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ABSTRACT OF THE DISSERTATION

Infrared Magneto-Spectroscopy of Correlated Electron Systems in Graphene

by

Yashika Kapoor

Doctor of Philosophy in Physics

Washington University in St.Louis, 2024

Erik A. Henriksen (Chair)

Van der Waals (vdW) heterostructures represent a novel class of artificial materials cre-

ated by layering atomically thin planar crystals and offer a promising platform for band

structure engineering. Here, we focus on a vdW heterostructure of monolayer graphene

(G) coupled to a hexagonal boron nitride (h-BN). We utilize cyclotron resonance (CR)

spectroscopy as a primary investigative tool for probing the interacting Dirac fermions in

graphene. This work presents a system capable of conducting broadband far- to mid-infrared

CR spectroscopy in high magnetic fields and ultra-low temperatures. Our study investigates

the influence of the h-BN substrate on the properties of graphene in two key aspects. First,

the atomic-scale modulations break the local symmetry between the graphene sublattices, in-

fluenced by the potential difference between boron and nitrogen atoms in h-BN. We perform

CR measurements on high-quality graphene devices, presenting the first observation of the

complete lifting of the four-fold degeneracy of Landau levels (LLs) due to broken spin and

valley symmetries. Secondly, we explore the effect of near-perfect alignment between G/h-

BN that causes the superlattice potential to match the magnetic length scale in graphene,

yielding a self-similar energy spectrum. We spectroscopically investigate the fractal levels by

measuring optical transitions across the reconstructed LLs in G/h-BN moiré superlattice.
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Chapter 1

Introduction and Overview

This work is motivated by a cascade of discoveries that have revolutionized our understanding

and exploration of two-dimensional (2D) materials. Initially deemed thermodynamically

unstable, the isolation of atomically thin 2D structures from layered materials heralded

a new era. Through micromechanical exfoliation, Geim and Novoselov demonstrated the

startling possibility of obtaining monolayers from graphite [1], MoS2 [2], and other layered

materials [3] in the laboratory. The isolation of these monolayers sparked excitement and

raised intriguing questions about how their two-dimensional nature influences their electronic

properties.

Layered 2D materials showcase a variety of electronic behaviors, spanning from super-

conductivity and metallic to semimetallic, semiconductor, and insulating properties [4]. The

transition to the 2D realm offers an unexplored frontier for investigating the impact of

dimensionality on these properties. Moreover, combining different monolayers to form het-

erostructures presents even greater opportunities for novel device applications [5].

Dimensionality lies at the heart of many fundamental physical phenomena, offering a rich

playground for exploration. By reducing the spatial degrees of freedom of charge carriers,

we can uncover novel physics previously hidden in higher dimensions. Experimentally, this

dimensional confinement can be achieved artificially or directly, reducing material dimen-

1



Chapter 1. Introduction and Overview

sionality.

Graphite, comprised of layers of hexagonally-bonded carbon atoms held together by

weak van der Waals (vdW) interactions, can be exfoliated to obtain graphene monolayers.

The discovery of graphene in 2004 [6] through mechanical exfoliation marked a milestone,

revealing its exceptional properties as an ultra-thin electrical and thermal conductor [7]

with high carrier mobility and ambipolar field-effect gate modulation [6]. The isolation of

graphene ushered in a new era of research into 2D materials, fueled by the simplicity and

versatility of the micromechanical exfoliation method.

Electrons in typical two-dimensional electron systems are described by a scalar Hamil-

tonian. In contrast, electrons in monolayer graphene are massless and described by a ma-

trix Dirac Hamiltonian. Unlike most semiconductor materials, which exhibit a parabolic

dispersion, the quasi-particle energy in graphene follows a linear function of momentum,

E ∝ k. While various parabolic systems display diverse behaviors due to effective masses,

non-parabolicity effects, and multiple active bands, their underlying dispersions remain sim-

ilar. Graphene stands out for its linear dispersion, akin to a relativistic system of massless

charge carriers where the Fermi velocity in graphene plays a material analog of the speed

of light. Moreover, graphene features simple degenerate points where the conduction and

valence bands touch, forming what are known as Dirac points. With its single plane of car-

bon atoms on a honeycomb lattice, graphene features the simplest atomic structure among

van der Waals (vdW) materials. The unit cell of graphene comprises two identical carbon

atoms represented by two different lattice vectors, effectively forming two equivalent trian-

gular lattices conventionally termed A and B. Beyond electron spin, the sublattice structure

of graphene confers a second conserved degree of freedom called “pseudospin”, leading to a

system of chiral, massless, charged particles known as Dirac fermions.

Notice that in quantum mechanics, the momentum p of the particle relates to its wave-

2



Chapter 1. Introduction and Overview

length λ, by p = ℏ/λ and hence the kinetic energy behaves as K = ℏ2/(2m∗λ2), where

m∗ is the effective mass of the particle. Suppose the average distance between electrons is

l. In that case, we see that the average kinetic energy per electron has to be of the order

Ek ≈ ℏ2nd
2/d(2m∗) where nd = 1/ld is the average electron density in d spatial dimensions.

On the other hand, the Coulomb interaction is given by

V (r) = e2

ϵ0r
, (1.1)

where e is the electron charge, and ϵ0 is the dielectric constant of the medium. Notice that

Coulomb energy per electron is in order EC = e2nd
1/d/ϵ0. Thus, the ratio of Coulomb to

kinetic energy is given by rs = EC/EK ∝ (n0/nd)1/d, where n0 = [m∗e2/ℏ2ϵ]d depends on

the material properties. Therefore, the kinetic energy dominates at higher electron densities,

nd ≫ n0, while at lower densities, nd ≪ n0, the Coulomb energy dominates. Therefore, the

relative strength of the kinetic to Coulomb interactions is completely controlled by the elec-

tron density. Due to the linear energy dispersion relation of graphene, EK = ±vf |p|k, where

vF is the Fermi velocity of graphene. We reach very different conclusions if we take this value

and reconsider the abovementioned argument on the relevance of the Coulomb interactions.

The average kinetic energy per electron scales as EG ≈ ℏvFn
1/2 and consequently, the ratio

of Coulomb to kinetic energy is given by

α = EC

EG

= e2

ϵ0ℏvF

, (1.2)

and is independent of the electron density n, depending only on material properties and

environment conditions ϵ0. For suspended graphene κ = 1, one finds α ≈ 2.3, so the

interactions are quite strong. The interaction in graphene can thus be adjusted by altering

3



Chapter 1. Introduction and Overview

its surroundings.

Recent advancements in sample preparation, optical detection, transfer, and manipula-

tion of layered materials have paved the way for new opportunities in the domain of 2D van

der Waals crystals, including hexagonal boron nitride (h-BN). With a lattice constant similar

to that of graphene, h-BN serves as an insulating substrate and encapsulation layer owing

to its atomic flatness and chemical inertness. The close values of lattice constants between

graphene and h-BN also offer an additional degree of freedom during the fabrication of vdW

heterostructures: the twist angle between the crystallographic axes of the two materials.

Aligning the crystallographic orientation between h-BN and graphene enables the formation

of a superlattice with a lattice spacing of approximately 100 atoms greater than that of the

individual crystals. The presence of these superlattices introduces repetitive changes in the

electronic structure of graphene and shows a self-similar pattern. The electronic properties of

graphene are sensitive to environmental conditions; they can be modified by the proximity of

other layered structures. In this work, we aim to utilize cyclotron resonance to probe deeply

into aspects of the physics of interacting electrons that other techniques are not sensitive to.

A breakthrough recently transforming the field of 2D materials and the entire condensed

matter community is the revelation of intrinsic unconventional superconductivity in graphene

superlattices [8]. When two monolayers of graphene are stacked with a small relative twist

angle, the resulting band structure exhibits a remarkably flat pair of bands at a sequence

of ‘magic’ angle. This discovery opens up an exceptional playground to explore many-body

quantum phases of matter, allowing for the realization of a wide range of novel correlated or

topological phenomena.

In the subsequent sections, we provide a brief overview of the fundamental properties of

graphene, including its unique band structure. We also delve into the influence of out-of-

plane magnetic fields on the band structure of graphene, a key aspect of understanding the

4



Chapter 1. Introduction and Overview

experimental findings that we will present later in this thesis. We discuss various experi-

mental techniques used to probe graphene properties, with a particular focus on cyclotron

resonance and its significance in understanding the intrinsic properties of graphene. We

further address the limitations of the single-electron model and the role of electron-electron

(e-e) interactions in shaping the observable properties of graphene, drawing from both theo-

retical frameworks and experimental evidence. Additionally, we discuss the influence of the

h-BN substrate on the electronic band structure of graphene.

1.1 Theoretical overview of graphene

Through mechanical exfoliation with scotch tape, single-layer graphene emerges as a deriva-

tive of its 3D precursor, graphite, presenting remarkable traits. Structurally, graphene con-

sists of a single atomic layer of carbon atoms arranged in a honeycomb lattice formed by

sp2-hybridized bonds. Isolating a flat single-atom-thick layer of graphene was possible due

to the much weaker Van der Waals force between graphite layers compared to covalent bonds

within a single layer. This unique 2D carbon allotrope demonstrates thermodynamic stabil-

ity, with remarkable mechanical strength and thermal conductivity attributed to its strong

covalent bonds. The optical properties of graphene stem directly from its 2D structure and

gapless electronic spectrum (discussed below). Despite being only one atom thick, the 2.3%

opacity [9] of graphene makes it visible to the naked eye through a glass slide covered with

graphene.
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Chapter 1. Introduction and Overview

1.1.1 Electronic structure of single-layer graphene in the absence

of interactions

The unusual electronic properties of graphene stem from three key factors: its 2D structure,

the honeycomb lattice arrangement, and the uniform occupancy of carbon atoms across all

lattice sites, thereby introducing inversion symmetry. Since these concepts have been known

for decades and have been explained in many excellent references [10–12], we will only review

key elements and briefly overview the graphene band structure, focusing on a single-particle

approximation that neglects electron-electron interactions. Graphene has the honeycomb

crystal lattice shown in Figure 1.1. The lattice vectors of the triangular Bravais lattice are

a⃗1 = a

2
(
3,

√
3
)
, a⃗2 = a

2
(
3,−

√
3
)
, (1.3)

where a = 1.42 Å is the nearest-neighbor distance(not the graphene lattice constant). The

unit cell shown in Figure 1.1a contains two atoms belonging to two distinct sublattices called

A and B. Each atom of sublattice A is surrounded by three atoms of sublattice B, and vice

versa. The vectors connecting each atom to its three nearest neighbors are

δ⃗1 = a

2
(
1,

√
3
)
, δ⃗2 = a

2
(
1,−

√
3
)
, δ⃗3 = a (−1, 0) . (1.4)

The reciprocal lattice of the triangular Bravais lattice is also triangular, with lattice

vectors

b⃗1 = 2π
3a
(
1,

√
3
)
, b⃗2 = 2π

3a
(
1,−

√
3
)
. (1.5)

In Figure 1.1b we show the Brillouin zone (BZ) with the special high-symmetry K, K ′

6
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and M points

K⃗ ′ =
(

2π
3a ,

2π
3
√

3a

)
, K⃗ =

(
2π
3a ,−

2π
3
√

3a

)
, M⃗ =

(2π
3a , 0

)
. (1.6)

The inequivalent K and K ′ points are often referred to as valleys in momentum space. In

single-layer graphene, the nearest-neighbor carbon atoms form sp2 hybridized bonds, giving

rise to two distinct electronic bands, π and σ. The σ bands primarily influence electronic

phenomena at energies greater than 3 eV. The unique low-energy properties of graphene

stem from the π bands, whose structure can be elucidated within the tight-binding model

proposed by Wallace. This model exclusively considers the π states and nearest-neighbor

hopping terms, represented by the parameter γ0 that facilitates hopping processes solely

between sublattices. Within this framework, the basis of the electronic states comprises two

π states per unit cell, belonging to atoms of the two triangular sublattices, denoted as A

and B, within the full honeycomb lattice. Consequently, the tight-binding Hamiltonian [12]

governing the electronic behavior is described by a 2 × 2 matrix since each unit cell contains

two 2pz orbitals, one centered at each atomic site:

HK =

 ED γ0Sk

γ0S
∗
k ED

 , (1.7)

where ED is the nearest-neighbor bonding energy, k = kx, ky is the in-plane crystal momen-

tum, and

Sk =
∑

δ⃗

eikδ⃗ = exp
(

2ikxa√
3

)
+ exp

(
−ikxa√

3

)
cos(kya), (1.8)

represents the sum of the hopping amplitudes between a given site and its nearest neighbors.

7
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The resulting spectrum of single-layer graphene has the form

E±(k) = ED ± γ0|Sk|. (1.9)

The electronic properties of graphene are controlled by the low energy (|E| ≪ γ0) dis-

persion around the two inequivalent K and K ′ points, corresponding to the electron states

near the Fermi energy. By defining q = k − K. The energy dispersion has a conical shape:

E±(q) = ±ℏvF |q|. (1.10)

Near the corners of the hexagonal Brillouin Zone (BZ), the velocity is characterized by vF =
√

3γ0a/2ℏ. This linear dispersion is a 2D analog of the Dirac spectrum for massless fermions,

expressed as E =
√
p2c2. However, instead of the velocity of light (denoted as c), we have

the parameter of band velocity, vF ≃ c/300. In contrast to true Dirac fermions, where the

electronic spin represents their internal degree of freedom, graphene possesses an additional

degree of freedom represented by the sublattice index (or valley degree of freedom), leading

to a 4-fold degeneracy in graphene. The linear dispersion corresponds to the spectrum of

the Dirac-like Hamiltonian for low-energy massless Dirac fermions. In the sublattice basis

A,B, the 2 × 2 Hamiltonian can be rewritten as:

HK = ℏvF

 0 kx − iky

kx + iky 0

 = ℏvF σ⃗ · k⃗. (1.11)

The Dirac Hamiltonian is essentially an expansion of the tight-binding Hamiltonian (Eq.

1.7) near the K point. Similarly, near the K ′ point, the Hamiltonian takes the form HK′ =

ℏvF σ⃗
∗ · k⃗, where σ⃗ = (σx, σy) represents the 2D vector of Pauli matrices (with * indicating

8



Chapter 1. Introduction and Overview

a2

a1

} 1.42 Å

A sublattice B sublattice

b1

b2
K´

K´

K´

K

K

KГ

(a) (b)

(c) K K'

Fig. 1.1: (a) The crystal lattice of monolayer graphene with red and blue circles representing
the trigonal A and B sublattices. (b) First Brillouin zone of the reciprocal lattice,
where b1 and b2 represent the primitive reciprocal lattice vectors. (c) The low-
energy band structure is linear, presented by “Dirac cones” with a zero in the
energy coinciding with each of the six corners of the BZ.

.
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its complex conjugate). The eigenfunctions near the Dirac points are expressed as follows:

Ψ±(k) = 1√
2

±eiθk

0

 , where tanθk = kx

ky

. (1.12)

This state is characterized by its “helicity” – that is, as the quasiparticle momentum rotates

once around the Dirac point, the phase of the eigenfunction changes by π. In graphene,

this helicity is called chirality because of the inability to transform one type of dispersion

into another[13]. The chirality in graphene indicates a pseudospin quantum number for the

charge carriers. This quantum number is analogous to spin but is entirely independent of the

electronic spin. The pseudospin quantum number allows for the distinction of contributions

from each sublattice. So, for example, polarizing the graphene to a pseudospin “up” state

leads to all the electrons residing in the A sublattice, and similarly, a pseudospin “down”

state has all electrons on the B sublattice.

The conical dispersion yields the single-particle density of states (DOS), ν(E), that is

linear in E. This can be obtained by considering the number of states n = k2/2π, in the

reciprocal space within a circle of radius |k′| = |E|/ℏvF and taking into account the spin

and valley degeneracy. The DOS associated with this point per unit area is

ν(E) = 2
ℏvF

dn

dq
= 2
πℏ2vF

2 |E|. (1.13)

The frequently needed relations between the zero temperature chemical potential µ (referred

to the Dirac point energy ED), Fermi momentum kF , and the carrier density ns are

kF =
√
π|ns|, µ ≃ EF = sgn(ns)ℏvFkF . (1.14)
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The density of states in graphene exhibits qualitative differences compared to non-relativistic

2D electron systems, leading to significant experimental implications. In graphene, the DOS

is linear in energy, electron-hole symmetric, and vanishes at the Dirac point (DP), contrasting

with the constant value and quadratic energy dispersion for the more traditional parabolic

system. Graphene can be easily doped through an external gate voltage. At zero doping,

the lower half of the band is perfectly filled up to the DPs. The application of a gate voltage

induces a non-zero charge, effectively injecting either electrons or holes (depending on the

polarity of the applied voltage) into the upper or lower half of the Dirac cones. The ambipolar

gating behavior, driven by electron-hole symmetry, changes the sign of the charge at the DP.

The difference between Dirac fermions and Schrödinger fermions can be observed in transport

measurements. One of the most notable examples is the unconventional quantum Hall effects

discussed in the following sections.

1.1.2 Landau levels in graphene

This section discusses the impact of a magnetic field applied perpendicular to the plane of

monolayer graphene on its electronic properties. At low energies, the momentum values in

momentum space are confined to regions near two distinct valleys located at

Kξ = ξ
(4π

3a , 0
)
, (1.15)

here, ξ = ±1 describes two distinct valleys. To facilitate analysis, we define p⃗ = ℏk⃗ − ℏK⃗ξ.

With this definition of p⃗, the tight-binding Hamiltonian in 1.11 can be rewritten as

Hξ = vF

 0 ξpx − ipy

ξpx + ipy 0.

 (1.16)
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A perpendicular magnetic field, B = |B|êz, has a vector potential A⃗ parallel to the layer

plane so that the canonical momentum operator in the Hamiltonian, Hξ, is shifted to

p⃗ = −iℏ∆⃗ + eA⃗. (1.17)

When a magnetic field is applied to conductors, free charge carriers are forced to circulate in

cyclotron orbits. In the non-relativistic case, observed in systems like 2D electron systems on

helium or in semiconductor heterostructures, the Landau level sequence comprises equally

spaced levels akin to those of a harmonic oscillator, given by En = ℏωc(N + 1/2), with

ωc = eB/m∗ the cyclotron frequency. In graphene, however, the charge carrier velocity

remains independent of energy, resembling that of massless particles. The zero density of

states in graphene corresponds to one electron per atomic site or two electrons per unit cell,

resulting in a half-filled zero-energy Landau level at neutral doping. Furthermore, the linear

band structure leads to an uneven spacing of Landau levels in energy,

En,± = ±vF

√
2ℏeBn n ∈ N. (1.18)

The degeneracy of each Landau level is gvgs|eB|/h, where we consider both spin and valley

degree of freedom. The structure of the LLs, as shown in 1.2a, leads to the unconven-

tional half-integer quantum Hall effect in graphene, which was predicted by theory [14] and

subsequently observed experimentally [15] [16].

In contrast to the Landau levels (LLs) observed in conventional 2D electron gases (2DEGs),

where En = ℏωc(N + 1/2), n ∈ N, it is important to highlight a distinct LL at E = 0 result-

ing from the electron-hole symmetry in graphene as shown in Figure 1.2a. This zero-energy

LL arises equally from electron and hole states, causing a half-integer shift in the number
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of flux quanta required to fill an integer number of LLs. The fourfold degeneracy of LLs

manifests in the formation of quantum Hall (QH) plateaus [17]:

σxy = ±4
(
N + 1

2

)
e2

h
n ∈ N. (1.19)

The LL filling factor, ν, is related to the carrier density ns

ν = nsh

eB
. (1.20)

Note that ν = −2 and ν = 2 correspond to completely emptying or filling the zeroth LL

(En=0 = 0). Figure 1.2b shows a typical Hall conductance trace (Gxy) in units of e2/h and

longitudinal resistance (Rxx) vs charge density ns for fixed B = 8 T. The characteristic

half-integer QHE plateaus at Gxy = νe2/h are observed for filling factor, ν = ±2 ± 6 ± 10.

However, the longitudinal resistance nearly vanishes at densities where the Hall conductance

exhibits plateaus, which is the hallmark of QHE in single-layer graphene [18].

1.2 Cyclotron resonance

In the context of materials, CR arises [19] when a charged particle, characterized by its

charge e, moves in a circular trajectory perpendicular to an applied magnetic field with a

cyclotron frequency ωc = eB/mc. Here, mc denotes the cyclotron mass, which is a measure

of the effective mass m in the effective mass approximation, where m∗ describes the inertial

response of a charged particle moving in a periodic potential. When an electromagnetic field

with frequency ω = ωc is applied, the particle absorbs energy from the electromagnetic field,

resulting in cyclotron resonance. In semiconductor materials, various scattering processes

can modify the resonant behavior of particles. A well-defined resonance is observed when

13



Chapter 1. Introduction and Overview

 

DOS

-1-2 1 2

n
LL 0 1 2 3-1-2-3

nS (1011 cm-2)  

0

Fig. 1.2: (a) Density of states of single-layer graphene in zero magnetic fields is shown as
a dashed line, illustrating the linear energy dependence. When the field is turned
on, the continuum of energy is quantized into a series of particle-hole symmetric
Landau levels. The filled colors indicate electrons (orange) and holes (blue). (b)
Longitudinal resistance Rxx and Hall conductance Gxy as a function of carrier
density at B = 8T, T = 4K. Half-integer quantum Hall plateaus at Gxy = νe2/h
are observed for filling factor ν = ±2 ± 6 ± 10
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ωcτ ≫ 1, where τ represents the scattering time, meaning that the carriers should complete

at least one cyclotron orbit between scattering events.

In crystalline structures, the absence of spherical symmetry results in inherent anisotropy

[20]. This crystalline anisotropy can be quantified using an effective mass tensor, which is

expressed as: ( 1
m∗

)
ij

= 1
ℏ2k

∂E

∂ki∂kj

. (1.21)

Thus, determining m∗ for a given relative orientation of the crystal and B-field facilitates

understanding the low-energy band structure. Due to crystalline anisotropy, the cyclotron

mass mc is not always the same as the effective mass m∗, but they are approximately close

in practice.

CR absorption spectra of a material are typically obtained by varying either the magnetic

field strength or the frequency of the electromagnetic field. Plotting the cyclotron frequency

ωc against the magnetic field strength facilitates the determination of the effective mass of

the particle. This information is essential for comprehending the behavior of Bloch electrons

within a restricted-energy and wavenumber range in crystalline solids. Therefore, CR acts

as a powerful spectroscopic probe of the electronic structure of conducting materials [21].

This methodology was particularly instrumental in early CR studies on semiconductors like

Si and Ge [22] and continues to be valuable for newer materials.

The application of CR to two-dimensional electron gases (2DEGs) ushered in a new era,

with its utility expanding to material systems such as GaAs/AlGaAs heterostructures [23,

24]. CR offers insights complementary to electronic transport, especially when the Fermi

energy lies within a cyclotron gap. For instance, while transport probes only the edge states

of a quantum Hall system, CR allows for the direct investigation of Landau levels (LLs)

throughout the bulk of the material.
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Traditionally, CR measures a single resonance for a given sample and field orientation,

determining the charge carrier effective mass, a fundamental property of the band structure.

However, the linear and particle-hole symmetric dispersion of graphene introduces a myriad

of new inter- and intra-band resonances spanning a wide range of energies [25]. In graphene,

the ease of controlling the charge carrier density (or Fermi level) allows for precise control over

which transitions are active, facilitating clear assignment to specific levels of the electronic

structure. Importantly, unlike traditional materials with parabolic dispersion, CR energies in

graphene are inherently sensitive to contributions from electron correlations [26]. Therefore,

CR spectroscopy presents a novel opportunity to explore interaction-induced physics [27] in

graphene and beyond, constituting a primary aim of this thesis.

To discuss the interaction of light with graphene in the presence of a quantizing magnetic

field, we return to the tight-binding Hamiltonian at the K point and rewrite it in terms of

kinetic energy momentum π = p + eA, this yields

Hξ = 1
2m(p + eA)2 = 1

2m
(
πx

2 + πy
2
)
, (1.22)

If we define the ladder operators for the total momentum of the system as

â± = l2B√
2ℏ

(πx ± iπy) , (1.23)

where â± are creation and annihilation operator satisfying the condition [â+, â−] = 1. In
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addition to the usual commutation relations

[x, px] = [y, py] = iℏ, (1.24a)

[x, y] = 0, (1.24b)

[px, py] = 0, (1.24c)

we find that in contrast to the components of the canonical momentum, the components of

the kinetic momentum do not commute with each other in the presence of a magnetic field.

