., 2005; Chen et al., 2005; Lai et al., 2008; Molyneaux et al., 2007; Paolino et 

al., 2018; Weimann et al., 1999; Woodworth et al., 2016; Yao et al., 2021). It remains an open 

question how subcortical target selection and genetic identity are related, and how such attributes 

shape mature circuit functions. Mapping the subcortical projectome might uncover the rules of 

target selection that could emerge from distinct neuronal subtypes. 

Part of prefrontal cortex, the orbitofrontal cortex (OFC) is thought to underlie varied cognitive 

functions including economic decision-making, valuation and learning (Gallagher et al., 1999; 

Gottfried, 2003; Gremel and Costa, 2013; Lak et al., 2014b; Miller et al., 2020b; O’Doherty et al., 

2001; Padoa-Schioppa and Assad, 2006a; Tremblay and Schultz, 1999). These complex behavioral 

functions are reflected in the striking diversity of neural activity that is observed in OFC. Recent 

studies suggest that diverse neural responses in prefrontal cortex could arise from neuron subtypes 

with distinct projection targets (Groman et al., 2019; Hirokawa et al., 2019; Lui et al., 2021; 

Spellman et al., 2021; Terra et al., 2020). Such connectivity defined subtypes contribute to 

different valuation processes and can be causally linked to maladaptive choice behaviors and 
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psychological phenotypes, such as blunted, adaptive choice biases and compulsivity (Groman et 

al., 2019; Harada et al., 2021; Hirokawa et al., 2019; Malvaez et al., 2019; Pascoli et al., 2018). 

However, due to a lack of single cell tracing studies in prefronal cortex, it is unknown whether 

projection neurons can be defined by their target(s) and constitute distinct neuronal subtypes. 

Here, we set out to understand the architectural logic of subcortical projection cell types in the rat 

OFC. We used a combination of viral and classic tracing, single-cell resolution projection 

mapping, and RNA sequencing to comprehensively map subcortical outputs from OFC (Kebschull 

et al., 2016a; Li et al., 2018; Nectow et al., 2017; Soudais et al., 2001). We systematically 

categorize projection patterns in OFC at a single neuron resolution and find that most subcortical 

projection neurons target a single region, with rare multi-target projection motifs. These target- 

defined projection populations are organized into different but overlapping sublayers, suggesting 

distinct developmental origins. We also demonstrate that these anatomically distinct projection 

populations are molecularly distinct, with different patterns of transcription factors and membrane 

proteins. Together, these multi-modal data reveal that projection-defined populations represent 

distinct cell types. This anatomical framework in OFC is well suited to support the selective 

distribution of information to different downstream structures. Such selective routing of 

information to specific subcortical targets could enable frontal cortex to exert precise control over 

primordial processes served by subcortex. 
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Results 

Broad and patchy brain-wide projections from orbitofrontal cortex 

 
We mapped major OFC outputs across the entire rat brain to identify key subcortical target 

structures (Figure 1). We studied the ventro-lateral, lateral, and dorsolateral subregions of OFC 

based on previous physiology and inactivation studies implicating this area in valuation, learning 

and confidence (Constantinople et al., 2019a; Gremel and Costa, 2013, 2013; Groman et al., 2019; 

Hirokawa et al., 2019; Lak et al., 2014; Masset et al., 2020; Miller et al., 2020;; Takahashi et al., 

2009). Here, we primarily focused on the segment that lies between approximately +4.5 mm and 

+3.5 mm anterior of bregma in rats and refer to all these subregions together as OFC (Figure 1A). 

To identify subcortical projection targets, we performed both classic histology and image analysis 

in adult rats bilaterally injected with an anterograde viral tracer (AAV1-CAG-tdTomato). 
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Figure 1 OFC projections to subcortex are broad and patchy. 

(A) NeuN stain of representative OFC slices and shaded dorso-lateral, lateral, and ventro-lateral subregions 

(left). Injection sites for anterograde tracer, AAV1-CAG-TdTomato (right). (B-G) Coronal sections of OFC 

input to different subcortical targets: striatum (B), thalamus and basolateral amygdala (C), ventral tegmental 

area (D), superior colliculus (E), periaqueductal gray (F), and dorsal raphe (G). OFC input is largely 

restricted to specific subregions such as the ventro-lateral periaqueductal gray and lateral superior 

colliculus. (H) Overview of the major projection targets from OFC. (I) Workflow for manual registration 

of selected slices onto the Common Coordinate Framework in rats. (J) Quantitative analysis of projection 

strength and the % area innervated across all registered structures. Projection strength was represented by 

the size of the circular marker, ranging from 27% for the most abundant projection to the striatum to 0.001% 

for the rarest projections to the deep, brainstem nuclei. % Area occupied is represented along the x-axis and 

demonstrated that most regions receive restricted input from OFC 

 

 

OFC projects to diverse subcortical structures across the brain. From wide-field imaging of 

individual brain slices, we manually selected a subset that had strong fluorescence. These brain 

slices were manually registered to a rat Common Coordinate Framework (Figure 1). We first 

quantified the strength of OFC input to its downstream projection targets from pixel counts (Figure 

1C). OFC input was found strongly in the striatum and thalamus, but also in the amygdala, ventral 

tegmental area, periaqueductal gray and the hitherto unidentified projection to the deep lateral 

subregion of the superior colliculus that includes the nucleus of optic tract. 

 

 

Projection pathway targets were highly localized to distinct subregions with high spatial 

specificity. We quantified the area occupied by OFC efferent fibers, ranging from 0 to 100%, with 

100% indexing a region that receives either diffuse innervation across the entire structure or very 

small nuclei (Figure 1C). We found that OFC output tends to occupy less than 40% of the area, 

reflecting a more restricted output to subcortical structures. Visual inspection demonstrated that 

this restricted input is, indeed, localized to specific subregions of subcortical structures (Figure 

1D-I). For instance, OFC output to the amygdala is restricted to a ~300 um anterior-posterior 

segment, output to the periaqueductal gray is confined to a ventro-lateral subregion, and 

projections are restricted to the ventro-lateral part of superior colliculus. Retrograde tracing 
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confirmed that OFC indeed projected to these areas and that the observed output patterns were not 

caused by spillover of anterograde viral tracer to neighboring frontal areas (see below Figure 5). 

Taken together, these widespread, but highly targeted projections suggest that the OFC sends 

specific input to diverse subcortical structures, representing a densely connected hub. 

Single-neuron resolution mapping reveals projection defined cell types and non- 

random motifs 

 
We next sought to determine whether individual projection neurons in OFC selectively target a 

single subcortical region or if they broadcast broadly to multiple subcortical regions. Based on the 

anterograde mapping, we selected OFC’s major subcortical targets as well as additional cortical 

and thalamic target areas for simultaneous single neuron tracing. We adapted a high-throughput, 

single neuron tracing technology - multiplexed analysis of projections (MAPseq) for use in rat 

OFC (Figure 2A) (Kebschull et al., 2016a). We uniquely tagged neurons in OFC with a random 

RNA sequence (30-nucleotide barcodes) linked to a GFP fluorophore by injecting a library of viral 

vectors (barcoded Sindbis virus) across OFC. Barcode RNAs were then robustly expressed and 

actively transported to pre-synaptic terminals. We found stable expression of barcode mRNA in 

distal projection targets across a range of barcode trafficking times (36 to 68 hours), ensuring that 

barcode detection was unaffected by axonal length (see Methods, Figure 10). We focused on 12 

target areas that included a handful of cortical as well as the major subcortical projection targets. 

From anatomic landmarks, we manually identified and hand dissected the OFC and our 12 target 

areas from frozen coronal sections (see Figure 11 for dissection maps), isolated and purified 

barcode RNAs and sequenced these pooled samples. Notably, because OFC output is targeted and 

areas were non-adjacent, we determined areal boundaries more liberally in order to maximize the 

number of captured barcodes. We identified unique barcodes across all dissected target areas to 
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generate a ‘barcode matrix’ of single neuron projection patterns, in which the elements represent 

whether a barcode was present in each area. Thus, a barcode that is only detected in one target 

area represents one neuron that specializes in communicating with one region, whereas a barcode 

that is detected in multiple target areas represents a neuron that broadcasts information to multiple 

regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Most OFC projection neurons target a single area. 

(A) MAPseq experiment. Sindbis barcoding virus was injected into OFC and to label neurons with unique 

barcodes. Barcodes are then actively transported down to the presynaptic terminals, target areas dissected 

and sequenced. Green overlays illustrate the dissected injection and downstream regions. (B) The 

distribution of sequencing reads per barcode in target regions and negative binomial fit. (C) For matched 

projection targets regions, projection strength estimated from whole-brain anterograde tracing and pixel 

quantification versus MAPseq were significantly correlated (Pearson’s r = 0.8, p<0.01). (D) The 

distribution of barcode molecule counts in target regions (green) and in negative control samples (red). To 

determine whether a neuron projects to a given target area, we chose a low threshold (dotted line) of at least 

3 barcode molecules, filtering barcodes due to noise (what’s the left panel). (E) The fraction of single target 

projection patterns compared to the next most common multi-target projection pattern(s) above 10% for 

each target. Projection patterns below 10% are pooled and visualized in gray. (F) The fraction of single- 

target and multi-target projection patterns above 5% for each target region. Projection patterns below 5% 

are not labelled for visualization. Thal, thalamus; cOFC, contralateral orbitofrontal cortex; VTA, ventral 

tegmental area; EntCtx, entorhinal cortex; SC, superior colliculus; MoCtx, motor cortex; PL, prelimbic 

area; BLA, basolateral amygdala; DR, dorsal raphe; STR, striatum; PAG, periaqueductal gray; HDB, 
horizontal diagonal band. 
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MAPseq is subject to different sources of error that lead to either mistaking noise for true barcodes 

(i.e., false positives) or missing true barcodes (i.e., false negatives), as also seen in other 

conventional tracing techniques. The major sources of error include inefficient expression and 

trafficking of barcode mRNAs, low sequencing depth, and sequencing noise (see Methods for a 

full discussion on these and other sources of error). We determined that barcode expression and 

the number of reads per barcode molecule were sufficient to rarely miss true barcodes (Figure 2B, 

Figure 12), nevertheless errors introduced from sequencing are unavoidable. Within the barcode 

matrix, the uncertainty of a detected barcode is inferred from its molecule counts, that is, the 

number of barcode molecules detected in the area. Thus, we used a barcode molecule count 

threshold to filter out barcodes that could stem from noise. We obtained a null distribution of 

barcode molecule counts by sequencing negative control areas with no OFC projections from the 

same brains (e.g., contralateral olfactory bulb), which showed generally low molecule counts 

(below 22, peak at 1, Figure 2C). Because we first asked whether projection neurons have 

dedicated projection targets, we chose a low threshold for accepting a barcode (> 2 barcode 

molecules) to minimize missing barcodes (i.e., low false negatives). A higher barcode count 

threshold might bias the analysis toward identifying more single target projection neurons. This 

choice of threshold increased the number of false multi-target projection patterns (i.e., false 

positives), therefore it provides a lower bound for determining the fraction of single target 

projection neurons. From this analysis, we identified the projection patterns of ~450,000 OFC 

neurons (i.e., unique barcodes) to 12 target regions across three individual rats. Note that we 

observed generally similar results for higher thresholds (e.g., >10 barcode molecules, Suppl. 3) 

that minimized the chance of mistaking noise for a true barcode (i.e., low false alarms), but could 
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miss more barcodes (i.e., false negatives) since a larger fraction of the data falls below the 

threshold (Figure 2C). 

 

 

We next compared these MAPseq data to anatomical estimates of projection strength based on 

whole-brain anterograde tracing (Figure 1). We visually matched the dissected regions in MAPseq 

experiments to their counterparts in the rat Common Coordinate Framework, and selected 

subregions such as the ventral region of striatum and motor related region of superior colliculus. 

We performed a linear regression on projection strengths determined from hand-dissected regions 

in MAPseq and matched regions from whole-brain anterograde tracing. Despite the vast 

methodological differences, we found that the results were largely in line (Figure 2C, Pearson’s r 

= 0.8, p < 0.01). The broad correspondence of these two methodologically different measures of 

OFC outputs provides confidence in the quantitative map of projections strengths that we analyze 

in detail. 

 

 

We found that neurons with a single target were the most common pattern (~60% of subcortical; 

 

~90% of cortical) of output connectivity from OFC. We observed that single-target projections to 

the contralateral OFC were the most abundant, making up ~74% of all projection patterns. There 

were also substantial populations of single-target neurons to cortical regions including in the 

prelimbic area (~41%), entorhinal cortex (~52%), and motor cortex (~43%). Regarding subcortical 

targets, as expected, single-target projection neurons make up ~90% of input to the thalamus 

(Bourassa and Deschênes, 1995; Bourassa et al., 1995; Gabbott et al., 2005a; Lévesque et al., 

1996b). Single-target projection neurons also make up ~50% of input to the ventral tegmental area 

and superior colliculus (Figure 2D). In contrast, projection neurons to the basolateral amygdala, 
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horizontal diagonal band, striatum, and dorsal raphe were largely dominated by two distinct 

patterns of connectivity: a single-target subpopulation as well as a second multi-target 

subpopulation (Figure 2D, E). Since we only considered 12 major projection targets, it remains 

possible that some of these neurons had undetected axonal collaterals to other regions. Notably, 

we used a conservative, low barcode threshold for this analysis that underestimated the 

contribution of single target subpopulations (see Figure 12B,C for the fraction of single target 

neurons at different molecule count thresholds). Choosing a higher barcode threshold (e.g., >10 

barcode molecules, see Han et al., 2018 and Kebschull et al., 2016) is expected to increase the 

fraction of single target neurons and decrease the fraction of rare, multi-target neurons. Indeed, 

using a higher barcode threshold that minimized sequencing noise increased the number of single- 

target projections such that it became the dominant projection pattern across all regions (~70% 

ventral tegmental area; ~70% superior colliculus; ~50% periaqueductal gray; ~50% dorsal raphe; 

~50% basolateral amygdala, ~40% horizontal diagonal band), apart from the striatum (Figure 

12C).We next asked whether the remaining non-dedicated projection neurons that target multiple 

areas showed non-random connectivity patterns. 
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Figure 3 Multi-target projection patterns are non-random “motifs”. 

(A) Multi-target projection patterns in descending order by their occurrence, filtered to only include projection 

patterns more than 10 counts (top). Dendrogram of unsupervised hierarchical clustering of OFC projection 

neurons and the regions that make up the most common multi-projection patterns (bottom). Cortical regions are 

colored light green and subcortical regions are colored dark green. (B) Abundance matrix that holds the number 

of co-occuring barcodes per pairwise combination of regions, with the number of single-target barcodes along 



33  

the diagonal. (C) Probability of selecting a barcode belonging to a target region (top). Example to calculate the 

likelihood of observing a bifurcation motif under the null distribution (binomial probability distribution, purple) 

assuming independence(bottom). (D) Likelihood of bifurcation motifs (ppairwise as in E) versus fold change of 

observed over the predicted number of co-occuring barcodes from the null model. Horizontal dotted line 

indicates significance level (Padj < 0.01, Bonferroni corrected). Underrepresented motifs are to the left of the 

vertical dotted line, whereas overrepresented motifs are to the right. (E) Likelihood of observing bifurcation 

motifs for all area combinations. Bifurcation motifs that are overrepresented (observed more often than predicted 

by the null model) are shown in red, underrepresented motifs in blue. Thal, thalamus; cOFC, contralateral 

orbitofrontal cortex; VTA, ventral tegmental area; EntCtx, entorhinal cortex; SC, superior colliculus; MoCtx, 

motor cortex; PL, prelimbic area; BLA, basolateral amygdala; DR, dorsal raphe; STR, striatum; PAG, 

periaqueductal gray; HDB, horizontal diagonal band. 

