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ABSTRACT OF THE DISSERTATION

Determination of Output Composition in Reaction-Advection-Diffusion Systems and Improving

Language Model Performance with Re-Tuning

by

Pasewark, Eric

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2024.

Professor Renato Feres, Chair

There are 2 main subjects studied in this thesis. The first is on modeling chemical reactions.

We formulate the problem of determining how much product is formed from a reactor and

model this problem using metric graphs. We develop an efficient method to explicitly solve

the problem on metric graphs. We work through examples by hand and with code to solve

the problem. The second subject is a novel method to improve language model performance

on compositional tasks. Our method teaches a language model to break a given problem into

different subproblems, create prompts for these, and then solve the subproblems in separate

contexts. The model uses the solutions of the subproblems to return the solution to the original

problem given to the model. This method improves performance on 3 common tasks in the

length generalization literature.

ix



1. Organization of the Thesis

This thesis presents work from 2 different papers: one studying a reaction-diffusion problem

and the other studying language models. The work on the reaction-diffusion problem was

completed with Renato Feres and Gregory Yablonsky. This makes up Part I, consisting of

chapters 2-5. Chapter 2 presents an introduction to the reaction-diffusion problem and gives

the basic setup for the problem. Chapter 3 presents the method to solve the problem. Chapter

4 shows examples of network reactors and their solutions. Finally, chapter 5 presents the

mathematical theory behind the solution method and the reduction to network reactors. These

chapters are largely taken from the paper "Determination of output composition in reaction-

advection-diffusion systems on network reactors" [1] with Renato Feres and Gregory Yablonsky

The work on language models was completed with Kyle Montgomery, Kefei Duan, Dawn

Song, and Chenguang Wang. This work is in a forthcoming paper that is currently under review.

This makes up Part II, consisting of chapters 6-8. Chapter 6 starts with background to understand

the length generalization setup and then explains our new method to improve performance in this

setup. Chapter 7 presents experimental results of the method, showing superior performance on

3 common length generalization tasks. Chapter 8 discusses related work and possible extensions

of Re-Tuning.

Additionally, the appendix 9, gives a list of symbols for the reaction-diffusion problem and

additional information and results for the language model work.
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The first part of the thesis is the product of many discussions and emails among myself,

Renato Feres, and Gregory Yablonsky. Renato and I worked on the mathematical ideas behind

this for more than 2 years and Gregory worked on the chemistry applications. Initially Renato

and I wanted to look at optimizing catalyst positions based on the methods from Renato’s

previous papers. This involved multiple methods, including using PINNs [2] from machine

learning (Donsub Rim also provided helpful discussions related to this). Along with this, we

also pursued some other machine learning applications, including analyzing machine learning

training dynamics from a stochastic process perspective, for example as in [3]. We also looked at

applying similar techniques to analyze diffusion models [4]. This brought us to investigate using

stochastic process methods to analyze the chemistry problem in Part I. However, we realized that

using a PDE approach would be easier and ultimately went that direction. In the final product,

I additionally contributed an existence and uniqueness proof using matrix methods, wrote the

code to implement our method to solve for the output composition matrix, and used this for

computational results in the thesis and for other analysis.

While Renato and I were looking at applications of math to machine learning and machine

learning to math, language models started becoming much more powerful. I investigated some

applications of language models to math and programming problems and realized that language

models had difficulty solving many compositional problems. I thought that part of the problem

may be that the language models have a difficult time ignoring information that is irrelevant to a

current computational step. For example in adding 2 numbers, part of the process the language

model may follow is to add individual digits of these numbers. However, the language model

still attends to all of the other digits even if they are irrelevant to adding the current digits. This

led me to develop a method to help the language model focus only on the current step of a

2



multi-step problem. I came up with the Re-Tuning method, implemented it in code, and ran

initial experiments to analyze its performance on addition, parity, and dynamic programming.

After it looked promising, I began working with my coauthors on this, Kyle Montgomery, Kefei

Duan, Dawn Song, and Chenguang Wang. My coauthors ran additional experiments and we

also collaborated to put all our ideas in writing. Additionally, Renato contributed many helpful

discussions along the way.

3



2. Introduction to the Reaction-Diffusion Problem

2.1 Brief overview

We consider reaction-transport processes in open reactors in which systems of first order

reactions involving a number of gas species and solid catalysts can occur at localized active

regions. Reaction products flow out of the reactor into vacuum conditions and are collected

at an exit boundary. The output composition problem (OCP) is to determine the composition

(molar fractions) of the collected gas after the reactor is fully emptied. We provide a solution to

this problem in the form of a boundary-value problem for a system of time-independent partial

differential equations. We then consider network-like reactors, which can be approximated

by a network consisting of a collection of nodes and 1-dimensional branches, with reactions

taking place at nodes. For these, it is possible to solve the OCP in a simple and effective way,

giving explicit formulas for the output composition as a function of the reaction coefficients and

parameters associated with the geometric configuration of the system. Several examples are

given in 4 to illustrate the method.

The main application of our work is to Temporal Analysis of Products (TAP) [5] experiments.

In these experiments a reactor is filled with some inert material (something like sand) and

contains one or more catalysts where a reaction can occur. Gas particles are injected at some

4



entrance to the reactor and products are retrieved at the exit. The gas moves by diffusion or

advection, and may encounter the catalyst as they move. The gas retrieved at the exit may have

some combination of the original reactants injected into the reactor and some of the products

formed while the gas was in the reactor. A problem of interest is to determine the proportions of

different chemical species retrieved at the exit. This is the output composition problem.

We follow inspiration from previous lines of work [5], [6], and model the 3D reactor as a

metric graph. Roughly speaking, a metric graph is a regular mathematical graph with vertices

and edges, along with the additional structure that each edge represents a continuous interval.

With this model, we can explicitly solve the output composition problem. Additionally the

solution is simple to implement and fast to run. For the experiments in Chapter 4, solving the

output composition problem for each graph took less than a second.

2.2 Motivation

Reaction-transport problems, in particular reaction-diffusion problems, are among the most

topical and widely studied in chemical engineering. They have been posed and investigated in

classical works of chemical engineering since the very beginning of this discipline. See [7, 8].

In approaching such problems, different elements should be considered:

• The chemical reaction is complex, i.e., it consists of a set of reaction steps involving a

reactive mixture.

• Chemical reactions are always accompanied by transport.

• Two types of transport are typically considered: “forced” propagation (advection) and/or

“self-propagation” (diffusion).

5



• Reactions occur over the surface of catalytic units (pelets, particles, etc.), which may be

either porous or non-porous.

• The distribution of catalytic units within the reactor space is non-uniform.

There is presently no general theory that addresses all these elements together, especially

the last one, regarding the geometric configuration of the catalytic units distributed within the

reactor space and separated by the non-active material. For a few references on this general topic

we mention the classic works [7,8] as well as [9]. In the present work we propose to address this

need by modeling the geometric configuration in terms of a network structure, in the context

of systems of linear reactions. The following sections of this introduction explain our general

set-up, with detailed definitions given in subsequent sections.

In open reactors, one specific problem of basic interest is the determination of the composi-

tion of the reactive mixture after the reactor is fully evacuated, for a given mixture introduced

initially. Such “injection-evacuation” operation is one of the basic procedures in chemical

engineering, and it may take many forms. For example, a similar problem was studied within

the Temporal Analysis of Products (TAP) approach [10–13]. Also the problem analysed in [14],

concerning complex catalytic reactions accompanied by deactivation, is of this kind, where

catalytic deactivation may be regarded as equivalent to reactor outflow in the present context. In

such situations, a basic problem is to determine the composition of this output mixture.

In our network setting, this output composition problem (OCP) can be analysed in a compu-

tationally effective way. This analysis is the main concern of the thesis.

The common theoretical approach for obtaining output composition is to begin by solving the

reaction-transport equations, from which one obtains the exit flow of substances from the reactor

6



and, through integration in time, the amounts of the reaction products. We show, however, that

the output composition can be expressed directly as the solution to a boundary value problem

for a time-independent system of partial differential equations, thus by-passing the technically

more difficult analysis based on first solving the reaction-transport equations. In the setting of

network reactors (to be introduced shortly) the boundary-value problem for the OCP reduces to

a system of linear algebraic equations from which we can in many cases obtain explicit solutions

in a straightforward manner.

It has long been noted that time-integral characteristics (or moments) of reactor outflow

provide important information about the reaction-transport system, such as the determination of

conversion from kinetic data. Early works in this direction are by Danckwerts and Zwietering

[15–17], where the authors used non-reactive tracers for this purpose. In Danckwerts’s approach

( [15,16]), a moment-based analysis of reactor output was used. By injecting a radioactive tracer

at the reactor inlet and measuring its concentration at the outlet, Zwietering ( [17]) showed that

mixing patterns can be determined. In a similar vein is Temporal Analysis of Products (TAP)

approach [14, 18–21]. In TAP studies, an insignificant amount of chemical reactants is injected

at the reactor inlet and the resulting response at the outlet is subsequently analysed. Here again,

a moment-based technique for the calculation of time-integral characteristics of reactor outflow

is used. In many TAP systems, Knudsen diffusion is the only transport mechanism.

The novelty in our approach, as already noted, is that we seek an effective method for

computing integral characteristics in reaction-transport systems directly, without the need to first

solve the (linear) reaction-transport equations.

At the core of our analysis is a matrix f(x) = (fij(x)), which we call the output composition

matrix, where the indices i, j label the substances involved in the reaction-transport process.

7



This matrix is defined as the molar fraction of substance labeled by j in the reactor output

composition given that a unit amount of i is initially supplied to the system at position x in the

reactor. On networks, substances are injected at nodes, often denote by n below. In that setting,

we normally write f(n). Most of the present part of the thesis is about the characterization and

computation of the output composition matrix, and the mathematical justification of our method

for computing it.

If the input mixture at node n has composition given by the vector of fractions α =

(α1, . . . , αN), where N is the number of substances and the sum of the αi is 1, then the

output composition is β = (β1, . . . , βN) such that

βi =
N

∑

j=1

αjfji(n).

Thus the output composition matrix summarizes all the information about the reaction-transport

system that bears on the determination of the composition of output mixture, disregarding

time-dependent characteristics of the output flow. A preliminary formulation of our main result

is given in the next section.

Perhaps an analogy is useful in explaining the utility of the output composition matrix f(n).

It plays for linear reaction-transport systems a similar role to that of scattering operators in

quantum theory: we may think of the different chemical species as different scattering channels;

if we probe the system by injecting i at node n, the output in channel j is given by the matrix

coefficient fij(n).

The present work continues the line of investigation initiated in [6] and [5], where they

authors considered the irreversible reaction A→ B on networks and studied reaction yield as

a function of the network configuration and reaction/diffusion coefficients. That study was
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based on the Feynman-Kac formula and stochastic analysis. In addition to greatly extending

this previous work by allowing much more general systems of reactions, we have replaced

the stochastic analysis with a more concrete and elementary, and perhaps conceptually more

transparent, approach entirely based on an analysis of the initial/boundary-value problem for the

reaction-transport equations.

Our approach admits natural generalizations that we did not want to pursue here. For

example, it is possible to refine the output composition matrix so that it gives amounts of

reaction products that evacuated at different parts of the reactor exit boundary.

A computer program for the computation of output composition based on the main theoretical

result of this part of the thesis is available at

https://github.com/Pasewark/Reaction-Diffusion-output-composition/

tree/main.

2.3 General set-up and formulation of the output composition problem

The purpose of this work is to provide an effective answer to the following problem. Let us

consider a system of reaction-advection-diffusion equations with linear reaction rate functions,

taking place inside a reactor represented by R, which may be imagined for the moment (precise

definitions will be given shortly) as a region in 3-space partially enclosed by walls that are

impermeable to the flux of gases—to be referred to as the reflecting boundary of R—but still

open at certain places to an exterior that is kept at vacuum conditions.

Thus the two-dimensional boundary of R is the union of two parts: the reflecting boundary

and the exit boundary. The interior ofR is permeable to gas transport and contains a distribution

9
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injection exit

active region

Figure 2.1.: A network-like reactor consists of pipes connected at junctures, which are places at which

reactions may occur. The reactor interior is permeable to gas transport. Active regions contain catalyst

particles that promote reactions involving the gas species.

of solid catalysts promoting first order reactions among N gaseous chemical species. We

designate by 1,2,⋯,N the various species and by κij(x) the kinetic reaction coefficient for

the linear reaction i → j at position x. (Notice that our reactions are, formally, a system of

isomerizations, although more general types can be accommodated by our analysis as will be

indicated in Section 3.3.)

We have in mind situations in which the κij(x) are nonzero only at relatively small active

regions. Diffusion coefficients and advection velocity fields are also specified for each gas

species. Given this system configuration, we suppose that a mixture of these gas reactants is

injected into R at known places and reaction products are collected at the exit boundary. The

precise mode of injection does not need to be specified, although it is assumed that substance

amounts are sufficiently small that the linear character of transport is attained early on in the

process. After sufficient time, the reactor empties out and the full amount of reaction products is

collected.
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It will be shown that this output composition problem—abbreviated OCP—can be solved by

a boundary-value problem for a system of time-independent partial differential equations.

We are particularly interested in reactors that have a network configuration, as suggested

by Figure 2.1. That is, they consist of pipes linked to each other at junctures of relatively

small volume. The whole ensemble will be called a network-like reactor. Reactions can only

take place at junctures. Pipes are characterized by their cross-sectional areas, diffusivity and

advection velocity, possibly dependent on species index i but constant along pipe cross-section;

and the junctures are characterized by the functions κij(x), possibly equal to 0.

Given this information, and assuming that gas concentrations in the pipes are essentially

constant along cross-sections, which is to be expected if pipes are long and narrow and diffusivity

and advection velocities are also constant on cross-sections, the network-like reactorR becomes,

effectively, 1-dimensional (see Figure 2.2). In this setting, we refer to pipes as branches,

junctures as nodes, and R as a network reactor (dropping the suffix “like”). In this network

setting, we show that the boundary-value problem referred to above can be solved with relative

ease.

injection exit

active node

Figure 2.2.: Network reduction of the

network-like reactor of Figure 2.2.

By an effective answer to this output composition

problem we have in mind formulas for the amount of

each gas species in the reactor output showing the ex-

plicit dependence on reaction coefficients at the various

active nodes, with coefficients that are known functions

of the geometric/topological parameters of the network

such as lengths of branches and degrees of nodes, initial

data, and the coefficients of diffusivity and advection
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velocities. (The latter transport parameters will be as-

sumed constant along pipes in our examples.) As will be seen, the output composition problem

for network reactors can be conveniently expressed in terms of a matrix f(n) = (fij(n)) whose

entry fij(n) is the fraction of species j in the output given that a unit pulse of i is injected into

the reactor at node n. When the transport parameters are constant along branches, this quantity

will turn out to be a rational function of the reaction rate constants with coefficients that are

polynomial functions of the velocity-adjusted lengths of the network branches, a measure of the

effective length of pipes to be defined shortly.

2.4 Organization of the reaction-diffusion chapters

Chapters 3-5 are organized as follows. In Chapter 3, we describe the system of partial

differential equations and initial/boundary-value conditions that serve as the mathematical model

for the reaction-transport process and show the boundary-value problem that solves the OCP for

general reactor domains. (3.1.) We then introduce definitions and notation needed to describe the

network version of the OCP (3.2). In 3.3 we make a few remarks about the nature of the reactions

this study is restricted to and in 3.4 we describe the relationship between reaction coefficients

on the network-like reactor and on its network approximation. The matrix f(n) encoding the

solution to the OCP is explained in greater detail in 3.6 and the method for obtaining it as

solution of a system of linear algebraic equations is shown in Chapter 3. It turns out that the

presence of advection velocities enters into f(n) in a very simple way through the introduction

of velocity-adjusted lengths defined and explained in 3.7. Chapter 4 provides several examples

to illustrate the procedure for solving the OCP and makes a few observations about the nature

12



of solutions. In Chapter 5 we present the mathematical proof of the main result for general

reactor domains and in 5.4 we show how those results are formulated for network reactors. In

the appendix, 9.1, we provide a glossary of the most frequently used symbols.

13



3. Definitions and method of solution

3.1 The boundary-value problem solving the OCP

For the moment, let us assume that the reactor R is a general domain in coordinate 3-

space with nice (differentiable) reflecting and exit boundaries. The mathematical model for

the reaction-transport system is as follows. Let Di(x) and vi(x) represent the diffusivity and

advection velocities, which we allow to depend on the gas species. These species are labeled by

i = 1, . . . ,N . The concentrations ci(x, t) satisfy the system of equations (see, for example, [7])

∂ci
∂t
+∇ ⋅ ji = ∑

j

cjκji, (3.1)

where ji = civi −Di∇ci is the flux vector field of species i, and boundary conditions:

• ci(x, t) = 0 for x on the exit boundary of R;

• the normal component of the flux, n(x) ⋅ ji(x, t), equals zero on the reflecting boundary.

Here n(x) is the unit normal vector pointing outward at a boundary point x of R. One further

specifies initial concentrations at time t = 0.

In the long run, all reaction products (including gas that didn’t undergo reaction) leave R

through the exit boundary. The amount of each species in the reactor output is the quantity of
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primary interest in our analysis. Since the initial-boundary-value problem is linear, in order to

predict the output composition it is sufficient to determine the quantities fij(x) defined as:

fij(x) = fraction of j in the output given that a unit pulse of i is initially injected at x. (3.2)

We call f(x) ∶= (fij(x)) the output composition matrix for each injection point x. Our analysis

begins with the observation that this matrix-valued function on R satisfies the system of partial

differential equations

∇ ⋅ (Di∇fij) + vi ⋅ ∇fij +∑
k

κikfkj = 0, j = 1, . . . ,N, (3.3)

and boundary conditions

n ⋅ ∇fij = 0 on the reflecting boundary of R

fij = δij on the exit boundary of R.

(3.4)

This result will be proved in Chapter 5. Under a few simplifying assumptions that are natural to

network-like reactors, it is possible to solve the boundary-value problem explicitly in many cases.