[x, πx] = [y, πy] = iℏ, (1.25a)

[x, πy] = [y, πx] = 0, (1.25b)

[πx, πy] = iℏ2

l2B
. (1.25c)

When we apply a far-infrared light to the system, the Hamiltonian gains a perturbing term

A′. In the electric dipole approximation, the time-varying electric field given by

A′

± = E0√
2iω

(êx ± êx) e−iωt, (1.26)

where A′
± represents the right- or left-handedness of the circularly polarized light with fre-

quency ω. Substituting the latter operators to the Hamiltonian in (1.22) and adding (1.26)

as perturbation we find

H = 1
2m∗

(
p + eA + eA′

±

)2
≈ 1

2m∗π
2 + e

m∗π.A
′

± = Hξ +H
′

ξ, (1.27)
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LL0

LL1

LL2

LL3

LL-1

LL-2
LL-3

EF (ν = 6)

(B ≠ 0)

A

E

B D

C

Fig. 1.3: The Landau level spectrum of graphene, with the Fermi level between first and
second LLs. One intraband and four interband transitions demonstrate a selection
rule = |nfinal| = |ninitial| = ±1 Transition “C” is not allowed because all the levels
are filled.

where H ′
ξ can be written in terms of ladder operators as

H
′

ξ = e

m∗

(
πxA′

±,x + πyA′

±,y

)
= −eE0√

2im∗lB
(πx ± iπy) e−iωt = −eℏE0

iωm∗lB
â±e

−iωt. (1.28)

We observe that electromagnetic radiation of frequency ω = ωc is detectable from charges

undergoing cyclotron motion, inducing transitions n → n + 1 across Landau levels (LLs).

The diagram in Fig. 1.3 illustrates optically active transitions in monolayer graphene for

Fermi energy EF lying between N = 1 and N = 2. In parabolic systems, the lowering

operator associated with the perturbation typically corresponds to raising a hole by one LL

(e.g., N = −1 → N = −2). However, in graphene, this lowering operator can also facilitate

the lowering of an electron by one LL while simultaneously raising its energy, enabling

interband transitions e.g., N = −3 → N = 2 (transition “E” in Fig. 1.3 ). We explore
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several implications derived from equations 1.27 and 1.28: due to electron-hole symmetry,

the wavefunctions of positive and negative Landau level (LL) states are identical, allowing

dipole-allowed inter-LL transitions in graphene following the selection rules |n| → |n| + 1

and |n| → |n| − 1. These transitions can be categorized into three groups (j ≥ 1). Firstly,

allowed inter-band resonances:


LL−j → LLj+1

LL−j−1 → Lj

at E = vF

√
2ℏeB(

√
j + 1 +

√
j), (1.29)

where j represents the LL index ̸= 0. Secondly, allowed intra-band resonances:


LLj → LLj+1

LL−j−1 → LL−j

at E = vF

√
2ℏeB(

√
j + 1 −

√
j). (1.30)

Lastly, mixed LL−1(0) → LL0(1) resonance, involving the n = 0 LL, having energy vF

√
2ℏeB.

Therefore, graphene exhibits a rich, multi-mode magneto-optical response [28]. Cyclotron

resonance is often used interchangeably with Landau level spectroscopy where the energies

of individual resonances, corresponding to inter-LL transitions, scale as
√
B, thus preserving

the unique property of the non-equidistant ladder of LLs in graphene.

1.2.1 Many body effects and Kohn’s theorem

While the properties of graphene discussed above can be understood within a non-interacting

electron framework, the role of electron-electron interactions [29] remains crucial for a com-

prehensive understanding of the LL transition energies in cyclotron resonance measurements.

In 1961, Walter Kohn [30] showed that in a translationally invariant system with Landau
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quantized charge carriers interacting via the short-range Coulomb force U , electromagnetic

radiation primarily interacts with the center-of-mass motion of the system. This interac-

tion leads to excitations across Landau levels N → N + 1 at the cyclotron energy ℏωc.

When we include the interaction term U into the Hamiltonian in equation1.28, the com-

mutation relation [Hξ, â±] = ±ℏωc remains unchanged. Therefore, the cyclotron resonance

frequency remains unchanged, so the interactions play a negligible role in cyclotron resonance

in parabolic systems [30–32].

Kohn’s theorem can break down due to various factors like disorder and, in some cases,

non-parabolic energy-momentum relations. The extreme nonparabolicity of the electronic

spectra in graphene thus evades Kohn’s theorem [27, 33–37], leading to deviations from

Eq. 1.29 [28, 38–41], which opens up the opportunity to observe many-body corrections to

cyclotron resonance, a phenomenon we experimentally investigate in Chapter 3 of this thesis.

Building upon prior work by Henriksen et al., [38] which established the breakdown of

Kohn’s theorem in the context of unusual Landau-level sequence in graphene, our research

extends this investigation further. However, recent advancements within our lab have pro-

vided more deeper insights into this phenomenon. A nonmonotonic variation of the effective

Fermi velocity of charge carriers in a magnetic field, mainly attributed to electron-electron

interactions, was investigated in prior work [42] using magneto-optical spectroscopy. In a

single-particle picture, the transitions energy between interband Landau levels in graphene

are defined by

Emn = vF

√
2eℏB

(√
|m| +

√
|n|
)

(1.31)

Here, m and n are indices for the initial and final levels, respectively, with vF ≈ 106 m/s rep-

resenting the carrier Fermi velocity. However, the presence of electron-electron interactions

introduces an additional term, δEee = Cmne
2/lB [33, 34]. This term, also contingent upon
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initial and final states, magnetic field strength, and the chemical potential (Fermi energy),

poses a challenge in distinguishing between single- and many-particle contributions since

δEee ∼
√
B and Emn ∼

√
B. To understand this complexity, its crucial to consider both

the single-particle transition energy (Emn) and the many-body contribution. The combined

impact of these factors yields the total transition energy,

∆Etotal
mn = ∆Emn + δEee = vee

F

vF

∆Emn, (1.32)

where the “effective” Fermi velocity vee
F ≥ vF captures the interaction contribution. Conse-

quently, any variation in vee
F at a constant field reflects changes arising from many-particle

interactions. Cyclotron resonance acquires a qualitatively novel capability when employed in

materials with non-parabolic dispersion. Given the well-defined single-particle Landau lev-

els, cyclotron resonance spectroscopy allows for a quantitative assessment of the contribution

of electron-electron interactions.

1.3 Graphene on hexagonal boron nitride

The electronic properties of two-dimensional materials such as graphene are extremely sen-

sitive to their environment, especially the underlying substrates [43]. Initially, graphene on

SiO2 substrates served as a convenient entry point due to its visible optical contrast and

ease of fabrication [44, 45]. However, the electronic quality of graphene/SiO2 devices is

often compromised by trapped charge impurities [46]. The advent of suspended graphene

structures, achieved by substrate removal, marked a significant advancement, enabling de-

vice quality approaching ballistic transport [47]. Nevertheless, suspended configurations are

mechanically fragile and lack flexibility in device architecture, adding complexity to fabrica-
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tion processes. Hexagonal boron nitride (h-BN), similar to graphite, features atomically flat

surfaces when exfoliated, with the lattice constants δ of the two materials differing only by

1.8%. Each h-BN layer consists of a hexagonal lattice of boron and nitrogen atoms. Unlike

the covalent bonds in graphene, boron and nitrogen atoms form ionic bonds, resulting in a

substantial band gap of approximately 6 eV. These unique properties position h-BN as an

ideal substrate for graphene, leading to significant improvements in charge carrier mobility

compared to devices on SiO2. Since hBN has a similar lattice constant with graphene, when

the two lattices are nearly perfectly aligned, interactions between the crystals significantly

alter the graphene band structure. This opens an avenue for studying interesting phenom-

ena, such as the Hofstadter quantization, and provides a route to make graphene insulating,

which we will discuss further in the following section.

1.3.1 Graphene/h-BN moiré superlattice

Stacking two-dimensional crystals with identical Bravais lattice structures can result in the

emergence of new large-scale periodicity [48–50]. This arises from the crystallographic align-

ment and the mismatched lattice constants, leading to a topographic moiré pattern. The

h-BN lattice acts as a long wavelength electrostatic potential modulation for the electron

states in graphene. Given the lattice mismatch δ between h-BN and graphene, the relative

rotational angle θ between the two lattices uniquely determines the moiré wavelength λ as

[48],

λ = (1 + δ)a√
2(1 + δ)(1 − cosθ) + δ2

, (1.33)

where a is the lattice constant of graphene. Due to lattice mismatch, there is a moiré pattern

for all orientations of graphene on h-BN with a maximum possible length of about 14 nm

(for θ = 0◦). A visual illustration of the graphene/h-BN moiré pattern is shown in Figure
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Θ = 0°Θ = 15°

Fig. 1.4: Moiré patterns in graphene/h-BN heterostructures for two different rotational
alignments. The lattice mismatch between G and h-BN leads to the formation of
moiré patterns for all rotational alignments. Notably, the moiré pattern reaches
its maximum length for perfect alignment (0◦), highlighted by dashed line.

1.4 for two different rotational alignments.

As the lattice length scale increases, the electronic matter wave propagates at a longer

wavelength on the lattice, which corresponds to a lower momentum. Since the kinetic energy

of electrons is linear in momentum, the reduced momentum on the superlattice implies a

reduced kinetic energy. This makes the interaction energy relatively more important than

the kinetic energy, resulting in enhanced interaction among the electrons.

The key effects of the h-BN substrate on the electronic structure of graphene can be

summarized by two points. Firstly, the atomic-scale modulations break the local symme-

try between the graphene sublattices, influenced by the potential difference between boron

and nitrogen atoms in h-BN. In our study, we investigate CR measurements conducted

on high-quality graphene devices, presenting the first observation of the complete lifting

of four-fold degeneracy of Landau levels due to broken spin and valley symmetries using
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magneto-spectroscopy. Secondly, perfect crystallographic alignment of two lattices gives

long wavelength moiré pattern that introduces a λ-scale modulation of the graphene-hBN

coupling, forming a smooth superlattice potential. The superlattice length scale provides ac-

cess to the Hofstadter butterfly phenomenon, which we will discuss further in the following

section. Our work in this thesis reports cyclotron resonance measurements in the Hofstadter

butterfly regime in graphene/h-BN superlattices.

1.4 Hofstadter’s butterfly

Hofstadter solved the energy spectrum of electrons in commensurate lattices [51] where

he treated the electrons as idealized “Bloch electrons”, which means they do not interact

with each other and move in a periodic electric potential commensurate with the lattice.

The butterfly-like pattern visible in Figure 1.5 originates from the nested self-similar fractal

structure of the energy spectrum of electrons. It arises due to the interplay of two charac-

teristic length scales in the problem: magnetic length lB and the lattice constant a of the

lattice. The conditions for observing fractals are met when the magnetic flux Φ = BA is as

large as the magnetic flux quantum ϕ0 = h/e and their ratio takes on rational values:

Φ = p

q
ϕ0 (1.34)

where p and q are co-prime integers. However, the lattice spacing is considerably smaller for

most materials than the magnetic length scales, necessitating extraordinarily high magnetic

field values to fulfill this criterion. For instance, with a lattice constant of approximately 2 Å,

the condition for observing the fractals is met only at magnetic field values as high as 10,000

T. To address this, Hofstadter proposed that one could synthetically create materials with
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relatively larger lattice spacing to realize this self-recursive structure at an experimentally

attainable magnetic field.

When two isostructural crystals with a slight lattice mismatch are placed on top of each

other with an alignment angle θ between their respective crystal directions, the interac-

tion between their crystalline periodicities generates a large-scale modulation of their local

stacking, termed the moiré superlattice. The advent of graphene rapidly sparked interest

in graphene superlattices. The principal novelty of such superlattices is in the Dirac-like

spectrum and the fact that charge carriers are not buried under the surface, which allows

for a relatively strong superlattice potential on the nanometre scale. One promising ap-

proach to creating nanoscale graphene superlattices involves inducing a potential through

another crystal. When graphene is placed on top of h-BN, it exhibits a moiré pattern, with

a maximum wavelength of 14 nm for perfect alignment; thus, it is well suited to access the

Hofstadter physics at lab scale magnetic field [52].

1.4.1 Hofstadter effect in a square lattice

Harper [53] investigated the effect of conduction electron subject to a uniform magnetic field

in a 2D square lattice with lattice constant a. Generalized tight-binding Hamiltonian for a

single particle on a 2D square lattice subjected to a magnetic field is defined as

Ĥ = (p̂− eA⃗/c)
2

2m + U(r⃗). (1.35)

The Hofstadter original spectrum arises from injecting the full canonical momentum opera-

tor, p + eA, under perpendicular magnetic field into the single band Bloch energy function,
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W (k⃗), for a cubic lattice, given by

W (k⃗) = 2E0(cos(kxa) + cos(kya)) = E0(eikxa + e−ikxa + eikya + e−ikya). (1.36)

Utilizing Peierl’s substitution, the Bloch energy function W (k⃗) for a cubic lattice is trans-

formed into an effective Hamiltonian. Under the Landau gauge A⃗ = eBxŷ, the tight binding

Hamiltonian can be written as:

Ĥ = E0
(
e

ip̂xa
ℏ + e

−ip̂xa
ℏ + e

ia
ℏ (p̂y−eBx) + e− ia

ℏ (p̂y−eBx)
)
. (1.37)

The translation operators e−ix⃗.p̂/ℏ act on the 2D wavefunction ψ(x, y). The Schrodinger

equation, Ĥψ(x, y) = Eψ(x, y) can be rewritten as

E0
(
ψ(x+ a, y) + ψ(x− a, y) + e−i e

ℏaBxψ(x, y + a) + ei e
ℏaBxψ(x, y − a)

)
= Eψ(x, y). (1.38)

This equation establishes a link between the wavefunction, ψ(x, y), and its neighbors a full

lattice period away. Facilitating the substitution (x, y) = (na,ma) for further analysis gives

a solution to the wavefunction of the form ψ(ma, na) = eiνng(m)α. For a single particle in

a 2D lattice in the presence of a magnetic field, the Schrodinger equation transforms into

Harper’s equation of the form:

g(m+ 1) + g(m− 1) = [ϵ− 2cos(2πmα− ν)]g(m). (1.39)

Here ϵ = E/E0 is normalised energy and

α = e

hc
a2B = Φ

ϕ0
, (1.40)
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Fig. 1.5: The plot depicts a unit cell of the fractal spectrum, containing within it sub-cells
that are equivalent of the entire cell itself. Two of these sub-cells are expanded
and rectangularized to highlight their self-similarity [51].

is dimensionless, being the ratio of flux through a lattice cell to one flux quantum. Here,

Φ = Ba2 is the magnetic flux per unit cell for a square lattice, and ϕ0 is the magnet

flux quanta. Hofstadter solved Harper’s equation for rational values of α = p/q, where p

and q are co-prime integers. Energy spectrum calculated by Hofstadter at magnetic fields

corresponding to α = p/q, q contains q distinct block bands as shown in Figure 1.5 adopted

from Hofstadter’s original publication [51]. Beyond the inherent mirror symmetries within

the spectrum, certain segments display resemblances to others. The unit cell is composed

entirely of these smaller “sub-cells” each of which mirrors the entire spectrum (and each

other). Consequently, these sub-cells contain additional sub-cells indefinitely. This recursive

nesting structure, infinitely dense, forms a fractal set of spectrum.

Wannier provides a simplified description of the Hofstadter energy-field diagram using

a density-field diagram. In Figure 1.6a, red and blue lines along the diagonal denote wide

gaps of forbidden energies in the Hofstadter’s spectrum, interrupted at Φ/ϕ0 = 1/2 = p/q.

Secondary gaps emerge for q > 3 and q > 4, marked by pink and blue lines; these gaps do

not close for higher values of q [54].

In Figure 1.6b, the line plot by Wannier addresses the issue of rationality by focusing on
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the gaps in Hofstadter’s spectrum, marked by colored lines in Figure 1.6a. Wannier discov-

ered that by replacing the energy axis ε with the cumulative weight W of four subregions

separated by diagonal lines in Hofstadter’s spectrum, regions bounded by gaps or bands

would collapse into straight lines [54]. This transformation converts the gaps in Hofstadter’s

energy spectrum into a network of straight lines shown in Figure 1.6b.

However, Wannier acknowledged that such simplification comes at a cost. He stated,

“A simplification of this sort cannot be accomplished without certain loss. There is first an

aesthetic loss, but there’s also a loss of information”, as the description no longer contains the

actual value of the energy but only its location in terms of input parameters and quantum

numbers. Nevertheless, assigning a constant energy value to each section of Hofstadter’s

spectrum may provide a reasonable approximation.

While Hofstadter’s butterfly represents the energy-field diagram, Wannier’s spectrum

represents the density-field diagram. The Wannier diagram can be experimentally accessed

through transport measurements, as it parameterizes the problem by W and α, quantities

proportional to experimental parameters such as carrier density and magnetic field strength.

Moon and Koshino [55] theoretically investigated the electronic spectrum within moiré

superlattices formed by monolayer graphene stacked on an h-BN layer, examining various

rotational angles in a magnetic field. Their investigation revealed a hierarchical self-similar

structure in the energy spectrum under conditions of perfect alignment. Notably, at low

magnetic fields, the spectrum mirrors that of pristine graphene, while at higher fields, pro-

nounced reconstruction occurs, yielding nested self-similar Landau levels.

Given that Wannier’s simplified description loses information about the associated en-

ergies of the gap, which has been widely measured with transport probes, theoretical in-

vestigation of the optical properties of the graphene-h-BN lattice strongly motivates our

work to probe the self-similar energy-field diagram employing cyclotron resonance measure-
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Ф/Φ0Ф/Φ0

Fig. 1.6: Left is the Hofstadter Butterfly spectrum, calculated for a square superlattice.
The right image shows the Wannier spectrum plotted as normalized carrier density
versus magnetic field [52].

ments. In this thesis, we experimentally investigate these fractal levels using magneto-optical

spectroscopy, measuring optical transitions across the reconstructed Landau levels in the

graphene/h-BN moiré superlattice in Hofstadter’s butterfly regime.

1.5 Overview of this work

The remaining sections of this dissertation are organized as follows:

Chapter 2 presents a system capable of conducting broadband far-to-mid-infrared CR

spectroscopy in magnetic fields up to 14 T and temperatures down to 0.1 K. The infrared

detector plays a central role in spectroscopic measurements, detecting changes in the spectral

radiance of the incoming radiation. In this work, we provide a comprehensive overview of

the development and integration of the 1.6 K Far-IR detector setup.

Chapter 3 explores the infrared cyclotron resonance in a high-quality graphite-gated
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monolayer graphene device to investigate the interplay of many-particle interactions and

broken symmetries.

Chapter 4 presents CR measurements in the Hofstadter butterfly regime in G/h-BN

superlattices to investigate the reconstructed LLs in moiré modulated graphene.

In Chapter 5, we report on infrared spectroscopy measurements of Landau-level transi-

tions in dual-gated bilayer graphene and discuss possible future research directions that can

be explored using the spectroscopic technique.

Finally, Appendix A describes the details of the infrared measurement setup, outlining

the operation of the dilution fridge in the specific configuration when setting up the infrared

measurement. Appendix B discusses the nano-fabrication technique we perform to turn

layered vdW materials into measurable devices.
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Chapter 2

Confocal Optics for Broadband

Infrared Spectroscopy below 1K

Fourier-transform infrared (FTIR) spectroscopy and magneto-spectroscopy have played piv-

otal roles in understanding the band structure and charge transport mechanisms in metals

and semiconductors [56, 57]. While these techniques are commonly applied at temperatures

as low as liquid helium temperatures (∼4 K) and even at the boiling point of 3He (∼0.3

K), the exploration of many correlated electron phenomena requires even lower tempera-

tures achievable in dilution refrigerators. These phenomena include fractional quantum Hall

effects, exotic forms of superconductivity, and spin liquid physics, among others [58, 59].

Although some of these systems have been investigated using infrared spectroscopy [60], the

lowest temperatures routinely achieved often must be increased to access the most intriguing

physics. The challenge arises from the limited cooling power and heat capacities of samples

at lower temperatures, making the introduction of broadband infrared radiation detrimental

to experiments.

In this chapter, we describe a system that enables broadband far- to mid-infrared spec-

troscopy in magnetic fields up to 14 T and sample temperatures down to 0.1 K. Pairs of

back-to-back parabolic reflectors are placed in the optical path of an infinity-focused broad-
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band infrared beam. The reflectors share a common focus, so they admit infinity-focused

infrared light into the well-thermally-shielded interior of a cryogen-free dilution refrigerator

cryostat while rejecting the majority of off-axis thermal radiation. This enables broadband

spectroscopy of atomically thin materials across the far- and mid-infrared regime at very low

sample temperatures.

At the core of these measurements lies the infrared detector, which detects changes in the

spectral radiance of the incoming radiation. Throughout our work, we utilized two distinct

infrared detectors: a 4.2 K high-res bolometer for the measurements discussed in Chapter

3 and a 1.6 K Far-IR bolometer for those in Chapter 4. However, the previously deployed

4.2 K bolometer, after nearly a decade of operation, experienced significant degradation in

its performance and ultimately failed due to prolonged operation and exposure to multiple

magnetic field quenches. This chapter describes modifications to address this issue, including

designing and implementing a new detector module with a robust readout electronic circuit.

This approach resulted in a seven-fold improvement in the signal-to-noise ratio of our spec-

troscopic measurements. Herein, we provide a comprehensive overview of the development

and integration of the new detector setup.

2.1 Broadband Infrared Spectroscopy

Our FTIR magneto-spectroscopic setup, shown in Figure 2.1C and D, is based on a precision

Bruker Vertex 80v FTIR spectrometer coupled with a closed cycle dilution refrigerator (DR)

that houses a 14 T cryogen-free superconducting magnet. Figure 2.1d shows the optical

beam path starting with a home-built beam-shaping box containing a set of moveable off-axis

parabolic mirrors. These refocus the diverging beam that exits the spectrometer, enabling the

beam to travel the ∼ 2 m to the sample without losing intensity. An off-axis parabolic mirror
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re-routes the light into the DR through a transparent window (either KBr or polyethylene),

where it is focused to the sample by a parabolic mirror and afterward defocused to continue

traveling up to where a compound parabolic collector gathers the light for detection by an

infrared detector. The sample stage is in the bore of a 14 T magnet (not shown). The design

goal for our magneto-optical setup is to direct the light out of an FTIR spectrometer into a

cryostat. The design overcomes several critical challenges, including (1) rejecting background

radiation to operate the system at millikelvin temperatures using back-to-back parabolic

cones, (2) geometric filtering that allows for focusing the light on sampling with a typical

linear dimension of ∼ 10 um and extracting a sizeable optical response (3) minimizing heat

load on the magnet to achieve maximum field up to 13 T and (4) simultaneously performing

standard transport measurements on gate (carrier density) tuned high-quality 2D devices.

The spectrometer generates broadband infrared radiation using a globar light source, a

silicon carbide filament operating at 1370 K under vacuum. This light travels through a

Michaelson interferometer. The spectrometer has a step-scan mirror on a delay stage to

modulate the incoming light, allowing the mirror to move in discrete steps repeatedly. This

movement creates a time-dependent modulation of light of all wavenumbers, ν̄ = 1/λ in the

spectrometer. The precision of an FTIR spectrometer hinges on the accuracy of the scanning

speed of the mirror. The sum of the modulated light leaving the interferometer as a function

of mirror position creates an interferogram shown in the inset in Figure 2.2a.

At the center of the interferometer resides a beam splitter, which we choose accordingly

based on the spectral range of interest. In this study, we employ two types of beamsplitters:

a potassium bromide (KBr) beamsplitter for the mid-IR range and a multilayer mylar beam-

splitter for far-IR applications. This combination, paired with the optical window, whether

it be another KBr crystal or a sheet of white polyethylene, facilitates selecting the appropri-

ate spectral range for the experiment. Typically, the spectral range spans from 6 to 90 meV
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Fig. 2.1: A. Finished device wired to the sample mount and placed on a copper foil bottom
aperture. B. Optical image of the device as viewed through ∼ 90 µm top aperture.
C. Schematic of the infrared magnetospectroscopy setup made using computer-
aided design. D. Beam propagation through different components of the optical
setup. E. Bottom view of infrared sample stage with a suspended copper tube
holding the top stage cone.
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for the far-infrared (FIR) region and 60 to 930 meV for the mid-infrared (MIR) region.

The interferogram is Fourier transformed and plotted as a raw transmission signal as

a function of the wavelength of the light. Figure 2.2 illustrates typical raw transmission

spectra measured in two different spectral ranges, where 1/λ is converted to energy scale in

meV. As part of our ongoing efforts to enhance measurement capabilities, we incorporate a

diamond window into our setup, providing access to the entire spectral range from FIR to

MIR, eliminating the need to switch between optical windows.

The spectrometer is placed at a 2 m distance from the cryostat to protect the electronics

inside the spectrometer from any stray magnetic field. After leaving the spectrometer, the

collimated beam of modulated light is redirected to focus it onto a sample that lives inside

the DR. The optical design resembles a telescope with unity magnification, directing the

light from the spectrometer to the base of the DR. The near-collimated light exiting the

spectrometer is brought to an intermediate focus roughly halfway between the spectrometer

and the cryostat inside a guiding tube. This is achieved using a custom off-axis (OAP)

gold-coated paraboloidal mirror with a 1m focal length. To re-collimate the light before it

enters the DR, an identical OAP is positioned at the base of the cryostat to change the axis

of light from horizontal to vertical. To avoid absorption of infrared light due to atmospheric

gases, the spectrometer operates under a vacuum of ∼ 1 mbar, while the DR operates under

a high vacuum of ∼ e−6 mbar. This set of two vacuum chambers is separated by an infrared

transparent optical window. Additionally, a pneumatically operated gate valve is mounted

at the base of the DR, allowing it to be completely isolated from the external optics while

cooling it down to base temperature and pressure.