 

 

Subcortical multi-target projection patterns are non-random 

 
Although OFC neurons projecting to multiple subcortical regions were rare, we identified several 

projection motifs, that is, repeating patterns of neurons targeting multiple subcortical regions. As 

the identification of multi-target projection patterns is sensitive to false positives, mistaking noise 

for true barcodes, we chose a stricter threshold based on the maximum barcode molecule count in 

the negative controls (>10 barcode molecule count, see Methods). We then sorted these high- 

confidence, multi-target projection patterns based on their frequency of occurrence, with a focus 

on projection patterns that were observed at least 10 times (on average, ~3 times per brain) (Figure 

3A). We found that most multi-target projection neurons target cortical, rather than subcortical 

structures, apart from the striatum (Figure 3A). In contrast, subcortical ‘n-furcations’ (neurons 

projecting to n target areas, n > 1) were less abundant by an order of magnitude. The most common 

bifurcations (n=2) included the ventral tegmental area and superior colliculus (~7% of projections 

to the ventral tegmental area; 103 counts), and the ventral tegmental area and dorsal raphe (~2% 

of projections to the ventral tegmental area; 33 counts). This is further reflected in an abundance 

matrix, in which each element is the number of above-threshold (>10 barcode molecule count), 

co-occurring barcodes for a region pair, with single target (i.e., dedicated) barcodes represented 

along the diagonal (Figure 3B). Given their rarity in these MAPseq data, we independently 
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validated multi-target subcortical projections using a dual viral strategy, with a retrograde virus 

(Cav2-Cre) that labelled a specific projection population and activated a cre-dependent conditional 

virus in OFC that labelled synaptic terminals with a fluorescent marker (AAV8-FLEX- 

Synaptophysin-EGFP). We labelled outputs from OFC to the ventral tegmental area, and identified 

their collateral branches in the superior colliculus and dorsal raphe, as predicted from MAPseq 

(Figure 13). 

 

 

Next, we determined that these projection neurons chose their targets in specific combinations, 

representing motifs. Projection motifs are connectivity patterns that occur with a probability 

greater than expected by chance in a randomized network, with the assumption that the probability 

of a neuron projecting to any one region is an independent event. This model represents the null 

hypothesis that projections targets are selected independently and ensures that repeated motifs are 

not considered significant due to the different numbers of barcodes between regions (Figure 3C). 

The expected probability of co-occurring barcodes in our null hypothesis is then reduced to a 

statistical problem akin to simultaneously flipping a set of unfair coins. We calculated the 

probability of observed bifurcating neurons under our null distribution, yielding a p-value per 

bifurcation motif, and the fold change, that is, the number of observed over the number of predicted 

co-occurring barcodes (Figure 2D and E, ppairwise, Bonferroni-corrected). This analysis identified 

rare, but repeated subcortical projection motifs in OFC that included the ventral tegmental area 

and superior colliculus, the ventral tegmental area and dorsal raphe, and the basolateral amygdala 

and striatum (Figure 3D and E). 
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Orbitofrontal to striatal projection patterns 

 
Unlike most other subcortical projection neurons, striatal projection neurons were largely non- 

dedicated and innervated multiple regions across both the cortex and subcortex. Here, we did not 

explicitly differentiate between the dorsal and ventral striatum, although the hand dissection 

focused on medial ventral striatal regions around the nucleus accumbens (Suppl 3 for dissection 

map). We found that striatal projection neurons from OFC were overrepresented in nearly all 

bifurcations (n=2 target areas) in our MAPseq dataset, with the striatum and basolateral amygdala 

identified as the most statistically over-represented motif, and the striatum and contralateral OFC 

as the most abundant bifurcation (Figure 3E and 4A). 

 

 

One potential challenge of MAPseq arises from the dissection of passing fibers without local 

synaptic terminations that could result in false multi-target projection patterns (i.e., false positives). 

Passing fibers are a particular concern for the striatum because white matter bundles are embedded 

within it dorsally and centrally, and it is directly adjacent to the internal capsule that contains all 

descending fibers to midbrain, brainstem, and spinal cord (Berendse et al., 1992; Coizet et al., 

2017). First, we avoided the internal capsule and dorso-lateral regions containing the majority of 

passing fibers during dissection. While past MAPseq experiments have demonstrated that barcodes 

in passing fibers make a negligible contribution to overall barcode counts (see Discussion or Chen 

et al., 2019), we next performed a series of validation experiments. We visualized multi-target 

projection neurons using classical tracing, selecting the contralateral OFC and striatum (n=2) as 

well as the basolateral amygdala and striatum (n=2), and the ventral tegmental area and striatum 

(n=3). We identified rare co-labelled cell bodies in a series of dual-color retrograde tracing 



36  

experiments that roughly matched the fraction of striatal collaterals in MAPseq (Figure 4B-D). 

However, tracing experiments under-estimated the overlap fraction between OFC and striatum at 

~11% compared to MAPseq at ~70%. Several factors could lead to under-estimating cell counts 

in classical tracing such as limited field of view for cell counting or inefficient retrograde labelling, 

either due to viral tropism or the limited injection coordinates, while biases in MAPseq 

experiments (e.g., multiple barcodes per neuron, see Discussion) could over-estimate cell counts. 

Nevertheless, dual retrograde tracing validated the existence of striatal bifurcation motifs we 

observed with MAPseq (Figure 4E). 
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Figure 4 Striatal motifs are the most common multi-target patterns. 

(A) Collaterals of multi-target striatal projection neurons from MAPseq dataset. (B) Overlap between projection 

populations in tracing experiments versus MAPseq; pval < 0.05 (#), one-sample t-test. (C) Overlap between 

projection populations at the individual cell level (neuron overlap: STR-BLA, 4.86% or 23/473 neurons from 2 

animals; STR-VTA, 2.49% or 35/1405 from 3 animals; and STR-cOFC, 11.3% or 79/454 from 2 animals). (D) 

Dual retrograde tracing of bifurcating neurons targeting the striatum and basolateral amygdala (left), striatum 

and ventral tegmental area (middle), and striatum and cOFC (right). (E) Visualization of synaptic terminals for 

bifurcating neurons targeting the cOFC and striatum through injections of conditional synaptophysin-EGFP in 

the OFC and retrograde Cav2-Cre in the cOFC. (F) Axons and synaptic boutons in the ipsilateral (left) and 

contralateral striatum (right). Thal, thalamus; cOFC, contralateral orbitofrontal cortex; VTA, ventral tegmental 

area; EntCtx, entorhinal cortex; SC, superior colliculus; MoCtx, motor cortex; PL, prelimbic area; BLA, 
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basolateral amygdala; DR, dorsal raphe; STR, striatum; PAG, periaqueductal gray; HDB, horizontal diagonal 

band. 

 

 

We next identified synaptic terminals in striatum from the neuronal population that targeted the 

contralateral OFC. We used a dual viral strategy to identify synaptic connections in secondary 

targets of OFC neurons projecting to the contralateral OFC. To avoid fibers of passage in the 

striatum, we injected a conditionally expressing AAV8-Flex-Synaptophysin-EGFP virus in the left 

OFC and a retrogradely transported Cav2-Cre in the contralateral (i.e., right) OFC (Figure 4E). 

We identified synapses in the ipsilateral striatum and, unexpectedly, in the contralateral striatum, 

revealing that a subpopulation of cortically projecting neurons also targets the striatum bilaterally 

(Figure 4F). We further validated these synaptic connections by co-staining for the pre-synaptic 

protein Bassoon (Figure 10B). These observations reveal diverse projection patterns within the 

OFC to striatum, innervating both cortical and subcortical structures, in some cases bilaterally. 

 

 

Single target subcortical projection neurons in OFC are organized into distance 

ordered sublayers 

 
As subcortical projection populations represent distinct, connectivity-defined neuronal 

populations, we next asked if these might also be spatially organized within the laminar structure 

of cortex. The major projection neuron classes are known to be mostly localized within specific 

cortical layers. Intra-telencephalic neurons that target the striatum reside in superficial layer 5a and 

extra-telencephalic neurons that target the thalamus reside in layer 6 (Harris and Shepherd, 2015; 

Shepherd and Rowe, 2017). However, it is not known whether there is further spatial structure 

within layer 5 based on projection target. As most subcortical projection populations in OFC were 

defined by their connections to a single target, we hypothesized that these might also have distinct 
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laminar positions within layer 5b, the sublayer in which most extra-telencephalic projection 

neurons reside. We selected subcortical targets that included the striatum (n=4), ventral tegmental 

area (n=3), superior colliculus (n=4), dorsal raphe (n=4), and thalamus (n=2) (Figure 5 D-G). As 

previous anterograde experiments showed that OFC outputs to subcortical targets were highly 

targeted and easily separable, we first optimized single region injections and injected over a wide 

area to maximize the extent of labeling and minimize variability (see Methods for coordinates, 

Figure 14). We reasoned that we were less likely to label cells non-specifically (e.g., diffusion 

from the injection site), and more likely to miss cells altogether. We performed dual and triple 

retrograde injections in adult rats with different colored tracers (i.e., CTB 488, 594, 647 and 

retroAAV-CAG-GFP, retroAAV-CAG-tdTomato) to determine the spatial organization of soma 

positions of subcortical projection neurons in layer 5b. As expected, striatum projection neurons 

were the most superficial and thalamic projection neurons were the deepest. Projection neurons to 

the ventral tegmental area, superior colliculus, and dorsal raphe were localized within layer 5b in 

overlapping sublayers that were bounded in between striatal- and thalamic-enriched layers (Figure 

5A, right). 

 

 

Subcortical projection neurons were organized into intermediate sublayers within layer 5b that 

were ordered according to their distance of their projection target area. Because projection neurons 

to the superior colliculus are localized to more anterior portions of OFC, we focused on a single 

representative coronal plane 4.0 mm anterior of bregma for quantitative analysis, which also 

minimized curvature-induced distortions of the deep cortical layers. The superficial layer 5 border 

was approximated by staining against Cux-1, a classic layer 2/3 marker (Figure 5A, left). Soma 

positions were then calculated using the Euclidean distance from this superficial layer 5 border 



 

across the different OFC subdivisions (Figure 5B). We then normalized these distances, with 0 

indicating that a soma was localized at the layer 5 border, and 1 indicating the most distant soma 

observed. The median soma positions were ordered according to the distance of the target (Figure 

5C); that is, projection neurons that target the ventral tegmental area tend to be more superficial 

than the superior colliculus, which in turn, is superficial to the dorsal raphe. We next calculated 

the approximate Cartesian distance from OFC to its subcortical targets using the stereotaxic 

injection coordinates (ignoring fiber trajectories). Descending projection neurons in OFC must 

traverse ~3 mm to the striatum, ~9 mm to the ventral tegmental area, ~11 mm to the superior 

colliculus, and ~14 mm to the dorsal raphe. The soma position of different subcortical projection 

populations correlated with the distance of their subcortical targets (Figure 6A). Thus, our results 

demonstrate a superficial-to-deep laminar sublayer organization that reflects a coarse anterior-to- 

posterior distance rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 OFC projection neurons to subcortex are ordered in overlapping sublayers of L5b according to target 

distance. 

(A) (left) Visualization of Cux staining delineating L2/3 and L5 highlighting the OFC subregion used for quantification 

of soma locations. Retrograde labelled projection neurons to superior colliculus are pseudo-colored in yellow. (right) 

Cartoon-ized representation of the left image highlighting L23 (grey), L5 (white), and L6 (black) with digitized superior 

colliculus projection neurons. (B) Soma locations of L5/6 projection neurons. (C) L5 depth of individual retrogradely- 

labelled projection neurons across OFC subdivisions. (D) Cumulative probability distribution of pooled, normalized 

distances (top) and the matching kernel density estimate (bottom) (E-H) Dual retrograde labelling of subcortical targets: 

(E) striatum and ventral tegmental area, (F) ventral tegmental area and superior colliculus, (G) superior colliculus and 

dorsal raphe, and (H) dorsal raphe and thalamus. DLO dorsolateral orbitofrontal cortex; LO, lateral orbitofrontal 

cortex; VLO ventrolateral orbitofrontal cortex; Thal, thalamus; cOFC, contralateral orbitofrontal cortex; VTA, ventral 

tegmental area; EntCtx, entorhinal cortex; SC, superior colliculus; MoCtx, motor cortex; PL, prelimbic area; BLA, 

basolateral amygdala; DR, dorsal raphe; STR, striatum; PA4G0, periaqueductal gray; HDB, horizontal diagonal band 
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Figure 6 Rare multi-target projection neurons 

preferentially send collaterals to neighboring 

structures. 

(A) The location of neuronal cell bodies in L5 

were correlated with the distance of the 

projection target. (B) Rare, multi-target 

projection patterns that were observed less than 

10 times. Discrete projection patterns are 

ordered in descending frequency (top), with the 

target combinations shown below each bar 

(bottom). N-furcation (n>1) is color coded 

according to the number of projection targets. 

(C) Null hypothesis that collaterals of rare, 

multi-target projection patterns are distributed 

randomly versus in a distance-dependent 

manner. (D) Probability of observing neurons 

that project to periaqueductal gray (PAG) and 

additional secondary targets. (E) Probability of 

observing co-innervated targets as a function of 

co-target distance (each point corresponds to a 

bifurcation motif). Thal, thalamus; cOFC, 

contralateral orbitofrontal cortex; VTA, 
ventral tegmental area; EntCtx, entorhinal 

cortex; SC, superior colliculus; MoCtx, motor 
cortex; PL, prelimbic area; BLA, basolateral 

amygdala; DR, dorsal raphe; STR, striatum; 

PAG, periaqueductal gray; HDB, horizontal 
diagonal band 
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Rare multi-target projection neurons preferentially target neighboring structures 

 
Our previous result that projection neurons were organized into ordered sublayers according to the 

distance of their target is suggestive of an overarching rule that guides global target selection. We 

therefore asked whether the connectivity patterns of rare, multi-target projection neurons might 

also be distance dependent. Although most multi-target projection patterns were observed less than 

10 times across ~60,000 neurons, these account for much of the projection diversity (Figure 6B). 

Since we used a barcode detection threshold that minimizes false alarms (i.e., with a strict barcode 

molecule count threshold >10, see Methods), we believe these rare motifs represent genuine, but 

rare branching neurons. We then asked whether the individual targets of these rare multi-target 

projection neurons were distributed randomly across all targets, or if they show non-random 

structure (Figure 6B). Specifically, we hypothesized that neurons projecting to a given target area 

would tend to project to spatially close targets (Figure 6A). For example, we found that projection 

neurons to the periaqueductal gray preferentially branched to nearby areas such as the ventral 

tegmental area and the dorsal raphe (Figure 6C). To extend this analysis, we calculated the relative 

distance between a projection target and its collaterals. We then performed a linear regression on 

these distances and the probabilities of observed bifurcating neurons (pairwise). We found that the 

likelihood of a collateral was inversely related to the distance from the reference projection target 

(Figure 6D, R2 = 0.1 , p < 0.01, regression analysis). Note that even if target areas were spatially 

close, they were nevertheless anatomically segregated, and overlap is unlikely due to dissection 

errors (see Methods). Thus, rare multi-target projection neurons tend to innervate targets in a 

distance-dependent manner that favors neighboring subcortical structures. 
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OFC projection neurons to Striatum, VTA, and SC represent molecularly distinct 

populations 

 
We found that three types of projection neurons defined by their subcortical targets also represent 

molecularly distinct neuron types. Based on our results that subcortical projection neurons can be 

divided into anatomically distinct types based on projections and spatial location of their somata, 

we wanted to determine how these properties are reflected in their molecular landscape. We 

determined the gene expression patterns of three projection-defined OFC neural populations to the 

striatum, the ventral tegmental area and the superior colliculus. We combined a retrograde viral 

targeting strategy with viral TRAP (vTRAP, viral Translating Ribosome Affinity Purification) to 

tag translating ribosomes to capture cell-type-specifc mRNA followed by RNA sequencing (Figure 

7A,B). Prior to being translated into a protein, mRNAs are attached to polysomes (Figure 7A). The 

conditional vTRAP construct (AAV5-DIO-EGFPL10a) delivers a ribosomal subunit protein N-

terminally fused to a green fluorophore (EGFPL10a) that enables the specific pull-down, that is 

immunoprecipitation (IP), of ribosomes and their bound, translating mRNAs. This approach thus 

provides a snapshot of actively translated transcripts, i.e., the translatome. To ensure the robust 

expression of EGFPL10a that is not subject to preferential viral uptake across distinct projection 

populations (i.e. viral tropism), we primed neurons in OFC to uptake retrograde Cav2-Cre by over- 

expressing the native canine adenovirus receptor (i.e., CAR). We first injected a mixture of 

conditional AAV5-DIO-EGFPL10a and AAVdj-hSyn-DIO-{hCAR-Myc}off-WPRE-pA in the 

OFC and then injected retrograde Cav2-Cre in subcortical projection targets to activate EGFPL10a 

in a cell type specific manner (Figure 7B). We then performed RNA sequencing on three 

anatomically distinct projection populations to the striatum (n=3), ventral tegmental area (n=2), 
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and superior colliculus (n=3) to identify differentially enriched transcripts across these 

anatomically distinct projection populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 RNA-sequencing of subcortical projection populations demonstrates that anatomically-distinct 

cell types are also molecularly distinct. 