In the network approximation, the reactor domain R becomes a union of (possibly curved) line

segments that we call branches, which are connected to each other at points called nodes. We

further assume that the transport quantities (diffusivities and advection velocities) are constant

along branches and chemically active regions are reduced to nodes. The reduction of the OCP

and its solution to network reactors will be detailed in Section 5.4.

We begin this analysis in the next section by introducing some notation and terminology for

reaction-transport processes on networks.
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3.2 Some network definitions and notation

As already indicated, the network-like reactor, consisting of thin pipes connected to each

other at junctures, with chemically active regions restricted to junctures, will be replaced

with an actual network (or graph) consisting of 1-dimensional branches (edges) and point

nodes (vertices). All the geometric, transport and reaction parameters relevant to the output

composition problem will become parameters assigned to these branches and nodes. The

following description refers to this network reduction, which we will call the network reactor,

or simply the network, and continue to denote by R. Figure 3.1 will be used to illustrate the

main definitions introduced in this section.

Proceeding more formally, we define a network reactor R as a union of finitely many lines

in coordinate 3-space with finite length, called the reactor’s branches and indicated by the labels

b0, b1, . . . . These branches are joined at points which we call the reactor’s nodes, indicated

by n0, n1, . . . . (Indexing branches and nodes starting from 0 is, of course, an arbitrary matter.

Occasionally, we begin from 1.) Each branch b can be oriented in two possible ways, indicated

by b and b. It is useful to make from the beginning an arbitrary choice of orientation for each

b (indicated by arrows in the network diagrams) so that branch velocities can be expressed by

a (positive or negative) number attached to b. We may occasionally use the opposite branch

orientation than the one indicated by the arrow. This may happen, for example, when writing

node conditions for our differential equations, where it is convenient to orient branches attached

to a given node in the direction pointing away from the node. In such situations, the sign of

the advection velocity is flipped. An oriented branch b may also be indicated by the pair of

its initial and terminal nodes, (n,n′). This can only be done when there is at most one branch
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between any pair of nodes. By adding additional inert nodes, this assumption can be made

without any loss of generality and without changing the properties of the system. We then have

(n,n′) = (n′, n).

To summarize, branches and nodes of the network reactor R are assigned the following set

of parameters:

• To each branch b is associated its length ℓ(b), diffusivity coefficients Di(b) (also indicated

by Db
i at some places in the analysis) where i = 1,⋯,N labels the gas species, and

advection velocities νi(b). Velocities can be positive, negative or zero and we have

νi(b) = −νi(b). When branch orientations are explicitly indicated on network diagrams

by arrows (as we do in the examples), we may simply write νi(b) or νbi .

• To each node n we associate a matrix K(n) = (Kij(n)) where Kij(n) is the constant of

the i→ j reaction at node n. It is mathematically convenient to define Kii(n) to be equal

to the negative of the sum of the Kij(n) for all j not equal to i. Defined this way, the

sum of the entries of each row of K(n) is 0. Notice that we are using different symbols

for the reaction coefficient κij(x) for a general (network-like) reactor and Kij(n) for the

corresponding constant on the network reactor approximation. The latter is obtained from

the former by a scaling limit and so they are, as we will see shortly (section 3.4), distinct

quantities. It is the Kij(n) (and not the κij(x)) that will appear in our explicit formulas

for output composition on network reactors.

• To each node n and each branch b attached to n we define p(n, b) as the ratio of the

cross-sectional area of the pipe (of the original network-like domain, represented by b

in the network reduction) over the sum of the cross-sectional areas of all the branches
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attached to n. So defined, the sum of the p(n, b) for a given n is 1. In the examples, we

always take p(n, b) = 1/deg(n), where the degree of a node, deg(n), is the number of

branches connected to it. This amounts to the assumption that all pipes have the same

cross-sectional area.

• We may identify an oriented branch b with the closed interval [0, ℓ(b)]. More precisely,

we associate to b = (n,n′) a (twice continuously differentiable) parametrization of b by

arc-length, φb(x), where 0 ≤ x ≤ ℓ(b), so that φb(0) = n and φb(ℓ(b)) = n′. We are

thus indicating points along b by their distance (length) from the initial node. If f is any

function on R, its restriction to a branch b becomes a function of x: fb
(x) ∶= f(φb(x)).

The reason for writing b as a superscript is that such functions will typically be further

indexed by the label of the chemical species. For example, the concentration of i at the

point φb(x) may be written cbi (x) ∶= ci(φb(x)). Notice that the derivative φ′b(x) is a unit

length vector. If vi is the advection velocity of i, then vi(φb(x)) = νbi (x)φ
′
b(x). (We are

not yet assuming that advection velocities and diffusivities are constant along branches.)

injection point exit boundary

Figure 3.1.: The main elements of a network reactor. Active

nodes are indicated by a circle around a solid dot.

A node will be called (chemi-

cally) active if some reaction coef-

ficient at it is positive. An inactive

node is one at which all reaction co-

efficients equal 0. A subset of in-

active nodes will constitute the exit

boundary. In the example of Figure

3.1, this is the single-point set con-
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sisting of n5. The exit boundary is

where products can leave the reactor and where concentrations are set equal to zero (vacuum

conditions). We call internal nodes those nodes that do not lie in the exit boundary. A collection

of internal nodes, active or inactive, may be chosen for the place at which an initial pulse of

reactants is injected into the reactor.

In practice, it is useful to allow the exit boundary to consist of multiple nodes but, mathemati-

cally, no generality is lost if we assume that all these exit nodes merge into a single one. It is also

convenient, as already noted, to suppose that, between each pair of nodes, there can be at most

one connecting branch, so that an oriented branch b can also be indicated by the pair (n,n′)

of initial and terminal nodes. When describing vectors (advection velocities and gradients of

functions) both notations, say νi(b) or νi(n,n′), may be used depending on convenience and

context.

3.3 General reactions with linear rate functions

We have assumed that reactions are linear, of the type i→ j, but our analysis can accommo-

date more general types so long as rate functions are linear. This is explained below.

For the purposes of this section, we regard chemically active junctures in the network-like

reactor as CSTRs with in and out fluxes where junctures connect to pipes. Let us suppose that

the reaction mechanism on a given juncture consists of a set of S reactions—generally an even

number since we count separately a reaction and its reverse—involving N molecular species.
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We denote these species here by A1, . . . ,AN . (Elsewhere in the thesis, they are indicated simply

by i rather than Ai.) Let each reaction, labeled by the index s = 1, . . . , S and given by

as1A1 +⋯ + asNAN → bs1A1 +⋯ + bsNAN ,

have reaction rate functions ws(c) where c = (c1, . . . , cN). The stoichiometric coefficients,

asi, bsi, are non-negative integers and asibsi = 0 so that no species appear on both sides of the

reaction equation. The rate of change of the concentration of Ai is

dcj
dt
=

S

∑

s=1

(bsj − asj)ws(c) + net flux of Aj in and out of juncture.

We assume that the rate function ws(c) is a linear function of the concentration of one of

the input species (that is to say, one of the Ai for which asi is not zero). This approximation

is often made in two cases: (a) the actual reaction mechanism involves a linear step whose

rate coefficient is significantly smaller than those of the other reaction steps; in such a case,

the overall rate can be dominated by that of the slower linear reaction. (b) The reaction is

bimolecular and involves components A1 and A2, A2 being much more abundant than A1. In

this case, the reaction rate can often be approximated by a linear function of the concentration

of A1. We refer to [9] for more details on such issues in chemical kinetics. Generally, such

linearization is an important problem in chemical engineering, but it is an issue that lies outside

the scope of the thesis.

Thus we assume that ws(c) = wiscis for some is. By introducing

κij ∶=
S

∑

s=1

wis(bsj − asj)δiis

we reduce these differential equations to our preferred form:

dcj
dt
=

N

∑

i=1

ciκij + net flux of Aj.
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In our analysis of the OCP, we rely on general facts about solutions of systems of parabolic

partial differential equations that require further assumptions on the entries of the matrix κ, the

most important being that the off-diagonal entries should be non-negative. (See, for example,

[22] 3.4.1.) Reaction equations for which these assumptions most directly apply are of the type

Ai ⇌ Aj . However, it is possible to accommodate more general types whose rates are still linear.

Consider, for example, the situation in which species A1,A2,A3 are involved in the irreversible

reaction

2A3 → A1 +A2

with rate w(c) = wc3. In this case, is = 3. We then have κij = 0 if i ≠ 3 and the third row of

κ is w(1,1,−2). Observe that this system is equivalent to two irreversible isomeric reactions:

A3 → A1, A3 → A2. For another example, let us consider the system of three reaction pairs:

2A1

w
(1)
+

ÐÐ⇀↽ÐÐ

w
(1)
−

2A3, 2A2

w
(2)
+

ÐÐ⇀↽ÐÐ

w
(2)
−

2A3, A1

w
(3)
+

ÐÐ⇀↽ÐÐ

w
(3)
−

A2.

Here the rate functions are w(1)+ c1 and w(1)− c3 for the first pair, w(2)+ c2 and w(2)− c3 for the second,

and w(3)+ c1 and w(3)− c2 for the third. In this case,

κ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−(2w
(1)
+ +w

(3)
+ ) w

(3)
+ 2w

(1)
+

w
(3)
− −(w

(3)
− + 2w

(2)
+ ) 2w

(2)
+

2w
(1)
− 2w

(2)
− −2 (w

(1)
− +w

(2)
− )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

Notice that the off-diagonal elements of this matrix are non-negative and the sum of the elements

of each row is 0. These are the two properties of κ that we assume for the main results of the

thesis.

It is not clear to us how general the matrix κ can be for our analysis to still be valid. This

analysis can be significantly extended to treat more general (multimolecular) reactions than

21



considered so far, even if many of them may not be meaningful from a chemical engineering

perspective (although they could be relevant in other areas of science where kinetic models are

used). It is an interesting problem to determine how general a system of reactions with linear

rates we can accept, but this article is not the place to deal with such mathematical issues. In all

the examples discussed below, we have limited ourselves to reactions of type Ai ⇌ Aj .

3.4 The relationship between κij(x) and Kij(n)

Next, we need to understand the relationship between the reaction coefficients κij(x) on the

network-like reactor in dimension 3 and the corresponding constants Kij(n) defined at a node n

on the network reduction. Recall that on the network-like reactors, active regions are localized

but still 3-dimensional. In the passage to network reactors these regions shrink down to points.

This entails a change of physical units, so that Kij(n) has units of distance over time, not the

reciprocal of time. The purpose of the present section is to provide some clarification on this

issue.

When we get to see explicit formulas for output composition later in this part of the thesis,

we will often encounter dimensionless expressions of the form ℓK/D, where ℓ is a length, D a

constant of diffusivity, and K a reaction coefficient associated with an active node. This may

seem at first to conflict with standard quantities in chemical engineering. Notice that κ, with

the physical unit reciprocal of time, is a sort of “density of chemical activity.” If this activity is

strongly localized along a small interval of length ϵ on a network branch, one needs to integrate

over this length to obtain activity on that small interval. Then κ should scale as κϵ ≈K/ϵ and

ℓK/D ≈ ℓϵκϵ/D.
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More precisely, let us look at what happens in a neighborhood of an active juncture. The

network approximation of the network-like reactor made of pipes and junctures will depend on

a small length parameter ϵ. This is the radius of a ball centered at any node n that delimits the

chemically active region at that juncture, if the juncture is active, and the part of the network

near n having a relatively complicated geometry, as opposed to the simple tube-like shapes on

the complement of the union of junctures. See Figure 3.2. Outside of such balls, pipes have

uniform cross-section and no reactions take place. This same ϵ is assumed to hold for all the

nodes and the smaller the value of ϵ the better is the network approximation.

Since, in the network model, active regions shrink to points, the reaction coefficients κij(x)

at any position x should be scaled up with the reciprocal of ϵ. This is because the probability that

a molecule will react is proportional to the total amount of time it spends in the active regions;

as these regions shrink to a point, the rate constants should scale up accordingly. We indicate

this by writing κij(ϵ,x).

Let Vϵ(n) and Aϵ(n) be, respectively, the volume of the juncture Rϵ(n) and the area of the

part of the boundary of this juncture complementary to the reflecting boundary—a union of pipe

cross-sectional discs. In taking the limit as ϵ approaches 0, we suppose that the dimensionless

quantity ϵAϵ(n)/Vϵ(n) converges to the positive quantity χ(n), a geometric characteristic of

the juncture that survives the limit process, and

1

Aϵ(n)
∫
Rϵ(n)

κij(ϵ,x)dV (x) →Kij(n).

In the above volume integral, keep in mind that κij(ϵ,x) is of the order 1/ϵ and has physical

dimension 1/time. Thus Kij(n) has physical dimension length/time.
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Figure 3.2.: A junctureRϵ(n) in the network-like reactor corresponding to a node n with an attached

pipe. The gradient shading represents catalyst distribution and ϵ is a radius delimiting the chemically

active region. The unit vector u(x) is orthogonal to the reflecting boundary of R whereas ub(n) is

the unit vector orthogonal to the cross-section of the pipe b pointing away from n. Aϵ(n, b) is the

cross-sectional disc where the pipe attaches to the juncture. Other features are explained in the text.
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Also note the limit Aϵ(n, b)/Aϵ(n) → p(n, b), where Aϵ(n, b)—the area of Aϵ(n, b) (see

Figure 3.2)—is the cross-sectional area of the pipe corresponding to the branch b attached to n.

These considerations will become important in Section 5.4.1, where we obtain node condi-

tions for the composition output boundary-value problem.

3.5 The boundary-value problem for output composition

Our main result for network reactors, described in the next section, is a consequence of the

already mentioned (see section 3.1) observation that the output composition matrix f(x), for a

not necessarily network-like reactor domain R, is the solution to the following boundary-value

problem:

(Af)ij ∶= ∇ ⋅ (Di∇fij) + vi ⋅ ∇fij +∑
k

κikfkj = 0, i, j = 1, . . . ,N, (3.5)

and boundary conditions

n ⋅ ∇fij = 0 on the reflecting boundary of R

fij = δij on the exit boundary of R.

(3.6)

To begin to develop an understanding of this boundary-value problem, let us consider two

extreme cases: (a) the reaction coefficients are negligible compared to the transport coefficients;

(b) the network-like reactor consists of one small active region directly open to the outside. In

this case, there are only to positions to consider: inside and outside the reactor and the only

relevant transport characteristic is the rate of evaculation of each substance.

In case (a), neglecting reactions (κij(x) = 0), the solution to the boundary-value problem is

the constant matrix with elements fij(x) = δij . The obvious interpretation is that the composition

of the output mixture equals the composition of the initially injected mixture.
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Let us now turn to special case (b). We don’t have, in this case, the transport terms of

the general reaction-transport equation, so it is necessary to introduce a rate of evacuation.

We model this situation by imagining that space consists of two points, one representing the

active region and the other the outside of the reactor (the surrounding of the active region). We

then introduce irreversible reactions of type Ai ↦ Xi, with a rate µi, where Ai represents a

substance inside the reactor and Xi is the same substance outside, where i = 1, . . . ,N . Thus this

“reaction-evacuation” process is mathematically equivalent to a reactions-only process inside a

closed reactor (which we may imagine as a batch reactor) observed from time 0 until chemical

equilibrium is reached and only the substances Xi remain. The matrix f for the reactions-only

process has the form

f =

⎛

⎜
⎜
⎜

⎝

fAA fAX

fXA fXX

⎞

⎟
⎟
⎟

⎠

=

⎛

⎜
⎜
⎜

⎝

O fAX

O I

⎞

⎟
⎟
⎟

⎠

,

where the blocks have size N ×N , O is the zero matrix, and I is the identity. The notation for

the block indices should be interpreted as follows: the (i, j)-element of fAX gives the fraction of

Xj at equilibrium when a unit amount of Ai is introduced initially. With similar interpretations,

it is clear that fAA = fXA = O and fXX = I . The reaction coefficients can be similarly written in

A1

A2

A3

X1

X2

X3

Figure 3.3.: A system of reactions with three terminal species (absorbing states).
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block matrix form:

κ =

⎛

⎜
⎜
⎜

⎝

κAA κAX

κXA κXX

⎞

⎟
⎟
⎟

⎠

=

⎛

⎜
⎜
⎜

⎝

κAA κAX

O O

⎞

⎟
⎟
⎟

⎠

,

where κAX is the diagonal matrix diag(µ1, . . . , µN). The concentrations ci evolve in time

according to the system of equations

dci
dt
= ∑

j

cjκji.

We wish to show that our boundary-value problem, in this special case, is indeed solved by

the output composition matrix f . First observe that, in the absence of diffusion and advection,

Af = κf , so Equation (3.5) reduces to κf = 0, and the boundary condition (3.6) reduces to

fXX = I . Written in terms of the matrix blocks, these two equations amount to

κAAfAX + κAX = 0. (3.7)

In order to see that Equation (3.7) is, indeed, satisfied by f , we now introduce a key ingredient

of the general proof that, in this special case (b), reduces to

ρij(t∣s) = concentration of i at time t given that unit amount of j is introduced at time s < t.

Naturally,

ρ′ij(t∣0) = ∑
k

ρkj(t∣0)κki, ρij(0∣0) = δij,

where ρ′ij(t∣0) is derivative in t. We then have the following fundamental equation, which we

accept here on heuristic grounds:

fij = ∑
k

ρki(t∣0)fkj. (3.8)

In words, if a unit amount of i is introduced at time 0, then the final amount of j equals

the final amount of j given that a unit amount of k is introduced at time t weighted by the
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concentration of k at time t. Said yet differently, the output amount of j is the same whether

we start with the composition consisting only of i at time 0, or with the mixture defined by

(ρ1i(t∣0), . . . , ρNi(t∣0)) at time t.

Differentiating in t at time 0 and using the equation and initial condition for ρki(t∣0) yields

0 = ∑
k

κkifkj.

In this system of equations, i represents one of the A-species and j one of the X-species.

Breaking the sum into these two types of indices, we obtain the system of equations (3.7), which

is what we wished to demonstrate.

The above remark brings into consideration the matrix-valued function ρ. Back to general

reaction-advection-diffusion systems, a similar function plays a central role in the proof given in

Chapter 5. The following remarks highlight the role of this key ingredient.

