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ABSTRACT OF THE DISSERTATION

Some Problems in Harmonic Analysis
by
Fragkos, Anastasios
Doctor of Philosophy in Mathematics,
Washington University in St. Louis, 2024.
Professor Brett Wick, Chair

One the most central questions in harmonic analysis of whether the Fourier series of
a square integrable function on the torus T converges Lebesgue a.e. x € T was answered
positively by L. Carleson in 1966 [7], by means of a weak-L? inequality for the maximal
operator

zeT. (0.0.1)

Z f )exp(ixf)|,

l§lI<N

= sup
NEZ

The argument of [7] estimates C pointwise as a maximal modulated Hilbert transform, outside
appropriately constructed exceptional sets whose mass is controlled by almost-orthogonality.
The implicit distributional estimate in [7] was later exploited by Hunt [39] to deduce the

family of restricted weak-type LP bounds

Cp
||CfHLp,00( = p—

FcCT, |fl <1, 1 <p<oo. (0.0.2)
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The estimate (1.0.2) and interpolation yield that C is a bounded operator on each LP(T),
for 1 < p < oo. Consequently, pointwise a.e. convergence of the Fourier series holds for
f € LP(T) in the same range. Since [7,39], several substantially different proofs of Carleson’s
theorem have appeared: in particular, the celebrated ones by Fefferman [28] and Lacey-Thiele
[48], one implicit in the return times theorem of Demeter, Lacey, Tao and Thiele [19], and
more recently an improvement of Fefferman’s proof [28] due to Lie [56].

The primary focus of the first part of this thesis is the behavior of the Carleson operator
as p — 17. Besides its intrinsic interest, this question is deeply connected to the pointwise
a.e. behavior of Fourier series in function spaces between L!(T) and LP(T). To exemplify the
connection, Antonov [1] coupled the precise information on the growth rate of the restricted
weak norm from (1.0.2) with an approximation argument to deduce a mixed type estimate,
which is the case w = 1 of (2.0.3) below.

The second part of this thesis is concerned with the compactness of multilinear Calderén-
Zygmund operators. Calderén-Zygmund operators are omnipresent in the field of analysis.
For example, they are connected to PDEs, Complex Analysis and Geometric Measure The-
ory. The study of the compactness of singular integral operators stems from applications to
other fields such as the study of elliptic PDEs and the characterization of Semmes-Kenig-
Torro domains but also from a functional analysis point of view. In particular, we prove
a wavelet 7'(1) theorem for compactness of multilinear Calderén-Zygmund (CZ) operators.

Our approach characterizes compactness in terms of testing conditions and yields a repre-

vil



sentation theorem for compact CZ forms in terms of wavelet and paraproduct forms that
reflect the compact nature of the operator.

The third and final part of this thesis deals with LP estimates on the commutator of
cancellative singular integral operators. In further detail, the aim of this chapter is to
provide a proof of Bloom’s original inequality using the wavelet representation theorem from
[25]. A particular feature of our proof is that we precisely quantify the heuristic that ”the
commutator of a singular integral operator is a linear combination of the compositions of
the paraproduct with the singular integral operator”. In addition to that, we completely
avoid working with shifts of arbitrary complexity. The main technical tool we use is wavelet
averaging. Furthermore, our approach is robust enough to allow us to obtain off-diagonal
estimates as well. Besides that, our proof is noticably shorter than the ones existing in the

literature.
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1. Introduction

One the most central questions in harmonic analysis is whether the Fourier series of a square
integrable function on the torus T converges Lebesgue a.e. x € T was answered positively

by L. Carleson in 1966 [7], by means of a weak-L? inequality for the maximal operator

Cf(x) = sup

NeZ

> F(€) explixg)

|§I<N

,  z€T. (1.0.1)

The argument of [7] estimates C pointwise as a maximal modulated Hilbert transform, outside
appropriately constructed exceptional sets whose mass is controlled by almost-orthogonality.
The implicit distributional estimate in [7] was later exploited by Hunt [39] to deduce the

family of restricted weak-type LP bounds

Op?
p—1

1
ICHN oo ry < [Flr, FCT [fl<1lp,  1<p<oo (1.0.2)

The estimate (1.0.2) and interpolation yield that C is a bounded operator on each LP(T),
for 1 < p < oco. Consequently, pointwise a.e. convergence of the Fourier series holds for
f € LP(T) in the same range. Since [7,39], several substantially different proofs of Carleson’s
theorem have appeared: in particular, the celebrated ones by Fefferman [28] and Lacey-Thiele
[48], one implicit in the return times theorem of Demeter, Lacey, Tao and Thiele [19], and
more recently an improvement of Fefferman’s proof [28] due to Lie [56].

The primary focus of the first part of this thesis, which is based on joint work with
Francesco Di Plinio [69], is the behavior of the Carleson operator as p — 17. Besides its

1



intrinsic interest, this question is deeply connected to the pointwise a.e. behavior of Fourier
series in function spaces between L'(T) and LP(T). To exemplify the connection, Antonov
[1] coupled the precise information on the growth rate of the restricted weak norm from
(1.0.2) with an approximation argument to deduce a mixed type estimate, which is the case
w = 1 of (2.0.3) below. This may be leveraged to extend the pointwise convergence result
to functions in the Orlicz space Llog, Llogs L(T). Antonov’s result has been, to date, the
strongest known within the Orlicz-Lorentz scale.

The result of this chapter goes beyond the Carleson-Hunt bound (1.0.2), upgrading the

estimate to the weak LP-type.

Theorem A. The mazimal operator (1.0.1) obeys the family of estimates

C
IC S| oo (ry < P 1oy, 1<p<2
The same bounds hold for the mazimal multiplier (1.0.5) and for the real line analogue (1.0.3).

In fact, we obtain Theorem A as an immediate corollary of a stronger quantitative esti-

mate for the sparse norms of the operator C

Theorem B. Let m € L¥(R)NC>®(R\ {0}) be a smooth Hormander-Mihlin multiplier, see

(2.1.5). The associated mazimally modulated multiplier

Cf(x) = sup

NeR

/Rm(§ — N)F(£)e€ d¢ z €R, (1.0.3)

satisfies the family of sparse bounds

1Cl 1y < o1 l<p<2 (1.0.4)



with a uniform constant C'. The same estimates hold for the periodic version of (1.0.3)

Cf(x) = sup Zm(f’ — N)f(f)eM xeT (1.0.5)
Nez
ez
under the additional transference assumption that lim ]ﬁ f<e M exists.

e—0t

As a direct corollary of the aforementioned sparse bound we are able to obtain the

following weighted estimate.

Corollary B.1. The maximal operator (1.0.3) obeys the weighted norm inequality

max{q,2}

HCfHLq(w) < Cylwly,"™ Hf||Lq(w) ) 1 <g<oo.

q

The same estimates holds for the periodic version of (1.0.5).

The backbone of our treatment is a new, sharply quantified near-L! Carleson embedding
theorem for the modulation-invariant wave packet transform. The proof of the Carleson
embedding relies on a newly developed smooth multi-frequency decomposition which, near
the endpoint p = 1, outperforms the abstract Hilbert space approach of past works, including
the seminal one by Nazarov, Oberlin and Thiele. As a further example of application, we
obtain a quantified version of the family of sparse bounds for the bilinear Hilbert transforms
due to Culiuc, Di Plinio and Ou.

The second part of this thesis is based on joint work with Walton Green and Brett Wick
[29] and is concerned with the compactness of multilinear Calderén-Zygmund operators.
Calderén-Zygmund operators are omnipresent in the field of analysis. For example, they

are connected to PDEs, Complex Analysis and Geometric Measure Theory. The study of



the compactness of singular integral operators stems from applications to other fields such
as the study of elliptic PDEs and the characterization of Semmes-Kenig-Torro domains but
also from a functional analysis point of view. In the linear case, Villaroya in [76] gave a
complete characterization of compact Calderén-Zygmund operators on L?(R?), which was
further developed in [67,68,73,77]. Recently, Mitkovski and Stockdale in [57] gave a sim-
plified formulation of the 7'(1) theorem for compactness of Villaroya. More precisely, they
showed that a CZO T is compact if and only if 7(1) and T™*(1) both belong to CMO(R?)
and a vanishing version of the weak boundedness property, called the weak compactness
property, is satisfied. In contrast, a multilinear version of these compactness testing the-
orems remains unexplored. These T'(1) theorems for compactness are complemented by a
compact Rubio De Francia theory of extrapolation developed by Hytonen and Lappas in
[40,41]. Subsequently, in [6], Cao, Olivo, and Yabuta extended the bilinear results of [40] to
the multilinear setting and to the quasi-Banach range, in which case the target space can be
L™ with r > % However, due to the difficulties of extrapolating to the upper endpoint in
the multilinear setting [53,63], the results of [6,40] do not consider the case where one (or
more) input spaces is L>(R?). We point out that our results below do yield compactness
when an input space is L>°(R?). In [29] we prove a wavelet T/(1) theorem for compactness
of multilinear Calderén-Zygmund (CZ) operators. Our approach characterizes compactness
in terms of testing conditions and yields a representation theorem for compact CZ forms
in terms of wavelet and paraproduct forms that reflect the compact nature of the operator.

The main result of this chapter is stated as follows



Theorem C. Suppose A is an (m + 1)-linear CZ form, with associated symbols b; €

BMO(RY), j =0,1,...,m satisfying (3.1.2). The following are equivalent.

A. A\ is a compact CZ form, i.e. WA (2) = 0 as z — 0o and b; € CMO(R?).

m

B. There exist compact wavelet forms {U;‘C}kK:m1 and compact paraproduct forms {Hbj}jzl

such that for all f; € S(R?),

A(f) = i Ur(f) + anj(f), £f=(fo, .. fm)-

C. Fach element of Ty is a compact CZO.

We note that Theorem C applies to the linear case as well and a few simplifications can
be made due to the greater symmetry enjoyed in this setting. For additional clarity, we

restate Theorem C when m =1 .
Theorem D. Let T be a linear CZO. The following are equivalent.
A. T(1),T*(1) € CMO(RY) and

lim sup t*|(T¢., ¢¢)| = 0.

(0 2eB(()

B. There exists a compact wavelet form U such that for all f,g € S(R?),
(Tf,9)=U(f,9) +Urq(f,g) + Ur)(g, f)-

C. T and T* are compact CZOs.

D. T(1),T*(1) € CMO(R?) and

. d
ZlggotQ ||T¢z||L2(1Rd) = 0.

5



Our main result is another example of a new result in the Lebesgue setting obtained
through wavelet representations. This approach differs from the ones in [57] and [76] as we
do not use the machinery regarding localization, and neither do we require additional decay
of the kernel, but rather we use a wavelet averaging procedure to obtain the representation
formula in §3.3 and then use the Riesz-Kolmogorov criterion to obtain the precompactness
of the image of the unit ball under the adjoint operators to the wavelet and paraproduct
forms in §3.4 and §3.5.

The third and final part of this thesis is based on joint work with Brett Wick [30] and
deals with LP estimates on the commutator of cancellative singular integral operators. In
further detail, the aim of this chapter is to provide a proof of Bloom’s original inequality
using the wavelet representation theorem from [25]. A particular feature of our proof is that
we precisely quantify the heuristic that “the commutator of a singular integral operator is a
linear combination of the compositions of the paraproduct with the singular integral opera-
tor”. In addition to that, we completely avoid working with shifts of arbitrary complexity.
The main technical tool we use is wavelet averaging. Furthermore, our approach is robust
enough to allow us to obtain off-diagonal estimates as well. Besides that, our proof is noti-
cably shorter than the ones existing in the literature. In particular, we can recover Bloom’s

inequality as a corollary of the following two weight theorem.

Theorem E. For a 1-cancellative Calderdn-Zygmund operator, w,o € Ay, b € BMO,(R),

1
where v = (%)P we have that

116; T ooy S N0l mvso, @) 111 ooy -



Finally, our method revisits the following one weight result.