Cyclotron resonance is a bulk effect, with a signal proportional to the sample area. One of

the primary concerns of the spectroscopic measurement is the macroscopic size of a typically

exfoliated graphene sheet. Traditionally, cyclotron resonance measurements are conducted
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(a)

(b)

Mid-IR

Far-IR

Fig. 2.2: (a) Raw transmission collected in mid-infrared (MIR) range using a KBr beam
splitter and KBr optical window. The transmission data shows a sharp absorp-
tion feature at ≈ 130 meV from thermal oxide (SiO2) on the Si substrate. The
inset shows the typical interferogram, which is characteristic of a broadband light
source. The large signal seen at zero mirror displacement, or zero path difference
(ZPD), occurs when all wavelengths of the light source inside the spectrometer
interfere constructively. (b) Raw transmission collected in the mid-infrared (FIR)
range using a mylar beamsplitter and polyethylene optical window.
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on samples with characteristic lengths of a few millimeters, where the sample size does not

constrain transmission of the incident light. It is difficult to obtain a focal spot the size of

our graphene samples, typically a few microns in length. The requirement of focusing a 40

mm diameter beam to a point 1 mm across is achieved using nested parabolic cones. We

employ a small aluminum aperture on the sample to further focus the beam down to several

hundred microns to block extraneous light. An optical microscope image of the device as

seen through a 100-micron aperture is shown in Figure 2.1B.

2.1.1 Nested parabolic reflectors and beam propagation

The sample stage consists of two nested paraboloid cones, referred to as sample stage cones,

aligned along the same axis but facing opposite directions. These cones intersect to form

a reflective surface [61] and share a common focal point. As illustrated in Figure 2.1E, the

hollow oxygen-free copper tube, attached to the mixing chamber plate of the DR, suspends

the sample stage cone assembly to ensure precise alignment of its focal point with the center

of the bore of the magnet. Moreover, the top cone integrates the necessary wiring for

electronic transport measurement.

Within the framework of ray optics, the paraxial light beam directed towards the bottom

cone reflects and subsequently gets focussed at the diffraction-limited spot on the shared foci

of two back-to-back parabolas. Then, the light rays hit the reflective surface of the top cone

and exit the cone, maintaining a one-to-one mapping with the entering beam.

To allow infrared light into the DR, 2-inch diameter holes are cut into the radiation shield

of the DR. Unwanted radiation entering the DR, either in the form of background radiation

or non-paraxial light from the spectrometer, presents a significant challenge to maintaining

mK temperature for measurements where the most interesting physics can be seen. Left
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unaddressed, much of this unwanted light deposits onto the inner surface or underside of the

bore of the magnet, limiting the maximum achievable magnetic field and overwhelming the

cooling capacity of the DR. This problem is addressed by adding a second pair of nested

back-to-back parabolic cones, referred to as the input cones installed on the 50 K shield.

These cones converge at a shared focal point set at a 1mm aperture, dramatically reducing

the radiative load by approximately (50/300)4 ≈ 0.001 compared to a 2-inch (≈ 50.8mm)

hole. Moreover, external light enters solely through the aperture with intensity reduced by

(1/50.8)2 ≈ 0.0004. With a smaller aperture and differential thermal sinking of the parabolas

(connecting the top one to 4 K and the bottom to 50 K), we have achieved a temperature

of ∼ 200 mK in the mixing chamber.

Mounted below the infrared detector, on the still plate of the DR (which sits at 0.8 K),

is a compound paraboloidal concentrator, also known as the Winston cone shown in Figure

2.1D. It collects the light, which is nominally collimated by the top cone of the sample

stage, over a distance of approximately 0.5 m. Achieving precise alignment of the optical

components is paramount for optimal performance.

Figure 2.3 illustrates the ray-tracing simulation of the optical beam path inside the DR.

As shown in Figure 2.3a, the paraxial light enters the input cones, representing the first

stage of geometric filtering. When the apertures of the input cones are properly aligned, the

light proceeds to subsequent focusing at the stage cones, where the sample is situated. Once

the apertures of the sample stage cones are precisely aligned, the paraxial light is effectively

collected at the Winston cone.

Conversely, Figure 2.3b illustrates the consequences of offset apertures at the input stage

cones: the light bounces off the cones, failing to pass through the sample at the stage cones.

In Figure 2.3c, with aligned input cones, a slight misalignment of approximately 1 mm of the

sample stage cones can prevent the light from reaching the Winston cone. These scenarios
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Fig. 2.3: (a) Paraxial light undergoes geometric filtering upon entering the input cones,
focuses at the stage cones housing the sample, and is ultimately collected at the
Winston cone. (b) With approximately 1 mm offset of the input cones, the light
reflects off the cone and fails to reach the sample. (c) Paraxial light entering
the input cones is hindered by a 1 mm misalignment at the sample stage cones,
preventing it from reaching the Winston cone.
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emphasize the critical importance of optical alignment, as even minor offsets can lead to a

notable loss of signal detected by the detector, highlighting the significance of alignment at

each stage along the optical path.

2.2 Infrared detector

The Winston cone condenses the collected collimated light to an infrared detector known as

a bolometer, which accomplishes infrared detection. A typical bolometer is a temperature-

sensitive resistor heated by incoming radiation and cooled by thermal conduction through

its electrical lead wires. Any thermal radiation that impinges upon the detector causes a

temperature change, subsequently altering its resistance. This change in resistance is then

amplified and measured as a voltage difference. Since the bolometers measure a temperature

change, the incident radiation must be modulated, which allows it to excite and relax. Thus,

a measurement of the change in resistance corresponds to the energy of the incident radiation.

Operating at 1.6 K, the bolometer covers a broad range of frequencies spanning mid- and

far-infrared. It can detect less than a 1% change in the spectral radiance of a small amount

of incident light. While the operating temperature of 1.6 K is provided by the manufacturer

(IR labs), we conduct performance characterization of the detector to evaluate the optimum

temperature for maximum response from the bolometer.

This section discusses the design and implementation of the custom-built bolometer mod-

ule and readout electronics, intending to minimize the electrical and mechanical noise coupled

to the infrared measurement. We engineered the module to replace the general-purpose 4.2

K bolometer previously utilized for spectroscopic measurements. Various factors, including

electrical nonlinearities, optical load, thermal noise, Johnson noise, and noise in readout

electronics, can compromise the sensitivity of bolometers. One frequently used figure of
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merit is the noise equivalent power (NEP), which depends on its sensitivity (responsivity)

and the noise sources in the bolometer readout circuit. Here, we discuss the performance

characterization and noise analysis of the 1.6 K Far-IR bolometer to optimize its opera-

tion for the highest NEP. Additionally, we will highlight the improvements in spectroscopic

measurements achieved with the new detector compared to the previous one.

2.2.1 Design considerations and readout electronics

Commercially available infrared detectors from IR labs are typically housed in a liquid he-

lium dewar with a liquid nitrogen-cooled radiation shield and come with attached low-noise

electronics. We have custom-built the bolometer housing and read-out electronics to inte-

grate the bolometer into the DR. A key consideration in designing the bolometer module

is protection from unwanted radiation, mainly from two sources: blackbody radiation from

components within the DR and stray light reaching the detector from outside the cryostat.

Additionally, the design of the thermal circuit for the bolometer readout considers incor-

porating sections held at different temperatures. Appendix A discusses more details of the

wiring of the bolometer circuit inside the DR.

We design and machine the infrared detector mount in-house using oxygen-free high

purity copper (OFHC), which we further electropolish and gold plate to ensure optimal

thermal contact and low emissivity. The mount includes three plug-in SMP connectors

for connections to the bolometer bias, the amplifier gate, and the cold ground. Addition-

ally, it accommodates a dedicated heater and thermometer for independently heating the

detector to the desired temperature. The heater consists of Nichrome (NiCr) wire wound

non-inductively around copper bobbins with a total resistance of 16 Ω, able to heat the

detector to its operating temperature. The thermometer is an in-house calibrated thick film
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(a)

(b)

Fig. 2.4: (a) Temperature profiles of the bolometer and still plate in response to the heat-
ing of the bolometer housing. Notably, the base temperature of the still plate
experiences minimal change, remaining within 1%. (b) As heat is applied to the
still plate, the temperature of the bolometer and still closely track each other, in-
dicating good thermal contact between the two. The inset demonstrates a linear
increase in the temperature of the bolometer with the still plate.
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chip resistor based on Ruthenium oxide (RuOx) varnished on a copper bobbin, suitable for

sensing temperatures down to 50 mK. Following this, we dispatch the custom-built hous-

ing to Infrared Laboratories, Inc., where the bolometer installation occurs. The image of

the bolometer housing is shown in Figure 2.6b. The left panel displays the highly sensitive

doped Si thermistor bonded to a 3 mm diamond absorber to enhance collection efficiency.

Subsequently, we mount the bolometer housing on the 0.9 K cold stage (Still plate) of the

DR. The bolometer is thermally isolated from the still plate using a 0.0010-inch thick nylon

sheet, preventing excessive heat transfer to the still when heating the bolometer to its desired

temperature. As heat is applied to the bolometer, less than one percent change in the still

plate temperature was observed, as shown in Figure 2.4a.

The bolometer, which acts as a variable resistor whose resistance depends on tempera-

ture, is connected in series with a 20 MΩ load resistor, forming a voltage divider circuit.

The voltage change across the bolometer undergoes two-stage amplification in a voltage

feedback composite amplifier configuration. Figure 2.5 shows the schematic of the read-

out electronics. A small signal voltage fluctuation at the bolometer in the form of optical

load modulates the JFET gate voltage VG1. JFE2140 JFET is the first gain stage in the

amplification circuit, configured as a matched differential pair. JFE2140, combined with a

room-temperature operational amplifier, forms the feed-forward gain stage. Adding feedback

maintains a predictable closed-loop gain of 2 of the entire circuit. Resistors Rf1 and Rf2

shunt the output of the op-amp and provide feedback to generate a proportional voltage Vgs2,

ensuring Vgs1 = Vgs2. The feedback loop is located on the same PCB board as the JFET

circuit inside the DR to prevent capacitive loading of the feedback network and minimize

temperature-dependent Johnson noise from the feedback resistors.

As is customary in low-noise systems, the grounding configuration for the detector read-

out is meticulously analyzed and executed to reduce the electrical crosstalk. The dilution
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Fig. 2.5: Schematic illustrating the readout electronics across different thermal stages at
1.2 K, 77 K, and 300 K. While the operating temperature of the bolometer may
fluctuate based on optical configurations, it typically remains within the range of
1.2-1.4 K. The first stage gain amplification circuit of the JFET preamp is heated
to its operating temperature of 77 K, while the second stage operational amplifier
and third stage preamp are situated at room temperature.
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fridge serves as the low-noise ground point of a “star circuit”, connected to the clean ground

available in the lab. Details of DR ground configuration are illustrated in Appendix A (Figure

A.1). Utilizing a composite amplifier configuration in a differential setup significantly reduces

the voltage noise of the amplifier circuit. Additionally, differential measurements minimize

sensitivity to microphonics, grounding issues, and other common mode noise sources. Con-

nections to the JFET gate G2, drain VD1 and VD2 and the bolometer bias extend to room

temperature as shown in Figure 2.5 and are thermally anchored at all the cold stages of the

DR.

We construct the JFET preamplifier (preamp) circuit on a double-layer 0.032” thick

PCB board coated with 2 oz copper to minimize radiative heat load from the board. Figure

2.6a displays the board in a custom-built oxygen-free copper enclosure. The JFETs have

a noise minimum at 77 K, and are mounted on a weak thermal link. We integrate a local

thermometer and metal film resistor to the board to heat the JFET at stable operating

temperature of 77 K. Securing the enclosure to the still plate and thermally anchoring it with

copper wire ensures that it stays close to the base temperature of the still plate. Four 0.009”

hypodermic stainless-steel tubes support the PCB board inside the enclosure, preventing

excessive heat flow to the enclosure.

The temperature profiles of the still and bolometer are shown in Figure 2.7 as a function

of electrical power across the JFET board. We observe approximately a 3% change in the

temperature of the still plate as we apply the necessary heat to bring the preamp to its

operating temperature. However, we observe that using semi-rigid co-axial cables across the

bolometer housing and the enclosure inadvertently established a thermally conductive path

across the two. As shown in Figure 2.7b, the base temperature of the bolometer increases

from 0.9 K to 1.2 K when heat is applied to the circuit board. Nonetheless, the temperature

of the bolometer remains well below its operating temperature (1.6 K).
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Fig. 2.6: (a) Photograph of the JFET preamp circuit consisting of the Cu-coated PCB
board inside an enclosure. (b) Far-IR Si bolometer housing featuring: (Left)
Si bolometer bonded to a diamond absorber and suspended between two wires,
and (Right) Load resistor with three plug-in SMP connectors for connections to
Vbias,G1, and cold ground. Additionally, it accommodates a heater and ther-
mometer mounted on copper bobbins. (c) Bolometer housing and preamp enclo-
sure mounted on the sill plate of the dilution fridge. (d) Internal assembly of the
DR integrated with infrared sample probe and bolometer module.
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The second stage of amplification utilizes a room-temperature operational amplifier. The

op-amp circuit is encased in a rigid aluminum enclosure to shield it from electrical pickup.

Appendix A provides a detailed description of the op-amp circuit. The figure in the appendix

shows the overall grounding configuration of the output signal. The output signal from the

op-amp then undergoes the final stage of room temperature amplification through an analog

EGG&G preamplifier with bandpass set to 3 and 300 Hz cutoff frequency. Subsequently, it is

digitized by a Bruker ADC converter, transmitted to the spectrometer, and ultimately con-

ditioned, and Fourier transformed by a computer. The schematic of the readout electronics

is shown in Figure 2.5.

2.2.2 Performance characterization of 1.6 K Far-IR Bolometer

The basic function of a bolometer is to convert radiant input power to a convenient output

signal. For our purpose, that output is always electrical in terms of voltage. A fundamental

metric for evaluating the response of the bolometer to changes in electrical power is its elec-

trical responsivity, which quantifies the change in voltage drop per watt of absorbed signal

power. Bolometer characterization aims to determine this responsivity and other operational

parameters to its optimize performance during operation. To achieve this, we conduct mea-

surements to analyze sensitivity and noise across various levels of radiant background power.

These measurements involve acquiring a series of DC I-V curves at different voltage, cur-

rent biases, and stage temperatures. Subsequently, we utilize a thermal model derived from

reference [62] to calculate the responsivity of the bolometer under different temperature and

bias conditions.

The thermal model assumes the bolometer as a simple thermal device, shown schemat-

ically in Figure 2.8. A typical bolometer is a temperature-sensitive resistor RB(T ), heated
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(a)

(b)

Fig. 2.7: (a) Temperature profiles of the preamp and still plate in response to the heating
of the JFET circuit board. Notably, the base temperature of the still plate ex-
periences minimal change, remaining within 5%. (b) Applying heat to the JFET
board causes the bolometer temperature to rise from 0.9 K to 1.2 K. Semi-rigid
co-axial cables connecting the two inadvertently establish a thermal conductive
channel between the preamp enclosure and the bolometer housing.
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Bolometer RB(T)
P = VI

Q

TS

G(T)

Fig. 2.8: Ideal bolometer detector model with an absorber at temperature T weakly ther-
mally linked to a heat sink at temperature TS, characterized by the thermal con-
ductance G(T )

by incoming radiation and coupled to a heat sink at bath temperature TS through a thermal

link and static thermal conductance G0. The bolometer absorber dissipates two sources of

power: electrical power P from biasing and optical load from the radiant optical power Q.

Any change in the absorbed power gives rise to a change in the bolometer resistance RB and

consequently in TB.

Figure2.9a shows the family of DC I-V curves across a range of voltage and current

biases at various stage temperatures, 1.1 K to 1.6 K, by stepping the total bias voltage and

measuring the current across the bolometer. The I-V curve exhibits non-linearity due to

self-heating caused by the bias voltage. By extrapolating the low-current sections of the

load curve, we determine the zero bias resistance (in the absence of self-heating) for various

stage temperatures. This process allows us to calculate the resistance versus temperature

characteristics of the thermometer element in the bolometer. In the absence of electrical

non-linearities, the thermistor resistance RB varies with temperature TB as

RB = R∗exp
(
Tg

TB

)n

, (2.1)
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where R∗ and Tg are constants depending on the material and device geometry. In Figure

2.9b, we plot the zero bias resistance as a function of stage temperature TS; the gradient

and the offset of a linear fit give us Tg and R∗. We also look at the fit residuals to see if

the value of n is applicable. If not, we can do a non-linear fit to obtain the best-fit values of

n, Tg, and R∗. Our measurements correspond well to this relationship 2.1, with n = 0.5 as

shown in Figure 2.9b.

For any given stage temperature, the model assumes that thermal conductance has a

power law dependence on temperature

G(T ) = G0T
β, (2.2)

where G0 represents the static thermal conductance at the stage temperature, and β denotes

the power law coefficient for the variation of G0 over the range of absorber temperature.

A simple model of thermal conductance is used to determine G(T ). The electrical biasing

causes the bolometer to self-heat. It loses power to the heat sink through the thermal

conductance, G; we can simply write electrical power dissipated at the bolometer thermistor

as P = G∆T , where ∆T temperature difference across the thermistor element. More broadly,

we can express this as

P =
∫ TB

TS

GdT = G0

β + 1
(
T β+1

B − T β+1
S

)
. (2.3)

Values of β and G0 obtained from (2.3), along with constants R∗ and Tg can predict the

behavior of the bolometer for temperatures at which it was not measured. For each load

curve, taken at stage temperature TS, we determine the parameters β and G0 using power

law dependence. Figure 2.9c shows the correlation of dynamic thermal conductance with
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bolometer resistance.

Several key parameters are defined to determine bolometer responsivity S. The temper-

ature coefficient of resistance (TCR) of the thermistor can be written as

α = − 1
R

d

dT
= −

nT n
g

T n+1 . (2.4)

The dynamic load impedance Z, is given by

Z = dV

dI
= RB

(
G(T ) + αP

G(T ) − αP

)
. (2.5)

The DC responsivity, S, is then defined as

S = dV

dQ
=
(
Z −RB

2VB

)(
RL

Z +RL

)
, (2.6)

or equivalently,

S = αVB

Geff(T )

(
RL

RL +RB

)
. (2.7)

where Geff(T ), the effective thermal conductance. A small increase in optical loading induces

a small increase in the temperature of the bolometer. Due to negative TCR, these small

temperature changes create a sizable change in bolometer resistance. Consequently, the

Joule heating from the bias circuit, determined by V 2/RB(T ), increases the resistance of the

bolometer. This process establishes a negative electro-thermal feedback. In terms of thermal

conductance, this effect can be expressed as

Geff(T ) = G(T ) − I2dR

dT

(
Z +RB

Z −RB

)
. (2.8)

Figure 2.9d shows the difference in the dynamic and effective thermal conductance value as

51



Chapter 2. Confocal Optics for Broadband Infrared Spectroscopy below 1K

(a) (b)

(c) (d)

(e) (f)

Fig. 2.9: (a) Family of DC I-V curves at different stage temperatures. (b) Dotted lines
represent experimentally measured zero bias resistance versus stage temperature,
while solid lines denote fits to Equation 2.1. (c) Family of conductance curves
obtained from Equation 2.2 for different stage temperatures versus bolometer re-
sistance. (d) Difference between dynamic thermal conductance G(T ) and effective
thermal conductance Geff due to negative electro-thermal feedback at TS = 1.6 K.
(e) Responsivity calculated from Equation 2.7 for the family of DC curves versus
bolometer resistance. (f) Replotting Responsivity versus bolometer bias.
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a function of bolometer resistance at T = 1.3 K.

The response of the bolometer depends on the steady infrared background power loading

Q through a shift in the operating temperature. Since G(T ) increases with temperature, and

TCR decreases, the responsivity decreases rapidly as the bolometer is heated, as shown in

Figure 2.9e. The model used to characterize the bolometer assumes no background infrared

power. However, these measurements are taken in a non-blanked configuration with 300K

background radiation from that gate valve. The model is still valid to obtain electrical

responsivity for any given background [63].

In Figure 2.9f, we show the bolometer responsivity calculated from Equation 2.7 as a

function of bias voltage across the bolometer. Under low bias conditions, bolometer resistance

is significantly higher compared to the load resistor. As bias across the bolometer increases,

its resistance decreases, leading to a less negative value of α and increased responsivity.

However, for higher bias, when bolometer resistance becomes comparable to the load resistor,

further bias increase enhances the effective thermal conductance, causing a decrease in the

responsivity. To optimize bolometer performance, we operate at a temperature and bias

voltage depending on the optical load where the bolometer responsivity curve is maximized.

2.2.3 Noise analysis

Noise is defined as the rms deviation of the detector output from its average value. Once noise

enters the output, it can obscure or hide small signals. Here, we systematically investigate

various noise contributions encountered during the operation of the detector. Measurement

of voltage noise levels presented here shows that under illumination, the bolometer is photon

noise limited. This implies that the noise of the absorbed signal is higher than the total

internal noise of the detector, including the amplifier noise.
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The bolometer is subjected to many sources of noise, including noise in the incident radi-

ation originating from a black body background at 300 K, Johnson noise from the resistance

RB of the bolometer, voltage and current noise contribution from the amplifier, and photon

noise from the incident radiation [64]. In our noise analysis, we assume that the contribution

of each term to the bolometer voltage is statistically independent; total noise contribution

is obtained by adding all these noise sources in quadrature, which we can compare from an

electrical evaluation of the bolometer under operation. It is convenient to summarize all

major contributions to the total voltage noise density E0 in a bolometer as the sum of 4

independent terms

E2
0 = (eN)2

Johnson + (e)2
amplifier + (e)2

photon + (e)2
background. (2.9)

Jonhson-Nyquist Noise: A bolometer is a temperature-sensitive resistor connected in

series with the load resistor; therefore, the Johnson Nyquist noise (or simply Johnson noise)

of their effective resistance Reff = RL||RB in thermal equilibrium at temperature T can be

easily calculated by the Nyquist theorem [65]

eN = ⟨V 2⟩/∆f =
√

4kBReffT [V/
√
Hz], (2.10)

where ⟨V 2⟩ is the time-averaged mean-squared voltage and ∆f is the measurement band-

width.

Amplifier Noise: We configure JFE2140 as a differential pair in a voltage-feedback

composite amplifier to provide a low-noise, high-input impedance single-ended amplifier

stage for the bolometer. We select operating parameters (current and voltage) for JFE2140

to ensure that the total noise contribution from the gain stage of the amplifier in Equation
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2.9 is significantly lower than any other noise source in the readout circuit, particularly the

Johnson noise contribution from the bolometer resistance.

Photon noise on bolometers arises from the random fluctuations in the absorbed power

because of the quasi-random arrival of the photons. The bolometer, unlike photon detectors,

reacts to power rather than photon flux. The mean-square fluctuation in electrical bandwidth

∆f of incident radiation in terms of absorbed power is given by

(∆Pν)2

∆f = 2h2ν2Φνη(ν)(1 + n̄ν), (2.11)

where quantity η(ν) is interpreted as the absorptivity or equivalently as the emissivity of the

detector element. Due to the highly efficient diamond absorber used in the detector module,

we assume nearly unity absorptivity of detection. Quantity Φν is the average rate at which

photons are incident on the detector in a narrow optical bandwidth given by the following

expression,

Φν = α
ν2

c2 n̄ν , (2.12)

where α represents the propagation of total light power emitted by the SiC globar light

source while experiencing losses in the optical path that reaches the bolometer and n̄ν is the

effective photon mode occupation number given by

n̄ν = 1
ehν/kT − 1 . (2.13)

The total mean-squared power fluctuation is then given by integrating the above expression

2.11 over all the frequencies. Voltage noise density is calculated by the following expression

ephoton =
√∫ ν2

ν1
Pν dν

S, (2.14)
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Fig. 2.10: (a) Noise spectral density with the gate valve closed is shown for two different
values of the bolometer resistance. (b) Noise spectral density with the gate valve
open, where light is not directed to the bolometer. The Johnson noise floor is
marked for reference. Notably, the total noise in the dark configuration is five
times higher than the Johnson noise floor.
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Fig. 2.11: As the optical power throughput increases with the source aperture size, the
total noise spectral density also increases. The Johnson noise floor calculated
from equation 2.10 and photon noise from equation 2.14 are marked for reference.
For aperture > 1 mm, the noise spectral density is dominated by photon noise

where S is the responsivity calculated for the detector in the previous section.

We evaluate the total voltage noise spectral density (NSD) of the bolometer under differ-

ent optical configurations: initially, in the absence of infrared illumination, known as dark

noise, and then under illumination. During tests under illumination, the bolometer is sub-

jected to radiation from a source outside the DR, with an optical path opened through the

radiation shields. Radiation enters the DR through a KBr window, which has a transmission

of approximately 95 % over the wavelength range utilized. In the dark configuration, the

radiation shields remain unblanked, hence it does not constitute a “true dark” setup.