First notice that the total amount of substance i produced in the long run by the reaction-

transport process in the open reactor R is (here dx is ordinary volume element):

Amount of i in gas output = Initial amount of i +∑
j
∫

∞

0
∫
R
cj(x, t)κji(x)dxdt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
net amount of i produced by reactions

.

We wish to view this quantity as a function of the initial mixture pulsed into the reactor at time

0. Let us introduce the fundamental solution to the reaction-transport equations:

ρij(x, t∣y, s) = concentration of i at (x, t) given that a unit pulse of j is injected at (y, s), s < t.

Then, using the previous balance equation, we obtain that the total amount of j in the gas output

given that a unit of i is introduced at the beginning of the process is given by

fij(y) = δij +∑
k
∫

∞

0
[∫
R
ρki(x, t∣y,0)κkj(x)dx] dt.
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In matrix form,

f(y) = I + ∫
∞

0
∫
R
κ⊺(x)ρ(x, t∣y,0)dxdt,

where κ⊺ indicates matrix transpose. One is led to ask for a boundary-value problem characteriz-

ing the time-independent function f(y). We know that, as a function of (x, t) with (y, s) fixed,

the quantity ρ(x, t∣y,0) satisfies the reaction-transport equation with initial pulse condition

ρij(x, t∣y, s)
t↓s
Ð→ δ(x − y)δij.

The key fact we need, well-known in the theory of parabolic differential equations (see, for

example, [23]), is that ρ(x, t∣y, s), as a function of (y, s) for (x, t) fixed, satisfies a similar

initial-boundary-value problem. Specifically, writing ρ∗(y, s∣x, t) = ρ(x, t∣y, s)⊺,

−

∂ρ∗

∂s
= Aρ∗.

Here, the derivatives involved in A are relative to y. (See Section 5.2 for details.) This is the

place where the operator A finally enters the picture. The rest of the verification of the main

claim of this section now follows from the relatively straightforward mathematical manipulations

described in greater detail in Chapter 5. Details apart, we believe the conceptual core of this

story lies in the fundamental identity

fij(x) = ∑
k
∫
R
ρki(y, t∣x,0)fkj(y)dy, (3.9)

generalizing Equation (3.8), which is very natural given the interpretation of the matrix

ρ(y, t∣x,0).
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3.6 The output composition matrix for network systems

By the output composition matrix for network reactors, f(n) = (fij(n)), we mean a matrix-

valued function of the node n having the following interpretation: fij(n) is the fraction of gas

species j in the reactor’s output given that a unit pulse of species i is initially injected at node n.

By definition, if n is an exit node, then f(n) = I is the identity matrix; that is, fij(n) = δij , the

Kronecker delta, which is 0 if i ≠ j and 1 otherwise.

Due to the linearity of the system of equations giving f(n), if a mixture of gases is injected

at n having composition vector α = (α1, . . . , αN) where αi is the molar fraction of i, then

β = αf(n) is the vector of molar fractions in the reactor output. The fraction of j in the output

composition is then

βj =
N

∑

i=1

αifij(n).

More generally, if the fraction αi of i is injected at node ni, then βj = ∑N
i=1αifij(ni).

The determination of f(n) is our central problem. It will be shown in Chapter 5, for general

reactor domains in 3-space, that this matrix-valued function satisfies a boundary value problem

for a time-independent system of elliptic differential operators which, when reduced to network

domains (in Section 5.4), amounts to Equations (3.10), (3.11) and (3.12) given below.

Summarizing the main result, the matrix f(n), for each internal node n of the network

reactor, is obtained as the solution to the following time-independent boundary-value problem

(the network counterpart of Equations (3.3) and boundary conditions (3.4)). On each branch b:

Di(b)f
′′
ij(x) + νi(b)f

′
ij(x) = 0. (3.10)
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Here f ′(x) indicates derivative with respect to the arc-length parameter x along b. On internal

nodes,

∑

b∼n

p(n, b)Di(b)f
′
ij(n, b) +∑

k

Kik(n)fkj(n) = 0, (3.11)

where b ∼ n indicates that the sum is over those branches that are attached to node n, and f ′ij(n, b)

denotes the derivative at 0 of the restriction of fij to branch b in the arc-length parameter x of b

oriented away from n (that is, so that x = 0 corresponds to n). Finally, on exit nodes nexit,

fij(nexit) = δij. (3.12)

Equations (3.10) together with boundary conditions (3.11) and (3.12) are our fundamental

equations for the OCP on network reactors. Being a finite dimensional system of algebraic

equations, they are easily solved by elementary means. (Observe that we are at this point

assuming that Di(b) and νi(b) are constant on branches.) If νi(b) = 0 but allow Di(x) to vary

along b, it is possible to reparametrize b so as to make Di = 1. For simplicity, we assume that Di

is already constant on branches.

In the remaining of this section, we rewrite the linear system of algebraic equations satisfied

by f(n) in a convenient form, highlighting a useful concept which we call velocity-adjusted

length. In Chapter 4, we give several examples to illustrate how f(n) is obtained explicitly.

3.7 Velocity-adjusted lengths

Equation (3.10) can be readily solved by elementary means. Let b be a branch attached

to n having length ℓ(b), and x ∈ [0, ℓ(b)] the arc-length parameter along b. We choose the

parametrization that orients b away from n (so that n corresponds to x = 0). Recall that
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Fij(n, b) ∶= f ′ij(n, b) represents the derivative at x = 0 of the restriction of fij to b. To be more

explicit, we write b = (n,n′). Then

fij(x) = fij(n) +
1 − exp{−νi(n,n

′)

Di(b)
x}

νi(n,n′)/Di(b)
Fij(n, b). (3.13)

In particular,

Fij(n, b) = Fij(n,n
′
) =

fij(n′) − fij(n)

ℓ̃i(n,n′)
, (3.14)

where we have introduced the quantity

ℓ̃i(b) = ℓ̃i(n,n
′
) ∶=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1−exp{−ℓ(b)νi(n,n
′)/Di(b)}

νi(n,n′)/Di(b)
if νi(n,n′) ≠ 0

ℓ(b) if νi(n,n′) = 0.

This positive quantity has physical dimension of length and it is continuous in νi(b), which is

to say that ℓ̃i(b) → ℓ(b) when the advection velocity approaches 0. We refer to ℓ̃i(b) as the

(oriented) velocity-adjusted length of the branch b. Observe that ℓ̃(b) is always positive and

depends on the orientation of the branch: if νi(b) is positive, transport of i in the direction of

b is faster, and the adjusted length of b is less than ℓ(b) while transport of i in the direction of

b is slower, and the adjusted length of b is greater than ℓ(b). Strictly speaking, this adjusted

length also depends on diffusivity. Large diffusivity negates the effect of velocity by making

the quotient νi(b)/Di(b) smaller in absolute value without changing its sign, while small

diffusivity accentuates the velocity adjustment. Introducing the dimensionless quantity si(b) =

ℓ(b)νi(b)/Di(b), we can write the above relation in more transparent form:

ℓ̃i(b)/ℓ(b) =
1 − e−si(b)

si(b)
.

This function is positive, equals 1 at si(b) = 0, decreases to 0 at the rate 1/si(b) as si(b) → ∞

and grows exponentially to +∞ as si(b) → −∞.
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In our solution to the OCP, lengths of branches will always appear as ℓ̃i(b) (or ℓ(b), when

νi(b) = 0). The velocity-adjusted length is, thus, an effective length of branches resulting from

a competition between velocity and diffusivity.

3.8 Solution to the output composition problem on network reactors

Given the observations of the previous section, the entries fij(n) of the output composition

matrix on internal nodes n are now obtained directly from Equations (3.10), (3.11), (3.12)

and (3.13) as solution to an ordinary linear system of algebraic equations. To make this linear

system more easily readable, it helps to introduce the following quantities. Let n be a node

and b = (n,n′) a branch attached to n. Keep in mind that the notations (n, b) and (n,n′) both

represent an oriented branch b with initial node n. For each i we define

ξi(n, b) = ξi(n,n
′
) ∶=

p(n, b)Di(b)

ℓ̃i(n,n′)
, ηi(n, b) = ηi(n,n

′
) =

ξi(n,n′)

∑b′ ξi(n, b
′
)

where the sum in the denominator of ηi(n, b) is over all branches b′ attached to n. Then

ξi(n, b) has physical dimension length/time and ηi(n, b) is dimensionless. Let η(n, b) =

diag(η1(n, b),⋯, ηN(n, b)), an N ×N diagonal matrix. Finally, we introduce the dimensionless

reaction coefficients

K̃ij(n) ∶=
Kij(n)

∑b′ ξi(n, b
′
)

where the sum is over all the branches b′ connected to n.

We are now ready to write down the linear system for fij(n). Suppose that the network

contains L+ 1 nodes so that n1, n2, . . . , nL are the internal nodes and nL+1 = nexit is the exit node.

We define a matrix Λ of size NL ×NL, which we write in block-form, with blocks of size
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N ×N , as follows. For each pair ni, nj of distinct internal nodes, the N ×N block Λ(ni, nj) of

Λ at row i and column j is

Λ(ni, nj) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

η(ni, nj) if i ≠ j

K̃(ni) − I if i = j.

(3.15)

It is implicit in the above expression that K̃(ni) = 0 if the interior node ni is not active and

η(ni, nj) = 0 if (ni, nj) (or its opposite) is not a branch of the network. Let

f =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

f(n1)

⋮

f(nL)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, λ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−η(n1, nexit)

⋮

−η(nL, nexit)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

These are NL ×N -sized matrices written in block-form. Then the output composition matrix is

the solution to the linear system:

Λf = λ. (3.16)

Explicitly,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

K̃(n1) − I η(n1, n2) ⋯ η(n1, nL)

η(n2, n1) K̃(n2) − I ⋯ η(n2, nL)

⋮ ⋮ ⋱ ⋮

η(nL, n1) η(nL, n2) ⋯ K̃(nL) − I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

f(n1)

f(n2)

⋮

f(nL)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

η(n1, nexit)

η(n2, nexit)

⋮

η(nL, nexit)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

(3.17)

with blocks of size N ×N , where N is the number of gas species. This is our fundamental

system of equations.
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As an example, for the network diagram of Figure 3.1 (in which the interior nodes are

n0, . . . , n4), this system becomes (notice that η(ni, nj) = I if there is a single branch issuing

from ni)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−I I 0 0 0

0 −I η(n1, n2) η(n1, n3) η(n1, n4)

0 η(n2, n1) K̃(n2) − I 0 η(n2, n4)

0 η(n3, n1) 0 K̃(n3) − I η(n3, n4)

0 η(n4, n1) η(n4, n2) η(n4, n3) −I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

f(n0)

f(n1)

f(n2)

f(n3)

f(n4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0

0

0

0

η(n4, n5)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

(3.18)

Before exploring Equation (3.17) further, it is natural to ask whether the coefficient matrix Λ

is indeed invertible. This is to be expected since this linear system arises from a boundary-value

problem for a system of partial differential equations whose solutions are uniquely determined.

Nevertheless, it is reassuring to be able to ascertain solvability independently by elementary

means under very general assumptions. This point is discussed in section 5.4.2.
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4. Network Reactor Examples

In all the examples to be considered we make the following convenient but natural assump-

tions: p(n, b) = 1/deg(n) (all pipes have the same cross-section), Di(b) = D does not depend

on the chemical species and the branch, and νi(b) = ν(b) is the same for all species but may

depend on the branch. Thus, for a choice b = (n,n′) of orientation for b,

ℓ̃(b) =
1 − e−ν(b)ℓ(b)/D

ν(b)/D
, ξ(n,n′) =

D/ℓ̃(b)

deg(n)
, η(n,n′) =

ξ(n,n′)

∑n′′ ξ(n,n
′′
)

do not depend on i. The sum in the denominator of η(n,n′) is over all branches (n,n′′) attached

to n. Since η(n,n′) can now be viewed as a scalar, we write η(n,n′)I for the corresponding

N ×N matrix, where I is the identity matrix. When the branches are indexed, bi, it is useful

to write ℓ̃i ∶= ℓ̃(bi) and ℓ̃i ∶= ℓ̃(bi), where bi has the orientation indicated by an arrow in the

network diagram of each example.

4.1 Segment reactor with 1 active node

For the example of Figure 4.1, we have

ℓ̃0 ∶= ℓ̃(b0) =
eν(b0)ℓ(b0)/D − 1

ν(b0)/D
, ℓ̃1 ∶= ℓ̃(b1) =

1 − e−ν(b1)ℓ(b1)/D

ν(b1)/D
,

so that

η(n1, n0) =
ℓ̃1

ℓ̃0 + ℓ̃1
, η(n1, n2) =

ℓ̃0

ℓ̃0 + ℓ̃1
, K̃ ∶= K̃(n1) =

K(n1)

1
2D (

1
ℓ̃0
+

1
ℓ̃1
)

=

2ℓ̃0ℓ̃1

ℓ̃0 + ℓ̃1

K(n1)

D
.
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injection point exit boundary

Figure 4.1.: A simple network reactor with a single active node.

Therefore,
⎛

⎜
⎜
⎜
⎜

⎝

−I I

ℓ̃1
ℓ̃0+ℓ̃1

I K̃ − I

⎞

⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜

⎝

f(n0)

f(n1)

⎞

⎟
⎟
⎟
⎟

⎠

= −

⎛

⎜
⎜
⎜
⎜

⎝

0

ℓ̃0
ℓ̃0+ℓ̃1

I

⎞

⎟
⎟
⎟
⎟

⎠

.

This system is easily solved. The result is

f(n0) = f(n1) = (I −
2ℓ̃1
D
K)

−1

. (4.1)

As could have been expected, ℓ̃0 does not appear in the solution. Had we assumed ℓ0 = 0,

however, the factor of 2 in front of ℓ̃1 would be 1 instead, since the degree of n1 would go from

2 to 1.

Let us explore this solution in some detail. Recall that fij(n0) is the fraction of j in the

output given that a unit pulse of i is initially injected at node n0. Suppose there are only two

chemical species, denoted 1,2 with reactions 1⇌ 2 so that

K =

⎛

⎜
⎜
⎜
⎜

⎝

−k+ k+

k− −k−

⎞

⎟
⎟
⎟
⎟

⎠

.

(k+ is the coefficient of 1 → 2 and k− is the coefficient for the reverse reaction 2 → 1.) The

inverse matrix in Equation (4.1) is easily found:

f(n0) =
1

1 + 2ℓ̃1
D (k− + k+)

⎛

⎜
⎜
⎜
⎜

⎝

1 + 2ℓ̃1k−
D

2ℓ̃1k+
D

2ℓ̃1k−
D 1 + 2ℓ̃1k+

D

⎞

⎟
⎟
⎟
⎟

⎠

.
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Thus, for example, the fraction of species 2 in the output given that a pulse containing only

species 1 was initially injected at n0 is

f12(n0) =

2ℓ̃1
D k+

1 + 2ℓ̃1
D (k− + k+)

.

From f(n0) we can determine the output composition for any composition of substances

initially injected into the reactor. Suppose that the initial quantities of 1 and 2 are given by the

vector α = (α1, α2). Then the output amounts are given by the vector β = (β1, β2) such that

β = αf(n0) (matrix multiplication). In particular,

β2
β1
= [k+ +

D

2ℓ̃1

α2

α1 + α2

]/[k− +
D

2ℓ̃1

α1

α1 + α2

] .

Observe the effect of varying the transport coefficient D/ℓ̃1. If this coefficient is small, the

above ratio is approximately

β2
β1
≈

k+
k−
.

This is the equilibrium value for a closed reactor. Such situation arises when the diffusion

coefficient is very small or b1 is very long. Equivalently, this approximation holds when the

advection velocity ν(b1) is negative with large absolute value. The quantity 2ℓ̃1/D may be

viewed as a measure of the time spent at the active node. It has physical dimension time/length

rather than time for the same reason that k does not have dimension 1/time when the active

region reduces to a point. (The actual time spent at a single point is 0).

It is also interesting to observe in this example that, independently of the transport character-

istics,

output fraction of 2 given initial unit pulse of 1
output fraction of 1 given initial unit pulse of 2

=

f12(n0)

f21(n0)
=

k+
k−
= equilibrium ratio.
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Figure 4.2.: Reactants injected at different initial nodes.

We refer to [24] and [25] for the significance of a reciprocity relation of similar kind but in a

different setting.

4.2 Distributed input

A simple variant of the previous example helps to illustrate the situation in which a mixture

is injected over several nodes. Consider the reactor of Figure 4.2. Suppose m different gas

species. A unit pulse containing fractions α1, . . . , αm of each species 1, . . . ,m is injected so that

species i is injected at node ni. Then the fraction of j in the output is

fj = α1f1j(n1) +⋯ + αmfmj(nm).

It is easily shown (similarly to the first example) that f(n1) = ⋯ = f(nm) = f(n0), indepen-

dently of the lengths and advection velocities of branches b1, . . . , bm.

The matrix f(n0) is also easily obtained:

f(n0) = (I −
(m + 1)ℓ̃(b)

D
K)

−1

.