(A) Schematic of dual viral strategy to selectively express EGPL10a in projection specific populations in 

an unbiased manner. Viral translating ribosomal affinity purification (vTRAP) is a technology to purify 

translating mRNAs from projection defined cell types. Retrograde delivery of Cre gates ribosomal 
integration of the GFP tagged ribosomal subunit EGFPL10a to allow for cell type specific 

immunoprecipitation and RNA sequencing. (B) Viral constructs (top) and experimental timeline (bottom). 

(C-E) Statistical significance versus fold change of transcripts in (C) striatum, (D) ventral tegmental area, 

and (E) superior colliculus projection populations. (F) Unsupervised hierarchical clustering of the top 60 

differentially enriched genes across cell type specific pull-downs (IP) and transcriptomic background 

(input). (G) Multi-dimensional scaling of the top 60 differentially enriched genes. (H)Unsupervised 

hierarchical clustering of genes identified as layer markers from the literature or transcription factors, 

membrane transporters, and receptors from Panther gene ontology analysis. Included genes are either 
significantly (false discovery rate < 0.01) enriched or depleted in at least one projection population. vTRAP, 

viral translating ribosomal affinity purification; IP, immunoprecipitated; STR, striatum; VTA, ventral 
tegmental area; SC, superior colliculus; 
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Subcortical projection populations demonstrated distinct molecular phenotypes, mirroring their 

partitioned target selection and laminar distribution. Differential analysis identified 147 OFC-to- 

striatum genes, 94 OFC-to-ventral tegmental area genes, and 114 OFC-to-superior colliculus genes 

enriched in the cell type specific IPs over OFC input (Wald test, false discovery rate<0.05, 

Benjamini-Hochberg corrected; fold change (log2) > 0.5) (Figure 7C-E). These include positive 

control genes such as GFP and the neuronal marker Scn2a, as well as genes related to calcium 

kinetics and synaptic plasticity (e.g., Pcp4), transcription factors (e.g., Pou3f1), neuromodulatory 

receptors and ion channels (e.g., Chrna4, Kcng2). We next performed unsupervised hierarchical 

clustering on the top 60 differentially enriched genes (Wald test, false discovery rate<0.01, fold 

change (log2) > 1) across the cell type specific IPs and OFC inputs, and demonstrated close 

relationships across IPs from the same brain region (Figure 7F and G, see Supplemental figure 14 

showing similar relationships in an analysis across all genes with significant differences in 

enrichment). Across the cell type specific IPs, the first major branch separated target-defined 

projection populations by their developmental origins. The intra-telencephalic striatal projection 

population was more distinct from the other 2 extra-telencephalic populations. In turn, 2 ventral 

tegmental area samples were most similar to one another, and 2 out of 3 superior colliculus samples 

were also most similar to one another. Surprisingly, 1 superior colliculus sample did not cluster 

with its target population and was more similar to the ventral tegmental area samples. While this 

might reflect sample quality (e.g., variability across rats, injections, or in sample processing), we 

previously demonstrated the diversity of connectivity patterns at a single neuron resolution. From 

MAPseq, we estimated that ~20% of projection neurons to the superior colliculus also sent 

collateral branches to the ventral tegmental area, making up the second most common 
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subpopulation (Figure 2E). As such, this outlier superior colliculus sample might be more similar 

to the ventral tegmental area because it is enriched in a subpopulation that also sends collaterals to 

the ventral tegmental area. Taken together, these results reveal that the pattern of connectivity is 

strongly reflected in their genetic composition. 

 

 

We next refined this analysis to evaluate genes that might specifically play a role in neuronal 

development. We selected for genes that were implicated in mediating laminar position and cell 

signaling. Target-defined populations showed distinct developmental landscapes. From a gene 

ontology analysis and literature search, we curated a gene list that included transcription factors, 

membrane transporters, receptors, and classic layers markers in mice (Molyneaux et al., 2007; 

Zeng et al., 2012). Hierarchical clustering revealed that the molecular landscapes of these 

projection populations were largely distinct (Figure 7G). Again, we found that the striatum 

replicates were more distinct than the ventral tegmental area and superior colliculus replicates. 

Although the ventral tegmental replicates were separated, these did not form a tight cluster, unlike 

the superior colliculus replicates that emerged from a distinct branch. The overall expression 

pattern of known cortical layer markers was largely concordant with findings in mice, but we also 

observed a number of notable differences. For instance, Pou3f1 and Reln are transcription factors 

expressed in layer 2/3 neurons in mice were enriched in layer 5 neurons in rats. On the other hand 

CTIP2 (alias. Bcl11b), a prototypical deep layer marker in mice, was not enriched in our layer 5 

projection populations. 
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Figure 8 Projection cell types in rat OFC. 

 

(A) OFC and its major downstream subcortical targets. (B) Subcortical projection populations can be 

defined by their connectivity to a single target and are spatially distributed in different sublayers of L5b. 

(C) This anatomical division-of-labor identifies distinct output channels for future functional studies. 
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Discussion 

Here, we used a multi-modal approach to uncover the architectural logic of subcortical projection 

neuron types in the rat OFC. We established a comprehensive map of OFC outputs to subcortex at 

a single neuron resolution that has the statistical power to differentiate a one-off pattern from a 

conserved one. We found that subcortical projection neurons preferentially target a single structure 

and complemented this high-throughput single neuron resolution projection mapping with dual 

fluorescent retrograde tracing. Within OFC, we identified a high degree of laminar structure. These 

target-defined projection populations were organized into sublayers within L5, beyond the classic 

L5a and L5b distinction. These sublayers were ordered in a manner that matched the distance of 

the projection target, such that neurons in the deepest sublayer targeted the most caudal subcortical 

structure (i.e., dorsal raphe) and those in the most superficial sublayer targeted the most rostral 

subcortical structure (i.e., striatum). We next demonstrated that these anatomically distinct 

subcortical projection populations were also genetically distinct, with different patterns of 

transcription factors and membrane proteins. As such, these subcortical projection neurons 

represent distinct cell types that differ in their output connectivites, spatial distributions, and 

molecular phenotypes. We expect that the distinct connectivity and transcriptomic variation in 

subcortical neuron types provide the foundation for finding a cellular basis for how OFC supports 

complex behavioral functions. 

 

 

Novel methods, such as whole-brain imaging and next-generation sequencing revolutionized 

anatomical studies in mice, whereas studies in rats have been typically confined to low-throughput, 

labor-intensive methods (Chen et al., 2019; Gabbott et al., 2005a; Han et al., 2018a; Muñoz- 

Castañeda et al., 2020; Murphy and Deutch, 2018; Oh et al., 2014; Winnubst et al., 2019). At the 
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same time rats remain one of the preferred model organisms to study the neural basis of complex 

behavior, and OFC has been identified as a core region for economic decisions resulting in a 

disconnect between our rich understanding of OFC neural activity and the fundamental lack of 

knowledge about its underlying circuit architecture (Constantinople et al., 2019b; Gardner et al., 

2018; Groman et al., 2019; Masset et al., 2020; Singer et al., 2018; Steiner and Redish, 2014; 

Vandaele et al., 2016). Our results establish the output circuit architecture and major subcortical 

projection types in rat OFC. These subcortical projection types largely adhered to a one-neuron- 

one-target logic, a finding that suggests that these act as highly specialized information channels. 

Whether these outputs route different information to their targets, and whether these 

representations are uniform or mixed, remains to be seen. However, this work serves as a 

foundation for future circuit-driven functional studies that can link these dissociable circuits to 

neural representations to psychiatric concepts like compulsive reward seeking (Pascoli et al., 

2018). Further, as cortical neurons are born in an inside-out manner, the laminar segregation of 

these subcortical projection types raises an outstanding question in development: target selection. 

From these local observations, we propose that these anatomically segregated output channels 

reflect a fundamental ‘deeper farther’ organizational principle that contrains the flow of 

information from frontal cortex to phylogenetically older, specialized structures in subcortex. 

 

 

Technical considerations and limitations 

 
We found evidence that a large subpopulation of subcortical projection neurons in OFC target a 

single area. Although MAPseq represents a powerful technology to rapidly map the projectome in 

mice and rats, there are both practical and inherent limitations for this finding. First, even though 

hand-dissection maximized RNA yield, hand-dissection limited the dissection precision and the 
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number of areas we could include in our study. Second, like all viruses, Sindbis barcoding virus 

likely suffers from biological tropism, that is, variable uptake and expression. Finally, limitations 

in detecting barcodes could lead to missed targets. Previous MAPseq studies in mice do not 

identify biases in detecting single versus multi target projection patterns and demonstrate 

comparable sensitivity of MAPseq to Lumafluor retrograde beads and recently, fluorescence-based 

single cell tracing (Chen et al., 2019; Han et al., 2018a; Huang et al., 2020; Kebschull et al., 2016a). 

Further, in this study, we ensured sufficient sequencing depth and minimized false negatives by 

setting a low detection threshold in our analysis. Therefore, we believe that ~60% dedicated input 

to subcortical areas represents the lower bound estimate of the contribution of these specialized 

information channels. At a high detection threshold that minimizes sequencing noise, the dedicated 

input to subcortical areas is ~90% (Figure 12D). Though subcortical projection neurons are better 

well-known for their axonal exuberance and wide-spread collateral branching, this is only the 

second large-scale study of subcortical projection neurons at a cellular resolution, and the first in 

rat frontal cortex. Even within the much more diverse intra-telencephalic projection class, 

however, dedicated outputs in represented a substantial form of inter-areal communication (~23%) 

in visual cortex (Han et al., 2018a). Additional theoretical concerns of MAPseq include degenerate 

barcode labelling (i.e., multiple barcodes per neuron), insufficient library diversity, and the 

detection of barcodes in passing fibers (recent studies indicate this is a minor source of 

contamination due to the active transport of barcodes and small amounts of axonal RNA, see (Chen 

et al., 2019) for further discussion). These concerns are described in detail elsewhere (Chen et al., 

2019; Han et al., 2018a; Kebschull et al., 2016a) and would lead us to further underestimate the 

number of single-target neurons. 
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We complemented single-cell tracing with classical bulk tracing, and further demonstrated that 

connectivity-defined projection populations reside in overlapping sublayers in layer 5b. This, 

however, is also subject to several limitations. First, injection specificity is inherently limited by 

the selection of injection coordinates as well as the diffusion and neuronal uptake (e.g., tropism) 

of the tracer. Although the broad and patchy nature of subcortical projections from OFC make 

barcode contamination across brain regions unlikely (as in hand-dissection), the selection of these 

regions was, itself, based on viral anterograde tracing. In anterograde tracing experiments, we 

focused on the anterior segment of OFC, from approximately +4.5 mm to +3.5 mm anterior of 

bregma. Second, high inter-injection and inter-animal variability renders the high-level 

identification of projection patterns and soma distribution difficult. Even if viral tropism might be 

circumvented via either a receptor complementation strategy (Li et al., 2018), or the use of non- 

viral tracers, studying many projections is unfeasible given the limitation to two to three areas per 

animal. Therefore, our findings that projection neurons are localized in laminar sub layers rests on 

pooling results from multiple brains, making quantitative comparisons of soma localization 

challenging. Although we were able to replicate our main findings using double- and triple- 

retrograde-tracing, further studies are needed to better refine the laminar distribution of 

connectivity-defined cell types in a high-throughput manner. 

 

 

We found that three major connectivity-defined populations - the striatum, ventral tegmental area, 

and superior colliculus - also represent molecularly distinct populations. Although vTRAP is an 

extremely versatile technique, especially in concert with an unbiased receptor complementation 

strategy (Li et al., 2018), it is limited in its resolution (Nectow et al., 2017). First, as a pull-down 

technique, it suffers from a higher degree of background and is therefore, less sensitive to 
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depletion. This might be especially the case in rats where tissue sizes are much larger and there is 

more non-neuronal debris (e.g., myelin, fibroblasts). More relevant to this study, however, is that 

as a bulk sequencing technique, we were unable to resolve the within-population heterogeneity. 

We made this decision to trade-off single cell resolution for high sensitivity to detect low copy 

number transcripts and capture population characteristics that might reveal more generalized 

developmental or functional similarities. Despite this population-driven approach, however, the 

outlier superior colliculus sample suggests that it includes the second most common subpopulation 

of superior colliculus projection neurons, that is, those that also send collaterals to the ventral 

tegmental area. While this raises the intriguing possibility that the connectivity patterns of 

subcortical projection neurons predict molecular phenotypes, it also represents a major challenge 

for future single-cell studies considering the diverse (and perhaps stochastic) patterns at a single 

neuron resolution (Lui et al., 2021). Although these three techniques each have limitations, taken 

together, they provide three independent lines of evidence that descending projection neurons in 

OFC represent distinct cell types. 

 

 

Intra-telencephalic projection neurons: an exception to the typical one-neuron-one- 

target logic in OFC 

 
Across both frontal and sensory cortex, the diversity of intra-telencephalic projection patterns is 

unique, and at times, seemingly random (Oh et al., 2014; Wilson, 1987; Winnubst et al., 2019). 

Here, we focus on cortico-striatal projection neurons, a neuron type within the intra-telencephalic 

class. OFC-to-striatum projecting neurons demonstrated the most diverse output patterns at a 

single neuron resolution, sending collaterals to almost every structure, both cortical and 

subcortical. While cortico-striatal neurons are often treated as a definitive cell type, these findings 
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are in line with both seminal and modern single cell tracing studies across cortex that also report 

incredible projection diversity across intra-telencephalic projection neurons (Muñoz-Castañeda et 

al., 2020; Wilson, 1987; Winnubst et al., 2019). Nevertheless, we identified statistically non- 

random collateral branches in the basolateral amygdala, and a putative tri-furcation that targeted 

the striatum bilaterally as well as the contralateral OFC. 

 

 

OFC outputs to striatum are thought to have distinct roles in learning and choice behavior (Gremel 

and Costa, 2013; Hirokawa et al., 2019; Malvaez et al., 2019). We previously recorded from this 

projection population and found that their single neuron responses were highly uniform (Hirokawa 

et al., 2019). Indeed, in rats, these OFC-to-striatal projection neurons are reported to encode 

outcome information in varied behavioral tasks, from a two-alternative forced choice to probability 

reversal (Groman et al., 2019; Hirokawa et al., 2019; Hocker et al., 2021). As such, we did not 

expect to identify such diverse striatal projection patterns. We speculate that this might reflect the 

striatum’s more recent evolutionary role in valuation. Current evolutionary hypotheses propose 

that reptilian cortical glutamatergic neurons are homologous to early born mammalian deep 

cortical layers (L5-6), and that the more superficial neurons, like the striatal projection neurons in 

layer 5a, were subsequently added in the mammalian lineage (Nieuwenhuys, 1994; Shepherd and 

Rowe, 2017). Thus, the diversity of striatal projection patterns might reflect the need for outcome 

information to be widely distributed across the brain. 

 

 

Recent large-scale transcriptomic mapping in motor cortex demonstrated that intra-telencephalic 

projection neurons do not constitute discrete cell types, but rather are largely continuous in their 

gene expression (Zhang et al., 2021). This lack of discrete genetic subtypes makes it challenging 
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to understand how single neuron patterns of connectivity might arise in development, but also 

somewhat accounts for their inscrutable choice of targets. In contrast, extra-telencephalic neurons 

in motor cortex are consistently identified as discrete transcriptomic and anatomic types (Economo 

et al., 2018a; Sahni et al., 2021a; Yao et al., 2021; Zhang et al., 2021). This likely reflects a 

fundamental difference in the mode of inter-areal communication across these projection classes. 

However, there is a hint at a higher-level of organization in motor cortex that comes from the 

matched gradient of gene expression and cortical depth for intra-telencephalic neurons. Whether 

this laminar organization might also resolve continuous neuron types within the OFC-to-striatal 

population remains to be seen. However, the further refinement of cortical architecture at a cellular 

resolution is important not only for a better understanding of cell types, but also because it has an 

intrinsic relationship to cortical development. 