To obtain measurements of the Noise Spectral Density (NSD) in our experiment, we begin

by closing the pneumatically operated gate valve. This effectively sets the system in a dark

configuration, isolating the DR from any external light sources and optics. In Figure 2.10a,

we present the NSD measurements for two distinct bolometer resistances with gate valve
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closed. Subsequently, we open the gate valve, establishing a connection between the external

optics and the DR. The comparison of noise density measured under no illumination in both

gate valve open and closed configurations is shown in Figure 2.10b. Ideally, without any

optical load, the primary noise source should be the Johnson thermal noise of the bolometer.

This noise component should be frequency-independent white noise. However, in practical

conditions, we observe a noise floor approximately five times greater than the calculated

noise from (2.10) as shown in Figure 2.10a and b. This discrepancy is likely attributed to

the exposure of the bolometer to background load, given that the radiation shields of the

DR are unbanked. Such exposure suggests that the fourth term in (2.9) dominates the total

noise density. We further analyze the NSD for two different values of bolometer resistance,

noting that the combination of RL||RB remains relatively consistent. As a result, the change

in spectral noise is negligible for bolometer resistances of 42 and 84 MΩ.

Following this baseline assessment, we measure the noise density under illumination. The

broadband infrared emission from a SiC globar light source enters the DR through a KBr

optical window. This optical power modulates on a timescale faster than the bolometer

speed of response. We measure noise for varying source apertures below the cutoff frequency

of the optical window (where no appreciable blackbody signal is expected) to avoid mixing

the signal with noise.

Figure 2.11 illustrates the measurement of the noise spectral density as the diameter of the

source aperture inside the spectrometer increases. When the optical power throughput in-

creases sufficiently, the bolometer response becomes limited by photon noise. In this regime,

the third term in Equation (2.9) dominates, and the contributions from detector Johnson

noise or amplifier noise become indistinguishable. With an aperture size larger than 1 mm,

the noise floor is primarily dominated by photon shot noise, establishing a fundamental limit

on the lowest achievable noise from the detector under illumination.

58



Chapter 2. Confocal Optics for Broadband Infrared Spectroscopy below 1K

Fig. 2.12: Comparison of the noise spectral density under illumination with and without
a long pass filter (LPF). The addition of the LPF results in a significant reduc-
tion in noise, showing a factor of three reduction compared to the configuration
without the LPF.

Utilizing optical filters significantly mitigates photon noise, as the limit of integration in

Equation 2.14 can be tailored to the frequency range of the filters. A substantial portion of

the blackbody spectrum contributes to noise rather than the signal, particularly frequencies

above 1500 cm−1 (40 THz). As illustrated in Figure 2.12, incorporating a long-pass filter

with a cutoff frequency of 40 THz can reduce the noise spectral density by a factor of 3.

2.2.4 Improvements in spectroscopic measurements

Films just a few microns in size and single-atom-thick exhibit low light absorption, where the

aperture or focus typically cannot be smaller than λ/2, exceeding the sample dimensions.

For instance, a typical ratio of the sample area to the aluminum foil aperture is 1:10. Conse-

quently, detecting signals in a far-field configuration with a sample positioned deep inside a

magnet, several meters away from the spectrometer, yields relatively small signals, present-

ing a significant challenge for infrared transmission spectroscopy. Given that the cyclotron
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resonance signal scales with the device area, these measurements necessitate large-area sam-

ples. However, the restricted size of exfoliated 2D materials and measurement resolution

limitations result in inconveniently long spectroscopic measurements, typically averaging 8

to 10 hours for a single trace at a given field or carrier density.

Improvements in SNR can substantially reduce acquisition time, as SNR, a crucial metric

for spectroscopic measurements, depends on acquisition time t as SNR ∝
√
t. To calculate

SNR, we measure the 100 % line, a typical indicator of the noise level in the spectroscopic

system. We determine the 100 % line by measuring the ratio of two transmission spectra

collected under identical optical settings. We acquire the second spectrum immediately after

the first. Ideally, the 100 % line should be a straight line at 100 %. Deviations from this line

indicate noise and system instability as a function of energy. Figure 2.13a and b show the

raw transmission and subsequently measured 100 % line calculated for two different detectors

employed in this work. We then determine SNR by calculating the standard deviation σ or

RMS noise from the 100 % line using the following equation

SNR = 1
σstd.dev.

. (2.15)

Conventional practice in MIR spectroscopy [56] involves measuring the noise level between

2000 cm−1 (∼250 meV) and 2200 cm−1 (∼ 270 meV). This region is preferred because

the amplitude of the single beam spectrum is typically highest here, and there is minimal

interference from water vapor and CO2 absorption.

It is important to note that SNR or standard deviation varies across different energy

ranges due to their respective magnitudes. Lower intensities correspond to smaller SNR and

greater noise. Figure 2.13c compares SNR for two different detectors across various energy

ranges.
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80-100 51020.4082 10000
100-120 55218.1115 15408.3205
160-180 32154.3408 38610.0386
180-200 335908.633 67114.094
230-250 208333.333 149253.731
250-270 666666.667 142857.143
270-290 1000000 166666.667
320 - 340 333333.333 177935.943
380-400 204081.633 92592.5926
440-460 217391.304 34965.035
550-570 167785.235 60422.9607
620-640 133511.348 61728.3951
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Fig. 2.13: (a) Two sets of raw transmission spectra under identical optical settings for
two different detectors. (b) 100 % line obtained by rationing two back-to-back
spectra from (a). (c) The signal-to-noise ratio comparison is made by calculating
the standard deviation from the ratio of two spectra as a function of the energy
range.
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A six-fold improvement in SNR is observed with the 1.6 K Far-IR bolometer in the range

conventionally utilized for MIR performance evaluation. This enhancement theoretically

translates to approximately 30 times reduction in spectral acquisition time. Moreover, efforts

to mitigate noise sources, particularly the persistent 60 Hz line noise, have yielded positive

results. This interference, manifesting as sinusoidal oscillations in interferograms, historically

obscured low signal levels, posing practical challenges. However, integrating more robust

read-out electronics into the new detector module has notably diminished these 60 Hz spikes,

as depicted in Figure 2.13b. CR absorption is also constrained by the area of the device.

Therefore, the combination of large sample size and low-noise measurements is essential to

reduce the acquisition time.

2.3 Magneto-optical measurements

We conduct transport measurements at a specific magnetic field for magneto-optical measure-

ments to determine the carrier density for each Landau level filling factor. As an illustrative

example of optical transitions, we consider the case of measurements in single-layer graphene

such that the carrier density is tuned to pin the Fermi energy in the zeroth Landau level as

shown in Figure 2.14b. At B = 5T, the expected resonance energy is ∆E01 ≈ 90 meV for

CR transition LL0 → LL1. We utilize a global light source, a KBr beam splitter, and a KBr

optical window to facilitate these measurements.

The microscopic size of the sample results in relatively small CR signals, rendering the

direct analysis of raw IR transmission impractical for studying graphene CR. Instead, its nec-

essary to normalize the “real” CR signal to the transmission through the device without any

CR signal. Typically, this normalization entails measuring the raw transmission at a specific

field and normalizing it with transmission spectra obtained at zero field. However, in this
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Fig. 2.14: (a) The dotted black and solid curves are raw infrared transmission collected at
two gate voltages corresponding to Landau level filling factors ν = 0 and 22.
The red curve illustrates the normalized transmission data obtained by dividing
the trace at ν = 0 by that at ν = 22. Four interband transitions (T1, T2, T3, and
T4) appear as sharp dips in the normalized spectra. (b) A schematic illustrates
Landau levels and allowed transitions consisting of nominally degenerate pairs
at ν = 0 when the Fermi energy is pinned to the zeroth Landau level.

scenario, other components in the optical path may exhibit magnetic field-dependent char-

acteristics. For example, the bolometer response may exhibit significant magneto-resistance,

and varying field strength can influence the interferometer mechanism. Thus, assuming only

the sample changes in the field is not a valid assumption. To address this issue, at any given

field, using the gate voltage to measure CR energies by adjusting the carrier density proves

to be a more reliable approach.

To eliminate sample-independent features in the raw IR spectra, we employ a method that

divides traces obtained at the filling factor of interest by those measured at high filling factors,

where all observable interband transitions are Pauli blocked. This method electronically

manipulates the allowed transition in the sample, thereby eliminating any substrate-induced

absorption features during the normalization of the spectra.

To generate a normalized spectrum, we collect time-averaged raw infrared transmission
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data at two different gate voltages (corresponding to different Landau level filling factors), as

illustrated in Figure 2.14a. The raw infrared light curve originates from a blackbody source,

with various absorptions primarily attributed to the Si/SiO2 substrate (approximately 150

meV) and exchangeable protons (approximately 400 meV). Normalization is achieved by

dividing the trace at ν = 0 by that at ν = 22, resulting in the normalized transmission data,

shown as the red trace in Figure 2.14. Absorption in the ν = 0 trace is observed as dips in

the normalized spectra, while all other absorption processes occurring anywhere in the beam

path, not varying with gate voltage, are normalized to unity. This process is repeated for

any ν of interest.

2.4 Discussion

It is critical to control the background radiation that reaches the bolometer to obtain high

sensitivity. To fully understand the true baseline noise limit of the detector in the dark, a

similar analysis must be done while blanking the radiation shield of the DR and eliminating

any source of background load on the bolometer. In practice, this means that the effect of

absorbed power on the bolometer temperature must be negligible and bolometer performance

should be limited by Johnson noise.

When discussing the temperature of the bolometer, we refer to the temperature of the

bolometer housing. Due to bias and optical load, the bolometer thermistor might be at a

higher temperature than the housing. In such cases, a careful assessment of the Johnson

noise is essential. If the load resistor and bolometer are at different temperatures, the total

Johnson noise will be calculated accordingly,

eJN =
√√√√4kB

RLRB

(RL +RB)2 (TBRB + TSRL) (2.16)

64



Chapter 2. Confocal Optics for Broadband Infrared Spectroscopy below 1K

As part of our ongoing efforts to improve measurement capability, we are designing a cold

filter mount integrated with a long-pass filter. This improvement aims to reduce the thermal

load on the detector further, thereby enhancing its performance by providing additional

rejection of blackbody radiation emitted from higher temperatures.
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Chapter 3

Broken Symmetry States and

Interaction Induced Effects in

Graphene

3.1 Introduction

Graphene, since its discovery, has been the focus of extensive experimental and theoretical

investigations. While significant progress has been achieved through various experimental

techniques, such as angular resolved photoemission spectroscopy (ARPES) and scanning

tunneling spectroscopy (STS), conventional electronic transport remains a primary method

for studying the electronic properties of this remarkable material. However, optical spec-

troscopy offers a complementary approach, providing a powerful and versatile tool for directly

verifying the electronic band structure of graphene.

Cyclotron resonance occurs when charge carriers, undergoing circular motion in a strong

magnetic field, absorb light resonantly. As previously discussed, the low-energy effective the-

ory of charge-neutral graphene describes two types of massless Dirac quasiparticles localized
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at the two inequivalent corners of the Brillouin zone, known as valleys. When a perpendic-

ular magnetic field is applied to the crystal plane of graphene, the continuum of electronic

states in the graphene band structure breaks into a series of discrete Landau levels. The

valley degeneracy and the physical electron spin result in four-component degenerate Landau

levels.

In the absence of electron-electron interactions, the energy of the Landau levels is given

by En = snℏωc

√
|n|, where ωc =

√
2vl−1

B represents the cyclotron frequency, v∼106 m/s

denotes the band velocity, lB =
√
ℏ/eB signifies the magnetic length, sn = sign(n), and

n = 0,±1,±2... represents the LL index [66, 67]. The linear and particle-hole symmetric

dispersion of graphene introduces a myriad of new inter- and intra-band resonances spanning

a wide range of energies. In graphene, the ease of controlling the charge carrier density (or

Fermi level) allows for precise control over which transitions are active, facilitating clear

assignment to specific levels of the electronic structure.

In graphene subjected to a quantizing magnetic field, the strong Coloumb interaction and

fourfold spin/valley degeneracy lead to an approximate SU(4) isospin symmetry within in-

dividual Landau levels [17]. The energy scales governing cyclotron motion, En = ℏvF

√
2/lB,

and long-range interparticle Coulomb interactions, EC = e2/ϵlB, both of which reflect

physics independent of spin or valley degree of freedom, dominate over any spin or valley

anisotropies [68]. The precise SU(4) symmetry for a given experimental condition in graphene

hinges on the interplay between anisotropies arising from the Zeeman effect characterized

by EZ = gssµBB, where µB is the Bohr magneton, s = ±1/2 is the spin quantum number

and gs = 2 is the electron gyromagnetic ratio, and lattice-scale interactions and disorder,

quantified by energy ESR = EC(a/lB). Despite their small magnitudes, these anisotropies

are experimentally adjustable, providing an avenue for exploring symmetry-breaking phe-

nomena.
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The emergence of vdW heterostructures has significantly addressed a longstanding chal-

lenge in the field of 2D materials: the limited electronic performance observed when these ma-

terials are placed on amorphous SiO2 substrates. Early explorations into vdW heterostruc-

tures have illuminated a remarkable enhancement in the quality of graphene devices upon

the integration of an h-BN substrate [69]. This notable improvement is primarily attributed

to the atomically flat nature of h-BN. Both graphene and h-BN exhibit hexagonal lattice

structures. When stacked together, they adopt the lowest-energy lattice configuration, where

one sublattice of carbon atoms is positioned above boron atoms while the other sublattice

rests atop the center of a hexagon. This configuration of atoms breaks the sublattice sym-

metry in graphene, consequently leading to the formation of a band gap. Initial theoretical

calculations [70] have proposed a band gap of approximately 50 meV. Consequently, beyond

serving as a passive dielectric substrate, h-BN plays an active role in modifying the electronic

properties of graphene.

The phenomena of symmetry breaking in graphene have been explored by a variety of ex-

perimental probes including electronic transport, quantum capacitance, and scanning probe

microscopy experiments [68, 71–76]. However, the excited states of this system due to collec-

tive excitations between Landau levels (LLs) in the broken symmetry regime have been little

explored to date [40, 77]. In translationally invariant systems with a parabolic dispersion,

cyclotron resonance is typically insensitive to electron-electron interactions, a phenomenon

known as Kohn’s theorem [30, 78, 79]. However, graphene presents an ideal platform for

investigating such phenomena. Unlike traditional 2D electron systems, linear dispersion of

graphene allows for the direct modification of LL transition energies by many-particle interac-

tions in CR measurements. This unique characteristic enables the spectroscopic exploration

of the interplay between interaction effects and broken symmetries in graphene.

In this chapter, we investigate CR in high-quality monolayer graphene by modulating
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the carrier density n via the back gate voltage Vg with a few layers of graphene. The

manipulation of carrier density n in the presence of a magnetic field B allows us to control

the Landau level filling factor, ν = nh/eB, where h represents Planck’s constant. Our

observations reveal several interband transitions exhibiting non-trivial dependence on the

filling factor and reveal the evolution of underlying many-particle-enhanced gaps. Analysis

of the cyclotron resonance peaks shows a complete lifting of the four-fold degeneracy of

Landau levels in graphene, due in part to the interaction of graphene with its encompassing

boron nitride flakes but also in part to the effect of electron-electron interactions. We propose

that contact between graphene and the encapsulating layers of hexagonal boron nitride (h-

BN) breaks translation symmetry and serves to lift the remnants of Kohn’s theorem, enabling

direct contributions to the CR energy by interaction effects. This provides an unprecedented

spectroscopic view of the impact of many-particle interactions in the regime of broken spin

and valley symmetry in graphene.

3.2 Experiment

The sample used in this study is an 820 µm2 sheet of monolayer graphene encapsulated

between ≈40-nm-thick flakes of hexagonal boron nitride, assembled using a dry-stacking

technique [80] and placed on a 4-nm-thick flake of single-crystal graphite lying on a lightly-

doped, oxidized Si wafer. Electrical contacts to the edge of the graphene were made using

3/60-nm-thick films of Cr/Au, defined by standard electron beam lithography fabrication.

A 90-µm aluminum foil aperture restricts the infrared light to the region surrounding the

sample. Spectroscopy was performed at a base temperature of 300 mK (estimated sample

temperature of < 2 K) for fixed values of the magnetic field using a broadband Fourier-

transform infrared spectrometer with an instrumental resolution of 0.5 meV.
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Fig. 3.1: (a) resistivity vs carrier density at 4 K. (b) the transport scattering time and
mean free path derived from the resistivity data.

3.2.1 Interplay of symmetry breaking and electron-electron

interaction effects

If the sublattice symmetry of graphene is broken, the valley-polarized n = 0 level is split by

E0,K(E0,K′) = +(−)M , where M is the Dirac mass [81], and the |n| > 0 levels are shifted

according to En = snℏωc

√
|n| + µ2, with µ = M/ℏωc. The CR energies of inter- or intra-band

transitions from LL m to n are then given by the level separation

∆Em,n = ℏωc

(
sn

√
|n| + µ2 − sm

√
|m| + µ2

)
, (3.1)

with the selection rule |n| − |m| = ±1. In graphene, these energies can also include contri-

butions from many-particle interactions, in contrast to materials with a parabolic dispersion

where the center-of-mass and inter-particle coordinates are separable and CR becomes in-

sensitive to electron interactions, a result known as Kohn’s theorem [30–32]. The linear

dispersion of graphene mixes these coordinates so that interactions can directly impact LL
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transitions [27, 33–37], leading to deviations from Eq. 3.1 [28, 38–41] and dependence of CR

on the LL filling factor, ν = 2πnsl
2
B, where ns is the charge carrier sheet density [42].

3.2.2 Evolution of cyclotron resonance transition in the broken

symmetry regime

In graphene, several interband CR transitions Ti can be observed simultaneously at fixed

filling factor, comprising nominally degenerate pairs of inter-LL excitations n = −i → i− 1

and 1−i → i with energies given by Eq. 3.1. Figure 3.2(a) shows a color map of transitions T1

through T5 acquired as a function of ν, in which the square-root dependence of the energies

on the LL indices is immediately apparent. A schematic of the allowed transitions at half-

filling is drawn in Fig. 3.2(b), and a representative linecut at ν = 0 is shown in Fig. 3.2(c).

The very narrow resonances follow from recent improvements in sample fabrication [69, 82]

and are key to enabling our observations. In Fig. 3.2(d) we show T1 at ν = 0 in devices

from the present and two prior works [38, 42], revealing a clear decrease in the half-width

at half-max, Γ. The lower two traces in Fig. 3.2(d) provide a comparison of two common

gating methods: the middle trace is acquired in a sample with a distant, doped Si/SiO2

substrate on which the encapsulated monolayer rests [42], while the lower trace from the

present work uses a local graphite gate. By chance, these two devices have similar charge

carrier mobilities of 200,000 cm2/Vs, but the graphite-gated device shows greater values of

the quantum scattering time τq extracted from Shubnikov-de Haas oscillations [83]. This

likely reflects improved screening of charged impurities in the SiO2 by the graphite. The

CR lifetimes τCR = ℏ/Γ in Fig. 3.2(e) are similarly improved, and in fact, the value of ∼600

fs quoted for the present device is a lower limit as even narrower lines with τCR ≈ 2.5 ps

(Γ = 0.26 meV) are seen at higher instrumental resolution. This latter value is close to the
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Henriksen et. al.
Russell et. al. (divided by 6)
this work (divided by 60)

Fig. 3.2: (a) Color map of the normalized transmission spectra ∆T/T in the mid-infrared
as a function of the LL filling factor, ν, measured in the device shown inset to
(c). (b) Schematic showing the allowed Landau level transitions at ν = 0. (c)
Representative linecut of the color map at ν = 0. (d) Evolution of CR lineshape at
ν = 0 with sample quality: the top trace is from a graphene-on-SiO2 device [38],
the middle is from an h-BN-encapsulated device on SiO2 [42], and the bottom is
the present graphite-gated, h-BN-encapsulated device. (e) CR lifetime τCR = ℏ/Γ
at ν = 0 (Γ the half-width at half-max) vs a spread of quantum scattering times
τq acquired for a range of carrier densities at 3 K (colors correspond to traces (d).
The dashed line marks τCR = τq.

72



Chapter 3. Broken Symmetry States and Interaction Induced Effects in Graphene

Fig. 3.3: Evolution of transition T1 vs filling factor. (a) High-resolution map of T1 vs filling
factor from ν = −0.07 to ν = +2.5. (b) Detail of transitions by line cuts at
half-integer fillings. (c) Schematic of transitions involving the n = −1, 0, and +1
LLs. Solid (dashed) lines indicate the K (K ′) valleys, with valley gaps ∆vi and
spin splittings ∆zi explicitly included. The Fermi energy EF is shown as a dotted
line.

transport time derived from the mobility 3.1b, suggesting that impurity collisions limit the

CR lifetime. Consistent with prior observations of CR in AlGaN/GaN heterostructures [84],

τCR can be several times larger than τq which is reduced by variations in the carrier density

across the sample.

In Figure 3.3 we focus on the T1 transition over filling factors ν = 0 to +6, where a

marked non-monotonic evolution is seen from a single resonance at ν = 0 to four resonances

around ν = +1, which reduce back to two for ν ≳ +2 that both fade away as ν → 6 and

the n = +1 LL is completely filled. Linecuts in Fig. 3.3(b) show details at half-integer ν.

The resonances manifest in intriguing patterns: the higher energy peaks at ν = 1 appear
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and disappear at different ν values, while the lower energy pair appears simultaneously and

then merges with increasing ν. At ν = 2 the upper peak first appears at a lower energy near

ν = 3/2 and then rapidly rises before leveling off for ν ≳ 2. Note these features at ν = 1

and 2 persist over a wide range of ν. This is a real effect and not due, for instance, to small

variations in the carrier density across the sample: from the width of the Dirac peak in the

zero-field resistance vs density shown in 3.1a, we estimate a distribution of carrier densities

δns ≈ 2 × 1010 cm−2, or δν ≈ 0.1 at 8 T, rather smaller than the range over which the

ν = 1 and 2 features persist. At ν = 1/2 and 3/2, broad resonances appear that nevertheless

maintain the full spectral weight, suggesting all transitions are present but unresolved. This

could indicate the presence of dark magnetoexciton modes serving as additional scattering

channels: there are up to 16 distinct transitions between the 0 and ±1 LLs although only

the four that conserve spin and valley are optically active [27].

The CR energy is given by the energy difference of participating levels, with the restriction

that the spin and valley orientations are preserved. Without interactions or symmetry-

breaking mechanisms, the energies of the four component transitions of T1 are degenerate

and equal to the LL separation. Any gap, e.g., due to Zeeman splitting that is the same

in both LLs, is invisible to CR. Thus, the multi-peak structure in Fig. 3.3, particularly at

ν = 1, requires that both spin and valley symmetries are broken to a differing extent in

the n = 0 and ±1 LLs. In the present device architecture, an obvious valley-symmetry-

breaking mechanism results from contact of graphene with the encompassing h-BN [48, 74],

generating a mass M that splits the n = 0 level and shifts the higher levels. Additionally,

the spin splittings of the n = 0 and n = ±1 levels must also differ in energy, which is

most readily achieved by invoking Coulomb interactions. But as noted above, the remnant

of Kohn’s theorem in graphene allows only for a filling-independent renormalization of the

velocity, v → ṽ, for T1. Thus, Eq. 3.1 should apply, and even with finite µ, the T1 energy
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at ν = 0 should be precisely the same as the higher energy peak when T1 splits at ν = 2

[85]. Yet in Fig. 3.3 it is higher, by 1.3 meV. Thus, even this surviving part of Kohn’s

theorem must be broken. This cannot be due to non-parabolicity. Disorder is a potential

culprit, although it is quite weak as seen by how narrow the CR linewidths are compared

to the observed shifts and splittings. On the other hand, the interaction of graphene with

the h-BN substrate gives rise to a long wavelength moiré pattern that breaks the translation

symmetry of the graphene lattice [48, 86]. Thus, we propose that the h-BN be responsible for

lifting the final restrictions of Kohn’s theorem, enabling all interaction effects to contribute

to the CR energies on an equal footing. This is a fortunate outcome, as interactions are

relatively strongest for the T1 transition.

In Figure 3.3(c), we introduce schematics representing the simplest model of transitions

between the n = 0 and ±1 LLs that align with the observed CR. These are drawn for

ν = 0,+1, and +2, with each of the four spin- and valley levels shown explicitly albeit with

greatly exaggerated level shifts and gap sizes. In graphene, the inapplicability of Kohn’s

theorem implies the CR transition energies will reflect the single-particle LL separations

plus many-particle shifts of the levels, along with excitonic and exchange corrections due to

the excited electron and remnant hole [27, 33, 34, 85, 87]. Of course the measured energies do

not indicate which portion is due to level shifts vs exciton corrections. Therefore, we model

each transition energy as a sum of the LL separation plus the difference of any valley and

Zeeman gaps in each level, with the understanding that these gaps are meant to represent

both single- and many-particle energies.