So, in fact, fj = α1f1j(n0) +⋯ + αmfmj(n0). This means that, in this specific situation (where

the injection nodes are connected to the exit node through a single path passing through the

one active node n0), the process is equivalent to injecting the whole pulse mixture at once at n0.
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Incidentally, it is not difficult to show directly that a square matrix of the form I − µK, where

µ ≥ 0 and K = (Kij) is such that Kij ≥ 0 for i ≠ j, Kii = −∑j≠iKij , is always invertible. For

the special case m = 2 and K =

⎛

⎜
⎜
⎜
⎜

⎝

−k+ k+

k− −k−

⎞

⎟
⎟
⎟
⎟

⎠

, we have

f(n0) =
1

1 + 3ℓ̃(b)
D (k− + k+)

⎛

⎜
⎜
⎜
⎜

⎝

1 + 3ℓ̃(b)
D k−

3ℓ̃(b)
D k+

3ℓ̃(b)
D k− 1 + 3ℓ̃(b)

D k+

⎞

⎟
⎟
⎟
⎟

⎠

4.3 A segment reactor with one active node and a bypass.

The network reactor for this example is shown in Figure 4.3. One easily finds

η(n0, n1) =
ℓ̃2

ℓ̃0 + ℓ̃2
, η(n1, n0) =

ℓ̃1

ℓ̃0 + ℓ̃1
, η(n0, n2) =

ℓ̃0

ℓ̃0 + ℓ̃2
, η(n1, n2) =

ℓ̃0
ℓ̃0 + ℓ̃1

so that
⎛

⎜
⎜
⎜
⎜

⎝

−I ℓ̃2
ℓ̃0+ℓ̃2

I

ℓ̃1
ℓ̃0+ℓ̃1

I K̃ − I

⎞

⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜

⎝

f(n0)

f(n1)

⎞

⎟
⎟
⎟
⎟

⎠

= −

⎛

⎜
⎜
⎜
⎜

⎝

ℓ̃0
ℓ̃0+ℓ̃2

I

ℓ̃0
ℓ̃0+ℓ̃1

I

⎞

⎟
⎟
⎟
⎟

⎠

.

The first equation in this system may be written as

f(n0) =
ℓ̃2

ℓ̃0 + ℓ̃2
f(n1) +

ℓ̃0

ℓ̃0 + ℓ̃2
I, (4.2)

which has a natural interpretation. If we regard the velocity-adjusted length ℓ̃(b) as the resistance

to crossing branch b, then 1/ℓ̃(b) may be interpreted as a conductivity. Transport from n0 to

n1 and from n0 to n2 is then distributed in proportion to the relative conductivity of the two

channels. Writing these relative conductivities as a1 and a2 (a1 + a2 = 1) then Equation (4.2)

becomes

fij(n0) = a1fij(n1) + a2fij(n2)
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injection point exit boundary

Figure 4.3.: A simple network reactor with a single active node and a bypass.

for each (i, j). Expressed in words, the molar fraction of j in the output mixture given that

a unit pulse of i is injected at n0 equals the weighted average of these molar fractions for the

injection points n1 (fij(n1)) and n2 (fij(n2) = δij), with weights given by the channels’ relative

conductivity.

It remains to obtain f(n1), the output composition when the injection is at the active node.

This is easily found to be

f(n1) =
⎛

⎝

I −
(ℓ̃0 + ℓ̃1) (ℓ̃0 + ℓ̃2)

ℓ̃0ℓ̃0 + ℓ̃0ℓ̃2 + ℓ̃1ℓ̃0
K̃
⎞

⎠

−1

= (I − αK)
−1
, (4.3)

where

α ∶=
2ℓ̃0ℓ̃1 (ℓ̃0 + ℓ̃2)

D (ℓ̃0ℓ̃0 + ℓ̃0ℓ̃2 + ℓ̃1ℓ̃0)
, K̃ ∶=

2ℓ̃0ℓ̃1

D (ℓ̃0 + ℓ̃1)
K.

In the special case of only two species,

f(n1) =
1

1 + α(k− + k+)

⎛

⎜
⎜
⎜

⎝

1 + αk− αk+

αk− 1 + αk+

⎞

⎟
⎟
⎟

⎠

.

We highlight again the reciprocal relation

f12(n0)

f21(n0)
=

f12(n1)

f21(n1)
=

k+
k−
.
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exit boundaryinert nodes

Figure 4.4.: The general network reactor with a single active node. The box contains a network of L

inert nodes connected to the single active node, n0, on the left and the exit node, nexit, on the right.
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4.4 The general single active node network

A diagram for the general single active node network is shown in Figure 4.4. The system for

f is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

K̃ − I η(n0, n1)I ⋯ η(n0, nL)I

η(n1, n0)I −I ⋯ η(n1, nL)I

⋮ ⋮ ⋱ ⋮

η(nL, n0)I η(nL, n1)I ⋯ −I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

f(n0)

f(n1)

⋮

f(nL)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

η(n0, nexit)

η(n1, nexit)

⋮

η(nL, nexit)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

It is implicit in this expression that η(n,n′) = 0 when n and n′ are not connected by a branch.

Note that all the block entries of the coefficient matrix commute with each other.

By Cramer’s rule for the inverse of the coefficient matrix Λ, we obtain

f(ninit) = (α(ninit)I + β(ninit)K) (δ(ninit)I + γ(ninit)K)
−1 (4.4)

where α,β, γ, δ are polynomial functions of the velocity-adjusted branch lengths that take into

account the geometry and topology of the network reactor as well as the point of injection ninit.

From the property that the sum of each row of f(ninit) is 1 and the sum of each row of K is 0, it

can be shown that α = δ. So f(ninit) can be written as

f(ninit) = (I + ξ(ninit)K)(I + η(ninit)K)
−1, (4.5)

where ξ = β/α and η = γ/α. From this remark, it is not difficult to conclude that if c =

(c1, . . . , cN) is the vector of equilibrium concentrations for the reaction matrix K for a closed

reactor, so that cK = 0, then

cf(ninit) = c.
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This means that if the proportions of the substances in the input composition are the same as for

the equilibrium concentrations in a closed reactor, then the output composition is the same as

the input composition.

For a concrete example, consider the reaction system 1⇌ 2 with matrix of reaction coeffi-

cients

K =

⎛

⎜
⎜
⎜
⎜

⎝

−k+ k+

k− −k−

⎞

⎟
⎟
⎟
⎟

⎠

,

we obtain (using α = α(ninit), etc.)

f(ninit) =
1

α(δ − γ(k− + k+))

⎛

⎜
⎜
⎜
⎜

⎝

αδ − αγk− − βδk+ (βδ − αγ)k+

(βδ − αγ)k− αδ − αγk+ − βδk−

⎞

⎟
⎟
⎟
⎟

⎠

=

1

1 − η(k+ + k−)

⎛

⎜
⎜
⎜
⎜

⎝

1 − ηk− − ξk+ (ξ − η)k+

(ξ − η)k− 1 − ξk− − ηk+

⎞

⎟
⎟
⎟
⎟

⎠

In particular, for a general network reactor with a single active node and one pair of reversible

reactions involving only two substances, the reciprocal relation f12(ninit)/f21(ninit) = k+/k−

holds.

4.5 A linear network reactor with two active nodes

Let us consider the linear network reactor with two active nodes shown in Figure 4.5.

injection point exit boundary

Figure 4.5.: Linear network with two active nodes.
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Using the same notational conventions as before, we have the linear system

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−I I 0

ℓ̃1
ℓ̃0+ℓ̃1

I K̃1 − I
ℓ̃0

ℓ̃0+ℓ̃1
I

0 ℓ̃2
ℓ̃1+ℓ̃2

I K̃2 − I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

f(n0)

f(n1)

f(n2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0

0

ℓ̃1
ℓ̃1+ℓ̃2

I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

The solution may be written in matrix form as

f(n2) =

⎡
⎢
⎢
⎢
⎢
⎣

I −
2

D

⎛

⎝

ℓ̃1 (ℓ̃1 + ℓ̃2)

ℓ̃1
K1 + ℓ̃2K2

⎞

⎠

+

4

D2
ℓ̃1ℓ̃2K1K2

⎤
⎥
⎥
⎥
⎥
⎦

−1

(I −
2ℓ̃1
D
K1)

f(n1) = (I −
2ℓ̃1
D
K1)

−1

f(n2)

f(n0) = f(n1).

In particular,

f(n0) = (I −
2ℓ̃1
D
K1)

−1 ⎡
⎢
⎢
⎢
⎢
⎣

I −
2

D

⎛

⎝

ℓ̃1 (ℓ̃1 + ℓ̃2)

ℓ̃1
K1 + ℓ̃2K2

⎞

⎠

+

4

D2
ℓ̃1ℓ̃2K1K2

⎤
⎥
⎥
⎥
⎥
⎦

−1

(I −
2ℓ̃1
D
K1) .

(4.6)

Note that the first and third factors in the above expression for f(n0) cancel out when K1 and

K2 commute. This is the case, for example, when the two nodes implement the same reactions,

that is K1 =K2, or when they implement reactions involving non-intersecting sets of species,

making the reactions at n1 and n2 independent. In the latter case, K1 and K2 have diagonal

block form

K1 =

⎛

⎜
⎜
⎜

⎝

L1

O2

⎞

⎟
⎟
⎟

⎠

, K2 =

⎛

⎜
⎜
⎜

⎝

O1

L2

⎞

⎟
⎟
⎟

⎠

,
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where O1,O2 are the zero square matrices, L1, L2 are rate constant matrices, and Oi and Li have

the same size for i = 1,2. From this form it also follows that K1K2 = 0. Therefore, in this case,

we have

f(n0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I −
2

D

⎛

⎜
⎜
⎜
⎜

⎝

ℓ̃1(ℓ̃1+ℓ̃2)

ℓ̃1
L1

ℓ̃2L2

⎞

⎟
⎟
⎟
⎟

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

.

Let us write the solution more explicitly in a couple of special cases. First suppose that the

only reactions are 1⇌ 2, and they have the same constants at n1 and n2. That is,

K1 =K2 =

⎛

⎜
⎜
⎜
⎜

⎝

−k+ k+

k− −k−

⎞

⎟
⎟
⎟
⎟

⎠

.

Then

f(n0) =
1

1 + α(k− + k+) + β(k− + k+)2

⎛

⎜
⎜
⎜
⎜

⎝

1 + αk− + βk−(k− + k+) αk+ + βk+(k− + k+)

αk− + βk−(k− + k+) 1 + αk+ + βk+(k− + k+)

⎞

⎟
⎟
⎟
⎟

⎠

where

α =
2

D

ℓ̃1ℓ̃2 + ℓ̃1ℓ̃1 + ℓ̃2ℓ̃1
ℓ̃1

, β =
4

D2
ℓ̃1ℓ̃2.

Thus, for example, if 2 is initially injected at n0, the molar fraction of 1 in the output composition

is

f21(n0) =
αk− + βk−(k− + k+)

1 + α(k− + k+) + β(k− + k+)2
.

Here again, as in the first example, we observe the symmetric relation:

f12(n0)

f21(n0)
=

αk+ + βk+(k− + k+)

αk− + βk−(k− + k+)
=

k+
k−
.
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As a second instance of the same network, let us suppose that there are 3 chemical species,

and that n1 implements the reaction 1⇌ 2 and n2 implements the reaction 2⇌ 3. The reaction

matrices for this system are

K1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−k+ k+ 0

k− −k− 0

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, K2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 0 0

0 −k′+ k′+

0 k′− −k
′
−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

Let us define the constants

α =
2

D
ℓ̃1, β =

2

D

ℓ̃1 (ℓ̃2 + ℓ̃1)

ℓ̃1
, γ =

2

D
ℓ̃2, δ =

4

D2
ℓ̃1ℓ̃2.

Then, using Equation (4.6),

f(n0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + αk+ −αk+ 0

−αk− 1 + αk− 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + βk+ −βk+ + δk+k′+ δk+k′+

−βk− 1 + βk− + γk′+ + δk−k
′

+
−γk′

+
− δk−k′+

0 −γk′
−

1 + γk′
−

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + αk+ −αk+ 0

−αk− 1 + αk− 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

From the evaluation of this matrix, we can find, for example, f31(n0), the fraction represented

by species 1 in the output given an initial unit pulse of 3 injected at n0:

f31(n0) =
δ(ℓ̃2/ℓ̃1)k−k

′
−

1 + β(k− + k+) + γ(k′− + k′+) + βγ(k−k′− + k′−k+ + k+k′+) + δk−k′+ + 2βδk−k+k′+ + 2βγδk−k′−k+k′+
.

4.6 A network reactor with parallel active nodes

To the network of Figure 4.6 is associated the system

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−I η(n0, n1)I η(n0, n2)I

η(n1, n0)I K̃1 − I 0

η(n2, n0)I 0 K̃2 − I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

f(n0)

f(n1)

f(n2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0

η(n1, n3)I

η(n2, n3)I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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where

η(n0, n1) = 1 − η(n0, n2) =
ℓ̃3

ℓ̃1 + ℓ̃3
, η(n1, n0) = 1 − η(n1, n3) =

ℓ̃2

ℓ̃2 + ℓ̃1
, η(n2, n0) = 1 − η(n2, n3) =

ℓ̃4

ℓ̃4 + ℓ̃3

and

K̃1 =
2

D

ℓ̃2ℓ̃1
ℓ̃2 + ℓ̃1

K1, K̃2 =
2

D

ℓ̃4ℓ̃3
ℓ̃4 + ℓ̃3

K2.

First note that

f(n0) =
ℓ̃3

ℓ̃1 + ℓ̃3
f(n1) +

ℓ̃1

ℓ̃1 + ℓ̃3
f(n2).

That is, the output composition matrix for the injection point n0 is the weighted average of those

with injection points at the active nodes. (The longer the velocity-adjusted length of a branch,

the lesser the weight of that branch among the possible channels leading to active nodes.)

injection point exit boundary

Figure 4.6.: Two active nodes in parallel.

To obtain the latter, it helps to set the following notation.

a1 =
2

D

ℓ̃1ℓ̃2(ℓ̃1 + ℓ̃3)

ℓ̃1ℓ̃1 + ℓ̃1ℓ̃3 + ℓ̃1ℓ̃2
, a2 =

ℓ̃1ℓ̃3(ℓ̃1 + ℓ̃2)

(ℓ̃1 + ℓ̃3)(ℓ̃1ℓ̃1 + ℓ̃1ℓ̃3 + ℓ̃1ℓ̃2)
, a3 =

ℓ̃3ℓ̃4

ℓ̃3ℓ̃4 + ℓ̃1ℓ̃3 + ℓ̃3ℓ̃3
, a4 =

2

D

ℓ̃3ℓ̃4(ℓ̃1 + ℓ̃3)

ℓ̃3ℓ̃4 + ℓ̃1ℓ̃3 + ℓ̃3ℓ̃3

and

b1 =
ℓ̃1(ℓ̃1 + ℓ̃3)

ℓ̃1ℓ̃1 + ℓ̃1ℓ̃3 + ℓ̃1ℓ̃2
, b2 =

ℓ̃3(ℓ̃1 + ℓ̃3)

ℓ̃3ℓ̃4 + ℓ̃1ℓ̃3 + ℓ̃3ℓ̃3
.

Then the matrices f(n1), f(n2) satisfy the system

(I − a1K1)f(n1) − a2f(n2) = b1, −a3f(n1) + (I − a4K2)f(n2) = b2.
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Among the many possibilities one can explore, let us only write the solution for K1 =K2 =K,

ℓi = ℓ and ν(bi) = 0 for i = 1,2,3,4. Then ℓ̃i = ℓ̃i = ℓ.

⎛

⎜
⎜
⎜
⎜

⎝

f(n1)

f(n2)

⎞

⎟
⎟
⎟
⎟

⎠

= [(I −
4ℓ

3D
K)

2

−

1

9
I]

−1
⎛

⎜
⎜
⎜
⎜

⎝

I − 4ℓ
3DK

1
3I

1
3I I − 4ℓ

3DK

⎞

⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜

⎝

2
3

2
3

⎞

⎟
⎟
⎟
⎟

⎠

.

This is easily solved:

f(n1) = f(n2) = (I −
2ℓ

D
K)

−1

.

For the simple reaction 1⇌ 2, for which K =

⎛

⎜
⎜
⎜
⎜

⎝

−k+ k+

k− −k−

⎞

⎟
⎟
⎟
⎟

⎠

,

f(n1) = f(n2) =
1

1 + 2ℓ
D (k− + k+)

⎛

⎜
⎜
⎜
⎜

⎝

1 + 2ℓ
Dk−

2ℓ
Dk+

2ℓ
Dk− 1 + 2ℓ

Dk+

⎞

⎟
⎟
⎟
⎟

⎠

.

Once again we see the reciprocity relation

f12(n0)

f21(n0)
=

f12(n1)

f21(n1)
=

f12(n2)

f21(n2)
=

k+
k−
.

4.7 Adsorption

In this thesis we do not yet develop systematically reaction mechanisms involving adsorption

at active regions, but we illustrate how such reactions may be handled based on the methods

considered so far. By adsorption we have in mind reactions of the form A +Z ⇌ AZ, where Z

is a catalyst that remains, together with the complex AZ, at the active region while A migrates

freely through the reactor via diffusion and advection.

Under the assumption that the amount and characteristics of Z at a node remain essentially

unchanged over the time span of the process, we may replace the second order reaction with
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injection point exit boundary

Figure 4.7.: A simple network reactor to illustrate adsorption reactions.

the first order A ⇌ AZ. It is interesting then to investigate whether introducing AZ as a new

species having zero advection velocity and very small diffusivity D, and then passing to the

limit as D approaches 0, gives meaningful results. We explore this possibility with one example

and leave a systematic treatment for another study.

Let us consider the system of reactions

A⇌ AZ ⇌ BZ ⇌ B

where A and B are gases, subject to adsorption and disorption, and AZ and BZ are catalytic

intermediates. A and B will be called migrating and AZ and BZ static. For simplicity of

notation, we use 1,2,3,4 for A,AZ,BZ,B, respectively. For the reactor we take the (simplest)

example shown in Figure 4.7. See [10] for a justification of this mechanism.

We suppose that 1 and 4 have diffusivity D and advection velocity ν = ν(b) while 2 and

3 have (small) diffusivity D′, which will be taken to 0 at the end of the calculation, and zero

advection velocity. Let us indicated the length of b by ℓ, its velocity-adjusted length by ℓ̃ and the

reaction coefficients by

1
k+
(1)

ÐÐÐ⇀↽ÐÐÐ
k−
(1)

2
k+
ÐÐ⇀↽ÐÐ
k−

3
k+
(2)

ÐÐÐ⇀↽ÐÐÐ
k−
(2)

4.