 

 

“Deeper farther” laminar structure and its relationship to “inside out” cortical 

development 

 
Our observation that there is a spatial gradient of projection neurons within layer 5b has intriguing 

developmental implications. Cortical layers develop from the “inside-out” generation of distinct 

neuronal classes, with the earliest born neurons in layer 6 (and layer 1) and the late born neurons 

in layer 2 (Angevine and Sidman, 1961; Caviness and Rakic, 1978; Frantz and McConnell, 1996; 

Gilbert and Kelly, 1975; Harris and Shepherd, 2015; McConnell and Kaznowski, 1991a; Rakic, 

1974; Shepherd and Rowe, 2017). We hypothesize that this ‘deeper further’ laminar structure 

might result from the staggered birth of subcortical projection neurons, such that neurons that 

project to the furthest, and incidentally the most primitive structures, are born first, with the rest 

following in descending axon length order. 
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The organization of projection neuron types into distance-ordered sublayers implies a more 

directed mechanism for target selection in development. Pioneering tracing studies in rats suggest 

that all subcortical projection neurons adhere to a stereotyped branching pattern and extend their 

parent axon to the spinal cord, prior to forming pre-specified collateral branches (O’Leary and 

Koester, 1993; O’Leary and Terashima, 1988). Indeed, these mature branching patterns in rats do 

not develop until the first or second post-natal week of life (Bates and Killackey, 1984; Gribnau et 

al., 1986). Though past heterotopic cortical explant experiments demonstrated that regional- 

specific factors shaped connectivity patterns, it is unknown how neurons choose which branches 

to eliminate (Fishell, 1995; Schlaggar and O’Leary, 1991; Stanfield and O’Leary, 1985; Stanfield 

et al., 1982). ET projection neurons in mouse motor cortex were incredibly diverse, a finding that 

suggests either a semi-random or at least, complex mechanism for target selection (Callaway et 

al., 2021; Muñoz-Castañeda et al., 2020; Winnubst et al., 2019). However, the ordered structure 

in rat frontal cortex raises the possibility that there is an overarching organization that might be 

noisier in mouse motor cortex. We were able to identify this “deeper farther” principle because 

subcortical projection neurons in OFC were defined by their connections to a single target, this 

claim is separate from that of dedicated lines. First, we do not identify a strong degree of overlap 

across these major subcortical projection targets. Indeed, future experiments at a higher spatial 

resolution might reveal that these target-defined projection neurons are better described as 

regionally-defined, these limited targets still resolve this population into molecularly- and 

spatially- distinct cell types. Second, as briefly mentioned, single cell transcriptomic sequencing 

in mouse motor cortex also consistently identifies distinct groups of subcortical projection neurons 

that have distinct spatial distributions and connectivity patterns. An analogous “deeper farther” 
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principle is difficult to assess because mouse motor cortex subcortical projection neurons are 

mostly multi-target. However, a consistent finding seems to be that cortico-medullary neurons are 

in the deepest sublayer of L5b, whereas cortico-pontine and cortico-tectal neurons tend to be more 

superficial (Economo et al., 2018a; Muñoz-Castañeda et al., 2020; Yao et al., 2021; Zhang et al., 

2021). This unclear relationship between laminar position and target distance in mouse motor 

cortex might suggest that this “deeper farther” principle does not reflect target distance per se, but 

rather a correlated factor such as axon length or the roughly caudal-to-rostral maturation of 

subcortical targets (Altman and Bayer, 1978, 1980, 1981; Bayer, 1980; Fentress et al., 1981; Finlay 

and Darlington, 1995). 

 

 

 

An anatomical framework for OFC with specialized subcortical output channels 

 
Understanding the cell type-specific architectural logic of frontal cortex is critical to gain 

mechanistic insights into the neural substrates of cognitive functions. The micro-circuitry of 

orbitofrontal cortex (OFC) is thought to underlie a wide variety of cognitive functions including 

economic decisions, valuation and learning (Gallagher et al., 1999; Gottfried, 2003; Gremel and 

Costa, 2013; Lak et al., 2014b; Miller et al., 2020b; O’Doherty et al., 2001; Padoa-Schioppa and 

Assad, 2006a; Tremblay and Schultz, 1999). It is unknown, however, how neurons in OFC 

accomplish these functions and whether these can be mapped to separate circuits. Within OFC, 

recent studies suggest that such projection populations, defined by their connectivity to a single 

subcortical target, represent dedicated information and assume specialized functions for learning 

and decision-making (Bariselli et al., 2020; Groman et al., 2019; Hirokawa et al., 2019; Izquierdo, 

2017; Lui et al., 2021; Malvaez et al., 2019; Namboodiri et al., 2019; Pascoli et al., 2018). These 
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findings point towards a modular output architecture with segregated streams of information to 

subcortical areas. 

 

 

We obtained three independent lines of evidence to support the hypothesis that these connectivity- 

defined descending projection populations might represent functionally distinct cell types. First, 

descending projection populations in OFC are highly target-selective, being either dedicated or 

repeated multi-target motifs, suggesting that target selection is tightly regulated. Second, these 

descending projection populations reside in different laminar sublayers within layer 5b, adhering 

to a ‘deeper further’ organization. Third, descending projection populations are molecularly 

distinct, and express different combinations of transcription factors and surface receptors. These 

findings support an output architecture wherein subcortical projection types make-up anatomically 

segregated circuits. This architecture is a pre-requisite for functionally segregated circuits and 

raises the possibility subcortical projection types route tailored information to downstream targets, 

and thereby assume functionally specialized roles in decision-making. 

 

 

Methods 

 
Adult male Long Evans rats (~300–500 g) were used for the study (Envigo). Rats were group- 

housed and maintained on a reverse 12 h light/dark cycle. All procedures were carried out in 

accordance with National Institutes of Health standards and were approved by the Cold Spring 

Harbor Laboratory Institutional Animal Care and Use Committee and Washington University in 

St Louis. 
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Stereotactic Surgeries 

Rats were anaesthetized with 1-3% isoflurane, injected with pre-operative buprenorphine (0.03 

mg/kg) and placed in a Kopf stereotactic setup. For injections, we used pulled 5 uL calibrated glass 

micropipettes, cut to an opening diameter of ~10-20 um. Craniotomies were made with a dental 

drill and dura cut with a 27 gauge needle. In post-operative recovery, rats were provided with oral 

carprofen tablets and observed either daily for a minimum of 6 days, or to euthanasia. 

 

For anterograde tracing experiments, rats (n=3) were injected with 1,800 nL of AAV1-CAG- 

TdTomato in OFC, evenly distributed across two injection sites (4.2 mm anterior of bregma 

(+4.2AP), 2.8 mm lateral of bregma (+2.8ML) and 3.7AP/3.2ML and across 3 or 4 depths (2.4– 

3.3 mm ventral from brain surface (2.4–3.3DV) in increments of 0.3 mm and 2.4–3.0DV, 

respectively). N=1 rat was injected bilaterally across two injection sites (+3.7AP ± 2.6) and across 

3 depths (2.7 – 3.3DV in increments of 0.3 mm). 

 

For MAPseq experiments, rats were injected unilaterally with 2,200 nl Sindbis virus (1 x 1010 

genome copies/ml (GC/ml), diversity of > 106 different barcode sequences; CSHL MAPseq Core) 

in OFC at 5 target locations to attain broad coverage, to (i) cover the extend of rat OFC, (ii) reduce 

missing projections targets. We used two anterior locations (4.2AP; 2.4ML and 3.2ML; 2.4–3.3DV 

each (0.3 mm steps) and three posterior locations (3.6AP; 2.2ML, 2.8ML, and 3.4ML; 2.4–3.3DV 

each (0.3 mm steps)). 

 

For synaptophysin experiments, rats were injected with a 1:1 mixture of AAV8-CAG double flox- 

synaptophysin-EGFP (Universite Laval – Neurophotonics, 5.8x1012 GC/ml) and AAVdj-hSyn- 

DIO-{hCAR-Myc}off-WPRE-pA (5.9x1012 GC/ml) in the OFC at two locations (4.2AP; 

2.8ML;3.3–2.4ML (0.3 mm steps), 3.7AP;3.2ML;3.0–2.4DV (0.3mm steps)) and Cav-Cre 
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(IGMM Vector Core France, 1.7–2.5x1012 viral particles per ml) in the contralateral OFC (n=2) 

and ventral tegmental area (n=2). 

 

For retrograde tracing experiments, either 150 nL of cholera toxin B subunit conjugated to 

fluorophores (CTB-488, CTB-555, CTB-647, Life Technologies Corporation) or retrograde AAVs 

(AAVretrograde-CAG-GFP, 37825-AAVrg; AAVretrograde-CAG-tdTomato, 59462-AAVrg) were 

injected at each coordinate into: (1) basolateral amygdala (2.0 – 2.4AP each (0.2 mm steps); 

0.75ML; 7.2 and 7.4DV) (2) thalamus (2.0AP; 1.8ML; 4.0DV) (3) superior colliculus (6.6 and 

6.9AP; 2.45 ML; 4.2 and 4.5DV) (4) dorsal raphe (7.4AP; 2.0ML; 6.6DV at a 20° angle). 

 

For molecular profiling experiments, rats were injected with 4,400 nl of AAV5-IV-GFPL10 (final 

concentration: 5 x 1012 GC/ml) and AAV9-hSyn-DIO-{mCAR-Myc}off{ChETA-HA}on-WPRE- 

pA (final concentration: 2.5 x 1012 GC/ml) at a 1:1 ratio in the OFC bilaterally at the same 

coordinates used for the MAPseq experiments. Following a 2 week incubation, 300 nL of Cav-Cre 

(1.7–2.5x1012 viral particles per ml) was then injected bilaterally in the either the striatum, ventral 

tegmental area, or superior colliculus at the coordinates used for retrograde tracing experiments. 

Immunohistochemistry and standard imaging 

For anterograde tracing experiments, rats were sacrificed ~10-14 days after injections. Rats were 

first anesthetized with 2-3% isoflurane and injected i.p. with pentobarbital (Fataldose, 150 mg/kg). 

Rats were then transcardially perfused with heparinized saline, followed by fixation with 4% 

paraformaldehyde (PFA) in phosphate buffered saline solution (PBS). Brains were dissected and 

post-fixed in 4% PFA overnight. We cut 80–100 μm thick coronal sections on a Leica VT 1200 

vibratome. 
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For retrograde tracing experiments, rats were sacrificed 5-7 days after injections and processed as 

for the anterograde tracing experiments. We additionally performed free floating 

immunohistochemistry. Sections were first washed in PBS and background fluorescence quenched 

in a 30 minute 3% H2O2 solution, and then washed again in PBS. Sections were blocked for 1 hr 

at room temperature in PBS containing 0.3% Triton X-100 and 5% normal donkey serum, followed 

by overnight incubation at 4°C with primary antibodies: Rabbit anti-Cux (11733-1-AP, 1:1000), 

Mouse anti-GFP (Santa Cruz Biotechnology Cat# sc-9996, RRID: AB_627695, 1:500). The next 

day, after serial washes in PBS, sections were stained with Alexa Fluor conjugated secondary 

antibodies (Invitrogen, 1:500) at room temperature for 2 hours. After washing, the sections were 

counterstained with DAPI and mounted. We verified that injections were localized to different 

subcortical projection targets. Coronal sections were then imaged (Leica THUNDER Imager) to 

visualize retrograde labeling in OFC. Representative sections at ~4.2 mm anterior of bregma to 

visualize the full breadth of cortical layers 2/3 (L2/3) to 6 (L6). 

 

For synaptophysin experiments, rats were sacrificed 5 weeks after injections and brains dissected 

as described above. Coronal (60 μm thickness) and sagittal (80 μm thickness) sections were cut on 

a Leica VT 1200 vibratome. In addition, selected slices were stained against the Mouse anti- 

Bassoon (ab82958), as described above. These sections were imaged at 63x oil immersion (Leica 

THUNDER Imager). 

 

 

Likewise, we also imaged the MAPseq (Figure 11A,B) and AAV5-IV-EGFPL10a (data not 

shown) injection sites in initial pilot experiments to confirm expression and Cre-dependence 
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respectively. Regarding the latter, we confirmed the Cre-dependence of AAV5-IV-EGFPL10a in 

a previously validated PV-Cre+ rat line. 

 

 

Confocal image registration 

 
From n=1 bilaterally injected rat, selected slices were used in registration analysis to quantify pixel 

number and density, and averaged across the hemispheres. Slices ranged from +2 mm anterior to 

-8 mm posterior of bregma and were imaged on a Zeiss LSM710 confocal microscope at 300 um 

intervals. 

 

The mouse Common Coordinate Framework (CCF) reference brain was first registered onto a 

serial photon tomography (STP) imaged fluorescent Nissl (NeuroTrace) rat brain. After 

registration, transformation parameters obtained were used to move previously modified Allen 

Reference Atlas (ARA) for mouse onto rat STP brain (Kim et al., 2017; Muñoz-Castañeda et al., 

2020). NeuroTrace staining was used to visually validate registration accuracy. After manual 

validation of the new rat registered CCF, a subset of slices corresponding to the starting and end 

points of the confocal images were selected for posterior registration. A rat anatomically enhanced 

reference brain was created by correcting intensity and detecting intrinsic anatomical features 

using Sobel operator with custom python scripts. Confocal images were denoised by removing 

outer-brain artifacts and 2D aligned based on the rat registered CCF images subset. Images 

intensity was corrected and intrinsic brain anatomical features detected using Sobel operator with 

custom python scripts. Registration of the rat registered CCF onto rat confocal images was 

performed using 3D affine transformation. Similarity was computed using Advanced Mattes 

mutual Information metric by Elastix registration toolbox (Klein et al., 2010). 
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Image quantification 

 
All images were quantified using CellProfiler and Fiji. The L2/3 border was manually traced in 

Fiji, and pixel coordinates imported into Python for analysis. OFC subregion borders were visually 

determined and manually traced based on Paxinos et al., and images cropped to separate the dorsal 

lateral, lateral, and ventral lateral OFC subregions. Cell bodies were detected via a built-in object 

identification module (i.e., Identify primary objects) in CellProfiler. The module settings were 

manually adjusted on-line per channel. To exclude axons, primary objects were then filtered based 

on their median eccentricity values (i.e., MeasureObjectSizeshape, FilterObjects). The pixel 

coordinates of these filtered objects were then imported into Python for further analyses. 

 

 

Layer 5 depth was calculated as the perpendicular distance (i.e., minimum Euclidean) from the 

interpolated L2/3 border for the striatum (n=303 from 2 animals) , ventral tegmental area (n=307 

from 3 animals), superior colliculus (n=247 from 4 animals), dorsal raphe (n=3, neurons=293), 

and thalamus (n=113 from 1 animal). To pool this data across the different OFC subregions, we 

normalized the L5 depth to the maximum subregion distance. That is, in each subregion, neurons 

hold a normalized distance value ranging from 0 to 1, with 1 being the most distant neuron from 

the L2/3 border. We then plotted the cumulative probability function and corresponding 

distributions using custom scripts in Python. 

 

 

Due to the low frequency of co-labeled neurons in multi-retrograde-tracing experiments, 

colocalization analyses was restricted to qualitative, visual assessment. 
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MAPseq experiments and analyses 

 
After a 44-hr incubation period, Sindbis-injected rats were rapidly decapitated, and their brains 

were immediately frozen on dry ice. Though we initially sought to preserve the AP spatial 

distribution by, for instance, taking a series of 100 um slices as independent samples, we found 

that the number of detected subcerebral barcodes was extremely low, potentially due to inefficient 

RNA recovery in small tissue samples. In addition, we explored more refined methods of tissue 

isolation using laser capture microscopy, but found the RNA quality of ethanol dehydrated tissue 

to be extremely variable, with RNA integrity numbers less than 7.0. 

 

 

We sectioned 300 um coronal slices for hand dissection using RNA safe methods in collaboration 

with the MAPseq core at Cold Spring Harbor Laboratory (CSHL). The injection site and projection 

targets were kept frozen on a metal block and dissected using cold scalpels. We avoided fiber 

bundles and additionally dissected a peripheral border around projection targets that were not 

included in the later analysis. In total, we dissected all major subcortical projection targets 

identified in our anterograde tracing experiments and identified high-level projection patterns that 

would otherwise necessitate dual- or triple- color injections across tens to hundreds of rats. Brain 

regions were pooled across the antero-posterior axis. After dissection, the RNA for each target 

area was extracted in TRIzol, purified, and reverse transcribed to cDNA by the CSHL MAPseq 

Core in a protocol that maximizes barcode recovery [ref]. Dissected tissue samples from the 

orbitofrontal cortex, a strong projection target (e.g., the striatum), and a weak projection target 

(e.g., the periaqueductal gray) were then selected for quality control testing (i.e., DNA bioanalyzer, 
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RT-qPCR) prior to sequencing to ensure sufficient RNA quality (RNA integrity number > 7). 