For instance, at ν = +2 two resonances are observed although up to four transitions

(two each for valley and spin, labeled a′, b′, c, and d in Fig. 3.3(c)) are allowed. All LLs

are either completely filled or empty so that interactions are expected to be minimized. If

we assume that the Zeeman splittings in the n = 0 and 1 LLs are equal, then the observed
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CR splitting ∆Eν=2 = Ec,d − Ea′,b′ arises from transitions originating on either side of the

valley gap in n = 0. Note if the n = 1 LL also has a non-zero valley gap, it is still the

difference of these gaps, ∆vν=2 ≡ ∆v0 − ∆v1 = ∆Eν=2 that is detected. If the Zeeman

splitting were also enhanced in one level over another, this picture would predict additional

resonances not present in the data. Fitting the two peaks at ν = 2 with Lorentzians, we

find ∆Eν=2 = 5.0(1) meV. Since any valley splitting of the n = 1 LL is likely to be small,

this should be a good measure of the valley gap in the ZLL. We identify this gap as due to

sublattice symmetry-breaking from the presence of h-BN [74], and calculate a Dirac mass

M = 2.5 meV.

At ν = 0, the single peak indicates the four allowed transitions are all degenerate. By the

schematic in Fig. 3.3(c), the CR energy is given by the LL separation plus half the difference

of the valley gaps in the zeroth and ±1 LLs. That a single resonance is seen implies the valley

gaps in the n = ±1 levels must be equal, and all of the Zeeman gaps must also be the same,

or else additional CR lines would be seen. Actually, the ν = 0 resonance is the broadest

in T1, suggesting there may be unresolved lines due either to a differential enhancement of

these gaps or a level repulsion between the two degenerate pairs labeled {a,b} and {c,d} in

the figure if lattice-scale interactions couple the K and K ′ valleys. Indeed, such a splitting

appears at 13 T as discussed below. For now we determine the valley gap difference to be

∆vν=0 = 2 (Eν=0 −Eν=2
avg ) = 7.3(5) meV, where Eν=2

avg is the average energy of the two peaks

at ν = 2. This yields a Dirac mass of 3.7 meV, substantially enhanced over its value at

ν = 2.

Finally, four resonances are seen at ν = 1, which requires each transition to comprise

a unique combination of valley and spin gaps in the initial and final LLs. In Fig. 3.3(c)

we sketch a scenario where, for instance, the two transitions {c, d} (that are degenerate at

ν = 0 and +2), now gain distinct energies at ν = 1 when the Zeeman gaps in the n = 0
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and 1 LLs become unequal. Moreover, the two Zeeman gaps in the n = 0 level marked

∆z0,− and ∆z0,+ must be differentially enhanced, or else the transitions marked a and d

will remain degenerate. The difference of the valley gap energies in the n = 0 and ±1 LLs,

namely ∆vν=1 = ∆v0 − ∆v±1, and the two Zeeman differences ∆z− = ∆z0,− − ∆z±1,− and

∆z+ = ∆z0,+ − ∆z1,+, can be extracted by inverting a matrix that records the contribution

of each gap to the transition energy. The full procedure is described in the next section.

Note we assume that gaps in the n = ±1 levels are identical. While the size of this valley

gap is close to that found at ν = +2, the spin gaps are significantly larger than the bare

Zeeman energy at this field, EZ = 0.93 meV, indicating a clear role for electron interactions.

The enhanced ∆z+ splitting is notable, as both levels are occupied and well below the Fermi

energy. This is reminiscent of indirect exchange splitting in the spin sector seen in GaAs

quantum wells [88], except that here, the splittings occur in different valleys, indicating the

presence of lattice-scale interactions coupling valleys K and K ′. Meanwhile, the size of ∆z−

at the Fermi energy compares well to a transport gap of ∼ 5 meV, for ν = −1 at 9 T, found

in Ref. [68]. Casting these as effective g-factors, we find the spin gap at the Fermi level has

g∗
z;− = ∆z−/µBB = 9.3, and the buried spin gap (in the K valley) has g∗

z;+ = 4.5.

3.2.3 Model for gap energies and their evolution in field

In Fig. 3.4, an expanded version of the transition schematic in Fig. 3.3c is shown. At left,

three lines mark the energy of the non-interacting n = 0 and ±1 Landau levels (taken to

be particle-hole symmetric). On the right, the same LLs are shown with valley and Zeeman

gaps (greatly exaggerated). Solid (dashed) lines indicate the K (K ′) valleys. Each valley

and spin splitting is labeled and can, in principle, be different. The four allowed transitions

that conserve spin and valley are shown, labeled a, b′, c, and d. We assume each transition
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Fig. 3.4: Schematic showing single-particle LL energies (left) and the interaction-enhanced
valley and Zeeman gaps (right), for filling factor ν = +1. Four spin- and valley-
conserving transitions are labeled a, b′, c, and d for consistency with the main
text. Each possible spin and valley gap is individually marked.

energy can be given by the LL separation E01 plus or minus half of the relevant valley and

spin gaps:
Ea = E01 + 1/2 (∆v0 − ∆v−1 + ∆z0,− − ∆z−1,−)

E ′
b = E01 + 1/2 (−∆v0 + ∆v1 + ∆z0,− − ∆z1,−)

Ec = E01 + 1/2 (∆v0 − ∆v1 − ∆z0,+ + ∆z1,+)

Ed = E01 + 1/2 (∆v0 − ∆v1 + ∆z0,+ − ∆z1,+)

(3.2)

where +(−) is shorthand for theK(K ′) valleys. Although the schematic contains 10 unknown

parameters, only 9 are employed since there are no transitions from valley K in level n = −1,

and ∆z−1,+ can be ignored. Meanwhile, four CR peaks are observed at ν = +1, with

the peak energies Ei. Inspection of Eqs. 3.2 shows that all the parameters come in pairs
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that give the difference of gaps of the same kind in different LLs, so with new notation

∆v0,1 = (∆v0 − ∆v1), &c., we can write

Ea = E−1,0 + 1/2 (∆v0 − ∆v−1 + ∆z0,− − ∆z−1,−)

E ′
b = E01 + 1/2 (−∆v0,1 + ∆z0,1;−)

Ec = E01 + 1/2 (∆v0,1 − ∆z0,1;+)

Ed = E01 + 1/2 (∆v0,1 + ∆z0,1;+)

(3.3)

There are now 6 unknowns and four measured energies. To go further, we must make

some assumptions about the differences between the various gaps. It is not obvious how to

proceed since, for instance, the valley gaps in n = +1 and −1 are not necessarily the same

once interactions are included due to the asymmetric location of the Fermi energy. However,

the Zeeman energies are generally small, and it is reasonable to assume that they remain

so in the n = ±1 levels. Thus let ∆z+ (∆z−) describe the difference between spin gaps of

the n = 0 and n = ±1 LLs in the K (K ′) valley. Finally, since E01 is the same for all four

transitions, we define ∆Ei = Ei − E01 (here we will take E01 to be the average of the split

resonance at ν = 1, but in fact, we will soon ) and rearrange to find:



∆Ea

∆E ′
b

∆Ec

∆Ed


= 1

2



0 1 0 1

−1 0 0 1

1 0 −1 0

1 0 1 0





∆v0,1

∆v0,−1

∆z+

∆z−



which can be inverted to yield values for the gap differences in terms of the measured transi-

tion energies Ei, so long as we can identify which resonance energy belongs to which transition

in the schematic. To do so, we assume the enhanced gaps follow the size hierarchy sketched
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in Fig. 3.4 (consistent with expectations from transport measurements [68]). Then the four

peak energies Ei are extracted by fitting with Lorentzian lineshapes to the ν = +1 data,

which yields ∆Ea = 2.8 meV, ∆Eb = −2.2 meV, ∆Ec = −0.4 meV, and ∆Ed = 1.7 meV.

Inverting the matrix above gives

∆v0,1 = ∆Ec + ∆Ed = 1.3 meV

∆v0,−1 = 2(∆Ea − ∆E ′
b) − (∆Ec + ∆Ed) = 8.7 meV

∆z+ = −∆Ec + ∆Ed = 2.1 meV

∆z− = 2∆E ′
b + ∆Ec + ∆Ed = −3.1 meV

While this procedure works in principle, the negative value is problematic. In fact, these

results are sensitive to the value of E01 because while E−1,0 = E0,1 in principle, in fact, we

clearly observe a small but finite particle-hole asymmetry. This suggests we should eliminate

E01 by using the differences between the observed peak energies instead. This reduces

the number of measurements to three, so the number of parameters also must be reduced.

Assuming the valley gaps of the n = ±1 levels are small leads to ∆v0,1 = ∆v0,−1 ≡ ∆v.

Then the difference of each peak energy is ∆Eij = ∆Ei − ∆Ej, and

∆Eab′ = ∆v

∆Eb′c = −∆v + 1/2 (∆z− + ∆z+)

∆Ecd = −∆z+

(3.4)
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The matrix is now 
∆Eab′

∆Eb′c

∆Ecd

 =


1 0 0

−1 1/2 1/2

0 −1 0




∆v

∆z+

∆z−


The (measured) peak energy differences are ∆Eab′ = 5.0 meV, ∆Eb′c = −1.8 meV, and

∆Ecd = −2.1 meV; and inverting the matrix we find

∆v = ∆Eab′ = 5.0 meV

∆z+ = −∆Ecd = 2.1 meV

∆z− = 2∆Eab′ + 2∆Eb′c + ∆Ecd = 4.3 meV

We briefly note that although Kohn’s theorem does not hold in graphene in general, a

limited version is predicted to survive for the T1 transition [27, 33, 34]. However, the filling-

factor-dependent shifts and splittings found here strongly imply that even this remnant does

not hold. We speculate that either the h-BN-induced moiré pattern (with a length scale

comparable to the magnetic length) or the lattice-scale interactions invoked to explain the

ν = 0 ground state [75] are sufficient to break translation invariance and render Kohn’s

theorem inoperable.

To better understand the nature of these splittings, we show the magnetic field depen-

dence of the extracted spin and valley gaps at ν = 1 in Fig. 3.5(a). The measured spin

gap energies are substantially larger than the Zeeman energy, which suggests an interaction

enhancement consistent with the ferromagnetic ground state at quarter filling in Ref. [68].

The gaps exhibit a sub-linear increase with the magnetic field, close to the
√
B dependence

expected for interaction effects, although further work is needed to understand the precise

field dependence. Unlike the spin gaps, the ν = 1 valley gap is observed to decrease with
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E (meV) E (meV) E (meV)

Fig. 3.5: The magnetic field dependence of the observed gaps at ν = 1. The valley gap
∆v appears to decrease with increasing field while the spin gaps ∆z− and ∆z+
increase with increasing field. (b) Comparison of the valley gaps calculated at
integer filling as a function of the magnetic field. (c) The T1 resonance at ν = 0
for three magnetic fields. The T1 resonance at ν = 0 for three magnetic fields.
With increasing field, the resonance broadens and shows an incipient splitting.
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increasing magnetic field. In Fig. 3.5(b) this valley gap is compared with those for the half-

and fully-filled n = 0 LL, where we find the gaps at ν = 1 and 2 remain closely matched

as the field changes. Since interaction effects should be weakest at ν = 2, this agreement

suggests the valley gap at ν = 1 is hardly impacted by interactions. In contrast, the valley

gap extracted for ν = 0 increases dramatically with increasing magnetic field, consistent with

the understanding that the ground state at ν = 0 involves an interaction-driven breaking

of valley symmetry, which drives an enhancement of the gap [68, 75, 89]. A closer look at

T1(ν = 0) for multiple fields in Fig. 3.5(c) shows the resonance broadens at 8 T compared

to 5 T and develops a clear splitting by 13 T (note ∆vν=0 in Fig. 3.5(b) uses the average

value of this splitting). As noted previously, this is perhaps due to the level repulsion of

degenerate transitions in the two valleys by short-ranged Coulomb interactions, known to be

important in the study of quantum Hall ferromagnetism but not yet studied in the context

of CR in graphene [89].

3.2.4 Higher interband channels

Finally, in Figure 3.6 we explore the evolution of the second interband transition, T2. In-

spection of the color map and line cuts shows that splitting is just resolved at ν = 0, with

peaks of approximately equal strength. This evolves into a bright and sharp peak at ν = +1

accompanied by a much weaker resonance on the high energy side, while at ν = +2 the split-

ting persists but most of the spectral weight has shifted to the higher energy peak. Similar

to T1, at half-integer fillings, only a single broad resonance is seen, although the integrated

intensity remains constant over this range of ν [Note1]. The peaks are split by 2.8 meV at

ν = 0 and 4.7 meV at ν = +2. The behavior with changing magnetic field shown in Fig.

3.6 (d) is rather different than for T1. For T2, a single ν = 0 peak at 5 T gains a splitting
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Fig. 3.6: (a) High-resolution map of T2 for the same filling factor range as Fig. 3.2. (b)
Line cuts at half-integer filling factors. (c) Schematic of T2 transitions, with the
K (K ′) valley shown as a solid (dashed) line. (d) Spectra at ν = 0 and +2 as a
function of magnetic field. A remarkably large splitting, nearly 13 meV in size,
appears at ν = +2 at 13 T. 84
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at 8 T but reverts to a broader single resonance at 13 T. Since the T2 transition comprises

two nominally degenerate pairs of transitions n = −2 → +1 and −1 → +2 in each valley,

as above a weak valley coupling may split the degeneracy. Whether the splitting is observed

may depend on the width of the resonances, which increases with the field. For instance, at

8 T, the splitting is greater than the width and can be seen but is likely masked by further

broadening of the resonance by 13 T. In contrast, at ν = 2, the sharp single peak at 5 T

evolves by 13 T into an unexpectedly large splitting, nearly 13 meV, far larger than any

other splitting seen in this work. In the many-particle theories of Ref. [33, 85], interactions

alone suffice to break the degeneracy of the n = −2 → +1 and −1 → +2 transitions at both

ν = 0 and 2; further small corrections are expected for a finite Dirac mass. For T2, Ref.

[85] predicts an approximately 3 meV splitting for a 5 meV gap. This roughly matches the

scale of splittings at 8 T but greatly underestimates the ν = 2 splitting at 13 T. This large

splitting is a surprise since for ν = 2, all orbital levels are filled or empty, and interaction

corrections should be minimal. At this time no mechanism is clearly responsible for such a

large splitting at ν = 2. The next higher interband transition, T3, also shows an intriguing

and larger-than-expected sequence of splittings. A map of the transition energies vs filling

factor along with line cuts at integer filling factor is shown in 3.7. The signal-to-noise in

even higher interband transitions is not sufficient to resolve splittings.

Figure 3.7(a) shows a colormap of transition T3, with the same filling factor resolution of

δν = 0.026 as used in 3.2 and 3.3. T3 shows a significant brightening around ν = 2 due to a

narrowing of the resonance since the integrated intensity does not change until ν ≳ 2.5. In

Fig. 3.7(b) various patterns can be discerned, in particular a splitting at 5 T that persists

for all filling factors and shows a shift of weight from the lower to upper resonance. These

splitting do not seem to exist at 8 T (except possibly at ν = 0) but are resurgent for ν = 1

and 2 at 13 T. The gaps at 5 T, ν = 0 and 13 T, ν = 2 are each approximately 6.5 meV.
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Fig. 3.7: (a) Colormap of T3 at B = 8 T. (b) Linecuts vs filling factor and magnetic field.
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3.2.5 Particle-hole asymmetry

In Fig. 3.8(a), we zoom out to show T1 over an equal range of positive and negative filling

factors and find a small but clear particle-hole asymmetry. For example, while the size of

the ν = ±2 splittings is virtually identical at 5.0 meV, the hole-side peaks lie a full 1.0 meV

lower in energy. Moreover a closer look at ν = −1 and +1 in Fig. 3.8(b) and (c) shows

the two lower energy transitions are both separated by 1.7 meV and exhibit a slow ramp-up

with increasing |ν|, but the hole-side pair is found 1.1 meV lower than the electron-side

pair. Meanwhile, the two higher-energy peaks on the hole side nearly overlap, compared to

ν = +1 where we have seen they are individually resolved. Additionally, the relative shift

of these higher-energy peaks with increasing |ν| shows opposing trends near ν = −1 and

+1, with both pairs lying close together at the left side of the graphs (more negative ν) and

separating toward the right (for more positive ν), breaking ν → −ν symmetry. Finally, the

highest energy peak on the hole side is only 0.4 meV lower than the electron side. Relative

to the CR energy, this symmetry breaking is a ∼ 0.8% effect, too small to have been noticed

in early broadband spectroscopic studies [28] but matching an asymmetry apparent in the

data of Ref. [38, 42]. However, in terms of the many-particle-enhanced valley and spin gaps,

these small shifts are quite significant. For instance, applying the same analysis used in the

discussion of Fig. 3.3, we find for B = 8 T that ∆vν=−1 = 5.7 meV; ∆zν=−1
+ = 1.2 meV (or

effective g-factor g∗
z;+ = 2.6); and ∆zν=−1

− = 6.7 meV (g∗
z,− = 14.4).

Such particle-hole asymmetry is not predicted by many particle theories to date but may

arise at the single-particle level due to next-nearest-neighbor hopping [90]. In this picture,

a field-dependent asymmetry between the −n → n − 1 and 1 − n → n transitions was

derived for the high-n limit in Ref. [91], giving Easym = 3
√

2ℏωct
′a/tlB ≈ 0.56 meV at 8 T

(where t (t′) is the nearest (next-nearest) neighbor hopping, and a the C-C atom distance
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Fig. 3.8: (a) Closeup of T1 transition from Fig. 3.2(a), showing a clear asymmetry for
positive vs. negative filling factors. (b) and (c) show higher resolution (finer
abscissa spacing) maps at ν = −1 and +1, respectively, revealing particle-hole
symmetry breaking in the four-fold splittings.

in graphene). This value lies within a factor of two of the asymmetry energies seen here,

suggesting we are seeing an intrinsic property of the underlying band structure. In contrast,

far larger particle-hole asymmetries up to a few percent of E0,1 have been reported in swept-

field CR studies of graphene-on-oxide, monolayer and multilayer epitaxial graphene, and

encapsulated graphene with double moiré potentials [40, 77, 92, 93].

3.2.6 Many body contribution to CR energies

In Figure 3.9(a) the transition energies at ν = 0 and 8 T are plotted as a function of transition

number Ti, parameterized as an effective velocity veff (Ti) = ∆Emeas(Ti)/∆Ecalc(Ti)[v =

106;µ = 0]. We see that veff rises from T1 to T2 and thereafter gradually decreases in

agreement with previous measurements [42]. We fit these data in two ways: first, in the
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Fig. 3.9: (a) The transition energies parameterized as effective velocities veff =
∆Emeas(Ti)/∆Ecalc(Ti)[v = 106;µ = 0] at ν = 0. (b) The renormalized Fermi
velocity vren, extracted from fits to the theory of Ref. [85] (c) Arrhenius plot of
the device resistance at charge neutrality and zero magnetic field

basic non-interacting picture with energies given by Eq. 3.1, using fixed band velocity v and

mass µ (with µ set to the splitting at ν = 2). This model clearly does not capture the

measured variation in veff . Far better results are found using the theory of Ref. [85] which

accounts for many-particle contributions to CR in a single-mode approximation [94]. The fit

has three parameters: an interaction-renormalized band velocity vren, the Dirac mass, and

an overall Coulomb interaction we fix at VC =
√
π/2 e2/(4πϵlB) = 50 meV 1. This provides

a good account of the variation in veff vs. Ti and also the size of the T2 splittings and

yields vren = 1.105 × 106 m/s and M = 2.76 meV, close to the value at ν = 2. Carrying

out this procedure at other magnetic fields and filling factors yields the vren values in Fig.

3.9(b). There, the resulting linear decrease against ln(
√
B/B0) is anticipated in Ref. [34],

which predicts the slope is given by −(αc/4ϵ) where α is the fine structure constant and c

the speed of light. This running of the velocity with B is the generalization to the finite field
1 The curve fits are not sensitive to the precise value of VC . Specifically, changing the value of ϵ in VC

results in different values of vren returned by the fits in Fig. 3.9(a); but the slope of the new vren vs ln(lB0/lB)
is unchanged. That is, the relative variation of the measured veff at different fields has physical meaning
independent of the particular renormalization employed, as discussed in Ref. [34, 85]
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of the interaction-renormalized band velocity predicted before graphene was isolated [95]

and seen in electronic transport [96]. The slope determines a dielectric constant of ϵ = 6.4,

which is likely dominated by the in-plane ϵ of hexagonal boron nitride [97], and is in good

agreement with magneto-Raman measurements [36].

In Fig. 3.9(b) we show the extracted values of vren for multiple magnetic fields and filling

factors. These data show no significant variation of vren with filling factor and reveal the

predicted linear decrease with ln(lB0/lB), in agreement with prior magneto-Raman studies

[36].

3.3 Discussion and Summary

We analyze the data at ν = 2 using two approaches and predict veff for the ν = 0 data

with the resulting fit parameters. First, we fit the data with the gapped but non-interacting

model using Eq. 3.1 and find the velocity ṽ = 1.116 × 106 m/s and the Dirac mass M = 2.51

meV. By design, the splitting at T1 is well-matched, but otherwise, this approach fails badly

for both the ν = 2 and ν = 0 data. We find much better results with the theory of Ref. [85]

that accounts for many-particle contributions to CR in a single-mode approximation [94].

The fit parameters are the velocity and mass and include an overall Coulomb interaction

VC =
√
π/2 e2/(4πϵlB) = 50 meV set by choosing ϵ = 4 for h-BN [98]. This theory provides

a good account of the variation of veff and the T2 splittings using ṽ = 1.105 × 106 m/s and

M = 2.76 meV. However, no single set of parameters can simultaneously match the T1 data

at both ν = 0 and ν = +2. This is presumably due to the limited version of Kohn’s theorem

active in the theory of Ref. [85], but not the data. The valley gap (extracted in the discussion

of the LL schematic of Fig. 3.3, is 7.3, 5.0, and 5.0 meV for ν = 0, 1, and 2, respectively.

We note the h-BN-induced gap in graphene is expected to be enhanced by interactions at

90



Chapter 3. Broken Symmetry States and Interaction Induced Effects in Graphene

half-filling [86, 99, 100], as we observe. Interestingly, these values are smaller than the 15

meV gap extracted from measurements of the thermally activated transport at zero field and

half-filling, shown in Fig. 3.9(c). This discrepancy is not surprising due to the prediction

that exchange interactions do not impact the T1. However, it is not yet clear if CR of the T1

transition sees the full strength of interaction contributions. On the other hand, the linear

fit in Fig. 3.9(c) covers rather less than an order of magnitude change in temperature, so the

gap size extracted from transport may not be accurate.

In a translationally invariant system with a parabolic dispersion, the energy of the long-

wavelength q = 0 magnetoplasmon mode of the CR excitation is pinned to the LL sepa-

ration ωc = eB/m∗, as required by Kohn’s theorem [30, 31]. However, in practice band

non-parabolicity [101–103], disorder [104, 105], multiple effective masses [106, 107], intense

irradiation [108], or intentional breaking of translation invariance [109–111] all allow for

many-particle contributions to the CR energy. Yet these end-runs around Kohn’s theorem

inevitably include effects beyond interactions [31, 102], due to whichever mechanism is used

to evade it. In contrast, the linear Dirac dispersion of graphene can be considered an ex-

treme case of non-parabolicity where the carriers have no center of mass, and Kohn’s theorem

ought no longer apply [27, 32–35]. In fact a limited version of the theory does survive, al-

though just for transitions between the evenly-spaced n = 0 and ±1 LLs, for which the

direct Coulomb and exchange interactions cancel and leave just the overall renormalization

of the band velocity [27, 34, 85, 87]. For all other transitions, it should be possible to di-

rectly observe interaction contributions to the magnetoplasmon spectrum, promising that

minimally-disordered graphene devices can become a laboratory for exploring the excited

states of interacting many-particle systems. However, our findings suggest that transitions

involving the n = 0 LL exhibit clear evidence of symmetry-breaking and many-particle

contributions, implying the breakdown of even this residual aspect of Kohn’s theorem.
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When applied to graphene, cyclotron resonance becomes a novel tool for spectroscopy

of many-particle physics since Kohn’s theorem no longer applies. Here, it enables us to

follow the evolution of many-particle enhanced gaps in the broken symmetry regime of clean

monolayer graphene, where we find a Dirac mass that is significantly enhanced at half-filling

of the zeroth LL and Zeeman gaps both at and below the Fermi energy that are enhanced by

direct or indirect exchange effects. These observations highlight the importance of lattice-

scale interactions coupling the K and K ′ valleys in graphene. Moreover, a very small but

finite particle-hole asymmetry is seen that underscores the device quality and sets upper

limits on the symmetry of the linear dispersion in graphene. These results promise that

with continually improving device fabrication techniques, it will soon be possible to perform

spectroscopy of excited states in the fractional quantum Hall regime.
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Chapter 4

Infrared Spectroscopy of

Graphene/h-BN Moiré Superlattice

4.1 Introduction

In a spatially periodic lattice with lattice spacing a, electrons are described by Bloch bands.