The output composition matrix is then the 4 × 4-matrix

f(n0) = (I − K̃)
−1
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where

K̃ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

ℓ̃
D
Kij if i = 1,4

ℓ
D′

Kij if i = 2,3

or K̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−
ℓ̃
D
k
(1)
+ ℓ̃

D
k
(1)
+ 0 0

ℓ
D′

k
(1)
− −

ℓ
D′
(k
(1)
− + k+) ℓ

D′
k+ 0

0 ℓ
D′

k− −
ℓ
D′
(k− + k

(2)
+ ) ℓ

D′
k
(2)
+

0 0 ℓ̃
D
k
(2)
− −

ℓ̃
D
k
(2)
−

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

In the limit as D′ approaches 0 we obtain

f(n0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

k−k
(1)
−
(1+ ℓ̃

D
k
(2)
−
)+k

(2)
+
(k++k

(1)
−
)

k
(2)
+
[k
(1)
−
+(1+ ℓ̃

D
k
(1)
+
)k+]+k−k

(1)
−
(1+ ℓ̃

D
k
(2)
−
)

0 0
ℓ̃
D
k+k

(1)
+

k
(2)
+

k
(2)
+
[k
(1)
−
+(1+ ℓ̃

D
k
(1)
+
)k+]+k−k

(1)
−
(1+ ℓ̃

D
k
(2)
−
)

k
(1)
−
[k
(2)
+
+k−(1+

ℓ̃
D
k
(2)
−
)]

k
(2)
+
[k
(1)
−
+(1+ ℓ̃

D
k
(1)
+
)k+]+k−k

(1)
−
(1+ ℓ̃

D
k
(2)
−
)

0 0
k−k+(1+

ℓ̃
D
k
(1)
+
)

k
(2)
+
[k
(1)
−
+(1+ ℓ̃

D
k
(1)
+
)k+]+k−k

(1)
−
(1+ ℓ̃

D
k
(2)
−
)

k−k
(1)
−
(1+ ℓ̃

D
k
(2)
−
)

k
(2)
+
[k
(1)
−
+(1+ ℓ̃

D
k
(1)
+
)k+]+k−k

(1)
−
(1+ ℓ̃

D
k
(2)
−
)

0 0
k
(2)
+
[k
(1)
−
+k+(1+

ℓ̃
D
k
(1)
+
)]

k
(2)
+
[k
(1)
−
+(1+ ℓ̃

D
k
(1)
+
)k+]+k−k

(1)
−
(1+ ℓ̃

D
k
(2)
−
)

ℓ̃
D
k−k

(1)
−

k
(2)
−

k
(2)
+
[k
(1)
−
+(1+ ℓ̃

D
k
(1)
+
)k+]+k−k

(1)
−
(1+ ℓ̃

D
k
(2)
−
)

0 0
k−k

(1)
−
+k
(2)
+
[k
(1)
−
+k+(1+

ℓ̃
D
k
(1)
+
)]

k
(2)
+
[k
(1)
−
+(1+ ℓ̃

D
k
(1)
+
)k+]+k−k

(1)
−
(1+ ℓ̃

D
k
(2)
−
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

(4.7)

As was to be expected, fij(n0) = 0 whenever j = 2,3. This is because the species AZ and BZ

should remain at n0 and not migrate to the exit. It is interesting to compare the fraction of B

in the output given a unit pulse of A injected at n0 and the corresponding value for the overall

reaction A⇌ B. The former is

f14(n0) =

ℓ̃
Dk+k

(1)
+ k

(2)
+

k
(2)
+ [k

(1)
− + (1 +

ℓ̃
Dk
(1)
+ )k+] + k−k

(1)
− (1 +

ℓ̃
Dk
(2)
− )

.

For the latter, let us indicate the reaction coefficients by K±. Then the fraction of B in the output

given that a unit pulse of A was injected at n0 is

fAB(n0) =

ℓ̃
DK+

1 + ℓ̃
D (K− +K+)

.

Note that, if k(1)− = k
(2)
− = k

(2)
+ = k

(1)
+ is taken to be very large so that adsorption/desorption are

very fast reactions, then f14(n0) reduces to fAB(n0) for K± = k±.
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Finally, it is again notable from Equation (4.7) the reciprocal relation

f14(n0)

f41(n0)
=

k+k
(1)
+ k

(2)
+

k−k
(1)
− k

(2)
−

,

which does not depend on transport coefficients.

4.7.1 Numerical investigation of the network of Figure 3.1

Examining the system of equations (3.18), we immediately see that f(n0) = f(n1). This

means that injecting the initial pulse at n0 has exactly the same effect as injecting it at n1. By

discarding the branch b0, we obtain a simpler system

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−I η(n1, n2)I η(n1, n3)I η(n1, n4)I

η(n2, n1)I K̃(n2) − I 0 η(n2, n4)I

η(n3, n1)I 0 K̃(n3) − I η(n3, n4)I

η(n4, n1)I η(n4, n2)I η(n4, n3)I −I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

f(n1)

f(n2)

f(n3)

f(n4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0

0

0

η(n4, n5)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.
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Figure 4.8.: Dependence of the fij(n0) on the advection velocity on b5 for the network example of

Figure 3.1. In the middle plot, the curves for f21 and f23 agree, so the latter is not apparent.
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It makes sense, conceptually, and for the purpose of simplifying expressions, to introduce

hi ∶=
1

ℓ̃(bi)
, hi =

1

ℓ̃(bi)
. We may think of this reciprocal of the velocity-adjusted length as a

measure of conductance: the larger h the easier it is to move along the corresponding b.
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Figure 4.9.: Dependence of the fij on the reaction coefficients k1± and k
(2)
± for the network example of

Figure 3.1.
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Written in terms of conductances, the above system becomes

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−I h1

h1+h3+h5
I h3

h1+h3+h5
I

h5

h1+h3+h5
I

h1

h1+h2
I 2K(n2)

D(h1+h2)
− I 0 h2

h1+h2
I

h3

h3+h4
I 0 2K(n3)

D(h3+h4)
− I h4

h3+h4
I

h5

h2+h4+h5+h6
I

h2

h2+h4+h5+h6
I

h4

h2+h4+h5+h6
I −I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

f(n1)

f(n2)

f(n3)

f(n4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
⎜
⎜
⎜

⎝

0

0

0

h6

h2+h4+h5+h6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

In order to keep the number of parameters reasonably small, let us suppose that all branch

lengths ℓ(b) = ℓ are equal and that the only non-zero advection velocity is on b5. (See Figure

3.1.) Let us further choose the following reactions at nodes n2 and n3:

1
k
(1)
+

ÐÐ⇀↽ÐÐ

k
(1)
−

2 at n2, 2
k
(2)
+

ÐÐ⇀↽ÐÐ

k
(2)
−

3 at n3.

We thus have 5 parameters (keeping the value of ℓ fixed), which can be written in dimensionless

form:

s ∶=
ℓν(b5)

D
, k̃

(1)
± ∶=

ℓk
(1)
±

D
, k̃

(2)
± ∶=

ℓk
(2)
±

D
.

The pairs k̃(1)± and k̃(2)± are a type of Damkoehler numbers.

The velocity-adjusted length of b5 is then a function of s:

ℓ̃(b5) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1−e−s

s ℓ if s > 0

e∣s∣−1
∣s∣ ℓ if s < 0.

For very large ∣ν(b5)∣, if the velocity is positive, the adjusted length is very short and the nodes

n1 and n2 effectively collapse into one; if the velocity is negative, the adjusted length is very

long and this middle branch connecting n1 and n2 is effectively removed.
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The plots in Figures 4.8 and 4.9 show how the fractions fij(n0) vary as functions of the

above 5 parameters. We have fixed ℓ = 1 and D = 1 so that s = ν(b5) and κ̃(i)± = κ
(i)
± . It is clear

from the graphs that ∑j fij(n0) = 1.
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5. The theory behind the solution to the OCP

The proof of our main result uses general facts from the theory of systems of linear parabolic

partial differential equations. Justification for the claims made here, when not provided, can be

derived from the standard literature on parabolic systems. The general results that we rely on are

concerned with the existence and uniqueness of fundamental solutions, positivity of solutions,

and exponential decay as time goes to∞ under the assumption of zero Dirichlet condition on

the exit boundary of the bounded domainR. The main sources we have used are: [23,26,27]. In

applications to Chemical Engineering, these general properties are typically taken for granted.

For example, it is considered obvious that an open reactor in which substances undergo diffusion

transport will eventually empty out, and concentrations will never be negative. For this reason,

we do not elaborate on such technical issues and limit ourselves to providing the main line

of argument to justify that, under the assumption that concentrations satisfy the given linear

system of reaction-advection-diffusion equations, the output composition matrix-valued function

satisfies the claimed boundary-value problem for an elliptic system.

One point of greater interest in applications that we do not explore here concerns estimates

on the approximation of network-like reactors by network reactors. Although the argument we

provide (see, in particular, Section 5.4.1 below) is qualitative, it should be possible to extract

from it quantitative error estimates in terms of the parameter ϵ. (See Section 3.4 and Figure

3.2.) Related issues can be found in [28]. Similar estimates, but from a stochastic processes
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perspective, are found in [29, 30]. These references are useful models for the estimates that

should apply to our situation, although our case is expected to be less technical.

5.1 The reaction-transport equations and their fundamental solution

We consider the reaction-transport equations

∂ci
∂t
+∇ ⋅ ji = ∑

j

cjκji,

where ji = civi −Di∇ci is the flux vector field of species i = 1, . . . ,N , subject to the boundary

conditions:

• ci(x, t) = 0 for x on the exit boundary of R;

• the normal component of the flux, n(x) ⋅ ji(x, t), equals zero on the reflecting boundary.

Setting up the notation

(Lc)i = ∇ ⋅ (Di∇ci − civi) +∑

j

cjκji,

we have the system of partial differential equations ∂c
∂t = Lc, where c = (ci) is regarded as a vector-

valued function of x and t. For a function ϕ(x), not necessarily representing a concentration, it

will occasionally be useful to write ji,ϕ ∶= ϕvi −Di∇ϕ, the flux associated to ϕ and i.

The fundamental solution to the reaction-transport system of equations is the function

ρij(x, t∣y, s) (t > s) representing the concentration of i at position and time (x, t) given that a

unit pulse of j is injected into R at position and time (y, s). This means that

∂ρij
∂t
= ∇ ⋅ (Di∇ρij − ρijvi) +∑

k

ρkjκki

holds on R and
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• ρij(x, t∣y, s) = 0 for x on the exit boundary ∂exitR;

• n(x) ⋅ (Di(x)∇xρij(x, t∣y, s) − ρij(x, t∣y, s)vi(x)) = 0 for x on the reflecting boundary

∂reflectR;

• ∫R ρ(x, t∣y, s)ϕ(y)dy → ϕ(x) as t approaches s from above.

The integrand in the last item should be interpreted as matrix product:

∑

j
∫
R
ρij(x, t∣y, s)ϕj(y)dy → ϕi(x).

This means that

ρij(x, t∣y, s) → δ(x − y)δij

where δ(x) is Dirac’s delta supported at 0 and δij is Kronecker’s delta. When the coefficients of

the reaction-transport equation are independent of t, we have ρ(x, t∣y, s) = ρ(x, t − s∣y,0).

It can be shown [31] (by the uniqueness of the fundamental solution) that ρ satisfies the

Chapman-Kolmogorov equation

ρ(x, t∣y, s) = ∫
R
ρ(x, t∣ξ, τ)ρ(ξ, τ ∣y, s)dξ

where the integrand involves matrix multiplication and s < τ < t. This relation can be expressed

in operator form as follows. Define for t > 0 and a row vector-valued function ϕ(y) = (ϕi(y))

(Ptϕ)(x) ∶= ∫
R
ϕ(y)ρ(y, t∣x,0)dy.

Note that (ϕρ)i = ∑j ϕjρji. Using the Chapman-Kolmogorov equation it is not difficult to obtain

the semigroup property (see [32] for example)

Pt1+t2 = Pt1 ○ Pt2 .
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To the operator semigroup is associated its generator [32], which is the operator A defined by

Aϕ ∶= lim
t→0

Ptϕ − ϕ

t

on a domain consisting of the functions ϕ for which the limit exists.

5.2 Relation between A and L

We wish to characterize A as the (Hilbert space) adjoint of L. For this, consider the Hilbert

space of square-integrable vector-valued (complex) functions on R with the inner product

⟨φ,ψ⟩ = ∑
j
∫
R
φj(x)ψj(x)dx.

The differential operator L is more precisely defined on the dense subspace of this Hilbert

space consisting of continuous functions φ = (φi) such that each φi is continuous and has

square-integrable (weak) derivatives up to second order. In addition, functions in the domain of

L are zero on the exit boundary of R and have 0 normal flux component, n(x) ⋅ ji,φi
(x) = 0, at

all x on the reflecting boundary.

A standard integration by parts computation using the divergence theorem gives:

⟨φ,Lψ⟩ = ∑
j
∫
R
[∇ ⋅ (Dj∇φi) + vj ⋅ ∇φj +∑

k

κjkφk]ψj dx

∑

j

(∫
∂exitR

φjDjn ⋅ ∇ψj dA + ∫
∂reflectR

ψjDjn ⋅ ∇φj dA) .

For ⟨φ,Lψ⟩ to be a bounded linear functional on the domain of L it is necessary and sufficient

that φj be zero on the exit boundary and n ⋅ ∇φj be zero on the reflecting boundary. Therefore,

the adjoint operator L∗ of L is the differential operator whose domain consists of continuous

functions φ = (φj) on R, whose (weak) derivatives up to second order are square integrable,
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having value 0 on the exit boundary and normal derivative 0 on the reflecting boundary. On

these functions,

(L
∗φ)j = ∇ ⋅ (Dj∇φi) + vj ⋅ ∇φj +∑

k

κjkφk.

Notation: When applying A or L to ρ(y, t∣x,0) in the below calculations, we use a subscript

such as in Lx or Ay to indicate which variable it is being acted on.

We claim that A = L∗. This is seen as follows:

(Aφ)(x) = lim
t→0

1

t
(∫
R
φ(y)ρ(y, t∣x,0)dy − φ(x))

= lim
ϵ→0

lim
t→0
∫
R
φ(y)

ρ(y, t + ϵ∣x,0) − ρ(y, ϵ∣x,0)

t
dy

= lim
ϵ→0
∫
R
φ(y)

∂ρ

∂t
(y, ϵ∣x,0)dy

= lim
ϵ→0
∫
R
φ(y)(Lyρ)(y, ϵ∣x,0)dy

= lim
ϵ→0
∫
R
(L
∗φ)(y)ρ(y, ϵ∣x,0)dy

= (L
∗φ) (x).

A similar argument to the above integration by parts computation also shows that A∗ = L. Since

A is the relevant operator for the output composition problem, from this point on we dispense

with the L,L∗ notation and only use A,A∗. We summarize below the definitions of A and
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A
∗. They are both defined on continuous vector-valued functions on R whose weak second

derivatives are square integrable and satisfy:

(Aφ)j = ∇ ⋅ (Dj∇φj) + vj ⋅ ∇φj +∑

k

κjkφk

φj = 0 on ∂exitR

n ⋅ ∇φj = 0 on ∂reflectR

and

(A
∗ψ)j = ∇ ⋅ (Dj∇ψj − ψjvj) +∑

k

ψkκkj

ψj = 0 on ∂exitR

n ⋅ (ψjvj −Dj∇ψj) = 0 on ∂reflectR.

As already noted, A generates a one-parameter semigroup Pt such that

(Ptφ)(x) = ∫
R
φ(y)ρ(y, t∣x,0)dy.

The adjoint semigroup is P ∗t is characterized by ⟨P ∗t ψ,φ⟩ = ⟨ψ,Ptφ⟩. It is also an integral

operator with (matrix) kernel denoted ρ∗ij(x, t∣y, s). We summarize here the defining properties

of these two integral kernels:

• ρ(x, t∣y, s), t > s, satisfies

∂ρij
∂t
= ∇ ⋅ (Di∇ρij − ρijvi) +∑

k

ρkjκki = (A
∗ρ⋅j)i
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where the derivatives are in x. Further, the boundary conditions ρij(x, t∣y, s) = 0 for x on

the exit boundary and n ⋅ (Di∇ρij − ρijvi) = 0 for x on the reflecting boundary and the

initial condition

∫
R
ρ(x, t∣y, s)φ(y)dy → φ(x) as t ↓ s

hold for any given φ.

• ρ∗(x, t∣y, s), t < s, satisfies

−

∂ρ∗ij
∂t
= ∇ ⋅ (Di∇ρ

∗
ij) + vi ⋅ ∇ρ

∗
ij +∑

k

κikρ
∗
kj = (Aρ

∗
⋅j)i

where the derivatives are in x. Further, the boundary conditions ρ∗ij(x, t∣y, s) = 0 for x on

the exit boundary and n ⋅∇ρ∗ij = 0 for x on the reflecting boundary and the initial condition

∫
R
ρ∗(x, t∣y, s)φ(y)dy → φ(x) as t ↑ s

hold for any given φ.

It can be further verified using a relatively standard argument for systems of parabolic partial

differential equations (see [23]) that

ρ∗(y, s∣x, t) = ρ(x, t∣y, s)⊺

where ⊺ indicates matrix transpose. Finally, as the coefficients Di,vi, κij do not depend on time

t explicitly, we have

ρ(x, t∣y, s) = ρ(x, t − s∣y,0).
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5.3 The output composition matrix

The main quantity of interest in this work is the total amount of species i which is produced

after the reactor is fully evacuated. Let us represent this quantity by Ai. In analytic form,

Ai = lim
T→∞
∫

T

0
∫
∂exitR

n(x) ⋅ ji(x, t)dA(x)dt.

Here ∂exitR indicates the exit boundary of the reactor and dA(x) is the element of surface area.

(The volume element will be written simply dx.) The integral over the exit boundary gives

the rate of flow of species i out of the reactor and its integral over the time interval [0, T ] is

the amount of i that escapes by time T . An application of the divergence theorem (using that

n(x) ⋅ ji(x, t) = 0 on the reflecting boundary of R) together with the reaction-transport equation

yields

Ai = lim
T→∞
∫

T

0
∫
R
−

∂ci
∂t
(x, t)dxdt +∑

j
∫

∞

0
∫
R
cj(x, t)κji(x)dxdt.