Theorem F. Let T be a cancellative Calderon-Zygmund operator and w weight with wP € A,

and w? € A, then

HbHBMOa q=D,

H[l% T]”Lﬁ(wI’,Rd)HLQ(wq,Rd) S { HbHC‘O,a(Rd) 7% — ;1) — %’ q>p,

\||b||Lr(Rd)7%:%+%, qg<p.

Where the homogeneous Holder norm of exponent a is defined as

() — b(y)|
bl 40.a = sup ————*+—
| Hcov (Re) iy T —ylo

and the L"(R%) norm is defined as 1011 1 (ay = infeer b — ¢l 1rgay -

The notational organization of this thesis consists of introducing the notation for the
first chapter separately from the one that will be used in the second and third chapter.
In particular, the notation and general definitions in the second and third chapter will be

CcOImino1.



2. The weak type Carleson’s theorem via wave packet estimates

Recurring notation

The treatment in this part of the thesis focuses on the case of functions defined on the real
line; however, the generalization to higher dimensional Euclidean spaces is merely notational
and all arguments are easily transcribed to that setting. The Fourier transform on R obeys

the normalization

FFE) = () = %27 /R f@)e- " ds,  €eR

Throughout, the transformations

Trof = f(- —a), Mod, f = exp(ia-) f(+), Dill f = b_%f(b_l-)

fora € R,b > 0, 0 < p < 00, are used to describe the invariance properties of our singular
operators. The symbol

(x) = /14 |z]?, relR

indicates the usual Japanese bracket. The center and length of an interval I C R are
respectively denoted by ¢y and ¢;. Accordingly, define the L*°-normalized polynomial decay

factor adapted to I by

X7 = Tr, Dl (), M € 2N\ {0}.



When we drop M and simply write x; instead, the parameter M is large and unimportant.
As customary, for 0 < p < oo, local LP-(quasi)norms on I, their tailed analogues and the

p-th Hardy-Littlewood maximal operator follow the notation

9

ot = 1L, (s = 5 X7

, M, f = sup(f),r1r.
» ICR

with most times M; = M for simplicity. We clarify our notation for the weighted Lorentz
and Orlicz spaces appearing in the results of Corollary F.1. A weight stands for a positive
integrable function w on T = (—m,7]. There is no loss in generality with assuming that
fTw = 1. As customary, we overload the notation for the weight w and the corresponding
measure dw = wdz. The weak and strong weighted Lebesgue quasinorms are then defined

for p € (0,00) by

| Fllzeemany = suptfw ({z € T+ [f@)] > )]P, [l = (/ |f!”dw) !
t>0 T

If & :[0,00] = [0,00) is a fundamental function, the weighted Orlicz norm ®(L)(T; w) is

1oy = inf{t>o: [ ('f ') dw<1}

The fundamental functions occurring are ®(t) = tlog,t and ®(t) = tlog,tlogst, with iterated

logarithm notation
log,t = max{1,logt}, log,t = max{1,log(log,_t)}, k> 2.

The quasinorm QA (w) appearing in (2.0.4) is defined by

. = . 1551 2o crrn
HquAqw:mf{z}bgﬂ”fﬂww)l (res) = Zfﬂ’z'fj'“’a'e'}'
]:

(2.0.1)



Finally, the symbol C' and the constant implied by the almost inequality sign < are meant to

be absolute, unless otherwise specified via the notation Cy, a,- Lhe latter notation

ORI AL,y

highlights dependence on the parameters aq, ..., a,.

2.0.1 Introduction

Forn > 2, p= (p1,...,pn) € (0,00)", the n-linear p~maximal function of a tuple {f; €

LP]'

loc

(RY) : 1 < j < n}is defined as

Mp(fi, - fn) = Sup 1q H(fj)zaj,cz

the supremum being taken over all cubes  of R%. See the final paragraph of this introduction
for a summary of standard notations. An n-sublinear form A acting e.g. on n-tuples of

functions f; € LF(R?) is p-sparse bounded if there exists a constant C' > 0 such that

IACfr - Sl < C Mg f)lly

uniformly over all such tuples, and the p-sparse bound ||Al| is the infimum of the set of all
such constants. If 7" is an (n — 1)-sublinear operator, the quantity ||7'||7 indicates the sparse

bound ||Al|5 of the n-sublinear form

Afi, oo o) =(T(f1, oy fa1), [n)-

Note that T is a specific formal adjoint of A, and the index n plays a distinguished role.
The equivalence of this formulation with more standard notions of sparse bounds [51] is

thoroughly discussed in [15,63] and references therein. Note that the Carleson maximal

10



operator, on the real line and on the torus respectively, correspond up to symmetries and
linear combination with the identity operator to the choice m = 19 in (1.0.3), (1.0.5).
The p-sparse bounds of T subsume a full range of quantitative weighted norm inequalities
of weak and strong type. We send to the references [54,63] for a complete list of consequences
and for the related extrapolation theory, and content ourselves with recalling those implica-
tions most crucial for our exposition, in the form of corollaries to this main result. Then,
the estimates of Theorem A are derived from the sparse bound of Theorem B as in e.g.
[12, Theorem E]. Two more corollaries are of weighted nature. The following weak type

LP(w) bound for A; weights with controlled constant holds.

Corollary F.1. For weights w € Ay and 1 < p < 2, define

K(w, p) = [w]}, ] flogs[w] 4. ]

For both (1.0.3), (1.0.5), there holds

CK(w, p)
HCfHLp,oo(w) < p—1 HfHLp(w) > I<p<2 (2'0'2)

As a further corollary of (2.0.2), (1.0.5) satisfies the following endpoint estimates:

A1 2o
||Cf||L1v°°(T;w) < %K(w7 1) ||f||L1(T;w) 1Og1 (W ) 1< q < 0, (203)
L1 (T;w)
ICH 1o may < 5K, 1) [ fllga,y s 1< @< 00, (2.0.4)
||Cf||le°°(']1‘;w) < OK(’LU, 1) Hf||Llog1Llog3L(T;w) ’ (205)

See (2.0.1) for the definition of the QA,(w)-quasinorms. Additionally, as a consequence of
(2.0.4), the Fourier series of f € QA (w) converges pointwise a.e. whenever w € Aj.

11



Proof. Estimate (2.0.2) is obtained by using the (p,1)-sparse bound of Theorem B as the

input of [32, Theorem 1.4]. For (2.0.3), a consequence of (2.0.2) is that

IC N Lo () < NCF oo () < I le ey (2:0.6)

||f||LP(T;w) <

CK(w, p) CK(w, 1)
1 1

holds whenever 1 < p < 2. For p < ¢, [|f|lzo(p.0) < ||f||;gr{g) ||f||qL/q/g?.ﬂ:;w), and (2.0.3) fol-
lows by using (2.0.6) for p given by the equation p’ = max {2, q' log <HfHLQ(’JI‘;w)/HfHLl(T;w)> }
Now, (2.0.4) is deduced from the definition of QA (w) and Kalton’s log-convexity of L'*°(T; w)

[45]. Estimate (2.0.4) immediately implies (2.0.5) once the (strict) continuous inclusion
Llog, Llogs L(T; w) € QA (w). (2.0.7)

is established. This is done repeating with obvious changes the argument of [10, Sect. 3.3].
Note that the inclusion (2.0.7) is tight in the Orlicz class, under modest assumptions on the

fundamental function [8]. O

Another aspect naturally arising in the pursuit of endpoint estimates and pointwise con-
vergence of Fourier series for spaces near L! is the sharp quantification of the dependence
on the weight constants in the weighted bounds for the Carleson operator. For instance, the
next result yields that C : L(log, L)*(T) — L'(T), via the extrapolation theory of [9]. Note
that L(log,L)?*(T) is the largest Orlicz space currently known to have this property, a result

originally due to Sjdlin [71].

Remark 2.0.2 (Comparison with previous results). This remark will place our new results in
the context of past literature. First of all, the Carleson-Hunt estimate (1.0.2) is quantitatively
equivalent to the generalized restricted weak type bound of Lacey and Thiele [48], and strictly

12



stronger than the estimate proved by [28], which, when phrased as a restricted type estimate,

is of type C : L' — L7 for 1 < ¢ < p. An alternative formulation of (1.0.2) is

1

Relying on the smoothness of the Dirichlet kernel via an approximation argument, Antonov
[1] upgraded (2.0.8) to a mixed type bound which is exactly estimate (2.0.3) with w = 1
and ¢ = oo, and deduced the w = 1 case of (2.0.5). Further work of Sjélin and Soria
[72] extended Antonov’s approach to more general sublinear operators satisfying Carleson-
Hunt type bounds as in (2.0.8); see also [35] for applications of this principle to weighted
bounds. Arias de Reyna [2] introduced the quasi-Banach spaces QA = QA_(dz) and
noticed that Antonov’s result may be phrased in terms of (2.0.4) for w = 1. The observation
of [2] is relevant because of the strict inclusion (2.0.7). The work [56] by Lie gave a proof
of the Lebesgue case of (2.0.3), with unspecified dependence on 1 < ¢ < oo, without any
appeal to approximation arguments of the type used in [1,72]. In a nutshell, [56] refines the
construction of the forests from Fefferman’s proof of Carleson’s theorem in a BMO sense.
The main result of [56] thus implies the unweighted case of (2.0.4) via the same log-convexity
argument. The work [56] also contains the observation' that QA__ and QA, are equivalent
quasinorms for each 1 < ¢ < oo, so that the results of [56] and [2] are formally equivalent.
As far as prior weighted bounds at the endpoint p = 1, the work of Carro and Domingo-
Salazar [9] deduces from the Carleson-Hunt bound (1.0.2) and extrapolation that the Car-

leson operator maps Llog, Llogs L(T; w) into the space R;(w), which is a logarithmic correc-

n [56], the observation that QA and QA,, are the same quasi-Banach space is attributed to L. Rodriguez-
Piazza.
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tion of LY°(T;w), and the operator norm dependence on [w]4, is unspecified. In view of
the strict continuous embeddings L*°(T;w) < R;(w) and (2.0.7), and of the dependence
of K(w, 1) on [w]a,, our estimate (2.0.4) improves on [9, Theorem 4.5].

Corollary B.1 is an improvement on the previously best known quantitative estimate
for the L(w) norms of maximally modulated multipliers, due to Lerner and Di Plinio [22].
In particular, the extra log,[w]4, term appearing in [22, Corollary 1.2 (ii)] is shown to be
unnecessary.

In summary, the weak-L? bound of Theorem A, and a fortiori the (p, 1)-sparse estimate
of Theorem B, sharpen the Carleson-Hunt bound (1.0.2). Theorem B also yields upgraded
versions of previous results at p = 1, which are all consequences of (1.0.2). In particular,

Corollary F.1 ensures that the Fourier series of any function in the class
X :={feLT): f e QA (w) for some w € A}

converges almost everywhere. We stress that the class X is not just formally larger than

QA . For instance, for

1 1

=1 x), f(z) = 1
|log(|x])|% =\ (0} () (z) z(log x)?log log | log z| (

w(x)

O,e*ee)($)7

we have w € Ay, f € Llog, Llog; L(T; w) C QA (w), f & QA.

2.0.3 Methods, organization and further results

The proof of Theorem B is, in essence, a version of the Lacey-Thiele argument from
48] for functions outside local L? that avoids interpolation and the consequent loss of con-
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stants. In Section 2.1, matters are reduced to estimating bilinear forms involving wave packet
coefficients (2.1.2) associated to a tile P, namely a Heisenberg uncertainty box in the space-
frequency plane, and their modified version (2.1.3). The wave packet coefficient (2.1.2) is
roughly the L* norm of the projection of f to a O(1)-dimensional subspace of functions
space-frequency adapted to P. Using the outer LP framework of Do-Thiele [26], described in
Section 2.2, the main steps of the proof become two quantified and localized outer Carleson
embedding theorems for the wave packet maps (2.1.2) and (2.1.3). The latter is essentially a
localized reformulation of the mass parameter bounds of [48] and occupies Section 2.3. The
former, Theorem H, is substantially new, and is stated and proved in Section 2.4. Section
2.5 then contains the short and completely elementary stopping forms argument leading to
Theorem B.