When subjected to a strong magnetic field, the electronic spectrum quantizes into discrete,

highly degenerate Landau levels. The magnetic field B introduces a key length scale to the

problem: the magnetic length lB =
√
ℏ/eB ≈ 25.7 nm/

√
B, where ℏ is Plank’s constant di-

vided by 2π, e is the electron charge. When the two characteristic lengths lB and a become

commensurate, electrons exhibit a complex self-similar energy spectrum called Hofstadter’s

butterfly [51]. However, achieving the commensurability conditions in typical crystals re-

quires unfeasibly high values of B, in excess of 10,000 T. The main experimental effort,

therefore, has been to define artificial superlattices. Patterned GaAs/AlGaAs heterostruc-

tures with 100-nm-period gates provided the first experimental evidence of the Hofstadter

spectrum [112–115]. However, the limited range of carrier density in these samples has made

it challenging to map the complete spectrum.

An important advancement in 2D vdW materials is layer-by-layer stacking of heterostruc-
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tures. The lattice mismatch of these layered crystals provides an additional degree of freedom

during fabrication: the twist angle between their crystallographic axes. Although the inter-

layer interaction between stacked 2D crystals is relatively weak, the extension of electron

orbitals beyond the crystal plane affects charge carriers in neighboring 2D crystals. This

manipulation results in moiré patterns, which vary based on the rotational angle between

the joining crystals and their lattice mismatch.

In the case of graphene on h-BN, 1.8 % lattice mismatch between the two crystals and

any misalignment between their respective crystallographic axes generate a large-scale quasi-

periodic hexagonal pattern, known as the moiré superlattice (mSL). The perturbing effect of

the moiré superlattice on Dirac electrons in graphene decreases with increasing misalignment

between the h-BN and graphene lattices. Perfect crystallographic alignment (0◦) of this

layered structure leads to a maximum moiré wavelength λ of 14 nm. Figure 4.1a shows the

critical value of the magnetic field B0 for a hexagonal superlattice, meeting the condition

when the magnetic length approaches the scale at which there is approximately one flux

quantum per unit cell (Φ/ϕ0 → 1). Here Φ is the magnetic flux penetrating the superlattice

unit cell, ϕ0 = h/e is the magnetic flux quantum, and A =
√

3λ2/2 is the area of the

superlattice unit cell. With a superlattice wavelength of 14 nm, the critical field where

Φ/ϕ0 → 1 condition is met is ≈ 25 T, a value achievable in lab-scale experiments. Therefore,

G/h-BN heterostructures are well suited to investigate the Hofstadter phenomenon.

The long-wavelength periodic potential in the mSL induces Bragg scattering of electrons

in graphene [116], which alters the electronic properties of graphene. As illustrated in Figure

4.1b [48], this potential gives rise to a miniband structure with the most significant effects

observed at the edges of the first and second minibands. Here, the perturbation of the

superlattice leads to the formation of secondary Dirac points (DPs). Spectral reconstruction

occurs near the edges of the superlattice Brillouin zone (SBZ) and is characterized by a
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λ = 14 nm

B0 = 2h/√3eλ2

(a) (b)

Fig. 4.1: (a) Critical field versus unit cell wavelength defined where the ratio Φ/ϕ0 → 1. (b)
Energy of the valence bands showing the original Dirac point and the emergence
of new superlattice Dirac points [48].

wavevector G = 4π/
√

3λ and energy ES = ℏvFG/2, where λ represents the moiré wavelength

and vF denotes the Fermi velocity of graphene. To observe the effects moiré minibands in

transport measurements, graphene should be doped to a carrier density ns = 4π/3λ2 to

ensure that the Fermi energy lies in the reconstructed portion of the spectrum. Longitudinal

resistivity [52] measurements in graphene typically reveal the emergence of secondary peaks

appearing symmetrically on either side of the main peak at the charge neutrality point at

high doping levels (near ES). These secondary peaks are attributed to the formation of

minibands due to the mSL induced by h-BN. In the presence of a magnetic field, a series

of Landau levels originate from multiple mini-replicas of the original spectrum that appear

at rational flux values of Φ/ϕ0 = p/q = α, where p and q are integers [74]. Alternatively,

the energy diagram is parameterized so each Landau level splits into p sub-bands at these

rational values.

As previously discussed in Chapter 1, Wannier provides a simplified description of Hofs-

tadter’s energy-field diagram using a density-field diagram. The Wannier diagram has been
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realized experimentally [52, 74], with transport probes, where statistical weight W in the

Wannier diagram and α are accessed using charge carrier density and magnetic field. Wan-

nier demonstrated that all spectral gaps follow linear trajectories in the density-field space,

described by a dimensionless Diophantine equation

n

n0
= t

Φ
ϕ0

+ s, (4.1)

where normalised density n/n0 required to fill an entire bloch band, and s and t are topolog-

ically invariant integers. The Diophantine equation represents a universal set of constraints

describing all possible gaps within the Hofstadter spectrum. The gaps that remain open for

a particular device depend critically on the degeneracy of the system and lattice geometry.

In the quantum Hall regime, spectral gaps appear as minima in longitudinal resistance (Rxx)

and quantized plateaus in the transverse Hall resistance (Rxy) [117], as we will discuss in the

following section.

Since the Wannier diagram loses information about the associated energies of the gap,

this strongly motivates this work to probe the self-similar energy-field diagram directly em-

ploying cyclotron resonance measurements. This work uses infrared magneto-spectroscopy

to investigate cyclotron resonance within the Hofstadter butterfly regime in G/hBN het-

erostructures. Infrared spectroscopy has proven to be a highly effective tool for probing the

Landau level spectrum and, consequently, the band structure of graphene.

Our investigation begins with analyzing the moiré wavelength in the G/h-BN heterostruc-

ture using magneto-transport measurements, revealing a rotational alignment of 0.5 de-

grees. Electron-electron interactions in graphene and the incommensurability of G/h-BN

heterostructures break the A-B sublattice symmetry in graphene, resulting in a gap in the

otherwise gapless band structure of graphene. This gap is tunable by the superlattice wave-

96



Chapter 4. Infrared Spectroscopy of Graphene/h-BN Moiré Superlattice

length. Our optical study provides a direct spectroscopic determination of the gap by mea-

suring the splitting of the Landau level transition peaks at a finite magnetic field. The

maximum gap size is 12 meV for 0.5◦ rotational alignment. A key focus of this chapter is a

systematic investigation of interband cyclotron resonance transitions across varying magnetic

field strengths to understand the self-similar behavior of the Landau levels. Our findings re-

veal transitions not previously reported in monolayer graphene and likely attributable to the

fractal nature of the LLs. Moreover, we identify asymmetric cyclotron resonance line shapes

reminiscent of Fano resonances, which appear periodically in the magnetic field. These

results enrich our understanding of the strong reconstruction of the Landau levels in the

Hofstadter butterfly regime.

4.2 Experiment

4.2.1 Device architecture

We mechanically exfoliate monolayer graphene and h-BN flakes from bulk crystals with

well-defined crystalline edges. Initially, we focus on achieving the controlled alignment be-

tween hBN and graphene. Both graphene and hBN consist of hexagonal sheets, allowing the

optically straight edge of a graphene flake (or h-BN) to represent two crystallographic orien-

tations, zigzag or armchair, as shown in Figure 4.2a. An optical alignment technique achieves

the G/hBN moiré pattern by aligning the straight edges between graphene and hBN. The

layered structure of G/h-BN, with nearly perfect alignment of the crystallographic axis, can

form two basic moiré patterns: 0◦ and 30◦. Aligning the straight edges yields a 50% of close

to 0◦ alignment. This variability stems from the possibility of unintentionally aligning the

zigzag (armchair) edge of graphene with either the zigzag (Z) or armchair edges (A) of h-BN.
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Fig. 4.2: (a) Two different crystallographic edges of a hexagonal sheet: red marks the zigzag
edge, and green marks the armchair edge. (b) Orientation angle-dependent edges.
(c) An example of an h-BN flake with straight edges. (d) Optical microscope
image of the stack on a transfer slide. (e) The tear-and-stack technique involves
tearing h-BN into two flakes, after which the highlighted straight edge of graphene
is aligned with both torn h-BN flakes.

To overcome this challenge, we adopt a tear-and-stack approach [118], wherein we tear a sin-

gle flake of h-BN having two straight edges at an angle of 30◦ into two pieces, as illustrated

schematically in Figure 4.2c. The straight edge of the graphene flake is aligned with both

torn flakes, guaranteeing one of the two aligned edges is Z-Z or A-A. Fig. 4.2d presents an

optical image of such a stack, highlighting the straight edges of three flakes, with one torn

flake used as the top h-BN and the other as the bottom h-BN to fully encapsulate graphene.

The sample in this study comprises a 450 µm2 sheet of monolayer graphene encapsulated

with an approximately 40-nm-thick flake of h-BN, assembled using a dry-stacking technique

and placed on a few-layer thick graphene. The layered stack is transferred to a lightly doped,
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Fig. 4.3: (a) Device on an oxidized silicon wafer wired to a sample mount with ∼ 90 µm top
aperture. (b) Optical microscope image of the device through the top aperture.
(c) Magnified image of the encapsulated device with electrical leads

oxidized Si wafer. We establish electrical contacts to graphene using 3/60-nm-thick films of

Cr/Au. We utilize the graphene etch-stop technique [119] to selectively expose and contact

the embedded graphene layer, with hBN being etched using XeF2 gas. We align the finished

device over a copper foil aperture ≈ 1 mm in diameter and hand-solder it to the sample

puck. Before loading the sample into the dilution fridge, we place a second aluminum foil

aperture with a diameter of ≈ 90 µm centered over the device. Images of these steps are

shown in Figure 4.3. Appendix B discusses more details of the steps involved in the device

fabrication.

4.2.2 Transport

4.2.2.1 Zerofield transport

We conduct four-terminal resistance measurements at mixing chamber T = 80 mK shown in

4.4a. In addition to the typical resistance peak at the charge neutrality point at gate voltage

Vg ≈ -34 mV, two additional satellite resistance peaks emerged, symmetrically positioned

at Vsatl ≈ ± 8V relative to CNP. These satellite features agree with previous transport
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(a) (b)

Fig. 4.4: (a) Four terminal resistance versus gate voltage at zero magnetic field. Inset:
Resistance in log scale indicating peak at CNP and two additional satellite peaks.
(b) Longitudenal resistance Rxx(left) and Hall resistance Rxy versus gate voltage
at B = 1T and T = 80mK. The Hall resistance shows sign changes at mDP as
well as sDP.

measurements [52, 74, 117] of single-layer graphene coupled to a moiré superlattice. In Figure

4.4b, we plot longitudinal resistance (Rxx) and transverse Hall resistance (Rxy) against gate

voltage at B = 1 T. Near the primary CNP, the Hall resistance undergoes a sign change as

the Fermi energy transitions from the electron band to the hole band. A similar feature is

observed near Vsatl, as the Fermi energy crosses through a second band edge. This observation

proves that the moiré pattern, acting as a periodic potential superlattice, gives rise to a mini-

Brillouin zone band. Additionally, we observe that the satellite peak is more prominent on

the hole side than the electron side, consistent with previous experimental and theoretical

findings [120, 121].

We determine the moiré wavelength from the location of the satellite resistance peak
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(a) (b)

Fig. 4.5: (a) 2D map of four-terminal longitudinal resistance plotted against gate voltage
and magnetic field. (b) The same data is represented in terms of dimensionless
parameters, normalized carrier density and magnetic flux. The intersections be-
tween the central and satellite fans occur at Φ/ϕ0 = 1/q.

Vsatl. Assuming hexagonal symmetry filled band model:

ns

n0
= gsgv, (4.2)

where ns is the field-effect density at the satellite peak positions, n0 = 1/A where A =
√

4λ2

is the unit cell area of the moiré pattern, gs is the eelctron spin degenracy and gs is the

valley, or pseudospin degeneracy. For the device mentioned in this work, the satellite peak

appears at ±8V as shown in 4.4, giving moiré wavelength of 12.56 nm. Using 1.33, we find

rotational angle of ≈ 0.5◦.
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4.2.2.2 Magneto-transport

Figure 4.5a represents longitudinal resistance measured as a function of magnetic field and

gate voltage. Following the Diophantine equation 4.1, near the charge neutrality point in the

weak-field regime, as shown in Figure 4.5b, we observe a typical Landau fan diagram where

the trajectories of the energy gaps originate from the charge neutral point at B = 0 (i.e.,

s = 0). However, in a fractal band regime, we observe different trajectories with non-zero

intercepts (s ̸= 0) at B = 0, consistent with previously observed transport measurements.

The intersections between the central and satellite fans occur at Φ/ϕ0 = 1/q.

While transport measurements have been widely employed to access the Hofstadter’s

butterfly, spectroscopy of the fractal levels in graphene-hBN have not been explored much

to date [77, 122].

4.2.3 Tunable gap in graphene superlattices

The coupling between carbon atoms in graphene and boron and nitrogen atoms in boron

nitride is significant, ranging from 300 to 450 meV. This coupling enables substrate-induced

distortions of the isolated graphene electronic structure when placed on a hBN substrate.

Interacting Dirac particles exhibit varying responses to different external potentials. A scalar

potential, which is insensitive to sublattice structure, induces interactions that produce a po-

larization effect, screening the potential. Conversely, a potential influenced by pseudospin,

associated with the A-B sublattice modulation, triggers interactions that amplify the poten-

tial. This amplified potential leads to pseudospin-dependent Bragg scattering, resulting in

gap formation at the Dirac point, denoted as ∆0 at the charge neutrality point.

A visual representation of graphene/hBN moiré superlattice is shown in figure 4.6a with

the red, blue, and black solid circles corresponding to boron, nitrogen, and carbon atoms.
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An example of a superlattice cell is outlined in a yellow-shaded hexagon. The interplay be-

tween electron-electron interactions in graphene and the incommensurability of G/h-BN het-

erostructures breaks the A-B sublattice symmetry. Despite the weak interaction of graphene

with the h-BN substrate when the honeycomb lattices of graphene and hBN are nearly per-

fectly aligned, the strengths of electronic couplings increase substantially and give rise to an

energy gap ∆0 at the charge neutrality point, introducing an effective mass for the Dirac

fermions. This gap is tunable by the superlattice wavelength, offering opportunities for en-

gineering interaction effects in graphene. The wavelength in moiré superlattices can be as

long as 100 atomic distances, depending on both the lattice mismatch δ and twist angle θ

between graphene and h-BN, λ(θ) ≈ λ0δ/(θ2 + δ2). This gap is theoretically predicted to

have a power law scaling given by the equation

∆0(θ) =
(
λ(θ)
a

)0.27

, (4.3)

where a = 1.42 Å is the carbon-carbon spacing.

The effect of different local potentials generated by boron and nitrogen atoms, which

induce local gaps, varies spatially. Theoretically, this variation is expected to be nearly

averaged in a local moiré superlattice. However, the moiré potential breaks the inversion

symmetry, resulting in a global spectral gap observed at CNP through transport studies.

While ab initio theory [70] predicts significant gaps of approximately 50 meV when the two

honeycomb lattices are perfectly aligned, deviations due to misorientation or lattice constant

mismatch drastically reduce electronic coupling, leading to smaller gaps. Nonetheless, the

substantial gaps observed at the CNP in graphene/h-BN heterostructures are not solely

attributed to the orientation-dependent moiré pattern. Instead, the origin of the gap requires

both orientation-dependent structural relaxation of the carbon atoms and nonlocal many-
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body exchange interactions among electrons. The gapped spectrum and the tunability of the

associated effective mass provide a new design parameter in the study of many-body effects

in monolayer graphene.

Theoretically calculated [123] single-particle gaps, accounting for lattice relaxation ef-

fects, are estimated to be around 7 meV for rotational alignment. Various experimental

techniques confirmed the emergence of energy gaps at the CNP in graphene/h-BN moiré su-

perlattices, revealing significant variation in the measured gap values. Thermally activated

gap [117] values obtained from transport measurements reach a maximum of around 30-40

meV. Capacitive probes [74] have measured a gap of ≈ 25 meV for perfectly aligned het-

erostructures of G/h-BN. On the other hand, electron tunneling spectroscopy observations

[124] show a smaller gap size of around 16 meV, lower than that measured by conductance

or thermodynamic probes.

In this work, we study the precise determination of energy gaps through magneto-optical

spectroscopy of graphene/h-BN heterostructures. This involves monitoring cyclotron res-

onance in an external magnetic field. Similar to previous chapters, we measure cyclotron

resonance by recording broadband infrared transmission through the device across various

gate voltages or carrier density values (n). The control of n in the presence of a magnetic

field B allows us to control the Landau level filling factor, ν = nh/eB, where h represents

Planck’s constant.

Without Zeeman interaction, the Landau levels exhibit complete valley and spin degen-

eracy in pristine graphene due to intrinsic inversion symmetry. Consequently, the quantized

Hall conductivity can only take on values of 4m + 2 (where m is an integer). In the G/h-BN

system, the valley degeneracy is broken by the inversion-asymmetric potential introduced

by h-BN, leading to an energy gap in the zeroth Landau level. This gap does not lift the
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Fig. 4.6: (a) Schematic of the graphene/hBN moiré superlattice. (b) Active resonance
channel for pristine graphene versus gapped graphene. Finite ∆ causes lifting of
the four fold-degeneracy of zeroth Landau level, giving rise to valley polarized
zeroth LL and access to two CR transitions.

Landau level degeneracy for |N | > 0 but induces a shift according to

EN = ±∆0

2 ±N

√√√√2eℏvF
2B|N | +

(
∆0

2

)2

(4.4)

where ∆0 is the gap energy and N is the LL index. When the Dirac point in graphene is

gapped by such an inversion-asymmetric potential, the zeroth Landau level of one valley

adheres to the top of the gap, while the zeroth Landau level of the other valley attaches to

the bottom of the gap. Consequently, a larger energy gap in the Dirac spectrum is always

accompanied by a larger valley splitting of the LL in the presence of a magnetic field.

When the Fermi energy is situated between Landau levels N = 0 and N = 1 in pristine

graphene, and there is no energy gap present in the presence of a magnetic field, optical

transitions from LL0 → LL1 become accessible following the inter-Landau level selection rule

∆|N | = ±1. This transition exhibits a four-fold degeneracy. However, with the introduction

of a valley gap, another inter-Landau level transition is initiated. As a result, the optical
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Fig. 4.7: (a) Schematic of transitions involving N = −1, 0,+1 LLs. The Fermi energy EF

is shown as a dotted line. Transitions associated with each of the filling factors
are shown in different colors. (b) Allowed CR transitions (are offset for clarity)
for three filling factors ν = -2, 0, and 2 appear as a dip in normalized IR spectra.

absorption spectrum displays two distinct transition peaks separated in energy by ∆v0 , as

illustrated schematically in Figure 4.6b.

In Figure 4.7a, we introduce schematics representing the simplest model of transitions

involving N = −1, 0,+1 LLs that align with the obverse CR transitions. The schematics are

drawn for ν = -2, 0, and 2, with greatly exaggerated level shifts and energy gaps. Figure 4.7b

examines the inter-band Landau level transition T1 for three filling factors ν = -2, 0, and 2

measured at B = 5 T. The CR transition is visible as a dip in all traces. At ν = 0, when the

Fermi energy resides in the zeroth Landau level, we observe a single resonance originating

from the partially filled zeroth LL (LL0(−1) → LL1(0)). Transitions at ν = 0 are degenerate

because of spin and valley degenerate N ̸= 0 levels. At ν = 2, as the Fermi energy is further

adjusted to lie between N = 0 and N = 1 LLs, two distinct resonances are observed, widely

separated by an energy greater than the peak width. These transitions stem directly from
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the lifting of valley degeneracy and splitting of the ZLL (LL0+ → LL1 and LL0− → LL1).

By measuring the peak energies of these transitions, we can determine the valley gap to be ≈

12 meV. We anticipate observing two distinct transitions (LL−1 → LL0− and LL−1 → LL0+)

when the Fermi energy is positioned between N = −1 to N = 0 LLs, corresponding to ν

= -2. However, we observe a more complex structure reflecting additional distinct peaks.

This observation suggests a significant electron-hole asymmetry, anticipated from the moiré

superlattice, which will be discussed in later sections of this chapter.

We further examine the valley gap values obtained from Landau level transitions, com-

paring them with our previous studies [42] of cyclotron resonance (CR) in graphene. Figure

4.8 illustrates this comparison, focusing specifically on the gap value at ν = 2 and B = 8 T.

In our prior studies, the angle alignment of devices remained undetermined, as we did not

observe signatures of satellite Dirac peaks. In CR measurements by B.J. Russell et al., the

splitting of the T1 transition was barely resolvable. However, clear splitting at ν = 2 was

observed in the work presented in Chapter 3 of this thesis. Notably, the maximum splitting

of the T1 transition is observed in the current work as shown in Figure 4.8. This trend is

phenomenologically consistent with equation (4.3). Each transmission dip in the normalized

spectra can fit well by a Lorentzian, shown by the black dashed lines in Figure 4.8. From

these fits, we determine the peak positions of the resonances, and the difference in their

values gives us the measured valley gap in the zeroth LL. The value of the gap energy from

different experimental probes and ab initio calculation is summarized in 4.9.

4.2.4 Cyclotron resonance in the Hofstadter butterfly regime

Moon and Koshino calculated the band structure of the graphene/h-BN moiré system and

analytically investigated several characteristic properties, as depicted in Figure 4.10. The
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Fig. 4.8: Solid lines represent CR transitions measured for three different samples at ν = 2
filling factor and B = 8 T. Dashed lines depict Lorentzian fits to the resonance.
The splitting of the transition indicates the evolution of the valley gap, with
negligible splitting observed in prior work[42]. A 4 meV splitting was observed
in the work presented in Chapter 3 [125], while the current device exhibits the
maximum splitting of ≈ 12 meV.
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Fig. 4.9: Summary gap values extracted from Figure 4.8 and variation of gaps for different
experimental probes and ab initio calculation [70].

black and red lines represent the spectrum for two valleys. The absence of spatial inversion

symmetry in their calculation for the graphene-hBN heterostructure leads to the breakdown

of the valley degree of freedom. In the presence of a magnetic field, the Landau levels

of aligned graphene exhibit a hierarchical recursive pattern. The spectrum can be seen as

Landau levels of intrinsic monolayer graphene on the electron side. Conversely, the monolayer

Landau levels are significantly reconstructed on the hole side into a fractal spectrum. These

findings serve as a strong motivation for this work. We aim to explore the self-similar

energy-field diagram using cyclotron resonance measurements. In this thesis, our focus is on

experimentally investigating these fractal levels using magneto-optical spectroscopy. This

technique allows us to access the reconstructed energy levels by observing optical transitions

across the Landau levels in graphene/h-BN moiré superlattice.
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Fig. 4.10: (Left) Energy spectrum of monolayer graphene on h-BN system with an align-
ment angle of θ = 0◦ as a function of magnetic field strength. The red and black
lines indicate the spectrum for the K and K ′ valleys, respectively [126]. (Mid-
dle) A closer look at the experimentally accessible region of the energy spectrum.
(Right) Dashed-black line shows the position of the Fermi energy for filling factor
ν = −2. Arrow indicating the optical transition LL−1 → LL0.

4.2.4.1 Interband magneto-absorption

Figure 4.10, reprinted from [55], presents the Landau level spectrum derived from the contin-

uum band model developed by Moon and Koshino, with a highlighted region relevant to our

experimental investigation. The dotted lines in the right panel (added for clarity) indicate

the position of Fermi energy for ν = −2. In our study, to probe the fractal nature of the

spectrum, we analyze optical transition T1 denoted by the arrow and track its behavior as a

function of magnetic field strength. Note that the position of the Fermi energy required for

maintaining a constant ν shifts with increasing magnetic field. This shift occurs because LL

filling factor ν depends on the magnetic field strength B and carrier density n (ν = eh/eB),

which governs the position of the Fermi energy. In their calculations, Moon and Koshino

determined the single-particle gap (due to h-BN) of approximately ∼ 2meV. Consequently,
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the valley splitting of the zeroeth Landau level is negligible and appears as a mixed state

(red and black lines) in the spectrum 4.10 at E ∼ 0 eV.

In Figure 4.11, we present CR transition T1 for filling factor ν = −2 and its development

with increasing magnetic field, with each data point taken at intervals of 1/8 Tesla in the form

of heatmap/colormap. As previously discussed, at a filling factor ν = −2, the Fermi energy

resides between the N = -1 and N = 0 LLs for monolayer graphene. Thus, we examine the

optical transition LL−1 → LL0 from completely filled to completely empty Landau levels,

for which interaction effects are minimized.

Due to the valley gap in the zeroth LL, we observe two distinct transitions, clearly

identifiable in the colormap (Figure 4.11). The low-energy resonance displays a progression

proportional to the square root of the magnetic field, consistent with Equation 4.3. However,

the high-energy resonance at higher fields deviates from the expected
√
B behavior. As

illustrated in calculation 4.10, as the magnetic field increases, the Landau Levels (LLs)

flatten out, diverging from the expected
√
B behavior. This deviation corresponds to the

observations in our spectroscopic measurements.