Note that

∫

T

0
∫
R

∂ci
∂t
(x, t)dxdt = ∫

T

0

d

dt ∫R
ci(x, t)dxdt = Qi(T ) −Qi(0),

where Qi(t) ∶= ∫R ci(x, t)dx is the quantity of i still left in the reactor by time t. Since in the

long run the reactor is fully evacuated,

Ai = Qi(0) +∑
j
∫

∞

0
∫
R
cj(x, t)κji(x)dxdt. (5.1)

Let Aij(y) indicate the amount (molar fraction) of species i produced by the system given

that, at the initial time, a unit pulse of j is injected into the reactor at position y. This quantity

can be expressed using the fundamental solution as

Aij(y) = δij +∑
k
∫

∞

0
[∫
R
ρkj(x, t∣y,0)κki(x)dx] dt.
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In matrix form, and slightly simplifying the notation ρ(x, t∣y) ∶= ρ(x, t∣y,0),

A(y) = I + ∫
∞

0
∫
R
κ⊺(x)ρ(x, t∣y)dxdt

= I + ∫
∞

0
∫
R
κ⊺(x)ρ∗(y,−t∣x)⊺ dxdt.

Here I is the identity N ×N -matrix. The transpose of A(y) is

A⊺(y) = I + ∫
∞

0
∫
R
ρ∗(y,−t∣x)κ(x)dxdt.

Note that AI = κ(y) and that ∂
∂tρ
∗
(y,−t∣x) = Aρ∗(y,−t∣x).

We can now state the boundary-value problem satisfied by A⊺(y).

(AA⊺)(y) = κ(y) + ∫
∞

0
∫
R
Ayρ

∗
(y,−t∣x)κ(x)dxdt

= κ(y) + ∫
∞

0

d

dt ∫R
ρ∗(y,−t∣x)κ(x)dxdt

= κ(y) + lim
ϵ→0

lim
T→∞
∫
R
[ρ∗(y,−T ∣x) − ρ∗(y,−ϵ∣x)]κ(x)dx.

Now observe that ρ∗(y,−T ∣x) = ρ(x,T ∣y,0)⊺ will tend towards 0 as T →∞. This is because,

in the long run, the open reactor will be fully emptied. Furthermore ρ∗(y,−ϵ∣x) → δ(x − y)I as

ϵ→ 0. We conclude that (AA⊺)(y) = κ(y) − κ(y) = 0.

When y approaches the exit boundary, ρ(x, t∣y) approaches 0, hence Aij(y) → δij . It also

follows from the general properties of ρ and ρ∗ that A⊺ satisfies the Neumann condition on the

reflecting boundary. Thus we obtain the following central result. (We now use x for the position

variable in A.)

Conclusion (Boundary-value problem for the output composition matrix). The transpose f(x) =

A⊺(x) of the matrix-valued output composition function A(x) satisfies the equation Af = 0 on
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R together with the Neumann condition on the reflecting boundary of R and f(x) = I on exit

boundary points.

5.4 Reduction to network reactors

We wish now to rewrite the boundary-value problem for the solution to the OCP so that it

applies to network reactors. The main assumptions are that the transport coefficients Di and vi

are constant on cross-sections of reactor pipes (see Figure 3.2) and that the output composition

matrix f(x) = A⊺(x) is well-approximated by functions that are constant on those cross-sections.

Due to the Neumann condition on the reflecting boundary, this assumption can be expected to

hold well if pipes are long and narrow. Recalling that the reaction coefficients are zero outside

junctures, then the partial differential operator A reduces to

Aφi = ∇ ⋅ (Di∇φi) + vi ⋅ ∇φi =
d

dx
(Db

i

dφi

dx
) + νbi

dφi

dx
= 0,

where x is arc-length parameter along the branch b (the center axis of the pipe) and a choice of

orientation of b has been made so that the sign of νbi is defined. To these equations (indexed by

i and b) we need to add conditions on nodes, obtained as junctures are imagined to shrink to

points. It is natural to suppose that, in the limit, f is still continuous at nodes (its value at a node

coincides with the values of the limits as the node is approached from the direction of any of

the branches attached to it.) We further need to specify conditions on the derivatives of f along

branch directions at a node. This is done next.
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5.4.1 Node conditions

The conditions on f and its first directional derivatives at a node n can be determined by

integrating the (matrix) equation Af = 0 over the juncture indexed by n, applying the divergence

theorem, and recalling the relationship between κ and K described in Subsection 3.4. (See

the notation described in Figure 3.2.) Let us write φi = fij for a fixed j. Thus we integrate

term-by-term the equation

∇ ⋅ (Di∇φi) + vi ⋅ ∇φi +∑

k

κikφk = 0

on the juncture Rϵ(n). Since φi has zero normal derivative at the reflecting boundary of R,

∫
Rϵ(n)

∇ ⋅ (Di∇φi)dV = ∑
b
∫
Aϵ(n,b)

Di∇φi ⋅ ub(n)dA ≈ ∑
b

Aϵ(n, b)D
b
i (n)

dφb
i

dx
(n).

Here Aϵ(n, b) is the disc component of the boundary ofRϵ(n) that attaches to the pipe indicated

by b and, as already defined, Aϵ(n, b) is the area of this disc. We assume that the parametrization

is such that x = 0 corresponds to n. V and A are the volume and area elements in integration.

The volume integral of vi ⋅ ∇φi is proportional to the volume Vϵ(n) of the juncture. Let

us write it as Cϵ(n)Vϵ(n), where Cϵ(n) is the average value of the integrand on Rϵ(n). The

integral of κkφik can be approximated using the characterization of Kik(n) (see Section 3.4):

∫
Rϵ(n)

κik(x)φk(x)dV ≈ Aϵ(n)Kik(n)φk(n).

Here we recall that Aϵ(n) is the sum of the Aϵ(n, b) over the branches b attached to n. Adding

these three terms and dividing by Aϵ(n) (recall that p(n, b) = Aϵ(n, b)/Aϵ(n)), we obtain, to

first order in ϵ,

∑

b

p(n, b)Db
i (n)

dφb
i

dx
(n) +Cϵ(n)

Vϵ(n)

Aϵ(n)
+∑

k

Kik(n)φk(n) = 0.
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Now recall that ϵAϵ(n)/Vϵ(n) converges to a dimensionless number χ(n) characteristic of the

juncture geometry. Thus Vϵ(n)/Aϵ(n) is of the order ϵ. Eliminating this term and passing to the

limit as ϵ approaches 0 yields

∑

b

p(n, b)Db
i (n)

dφb
i

dx
(n) +∑

k

Kik(n)φk(n) = 0. (5.2)

5.4.2 Invertibility of the matrix Λ

Recall the definition of the matrix Λ in Equations (3.15) or (3.17). We wish to provide here

sufficient conditions for Λ to be invertible based on the form of this matrix, independently of the

boundary-value problem from which it originated. Let λij be the (i, j)-matrix element of Λ. We

first note the following two properties of these elements:

1. For each row of Λ with row index i we have ∣λii∣ ≥ ∑j∶j≠i ∣λij ∣.

2. For at least one i (in fact, for those i for which η(ni, nexit) > 0), ∣λii∣ > ∑j∶j≠i ∣λij ∣.

In checking property 1, notice that ∑j η(ni, nj) = 1 and ∑s K̃rs(ni) = 0.

We now make the assumption that the network reactor is connected in the following sense: if

we remove the exit nodes as well as all the branches attached to those nodes, then the resulting

network does not disconnect. There is no loss of generality in making this assumption since,

otherwise, the output composition matrix would only depend on the connected piece that received

the initial injection of reactants.

Define K̃ = ∑n K̃(n), where the sum is over the active nodes of the network reactor.

Invertibility of Λ can be established by general facts about matrices if we make the further

assumption that any substance among the N species can be transformed into any other by
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a sequence of reactions among those encoded in K̃. This assumption on K̃ together with

connectivity of the network imply that Λ is an irreducible matrix in the sense of definition 6.2.25

of [33]. Irreducibility plus the above properties 1 and 2 are the conditions needed to apply

Corollary 6.2.27 in [33], which implies the desired invertibility result.

It was tempting to try to use the Gershgorin circle theorem to prove the invertibility, by

showing that the eigenvalue 0 is not in any Gershgorin disc. The problem with using the

Gershgorin circle theorem directly is that the eigenvalue 0 may be on the boundary of the

Gershgorin discs, even though it cannot be on the interior. Corollary 6.2.27 gives the stronger

result that the eigenvalue 0 cannot be on the boundary, and so the matrix is invertible.
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6. Re-Tuning: Overcoming the Compositionality Limits of Large Language

Models with Recursive Tuning

6.1 Background

Large language models such as ChatGPT [34] have recently seen numerous successes [35].

These include passing the bar exam, scoring high on AP exams, translating various languages and

more. Many people using ChatGPT and other models can attest to the productivity improvements

these models bring.

However, there are still many tasks that language models cannot perform despite their suc-

cesses. [36] evaluate the performance of language models, including GPT4, on 3 compositional

tasks. These are a puzzle problem, a dynamic programming problem, and multiplication. All

of these problems have relatively straightforward algorithms the language model can follow to

solve the problem. Even when giving the model a prompt that describes the procedure to solve

these problems, language models fail for large input sizes.

Indeed, [36] find that for small input sizes, for example multiplying 2-digit numbers, language

models are able to successfully follow the correct steps to solve the problem. For larger problem

sizes, like multiplying 5-digit numbers, the language models have little chance at following
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all the steps to solve the problem correctly. GPT4 has 99% accuracy at multiplying 2 2-digit

numbers but 0% accuracy at multiplying 2 5-digit numbers.

6.1.1 Length Generalization

Additional studies have noted the difficulties of language models on 3 tasks we will consider:

addition [37, 38], parity [39], and the dynamic programming problem of [36]. In particular,

language models can be trained to do well on in-distribution examples of these problems,

but fail to generalize to out-of-distribution (OOD) examples. Here we define in-distribution

and out-of-distribution by the lengths of problems. Our training setup is to train a model on

problems up to a certain length and then evaluate the model on problems with greater lengths.

The "in-distribution" problems are the problems with length in the training set and the "out-of-

distribution" problems are those that are longer than the problems in the training set. For example,

a model may be trained on addition problems up to 15 digits. "In-distribution" problems for

this model would be addition problems where each number is between 1-15 digits and OOD

problems would be those that have numbers with 16 or more digits. Our goal is to train models

that do well on OOD problems.

On addition, [37], [38] and others look at length generalization. In [37], they train their

model to perfect accuracy on addition up to 8 digits. Then the evaluate performance on 9 and

10-digit addition. By 10 digits, their accuracy falls to 50%. In [38], they train their model to

perfect accuracy on addition up to 15 digits, and evaluate on addition up to 21 digits. By 21

digits their accuracy falls to 0%. In contrast, our Re-Tuning model is also trained on addition
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up to 15 digits, but maintains near perfect accuracy at 21 digits and still has 50% accuracy at

adding 60-digit numbers.

6.2 Introduction

We present a new method for large language models to solve compositional tasks. Although

they have shown strong performance on traditional language understanding tasks, large language

models struggle to solve compositional tasks, where the solution depends on solutions to smaller

instances of the same problem. We propose a natural approach to solve the task recursively.

Our method, Re-Tuning, tunes models to divide a problem into subproblems, solve those

subproblems, and combine the results. We show that our method significantly improves the

model performance on three representative compositional tasks: integer addition, dynamic

programming, and parity. Compared to state-of-the-art methods that keep intermediate steps

towards solving the problems, Re-Tuning achieves significantly higher accuracy and is more

GPU memory efficient.

Large language models (LLM) have obtained the state-of-the-art performance on a wide

set of tasks [34, 40–45]. However, recent studies [36, 39, 46] show these models struggle to

generalize to compositional tasks, where the solution depends on solutions to smaller instances of

the same problem. An example task, integer addition, is shown in Figure 6.1. When calculating

“1,234+4,567”, we first break the problem into a smaller problem “234+567”. After obtaining

the answer to this problem, the original problem is partially solved. Similarly, to get the result

of “234+567”, we further divide it into solving “34+67”. This recursion is the fundamental
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Figure 6.1.: Summary of our approach and results. Upper Left: Our recursive tuning pipeline

generates and processes all the recursive subproblems for each randomly generated problem

instance in order to train the base LLM. Upper Right: Our recursive inference pipeline allows

the model to call itself on a subproblem of reduced size, which enables the subproblem to be

solved in a new context, and return the answer back to the initial context. Lower Left: On most

problems, Re-Tuning trains on significantly less tokens than the scratchpad method, saving

considerable GPU memory. Bottom Right: On average, Re-Tuning outperforms the baseline and

scratchpad methods across all tasks, especially as the problems grow in size and complexity.

operation to solve compositional tasks. However, none of the existing approaches have explicitly

captured the recursive nature of compositional tasks yet.
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In this part of the thesis, we propose a recursion-based method for LLMs to improve

their ability to solve compositional tasks. Intuitively, we tune LLMs to divide problems into

subproblems of the same type as the original problem, solve those subproblems, and combine

the results (Figure 6.1). More specifically, we adopt a top-down approach to solve the original

problems recursively. During training, we finetune LLMs on smaller and smaller instances of the

original problems, during which LLMs learn to call themselves recursively on a smaller version

of the problem until reaching the base case. We empirically set the base case for different tasks.

LLMs are taught to devise the solution to the problem by combining the solutions obtained

from the simpler versions of the problem. We then deploy the recursively tuned LLMs to solve

problems at inference time. The above procedure is referred as recursive tuning (or Re-Tuning

in short).

The basic idea behind Re-Tuning is motivated by two lines of work. First, recent work [36,

37, 39] show that training LLMs on high-quality scratchpad data, which includes intermediate

steps towards solving a problem, can improve performance on certain compositional tasks such

as integer addition and parity. Instead of using the intermediate steps to finetune models, which

adds additional computation cost to the original problem, Re-Tuning divides the problems into

smaller and smaller instances. Each of the instances runs independently with its own context in

the associated call stack. The problem size in each context is actually reduced. The solution to

each subproblem is then propagated up in the call stack to produce the final solution. A side

product is that this allows models to more easily attend to the context, improving the accuracy

of solving each subproblem. Second, our tuning process is reminiscent of recent works that

incorporate tool use in LLMs [47, 48]. Similar to how these models call a tool and resume
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generating final output based on the output of the tool, in Re-Tuning, the models call themselves

on a subproblem and resume generating after receiving the solution to the subproblem.

We empirically evaluate the performance of Re-Tuning on three representative compositional

tasks: integer addition [46], a dynamic programming problem [36], and the parity problem

[39, 46]. Our results show Re-Tuning improves the average performance of LLaMA 7B and

LLaMA 13B on all tasks by 37.4% and 31.9% over baseline finetuning. Compared to scratchpad

finetuning, our improvement is striking, with averaging 34.5% and 36.7% points improvements

on LLaMA 7B and LLaMA 13B respectively. Importantly, we show Re-Tuning saves significant

GPU memory compared to the scratchpad method when training. We hope our results foster

future research on recursive learning of large foundation models.

6.3 Approach

We present Re-Tuning in this section. Re-Tuning recursively tunes LLMs to solve com-

positional tasks. Specifically, the method (1) recursively decreases the size of the problem, (2)

solves the base case, and (3) passes the solutions up the recursion stack, solving subproblems of

increasing complexity along the way.

First, Re-Tuning recursively generates prompts for subproblems of decreasing length or

complexity. For example, when adding the two numbers 1,234 and 5,678, the model generates

a prompt to add 234 + 678. Then this prompt is sent to a separate context where the model

generates a new prompt to add 34 + 78, and finally this new prompt is sent to a separate context

where the model again generates a new prompt to add 4 + 8.
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Next, the base case is solved. Certainly, the base cases are trivial enough to be solved

directly in the same context. For the integer addition problem, the base case is to add the two

least-significant digits together, for example, 4 + 8.

Finally, the solutions are passed up a level in the recursive stack. They are appended after

the prompt in the previous context in the recursive stack. Again, sticking with integer addition,

it’s helps to know the solution to 4 + 8 when tasked with solving 34 + 78. So the answer the

model generates to 4 + 8 is appended to the context tasked with solving 34 + 78. This process of

appending solutions continues until eventually, the solution to the first recursive call is passed to

the initial context, which helps to solve the initial prompt.

In order to accomplish this, we finetune the model to (1) generate recursive subproblems,

(2) solve base cases, and (3) to use the answers propagated up from these recursive calls in

its computation. During generation, the model can designate some of its generated text to

be a prompt by enclosing the text between ‘Call: ’ and ‘\n’. Once this happens, we stop

generating in the current context and prompt the model with the enclosed text in a new context.

In each new context we follow the exact same generation procedure, except for the base case

where the model learns to directly output the answer to the base case rather than making another

recursive call. When generation in the new context is complete, we take the final answer, which

is separated by the text ‘\nAnswer: ’, and append that to the initial context which generated

the prompt. Then we continue generation in the initial context. Basic pseudo-code for the

generation procedure is in Figure 9.4.

In the addition example, the model only needs to generate one recursive call in each context.

However, our method works more generally than this. Many recursive calls may be generated in
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a given context. For example, the dynamic programming problem we describe below requires

multiple recursive calls in the initial context to solve the problem.
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7. Re-Tuning Experimental Results

7.1 Experiments

We consider three tasks: integer addition, a dynamic programming problem, and the parity

problem. For each task, we train 3 types of models: baseline, scratchpad, and Re-Tuning. The

baseline models were trained to simply output the solution to the problem. The scratchpad

models were trained to generate a scratchpad [37] containing intermediate reasoning steps before

generating the final solution to the problem. The Re-Tuning models are as described above.

In our evaluation, we look at in-distribution and out-of-distribution (OOD) data. The in-

distribution data are those with lengths that were seen in training and the OOD data are those

with lengths longer than seen in training. For example, on addition the training data consists of

numbers with lengths up to 15 digits. So evaluation examples with 1-15 digits are considered

in-distribution and examples with 16 or more digits are considered OOD.

We finetune LLaMA 7B and 13B [44] using Low-Rank Adapters [49].
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7.1.1 Experimental Setup

Tasks and Datasets

We consider 3 representative compositional problems: integer addition, a dynamic program-

ming problem, and the parity problem. Here, we describe each problem in detail, as well as how

the data was constructed.