The main novel technical tool behind the proof of Theorem H is a smooth space-frequency
decomposition of a function f locally in LP, 1 < p < 2 induced by a forest, namely a
collection of tiles organized into space-frequency trees. The decomposition is constructed by
expanding f in Gabor series spatially localized on Calderén-Zygmund intervals associated to
the forest, and selecting a principal part (2.4.11) which is locally in L?, albeit with local norms
depending on the counting function of the forest. Multi-frequency decomposition lemmas
of different flavor have been used extensively in the past literature on modulation invariant
singular integrals [23,24,66]. The construction used in all these references generates a good
part via projection on the linear span of N pure frequencies on a spatial interval, initially due

to Nazarov, Oberlin and Thiele [62], and based on a sleek Hilbert space lemma of Borwein-
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Erdelyi [5]. The corresponding remainder term does have vanishing moments with respect to
the relevant frequencies, but its local norms are of the same order of those of the good part,
and thus also depend on the counting function. This loss may only be offset by paying an
additional price on the good part. On the contrary, the smooth remainder (2.4.12) from our
decomposition inherits the much smaller local norms of f and its contribution to (2.1.2) may
be estimated as a pure error term, by careful exploitation of frequency decay and separation
in frequency localization. We expect that our smooth decomposition will find extensive use
in further problems involving modulation invariant estimates outside local L?, such as, for
instance, uniform estimates for the bilinear Hilbert transform, see [61,66,74] for context.
The wave packet coefficients (2.1.2) also appear in the model sums of the multiplier
operators with singularity along subspaces of rank one, whose archetypal example is the
bilinear Hilbert transform. The first LP-bounds for the latter operator are due to Lacey and
Thiele [46,47], while Muscalu, Tao and Thiele address more general multipliers and higher
ranks [60]. A systematic qualitative weighted theory for rank one multiplier operators was
first obtained by Culiuc, Di Plinio and Ou in [16], as a corollary of a family of p-sparse
bounds. Subsequently, several works have deduced from the sparse bounds of [16] further
qualitative weighted and vector-valued norm inequalities by developing suitable multilinear
extrapolation theorems, see e.g. [14,53,54,63]. On the other hand, it has proved difficult
to deduce quantitative weighted estimates, i.e. with specified, possibly sharp dependence,
from the main result of [16], mainly because the constant in the p-sparse bounds blows up

in an unspecified way when the vector p approaches the extremal points of the range. The
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wave packet embedding of Theorem H may be used to quantify the blow up rate much more

precisely, leading to the following improvement of [16, Theorem 1.3].

Theorem G. Let T' = {€ = (£,£,8) € R? 1 & +& + & = 0} and TV = spanvy be a
non-degenerate rank 1 subspace of T', in the sense that v = (71,72,73) S a unit vector with

v #0 for all j =1,2,3. Let m € L™(R*)NC>®(R3*\ I") be a symbol satisfying the estimates

sup [dist(¢, 1)) [Vom(€)] < 1
EER3\I

for all multi-indices o up to some finite order. Then the form?

Al o) = [ mie) [T Fi&) e (2.0.9)

satisfies the family of p-sparse bounds

2

1
L<pipyps<oo, e()=2-» ——F——=>0.  (20.10)

Al < >
nlly S winp, 2}

1
The proof of Theorem G is given in Section 2.6. Note that the adjoint forms to the
(non-degenerate) bilinear Hilbert transforms with parameter 5 =~ x (1,1, 1) correspond to
the choices m(§) = L00)(B - §)¥((1,1,1) - £), where ¢ is any Schwartz function on R with
¥(0) = 1. We do not detail the consequences in terms of weighted bounds for A,,, which
may be reconstructed by the interested reader via the extrapolation theorems of [53,54,63].

Tracking the constants in those works will lead to quantitative weighted estimates. This

point is transversal to the present chapter of this thesis and will be expounded elsewhere.

2The action of A, on tuples of functions f; which are merely assumed to belong to L (R) may be defined
by smooth truncation of the integral (2.0.9) near I' and at infinity. The obtained bounds are uniform with
respect to the truncation parameter, thus allowing for the limiting argument. This is classical, and we omit
details.
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In a different direction, Theorem G yields precise information on the behavior of A,, near
the extremal [49, Subsect. 2.2] pair L'(R) x L?(R), fully recovering all results obtained in
[24] and leading to several improvements. One of these is detailed in the following corollary,

improving in particular [24, Theorem 3].

Corollary G.1. Let T,, be an adjoint to A,, from (2.0.9). Then

1 ) 1
HTm . LT=(R) x L2(R) — L372e’°°(]R)H $o, 0<e<2®
T,, : L% log Li(R) x L2(R) — L%’OO(R) <1

e & log L ~

For the definition of the spaces appearing in the second estimate and its easy deduction

from the first, see [18, Theorem 4].

Remark 2.0.4 (On the relationship between sparse and weak type). Corollaries F.1 and B.1
demonstrate how sparse bounds are both formally stronger and convey additional information
than Lebesgue estimates. The article [22], based on mean oscillation techniques, contains
a partial converse of the sparse to weak type implication for maximal modulation singular
integrals. The weighted estimates of [22] have in fact been deduced relying on weak-L? type
bounds which are strictly weaker than both Theorem B and the Carleson-Hunt bound (1.0.2),
and which are in fact consequences of (1.0.2) and extrapolation; see e.g. [22, Estimate (1.7)].
On the other hand, our embedding Theorem H yields Theorem B directly, and also applies
in the context of Theorem G, which is out of reach for current mean oscillation techniques:

see [52] for a more recent, unified approach to sparse domination via weak type bounds.
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2.1 Space-frequency analysis of modulation invariant operators

After a few preliminaries, this section introduces the wave packet transform (2.1.2) on
the space-frequency tiles, its modified version (2.1.3), and their role in the discretization of

maximally modulated singular integrals.

2.1.1 Dyadic grids and tiles

We say that a collection D of intervals of R is a dyadic grid if
a. {{; : I € D} C p2” for some § < p = pp < 2.

b. for all k € Z there holds R = [ J{I € D, ¢; = p2*} up to possibly a set of zero measure

(covering property);
c. 1,JeD = InJe{w,I,J} (grid property).

The elements of a dyadic grid are referred to as dyadic intervals. A typical example that we

will use at times are the three shifted dyadic grids
Dw:{f<€+ﬁéﬁ+{ah):h£€Z}, g=0,1,2.

Remark 2.1.2 (Parent, sibling, and children intervals). Let I € D be a dyadic interval and
> 1. Properties a. to c. yield the existence of a unique interval I°*) € D with £, = 2%¢;

and I C IP®). We call IP*®) the s-th parent of I. Conversely, if I € D, we enumerate by

J UG N IR T
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the collection of the k-grandchildren of I. These are those J € D with JP®) = I, with the
obvious convention that c(Ih(%9V)) < ¢(I"=2)) if 1 < j; < j, < 2%, Finally, we denote by

I®, the sibling of I, the unique J € D with £; = ¢; and IPM) = T U J.

Remark 2.1.3 (Shifted grids). Let M be a large integer, standard shifted dyadic grid
techniques, see e.g. [51], yield the existence of dyadic grids G;, j = 1,...,2M19 with the
following property: for every (not necessarily dyadic) interval @@ C R there exists j and
I(Q) € G; with Q C I(Q) and ¢;q) < (1 + 2 M)lg. This property will be used a couple of

times in what follows.

We say that the grids D, D’ are dual if ppppr = 1. Let now D x D’ be a fixed pair of
dual dyadic grids on R. A tile P = Ip x wp € D x D’ is the Cartesian product of dyadic
intervals with reciprocal lengths, that is ¢(Ip)¢(wp) = 1. The intervals Ip,wp are referred to
respectively as the spatial support and frequency support of the tile P. The set of all tiles in
D x D' is denoted by Sp p or simply S if the dyadic grids are fixed and clear from context,
and referred to as tiling associated to D x D" or simply tiling. It is convenient to adopt the

notation scl(P) = ¢y, for the (spatial) scale of P.
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2.1.4 Wave packets and wave packet transforms.

The rationale for defining tiles as above is that they describe the space-frequency local-
ization of the functions, referred to as wave packets, involved in the analysis of modulation

invariant operators. Denote by ©M the unit ball of the Banach space

{9 e CYR): |9]lm < o0, }, [9]lar = sup sup [(z) D*Y(z)] .

0<a<M zeR

For a tile P = Ip X wp, define the corresponding L!-adapted, localized classes of order M by

M (P) == {p = Mod(up) Tre(r,)Dil,, p)¢ for some ¢ € oM, suppp C wp}. (2.1.1)

scl(

We stress that ¢ € ®(P) has compact frequency support in wp. From now on, we omit
the M from the superscript and our forthcoming definitions depend on M implicitly. The

order M wave packet transform of f € Li°(R) is the map

WIfl1:S = [0,00),  WIfI(P):= sup [{f,¥)]. (2.1.2)

pe®M(P)
The dependence on M is kept implicit in the notation. We can think of W[f](P) as the
magnitude of the space-frequency localization of f to the tile P.
When dealing with maximally modulated singular integrals, a modified wave packet trans-

form models the contribution of the dualizing function. Namely, define

AP = swp [(F06 N, (V)] 213)

YeTM(P)
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where N : R — R stands for a fixed measurable function, and U (P) is the modified class

azz
scl(P)

vM(p) = {gb = ¢(z,v) € CM(R x R) : { ] o(-,v) € ¥ (P), Vv e R, a =0, 1} :
(2.1.4)
The dependence on the function N and on the smoothness-decay parameter M is kept

implicit in the notation for (2.1.2)-(2.1.3), as these will be clear from context. For this

reason, unless strictly necessary, M is dropped from the notations, writing for example

o(P), U(P).

2.1.5 Analysis of maximally modulated singular multipliers

The wave packet transforms (2.1.2) and (2.1.3) enters directly the discrete models of
both the Carleson operator and of rank 1 multilinear multipliers such as the bilinear Hilbert
transform. For the sake of motivation, here follows the reduction of the former family to the
wave packet form (2.1.9) below.

Let m € L>®°(R) N C>(R\ {0}) be a smooth Hérmander-Mihlin multiplier, that is

sup sup [¢|* |m(°‘)(§){ <1 (2.1.5)
0<a<M ££0

for some large and unimportant M. In the next paragraph, we prove the pointwise estimate

Cfa)<y 2. 2. swp|> Mpl(fiép)pu(@ )|,  zeR (2.1.6)

u=1 *€{+’7} g:{07192} PGSQ

where

CHa) = swp|Hyfl.  Hyflz) = / m(e — N)F(€)e™de, = eR
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is the maximally modulated multiplier operator already introduced in (1.0.3), S, = Sp, p, is
the set of all tiles associated to the grids Dy, D,, the functions ¢p, 1}, are uniform multiples

of adapted wave packets from respectively ®(P), ¥(P), cf. (2.1.1)-(2.1.4), and

suppy¥p, = {N €R: 95 (- N) #0} C Q5" = c(wp) Flup [T+%9+%].  (2.1.7)

Fix the parameters g,u and * = + € {4, —} . We claim that there exist dyadic grids
G, j =1,...,2" with the property that for all P € S, there exists jp € {1,...,2'®} and
Jp < ng with

supr@D;S,u C chjh(l’l), wp C chgh(l’z).