Samples were pooled and sequenced by the Next Generation Sequencing Core. 

 

In total, we sequenced 3 brains, with the first brain in one run (i.e., Mseq106) and the remaining 

brains in a second run (i.e., Mseq130). Pooled multiplexed libraries were sequenced via 36-bp, 

paired-end reads on an Illumina NextSeq500 High Output Flow Cell. The CSHL MAPseq Core 

processed the raw sequencing data as previously described (ref). Briefly, the barcode sequences 

were de-multiplexed across samples and a read threshold set to filter low read molecules that might 

be due to PCR and/or sequencing errors (minimum 2 reads per barcode in the OFC and minimum 

3 reads per barcode in projection targets). After read thresholding, all barcodes with a hamming 

distance of less than 3 were collapsed to correct for errors in sequencing. From this, a barcode 

matrix was generated, wherein each row represented a single barcode, and each column 

represented a single dissected brain area. Each element of the matrix then corresponded to the 

molecule number of the barcode (UMI). From the negative control UMI distribution, a threshold 

UMI (either >2 UMI in dedicated analysis or >10 UMI in motif analysis) was then set to further 

filter barcodes that might be due to noise. These data were then binarized and concatenated across 

brains. Subsequent analyses were performed using custom Python scripts. 

 

Sindbis trafficking in rats. Straddling this 44 hour time point, we performed a time series 

experiment ranging from 36 to 68 hours of incubation (Figure 10A). In 4 adult rats, we injected 

Sindbis virus in the OFC and rapidly extracted the brain at 8-hour intervals and immediately froze 

the brains on dry ice. As above, the CSHL MAPseq Core sectioned 300 um coronal slices for hand 

dissection of the OFC and distal subcortical targets including the periaqueductal gray, superior 

colliculus, dorsal raphe, and a negative control (i.e., the tip of the contralateral olfactory bulb). The 
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CSHL MAPseq Core then extracted and purified the RNA as previously described and ran a qPCR 

for barcode mRNA to determine if expression was significantly affected by Sindbis incubation 

time and/or axon length. 

 

False positives that might result in false projection patterns. Sample cross-contamination in the 

RNA processing steps and sequencing noise might result in false positives and, in turn, false 

projection patterns. We therefore sequenced negative control samples that did not receive OFC 

input in parallel. Negative control samples were taken from random tissue punched, un-injected 

brains as well as from the olfactory bulb and contralateral medial colliculus in injected brains. 

Based on the distribution of unique molecular identifiers (UMI) for each barcode detected in the 

negative control samples, we set the threshold at the distribution tail (>10 UMI) to binarize the 

data. Though this differs from previous studies that subdivided cell types by their projection 

strength, it is unclear to us that this has a straight-forward functional interpretation. Rather, we 

classified cell types purely based on their unique projection patterns. That is, we did not 

differentiate a neuron that projects strongly to region A and weakly to B, versus one that projects 

strongly to region B and weakly to region A. 

 

 

False negatives that might contribute to false singletons. Missing barcodes from multi-target 

projections could bias the detection of single-target barcodes. There are three main potential 

sources of error that could lead to false negatives: (1) inefficient barcode trafficking (2) low RNA 

quantity/quality and (3) insufficient sequencing depth. Previous MAPseq experiments that have 

either probed locus coeruleus projections that uniquely encircle the brain and innervate in a caudal 

to rostral direction, or directly compared MAPseq to single neuron tracing indicate that the 

trafficking efficiency is not dependent on distance. In addition, in the previously described time 
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series experiment, we did not find a correlation between incubation time and Sindbis expression 

in distal projection targets. As such, although the rat brain is much larger than the mouse brain, it 

is unlikely that false negatives are due to inefficient barcode trafficking to distal axons. Second, 

low RNA yield might result in lost barcode molecules and false negatives, however, the MAPseq 

RNA extraction protocol is optimized as previously described to produce the highest yield and is 

quality tested prior to submitting the samples for sequencing. Last, barcode molecules might be 

lost due to insufficient sequencing depth, resulting in a substantial proportion of undetected 

barcodes. To estimate the probability of not detecting a barcode, we fit a negative binomial 

distribution to the number of sequencing reads per unique barcode. The distribution of target reads 

is bimodal, with a distinctive peak at 0 that corresponds to PCR and sequencing noise. We left 

truncated this distribution at ~5 reads and find that the number of reads per barcode is described 

by a negative binomial distribution NB(8.18, 0.42). From this, we determined that the probability 

of not detecting a barcode,P( 0 reads | barcode), is ~ 10-4. 

 

 

Further, we ran a separate analysis to determine the relationship between the theoretical drop-out 

rate in sequencing and the detection of false singletons. As the UMI distributions of the dedicated 

and non-dedicated populations are indistinguishable and we do not believe that there are significant 

biological biases in Sindbis infectivity or transport. We then took the population of non-dedicated 

neurons and progressively subsampled that dataset to determine the impact of dropouts on the false 

singleton detection frequency, that is, true motifs that are mistaken as dedicated neurons. 

 

 

Motif over- and under representation analyses. We next sought to determine which, if any, multi- 

target projection patterns might represent non-random motifs. As an overview, we first performed 
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unsupervised hierarchical clustering on the binarized barcode matrix (agglomerative clustering 

using a farthest point algorithm with cosine distance metric). To estimate if any two target areas 

are strongly associated, we constructed a null model in which each neuron projected to each area 

independently. We first estimated the probability of a single neuron projecting to each area. We 

define the probability that a given neuron projects to area Ai as P(Ai) = NAi/ Ntotal, in which NAi is 

the number of neurons in the dataset that project to area Ai, i=1….k, for k downstream targets, and 

Ntotal is the total number of neurons in the sample. Ntotal is not readily observable as we do not know 

the absolute number of neurons in OFC infected by Sindbis virus and there are infected neurons 

project to none of the dissected areas. A UMI threshold was set to select for “high-confidence” 

cell bodies inside the OFC, that is, unique barcodes in OFC that were detected at 10x the minimum 

UMI count (e.g., 100 UMIs) that crossed the threshold determined from the negative control UMI 

distribution (e.g., 10 UMIs). We therefore inferred Ntotal by fitting an exponential curve to the left- 

truncated (i.e., >100 UMI) UMI distribution in OFC. 

 

Next, to calculate statistically significant motifs, we assumed a simple model in which each neuron 

projected to each area independently. We first estimated the probability of a single neuron 

projecting to each area. We define the probability P(Ai) that a given projects to region Ai as P (Ai) 

= NAi/ Ntotal, in which NAi is the number of neurons in the dataset that project to area Ai, i=1….k, 

for k downstream targets, and Ntotal is the total number of neurons in the sample. As Ntotal is not 

readily observable due to noise, we infer Ntotal by fitting an exponential curve to a left truncated 

UMI distribution (>50 UMI) of the “high-confidence” neurons orbitofrontal cortex. We then sum 

the number of barcodes from the left truncated UMI distribution and the predicted number of 

barcodes from the exponential fit to estimate Ntotal. 
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We then calculated the pairwise frequency across target areas. That is, the number of instances that 

any two regions co-occur, regardless of n-furcation. This results in a symmetric matrix, PairDf in 

which each row and column corresponds to an area and each entry corresponds to the number of  

co-occurring barcodes for that area pair. We then calculated a theoretical symmetric matrix that 

predicts the expected pairwise frequency across target areas from a binomial distribution, with the 

probability of a neuron projecting to Ai and Aii: p(Ai) x p(Aii) and the number of observations: 

Ntotal. From this distribution, we determined the statistical probability of observing the co- 

occurring barcodes PairDf (ppairwise). For visualization, we then masked values with a ppairwise <0.01, 

-log transformed the matrix, and pseudo-colored positive z-scores (i.e., over representation) red 

and negative z-scores (i.e., under representation) blue. As an independent metric of over 

representation, we calculated the odds ratio using the pairwise frequency. We constructed 2x2 

frequency tables and calculated the odds ratio: 

 

(Ai + and Aj +) x (Ai − and Aj −) 

(Ai +)(Aj +) 

 

 
As with all odds ratio analyses, this is biased to overestimate the impact of rare projection 

populations and as such, HDB was excluded from this analysis. Significance values were 

determined using a two-tailed Fisher’s exact test and p-val < 0.01. 
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Distance-dependent collaterals 

 
The Cartesian distances for different OFC targets was estimated to be the averaged anterior- 

posterior injection coordinates that were used in retrograde tracing experiments. The normalized 

distance from L5 was the Euclidean distance from the L2/3 border, as described above. The 

collateral probability was the pairwise frequency taken from the symmetric matrix, PairDf divided 

by the Ntotal estimate (i.e., non-log transformed data in Figure 3). We then performed a linear 

regression analysis in Python for these collateral probabilities and the distance between projection 

targets. For instance, the relative distance between the ventral tegmental area (AP: -5.0B to -5.7B, 

mean: -5.35B) and the superior colliculus (AP: -6.0B to -6.9B, mean: -6.45B) is 1.1 mm. 

 

 

Molecular profiling experiments 

 
In order to selectively express EGFPL10a in a descending projection population, we used a dual 

virus approach and injected conditional AAV5-DIO-EGFPL10a in the OFC and retrograde CAV2- 

Cre in subcortical projection targets. Variable viral update or tropism limits the reliable and 

unbiased targeting of projection neurons. Thus, to mitigate this biological tropism, we used a viral 

receptor complementation strategy to express coxsackievirus and adenovirus receptor (hCAR), the 

endogenous receptor for retrograde CAV2 internalization and transport in projection neurons. 

Briefly, rats were injected with a 1:1 mixture of AAV5-DIO-EGFPL10a:AAVdj-hSyn-DIO- 

{hCAR-Myc}off-WPRE-pA. After a 2 week incubation period, we injected Cav-Cre in the 

striatum, superior colliculus, and ventral tegmental area. 

 

Approximately 5 weeks post-injection, rats were rapidly decapitated and their brains hand- 

dissected on ice to isolate the OFC. The dissected brain tissue from a one rat constituted a single 



72  

sample (striatum: n=3, ventral tegmental area: n=4, superior colliculus: n=3). The dissected brain 

tissue was pooled across hemispheres and mechanically homogenized using a buffer containing 

10 mM HEPES-KOH (pH 7.4), 150 mM KCl, 5 mM MgCl2, 0.5 mM DTT, 100 μg/ml 

 

cycloheximide, RNasin (Promega, Madison, WI) and SUPERas-InTM (Life Technologies) RNase 

inhibitors, and Complete-EDTA-free protease inhibitors (Roche). To correct for the increased 

tissue sizes in rats, we increased the volume of homogenization buffer to 3 ml and increased the 

volumes of additional reagents in concert in order to maintain the final concentrations. For 

instance, after tissue homogenization in 3 ml, we added a tenth of a volume of 300 mM DHPC 

(300 μl) and another tenth of a volume of 10 % NP-40 (333 μl) to clarify the supernatant. GFPL10- 

positive ribosomes were then immunoprecipitated via magnetic Dynabeads coupled to anti-EGFP 

(HtzGFP-19C8, HtzGFP-19F7) in a 1.5-hour incubation at room temperature. Prior to the elution 

of the cell type specific, GFP immunoprecipitated (IP) RNA, 50 μl of supernatant was removed to 

be used as the transcriptomic background (input). RNA from the IP and input were then processed 

in tandem using an adapted protocol from the Stratagene Absolutely RNA Nanoprep Kit, as 

previously described (refs). IP and input RNA samples were kept at –80°C and sequenced (CSHL 

Sequencing Core). 

Sequencing and bioinformatics 

 
The CSHL Sequencing Core prepared libraries from IP (cell type specific GFP 

immunoprecipitated) and input samples using an Ultralow Input NuGen Ovation RNA-seq Kit. 

RNA quality was assayed on an Agilent 2100 Bioanalyzer. Only samples with RNA integrity 

values > 7.0 were used for RNA-seq. In total, twenty samples were sequenced (10 IPs paired with 

10 inputs – VS (3), VTA (4), and SC (3)). Pooled multiplexed libraries were then sequenced via 
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76-base pair, single-end runs on the Illumina HiSeq platform with ~40 million reads/sample. Reads 

were pseudo-aligned to rat reference genome (Rnor_6.0) through Kallisto with default single-end 

parameters. Estimated counts were imported into the Sleuth package in R/Bioconductor, and 

differential expression and fold change (IP/Input) was assessed using a Wald test adjusted for 

multiple comparisons to achieve a false discovery rate (FDR < 0.05, Benjamini-Hochberg). 

 

The resulting data were analyzed and plotted in Python. Prior to further analysis, we assessed 

enrichment in control genes including GFP, CRE, and Rpl10a (Figure 15A). For downstream 

analysis, we required that samples had at least a 2x significant enrichment in GFP. As such, two 

ventral tegmental area samples (VTA1 and VTA3, Figure 15A) were excluded from analysis. We 

performed unsupervised hierarchical clustering with a cosine distance metric and multi- 

dimensional scaling on the top 20 enriched and depleted (absolute value of fold change) genes in 

each condition. We next performed a gene ontology analysis of these top 60 genes via the online 

Panther Gene List Analysis and mined for genes that were classified as membrane transporters, 

transcription factors, and receptors. From the literature, we then added genes that were identified 

as cortical layer markers to create a curated gene list and again, performed unsupervised 

hierarchical clustering with a cosine distance metric. 
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Supplemental figures 
 

 

 

 
Figure 9 Extended projection strength quantification from whole-brain anterograde tracing. 

A more detailed plot as in Figure 1, wherein the marker size reflects the relative projection strength. Leaves 

off of branches are ordered according the Common Coordinate Framework and reflect the relative 

projection strength (summed to 100%) for structure subregions. 
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Figure 10 Sindbis time-series and synaptophysin control experiment 

(A) Sindbis expression is quantified via qPCR of GFP in the orbitofrontal cortex (i.e., the injection site) as 

well as in distal projection targets. Delta CT values were normalized to the housekeeping gene actin and 

remained stable from 36 to 68 hours. (B) Staining of pre-synaptic marker Bassoon to ensure that striatal 

collaterals represented terminal synapses and were not passing fibers. 
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Figure 11 Sindbis injection and hand dissection of projection targets. 

(A) Example Sindbis injection in OFC at 5x demonstrating limited spread at a single point of injection. (B) 

Example Sindbis injection in OFC at 20x. (C) Slice of OFC immediately anterior to (D). Example of hand 

dissected projection targets in (D) OFC, (E) contralateral OFC (left) and OFC (right), (F) striatum (G) 

thalamus (H) ventral tegmental area, (I) periaqueductal grey, superior colliculus, and mesencephalic 

locomotor region (not analyzed in this dataset) and (J) dorsal raphe. 

500 μm 
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Figure 12 The fraction of projection neurons that target a single area is boosted using a higher threshold 

that minimizes noise 

(A) The distribution of barcode molecule counts in target regions (left, green distribution) using a more 

conservative threshold. To minimize false projection patterns (e.g., false positives), we chose a conservative 

threshold (dotted line) of at least 11 barcode molecules, filtering barcodes due to noise. The false negative 

rate is < 0.001% using this conservative threshold (right, red distribution). (B) The fraction of single target 

projection patterns compared to the next most common multi-target projection pattern(s) above 10% for 

each target. Projection patterns below 10% are pooled and visualized in gray. (C) The fraction of single- 

target and multi-target projection patterns above 5% for each target region. Projection patterns below 5% 
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are not labelled for visualization. (D) Fraction of dedicated neurons as a function of UMI threshold for the 

SC and VTA (left). A 3D plot demonstrating the fraction of dedicated neurons in relation to the UMI 

threshold and total number of neurons in the dataset (right). Thal, thalamus; cOFC, contralateral 

orbitofrontal cortex; VTA, ventral tegmental area; EntCtx, entorhinal cortex; SC, superior colliculus; 
MoCtx, motor cortex; PL, prelimbic area; BLA, basolateral amygdala; DR, dorsal raphe; STR, striatum; 

PAG, periaqueductal gray; HDB, horizontal diagonal band. 
 

 

 

 

 

 

 

 

 

 

 

Figure 13 Bifurcating projection neuron from OFC to VTA and DR, and OFC to VTA and SC validated 

with synaptophysin. 