Integer Addition With this problem, we investigate the extent to which LLMs can add two

integers. The input to the model is simply the prompt to add 2 numbers. For example, "45 +

97". Language models have some capability to perform addition without any finetuning, but

it seemingly disappears as the numbers grow in size. [37] used a scratchpad to teach language

models addition, and more recently [38] taught LLaMA 7B to add numbers up to 15 digits. In

both cases, there is remarkable performance degradation when adding integers larger than those

seen during finetuning. [46] suggest that addition is particularly hard for LLMs since it requires

precise indexing operations and the non-causal propagation of the carry term.

Following [38], we generate training data summing randomly-generated integers up to 15

digits long. During evaluation, we sample 100 problems of lengths up to 60 digits.

Dynamic Programming Problem We leverage the dynamic programming problem recently

studied by [36]:

"Given a sequence of integers, find a subsequence with the highest sum, such that

no two numbers in the subsequence are adjacent in the original sequence."
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(a) LLaMA 7B Integer Addition (b) LLaMA 13B Integer Addition

(c) LLaMA 7B Dynamic Programming (d) LLaMA 13B Dynamic Programming

(e) LLaMA 7B Parity (f) LLaMA 13B Parity

Figure 7.1.: Performance of LLaMA 7B (left) and LLaMA 13B (right) on Addition, Dynamic Program-

ming, and Parity. The in-distribution range is shaded in gray.79



This problem can be broken down into two steps: first, recursively generate an array of sub-array

sums, and then recursively identify which indices correspond to the highest sum. Re-Tuning

generates prompts for each of these steps, which are then solved in recursive contexts.

For example, consider the sequence [3,2,−2,5,3]. The subsequence with the highest sum

with no adjacent numbers would be the one that has the first 3 and the 5. For this, the model

outputs a list of 1s and 2s with 1s corresponding to numbers chosen and 2s corresponding to

numbers not chosen. In the case, the model should output [1,2,2,1,2].

Following [36], we exhaustively generate all permutations of arrays up to length 5 for

training, where each element is restricted to [−5,5]. Evaluation is done on arrays up to length

30, still with each integer element restricted to [−5,5].

Parity Problem The parity problem is to determine if there is an even or odd number of 1’s in

an input array consisting of 0’s and 1’s. An example input is [0,1,0,0], for which the output

should be 1 since the array contains an odd number of 1’s. In cases where there is an even

number of 1’s the output should be 0. This problem was previously studied by [39] and [46],

who explored length generalization on this problem. This problem can be solved by traversing

the input array and adding all the numbers mod 2, which is the method we finetune our model to

use.

We generate binary arrays up to length 21 for training. For evaluation, we sample 100 arrays

from various lengths up to 80.
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7.1.2 Main Results

Here we share our main results on LLaMA 7B and LLaMA 13B, across all three tasks.

Results are shown in Figure 7.1, and discussed in detail in the proceeding sections. Across

all problems and model sizes, the Re-Tuning method outperforms the baseline and scratchpad

methods, with the clearest difference being on the addition. The baseline method tends to exhibit

better OOD generalization compared to scratchpad among the different problems.

Integer Addition

In Figure 7.1, we can see the Re-Tuning method outperforms baseline and scratchpad

methods. The scratchpad method performs the worst, achieving 0% accuracy on every problem

longer than those seen during training. The baseline method has non-zero OOD accuracy

for problems upto length 20, but still quickly falls to 0% accuracy on longer problems. In

contrast, the Re-Tuning method maintains near-perfect accuracy in regimes where the baseline

and scratchpad models have 0% accuracy, and maintains around 50% accuracy on adding up to

60 digit numbers. The model from [38], which is also trained on addition up to 15 digits, has

similar OOD performance to our baseline model, and falls to 0% accuracy when adding 21 digit

numbers.

Dynamic Programming Problem

Again, the Re-Tuning outperforms both baseline and scratchpad approaches, though the gap

between Re-Tuning and baseline is narrower for LLaMA 13B than it is for LLaMA 7B. [36]

also evaluate a finetuned GPT3 with and without scratchpad, which are also trained on examples
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up to length 5. Both of their models reach 0% accuracy when evaluating on length 10, which is

similar to our baseline and scratchpad results.

Parity Problem

Re-Tuning performs as well or better on inputs up to (but not including) size 60. Since the

baseline and scratchpad methods only every learn to output either 0 or 1, it can maintain an

accuracy of around 50%, or random chance. The Re-Tuning models learn to output text other

than just 0 or 1, such as recursive calls, and so they can fall below 50% accuracy on OOD data.

Up to length 60, Re-Tuning is still the dominant performer on the problem.

7.2 Analysis and Further Discussion

In this section, we conduct additional experiments in order to better understand the different

mechanisms behind Re-Tuning.

7.2.1 Ablation Study

For all tasks, as the problem size grows, so does the number of unique possible problems.

For example, there are more combinations of 10-digit addition problems then there are 2-digit

addition problems. If we randomly sample problems from the space of all possible problems

up to some length, then the distribution of problems will be skewed towards longer problem

instances. Due to Re-Tuning’s recursive design, it’s important that an appropriate number of

small problems are included in the training data. Our resampling methodology is described in

Appendix 9.3.1
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To better understand the impact of resampling short problem instances for finetuning, we

finetune LLaMA-7b using integer addition data with and without resampling. Both models saw

the same number of training examples. We collect results on 100 problems of length 5, 20, 35,

and 50. Results are shown in Figure 7.1.

5 20 35 50

w/ Resampling 1.0 0.98 0.96 0.69

w/o Resampling 1.0 0.97 0.73 0.0

Table 7.1: Ablation over resampling approach during Re-Tuning finetuning.

While both trained models perform well on problems up to length 20, the superiority of

the resampling approach becomes clear on longer problems. At a problem length of 35, the

resampling model achieved 96% accuracy, while the accuracy of the model trained without

resampling is only 73%. At a problem length of 50, the model trained without resampling

fails to correctly solve a single problem instance. However, the model trained with resampling

maintains an accuracy of 69%, which suggests that resampling shorter problem instances is

important for the success of Re-Tuning.

7.2.2 Case Study

The scratchpad models often make errors with indexing operations. For example, on the

dynamic programming problem, the largest training array size is 5 elements. In Figure 7.2 we

see that the model generated scratchpad starts the index of the array of sub-array sums (dp
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Prompt

Question: Let's solve input = [1, 0, -2, 1, 0, 4, 2].

Scratchpad Model Response

Scratchpad: dp[5] = max(input[5], 0) = max(4, 0) = 4

dp[4] = max(input[4], input[5], 0) = max(1, 4, 0) = 4

dp[3] = max(dp[4], input[3] + dp[5], 0) = max(4, -2 + 4, 0) = 4 ...

[rest of output truncated]

Re-Tuning Response

Call: Create dp array [1, 0, -2, 1, 0, 4, 2]\nReturn: [6, 5, 5, 5, 4, 4, 2]

Answer: Call: Create chosen indices array:

sum array [6, 5, 5, 5, 4, 4, 2], item array [1, 0...

Return: [1, 2, 2, 1, 2, 1, 2]\nAnswer: [1, 2, 2, 1, 2, 1, 2]

Figure 7.2.: Dynamic Programming Example: Prompt and Responses (Truncated)
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array) at 5 given an input array of length 7. The dp array should start at the last element of a

7 element array, with index 6 instead of 5. Once the model makes this indexing error on the

scratchpad it is unable to recover. In other examples not displayed here, the scratchpad method

correctly generates the text for "dp[6]" but fails to populate the subsequent expressions with the

correct values from the input array. It is unable to reliably extract the elements with the correct

index from the input array. In contrast, the Re-Tuning method is shown in Figure 7.2. Only the

initial context is shown to save space. The Re-Tuning model is able to generate prompts with no

indexing difficulty in this case.

7.2.3 Error Analysis

In order to better understand the types of errors made by Re-Tuning models, we perform

extensive error analysis on each task. For each problem, we sample 20 problem instances from a

selection of problem lengths, and categorize them into the following types:

• Call Error: At some point in the call stack, an incorrect recursive call is made. As a result,

the input prompt to the new context is incorrect.

• Compute Error: This error can manifest either because the base case is incorrectly solved,

or at some point in the call stack the models returns the wrong solution to a subproblem

even though the correct answer to its recursive call was received. As a result, the answer

returned by the current context to the earlier context will be incorrect.

• Restoration Error: A restoration error occurs if at some point in the call stack, a call error

or compute error is made, yet later recovered such that the final answer to the prompt in
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(a) Errors on Integer Addition

(b) Errors on Parity Problem

(c) Errors on Dynamic Programming (subproblem

1)

(d) Errors on Dynamic Programming (subproblem

2)

Figure 7.3.: Error classifications for each problem across samples of size 20 for a selection of

problem lengths.

the initial context is correct. Importantly, since the model is able to recover, instances of

restoration errors are classified as correct.

• No Error: In order for a problem instance to be free of errors, each recursive call must be

correct, the base case must be solved correctly, and the correct answers are propagated up

the call stack, leading to the correct final answer.
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Figure 7.3 displays the error classifications for each problem. Importantly, across all tasks, the

prevalence of errors increases with the size of the problem.

On the integer addition task, very few call errors and compute errors occur before a problem

size of 30. The vast majority of those errors are call errors, suggesting that the model has a

difficult time constructing the subproblem. Importantly, this aligns with [46], which suggest that

simply copying long strings of text with repeating characters is a difficult task for transformer-

based models to perform. Furthermore, the lack of restoration errors suggest that once a call

error is made, the model has a very hard time recovering.

For the parity problem, we again see very few errors of any type before a problem size of

40. In contrast with the addition problem, the majority of errors made on the parity problem are

compute errors, not call errors. This is rather unintuitive, as the addition operation is seemingly

much harder than the possible polarity flip in the polarity problem. Interestingly, we see more

cases of restoration errors in the parity problem, which suggests that it may be easier for the

model to recover from call or compute errors on this task compared to integer addition.

For the dynamic programming problem, we perform error analysis on each subproblem

separately. The first subproblem deals with constructing the an array of sub-array sums, while the

section subproblem identifies which indices correspond to the maximum sum. While compute

errors occur most frequently on the first subproblem, call and restoration errors occur more

frequently on the second subproblem. This checks out, as the first subproblem requires a rather

simple call, but involves a more complex step to compute the answer, whereas the second

subproblem contains a more involved recursive call, but an easier computation to produce the

index array. Furthermore, the prevalence of restoration errors on subproblem 2 suggest that

these call errors are easier to recover from than the computer errors made in subproblem 1.
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(a) 10 Examples per Length (b) 25 Examples per Length (c) 50 Examples per Length

Figure 7.4.: Results on Addition with limited training data of 10 examples per length (left), 25

examples per length (middle), and 50 examples per length (right). Scratchpad results are omitted

since they were constant at 0% accuracy.

7.2.4 Sample Efficiency

We also run experiments to see the performance of Re-Tuning in the low-data regime on

addition. The results are in Figure 7.4. For each experiment we construct training data consisting

of n examples for each problem length, where n is 10, 25, and 50 and the numbers contain

between 1 and 15 digits. For example, when n is 10, the model will see 10 examples of adding 2

1-digit numbers, 10 examples of adding 2 2-digit numbers, etc. So it sees 150 examples in total

when n is 10. We train baseline, scratchpad, and Re-Tuning models on these examples for 5

epochs each. We do not use any resampling as in the other experiments.

With seeing only 50 examples per problem length, the Re-Tuning model has performance

close to the Re-Tuning model in the full-data regime above. In contrast, the baseline model has

much worse performance than the baseline model in the full-data regime. With only seeing 10
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examples per problem length in training, the Re-Tuning model is comparable to the baseline

model that sees 50 examples per problem length in training, a 5x efficiency increase.

7.2.5 Prompt Sensitivity

Here, we explore the sensitivity of Re-Tuning models to various prompts during inference.

Specifically, we take our best LLaMA-7b trained on the integer addition problem with Re-

Tuning using the prompt “{num_1} + {num_2}\nSolution: ”, and we evaluate the

model using several alternative prompt formats for inference. Results are shown in Table 7.2 on

100 problems of length 5, 20, 35, and 50.

5 20 35 50

“{num_1} + {num_2}\nSolution: ” 1.0 0.98 0.96 0.69

“{num_1} + {num_2}\nAnswer: ” 1.0 1.0 0.86 0.65

“{num_1} + {num_2}\n ” 1.0 0.98 0.88 0.67

“{num_1} - {num_2}\nSolution: ” 0.28 0.26 0.18 0.07

Table 7.2: Prompt sensitivity analysis on LLaMA 7B with Re-Tuning on the integer addition

problem.

The results suggest that during inference, Re-Tuning is not very sensitive to minor deviations

in the prompt. The first prompt in Table 7.2 is the prompt used during training. The second

and third prompts include small prompt deviations, and result in slightly worse performance

on longer problems. Specifically, the 2nd prompt uses “Answer: ” in an attempt to have

the model skip the recursive call, but it appears that Re-Tuning is robust against such attacks.

Re-Tuning however, is not robust against the fourth prompt, which adversarially prompts for

subtraction rather than addition, resulting in significantly worse performance.
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8. Related Work and Future Directions

8.1 Related Work

Several works have explored the ability of LLMs for length generalization on compositional

problems. [36] suggests that LLMs solve compositional tasks via “linearized subgraph matching”

and thus fail to learn the underlying algorithm necessary to solve more complex problem

instances. [39] showed that finetuning on a combination of in-context learning and scratchpad

prompting could enable better performance. Similarly Re-Tuning involves finetuning pretrained

LLMs to make recursive calls in order to improve performance on composition tasks. Other

works have studied length generalization on small, purpose-built transformer models. [50] and

[46] showed that training small transformers models from scratch on scratchpad data could

enable better length generalization.

Various papers have explored the idea of LLMs prompting themselves or other LLMs,

although no papers to our knowledge that explicitly finetune a language model to do so. [51]

prompts a language model to break a problem down into simpler steps and then prompts itself to

solve each step individually in a sequential, non-recursive manner. Similar methods have been

proposed as way to improve the logical consistency of the generated repsonses [52, 53].
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[54] use a language model to generate prompts by extracting relevant information from the

context. They call this "System 2 Attention". The idea behind this also underlies Re-Tuning.

In Re-Tuning, the language model does 2 operations in each context: it generates a prompt

for a subproblem (for example a prompt to add smaller numbers than the input) and does

some local computations (for example add 2 digits in a number and combine that with the

previously computed sum of the other digits). The prompt for the subproblem removes irrelevant

information for solving the subproblem. In the addition example, to add the 10th digits of 2

numbers, the 11th digits of the numbers are irrelevant. These larger digits are removed in the

prompt for the subproblem, similar to how [54] remove irrelevant information in a prompt.

A recent topic of interest has been teaching language models to use tools [47, 48, 55–58],

which often involve stopping the generation and waiting for the tool output before containing

with generation. Re-Tuning can be interpreted as teaching LLMs to use themselves as a tool.

We will discuss this interpretation more in the next section.

Several papers have investigated the ability of language models on arithmetic tasks [37, 38,

50, 59–61]. In many cases, it was noticed that performance was significantly worse on problems

longer than those saw during finetuning.

8.2 Future Directions

While the experimental results of the Re-Tuning are strong compared to other methods, the

tasks we evaluated on are relatively simple. For each task we already know an algorithm to

solve the problem. We train the model to follow this algorithm exactly by creating finetuning

data with the steps of the algorithm written out. Our training data explicitly tells the model what
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subproblems it should generate a prompt for and how to use the solutions to these to compute

the final answer. A natural question is: can Re-Tuning be useful for tasks that we don’t have an

explicit method for solving? For example, could a language model using Re-Tuning respond to

a general user query by breaking down its solution process into various subproblems, generate

prompts for those, then use all the answers to these subproblems to return a final answer to the

user?

One method to proceed in this direction is to repurpose methods that teach language models

to use tools, for example [47]. These types of methods train language models to use tools

without needing large amounts of training examples showing how to use the tools. Instead, the

language models generate examples of using tools, which are then filtered according to how

good they are. The language model is then fine-tuned on this new tool-use data. The same type

of method could be applied for teaching a language model to prompt itself, which can be thought

of as the language model using itself (or possibly another model) as a tool.

Re-Tuning could also help reduce the context size. While current state-of-the-art models

have contexts of 100k tokens or even millions of tokens, they are not able to effectively reason

over the entire context very well [62]. Rather than processing all the information in one context,

Re-Tuning allows the language model to process different parts of a problem in different contexts,

which could alleviate problems associated with large contexts. For example, in 6.1, we see

that Re-Tuning does not tend to have much longer contexts than the baseline method, despite

generating many more tokens in total than the baseline method.
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9. Appendix

9.1 Glossary of main symbols for reaction-diffusion chapters

Symbol description defined in chapter

Aϵ(n, b),Aϵ(n, b) coss-section of b and its area at juncture n 3.4

A = L
∗ differential operatorA, the adjoint ofL 5.1

b,b = (n,n′),b branch, oriented branche, reverse orientation 3.2

ci(x, t) concentration of i at x inR at time t 3.1

Di(x) diffusion coefficient of i at x inR 3.1

deg(n) degree of node n 3.2

fij(n) output composition matrix 3.1

ji(x) flux density of i at x 3.1

κij(x),Kij(n), K̃ij(n) reaction coefficients in reaction domain and on network 3.2,3.4,3.8

ℓ(b), ℓ̃(b) length of branch, velocity-adjusted length 3.2,3.7

L differential operator of reaction-transport equation 5.1

n network node 3.2

n(x) normal vector field to boundary ofR 3.1

p(n, b) cross-section area fraction of b at juncture n 3.2,3.4

R network-like reactor domain, network reactor 3.1

vi(x), νi(b), ν
b
i advection velocity of i 3.1,3.2

ηi(n, b) coefficients of matrix Λ 3.8,4

φb(x) arc-length parametrization of b 3.2

Λ(ni, nj), λ coefficient matrix and vector in linear algebraic equations for f 3.8

ξi(n, b) branch coefficients in definition of ηi(n, b) 3.8,4

ρ(x, t∣y, s) fundamental solution of reaction-transport equation 5.1
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9.2 Finetuning Details

Finetuning (and evaluation) were done on NVIDIA H100, A100, and RTX A6000 GPUs,

depending on availability and the compute requirements of the job. Rather than finetune the

full model, we finetune using low-rank adapters [49]. Hyperparameters for finetuning jobs are

in Table 9.1. These hyperparameters apply to finetuning all models across all tasks, with two

notable exceptions: (1) when training parity baselines, we used a slightly higher learning rate

of 5e-4 for better stability, and (2) the scratchpad finetuning job for the dynamic programming

problem on LLaMA 13B used a batch size of 64, along with 64 gradient accumulation steps, so

that the training job could be done on a single A100 GPU.