To seek intricate details down to the fractal nature of the levels, we further increase the

resolution of the map B. This requires measuring the T1 transition at smaller intervals at

every 1/16th Tesla (∆B = 0.0625 T). Higher resolution maps in B discern increasingly subtle

features. This methodology mirrors the process of observing fractals, where zooming into a

structure reveals its self-similar behavior.

The color map in Figure 4.12 (Left) is measured with an energy resolution of 0.5 meV and

a magnetic field resolution of 0.0625 T, covering the range of B from 4.5 to 9.5 T. Dotted

lines on the map highlight two distinct regions: Region I (Middle) and Region II (Right).

A closer look in region I involved an increased energy resolution of 0.25 meV and a magnetic

field resolution of 0.0625 T. Meanwhile, measurements in region II maintained the original
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energy resolution of 0.5 meV but with an increased magnetic field resolution of 0.03125 T.

Upon closer examination of the colormap in Figure 4.12, we identify transitions that have

not been previously reported for monolayer graphene, including those perfectly aligned to

h-BN [122]. Within each transition, LL−1 → LL0+, and LL−1 → LL0− intricate structures

became apparent. In the region of high-energy resonance, LL−1 → LL0+, we identify at least

two distinct peaks spanning between 4.5 and 5.5 T. Furthermore, we observe three distinct

peaks between 5.5 and 6.5 T. With increased finer resolution in E as shown in region I of

the map 4.12, three high energy peaks becomes well resolved. Subsequently, as we further

increased the magnetic field strength, the higher-energy resonance broadens, obscuring any

distinguishable features as shown in the region II of the map 4.12.

Inspection of the low-energy resonance (LL−1 → LL0−) shows a rather different behavior.

This resonance remains bright and sharp at higher fields. However, unusual broadening of

this resonance is observed below B < 7 T. This discrepancy in observing detailed structure

between the high and low-energy resonances can be attributed to the valley degree of freedom

arising from sub-lattice symmetry breaking. As discussed previously, the zeroth Landau

Level (LL) is valley-polarized due to sublattice symmetry breaking. Understanding how

each of the valley-polarized LLs are reconstructed in the Hofstadter regime poses additional

complexity.

The magneto-optical absorption studies of self-similar energy spectra in graphene-h/BN

superlattices have received limited attention. While theoretical studies [127] have explored

optical absorption in the Hofstadter butterfly within simple square lattices, understanding

the optical selection rules in the complex recursive patterns of these systems requires a more

detailed theoretical framework. The optical spectrum calculated by Koshino and Moon [128]

for twisted bilayer graphene provides a foundation for understanding similar dynamics within

the G/h-BN system.
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Fig. 4.11: Normalized transmission spectrum with increasing magnetic field displaying two
distinct resonances LL−1 → LL0− and LL−1 → LL0+. Both transitions exhibit
a progression proportional to

√
B.

When two sheets of monolayer graphene are rotationally aligned, they create a long-range

moiré pattern similar to those observed in G/h-BN heterostructures. This suggests that

these systems are equally fertile for studying self-similar energy spectra. In the presence of a

magnetic field, Landau Levels (LLs) in twisted bilayer graphene (TBG) undergo significant

reconstruction to sub-generation of levels. According to theoretical calculations [128], the

optical spectrum also exhibits a hierarchical recursive pattern. This reconstruction allows

optical transitions within the same parent level previously forbidden in weak magnetic fields.

These transitions occur because daughter levels gain additional angular momentum (n′) and

can absorb the angular momentum of the photon. The selection rule inside the same valley
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I II I II

Fig. 4.12: The colormap is generated with an energy resolution of 0.5 meV and a magnetic
field resolution of 0.0625 T, covering the range of magnetic field strength B from
4.5 to 9.5 T. Dashed lines mark closer examination into two distinct regions on
the spectrum. Subsequent measurements in region I are taken with an energy
resolution of 0.25 meV and a magnetic field resolution of 0.0625 T. Measurements
in region II are taken with an energy resolution of 0.5 meV and a magnetic field
resolution of 0.03125 T.

is found to be

|n′| → |n′| + 1 Φ/ϕ0 ⩾ 1/q,

|n′| → |n′| − 1 Φ/ϕ0 ⩽ 1/q,

indicating that the total angular momentum can be written as the sum over the first and

second generations. Moon and Koshino calculate a similar structure at Φ/ϕ0 = 1/q for every

integer q.

In our experimental measurements, we observe a similar phenomenon. Initially, we ob-

serve two resonances corresponding to LL transitions from the -1 to 0 level. Yet, with higher
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Fig. 4.13: Cyclotron resonance measured as a function of the magnetic field at ν = 0.

resolution measurements, a more intricate picture emerges. We discern the presence of ad-

ditional, distinct peaks within each of these transitions. Calculations suggest that optical

transitions spanning these sub-generation levels become accessible in the regime of the Hof-

stadter butterfly. We can attribute the observation of the additional peaks likely originating

from transitions across second-generation levels, offering further insight into the self-similar

behavior of the transitions in the butterfly regime. We lack a comprehensive theoretical

model to label the indices of the observed transitions precisely. The idea that LLs recon-

struct into sub-generation levels under a magnetic field remains central. An illustrative

example of the allowed transitions for one valley is shown in Figure 4.14.

We investigate cyclotron resonance at the ν = 0 filling factor across a range of discrete

magnetic field values. The resulting spectra are shown in Figure 5.4. In contrast to the

single-degenerate peak observed in high-quality monolayer devices, as detailed in Chapter 3,

the ν = 0 spectra for samples with long-wavelength moiré exhibit multiple splitting of this
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Fig. 4.14: Illustrative example of allowed optical transitions in the fractal regime. In Hof-
stadter’s butterfly regime, the strong reconstruction of Landau levels into sub-
generation levels allows for additional transitions across daughter levels within
the same parent level.

resonance (LL−1 → LL0 and LL0 → LL1). Similar to previous analyses, we attribute these

additional splittings to transitions across second-generation levels.

4.2.4.2 Asymmteric line shapes and side bands

In addition to resolving distinct features in the CR transitions within the fractal regime,

our experiments reveal anomalous line shapes of these transitions. Figure 4.15 presents the

normalized transmission near magnetic field values of 5 T, 6 T, and 7 T. We observe dramatic

changes in the absorption line shapes and the anomalous peak-dip features that periodically

appear in the magnetic field, especially in the B 5/8 T neighborhood, as shown in Figure

4.15. These anomalous features exhibit similarities to those of a Fano resonance.

In optical systems, the underlying physical mechanism of Fano-induced resonance occurs

when a discrete localized state becomes coupled to a continuum of states, resulting in char-

acteristic asymmetric line shapes in absorption spectra. Fano resonance initially emerged
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Fig. 4.15: A representative line cut of the color map 4.12 around magnetic fields of 5 T,
6 T, and 7 T reveals characteristic asymmetric line shapes, particularly in the
vicinity of B 5/8 T.

in the study of topological insulators [129] such as Bi2Te3, where strong asymmetric line

shapes were observed in the optical conductivity mode at 50 cm−1 due to electron-phonon

coupling. In this case, the discrete phonon mode couples to a continuum of intra-valence

band transitions, causing a shift in the line shape from Lorentzian to Fano in the presence

of a magnetic field.

Similar effects have been observed in bilayer graphene [130] optical absorption studies,

where Fano interference between coupled phonons and electron-hole pair excitations is re-

alized and controlled through electrical gating. In this study, Fano resonance describes

a collective phonon vibration coupled to a continuum of electron-hole excitations through

electron-phonon interactions.

Theoretical investigations suggest that the width of the moiré-modulated Landau Level

(LL) increases exponentially [128] in a magnetic field when a continuum of levels is formed

within each LL. We hypothesize that if a discrete transition across LL N = -1 to 0 couples

to the continuum of reconstructed LLs, we would observe a change in the line shape of the

resonance. However, a more detailed analysis is needed to accurately describe the asymmetric
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Fig. 4.16: Left panel shows the ν = −2, with a dashed line indicating the dimming of
the cyclotron resonance (CR) transitions. In the right panel, the intensities are
projected in the direction of the magnetic field. The dark bands in the colormap
are observed as oscillations in this projection.

line shapes observed in our measurements using the Fano lineshape.

A particularly noticeable feature, perhaps the first to catch our attention in the colormap,

is the periodic dimming of the resonance intensity, as indicated by dashed lines in 4.16,

alongside dark side bands occurring at fixed energy intervals. The periodicity of these two

features is nearly identical at an energy of around 6 meV.

To better visualize these dark bands against the background, we isolate specific regions of

the map highlighted in Figure 4.16 (Left panel) where no resonance is detected and compute

the average intensity along the B field direction. The resulting average intensity plot, dis-

played in the right panel of Figure 4.16, reveals the dark bands that appear as background

oscillations are particularly pronounced within the energy range of approximately 80-110

meV, gradually dissipating between 110-120 meV. Notably, these dark bands appear to be

strongest in the neighborhood of CR transitions. The periodicity of the background oscilla-
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tions is indicative of interference with the CR transitions, which “appear” to lose intensity

with the same periodicity. Further analysis is underway to investigate the origin of these

anomalies.

4.3 Discussion and Summary

We speculate that the long wavelength background oscillations observed in the spectral

measurements likely arise from Fabry-Perot (FP) oscillations. These dark bands appear to

vary with gate voltage and are not attributed to the magnetic field effect. The interference

of F-P oscillations with cyclotron resonance may intermittently attenuate the resonance, as

depicted in the color map (see Figure 4.12). Nonetheless, additional analysis is necessary to

elucidate the source of these sidebands in the data comprehensively.

We present cyclotron resonance measurements in the Hofstadter butterfly regime in G/h-

BN superlattices. Although magneto-optical absorption studies of self-similar energy spectra

in G-h/BN superlattices have received limited attention, understanding the optical transi-

tions in the complex recursive patterns of these systems remains a crucial area for fur-

ther exploration. Our systematic investigation of first interband cyclotron resonance tran-

sitions across varying magnetic field strengths reveals transitions not previously reported

in monolayer graphene, likely attributable to the fractal nature of the Landau levels. The

magneto-optical measurements could be extended to the spectroscopic investigation of any

other graphene-based moiré system, including bi- and tri-layer graphene-hBN and twisted

graphene layers [131, 132].

Additionally, we observe a band gap of 12 meV for 0.5◦ twist angle. This quantitative

information should aid in a better understanding of the physics of graphene-based 2D moire

superlattice. Particularly, it allows for more accurate modeling of the correlated electron
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physics and topological phenomenon in twisted bilayer graphene, ABC trilayer graphene/h-

BN, and twisted monolayer-bilayer graphene [133–135].
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Chapter 5

Further Investigation and Prospect

5.1 Infrared spectroscopy of phase transitions in the

lowest Landau level of bilayer graphene

5.1.1 Overview of the electronic band structure of bilayer

graphene

In this section, we briefly review the low-energy band structure of two sheets of graphene.

Figure 5.1a shows the bilayer graphene lattice structure, where the bottom layer B1 atom sits

right under the top layer A2 atom (called the dimer sites). Apart from the nearest neighbor

hopping mechanism γ0 in monolayer graphene, a substantial hopping between A2 and B1

atoms is expected as a result of the overlapping of the out-of-plane π orbitals, denoted by

the hopping integral γ1. Weaker hoppings can also occur between orbitals further apart, as

indicated in Figure 5.1a (labeled as γ0). Following the conventional notation in graphite, we

denote the corresponding hopping integrals γ1 = 0.4 eV, γ3 = 0.3 eV, γ4 = 0.3 eV [136].
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The low energy energy dispersion of bilayer graphene is written as [137]:

E2 = vF
2p2 − γ1

2 ± γ1

2

(√
1 + 4vF

2p2/γ12
)
, (5.1)

where vF represents the Fermi velocity in bilayer graphene, and p = ℏk is the momentum

with respect to the K point. This equation represents four bands as shown in Figure 5.1b,

with a pair of degenerate bands at the charge neutrality point and two split-off bands. Unlike

single-layer graphene, the curvature here means the carriers are massive particles. However,

the high-energy behavior appears linear, more like single layers. At low energy, near the

Dirac points (K), the energy dispersion is simplified to the following hyperbolic form:

(2E ± γ1)2 − 4vF
2p2 = γ1

2. (5.2)

This is a rather unusual dispersion, evolving smoothly from a parabolic curve at low energies

to a linear dispersion at higher energies. Naively, we expect bilayer graphene to exhibit

phenomena similar to those of both types of systems.

Since there are four atomic sites in the unit cell and, in principle, they may be held

at different energies εA1 , εA2 , εB1 , εB2 . Three parameters to describe the on-site energy

difference between the four atoms are: The energy difference between dimer and non-dimer

sites defined by [138]

δdim = 1
2[(εA1 + εA2) − (εB1 + εB2)]. (5.3)

Interlayer symmetry U given by

U = 1
2[(εA1 + εB1) − (εA2 + εB2)]. (5.4)
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Fig. 5.1: (a) Two sheets of graphene in A-B stacking, γi is the hopping integral of the
indicated pairs. (b) In the absence of an external magnetic field, the dispersion
of neutral bilayer graphene exhibits four bands, with two bands degenerate at the
K point and two bands split off by the interlayer hopping energy γ1. These bands
can be concisely described by a single equation of a hyperbolic form.

Energy differences between dimer and non-dimer sites are:

δ = 1
2[(εA1 + εB2) − (εB1 + εA2)]. (5.5)

δdim is intrinsic asymmetry present in bilayer graphene. Interlayer symmetry U can

be broken by applying a displacement field using external gates [139]. The presence of a

substrate may lead to a difference between on-site energies of adjacent atoms in the bottom

layer εA1 + εB1 ≡ δdim + δ, leading to both electron-hole asymmetry and an energy gap [140].
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5.1.2 Cyclotron resonance in bilayer graphene

In a magnetic field, the lower branches of the bands in bilayer graphene are expected to

quantize into LLs with energies given by:

En± = ±ℏωc

√
|n|(|n|) − 1, ωc = eB

m∗ , m∗ = γ1

2vF
2 ≈ 0.03me (5.6)

where m∗ is the low-energy bilayer effective mass reflecting the curvature of the hyperbolic

band where the conduction and valence meet and is the ratio of the two largest tight-binding

parameters γ1 and vF . En+ and En− are assigned to electron and hole states respectively.

Similar to monolayer graphene, each nonzero LL is four-fold degenerate due to spin and

pseudospin degeneracy, while n = 0 LL, the degeneracy doubles because of the orbital de-

generacy n = 0, or 1 [137].For a given magnetic field B, the index dependence gives rise to

an almost equidistant set of LLs.

Due to the combination of spin, valley, and an additional orbital degeneracy, the zero

energy LL in BLG is eight-fold degenerate, giving rise to a so-called quantum Hall octet

[141]. This massive degeneracy and the couplings of external fields to the involved degrees of

freedom make the quantum Hall octet in BLG a fertile environment to explore the effects of

symmetry breaking in the quantum Hall regime. Furthermore, Kohn’s theorem [30], which

prevents the observation of many-body interactions in translationally invariant 2DEGs with

parabolic dispersions and fails in monolayer graphene [27, 28, 34, 38, 39], also fails in bilayer

graphene due to the chiral nature of its charge carriers [142]. As a result, many-body

interactions are expected to impact the cyclotron resonance in BLG but the experimental

literature is sparse [143–145]. The phase diagram of bilayer graphene is best studied in dual-

gated devices that allow independent control of the charge density and electric displacement

field. Measurements based on scanning probes are ill-suited for this purpose, making optical
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approaches especially relevant as they can probe through infrared-transparent gates.

Recent scanning tunneling experiments in monolayer graphene sheet found a bond-

ordered ground state at LL filling factor ν = hn/eB = 0 (n the zero-field carrier density,

−e the electron charge, and B the magnetic field), at odds with the canted antiferromagnet

(CAFM) state previously inferred from high field transport [146, 147]. Although the CAFM

in bilayer graphene is well-established, probing excitations in the bulk of the bilayer sheet

directly may nonetheless be illuminating. We address this with a study of the far-infrared

CR in a boron nitride-encapsulated, dual-gated graphene bilayer, focusing on excited state

transitions to or from the quasi-zero energy Landau level octet. Our findings, consistent with

the presence of a CAFM, reveal an intriguing complexity in the excited state transitions at

ν = 0, and a surprisingly sharp phase transition from the CAFM to the fully layer (valley)

polarized regime.

Specifically, we measure CR transitions between the octet LLs (N = 0, 1) and N = ±2,

for both ν = 0 and +4, at a fixed magnetic field B = 13 T (chosen to match a window of

maximum far-ir transmission) while tuning the layer symmetry breaking displacement field,

D. At ν = 4 we observe the valley splitting within the N = 1 LL, which closely tracks

the electrostatically tunable band gap at B = 0. At ν = 0 we see an interaction-driven

gapped state at D = 0, signatures of a spin-ordered ground state at low D, and a sudden

sharp transition to the layer-polarized ground state at intermediate D. Finally, in holding

D = 0 fixed while tuning the filling factor over the range ν = ±6, the CR line shapes show

a weak electron-hole asymmetry with multiple line splittings and a pronounced increase in

the transition energies right at ν = 0.

To better understand these findings, this work undertook an in-depth theoretical calcu-

lation of the inter-LL energies corresponding to these CR transitions [M. Schossler et al.].

We progressively increased the order of approximation until the theory attained a very close
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match to the ν = 4 data and a reasonable, if not perfect, match to data at partial LL

fillings. The single-particle physics is first calculated non-perturbatively for the four-band

Slonczewski-Weiss-McClure (SWMc) tight-binding model in a B field, accounting for both

the energy difference ∆′ between dimer and non-dimer sites, and the skew interlayer cou-

plings γ3 and γ4 [148, 149]. While the non-interacting spectrum qualitatively reproduced the

phenomenology of the CR transitions at integer filling (ν = 4), it fails to describe the results

at partial filling of the octet. This is expected as transition from the symmetry-broken states

significantly influences the CR spectrum.

The effect of interactions was studied using a self-consistent Hartree-Fock mean field

approximation including all four bands of the SWMc tight-binding model of bilayer graphene.

Unlike previous studies [150–153], we numerically project on to the N = 0, 1 octet and

±2 levels, and then incorporate interactions comprising both the long-range layer (valley)

independent Coulomb, and layer-dependent short-ranged interactions, which break the SU(4)

symmetry of the octet. The inclusion of layer and valley anisotropy is essential to capture the

broken symmetry phases at partial filling of the octet at ν = 0 [154]. In our calculations, we

also include the influence of the infinitely deep sea of filled states on the zeroth LL [153, 155],

the Zeeman interaction, and the externally applied D field. The energy bands are calculated

self-consistently with a screening factor, and, at ν = 0, the short-ranged interaction couplings

are taken as adjustable parameters. As described below, a coherent picture consistent with

the experimental data emerges when the full model described above is employed. Details

of the theoretical calculations is presented in [156], while here we focus on experimental

phenomenology.
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5.1.3 Experiment

Far-ir transmission data were measured in a dual-gated, boron-nitride encapsulated bilayer

graphene device with a global Si back gate and a 550 µm2, 20-nm-thick semi-transparent

Cr top gate, all at a fixed magnetic field B = 13 T and sample temperature T ≈ 1 K.

Transmission spectra with a resolution of 1 meV were acquired at given ν and D values,

averaged for 4-8 hours, and normalized by spectra at different top gate voltages as previously

discussed section 2.3.

5.1.4 Cyclotron resonance transitions at ν = 4

We first orient this study on infrared transitions at fixed ν = +4 where interaction effects are

expected to be minimal. Figure 5.2a shows a color map of spectra for the N = +1 → +2 LL

transition at displacement fields D/ϵ0 from −80 to 330 mV/nm; due to the long averaging

times required for good signal to noise, spectra were not collected for all D values. Example

spectra for D = 0 and 150 mV/nm, and 320 mV/nm are shown in Figure 5.2b. The individual

resonances are quite narrow, with line widths of 1-3 meV for individual resonances.

With reference to Figure 5.2c, at ν = +4 the Fermi level lies between the N = 0, 1

octet and N = +2, so valley-conserving cyclotron transitions |N, λ⟩ = |1,+⟩ → |2,+⟩ and

|1,−⟩ → |2,−⟩ are allowed where λ = ± denotes the Kλ valley. The applied displacement

field breaks the valley degeneracy of the N = 0, 1 LLs (and |N | ≥ 2 as well, to a much

smaller degree [149]) and generates an interlayer potential difference, U = αeDd/ϵ0, with

d = 0.34 Å the distance between layers, and α a phenomenological screening parameter. At

the same time, transitions into the filled N = 1 level are blocked. Overall, one expects a

single valley-degenerate resonance at D = 0 that splits in two for |D| > 0, with the splitting

being a direct measure of the induced valley gap in the N = 1 level. The data in Fig. ??(a)
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(a) (b) (c)

Fig. 5.2: (a) Color map of resonances at ν = 4 vs displacement field, D.(b) Example spectra
(black) for D = 0 and 150 mV/nm, 320 mV/nm (c) Landau level energies as a
function of D; red arrows show allowed transitions between NLL = 1 and 2, where
superscripts mark the K± valleys.

show a nearly linear-in-D gap opening, similar to the zero field case [157–159].

We wish to know what level of theoretical approximation is required to accurately predict

the D-dependence of the allowed transition energies shown in Fig 1c. At ν = +4 this model

has only a single adjustable parameter, α, which determines the dimensionless screening

strength. Interaction anisotropy has little impact far from charge neutrality and are disre-

garded for now. We adopt literature values for the SWMc terms [149], and α is uniquely

determined by its dual role in the model of both reducing the strength of Coulomb inter-

actions and converting the applied electrical potential into a D-field. Therefore, it controls

both the transition energies and the rate at which these energies change with the applied D.

In Figure 5.3, we present the peak transition energies obtained from the Lorentzian curve

fits applied to the data from 5.2a, alongside the theoretically predicted transitions. We ob-

serve excellent agreement between the experimental data and the theoretical model described

above, particularly with α = 0.244, as shown in Figure Figure 5.3b. To further understand
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(a)

(b)

(c)

Fig. 5.3: Peak energies from fits to data in Figure 5.2a (depicted by open circles) are
compared with theoretically predicted transition energies [156] for (a) the single-
particle model, (b) many-body correction with a screening parameter of α = 0.244,
and (c) α = 0.350.
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the level of theoretical approximation required to accurately predict the D-dependence of the

allowed transition energies shown in Figure 5.3c, we explore the effect of slight adjustments

in the value of α. Interestingly, even a slight deviation, such as α = 0.350, which gives both

a stronger D-dependence and shifts the energies up across the whole range of D and leads

to leads to noticeable discrepancies with the experimental data. Beyond the screening term,

this good fit is only achieved by including both many-body corrections to the single particle

Landau level energies and the more realistic SWMc model for bilayer graphene. Figure 5.3

compares the experimentally obtained transitions with those predicted by the single-particle

model.

5.1.5 Cyclotron resonance transitions at ν = 0

A color map of spectra measured at ν = 0 reveals further interesting and unexpected phe-

nomena in Fig. 5.4. Line cuts like those shown in Fig. 5.4(c) reveal the fine structure due

to multiple resonances, the energies of which are plotted in Fig. 5.4(b). Beginning precisely

at D = 0, two peaks of approximately equal weight can be resolved with a small splitting of

2.3 meV. These peaks increase in energy with differing slopes for increasing D, and a third

lower-energy peak emerges above D/ϵ0 = 26 mV/nm. The weight of the middle peak is now

roughly double the other two. With increasing D these peaks disperse independently—the

highest peak blue-shifts by a few meV while the lower two redshift with differing slopes—

until, right at 120 mV/nm, all three peaks suddenly vanish to be replaced by a single broad

peak with a long low-energy tail visible in Fig. 5.4(a). Immediately above this critical D

field, just two peaks reappear and follow a linear-in-D dependence reminiscent of ν = +4,

except in lieu of a V-shaped splitting, both peaks increase in energy with a close approach

or possible crossing near 350 mV/nm.
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Fig. 5.4: (a) Color map of spectra at ν = 0 vs displacement field, D. (b) Resonance
energies vs. D. Colorful lines are results of theoretical calculations for the canted
antiferromagnet, partially layer polarized, and fully layer polarized ground states.
(c) Example spectra showing the detailed line shapes for D = 0 and 51 mV/nm,
at the positions of black arrows in (a). (d) Calculated Landau level dispersion
vs D, with dipole-allowed transitions N = −2 → +1 (+1 → +2) in red (pink).
Transitions are shown separately for both the CAFM and FLP regimes. The
N = 0 LLs are suppressed as they are not involved in these infrared transitions.
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As above, we seek to accurately calculate the energies of the allowed transitions shown

in Fig. 5.4(d). Just like ν = +4, at high D the bilayer enters the fully layer polarized (FLP)

regime where all charge is dragged to one side of the sample. The FLP prediction shown

in Fig. 5.4(b) is a straightforward extension of the calculations above to the case of ν = 0,

employing the same values of α and the SWMc parameters, and the results closely track the

observed transitions.