This is easily obtained by applying Remark 2.1.3 with M = 8 to the convex hull of Q5"
and wp, whose leftmost fourth contains Q5" and is contained within the left half of the
smoothing interval, and whose rightmost fourth contains wp, and is contained within the
right half of the smoothing interval. We then define the tile P = P(P) = I X wp € Sy, g,
by

Iz = the unique J € H; with ¢(Ip) € J, 03l o) = 1, wp = J;h(l,z)
P

where H; is a fixed dual grid to G;. With this definition,

Suppy, € W%(P). (2.1.8)

For P € St;xg;, let Sy(P) == {P €S, : P(P) = P}. For each N € R, we then have

Y Hel(fop)vi (@, N) = Y pl(f o)k, (2, N)1 (N)

PeS,(P) PeSy(P)

having used (2.1.8) in the first equality. By construction, it is then easily verified that

#S,(P) S 1, ¢p € CO(P), ), € CU(P) VP €Sy (P)
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with uniform constants over P € S#;xg,- Linearization of the suprema in (2.1.6), a passage
to the adjoint followed by using the definitions of (2.1.2), (2.1.3), and a limiting argument
thus allow us to reduce estimation of the operator (1.0.3) to proving uniform bounds for the

forms

p(fr, f2) =) e[ WIAJ(P)A[fo](P) (2.1.9)

PeP

where P is a finite subset of S = Sp p for a fixed pair of dual grids D, D’, and the function

N(-) in the definition (2.1.3) of A[f2](+) is a fixed but arbitrary measurable function.

Proof of estimate (2.1.6). By splitting and symmetry, we may assume that m is supported on
the positive half-line, and obtain the x = + term, whose superscript is omitted throughout.

Let ¢, € S(R), u=1,...,95 with

supp iy C (14wl 1y utl] Zz¢u §) = 10,00)(§)

u=1 k€Z

and perform the corresponding Littlewood-Paley decomposition of the multiplier Hyf as

95
Hof:ZZf*‘I’k,u, Uy (2 /m 1/Ju (2F¢)e™  d¢, x € R.

u=1 k€Z

Further, let D,, g = 0,1,2 be the three 1/3-shifted dyadic grids on R, and S,(k) = {P €
S, : scl(P) = 2%} be the corresponding scale k tiles. Performing the standard Gabor decom-

position, we pick ¢ € S(R) with Suppgg C [0, %] such that

>olote-

AEZ

wly

EeR

so that for each k € Z

f Z Z ’[P‘ f7 ¢P ¢P7 (bP = MOdchTrCIPDﬂiCI(P)¢

9=0 PeSy(k
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holds. Note that ¢p € C,P%(P) for all a. Combining and using the frequency support

property of 1 to restrict the summation,

95
Hyf=2 > f#*ModyUy, = ZZZ > Upl(f,6p)dp * Mody Wy,

u=1 keZ u=1 g=0 k€Z PeSy(k+4)

95 2
22, 2 Il PPl N)L[1x 019) ((wf—l—N)

u=1 g=0 PecS,

(2.1.10)

having defined the functions
Ypu(z, N) = ¢p * Mody Ty ,(2), 2kt — scl(P).

To obtain (2.1.10), we have used that supp M(EV\\IJM C N+27F1+2b 14w and that
when P € S,(k + 4) the frequency support of ¢p is an interval wp of length 27%~*. Thus, in
order for ¥p, (-, N) to be nonzero, N must belong to the interval Q5" as claimed in (2.1.7).

We are left with proving that ¢p, € C,U*(P) for all 0 < a < M — 1. To this aim,

fix P € Sy(k +4). We treat both cases & = 0,1 at the same time. First of all, using the

Hormander-Mihlin condition (2.1.5)
supp Uy € 271,275, | DO (€)] S 2 s €]

forall 0 < a < M, k € Z. Let also 8 be an auxiliary Schwartz function with the property

] < B < 1j—1,1) and define

o _— N_ wp X d
O0p(z,N) ::/ﬂ{(-%) Uru(§)8 (“Tc’) e &\/_257 z €R.

Using the Fourier transform and the definition, we check that

] et ) = o Mod v
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so our claim follows easily from the scale scl(P) ~ 2* bump function estimates for the
function = = ModN,CwP @y, .. p, whose Fourier transform is supported on [£| < £, ~ 2% and

satisfies

[

© = (=) Bule - = )i (),

wp
20 < 30 2k

b+c=a

T (€= (N = )| 2 S 278l = (V = )| "2 501

for 0 < a < M — 1, having used that ¢,, — N > 3{,,, while |{| < £,, on the support of
B(-/l,,). This completes the proof of (2.1.6). O
2.2 OQOuter L? estimates for the wave packet transforms

Outer L? spaces, introduced in this context by Do and Thiele [26], provide the functional
setting for our estimates on the wave packet transforms. In this section, after particularizing
the main definitions, we introduce two new outer L” norms enjoying a weaker, but more
precisely quantified form of the outer Holder inequality. In what follows, we refer to a fixed

tlhng S = SD,D"

2.2.1 Trees

Let x be a nonnegative integer. We say that 1" C S is a x-tree if there exists an interval

It € D and a frequency & € R such that

IpClp, &rewd™ VPeT
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The pair (I7,&r) is referred to as top data of T. The notation
I(T) ={l € D: 1= Ip for some P € T}, QT) ={weD":w=wp for some Pe T}

is used for the spatial and frequency components of a k-tree T
Let 1 < j < 2% We say that a s-tree T is of type j if wp = [wfg(”)]c"(”7j), that is, equals
the j-th k-grandchild of its k-parent, for all P € T. Clearly any s-tree T splits as the disjoint

union 7' = |_|]221 T;, with each T}; being a s-tree of type j with the same top data.

Remark 2.2.2. The structure of S and the above definition entails that the intervals {wP®*) :
w € QT)} are nested. Therefore, #{w € Q(T) : £, = p} < 2" for all p > 0. As a first

consequence,

HPET Ip=1}<2° VIeI() (2.2.1)

In general, each tree T' contains both a Littlewood-Paley type and a maximal function
type component. The next definition isolates the Littlewood-Paley part. Say that a x-tree
T is lacunary if

ww €QT)w#w = wnNuw' =a.
and for every tree T, split

T=TYuT, T ={PcT:¢{cwp}, T =T\T (2.2.2)

The next lemma tells us in particular that 7' is a union of at most x2" lacunary trees, and

that the residual part 7°" has additional structure.

Lemma 2.2.3 (Structure of trees). Let T' be a k-tree with top data (Ir,&r). Then T =
LI"_, T, with each T" also a k-tree with the same top data and such that, for allj =1,...,2"
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(i) [Tlﬂ ¢ is a lacunary tree;
(ii) whenever j' # j, the intervals {[w?g(n)rh(n’j/) :Pe [Tfﬂ ov} are pairwise disjoint.

Proof. We set T" = {P €T :scl(P) e 2“Z+“} for 1 <wu < k. Since every P € T" belongs
in T we have that &p € w;(”) and Ip C Ip therefore T" is a tree with top data (I7,&r). We
prove the first claim by taking w,w’ € <[T|ﬂ lac) for which we can assume without loss of
generality that £, < ¢, and w # . If £, = £, it is clear that they cannot intersect. In the
case £, < {,s then 2°¢, < £, henceforth if w Nw' # @ we would have that wP*™ C «’ which
implies that £ € w’ which is absurd by the defintion of [Tﬁ} % For the second claim we
proceed similarly, noting that the case ¢, = ¢, we would have that w = ', and therefore
we can assume 2%/, < £, so that if w and ' intersect we would have wP® C ' = & € '

ch(x,7)

but by the definition of 7}; we have that {7 € [wp(”)} which does not intersect w’ so we

arrive at a contradiction. O

2.2.4 Outer L? on the space of local tiles

For J € D, let S’ be the collection of all tiles P € S with Ip C J. Below, the notation

(P(S”) stands for the 7 spaces on S’endowed with the weighted counting measure

A= > I, Acs
PeA

The collection 77" of all k-trees T' C S concurs to the definition of the outer measure space
(ST, 775, pu?*), with outer measure u”* defined by
1

TeT TeT
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to wit, the infimum above is taken over all collections 7 C T of k-trees whose union covers

A. Below, for a quasi-subadditive size map s as defined in [26, Def. 2.3],
[F:S87 = C] = {s(F,T): T € T""}
we consider the outer LP™ space on (S, T/, u?*),
LP"(J, k,s) = LP"(S7, u”*,s)

as defined in [26, Def. 3.2], for exponents 1 < p,q < oo. The definition therein may be

summarized as follows. First of all, define the outer essential supremum

outsup F' := sup s(F,T) = ||F||poc(s) = || F|| oo (s)-
S TGTJ,H

Secondly, define the super level measure us[F] : [0,00) — [0,00] and the corresponding

nondecreasing rearrangement F**° : [0, 00) — [0, 0o] respectively by
ws|F)(7) = inf {HJ,E(A) soutsup(Flgna) < 7‘} ,

F*3(t) ==inf {7 € [0,00) : pus[F](T) < t}.

We then set

”F||LP7T(J7,‘{75) = ||F*,5Hp:q -

t%F*’S(t)‘

X 2.2.4
La([0,00),9t) ( )

recall that the right hand side is the standard Lorentz LP" quasinorm on [0, 0], see e.g.
(34, Sect. 1.4]. As customary, when ¢ = p we omit ¢ from the subscripts and superscripts.
The main examples of sizes and associated outer LP" spaces that arise in our applications

are the following. For 1 < p < o0, set

HFlTHEP(SJ)

—, TeT’"
||

size,(F,T) =
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For p = 2, we define the variant
sizey ,(F,T) = sup {sizex(F,U) : U € T”* lacunary,U C T}, T T, (2.2.5)

which is also a size. The definition of size,(F, -) and sizey . (F, -) depends on x via the domain
T+ though we do not keep this dependence explicit in the notation.

The modified wave packet transform acting on the dual side of the Carleson operator, in
accordance with the definition (2.1.3) involving w, will be estimated in outer LP"-spaces
(2.2.4) where the parameter x is naturally chosen to be 1. On the outer measure space

(2.2.3) we thus define, with reference to(2.2.2)
sizec(F, T) := sizey(F, T?) +size,(F, T%), T €T”""

The next proposition is a generalization to the Lorentz scale of the outer Holder inequality,
which plays a pivotal role in the applications of outer spaces to modulation invariant singular

integrals.

Proposition 2.2.5. Let m € Ny and s,s1,S0, -+ , Sy be sizes on (S7, u?%, T7%) with the

property that for all function m-tuples Fy,--- ,F, : S’ — C,

s (H Fj,T> <[[sitF.7) vreT’™ (2.2.6)
j=1 j=1

Then for all tuples 0 < D, D1y Pms @ Q1s -y G < 0O, % = > pij, % = Z}n:lqij there
holds

m 1 m

HFJ <mpr H ||FJ'||L1’j»qj(J,sj)

J=1 LPa(Jk,s¢) J=1
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Proof. Chasing definitions, it is immediate to see that

*,S

M t T e
115 (E)SHFJ»W), 0<t<oo
j=1 j=1
and the claim follows from the usual Holder inequality on the spaces L% ([O, 00), %) O]

Remark 2.2.6. Let the assumptions of Proposition 2.2.5 stand, and particularize to the

case s = size; and p = ¢ = 1. Then,
m

115

J=1

m

115

J=1

1
/]

~Y

e(s7)

<m H ||F}'||ij(J,,.@,sj) (2.2.7)
L1(J,k,sizer) j=1

where [26, Prop. 3.6] has been used to get the first bound.

Remark 2.2.7. Let A C S’ be a set of finite outer measure p’*. It may be checked
directly that [14]*5%®= = 1f ,7x(a)), S0 that in particular 1Lall pooo(gpsize ) = /LJ’R(A)%.

Using monotonicity of the size s, a particular case of Proposition 2.2.5 is

1 o loL
IF Al ppagrmg) < 27 1FLall poragype #75(A)P 70, 0<p <pr<oo,0<g< oo

(2.2.8)

2.2.8 Reverse Holder outer L? norms

The next definition is inspired by Remark 2.2.7. Let s be any size on (S7, u/~ T+,
cf. [26, Def. 2.3]. Define, for FF: S/ - C, 1 <a<p<o0,1<¢g<o0ande >0, the

quasi-norms

||F1A||LG,Q(,],,@75)

1E [ xpa(gs) = jlclgj /LJ’”(A)%_% , 1Elypa(rms) = maX{HFHLp,q(J,n,s) , HFHLOO(J,IQ,S)}'
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Remark 2.2.7 tells us immediately that ||F||xpa(j.s < 2%||F||Lp’q(],,€7s) in the range of the

definition. The next proposition should be interpreted as a partial converse of this control
and as a substitute for Proposition 2.2.5 with a smaller right hand side. The Y¢*°(.J, &, s)-

norm is the quantity appearing in our applications.