Parameter Value

Learning Rate 2 × 10−4

LR Schedule Constant

Optimizer AdamW

Batch Size 128

Gradient accumulation steps 32

Lora_r 64

Lora_alpha 64

Lora_dropout 0.05

Table 9.1: Hyperparameters used for finetuning.

During training, checkpoints are saved every 7936 training examples. We evaluate a handful

of these checkpoints on a small validation set containing 5 examples from a handful of problem
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lengths (both in-distribution and out-of-distribution) in order choose the best model for full

evaluation. We compute training loss (using cross entropy loss) only on the parts of the problem

that the model will generate at inference time (c.f. grey vs. green highlighted text in the upper

right of Figure 6.1).

9.3 Data Details

9.3.1 Resampling methodology

In general, we upsample examples with smaller lengths and downsample those with larger

lengths in our training data. There are 2 reasons for this. One is that the examples with larger

lengths are more numerous than examples with smaller lengths (there are many more examples

of adding 2 15-digit numbers than there are adding 2 1-digit numbers). The other reason is

specific to Re-Tuning. Since Re-Tuning generates calls to all examples except the base case, it

has trouble learning the what to do in the base case if there are not enough examples. Without

resampling, the base cases for each problem would be far less than 1% of the training data. We

do not follow any specific methodology for resampling. We simply try to bring the training

data distribution closer to uniform than it would be without resampling. See Figure 9.1 for a

comparison of training data on the dynamic programming problem before and after resampling.

Note the y-axis scales on each plot. Without resampling, examples of lengths 1 and 2 make up

far too little of the data distribution for the model to learn them. We apply similar resampling in

the other problem settings. See Figure 9.2 for a comparison of training data on the addition

problem before and after resampling. See Figure 9.3 for a comparison of training data on the

parity problem before and after resampling.
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Figure 9.1.: Dynamic Programming Training Data Resampling Comparison

Figure 9.2.: Addition Training Data Resampling Comparison

Figure 9.3.: Parity Training Data Resampling Comparison

9.4 Psuedo-code for Re-Tuning generation

Psuedo-code for the recursive generation using in Re-Tuning is shown in Figure 9.4.
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def recursive_generate(model, prompt):

context = model.generate(prompt)

# loop until all calls executed

while exists_unexecuted_call(context):

call = get_latest_call(context) # get latest call

if correct_format(call):

retrn = recursive_generate(model, call)

else: Raise Exception

call_answer = extract_answer(retrn) # get final answer from context

new_prompt = context + call_answer # append answer from recursive context

context = model.generate(new_prompt) # continue generation

return context

Figure 9.4.: Pseudo-code for Re-Tuning generation.
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9.5 Problem Examples

9.5.1 Re-Tuning Addition

The original addition data from [38] consists of numbers of up to 15 digits. For this we have

the model add each digit individually. The model outputs the current sum and the current carry

separately. For adding 637 and 123, the finetuning data is

' 637 + 123 \ n S o l u t i o n :

C a l l : 37 + 2 3 \ n

Re tu rn : Car ry 0 , Outpu t 6 0 \ n

Answer : Car ry 0 , Outpu t 760 '

' 37 + 2 3 \ n S o l u t i o n :

C a l l : 7 + 3 \ n

Re tu rn : Car ry 1 , Outpu t 0 \ n

Answer : Car ry 0 , Outpu t 60 '

' 7 + 3 \ n S o l u t i o n :

Car ry 1 , Outpu t 0 '

To compute the accuracy at generation, we extract the carry and output from the initial context.

If the carry is 1, we prepend it to the output, else we leave the output as is. Then we cast the

output sum to an integer and compare with the true sum to get the accuracy.
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9.5.2 Re-Tuning Dynamic Programming

The initial data for this task consists of arrays of up to 5 numbers and each number is an

integer from -5 to 5.

The finetuning data for the dynamic programming problem consists of 3 types of data: initial

context, dp array contexts, and indices array contexts. In the initial context, the model creates

prompts to create the dp array and the indices array (the indices array is the final output). The dp

array contexts solve the subproblem to create an array with the sub-array sums and the indices

array contexts solve the subproblem to create the final solution given the dp array. Examples of

each of these training examples are shown below:

Listing 9.1: Initial Context Examples

' Compute t h e maximum sum of n o n a d j a c e n t s u b s e q u e n c e s o f [ 1 , −1 , 3 ]

\ n S o l u t i o n :

C a l l : C r e a t e dp a r r a y [ 1 , −1 , 3 ] \ n

Re tu rn : [ 4 , 3 , 3 ] \ n

Answer : C a l l : C r e a t e chosen i n d i c e s a r r a y :

sum a r r a y [ 4 , 3 , 3 ] , i t em a r r a y [ 1 , −1 , 3 ] , can use i t em True \ n '

' Compute t h e maximum sum of n o n a d j a c e n t s u b s e q u e n c e s o f [ 3 , 2 ]

\ n S o l u t i o n :

C a l l : C r e a t e dp a r r a y [ 3 , 2 ]

\ nRe tu rn : [ 3 , 2 ] \ n

Answer : C a l l : C r e a t e chosen i n d i c e s a r r a y :
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sum a r r a y [ 3 , 2 ] , i t em a r r a y [ 3 , 2 ] , can use i t em True \ n '

Listing 9.2: DP Array Context Examples

' C r e a t e dp a r r a y [ 1 , −1 , 3 ] \ n

S o l u t i o n : C a l l w i th a r r a y minus f i r s t e l e m e n t .

C a l l : C r e a t e dp a r r a y [ −1 , 3 ] \ nRe tu rn : [ 3 , 3 ] \ n

Answer : Append max ( r e t u r n [ 0 ] , a r r a y [ 0 ] + r e t u r n [ 1 ] )

t o r e t u r n . \ nAnswer : [ 4 , 3 , 3 ] '

' C r e a t e dp a r r a y [ −1 , 3 ] \ n

S o l u t i o n : C a l l w i th a r r a y minus f i r s t e l e m e n t .

C a l l : C r e a t e dp a r r a y [ 3 ] \ nRe tu rn : [ 3 ] \ nAnswer :

Append max ( r e t u r n [ 0 ] , a r r a y [ 0 ] + r e t u r n [ 1 ] ) t o

r e t u r n . \ nAnswer : [ 3 , 3 ] '

' C r e a t e dp a r r a y [ 3 ] \ n

S o l u t i o n : Re tu rn [ 0 ] i f n e g a t i v e e l s e e l e m e n t . \ n

Answer : [ 3 ] '

Listing 9.3: Indices Array Context Examples

' C r e a t e chosen i n d i c e s a r r a y : sum a r r a y [ 4 , 3 , 3 ] , i t em a r r a y

[ 1 , −1 , 3 ] , can use i t em True \ n

S o l u t i o n : I f t h e r e i s on ly 1 i tem , r e t u r n 1 i f we s h o u l d
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use i t e l s e 2 . I f we s h o u l d use t h e f i r s t i t em t o g e t t h e sum ,

c a l l F a l s e e l s e True .

C a l l : C r e a t e chosen i n d i c e s a r r a y : sum a r r a y

[ 3 , 3 ] , i t em a r r a y [ −1 , 3 ] , can use i t em F a l s e

\ nRe tu rn [ 2 , 1 ] \ nAnswer :

Append 1 i f F a l s e e l s e 2 . \ nAnswer : [ 1 , 2 , 1 ] '

' C r e a t e chosen i n d i c e s a r r a y : sum a r r a y [ 3 , 3 ] , i t em a r r a y

[ −1 , 3 ] , can use i t em F a l s e \ n

S o l u t i o n : I f t h e r e i s on ly 1 i tem , r e t u r n 1 i f we s h o u l d

use i t e l s e 2 . I f we s h o u l d use t h e f i r s t i t em t o g e t t h e

sum , c a l l F a l s e e l s e True . C a l l : C r e a t e chosen i n d i c e s a r r a y : sum

a r r a y [ 3 ] , i t em a r r a y [ 3 ] , can use i t em True \ n

Re tu rn [ 1 ] \ nAnswer : Append 1 i f F a l s e e l s e 2 . \ n

Answer : [ 2 , 1 ] '

' C r e a t e chosen i n d i c e s a r r a y : sum a r r a y [ 3 ] , i t em a r r a y [ 3 ] ,

can use i t em True \ n S o l u t i o n : I f t h e r e i s on ly 1 i tem , r e t u r n

1 i f we s h o u l d use i t e l s e 2 . \ nAnswer : [ 1 ] '

To compute the accuracy for the dynamic programming problem, we parse out the index

array in the initial context and compare to the string of the true solution array.
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9.5.3 Re-Tuning Parity

For the parity problem the model computes the parity of the binary array in the prompt

given the parity of the sub-list of the last n-1 items. So the finetuning examples for the parity of

[1, 0, 0, 1] are:

' What i s t h e p a r i t y o f [ 1 , 0 , 0 , 1 ] ? \ n

S o l u t i o n : C a l l : What i s t h e p a r i t y o f

[ 0 , 0 , 1 ] ? \ n \ n

Re tu rn : 1 \ nAnswer : 0 '

' What i s t h e p a r i t y o f [ 0 , 0 , 1 ] ? \ n

S o l u t i o n : C a l l : What i s t h e p a r i t y o f

[ 0 , 1 ] ? \ n \ n

Re tu rn : 1 \ nAnswer : 1 '

' What i s t h e p a r i t y o f [ 0 , 1 ] ? \ n

S o l u t i o n :

C a l l : What i s t h e p a r i t y o f [ 1 ] ? \ n \ n

Re tu rn : 1 \ nAnswer : 1 '

' What i s t h e p a r i t y o f [ 1 ] ? \ n

S o l u t i o n : 1 '
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To evaluate accuracy, when the model has finished we simply take the last (non-empty)

element of the resulting string, and compare that to the true answer (as a string).

9.5.4 Scratchpad Addition

We have the model learn a scratchpad to add the digits in the 2 numbers individually. The

data is very similar to the recursive addition data except there are no generated prompts and all

the computations are in 1 context. To add 3116 + 5923, the data would be:

' 3116 + 5923 \ n S o l u t i o n :

Car ry 0 , Outpu t 9 \ nCar ry 0 , Outpu t 3 9 \ nCar ry 1 ,

Outpu t 039 \ nCar ry 0 , Outpu t 9039 '

Similar to the recursive finetuning, we do not compute training loss on the prompt, which

would be '3116 + 5923\nSolution: ' in this example. We compute the accuracy in

the same way as with the recursive addition.

9.5.5 Scratchpad Dynamic Programming

For this we use the same scratchpad as [36]. So to solve the problem for the array [3, -2, 2],

the training example is

' Q u e s t i o n : Let ' s s o l v e i n p u t = { a r r } .

S c r a t c h p a d : dp [ 2 ] = max ( i n p u t [ 2 ] , 0 ) =

max ( 2 , 0 ) = 2

dp [ 1 ] = max ( i n p u t [ 1 ] , i n p u t [ 2 ] , 0 )

= max ( −2 , 2 , 0 ) = 2
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dp [ 0 ] = max ( dp [ 1 ] , i n p u t [ 0 ] + dp [ 2 ] , 0 ) =

max ( 2 , 3 + 2 , 0 ) = 5

F i n a l l y , we r e c o n s t r u c t t h e l e x i c o g r a p h i c a l l y

s m a l l e s t s u b s e q u e n c e t h a t f u l f i l l s t h e t a s k o b j e c t i v e

by s e l e c t i n g numbers a s f o l l o w s . We s t o r e t h e

r e s u l t on a l i s t named " o u t p u t " .

Le t c a n _ u s e _ n e x t _ i t e m = True . S i n c e dp [ 0 ] == i n p u t [ 0 ] +

dp [ 2 ] (5 == 3 + 2) and c a n _ u s e _ n e x t _ i t e m == True ,

we s t o r e o u t p u t [ 0 ] = 1 . We u p d a t e c a n _ u s e _ n e x t _ i t e m

= F a l s e . S i n c e dp [ 1 ] != i n p u t [ 1 ] (2 != −2)

o r c a n _ u s e _ n e x t _ i t e m == F a l s e , we s t o r e o u t p u t [ 1 ] = 2 . We

u p d a t e c a n _ u s e _ n e x t _ i t e m = True . S i n c e dp [ 2 ] == i n p u t [ 2 ] (2 == 2)

and c a n _ u s e _ n e x t _ i t e m == True , we s t o r e o u t p u t [ 2 ] = 1 .

R e c o n s t r u c t i n g a l l t o g e t h e r , o u t p u t = [1 , 2 , 1 ] . '

To compute the accuracy, we parse out the index array and compare this string to the string of

the true answer. This is the same as with the recursive dynamic programming method.
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9.5.6 Scratchpad Parity

The original data consists of arrays up to length 21 with entries that are either 0 or 1. We

construct the finetuning data in the following way.

We have the model learn to sequentially sum the elements of the input array modulo 2,

similar to the recursive method. However all the computations are done in 1 context with no

recursive calls. The scratchpad we use is similar to that of [39]. For the input [1, 0, 1] the

finetuning data is:

' What i s t h e p a r i t y o f [ 1 , 0 , 1 ] ?

\ n S o l u t i o n : Compute one e l e m e n t a t a t ime . 1 1 0 '

The last number in the generation is the final answer. We compute the accuracy exactly the same

as in the recursive case.

9.5.7 Baseline Addition

The baseline addition data consists of prompts to add 2 numbers. The target is just the sum

of the numbers.

' 24 + 9 7 \ nAnswer : 121 '

9.5.8 Baseline Dynamic Programming

The prompt for baseline dynamic programming data and the response are below:

' Given a s e q u e n c e o f i n t e g e r s , f i n d a s u b s e q u e n c e wi th t h e

h i g h e s t sum , such t h a t no two numbers i n t h e s u b s e q u e n c e
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a r e a d j a c e n t i n t h e o r i g i n a l s e q u e n c e . \ n \ nOutpu t a l i s t

w i th "1" f o r chosen numbers and "2" f o r unchosen ones . I f

m u l t i p l e s o l u t i o n s e x i s t , s e l e c t t h e l e x i c o g r a p h i c a l l y s m a l l e s t .

I n p u t = [ 1 , −3 , 2 ] . \ nAnswer : [ 1 , 2 , 1 ] '

9.5.9 Baseline Parity

The prompt for baseline parity and the response are below:

What i s t h e p a r i t y o f [ 0 , 1 , 0 ] ? \ nAnswer : 1

9.6 Additional Results

In this section, we share Scratchpad and Re-Tuning results on two additional models:

Galactica 1.3B and Galactica 125M [41]. Results across our 3 tasks are shown in Figure 9.5.

On the addition task, both Scratchpad and Re-Tuning methods on Galactica 1.3B produce

highly accurate results up to length 15, which is the maximum problem size seen during training.

While the scratchpad accuracy quickly drops to 0% for problems beyond length 15, Re-Tuning

is accuracy hovers near 80% through a problem length of 40, and only reaches 0% accuracy

for problems at length 55. Certainly, the performance of both methods is worse for Galactica

125M, but Re-Tuning still performs much better than Scratchpad prompting. With Scratchpad,

accuracy never tops 40%, even for lengths seen during training, and quickly falls to 0% at length

15. However, with Re-Tuning, Galactica 125M is able to achieve greater than 50% accuracy

even at length 20.
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(a) Integer Addition (b) Dynamic Programming (c) Parity

Figure 9.5.: Scratchpad and Re-Tuning results on Addition (left), Dynamic Programming

(middle), and Parity (right) on Galactica 1.3B ad Galactica 125M. The span of problem lengths

seen during training are highlighted in grey for each problem.

Results on the dynamic programming problem are quite similar, with Re-Tuning able to

produce near 50% accuracy on problems of length 15 when using Galactica 1.3B, and near 50%

accuracy on length 7 using Galactica 125M. With Scratchpad prompting, both models achieve

perfect in-distribution performance, but accuracy quickly falls to 0% on problems of length

6 and 7 for Galactica 125M and 1.3B respectively. Interestingly, while Galactica 1.3B with

scratchpad fails to solve a single problem of length 7 correctly, Galactica 125M with Re-Tuning

can still solve near 50% correctly, even at just 1/10th of the size.

Results on parity are more interesting. Though the best performance overall is achieved by

Galactica 1.3B with Re-Tuning, the worst overall performance is achieved by Galactica 125M

with Re-Tuning. With Scratchpad prompting, both models perform similarly, with Galactica

1.3B performing better on shorter problems, while Galactica 125M performs better on longer

problems. The parity problem is interesting because the random performance should be near
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50% given that there are only two options, 0 or 1, which is around the performance we see on

long problem lengths for both models when using scratchpads. Galactica 125M with Re-Tuning,

however, performs worse than random for problem lengths beyond 30. Looking closer, almost all

the errors made by Galactica 125M with Re-Tuning on this task are call errors (see Section 7.2.3

for a description of each error categorization), suggesting that Galactica 125M has a particularly

difficult time decreasing the problem for the recursive call, which involves copying all but the

first element of the binary array. In the scratchpad setup, however, models attempt to keep

a running counter of the parity as as they traverse through the binary array, only outputting

0’s or 1’s in the process. As a result, the scratchpad setup converges around 50%, while the

accuracy with Re-Tuning can fall below random chance as a result of errors made in formulating

subsequent calls.
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