(A) Cre-dependent synaptophysin injected in the OFC and Cav2-Cre injected in the VTA. (B) GFP fused 

synaptophysin visible in the superior colliculus and dorsal raphe. Note, that terminals are only visible in the 

ventro-lateral subregion of superior colliculus. 
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Figure 14 Injection sites for retrograde tracing 

(A) Striatum (red), ventral tegmental area (blue), and superior colliculus (green) projection neurons in 

orbitofrontal cortex at ~ 4.6 AP (left) and ~4.2 AP (right). (B-G). Injection sites for retrograde tracing in 

(B) ventral tegmental area (C) striatum (D) thalamus (E) superior colliculus and (F) dorsal raphe. 

Retrograde tracers included CTB-594 (red) and CTB 647 (cyan). 
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Figure 15 Samples largely cluster according to projection target 

(A) Fold-change for control genes for RPL10a, GFP, and Cre. Despite a slight enrichment in GFP, we 

excluded VTA1 and VTA3 due to a minimal (less than 2 fold) enrichment in GFP and a depletion in Cre. 

(B) Multi-dimensional scaling reveals that samples largely cluster according to their projection target. (C) 

Likewise, hierarchical clustering of all significantly enriched genes demonstrates that samples largely 

cluster according to their projection target. Input samples cluster together and have similar depletions and 

enrichments. 
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Chapter 3 

A Proposed Temporal Matching Mechanism for 

Subcortical Target Selection 

 

 
Abstract 

 
Cortex has exquisite spatial structure, with different layers corresponding to distinct cell types. 

Layer 5 projection neurons are the major output to subcortex and have extensive dendritic trees 

that span the depth of cortex, allowing them to integrate diverse sources of information. In 

orbitofrontal cortex, we identified distinct projection cell types that largely send information to a 

single subcortical target. Further, these output sublayers are ordered according to the distance of 

their projection target, in a “deeper farther” pattern. This pattern is reminiscent of the “inside-out” 

principle, wherein the laminar position of cortical neurons is established from the staggered birth 

of different neuron types. This led to the hypothesis that a “deeper-farther” spatial pattern might 

also reflect the temporal logic of development, with evolutionarily older subcortical regions 

receiving the first wave of connections for the deepest sublaminae of cortex. Here, I outline a 

possible developmental mechanism that could link sublaminar position and projection type. Such 
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an ordered mechanism underlying mesoscale target selection would support the existence of core, 

conserved projection patterns through which cortex exerts its control over subcortex. 

 

 

 
Figure 16 “Deeper farther” sublaminar organization in rat orbitofrontal cortex. 

(A) Cartoon of the observation that the more superficially located projection neurons target more rostral 

structures, whereas deeper projection neurons target more caudal structures. (B) Proposed generation of 

projection types according to the “inside out” developmental rule and (D) hypothesized birth order. (C) 

Cell soma positions of projection neurons in rat orbitofrontal cortex (n=3) (E) Histogram of relative L5 

depth from neurons quantified in (C). 

 

 

 

 

Introduction 

 
Through the millennia and pressures of evolution, cortical circuitry has been shaped to promote 

survival. This initial architecture preserves core conserved functions and sets the stage for animals 

to rapidly learn (Zador, 2019). Such an architecture is faced with the challenge of being able to 

flexibly support sophisticated computations, as well as communicate with subcortex, a 

phylogenetically older nervous system (Lake et al., 2016b; Sherman and Usrey, 2021). One 

possibility is that these functions are segregated across different cortical layers made up of distinct 
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projection types (Harris and Shepherd, 2015; Musall et al., 2021). Residing in the deep layers of 

cortex, subcortically projecting neurons are the major descending output from cortex and target 

diverse regions from midbrain to hindbrain to spinal cord (Baker et al., 2018; Leone et al., 2008; 

O’Leary and Koester, 1993; O’Leary and Terashima, 1988). Though often considered to be a 

single cell type, their diverse projection patterns have long defied this simplistic view (Kita and 

Kita, 2012; Lévesque et al., 1996b, 1996a; Winnubst et al., 2019). Determining the principles of 

cortical connectivity is critical for understanding brain function and constraining circuit 

computations. 

 

 

Within cortex, only a small fraction of projection neurons mediate communication from cortex to 

subcortex (Gabbott and Stewart, 1987; Gabbott et al., 2005a; Zhang et al., 2021). Such a bottleneck 

is suggestive of an evolutionary mechanism to filter information from developing cortex to older 

subcortical circuits, but how many different projection types exist, and their overarching logic 

remains unclear. Recent large-scale circuit mapping has allowed for a bird’s eye view of 

subcortical projection patterns at a single neuron resolution (Kebschull et al., 2016a; Muñoz- 

Castañeda et al., 2020; Winnubst et al., 2019). In rat orbitofrontal cortex, we found that subcortical 

projection neurons not only preferentially targeted a single region, but also were ordered into 

previously unappreciated sublayers; neurons positioned more superficially projected to more 

rostral regions and those positioned deeper projected to more caudal regions (Figure 16). This 

“deeper further” organization revealed a refined relationship between (local) sublaminar position 

and long-range target selection that has also been reported in motor cortex. 
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How such different projection patterns arise is an open question, but this sublaminar organization 

suggests an overarching rule for target selection. The inside-out birth of projection types is one 

such rule, wherein the six layers of cortex are formed from the staggered birth of mesoscale 

projections, that is, broad projection classes (McConnell and Kaznowski, 1991b; Rakic, 1974). 

The refinement of this rule to include sublaminar projection patterns is intuitive, but still requires 

an addendum to explain macroscale rather than mesoscale target selection. From our limited 

observations in rat orbitofrontal cortex, we hypothesize that there is relationship between a 

neuron’s spatial distribution and its choice of synaptic partners. Such a finding raises the intriguing 

possibility that a global process manages the development of core conserved projection patterns. 

 

 

The proposed relationship between laminar depth and subcerebral 

projection patterns 

 
We reasoned that as the environmental factors present at a neuron’s birth determine its laminar 

fate, these might also shape its projection pattern. However, as subcortical projection neurons are 

initially thought to be largely identical (O’Leary and Koester, 1993; O’Leary and Terashima, 

1988), target specificity might arise not from the neurons themselves, but their projection targets. 

That is, subcortical regions might be primed for innervation during select time windows that align 

with waves of newborn neurons (Altman and Bayer, 1978, 1980, 1981; Jensen and Altman, 1982). 

Such temporal matching might naturally result in groups of projection neurons that preferentially 

innervate specific structures. If a region is resource limited and can only support a finite number 

of synapses, then early arriving neurons could attain a “first to market” advantage and block further 

innervation by late arriving neurons. Here, we extend this temporal logic to our local findings in 

orbitofrontal cortex and make three major assumptions: (1) subcortical projection neurons initiate 
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a common developmental program (2) neurons that are born earlier also initiate their 

developmental program earlier and (3) brain regions are resource limited and can only support a 

finite number of synaptic connections. 

 

 

Subcortical projection neurons are thought to adhere to a generic developmental program that 

generates a stereotyped branching pattern, wherein a spinal axon is extended prior to the formation 

of common collateral branches in a caudal-to-rostral order (Arlotta et al., 2005; Lai et al., 2008; 

McConnell, 1988; O’Leary and Stanfield, 1985). As a result, it stands to reason that early born 
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Figure 17 Proposed matching mechanism for subcortical target selection 

 

 

neurons have the most time to stabilize in these caudal structures and begin eliminating immature 

branches in more rostral structures. If we then assume that a structure is only able to support a 

limited number of synapses, then these caudal structures become unavailable to further 

innervation. As a corollary, because all subcortical neurons adhere to the same caudal-to-rostral 

path, the elimination of immature branches by early born neurons provides an opportunity for later 



87  

born neurons to assume more territory in the next most caudal structure. Thus, we suggest that 

there are cascading developmental windows wherein neurons are biased to innervate the most 

caudal structure that is available. This represents a stochastic but ordered mechanism for the 

organization of distinct populations of single target subcerebral projection neurons into 

overlapping sublayers (Figure 17). In addition, this potentially also explains the preference of 

multi-target projections to innervate neighboring structures in orbitofrontal cortex. That is, neurons 

on the border of developmental windows might retain a handful of mature collaterals to nearby 

structures. 

 

 

Evolutionary and functional implications for segregated subcortical 

outputs 

 
In contrast to older evolutionary hypotheses (Fournier et al., 2015; Masterton et al., 2018; Reiner, 

1991; Suryanarayana et al., 2017), it was recently proposed that the deep layer projection classes 

were a recent addition and inserted into the cortical framework (Shepherd and Rowe, 2017; 

Sherman and Usrey, 2021). Though it still debated how the six-layered mammalian cortex is 

derived from the three-layered reptilian cortex (Karten, 2013; Shepherd and Rowe, 2017), this 

hypothesis has intriguing functional implications. First, this hypothesis might underlie the 

subdivision of subcortical projection neurons into distinct transcriptomic types, versus the 

continuous transcriptomic gradient of intra-telencephalic projection neuron types (Yao et al., 2021; 

Zhang et al., 2021). Second, this hypothesis implies that a bottleneck layer which filters 

information from neocortex to subcortex is evolutionarily advantageous and selectively connects 

target subsets, rather than all possible targets. While recent transcriptomic studies have cast doubt 

on whether there are reptilian analogs of mammalian projection neuron types (Tosches et al., 
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2018), the anatomical division-of-labor in rat orbitofrontal cortex is a structural pre-requisite for a 

subcortical sorting principle. Despite incredible representational diversity across single neuron 

responses in frontal cortex, anatomically distinct cell types in rat orbitofrontal cortex can be 

mapped to decision variables, such as decision confidence and previous trial outcome. In 

orbitofrontal cortex, these target-defined projection neurons are thought to serve as parallel streams 

of (occasionally redundant) information that mediate dissociable aspects of cognition. 

 

 

Sublaminar organization of cell types beyond rat orbitofrontal cortex 

In mouse motor cortex, there is a similar coarse relationship between laminar depth and subcortical 

projection patterns (Muñoz-Castañeda et al., 2020; Zhang et al., 2021). An analogous “deeper 

further” laminar structure is difficult to assess in mouse motor cortex because these subcortical 

projection neurons demonstrate a one-to-many logic. However, these subcortical projection 

neurons represent a heterogenous population of distinct transcriptomic and anatomic subtypes (as 

opposed to the continuous intra-telencephalic transcriptomic types), such as the cortico-spinal 

subtype localized in superficial L5b, and cortico-medullary subtype localized in deep L5b 

(Economo et al., 2018b). As cortico-spinal neurons have the longest axons that reach the end of 

the spinal cord during the first or second post-natal week of life in mice and rats (Gianino et al., 

1999; Joosten et al., 1989; Stanfield, 1992), this suggests that distance-ordered sublayers might 

instead reflect a correlated variable, such as the caudal-to-rostral maturation of subcortical targets 

(Altman and Bayer, 1978, 1980, 1981; Bayer, 1980; Fentress et al., 1981; Finlay and Darlington, 

1995). This higher order logic might be more disordered in mouse motor cortex because first, many 

circuit plans in rats tend to be more subtle in mice, for instance the strictness of the inside-out 

developmental rule, tonotopic organization of auditory cortex (personal communication), the 
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columnar segregation of thalamic inputs to barrel cortex (Rakic, 1974; Sato et al., 2007; Shepherd 

and Svoboda, 2005). Second, target specificity is markedly increased from the intra-telencephalic 

projection subtypes in L2/3 to the cortico-thalamic projection neurons in L6, this raises the 

possibility that there might be other global trends, for instance, a rostral-to-caudal gradient 

matching the thickening of cortex (Jensen and Altman, 1982). A loosening of organizational 

principles from frontal to motor cortex might imply that subcortical projections in prefrontal cortex 

are more tightly regulated. This could be due to either region-specific factors (Bhaduri et al., 2021; 

O’Leary and Sahara, 2008) or from a stochastic process such as temporal matching, wherein early 

developing regions have their first choice of synaptic targets and other later developing regions 

scramble to compete for a continuously depleting pool. Interestingly, single neuron activity in 

motor cortex is much more difficult to interpret and map to motor related parameters, an 

observation that might result from the more complex subcortical projection patterns (Churchland 

and Shenoy, 2007; Kita and Kita, 2012; Vyas et al., 2020). 

 

 

Conclusions and outlook 

In summary, we propose that the connectivity patterns of subcortical projection neurons are guided 

by a stochastic temporal matching process in development. Such a mechanism side steps the need 

for genetic programs that deterministically encode single neuron projection patterns, but does not 

exclude the possibility that there might be refined genetic subtypes (Arlotta et al., 2005; Lai et al., 

2008; Sahni et al., 2021a, 2021b). Though in rat orbitofrontal cortex, anatomic projection types 

represent molecularly distinct subclasses, this might be the result of activity-dependent differences 

that arise much later in development and possibly reflect their distinct functional roles. 
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The gap in between circuit-driven systems and developmental neuroscience underscores a need 

for more studies at a cellular resolution. Early in development, it is generally thought that all 

subcerebral projection neurons are largely indistinguishable (O’Leary and Koester, 1993; O’Leary 

and Stanfield, 1985). Though time-dependent and region-specific factors play an important role in 

shaping cell fate (Bishop et al., 2000; McConnell, 1988; O’Leary and Sahara, 2008), precisely 

what triggers the selective elimination of collateral branches and when a cell type becomes 

immutable is unknown. The advent of single neuron resolution technologies has made it possible 

to revisit fundamental questions in development that shape cortical function. 
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Abstract 

 
Value is thought to drive many types of decisions. According to learning theory, value can be 

inferred from reinforcement history through an algorithmic computation (‘model-inferred value’). 

In contrast, in behavioral economics, appropriately designed tasks can elicit choice patterns that 

reveal subjective preferences (‘revealed choice value’). However, the relationship between these 

distinct measures of subjective value remains unclear, which limits studying its neural basis. Here, 

we designed a probabilistic reward learning task that brought together these two approaches. Rats 

chose between two options that were probabilistically ‘baited’ with rewards, varying across blocks. 

To earn a reward, rats committed to their choice by investing time for uncertain, delayed rewards. 

Choice value could be inferred from reward and choice history using generalized linear models or 

fitting reinforcement learning models. These model-inferred choice values robustly predicted rats’ 

choice behavior, as well as the magnitude of time investment. In turn, shorter time investments 

predicted choosing the lower-valued (‘model-inconsistent’), rather than the higher-valued 

(‘model-consistent’) option. Thus, time investment reflected the rats’ subjective choice valuation, 

beyond model-inferred value alone, thereby behaviorally revealing choice value. To investigate 

the neural processes underlying choice valuation, we monitored dopamine release in the ventral 

striatum using fiber photometry with virally expressed, genetic dopamine sensors. We observed 

phasic dopamine release at the time of choice, which strongly predicted trial-by-trial time 

investment seconds in advance, but was not correlated with model-inferred choice value based on 

reward history. Thus, mesolimbic dopamine encodes the subjective valuation of choice options 

that can be behaviorally read-out in single-trial time investment decisions. 
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Highlights 

 

• Time investment is tightly linked to traditional measures of model inferred value 

 

• Striatal dopamine release at the time of choice predicts time investment, seconds in 

advance 

• Time investment is a novel trial-by-trial behavioral read out of subjective value 

 

 

 

 

 

Introduction 

From picking dinner to college courses, the choices we make reflect our past experiences and 

individual preferences. The value of a choice is inherently subjective and can fluctuate from 

moment to moment, yet we need to identify objective measures to study its neural basis. Different 

approaches from learning theory and behavioral economics naturally capture distinct contributions 

to value (Padoa-Schioppa and Schoenbaum, 2015). According to learning theory, the values of 

various options can be inferred from reinforcement history and pitted against one another to 

determine an optimal choice (Sutton and Barto, 2018). In the real world, however, many choices, 

like apples and oranges, cannot be directly compared and there is no “right” answer. Capturing 

such subjective preferences is central to behavioral economics and can be revealed from choice 

patterns (‘revealed choice value’) (McFadden, 2001; Padoa-Schioppa, 2011). Yet, this approach 

lacks a rigorous framework that can be used to fractionate underlying choice processes. A unified 

approach that bridges these distinct measures of value is needed to better understand ongoing 

choice behavior. 
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Within the brain, dopamine is thought to broadcast representations of value critical for learning 

and motivated behavior (Berridge and Robinson, 1998; Hamid et al., 2016; Schultz et al., 1997, 

2015; Tobler et al., 2005; Wyvell and Berridge, 2000). Prior to outcome, the cue-evoked dopamine 

response invigorates approach behavior and reflects anticipated value (Burke et al., 2018; Flagel 

et al., 2007; Mohebi et al., 2019), considering varied dimensions from outcome magnitude and 

timing (Hamid et al., 2016; Howe et al., 2013; Lak et al., 2014a; Roesch et al., 2009; Saddoris et 

al., 2015; Wei et al., 2021) to homeostatic state (Cannon et al., 2004; Stouffer et al., 2015). Such 

findings have bolstered a role for dopamine in signaling subjective value, but its relationship to 

choice remains unclear. For instance, dopamine release in the nucleus accumbens has been shown 

to signal the highest valued option, rather than the chosen option for effort related choices (Hollon 

et al., 2014). Selection of the seemingly less valuable option has numerous possible interpretations 

from an impulsive choice (Freels et al., 2020; Gao et al.; Puumala and Sirviö, 1998; Zeeb et al., 

2009) to information seeking one (Bromberg-Martin and Hikosaka, 2009; Fink and Smith, 1980). 