Proposition 2.2.9. Let m € Nsy and s1,89,++ ,S, be m sizes on (S7, u* T7) with the

property that (2.2.6) holds with s = size;. Suppose that

Pe

1 <a<p <oo, 1< pay.o,Pm < 00, 6::(Zi>—1>0.
=1

Then, with implicit constant possibly depending on m only, there holds

115

=1

1

a m
|]] S m ||F1||X51’00(Jv"”~751) H ”FKHYW’OO(JH»SZ)

01 (s7) =2

Proof of Proposition 2.2.9. Throughout the proof, the constant implied by < is allowed to

depend on m only and vary at each occurrence By scaling we can assume

||F1HX51’°O(J,H,51) - ||F2||YP2700(J’H,52) == ||FmHYPm,OO(J7n,Sm) =L

Under this assumption, we must prove

1 a
m Z \[Ip||F1FoFs - F(P)| S m- (2.2.9)
pes’

Relying on the controls [|Fyl|pnpee s, s, 1 Fellpoo(ps,) < 1 for all 2 < € < m, we iteratively

decompose the support of FyFj3--- F, into pairwise disjoint sets A;, j € N such that

(A <27 max QP%OUJCSU_p(FglAJ) S L (2.2.10)

2<t<m s
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For j € N, let k(j) be the largest integer k with & < Z—f. From the first estimate in (2.2.10)
and the definition of X?1*°(.J, K, s;)-norm, we learn that

1

i
||F11Aj||La,oo(J7,{7sl) < 2J<a‘ pl).

Thus, we may further decompose A; into pairwise disjoint sets {Bj; : —N < k < k(j)},

where NN is an unimportant parameter related to the outer essential supremum of F}, with

outsup(Filg,,) <27«, ™ (Bjy) < oi+i(1-5), (2.2.11)

S1

which means that we may find 7, C 7/ with the property

Bi.c |J T > Hrl J“(Bj,k)§2’““<1*ﬁ>. (2.2.12)

TG'E,k TGTk |J| a

We then estimate, using (2.2.10), (2.2.11) and (2.2.12) and subsequently summing in £,

> Up||FiFFs---Fu(P) < > > |Ir|size)(FiF>yF - Flp,, T)

|‘]| PeA; _N<k<k(j) TET; 1
i - a m 1 a—
< Y S hls(Bls,, D) [[s(Fiia, 1) <2065 Tm) 5T gn
~N<k<k(j) TET;x =2 ~ N<k<k(j)
< 0 (1T ) gt tkG) < _ 0 (X ) G o
~a-—1 ~a-—1 a—1

The claimed bound (2.2.9) follows by summing the estimate of the last display over j € N. [

2.2.10 Lacunary tree estimates

This paragraph contains some sizes, , estimates for W{[f] restricted to lacunary trees,
which we use to explain the role played by this type of trees, and that will also be of use
later.
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Throughout our first discussion, let 7" be a lacunary tree with top data (Ir,&r). For
simplicity, we assume &7 = 0, as the general case of our observations can be recovered by

suitably pre- and post-composing with Mod.¢,. Disjointness of frequency support and rapid
decay tell us that whenever P, P’ € T and ¢p € ®(P), pp € O(P'),

Cip — CIpy

lr

P

M
Uy = L1, = [(op, op)| S 1P| < > o b #F iy = (PP dp) = 0.

This observation and standard kernel estimates tell us that the operator
[ Hrf = Z [Ip|{f, dp)pp, ¢p,pp € ®(P) VPET

pPeT

and its adjoint are standard L*-bounded Calderén-Zygmund operators. Thus, Calderén-
Zygmund theory and the localization trick yield in particular that

1 1
mHHTle,oo S G s T Hr fllp Sp (f Dpoirs
T |IT|p

the latter inequality being true for all 1 < p < co. In particular

sizexs(W[f], T) ~ |Iz| 2| Hr fll2 S (FD2ute S N fllso

with ¢p, pp suitably chosen so that the first absolute equivalence holds. We have just proved

the outer estimate
||W[f]||L°°(J,N,size27*) sp ||f||00 (2213)

The more precise localized estimate of the next proposition may be proved using a semi-
discrete analogue of Hy and the John-Stromberg inequality. The argument is a variation on

[44, Prop. 9.3]. Associate to a collection of tiles P C S and f € L(R) the quasinorms

[flpe = supinfM,f, 0 <p < oo (2.2.14)
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o . _98
Proposition 2.2.11. [|[W[f]1p||z= (s size, ) S (dist(J;supp f)) 2 [flip-

Proof. There is no loss in generality with assuming P C S”. For £ € R, denote by Ty = {P €

P:¢c w%(“)}. Note that T is a tree with top data (J,£). Then

IWLfILp /| (s size, ) < 25up sup [r|72 |(f, op)17(P)]| 2,0 (2.2.15)
¢€R TCT;

for suitably chosen ¢p € ®(P). So we fix { and estimate suppcq, [|(f, gbp)lT(P)HZ%(SJ). By
composing with modulations, we may reduce to £ = 0, and by (2.2.1) and finite splitting,

we may also reduce to having #{P € T¢ : Ip =1} =1 for all I € Z(T¢). Then

I1(f, 6P)1(P)ll 2,5 (£, 6p)Liperctpcry o oo
sup 1 = < sup 1 p&) = Z <f7 @I)hl
TCT; |Ir|2 KeD |K |2 1eT(Te) .
(2.2.16)

where we have set ¢; = \/|Ip|¢p for the unique P € T, with Ip = I, h; stands for the
L?-normalized Haar wavelet on I, and we mean the dyadic BMO. For K € D, K C J, let
Z*(K) be the collection of maximal intervals in I € Z(7;) with I C K. The John-Strémberg

inequality, followed by disjointness of I € Z*(K) tells us that

1 ||HI,semif||1 0o
Z (f,en)hi S ;u%m Z (frer)hs = Is{ull)) \T
Te1(Te) BMO K IEIIC(;?) RS I€T*(K)
1,00
(2.2.17)
having set

Hl,semif = Z <f7¢J>hJ'
JEL(T¢)
JCI
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Standard kernel computations tell us that Hy g, is also an L?-bounded Calderén-Zygmund
operator and in particular is uniformly of type weak-(1,1). Combining with the localization

trick on I € Z*(K),

[ psemif 11 oo S HIC e S HEMLf < ][ e (2.2.18)

Inserting the estimate (2.2.18) into (2.2.17), summing over the disjoint I € Z*(K), and
perusing (2.2.15)-(2.2.16) yields the partial bound [[W[f]|1p||Le (s size,,) S [f]1p- The ad-
ditional decay factor may be easily obtained by a localization trick followed by the partial

result applied to fx; in place of f. n

The following technical lemma will allow us to estimate the L>(.J, s, size, ,) norm of the
wave packet transform restricted to a collection P which is covered by a certain set of top
data. It will not be used until Section 2.4, but this is the most appropriate location for its

proof. Notice that T'(1,£) appearing in the statement that follows is a k-tree with top data

(1,€).

Lemma 2.2.12. Let P C S and F C D x R be a collection of top data covering P, in the

sense that
P= |J T, TUE= {P eP:Ipclcec w;<“>}.
Then

||W[f] 1P||L°°(J,n,size2 ) < 2% sup Size?,*,:‘i(W[f]v T(Ia g))
’ (I,§)eF

Proof. There is no loss in generality with assuming P C S/, and we do so. Fix a lacunary

k-tree T C P and let (I7,&7) be its top data. Note that (I7,&r) does not necessarily belong
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to F. Say that P € PT* if P € T and Ip is a maximal element of Z(T') with respect to
inclusion. By assumption, for each P € P™* we may find (I(P),&(P)) € F with Ip C I(P)
and £(P) € Wb Clearly

T= ] 7(P), TP)={Q=IgxwoeT:IyCIp}.

PePT*

The fact that T is a tree guarantees if ) € T(P) then & € w;(ﬁ) N wg('i), and comparing
scales £(P) € Wi ¢ wg(”). Therefore T'(P) is a x-lacunary tree with top data (Ip,&(P)),

whence the inclusion T'(P) C T(I(P),&(P)) for all P € PT*, and

sizes (W (1), T(P) < sizes. u(WISLTUP)EPY) < sup sizen (W71, T(1,6))

Using (2.2.1) and disjointness of the maximal elements of Z(T"), which are all contained in

[Tv
1 2 2
size;(W[f],T) < | = Y _ |Ip|[sizex(W[f],T(P))]" | <2 sup sizes, .(W[f],T(I.))
[r| 5. (1,)eF
which completes the proof of our main claim. n

2.2.13 Local L?-bound for maximal modulations via wave packet estimates

In this paragraph, as a motivating example, two more outer L” estimates for the wave
packet transforms (2.1.2)-(2.1.2) are stated and combined into a proof of LP-boundedness
for the maximal modulated singular multiplier of (1.0.3) in the local L?-range. The first

concerns the wave packet transform (2.1.2)
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Proposition 2.2.14. Let J € D and f € LZ(R). Then

||W[f]||L2’°°(J,n,sizegy*) SJ <<f>>2,3j (2219)
WA Lemsizes ) Sp (fDpas, 2 <p < oo (2.2.20)

The bound (2.2.19) is a restatement of [26, Theorem 5.1], see also [16,23]. Once (2.2.19) is
at disposal, (2.2.20) follows immediately from its outer L? interpolation with e.g. (2.2.13); an
appropriate interpolation theorem is [26, Prop. 3.5]. A similar, but broader set of estimates
is available for the L”(sizec, J) norms of (2.1.3). As anticipated, the outer norms below refer

to the case k = 1.
Proposition 2.2.15. Let J € D and f € LP(R). Then
[A[f a5l e (1 1,812e0) S (130,

HA[flsz]HLP(J,l,sizec) Sp <f>p,3J7 1 <p< oo

Proposition 2.2.15 is obtained as a consequence of the localized estimate (2.3.1) of Propo-
sition 2.3.2. We send to Section 2.3 for statements and proofs. Propositions 2.2.14 and 2.2.15

may be combined to prove the estimate

Ce(fr f2) Sp I Allpll f2lly, 2<p<oo (2.2.21)

uniformly over all fi, fo € Li°(R) and finite P C S. In turn, via (2.1.6), (2.2.21) entails the

LP(R)-boundedness of (1.0.3) in the same range.

Proof of (2.2.21). Fix fi, fo € L’(R) and a finite P. Using grid property (ii), find J € D
such that, denoting J; = J + j|J|, and setting P; := P NS, there holds
P=P_UPyUPy, supp fi,supp fo C 3J; Vj=0,=£l.
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The easy consideration size,(F,T') < sizey, 1(F,T) and the definitions tell us that

size) (F\Fy, T) < sizey(Fy, T)sizey (Fy, T) 4 sizeoo (Fy, T°)size, (Fy, T)
(2.2.22)
< 2sizeg 1 (Fy, T)sizec(F2, T')
so that a form of (2.2.6) is verified. Applying the outer Holder inequality to Fy = W[f1], F» =

Al f2] in the form of (2.2.7) followed by Propositions 2.2.14 and 2.2.15 thus leads to

Co.(f1, f2) S NE FS [l sy S VTIW AN Lo, 1 sizes ) 1AL 7 (1 sizec)

S il{psr(fadp s S W fully [l 2l

and the proof is completed by the observations that Cp = Cp_, + Cp, + Cp, . O

2.3 Localized embeddings for the modified wave packet transforms

This section contains the statement and proof of the embedding theorems for the modified
wave packet transform (2.1.3), see Proposition 2.3.2. The analysis behind this proposition
is essentially based on a combination of the tree and mass lemmata from [48]. We claim
no particular originality, but choose to present a full argument given the additional compli-
cations brought by the explicit dependence on N(-) of the wavelets in the map (2.1.3), cf.
also the definition of the wavelet classes W(P) from (2.1.4). To handle this dependence, we
borrow a continuity estimate idea from the paper [50] on Stein’s conjecture for the Hilbert

transform along vector fields.