For weak displacement fields, however, there are four possible correlated ground state

phases expected at ν = 0 in the model we employ, depending on the values of phenomeno-

logical short-ranged layer isospin anisotropy terms uz and u⊥ [154]: a fully magnetized

ferromagnet (FM); the FLP, and also a partially layer-polarized (PLP) state; and the canted

antiferromagnet. Prior experimental work suggests the CAFM is the ground state for bilayer

graphene [160, 161]. The FM is excluded since its quantized edge channels should lead to

a finite spin Hall resistance rather than the gap seen in transport, and the FLP regime at

high D clearly does not extend below the sharp transition at D/ϵ0 = 120 mV/nm. Thus we

calculate the energies of the allowed LL transitions |−2,±⟩ → |1,±⟩ and |1,±⟩ → |2,±⟩ for

D/ϵ0 < 120 mV/nm, initiating the calculation by choosing values for the anisotropy terms

which stabilize either the CAFM or PLP phases. The results are plotted over the data in

Fig. 5.4(b).

We find both the CAFM and PLP ground states lead to pairs of diverging linear-in-

D transitions arising as the valley symmetry is broken. Since the spin-degenerate PLP

has only a single pair of transitions vs two for the CAFM, we rule out the PLP phase

because three transitions are plainly visible. As noted, the middle peak has roughly double

the spectral weight of the others, implying it contains two nearly (perhaps accidentally)

degenerate transitions for a total of four, consistent with the CAFM. There is only partial

agreement between the data and the predicted dispersions. While the upper and lower
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resonances disperse close to the expected slope vs D, the middle peak shows only a weak

and non-monotonic dependence on D. These data do not rule out the CAFM, but neither

are they in robust agreement with the predicted behavior: in particular, all the resonances

overlap with the energy range of the upper set of CAFM transitions (pink in Fig. 5.4(b)),

but not the lower (red).

5.1.6 Discussion

Collective mode excitations (magnetoexcitons) [151, 153, 155, 162, 163], as well as short-

range Ising-type interactions caused by fluctuations in the density between two LL orbitals

[150, 152], are not accounted for in the present model. These may add to the total excitation

energies, enable alternate ground states, and perhaps account for discrepancies between these

theoretical calculations and the data.

Alternatively, recent treatments show a larger phase space for correlated ground states

exists, particularly at the high B field relevant to this work, and includes Kekule, broken U(1)

or U(1)×U(1) symmetries, a host of fully- or partially-polarized states, and various coherent

phases [152, 164–166]. If present, these may impact the otherwise first-order CAFM-to-

FLP transition, introducing additional intermediate phase transitions that could be first

or second-order and which broaden the range of D over which the ultimate CAFM-to-FLP

changeover occurs. Though the present data are as yet insufficient to make any strong claim,

Fig. 5.4 contains two clear departures from the pure CAFM model: the weak dispersion of

the middle two resonances, and a range from approximately 100 to 120 mV/nm where the

upper and lower resonances fall to lower energies than expected from their trajectories at

small D. This suggests that other interstitial phases may be present between the CAFM

and FLP as suggested by prior works [167–169].
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On the whole, infrared magnetospectroscopy reveals a host of intriguing behavior arising

from electron correlations, and we find the trends and absolute energies of the constituent

Landau level transitions can be quite well captured in a sufficiently detailed theoretical model.

The close but not perfect agreement leaves room to undertake more sophisticated calculations

and suggests infrared spectroscopy in future higher-quality devices will be fruitful in revealing

details of the competing correlated ground states in bilayer graphene, as well as in twisted

and/or multilayer graphene devices [170, 171].

5.2 Future work

Our vision is to use this system to probe deeply aspects of the physics of interacting electrons

that other techniques are not sensitive to.

Quantum sensing is a major topical theme that relies on disturbing a coherent system to

achieve higher sensitivity than incoherent devices. Separately, the far-IR/THz regime has

always been a difficult problem for sensors since all materials have vibrational and electronic

activity there. These themes can be reunited to explore the basis for building a CR-based

graphene qubit. The idea is to create a two-level system using the strongly anharmonic

spacing of graphene LLs, place the graphene device in a cavity to significantly enhance

the light-matter interaction, and explore the ultrastrong coupling regime. Recently, the

strongest light-matter coupling outside of superconducting qubits has been achieved using

electron CR in a cavity [172], where quasiparticles called Landau polaritons are formed

by the strong coupling of light and LL transition. Graphene LLs will also form Landau

polaritons [173], but since the LL energies depend on the square root of the LL energies,

each N → N + 1 transition is energetically coupled, and so is a proper two-level system.

This is a key difference from work to date, which is based on GaAs with evenly spaced LLs,
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where excitations can be propelled continuously up the LL ladder. Thus, in principle, the

graphene approach can realize a novel qubit that is addressable in the infrared/THz and

native to high magnetic fields.

When electron-electron scattering dominates over electron-phonon and impurity scatter-

ing, a fluid-like flow of charge carriers results, where this dynamic flow is governed by classical

fluid mechanics. In a narrow window of temperature and carrier density, the hydrodynamic

limit can be achieved in monolayer graphene. High-quality graphene provides an attractive

platform for exploring Dirac-fluid physics, in which relativistic electrons and holes form a

strongly interacting plasma. This e-h plasma persists at high temperatures in the quantized

regime and resides entirely in the zeroth LL. Recently [174] observed giant linear magne-

toresistance in monolayer graphene in the quantized regime, where this linear behavior is

qualitatively explained by diffusion of cyclotron orbits on the zeroth landau level through

e-h puddles. We can explore the absorption spectrum of Landau quantized graphene in the

hydrodynamic limit through magneto-infrared spectroscopy.

Recent work suggests that the hydrodynamic regime is more readily achievable in bilayer

graphene as it exhibits no temperature cutoff and provides a wider carrier density window,

suggesting that it is better suited for achieving this hydrodynamic limit than monolayer

graphene. In the presence of a magnetic field, a hydrodynamic cyclotron resonance arises

that departs from the kinematic cyclotron frequency [175]. There is a finite parameter

space in temperature and magnetic field in which this departure can be observed, making it

possible to explore cyclotron resonance in bilayer graphene using magneto-optical infrared

spectroscopy within and outside the hydrodynamic window.
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Appendix A

Setting up LD400 Bluefors for

infrared measurement

A.1 Preparing for a cooldown

1. Set up the experiment and sanity checks.

• Before proceeding with the cooldown, it is crucial to cross-check the wiring of both

the sample stage and detector circuit to preempt any potential issues that may

arise during the operation. Start by conducting a continuity check between the

wiring at the sample stage and the breakout box. The measurement rack accom-

modates two sets of breakout boxes: one labeled Ph-Bz (Phosphorous Bronze),

connected to the IR sample stage, and the other labeled Cu-Su (Copper super-

conducting), connected to the detector circuit. Using a multimeter, measure the

resistance between the breakout box pins and the fuzz buttons (shown in A.2) on

the IR stage. Pins 1, 6, 12, and 13 should connect to the co-axial cables, while

pins 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 16, 17, and 18 should connect to the sample

puck, and measure an approximate resistance of ≈ 10 kΩ due to the presence of

137



Fig. A.1: Ground configuration of the dilution fridge.

two sets of RC filters, each with a 10 kΩ resistance on the line and ≈ 470 pF

to fridge ground. Subsequently, proceed with the isolation test: apply 10V using

the Keithley source meter and measure the leakage current for each breakout box

channel, aiming for a measurement of < 0.02 A to ensure minimal leakage. The

pin configuration of the IR sample puck is shown in A.2.

• Next, to verify the wiring to the detector, measure the resistance of the bolometer

and load resistor (20 MΩ) at room temperature. Set the multimeter to a manual

setting (value greater than 60 MΩ), bias co-axial line “C” to the fridge ground

should measure a resistance of ≈ 20.41 MΩ. Keep a record of this value before

proceeding with the cooldown and check with previously recorded values. Addi-

tionally, measure the resistance of the bolometer heater and thermometer at the

Cu/Su breakout box: pins 14 and 15 should read ≈ 27 Ω, and pins 10, 11, 12, and

13 should show ≈ 1 kΩ. Finally, for pins 3 and 4, connected to the silicon diode-

based thermometer on the JFET circuit board, a bias current of 10 µA should
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Fig. A.2: (Left) Pin configuration for the IR sample holder. (Right) The top sample stage
paraboloid suspended from the mixing chamber plate, with integrated wiring and
fuzz button contacts shown.

measure a forward drop of ≈ 0.556 V across the diode at room temperature. The

details of the electrical wiring to the bolometer circuit are shown in Figure A.3.

2. Entry in the fridge logbook.

Check the most recent entry in the fridge logbook to familiarize yourself with the

latest fridge status. Begin a new entry in the logbook by recording the date and

the name of the person operating the dilution fridge. It is crucial to carefully doc-

ument the experimental arrangement and specific details pertinent to the current

run. For instance, if the ongoing run involves a magnet, provide comprehensive

details about the device and the configuration of the infrared setup. Such detailed

documentation is invaluable for reference, as different configurations can result in

varying fridge temperatures and pressures during each run.

3. Closing up the dilution fridge.
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Fig. A.3: Color-coded 25 AWG solid wires establish connections to the JFET enclosure via
a 9-pin micro D Female connector. Inside the JFET enclosure, 0.003” steel wires
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• Before closing up the DR, check if the openings to the various cold plates of the

dilution fridge are clear. We often cover the mixing chamber plate to prevent

dust from falling on the device. In that case, remove the covering and any other

unwanted tools from the cold plates of the DR. Install the radiation shields (cans).

For all cans, the welded seam should face the east wall of Crow 01. Start with

installing the copper radiation shield. Handle the shields minimally; use gloves

while handling the copper cans. If the top 50 K shields and cans are already in

place, install the middle 4K aluminum can. The aluminum cans should be about

as tight as possible with the allen ball driver. Before mounting, each can should

be wiped down with isopropanol on the metal sealing surfaces. Screw the heat

pipes on the bottom face of the 4K shield. It is time to install the magnet; extra

care must be taken while handling it. Ensure the persistent switch wires are not
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touching each other, and carefully secure them with aluminum tape. Install the

50 K middle shield followed by the 50 K bottom shield. The nested input cone

assembly is attached to the 50 K bottom shield. Therefore, it is essential to handle

it carefully without scratching the cones into the wall of the magnet bore. Ensure

the 1 mm aperture between the input cone is clear of dust. Wash each o-ring

and groove with isopropanol before mounting the outer vacuum cans. Make sure

the solvent dries completely before mounting. Install the middle vacuum can,

followed by the bottom vacuum can. The bottom can is attached to the gate

valve and needs to be carefully aligned with the input cones. Do not over-tighten

the wingnuts on the vacuum cans, and do not tighten them during the operation.

At this point, check if the gate valve is functional by opening it to the dilution

refrigerator

4. If the DR unit will be used, pump out the internal and cold traps.

• First, ensure that the mixture has been collected safely into the mixture tank and

that the manual valve on the tank is closed. Typically, the pressure on the mix

tank reads -0.35 Bar when all the mix is properly stored. Note that V 8, V 9, and

V 10 must remain closed for this entire procedure.

• Pump the internal trap: Start by switching on Scroll 2, and wait approxi-

mately 10 s until the internal relay of the pump switches on. Open V21 and

confirm the operation of the pump by monitoring gauge P6. When the pressure

P6 is < 1 mbar, close V21, open V23, and switch on Turbo 2. Once Turbo 2 is up

to speed (1010 Hz), open V 22. Pump until P6 < 5 × 10−4 mbar, then close V22.

The pressure P6 can be used as a reference to monitor how much gas is trapped

in the internal trap.
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– Open V17. If P6 rises, pump the space up to V17 using either the Scroll

pump or both the Scroll and Turbo pump. If Turbo was used, close V22.

– With V17 open, open V3 and V4. If P6 rises, record this value in the logbook.

If it is much larger than the previous value in the logbook, make a note and

take the necessary actions. Pay attention to whether the pressure is more

or less than 1 mbar, and use the appropriate Scroll pump or Turbo pump to

reduce P6 to less than 5 × 10−4 mbar. Close V3 and V4.

• Pump the cold liquid nitrogen (LN2) trap: The contamination can be

pumped from the LN2 trap with Scroll 2 via the service manifold (open V21,

V17, and V7). The trap can now removed from the LN2 dewar.

– When the external LN2 cold trap is in use, the active carbon inside should

be regenerated regularly. Typically, this should be done at the end of a run

when the DR system is warmed up to room temperature. While the cold

trap is being pumped, its body should be heated with a heat gun for approx-

imately 5-10 minutes to approximately 100 degrees Celsius to regenerate the

charcoal inside. Afterward, all valves should be closed, and the trap should

be appropriately stored.

5. Evacuating the vacuum cans (VC).

• Before pumping on the vacuum cans (VC), ensure that the manual valve installed

between the vacuum cans and pressure sensor P1 is closed to control the venting

and evacuation of the cans. Turn on Scroll 2, and open V21, V16, and V14 after a

few seconds. Pressure gauge P6 should drop precipitously. To evacuate the cans,

slowly begin to open the manual valve; P6 will increase, but keep the pressure
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P6 below 100 mbar. Monitor P6 during this procedure and continue to open the

manual valve further. Repeat this procedure until P6 stops increasing any further;

at this point, it is safe to open the manual valve fully. Once P6 is below 1 mbar,

close V21 and V16. Open V23 and switch on Turbo 2. Once the Turbo is up to

speed, open V16. If P6 is below 1 mbar, open V22 to pump on the cans with

Turbo.

6. Leak check the DR.

• While evacuating the vacuum cans (VC) manually, it is recommended to connect

a leak checker to the TEST port at the gas handling system to check for potential

leaks. Turn the leak checker on and let it auto-calibrate. Connect the K-25 bellow

hose to the test valve port, ensuring that the test valve is closed. Pump the line

until the leak detector displays “measure” and all the caution tabs are green.

The inlet pressure of the leak checker should read less than 10−2 mbar pressure

after pumping the test line. The VC can then be leak-checked parallel to the

pumping line. Once all the lines are evacuated and the VC is pumped with Turbo

2, open the test valve. The leak rate before turning the test valve should read

approximately 1.8 × 10−9 mbarl/s.

• The gas escaping through a possible leak can be detected by the leak checker.

Perform the Helium sniffing test by spraying Helium at possible locations where

a leak may occur. Start with the top of the fridge, then between the top o-ring

of the topmost vacuum can. Repeat this for the middle o-ring and finally the

bottom o-ring and close to the gate valve. If a leak is detected, the alarm on the

leak detector will turn on, typically when the leak rate exceeds 1 × 10−7 mbarl/s.

7. Start the pulse tube cooler.
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• When the pressure P6 in the VC has reached below 2×10−2 mbar, the pulse tube

can be started. Ensure that the cooling water of the pulse tube is running at

3.5 Gallons per minute; otherwise, the temperature protection circuit of the pulse

tube will trip. In this scenario, the pulse tube will cease operation even though

the LED on the front panel stays on. In the log book, record the time that the

pulse tube is turned on. Start data acquisition to record the fridge temperature

and pressures, along with any sample parameters that need to be recorded during

the cooldown. Plug in and turn on the Bluefors heater box. From the LD400

control panel, turn on the Still and Mixing Plate heat switches (HS-STILL and

HS-MC ). With the magnet and infrared setup, it typically takes approximately

48 hours for the 4K plate thermometer (T2) and magnet thermometer (T3) to

fall below 4 K. A typical cooldown curve in the infrared configuration is shown in

Figure A.4.

8. Condensing the mixture.

• To start condensation, the mixture from the tank must be added into circulation,

and the manual valve on the tank should be opened. Record the mixture tank

pressure both before and after opening it in the logbook. Check pressure P5 and

record its value in the logbook, ensuring it matches the previous values. Fill the

LN2 dewar completely (approximately 15 liters). Wait for an hour after the trap is

reinserted back into the cold trap. Load and run the script "Condense with LN2".

The dilution refrigerator will then begin condensing the mixture in the unit. This

process typically takes around 2 hours before the temperature stabilizes.
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Fig. A.4: (Left) Cooldown curve with infrared setup (Right) Base temperature and pressure
with dilution unit off.

A.2 Setting up the IR measurement

1. Setup the external optics.

• Begin by mounting the optical enclosure, which houses the off-axis paraboloidal

(OAP), at the base of the DR unit and subsequently secure it with a K-50 vacuum

clamp. Mount and align the light pipe between the OAP enclosure and the spec-

trometer. At this stage, the necessary beam splitter and optical window should

be mounted for the spectral range of interest. Bring the Vertex 80v Bruker to

vacuum and turn on the nitrogen gas supply to the spectrometer, typically set

at around 22 psi. There is a green valve located on the OAP enclosure that is

used to evacuate the space between the optical window and the gate valve. To

evacuate this space, turn on Scroll 2, open V23, and switch on Turbo 2. Close V23

and open V21 to pump on pressure sensor P6. Close V21 and open the vacuum
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on tap (V20) valve; P6 should rise. Open the green valve located on the OAP

enclosure, then pump on this space for a few minutes with Scroll 2 and switch

to Turbo 2 when P6 is below 1 mbar. Close the green valve and pump on the

neck of the gate valve for a few minutes. Close all the valves: V20, Turbo 2, V23,

and Scroll 2. The OAP enclosure shares the vacuum of the spectrometer. The

pneumatically operated gate valve can now be opened to connect the external

optics to the dilution refrigerator.

2. Setup the detector electronics.

• The detector circuit needs to be powered to set up the IR measurement. It is

crucial to follow this sequence to ensure the correct biasing of each component of

the detector with the right polarity. Co-axial lines from the detector and JFET

circuit inside the dilution refrigerator (DR), extending to room temperature, ter-

minate on an SMA (surface mount assembly) feedthrough located on the top plate

of the DR. Use SMA-to-BNC connectors and BNC cables to connect V D1, V D2,

and G2 to the op-amp enclosure. The details of the electrical connections for the

wiring of the op-amp inside the enclosure are illustrated in Figure A.5a. If the

detector circuit is not in use, utilize shorting caps to ground these connections on

the front end of the enclosure (as shown in Figure A.5b). Remove the shorting

caps (if already connected), and power the JFET at the Cu/Su breakout box us-

ing a source meter (V DD = 10V and V SS = −10V ). Measure the current across

the JFET. The value of this current will slowly go up as the JFETs are activated.

Measure the current across the JFET. The value of this current will slowly in-

crease as the JFETs are activated. The temperature profile of the STILL plate,

bolometer housing, and current across the JFET is illustrated in Figure A.6. It
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VD1 - JFET drain
VD2 - JFET drain
Vs - Signal line

Fig. A.5: (Top) Electrical connections to the room temperature op-amp. (Bottom) The
front end of the aluminum case is used as an enclosure for the op-amp circuit.

takes up to 8 hours for the temperature of each component of the preamplifier

circuit to stabilize.

• Now is the time to power the op-amp. Flip the two-way switches on the op-amp

enclosure front end to connect V D1, V D1, and G2 to establish a connection

between the JFET drains and signal line to the op-amp, forming a composite

amplifier circuit. Power the op-amp (± 9V); the current through the op-amp

should read approximately 2.6 mA. Check the temperature of the STILL plate
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Fig. A.6: Temperature profile of the Si diode thermometer on the JFET board, still plate,
bolometer housing, and current across the JFET. It takes roughly 8 hours for
all the components of the JFET circuit and fridge cold plate to thermalize after
powering the JFETs.
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and JFET board; if everything appears stable, bias the bolometer. The enclosure

accommodates a bias 9V battery case with a variable resistor to bias the bolome-

ter. However, other source meters like DC205 can also be used. In that case, the

co-ax line from the bias line “C” should be directly connected to the source meter.

If the magnet is to be used, it is best practice to check the magneto-resistance of

the bolometer before and after the magnet is ramped to the desired field value.

Connect the signal line V signal to the EGG&G preamplifier and ground the

preamp input. Pump the gate valve and open the fridge to the external optics.

AC couple the input of the EGG&G preamp, adjust the gain and direct the in-

frared light to the DR. Record the ADC count and peak-to-peak signal voltage on

an oscilloscope. Adjust the band-pass filters on the preamp based on the mirror

speed used for the step scanner inside the spectrometer. Adjust the OAP mirror

to maximize the signal strength. The temperature profile of the STILL plate,

mixing chamber, and bolometer housing during this operation is shown in Figure

A.7.

A.3 Warming up the DR

• To begin the shutdown procedure, ramp the magnet down to 0 T and cool down

the persistent switch heater. Subsequently, switch off the magnet controller and the

magnet power supply. Ground the device and redirect the light away from the DR.

Proceed to close the gate valve. Ground either the input of the EGGG preamp or

directly ground the Vsignal line at the op-amp enclosure using a shorting cap. Remove

the bias and ground the bolometer bias line “C”. Power off the op-amp and the JFETs.

Maintain the switches on the op-amp enclosure and ground the JFET drain and G2
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Fig. A.7: Temperature profiles of the still plate, mixing chamber, and bolometer housing
are shown after the magnet field is ramped, followed by biasing the bolometer
and directing the IR radiation to the DR.

using shorting caps.

• To manually collect the mixture, start by closing V9 and turning off Turbo 1. Then,

open V13 to direct the mix to the tank. Wait for the Turbo to spin down before

turning off the external heat to the still plate. Afterward, turn on the heat switches.

If no measurements are planned at 4K, the pulse tube can be turned off at this stage.

Configure the acquisition software to record the temperature during warmup. Over

the next couple of days, the fridge will naturally warm up. To expedite the warm-up

process, add some exchange gas using the manual valve to control the addition rate.

Ensure the manual valve between the cans and P1 sensor is closed. Burst the vent

valve (V19) to allow P6 to rise to 700-900 mbar. Open V16 and V14, then gradually

open the manual valve and monitor pressure P6. Slowly open the valve further until

a puff of gas is introduced to the DR, recording this value. Apply 20 W heat to the

4K heater; the gas will assist in carrying the heat. Exercise caution as this will rapidly
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warm the DR, necessitating regular checks the next day. Disconnect the optics before

the DR returns to room temperature. If the pressure increases, the o-ring on the VC

will decompress, and the VC can expand and likely bend the light pipe.
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Appendix B

Sample fabrication

1. Transfer: Exfoliated flakes often need transferring to a different substrate for device

fabrication. We employ a dry transfer method using a polymer film on a small PDMS

stamp to pick up flakes from a substrate [80]. This stamp can handle multiple flakes,

even overlapping, due to van der Waals attraction, enabling complex heterostructures

[5]. The polymer, along with the flakes, can then be melted off onto a new substrate.

Solvents and thermal annealing remove the polymer, leaving transferred flakes ready

for device patterning (see Figure B.1 I).

2. Contact windows: We use photolithography to write contact windows on graphene,

graphite, and other flakes that need to be exposed. Figure B.1 II shows the exposed

contact windows post-writing.

3. Etch windows: We predominantly utilize XeF2 gas to perform a dry chemical etch

of h-BN, which we typically cover graphene flakes with, to expose the underlying

graphene sheet and graphite for electrical contact or further etching if need be. XeF2

gas conveniently is extremely reactive with hBN but does not etch graphene whatsoever

[119]. The procedure for selective etching of h-BN is schematically described in B.2.

This allows us to expose arbitrarily large areas of graphene to evaporate metallic surface
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Stack h-BN/g/h-BN/flg on the substrate Contact windows to graphene (g) and graphite (flg).
Post XeF2 etching to expose g and flg. 

Metalize the contacts with Cr/Au

Device defining etch mask to get rid of 
shorted connections and make edge contacts

Final device: Post XeF2 etching 

II II III

IV V

g

top h-BN flg

bottom h-BN

Fig. B.1: Steps for nano-fabrication of vdW heterostructures.

contacts. Etched windows to graphene and few-layer graphene (flg) are shown in Figure

B.1 II.

4. Electrical contacts can be made to layered materials via metal deposition. There

are many deposition methods that work for making contact with 2D materials, but we

use thermal evaporation or electron-beam evaporation to evaporate a combination of

metals: Cr/Au (Chrome/Gold) contacts or Ti/Al (Titanium/Aluminium). Metalized

windows to exposed flakes are shown in Figure B.1 III.

5. Device define etch: In order to make contacts for a near-perfect quantum hall

geometry or any desired arbitrary shape, we perform photolithography to write an

etch mask (see Figure B.1 IV) followed by etching the unwanted flakes using the XeF2

gas. To characterize the device at room temperature, we begin by testing each contact

to the graphene, grounding all but one contact, and measuring the voltage drop in

a 2-point configuration. Good samples show contact resistance of a few kΩs or less.
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I

Fig. B.2: (I) Electron-beam lithography or photolithography is employed to define contact
windows for the underlying graphene or graphite layer. (II) Selective etching
of h-BN is achieved using XeF2 gas, exposing the buried flakes beneath. (III)
Metalization of the exposed regions is performed using Cr/Au deposition through
thermal evaporation.

Each fabrication step is crucial to get good contacts. The finished device is shown in

Figure B.1 V.
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