A single trial behavioral readout that reflects one’s commitment to a choice without altering its 

prospective value could help clarify the role of dopamine. 

 

 

Like money, time is a limited and valuable resource. We previously demonstrated that humans, 

rats, and mice strategically invest their time to obtain uncertain future rewards in proportion to 

their confidence in receiving a pay out (Ott et al.). We therefore reasoned that single trial time 

investment decisions could be used as a behavioral read out of subjective value. Here, we adapted 

a classic two-armed bandit task (Lau and Glimcher, 2005) and brought together two distinct 

measures of value from learning theory and behavioral economics. As expected, established 

models robustly predicted rats’ choice behavior. These model-inferred choice values further 
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predicted the magnitude of post-choice time investment decisions such that lower-valued choices 

yielded shorter and high-valued choices yielded longer time investments. To investigate the neural 

processes underlying choice valuation, we also monitored dopamine release in the ventral striatum 

using fiber photometry with virally expressed, genetic dopamine sensors (Patriarchi et al., 2018, 

2020). We observed phasic dopamine release at the time of choice, which strongly predicted trial- 

by-trial time investment seconds in advance, but was not correlated with model-inferred choice 

value based on reinforcement history. Thus, mesolimbic dopamine encodes the subjective 

valuation of choice options that can be behaviorally read-out in single trial time investment 

decisions. 

 

 

 

 

 
Figure 18 Single-trial time investment reflects subjective value and is predicted by mesolimbic dopamine. 
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(A) 2-armed bandit task in which rats commit to a choice and then invest their time. (B) Reinforcement 

learning (RL) model that learns choice values. (C) Observed choice behavior across interleaved blocks for 

a single rat and corresponding fits for the linear and RL model. (D) Choice values inferred from both the 

linear and RL models predicted the rat’s choice behavior. 
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Figure 19 Rats’ choice behavior before and after a block transition 

Individual rats’ ongoing behavior is shown in different colors, pre- and post- block transition. 

 

 

Results 

In a novel variant of the classic two-armed bandit task, rats (n = 5) made choices (left or right) and 

invested time in their choice to obtain an uncertain, delayed reward (Figure 18A). In each trial, 

water reward became available at a choice port with a fixed probability and stayed available 

(‘baited’) until it was collected. Reward probabilities for each port (phigh = 0.4, plow = 0.1) were 

alternated across short, un-cued blocks (random length, ~75-150 trials). After choosing a baited 

choice port, reward was delivered after a random delay, sampled from a truncated exponential 

distribution (0.5 s-8 s, time constant 1.5 s). To encourage the efficient use of time, we used a long 
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inter-trial-interval that was adjusted for individual rats (4-10 s). The rats’ willingness to wait for a 

reward provided a graded, single-trial time investment in their choice, which we hypothesized 

reflected subjective choice value. To assess the relationship between time investment and choice 

value, we first inferred trial-by-trial choice value (‘model-inferred value’) using nested 

reinforcement learning (RL) models and estimated parameters via maximum-likelihood fitting 

(Figure 20) (Delgado et al., 2011; Sutton and Barto, 2018). Cross-validated choice data, as well as 

model-selection criteria (AIC and BIC), were best predicted by a RL model with an average 

pseudo-R2 of 0.38 (SD = 0.21) and included the parameters learning rate (α), inverse temperature 

of a soft-max decision rule (β), a ‘stickiness’ or perseveration parameter that captured short-term 

tendencies to repeat or alternate choices, and a forgetting parameter (αnot chosen) that simulated the 

decay of the unchosen option’s value (Figure 18, 20). To test the robustness of these RL model- 

inferred choice values, we also used a linear regression approach that has been previously 

described (Lau and Glimcher, 2005) and considered the effects of past rewards and choices (Figure 

18A, inset) (1). Both the RL and linear models captured the rats’ choice behavior and yielded 

similar choice value estimates on a trial-by-trial basis (Figure 18C, D). Further, the rats’ ongoing 

choice behavior is like that of non-human primates, with the linear model coefficients and choices 

after a transition demonstrating similar patterns across species (Figure 18, Figure 19). 

 

Using these model-inferred choice values, we then identified trials in which the rats’ choice 

violated model-inferred value predictions, that is, trials in which rats chose the lower valued (i.e., 

‘model-negative) rather than the higher valued (i.e., ‘model-positive) option. Rats invested time in 

proportion to model-inferred value for model-consistent choices, but inversely for model- 

inconsistent choices, i.e., time investment predicted the percentage of model-consistent choices 
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(Figure 21A-C). In other words, time investment reflected the rats’ degree of violating model- 

inferred choice value, arguing that time investment provides a scalar, trial-by-trial behavioral 

measure of subjective value (‘revealed choice value’). 
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Figure 20 Reinforcement learning model selection 

Nested reinforcement models were compared across various metric including (A) explanatory power (B) 

Bayesian information criterion, and (C) Akaike’s Information Criterion. (D) The rats’ choices were 

smoothed using a moving mean and a window of thirty trials (black). The four parameter (α, β, c, 

αForgetting) reinforcement learning model closely captures choice behavior. 

 

 

We next probed the relationship between dopamine release, model-inferred choice value, and time 

investment. We recorded dopamine release via a genetically-encoded fluorescent sensor in the 

ventral striatum in rats (n = 6) chronically implanted with optical fibers. To correct for motion 

artifacts in freely moving rats, we co-recorded from a neural activity-independent red fluorophore, 

thus providing a reference channel to de-trend the dopamine signal (Schmack et al., 2021). To 

Rat 
RL model 

 

P
ro

b
a
b
ili

ty
 o

fc
h
o
ic

e
 l
e
ft
 

E
x
p
la

n
a
to

ry
 p

o
w

e
r,
 R

2
 

R
a
ts

 



99  

 

 

 

 

 

 

 

 

 

 

 

 
 

GLM 
RL 

Long investment 
Middle investment 
Short investment 

R = 0.03 

|l
o
g

 o
d
d
s
| 

correct for slow drifts in fluorescence across a session (e.g., bleaching), baseline fluorescent signal 

was calculated from the 1-minute moving median and subtracted from the raw data to yield a 

normalized fluorescence signal, dF/F. As expected, reward evoked strong dopaminergic responses 

in the ventral striatum (Figure 21D). At the time of choice, however, dopamine predicted single- 

trial time investment, seconds in advance, rather than reflecting model-inferred choice value 

(Figure 21F, G). These results suggest that ventral striatal dopamine encodes subjective choice 

value that informs future investment decisions, a hallmark of economic decision-making. 
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Figure 21 Time investment is a single trial behavioral measure of revealed choice that is predicted by striatal 
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dopamine. 
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(A) Choice values inferred from both the linear and RL models predicted the rat’s choice behavior. (B) Time 

allocation increased in proportion to the fraction of trials in which the higher-valued (‘model-consistent’) option 

was chosen. (C) Time investment strategies showed opposite patterns in model-consistent (pink; mpos) versus 

model-inconsistent (blue; mneg) trials for both linear (solid) and RL (dotted) derived choice values. (D) Dopamine 

release in the ventral striatum is strongly evoked by reward. (E) Dopamine release at the time of choice predicts 

time investment seconds in advance. (F) Dopamine release is not correlated with model-inferred value. (G) 

Dopamine release is strongly correlated to single-trial time investment. 

 

 

As striatal dopamine predicted subjective value better than reinforcement history, we next sought 

to determine what information is captured in time investment decisions, but not model-inferred 

value. First, we regressed out the effect of model-inferred value on time investment by comparing 

the residuals from time investment and log odds and the residuals from model-inferred value and 

choice. For simplicity, we took all left choices as a reference such that by design, a log-odds 

positive, left choice is model positive and a log-odds negative, left choice is model negative. We 

find a significant inverse correlation specifically for model-negative choices, choices that were 

opposite to the model prediction. Rats 

“under-stay” or waited for a shorter 

time for left choices, when the model 

predicted a higher valued right 

choice. As both models largely 

capture choice patterns, the 

seemingly less valued option might 

be chosen because of an additional 

process, such as fluctuating satiation 

or internal noise. Such an evolving 

process  might  be  described  as  a 

 

Figure 22 A possible RL interpretation of subjective value. 

(Top) From preliminary photometric data, dopamine predicts 

time investment, but not model inferred value. (Bottom) This 

could be explained by a time-dependent noise process such as 

a random walk. 
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random walk that could be incorporated into the reinforcement learning model (Figure 22). 

 

 
Figure 23 Both time investment and model-inferred value relate to reaction time. 

(Left) The movement and choice time on the current trial plotted against the time investment (Top) and 

model inferred value (Bottom). (Right) Future movement and choice time plotted against time investment 

(Top) and model inferred value (Bottom). 

 

Next, because dopamine is thought to play a role in influencing motivation and invigorating 

approach behavior, we explored the relationship between single trial time investments and 

different types of reaction times. We focused on: (1) choice time, from ‘center port in’ to ‘center 

port out’ (2) movement time, from ‘center port out’ to ‘choice port in’, and (3) latency time, from 

the end of the last trial to ‘center port in’ of the current trial. We find that both time investment 

and model inferred value have markedly similar relationships to choice and movement times, such 

that rats are much faster in high expected value trials and high time investment trials. This is mainly 

an effect on movement time, as there is no significant change across choice times for differently 

valued trials (Figure 23). While this is consistent with a role of dopamine in invigorating approach 
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(du Hoffmann and Nicola, 2014; Shadmehr et al., 2019), these results suggest that this effect can 

be explained from model-inferred value. Looking for a different estimate of motivation, we 

therefore turned to latency time, the time that it takes for a rat to initiate the next trial. In contrast 

to the reaction times that are calculated when the rat is engaged in the task, single trial time 

investments and model inferred value diverge for latency times (Figure 24). Though there is no 

relationship with model-inferred values, a longer trial latency typically correlates with longer 

single trial time investments. Such a finding is consistent with the possibility that the rat is willing 

to spend its time in periods when the time is an abundant resource (e.g., less valuable), either 

because the rat is sated or because the global reward rate is lower. Future analysis will work 

towards clarifying precisely what information might be captured by time investment, but not model 

inferred value. 
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Figure 24 Time investment predicts latency to initiate next trial. 

(left) Latency to next trial plotted against model-inferred value and (right) single trial time investments. 
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Methods 

Animals 

Adult male Long Evans rats (~300–500 g) were used for the study (Envigo). Rats were group- 

housed and maintained on a reverse 12 h light/dark cycle. All procedures were carried out in 

accordance with National Institutes of Health standards and were approved by the Cold Spring 

Harbor Laboratory Institutional Animal Care and Use Committee and Washington University in 

St Louis. 

Photometry experiment and analysis 

Rats were anesthetized with 1-3% isoflurane, injected with pre-operative buprenorphine (0.03 

mg/kg) and placed in a Kopf stereotactic setup. For injections, we used pulled 5 uL calibrated glass 

micropipettes, cut to an opening diameter of ~10-20 um. Craniotomies were made with a dental 

drill and dura cut with a 27 gauge needle. In post-operative recovery, rats were provided with oral 

carprofen tablets and observed either daily for a minimum of 7 days, or to euthanasia. 

 

 

We used a viral approach to express the genetically encoded optical dopamine sensor, GRABDA. 

Rats (n=6) were injected with a 300 nl of 1:1 AAV9-hSyn-DA4.3 (~5 x 1012 titre) and AAV1- 

CAG-tdTomato (~1 x 1011 titre) in the ventral striatum (1.6AP; 1.75ML; -6.9 and -7.1DV). During 

the same surgery optical fibers (400um core) were inserted at -6.9DV and cemented in place. Data 

were collected >three weeks later, to allow for GRABDA expression. 

 

 

We used a custom dual color fiber photometry acquisition set-up to simultaneously record 

dopamine activity from green fluorescent GRABDA and a control fluorophore tdTomato. The 
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excitation beams for the green and red channels were produced by a 470 nm and 565 nm LED light 

source, and launched into a 400 um core, 0.48 NA fiber patch cable. Fluorescence and excitation 

and detection were performed through a multi-modal optical fiber. To ensure proper separation of 

the green and red channel, the flurescence signals were amplitude modulate dby sinusoidally 

varying command voltage of the LED driver with two different frequencies (531 Hx and 211 Hz) 

and demodulated prior to data processing. Photometry data were aquired using a data acquisition 

card (PC!e-6321 National Instruments) and synchronized with the behavioral task using Bpod and 

custom software written in Matlab. 

 

 

Fluorescence signals were expressed as the relative fluorescence, normalized to the 1-2 second 

baseline period in which there is no task specified movement. In addition, the red control 

fluorophore which is not tied to neural activity serves as an estimate of movement or cable induced 

artifacts. To correct for these dopamine independent changes in fluorescence, we subtracted the 

shared variance across the red and green channels. 

 

 

Behavior and training 

A rectangular behavioral box contained three ports aligned on one wall which were equipped with 

LEDs, infrared photodiodes, and phototransistors. Interruption of the infrared photobeam was used 

to determine port entries and exits. The two side ports (left and right choice ports) were equipped 

with valve controlled water spouts for reward delivery. Water valves, LEDs and phototransistors 

were controlled by the behavioral measurement system Bpod and Pulse Pal. 
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Five naive rats were first trained to self-initiate trials via holding their snouts in the center port for 

a minimum of 0.4 seconds. Rats were then able to retrieve a water reward from either the left or 

right port. Ports were illuminated to signal availability and phases of the trial, such that at the start 

of a trial, only the center port was illuminated. After trial initiation, both the left and right ports 

were illuminated. An early withdrawal from the center poke was punished with a 3 second time- 

out and in this punishment phase, no ports were illuminated. After a 1 week period of habituation 

and trial initiation practice, rats were tested on the foraging task. Reinforcers were independently 

drawn for the right and left ports with independent probabilities that were assigned in a blockwise 

manner. As such, on any given trial, it is possible that both left and right choices might be 

rewarded, neither might be rewarded, or only a single choice might be rewarded. If a reward was 

“armed” for the unchosen option, it remained available (i.e., baited) until that option was chosen. 

Block transitions were not signaled and a changeover delay or response was not used. The block 

length was drawn from a normal distribution with a mean of 120 trials and a variance of 10 trials. 

 

 

After stable performance levels (visual inspection of matching behavior), we gradually introduced 

randomly delayed rewards. For correct choices, we withheld reward delivery for a random time 

between 0.6 - 8 seconds, drawn from a truncated exponential distribution with a time constant of 

1.5 seconds. Rats had to maintain their snout or keep poking in the choice port during the entire 

time point; to avoid false detections of leaving decisions, a grace period of 0.3 seconds was set 

such that if the rat exited and re-entered the choice port within 0.3 seconds, it did not constitute a 

leaving decision. There was no feedback on non-rewarded trials. Further, we gradually increased 

the inter-trial interval to 4-15 seconds for each rat in order to lower the average reward rate and in 

turn the opportunity cost, thereby reinforcing time as a commodity. 
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This approach provided us with a continuous time investment as well as a binary choice on each 

non-rewarded trial. Each session lasted about 2-3 hours, in which rats typically performed 300- 

600 trials with at least 3 block transitions. 

 

 

Analysis of Behavioral Data 

We analyzed 41,151 trials from five rats across 95 sessions. We excluded sessions where rats 

performed less than 100 trials. For estimates of mode-inferred value, we split the behavioral data 

into training (even sessions) and test (odd sessions) sets. Log odds reflects the strength of choice 

evidence which is explicitly formulated in the logistic regression and determined as the softmax 

of left and right values in the reinforcement learning model. Model consistent refers to choices that 

were predicted by the model, whereas model inconsistent refers to choices that were not predicted 

by the model. 