Remark 2.3.1. Before we begin, we make the standing assumption that the function f
playing the role of the argument in (2.1.3) belongs to Li°(R) and that P is a finite subset
of the collection of all tiles S = Sp . The finiteness assumption in the estimates does not
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change the scope of our applications, and may in fact be removed via a limiting argument

when additional regularity assumptions on f are posed; for instance f € C2(R) will suffice.

Proposition 2.3.2. We have

AL el oo sizee) S ey T<p<o0 (2.3.1)

with uniform constant. In particular the above estimate yields the control

||A[f]1]P’||YP1°0(J,1,sizec) S [f]l,]P’u 1 <p< oo

In Proposition 2.3.2, as anticipated in Section 2.2, the tree parameter s equals 1 and
all trees referred to below are 1-trees, without further explicit mention. The proposition is

proved by combining the next two lemmata, involving the auxiliary quantity

dense(f,IP) := sup sup <<f1N71(wp<1))>>1,1P, (2.3.2)
PeP PSP’ P!
P'eS

defined e.g. for f € LF(R) and P C S. The order relation in (2.3.2) is a modification of the

Fefferman ordering defined by

PSP < IpCIp, ) c (2.3.3)
As we use (2.3.3) with k£ = 1 throughout this section, we write < instead of <;.
Remark 2.3.3. A moment’s thought yields dense(f,P) < [f]1p uniformly over P C S.

Lemma 2.3.4. ||A[f]1p||L°°(J,1,sizec) 5 dense(f’ ]P))
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Lemma 2.3.5. Let P C S and § > 0. There exists a decomposition P = P_U| .- T, where

dense(f,P_) <0, each T is a tree with top interval Iy, and the forest F = F(6, f) satisfies

4]
7l >zl SinfMif,  VJeD. (2.3.4)

TeF
IrCJ

The proofs of Lemmata 2.3.4 and 2.3.5 are respectively postponed to Subsections 2.3.6
and 2.3.7. We now show how a combination of these yields Proposition 2.3.2. Fix J € D,

P C S . The bound (2.3.1) is an immediate consequence of

sup max{1, ¢} (A[f]1p)""* (t) < C[f]1.p (2.3.5)

t>0

where C' is an absolute constant explicitly computed below and P C S’. The range ¢t < 1
of estimate (2.3.5) is readily obtained by combining Remark 2.3.3 with the conclusion of
Lemma 2.3.4 and choosing C' to be larger than the product of the respective absolute implicit
constants. Now, notice that the right hand side of (2.3.4) is also controlled by [f]; p. Applying
Lemma 2.3.5 to P with the choice 6 = C [f]T“P, provided C' is larger than twice the implicit

constant in (2.3.4) yields (2.3.5) in the range t > 1.

2.3.6 Proof of Lemma 2.3.4

The proof of the Lemma consists in showing that

sizec (A[f],T) = ﬁ S elALFI(P) + (,1—1, ) |1p|Am<P>2> < dense(f,P) (2.3.6)

PeTo PeTlac

whenever T € T7* is a tree with 7' C P. For any such tree, we introduce the support
intervals
QT = {wh:PecT}.
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We may assume, by splitting, that 7" is a type 2 tree, which means that wp is the right
child of its dyadic parent w;(l) for all P € T. Lemma 2.2.3 thus tells us that the collection
QP(T°") consists of pairwise disjoint intervals, while 77 is a lacunary tree, so that in partic-
ular QP(7"¢) is a nested collection of intervals containing &r. This follows immediately by

combining
fTEUJ?p(l) \V/PGT, WP%CUP/ = wpNwpr = \V/P,PIGTIaC.

Accordingly, the quantity 6(z) := inf {£,,, : N(z) € w%, P € T%} records the minimal active

frequency scale of T2 at each N(z) € R and satisfies
|IN(x) — &r| < d(x), z eR. (2.3.7)

In estimating both contributions, a key role is played by the collection G of maximal

elements in {G € D:3G 2 IpVP € T}. Accordingly, for G € G, j € {ov, lac} decompose
T=T5TuTy, T ={PeT:scd(P)>lg}, T4 ={PeT :sc(P)<(:}.

We begin to estimate the 7 term in (2.3.6). Using the definition and the fact that G is a

partition of R leads to

Z [Ip|A[f](P) <2 Z Z Z [P |(fs prlann—1(wb)) wp =Yp(-, N())

pPeTov *€{+,—} G€G peT*

(2.3.8)
for suitable ¥p € W(P). Note that ¢p are not standard wavelets as they carry the dependence

on the measurable function N from the second argument of ¢p. The basic estimate

|<.fa SOPlGﬂN—l(wS’,)H 5 X}g (CG)dense(f7 ]P)) (239)
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reveals that the x = — sum in (2.3.8) is a tail term. Indeed, also relying on the defining

property of G for the first estimate, and later on (2.2.1),

Z Z |Ip|<f,g0p1GmN71(w%)>,Sdense(f,P)ZZ Z |IP\X1P(CG)

GeG PeTov:— GegG k>0 pPeT?Y
|Ip‘:27k ‘G‘,IpﬂGZ@

S dense( £, P) Y [G1x}, (cc) S dense(. ) [ xf, < denself. B
Geg

(2.3.10)
which is compliant with (2.3.6). The * = + term is estimated as follows. First, note that

T (@) = @ unless G C 97 and there exists P(G) € T with
scl(P(G)) = 2g, dist(G, Ipq)) < scl(P(G)).

Let P'(G) € Spp be the unique tile with Ip(q) = Ipe) and &r € wpr). As the intervals

QP(T°"T(@)) are pairwise disjoint and contained in w;(,l()G),

Z Z [p|(f: prlann—1wh)) S Z G110 e )>>1IP/<)

GEG perg™ &9
< ) |Gldense(f, {P(G)}) < dense(f,P)|Iz],
&5

which also complies with (2.3.6). The ov term in (2.3.8) is thus fully handled.

We move onto the lac term in (2.3.8). With the same notation of the 7" the term, we

estimate
S TAFIPYPIRI <2 > Y Y AP erlonn-1ge)  pl. (2.3.11)
PeTe x€{+,—} Geg peTy"”

The * = — sum in (2.3.11) is handled along the lines of (2.3.10), with an additional ap-

plication of (2.3.9): we omit the details. The rest of the analysis deals with the x = +

43



summand in (2.3.11). The explicit dependence of pp = ¥p(-, N(-)) on N(-) prohibits us
to use orthogonality methods directly. This is obviated by replacing ¢p with the standard

wavelets

¢p = p(&r) € ®(P),  PeT™

Setting (p = |Ip|[ep — ¢p] = |Ip|[¥p(-, N(+)) — ¢p|, P € T, th error term created by the

replacement is

S Al ’faCPlGﬂN 1wt ))‘

Geg,GC9Ir PETIac »+

< dense(f,P) Z <|f|1GmN1(w;’,(}()G))’ Z |CP|1w§g<N(‘))>

Geg,GC9lr PeTgc,Jr

< Z |G|dense(f,P)* < |Ir|dense(f,P)?.

GeG,GIr
For the passage to the second line, note that the intervals QP(T°""(G)) are all contained in

w;(,l()G). The subsequent step was obtained via a Lipschitz estimate in the second argument

of ¥p € ¥(P) and subsequently taking advantage of (2.3.7), so that

S @y (N@) S Y le(x)(;if)gl.

Pperiac PeTY<:4,,,>5(x) r

We are left with estimating the * = + summand in (2.3.11), where the ¢p have been replaced

by the almost orthogonal wavelets ¢p. A principal role is played by the tree operator

Hef = S |IpALf)(P)or

peTlac

As & € WP for all w € Q(T"¢), the intervals Q(7") form a lacunary sequence, that is

wC {€eR: L <dist(¢,&r) <20,} Vw € QT™), £, > {, =min {{, :w € QT*)}.

2
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For a € {{,, : w € w(T"™)}, let ¥, be even, real valued Schwartz functions with
a> /L, L2, < U, < Lo g,

Assuming that {/, : w € T} are separated by a factor of 4, and arguing by finite splitting

otherwise, we obtain for all /, < a < 3,

'HT,a,ﬂf = S IlALI(P)6p = (V5 — W)  Hyf| < M{Hyf),

PeTlac
agéwp <B

due to the frequency support conditions ¢p C wp. Relying on the definition of J(-), cf.

(2.3.7), the modified * = 4+ summand in (2.3.11) is then estimated by

> / 1y )]HT,(;(.)%f\ < dense(f,P)* [ M[Hrf]
Geg VG PG ¢ 9l
GC9lp

< |Ir|dense(f,P)?||Hz |2 < |Ir|dense(f, P)* ( > NP\A[f](P)2> :

peTlac

Balancing out the obtained bounds completes the estimation of lac term in (2.3.8), and in

turn, the proof of Lemma 2.3.6.

2.3.7 Proof of Lemma 2.3.5

The selection of the trees T' € F and consequent estimation of dense( f,[P_) is identical to
[48, Proposition 3.1] and is thus omitted. To prove (2.3.4), it suffices to show that whenever

P’ C S7 is a set of pairwise incomparable tiles with respect to (2.3.3)

jnf (f1yom) >0 = > Il S 07!|7|inf M. (2.3.12)

PeP’
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Due to the premise of (2.3.12), for each P € P’ there exists k = kp > 0 with the property

that

/ 1] > 296 1|
2 IpNN—1(wPV)

and kp is minimal with this property. Let P} be the collection of all P € P' with kp = k.
Perform the following iterative selection. Initialize A := P}, B = @. Among those P* € A
with

% Ipe x SN2 x V=@  VPeB

select one with scl(P*) maximal, and set A .= A\ {P*}, B := BU {P*}. Repeat until no
such P* € A is available. At this point, we may partition P, = | J{P\.(P*) : P* € B} where
P e P, (P if

2 1o x WP N2 Ipe x PV £ @, scl(P) < scl(P¥).
Notice that if P, P' € P} (P*) then w;(l) N w;(,l) D w;(*l), and P, P' are incomparable, so that

the intervals {Ip : P € P,(P*)} are pairwise disjoint and contained in 2¥2/p.. We then

have

Z|]P|<Z Z Ip| < 2 ZU |<25k512 ) /]

PcP, P*€B PeP) (P*) P*cB prep Y 2¢IpxNN!

S 27T f) ke s S 276 1\J|1nf1\/[f

To pass to the second line, note that the sets 28 Ip. "N~ (w P(* )) P* € B are pairwise disjoint

and contained in 2¥*3J. Then (2.3.12) follows by summing over k.
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2.4 Localized wave packet estimates near L'

If the local L?-averages of f are under control, we may combine the bound of Proposition

2.2.11 with (2.2.19) in the single localized estimate

WL elly 2o (gmsize, ) < Culflop- (2.4.1)

The quantities [f],p have been introduced in (2.2.14). This section contains the statement
and main line of proof of a localized estimate for the wave packet transform in terms of local
L? norms in the range 1 < p < 2, with good control on the estimate as p — 1. Throughout
the remainder of this section, we enforce the formal assumptions of Remark 2.3.1 without
further explicit mention.

The main result of [23], a first substitute for (2.4.1) outside local L?; is recalled in the

next proposition.

Proposition 2.4.1. Let 1 < p < 2. For allt > 1 there exists Cyp, > 1 such that the

following holds. Let J be any interval, f € LP(R) and P CS. Then

HW[f]‘&]]]‘PHLtP/(J,n,sizez’*) < Ct,p,n[f]p,[?’-

Proposition 2.4.1 has been used to prove sparse and localized estimates for the Carleson
operator [20] and the bilinear Hilbert transform [16]. However, an inspection of the proof
shows that having fixed ¢ > 1, the constant C;, blows up polynomially in (p — 1)~! as
p— 1T,

The next theorem, which is the main technical novelty of this work, provides us with
a substitute embedding that does not blow up near p = 1. Remark 2.2.7 tells us that
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the norms X;p "% are weaker than the ones appearing on the left hand side of Proposition
2.4.1. Nonetheless, the generalized Holder inequality of Proposition 2.2.9 makes Theorem H

applicable for our purposes.

Theorem H. For allt > 1 there exists Cy,, > 1 such that the following holds. Let1 < p < 2,

J be any interval, f € LE(R) and P C S . Then

IW L2 o e e, < ConlFloe

J.k sizey

Remark 2.4.2. We clarify a delicate point in the statement of Theorem H. Fixing ¢, the
smoothness level of the wave packet transform, as defined in (2.1.2), required for Theorem
H must be greater or equal to, say, M = 10 - [28¢']. Theorem H will be applied below with

the fixed choice t = 2, so that a fixed level of smoothness, say M = 10 - 2%, is sufficient.

The proof of Theorem H occupies the remainder of this section and is structured as
follows. Subsection 2.4.3 introduces a generalization of the wavelet classes &M (P) of (2.1.1)
where the compact frequency support assumption is relaxed to requiring instead vanishing

moments with respect to a fixed frequency.

2.4.3 Relaxed wavelet classes

For an interval I C R and £ € R, define the normalized classes
O17(1,£) = {Mod¢Tr()Dilly 0 : ¥ € '}

00" (1,€) == {Mod¢Tryp)Dilgy 9 : v € ¥, 5(0) = 0} .
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As usual we drop the M when irrelevant or clear from context. If P € S is a tile and

¢p € P(P) we have the inclusions
fewp” = 6p € COIpE),  Eewi” \wp = dp € CBo(lp,E).
The next lemma is a restatement of [23, Lemma 5.2].

Lemma 2.4.4. Suppose 1 € {0,1}, ¢ € ©3M([.€), and K > 1. Then
o=v+ KM, pueCu0)(1,6),  suppy C KI.

Remark 2.4.5. Let P be a tile, and suppose either 1 = 1, £ € kwp or 1 =0, £ € kwp \ wp.

Then Lemma 2.4.4 may be iterated to deduce the expansion of pp € ®3M(P)

pp = ZQ_Mk@P,k,ﬁa erie € CvOY (Ip, ), supp ¢pre C 2"1p. (2.4.2)
k>0

The expansion (2.4.2) is the form of Lemma 2.4.4 we will use in the sequel.

2.4.6 Space-frequency decomposition on minimal tiles

Our aim in this paragraph is to provide a space-frequency decomposition induced by a
finite collection of spatial intervals Z C D, where D is a fixed dyadic grid. The definition also
involves a dilation factor K > 1. The spatial components of the forthcoming decomposition

will come from the collection
CZk(J) == maximal elements of {G € D:9K*G 2 J forall J € J}. (2.4.3)

When clear from context, the subscript K is dropped from the notation. The following
properties, which will be of use to us below, are deduced from (2.4.3).
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(i) CZk(J) partitions R up to a set of zero measure.

(ii) The collection {3G : G € CZk(J)} has finite overlap.
(i) f J € J,G € CZg(J) and G ¢ 9K J then G C R\ 3K J.
(iv) f Je J,G € CZk(J) and G C 3K J then Kl < {;.

(v) whenever h € LP(R) say, there holds

supinf Mh < sup  inf Mh < K% supinf Mh.
Jeg J GeCZi(T) G Jeg J

We briefly comment on the proof of (ii). Indeed up to finite splitting it suffices to check
(i) for the collections CZy () == {G: G € CZk(J),lc € 2527}, r =0,...,7. Indeed let
x € 3Gy for some Gy € CZ} and suppose that for some Gy € CZy(J) with lg, # lg, we
have that 2 € 3G, then 9K2G; D 27TK2Gy D 9IK2GE™Y or 9K2G, D 27K2G; D 9K2GEW

which is absurd by the definition of CZg(J) therefore

> lelx) = > Lag(z) < #{G: G e CZW(T), lg =la,,G C 9G} < 1.
GeCZy(T) GeCZL (), ba=Lg,

The corresponding collection of minimal space-frequency tiles is then defined by
M = M(J) = {G X [5,5 + i) LG eCuT) e %} C Spxy. (2.4.4)

It is clear that M depends on J, but we choose to keep the latter implicit in the notation
when clear from context. Pick 7 € S(R) with suppn C (—1,1) and 5(0) = 5=. For P € M

define the approximate projection operator Ilp, acting on f € L*(R) by

pr = [fllp] *Np, np = MOdinfwPDﬂicl(P)n'
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The Poisson summation formula tells us that

f=> Tpf (2.4.5)

PeM

with convergence in L*(R) and almost everywhere. The decomposition (2.4.5) is approxi-

mately space-frequency localized in the sense that

supp pr C SIP, pr & C[f]17p@1(fp,cwp)

for some absolute constant C. The approximate projection onto the space-frequency region

associated to some W C M is then defined, for say f € L?(R), by

Oy f =Y Ipf.
PewW
Below, whenever W C M, by
WG] ={PeW:Ip=G} (2.4.6)

we indicate the tiles of W having a fixed spatial interval G € CZg(J).

2.4.7 Main line of proof of Theorem H

This paragraph reduces Theorem H to a Calderén-Zygmund type decomposition of f
with respect to an arbitrary family of top data. Details are as follows. To prove the estimate

of Theorem H, having fixed
P C S finite, gCACS’, pF(A) = N < o,
we need to prove the control

W enall o (ssize, ) S N? 7 [flpp (2.4.7)
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for f € L°(R). If N <1 then (2.4.7) follows immediately from an application of Proposition
2.2.11 and (2.2.8). We deal with the difficult case N > 1. To do so, we select an almost

optimal collection of trees 7 C T7* covering A, that is

AclJr D Il <2N)|,

TeT TeT

and denote by F = {(Ir,&r) : T € T} the corresponding collection of top data. Relying on

the collection F, for a given f € LF(R), we produce the decomposition

f=9+0, (2.4.8)
1 11

lglly < CelJ[2N2"w [f],p (2.4.9)

| W [b] 1PﬁA||L0°(J7,{,siZe2’*) <CGyN ¥ [f]p,IP (2.4.10)

where the constant C; depends only on the fixed parameter ¢ > 1 and is allowed to vary at
each occurrence. With (2.4.9)-(2.4.10) in hand, we use quasi-subadditivity of the L>*(/J, , size, , )-

quasinorm to obtain

HW[f] 1PQAHL27°°(J,K,size27*) <2 ”W[g] 1PQAHL2»°°(J,n,size27*) +2 HW[b] 1]PﬁAHLQv°°(J,n,size2,*)
1
<2 ||W[g]||L2’°°(J,msize2’*) +4[W(b] 1PmA||L°°(J,ﬁ,size27*) Nz
1 1_1 11
< O lglly + CN2 7 [flpp < CN2T0 [ fpp.
To pass to the second line, we have employed monotonicity on both terms and (2.2.8). The
subsequent bound follows from an application of Proposition 2.2.14, in particular (2.2.19)
and by taking advantage of (2.4.10), while the final estimate is a consequence of (2.4.9). This
completes the proof of (2.4.7), and in turn of Theorem H, up to actual construction of the

splitting f = g + b with properties (2.4.9)-(2.4.10). This task is conducted in the upcoming
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paragraphs. The first step towards (2.4.9)-(2.4.10) is to construct a suitable collection of

minimal space-frequency tiles adapted to the collection P. To do so, take
J={Je€D:J=Ipfor someP € P}

in (2.4.3). The choice of the constant K > 1 depends on N, p and ¢t and will be made explicit
in (2.4.22) below. From now on, M = M(J) refers to the collection obtained from (2.4.4)
for this choice of J, K. Note that the spatial components of the tiles in M come from the
collection CZ (7). This fact will be employed in the proof quite a few times.

Below, the notation T is used, with meaning clear from context, for both the top data
pair itself T'= (I7,&r) € F and to the set T = T(Ip,é7) ={P € P: Ip C Iy, {7 € w;(“)}.
The collection of top data F induces a certain decomposition of the minimal tiles M, as
follows. First, the principal region Q is defined by

Q= J{QeM:sd(Q)|infwg — &| < K,Io C3KIr}. (2.4.11)
TeF

Each T'= (Ir,&r) € F then partitions the tail region M\ Q into the two components

Q(T) ={Q e M\ Q:scl(Q)|infwg — &r| > K},
(2.4.12)
Q"(T) ={Q e M\ Q:scl(Q)|infwg — &r| < K}
roughly corresponding to the frequency tails and spatial tails with respect to T'. The defini-

tions guarantee that M = QU Q/(T) LU Q"(T) for each T € F.
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2.4.8 Space-frequency tail estimates

The following technical lemma, via a suitable decomposition, shows how the action of the
(adjoint) frequency tails projection Ilg () on wave packets localized to 1" is exponentially

small in the separation parameter K.

Lemma 2.4.9. Let M be a large integer. There exists a positive constant C' = C(M) and a

decomposition
* _ 1T%,avg *,05C
oy = Hgr) + g
with the following properties.

(i) For each pair f,g € L*(R), there exists h € L*(R) such that |h| < C|f| and
(f g9 = K~"(h, g). (2.4.13)

(ii) If I € D, the pointwise inequality

M
S [ on| < cxH (2.4.14)
T

holds for each L*™-normalized collection {¢p : P € T,|Ip|'¢pp € OM(Ip,&ér)}.

Proof. With the notation of (2.4.6),

Moy (ry = Z [f* (Za(—))] 1e Zg = Z Q-

GeCZk(T) QeQ/(T)[G]
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The claimed decomposition is

*,avV, > *,05C *,poly,, *,cance
Myiery f = Z Za(&r) (1af), UG = Ugin + o I
GECZK(j)
= > o [ ModfPY (Za) - Zolen)ts]
GeCZk ()
W f= Y e [ Mod.f|Z - PY (Za)
GeCZr ()

where n = 1M0 and PfLT(Zg) is the order n Taylor polynomial of 22; centered at &p. First,

observe that (2.4.13) follows by taking advantage of the trivial estimate

aV(ZG)(ﬁT)‘ S KV (lg), (2.4.15)
and subsequently setting
1 —~
h = e Z Za(ér)(Aaf) = |h| Sar | f]- (2.4.16)
GECZK(j)

As an intermediate step towards (2.4.14), we first prove a preliminary result under a tem-
porary spatial compact support assumption. Namely, for i € {poly,, cancel, }, Ha,i(T) has the

M
property that if pp € ©,% (Ip,&r) with supp pp C Alp

‘Hg@f’(‘;gwplw (IAKM Z 3 1o (fTG) (2.4.17)

m=1 GeCZk (J),3GNAIp#2

*,cance — g
‘H@’,(T) I”cpp‘ SOA > 1o < G) . (2.4.18)

lr,
GeCZk(T),3GNAIp#

M
We check (2.4.17). The adaptation |pp| S Axd; . »(§) allows us to estimate

|e-eyas| < (/5 o |£—§T|f+/£_&>gw !wpﬂ’!g—&lj—”‘f) S A(l,) 7
o P (2.4.19)
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for 1 < j <n+ 1. Combining (2.4.19) with (2.4.15) yields (2.4.17). Finally, an application
of (2.4.19) for j = n + 1 yields (2.4.18). In order to prove (2.4.14), apply Remark 2.4.2 to
write ¢p as rapidly decaying superposition of wave packets with compact support and use

the intermediate estimate (2.4.17) as in

S T orve

k>0 PeT
14 " 14

<227—k2k(n+1)z Z 1GmaX{KM ( ¢ ) }( G >
N '\ 5% 3

k>0 PET GeCZy () 280y, 28, (2.4.20)

3GCc3-2kIp
_M ,gk KG
eyt ¥ o6 2 (5)
k>0 GeCZk () PeT

3GC6-2FT 3GC3-2FIp

The proof of (2.4.14) is then completed by summing up, and taking advantage of the next

two observations. First, when G € CZg(J) and j € Z the cardinality estimate
#{PeT:3GC3 2"Ip,scl(P)=2"} < (k+2)2F

holds uniformly in j,G. Next, when G € CZg(J), J € J and 3G N 2*J # @, then
G C 3-2FJ necessarily, and in particular 3K2/g < ly ;. Therefore, the counting estimate in
the last display allows us to perform a single scale analysis in the innermost sum of (2.4.20),

and using the disjointness of G € CZ(J), we can estimate (2.4.20) by

M
E 2_7 12k+3] < K 1OX 0 (2421)
k>0

Finally, the proof of the lemma is finished by taking C(M) to be the larger of the two implied

constants in (2.4.16), (2.4.21). O

Lemma 2.4.10. If f € L°(R) and T € F there holds

sizes, (W ina(f)], T) < K5 [f] 1.
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Proof. The proof is carried by splitting IIy g into frequency and spatial tails. Namely,

Ihnof = U@ f + U [,
and it suffices to check that

1z sizes (W [lgir) £, T) S K5 flr.