 

 
Measures of model-inferred value: logistic regression 

 

First, we fit steady state choice behavior using a response-by-response model that considers the 

effects of past reinforcers and choices as separate linear processes, as has been described 

elsewhere. Briefly, the following logistic regressions has been shown to capture ongoing choice 

behavior, 

 

 

Where r is the reinforcement (1 if rewarded or 0 if un-rewarded) and c is the choice. Note that due 

to the formulation, 1 is a left choice and -1 is a right choice. The alpha and beta coefficients 

measure the influence of past reinforcers and choices, and the intercept term gamma captures left 
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or right bias that is not attributable to reinforcement or choice history. We fit this model to the 

training data using the fitglm function in Matlab. To select the best candidate model, that is the 

combination of lengths of reinforcement and choice histories, we used Akaike’s Information 

Criterion (AIC). We computed AIC values for a family of models in which we varied the lengths 

of reinforcer and choice histories, up to 50 trials each. Importantly, when multiple candidate 

models were similar, that is, when relative differences between AIC values were less than 2, we 

selected the most parsimonious model. 

 

 
Measures of model-inferred value: reinforcement learning 

 

 

We next fit choice data with a standard reinforcement learning model (Delgado et al., 2011; Sutton 

and Barto, 2018). The model uses a sequence of choices and outcomes to estimate the value of 

each option for every trial. The expected values were initialized at 0, and after each trial, the value 

of the chosen option was updated according to the following rule. We compared several 

reinforcement learning model variants, but the base model consisted of two parameters: the 

learning rate (alpha) and temperature (beta) that controls choice stochasticity. We then iteratively 

added parameters that have been classically used to describe matching behavior including c, a 

choice stickiness parameter that modulates how often a choice is repeated (positive) or alternated 

(negative), a negative learning rate that alters updating for an un-rewarded choice, and a forgetting 

term that decays the value of the unchosen option. The data likelihood was taken as the product of 

the log choice probabilities and free parameters were estimated by maximum likelihood using the 

fminsearch function in Matlab. Parameters were constrained such that alpha, alpha forgetting, and 

alpha negative parameters were in the range of 0 to 1 and beta in the range of 0 to 20. We used 

several different measures to assess fit on the test set including: explanatory power, Bayesian 
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Information Criterion (BIC) and Akaike’s Information Criterion (AIC). Though the final selected 

model was selected on the basis of the relative BIC and AIC scores, it should be noted that adding 

these parameters did not significantly improve fit as assessed via a likelihood ratio test. This is 

presumably because most of the predictive power is from reinforcement history. 
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Chapter 5 

A novel task to probe the role projection types 

in meta-learning 

 

 
Introduction 

 
Once thought to be a homogenous population, ventral tegmental area dopamine neurons are 

increasingly being subdivided into discrete subtypes that receive differential input (Beier et al., 

2015b, 2019; Saunders et al., 2018; Watabe-Uchida et al., 2012). As such, subtypes likely receive 

information that is unique and subserves a circuit-specific function, though principles governing 

cortical-subcortical information transfer remain poorly understood (Han et al., 2018b; Kebschull 

et al., 2016b). As with other cortical areas, the orbitofrontal cortex is composed of projection 

neurons that target diverse subcortical structures (Chandler et al., 2013; Gabbott et al., 2005b; 

Ohara et al., 2003; Takahashi et al., 2009b). However, orbitofrontal cortex projection neurons 

appear to be segregated by their target structure (Chapter 2). This strict anatomical separation 

potentially reflects a functional division-of-labor, serving as a means to selectively route 
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information. The orbitofrontal cortex is reciprocally connected to the ventral tegmental area and is 

believed to play a role in relaying abstract and subjective value information (Gabbott et al., 2005b; 

Takahashi et al., 2009b). Remarkably, though the orbitofrontal cortex sends sparse, direct 

projections to the ventral tegmental area, precisely what information is routed, and for what 

purpose, is an open question (Takahashi et al., 2009b). In turn, ventral tegmental area dopamine 

neurons send dense afferent input to the orbitofrontal cortex, but precisely identifying the impact 

of dopaminergic modulation and reconciling it with both normal and pathological choice behavior, 

requires a mechanistic understanding of decision-making circuitry (Chandler et al., 2013; Ohara 

et al., 2003). 

 

 

Humans and animals must make decisions and adapt their behavior in an ever-changing and 

uncertain world. For instance, a sudden change in a previously stable environment might be an 

indication of new information that requires immediate action. On the other hand, one should not 

make rash decisions based on transient fluctuations in an unstable environment. Indeed, 

uncertainty has long been hypothesized to drive learning by modulating the degree of updating. 

However, it is unknown if animals track the second order statistics of their environments or, how 

this information affects choice behavior (Dayan and Yu, 2002). Ventral tegmental dopamine 

neurons are thought to integrate such uncertainty information, modulating their firing rate based 

on confidence estimates and risk (Fiorillo, 2011; Jo et al., 2018; Lak et al., 2020; Naudé et al., 2016; 

Stauffer et al., 2016). It is largely unknown, however, how such information is routed to the ventral 

tegmental area dopamine neurons. The orbitofrontal cortex is a strong candidate for such 

information (Cromwell et al., 2018; Grabenhorst et al., 2019; Lak et al., 2014b; Masset et al., 2020; 

Padoa-Schioppa, 2009; Padoa-Schioppa and Assad, 2006b; Pastor-Bernier et al., 2021). 
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Single neuron responses in orbitofrontal cortex are reported to reflect the statistical parameters of 

uncertain outcomes, including mean value and variance (O’Neill and Schultz, 2010). Intrigued by 

such findings in the literature and by our own data that these subcortically projecting neurons are 

highly dedicated, we hypothesized that the ventral tegmental projection neurons might route 

uncertainty information. 

 

 

 

 

 

Figure 25 Optogenetic tagging of VS and VTA-projecting OFC neurons. 

Optogenetically identified tetrode recordings form OFC-VS (A) and OFC-VTA (B) neurons were made using 

the dual-virus approach to deliver ChR2. Average activity of an OFC-VS neuron following reward delivery 

(feedback period) and in the leadup to the subsequent trial (preparatory period). OFC-VS neurons reliably 

show strong representations of negative outcomes. Average activity of an OFC-VTA neuron, showing graded 

representations of reward size. Unlike OFC-VS neurons, OFC-VTA representations are not sustained through 

the subsequent trial. (C,D) Average regression coefficients for Reward Size Preference and Previous 

Outcome Preference (equivalent to behavioral bias measures in Fig. 2) for all OFC neurons, OFC-VS, and 

OFC-VS projection neurons. VS, ventral striatum; VTA, ventral tegmental area. 
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Methods and results 

 
Our work support the hypothesis that different projection populations within orbitofrontal cortex 

encode different forms of value information. Preliminary recordings from optogenetically tagged 

projection neurons to the striatum (n=19) demonstrate high sustained firing following unrewarded 

trials (Figure 25). In contrast, subcortically projecting neurons to the ventral tegmental area (n=1) 

demonstrate transient firing that is positive and graded, reflecting reward size. The ventral 

tegmental projection neuron responses did not reflect perceptual uncertainty, but their sensitivity 

to outcome uncertainty remains an open question. 

 

 

To assess this possibility, we developed a novel reward biased, perceptual decision-making task 

in rats which were required to track the second order statistics of their environment (Figure 26). 

The core design is a two-alternative forced choice paradigm in which rats make a binary decision 

based on sensory (auditory) information. Rats must determine which of two auditory click trains 

delivered binaurally has the greater number of clicks. Rats perform close to perfect on the easiest 

trials and their accuracy varies with the strength of sensory evidence and correct choices are 

rewarded with water after a fixed reward delay. As opposed to a free choice task, such a perceptual 

task provides a normative framework, constraining choice behavior. The left and right reward sizes 

for a single trial are drawn from independent normal distributions and change in a block-wise 

manner. One port is changeable, whereas the other port is static. In an “unequal” block, the 

distribution for the static port has a small mean and variance. The distribution for the changeable 

port can either be a large mean and variance, or a large mean and small variance. At an un-signaled 
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time point, the block transitions to an “equal” or control block wherein the changeable port’s 

distribution matches that of the static port. Such a task design has an intuitive prediction for the 

speed of transition; it is easier to detect a change in a more stable versus a stochastic environment. 



115  

 
 

 

Figure 26 Variance task design. 

(A) Rats are trained on a perceptual two-alternative forced choice task in which the reward size of the 

“changeable” port is drawn from a normal distribution with a low to high variance. In this pilot form of the task, 

the reward size for the static port is fixed and the mean reward sizes flip across blocks. (B) An adaptive shift in 

the psychometric towards the higher valued port (blue, left high; orange right high) was initially used to assess 

speed of learning following an unsigned block transition. (C) Overview of choice behavior in a pilot run for 

n=1 rat. (D) For initial testing, equal magnitude blocks were included so ensure that the rat’s behavior returned 

to baseline. Including variance in the reward sizes did not disrupt choice behavior, and the shape and lapse rate 

of the variance (yellow, left high; red, right high) versus control blocks (blue) were comparable. (E) Average 

psychometric curves averaged across blocks. (F) Reward sizes per trial across blocks for the left (blue) and 

right (red) port. (G) Choice behavior 50 trials pre- and post- block transition. 
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Figure 27 K1 rule for a dynamic learning rate in a reinforcement learning model. 

 

 

 

To make behavioral predictions from first principles, we made different reinforcement learning 

models, one with a static and the other a dynamic learning rate (Figure 27). In the dynamic learning 

rate model, a Kalman filter is used to adjust learning rate based on outcome uncertainty such that 

in more variable environments (i.e., high mean, high variance distribution) the learning rate is low 

and in more static environments, the learning rate is high. In this dynamic learning rate model, the 

Q values for the left and right ports reflect integrated value, a combination of sensory uncertainty 

and value. The learning rate is then updated using a Kalman filter implemented through the K1 

rule (Sutton, 1992). The K1 rule describes a dynamic programming form of stochastic gradient 

descent which boosts the amount of learning that happens if the current weight change is correlated 

with recent weight changes. This model confirms our intuition that faster transitions take place 

when a change occurs in a stable environment versus a more stochastic one (Figure 28). In contrast, 
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if rats do not adjust their learning rate, there should be no differences in the speed of transition 

across different environments. 
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Figure 28 K1 RL model predictions 

(A) Behavior of the K1 RL model in an environment with varying reward sizes, but no perceptual uncertainty. 

(B) After initialization, the learning rate remains relatively stable in low variance environments and then rapidly 

decreases in high variance environments. (C) Possible block transitions in the variance task and prediction that 
the speed of learning depends on a dynamic learning rate. (D) A RL model with a static learning rate predicts 

no differences in the speed of learning across different block transitions. (E) K1 RL model reproduces the 

intuition that speed of learning is slower in a high versus low variance environment. (F) Read outs of the 

learning rate on a single trial basis suggest that this is due to low learning rates in high variance environments. 
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Preliminary behavioral data supports the hypothesis that rats (n=1) adjust their learning rate based 

on outcome uncertainty. In this pilot study, there is zero variance in the control block. Despite 

added outcome variance, this did not disrupt choice behavior and the psychometric curve retained 

its shape and lapse rate across the different blocks. To assess choice behavior at the time of a block 

transition, we specifically looked at choices for 

difficult trials (Figure 29, top). Rats were slower 

to adjust their choice behavior in uncertain trials 

when switching from a high versus a low 

variance environment, an observation that 

follows from basic statistical principles. 

Interestingly, we also observed an effect on 

reaction time specifically for difficult trials 

(Figure 29, bottom). In control blocks, reaction 

time is modulated by trial difficulty such that 

rats spend more time in the center port for 

difficult versus easy choices. Surprisingly, this 

effect vanishes in a high variance environment 

and might also be a behavioral signature of the 

block transition. 

 

 

Figure 29 Preliminary behavioral data at the time of 

a block transition. 

(Top) Slower speed of learning when moving from 

a high variance environment to the control. (Bottom) 

Blunted increase in reaction time for difficult trials 

in high variance environments. 
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To capture a more definitive readout of 

learning the block transition, we propose 

adding an additional “switch port” 

(Figure 30).  Inferring the amount of 

evidence needed to recognize a transition 

and mapping these behaviors back to 

neural data is challenging as there are 

limited trials. As such, we adapted the 

task design to include a self-report of the 

block transition. After the block transition, 

the rat can re-initialize the unequal block 

by poking into a fourth “switch” port. As 

the “equal” block has a lower average 

reward rate, the rat should be incentivized 

to return to the “unequal” higher reward 

environment. 

 

Future work 

 

 

 

Figure 30 Proposed modification to future variance task to 

include a self-report of the block transition. 

At an unsigned block transition, the reward environment 

becomes leaner and the port distributions are matched. The 

rat can re-initialize a richer environment by poking into a 

fourth “switch port.” We expect that this will provide a 

clearer read-out for when the rat realizes it is in a different 

environment. 

 

This preliminary behavioral data and computational framework sets the stage for future studies to 

test for static and dynamic representations of learning rate that could support meta-learning. In 

future, we will use dual-color head-mounted miniscopes (nVue from Inscopix) to simultaneously 

image excitatory pyramidal cells and target-defined projection cells in the OFC during freely 

moving behavior. We will test the hypothesis that ventral tegmental area projection neurons 
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encode distributions of reward size, that is, carries information about both magnitude and variance. 

Further, we will be able to determine to what degree the diversity of OFC neuronal responses map 

to distinct projection cell types. If decision variables do not map onto projection cell types and we 

observe mixed information across circuits, our large-scale recordings will enable shifting to 

population encoding of decision processes. 
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Chapter 6 

Conclusion 

 

 

Summary 

The architecture of mammalian cortex has been shaped over thousands of years and can support 

varied functions soon after birth (Bhattasali et al., 2022; Yang and Molano-Mazón, 2021; Zador, 

2019). As such, the circuit architecture imposes an evolutionary constraint on different 

computations, but an overarching projection logic has remained elusive. Here, I established the 

subcortical output architecture of rat orbitofrontal cortex (OFC) at a single neuron resolution. I 

found that most subcortically projecting neurons adhere to a one-neuron-one-target projection 

logic and revealed a previously unappreciated relationship between subcortical target and 

sublaminar position (a “deeper-farther” rule). The existence of a highly structured circuit bolsters 

the hypothesis that anatomically distinct projection types represent functionally distinct 

information channels. To test the functional roles of different projection types in OFC, I next 



123  

developed two task variants that enable testing for (1) static and dynamic learning rate 

representations by manipulating the outcome distribution and (2) subjective value representations 

that could drive dopaminergic signaling and in turn, momentary choice preferences. In future, these 

tasks can be used to assess for stable and task-general neural representations across different 

projection types in orbitofrontal cortex. Taken together, this work furthers a cell type-specific 

understanding of how OFC representations are routed to subcortical targets to drive healthy 

decision-making. 

 

 

Future outlook 

The orbitofrontal cortex (OFC) has taken center stage in studies of choice behavior (Cromwell et 

al., 2018; Kimmel et al., 2020; Masset et al., 2020; Padoa-Schioppa and Assad, 2006a). Though 

recently conceptualized as the hub of the brain’s valuation system, we lack a quantitative 

understanding of what facets of valuation and learning OFC supports and how the relevant 

computations are produced by neural circuit mechanisms. In part, this is attributable to the 

immense diversity of neurobiological cell types from which diverse and complex response 

properties might arise. 

 

 

The cell type diversity in the brain is staggering and at times, disheartening. It is often unclear 

what is “stamp collecting” and how to interpret overwhelming data from high throughput circuit 

mapping and sequencing. However, it is important to note that the end goal is not to identify 

endless cell types. Rather, it is to find the right level of granularity and establish a biologically 

grounded framework from which we can both constrain and infer circuit functions. Cell types are 

the lens that brings anatomy, genetics, and circuit function into focus on a single plane, yet little 
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is known about the cell-type-specific organization of OFC. Such an approach is critical to further 

a mechanistic understanding of decision-making and better understand the neural processes that 

give rise to behavior. It is critical to take a multi-disciplinary approach and run the table, from 

receptor interactions and cell types to high dimensional behaviors to computational models. Such 

a unified framework sets the stage for a better understanding as to how information is distributed 

and encoded, what are the core conserved circuits in frontal cortex, and how such circuits might 

be changed as a function of experience. 
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