!/

The case i = ' is dealt with first. By identical considerations to those from the proof of

Proposition 2.2.11, it suffices to bound

i Y
Z [ p[(f, gy ybp) iy S K20 [flipll]

pPeT’

IpCI 1,00

for an arbitrary interval I € D, lacunary tree 7" C T, and collection {¢p € ®(P): P € T'}.

To this purpose, Lemma 2.4.9 entails

S Ul T e, <|f| > | |1p|¢p]> < k¥ | || <k Hine
peT’
IpCI 1 IPC]

Furthermore, (2.4.13) of Lemma 2.4.9 may be used to find |h| < C|f| such that the estimate

> Ip|(f. 10 o OP) S KM S K[ fe

PeT’

IpCI 1,00

holds. This completes the handling of the term i =’. The term i = ” is much easier, The
definition of Q”(7") guarantees that supp gy () f N KIr = @. Therefore, an application of

Lemma 2.2.11 in the first step yields

sizes, (W Hgrir) f1, T) S K% | £
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while properties (ii) and (v) of the spatial intervals CZy(J) guarantee the bound

Mo fl| . S K sup  inf M(f) S K3[flie
GeCzy(J) @

The claim of the lemma for the Q”(T") component is then an immediate consequence of the

last two displays. O]

2.4.11 Conclusion of the proof

The choices

Ko=NvGitar) A= M) = 30725 (2.4.22)

and the decomposition (2.4.8) are now made explicit. The choice of M, anticipated in
Remark 2.4.2, ensures (2.4.9), (2.4.10) both hold. In view of the minimal tiles expansion

(2.4.5), set in (2.4.8)

g = HQf, b= HM\Qf.

Turn to the verification of (2.4.9)-(2.4.10). For the first, write

Mof= Y, Tgg > (f1e) = Us, = Y e

GeCZk () GeCZk(T) PcQI[q]

A straightforward use of Plancherel’s theorem entails that HH@ G]H2_>2 < 1. Furthermore,
observe that Ug is a sum of #Q [G] Schwartz functions uniformly adapted to disjoint intervals

of length 651, leading to the estimates

= =
N

#Q[G

G

7], <

L] s = el . s (229)

la
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where the implication is obtained by log-convexity, Young’s inequality, and finally Riesz-
Thorin interpolation of the (2,1) and (2, 2) estimates. Preliminarily, also note

#Q[G] < 3K inf Z 13k, VG e CZg(T). (2.4.23)
TeT

Estimate (2.4.9) then follows by combining (2.4.23), the fact that supp Hgjgf C 3G and the

finite overlap (ii) of {3G : G € CZk(J)} in the string of inequalities

1
3 1

13
Mo flly S > Mo fly | <117 K* (Z IIT|> [floe

GeCZy(T),GCIK T TeT
SN [fl
as claimed. For the property (2.4.10), by Lemma 2.2.12 it suffices to check that for each
T € T there holds

_ 1
sizey ,(Ihnofs T) SN 7 [flpp.

Taking notice of the relation between M and ¢ in (2.4.22), this was proved in Lemma 2.4.10.

2.5 Proof of Theorem B

Fix a tiling S = Sppr, f; € LZ(R), 7 = 1,2. The crux of the matter is to establish the

estimate

sup - Cp(f1, f2) S é HM(iJ)(chE)

PCS finite

(2.5.1)

1

with implied constant independent of £ > 0, referring to the model sums (2.1.9). In fact, if
C stands for (1.0.3), in view of (2.1.6), the form (Cf1, f2) is controlled by the sum of < 1

terms of the type appearing in the left hand side of (2.5.1). The same sparse bound for the
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periodic operator (1.0.5) then follows from (1.0.4) via a standard transference type argument
based on the Stein-Weiss lemma, see e.g [65, Appendix A].

We turn to the proof of (2.5.1), fixing 0 < ¢ < %, and a finite collection P C S. To
unify notation below, it is convenient to write ¢; = ﬁ, g¢> = 1 and ¢ = (q1, q2) below. Let
Q C D be a partition of R with the property that supp f; C 3Q for j = 1,2, @ € Q. For

each Q € Q, define §3(Q) = {Q} and inductively for m > 0
2
B(S) := maximal B € D with B C SN U {M,, [fil3s] > O(fi)gss}, S €8a(Q),
j=1

Snn(@ = |J B(S).
)

S€8m(Q

Finish by setting S == Ugeo U0 Sn(Q). Note that the sets {Es : S € S} defined by
Eg =S\ [U{B: B € B(S)}] are pairwise disjoint, and the packing condition

1
>, 1BI<lsl, Ses

BeB(S)

which holds provided the absolute constant © is picked suitably large, guarantees that |S| <

2|Eg| for all S € S. Also, the iterated stopping interval nature of the collection S yields

sup  inf My, f; < <fj>qj7357 Ses, j=12.
IcS I
1¢Upep(s) B

Therefore, the partition

P=||P(S), PS)=qPecP:IpcSIp¢ ) B
ses BeB(S)

inherits the property

[fj]qg'JP’(S) S <fj>Qj73S’ sSes, j=12 (2'5'2)
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By virtue of (2.2.22), we may apply Proposition 2.2.9 with p; = 2¢] = g, a=2and p; =1
in the second step, and pass to the second line through an appeal to Theorem H with ¢ = 2

and p = ¢; for W, and Proposition 2.3.1 for A, obtaining

f17f2 ZCIP’(S f17f2 Z ‘S| HW fl ]'IP(S H 2‘11*‘”( ||A[f2]1p(s)|’Y11°°(S,sizec)

S7Si262’1,*)
Ses SGS
Z|S| LI Filasees) < = ZIEsllnfM (f1, f2) < —||Mq~(f17fz)||1-
SES 7j=12 SES

The middle almost-inequality in the last line relies on (2.5.2) as well as |Eg| 2 |S|, while the

final step is due to the pairwise disjointness of Fg, S € §. The proof is thus complete.

2.6 Proof of Theorem G
2.6.1 Rank 1 forms

This paragraph devises a reformulation, within our framework, of the trilinear forms
discretizing multipliers with singularity along a rank one subspace, such as the bilinear
Hilbert transforms. Although these date back in essence to the works of Lacey-Thiele [46,47],
they appear in a form closer to ours in [60]. The main change in our definition with respect to
the usual one is that our does not involve multi-tiles, at least explicitly, to avoid reformulating
outer LP-spaces and use our embedding theorems in the most direct way possible.

Fix k > 1, two dual dyadic grids D,D’" and the tiling S = Spp. Our construction,

similarly to [60], relies on the two order relations on S

P< P = IpClp, o™ co®™,  k>1,
P< P < P<,Pand P% P, K> 2.
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Note that <, has been already defined in (2.3.3) and is recalled here for the reader’s conve-
nience. Let x > 10, P be a finite subset of S with scales separated by a factor of 2°¢, and

n=(n,n,n3):P—S xS xS have the properties
rl. the components n; : P — S are injective maps for j = 1,2, 3;
2. I, py = Ip for j =1,2,3;

r3. if P, P’ € P are such that n;(P) <y n;(P’) for some j € {1,2,3} then ny(P) S, n(P)

for all k € {1,2,3};

r4. if P, P’ € P are such that n;(P) <1 n;(P') for some j € {1,2,3} then n(P) S, ne(P)

for all k € {1,2,3}, and in fact n,(P) <. np(P') for at least two indices k € {1, 2, 3}.

It is convenient to denote by P;, j € {1, 2,3} the ranges of n;. The rank 1 form of parameter

K associated to n and Q C P acts on a triple f; € L&°(R) by

Noo(fi, fa, f3) = Z‘[P| H W fl(n;(P))

PcQ je{1,2,3}

where W stands for the wave packet transform (2.1.2).
A typical example of map 7 satisfying rl. to r4. and thus giving rise to rank 1 forms is
the following. Let I” be a 1-dimensional subspace of T' = {£ € R® : £, + & + & = 0} as in

the statement of Theorem G and Q C D’ x D' x D’ be a finite collection satisfying
gl éQl = EQQ = €Q3 c 2HZ+h for all Q = Ql X QQ X Qg S Q,

g2. QNI £ @ forall Q € Q,
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g3. Klg, <dist(Q,I") < K?{g, for all Q € Q

for parameters H, K € N and h € {0,..., H — 1}. If H, K are sufficiently large parameters
depending on I, conditions gl. to g3. tell us that the collection {Q € Q : )1 = w} has at
most one element for each w € D', see e.g. [60, Lemma 6.2]. If such collection is nonempty,
we may then write () = w X Q2(w) X Q3(w) for its unique element. Of course, the index j =1
can be replaced by any other index in a symmetric statement. In this setting, if P =P, is a

finite subset of {P € S: wp = @ for some @ € Q} the map
nZP—)SXSXS, U(P):(P7IPXQ2(WP>,IPXQg(Wp))

satisfies rl. to r4. The usual model sum reduction of [60] may be then summarized in the
statement that the singular multipliers (2.0.9) lie in the closed convex hull of rank 1 forms
as defined above, with parameter s chosen sufficiently large depending on the parameter K

in g3. Therefore Theorem G will follow from the estimate

Ny(fis for f3) < % NG s £5)s (26.1)

uniformly over all rank 1 forms, for all tuples 7 = (p1, pa, p3) satisfying the conditions in
(2.0.10). Symmetry in the indices p1, ps, p3 and a complex interpolation argument allow us
to restrict ourselves to tackling (2.6.1) in the extremal case py = 7=, p2 = 2 = p3, for which

e(p) = e. We do so in the next paragraph.
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2.6.2 Using the wave packet embeddding

We now prove (2.6.1) in the above mentioned extremal case. By eventually composing
1 with the inverse of 7y, we reduce to the case where P = IP; and 7); is the identity map.
Properties rl. to r4. of the map n associated to a rank 1 form of fixed constant x come into

play via the following observation. If @ C S C S, @ € S, then the set
SQ)={PeS:P5:1Q}

is a 1-tree with top (IQ,ch). Property r3. tells us that the sets 7;(S(Q)) = {n;(P) : P €
S(Q)} are s-trees with top (I,,(q), ¢ ) = (IQ,CWNQ)), j = 1,2,3. Furthermore, property

T TR (@)

r4. and scale separation as in the proof of Lemma 2.2.3 allows us to decompose
3
S(@Q) =J5(@.4)
j=1

with each S(Q, j) having the property that n;(S(Q,j)), obviously contained in 7(S(Q)),

is a lacunary s-tree with top (IQ,cwn (Q)) for k € {1,2,3} \ {j}. In accordance with this
k

property, we define three new variants of (2.2.5) on the outer measure space (S7, 771, u”t).

Setting for k =1,2,3
sizey, x(F,T) = sup {sizes(F on; ', U) : U C n(T), U lacunary s-tree} TeT™
we have the estimate

size (P, T) S ] sizeswn(Fun ), VT €T (2.6.2)

k=1,2,3

This inequality, proved at the end of this section, is our analogue of the usual tree estimate,
see e.g. [60, Lemma 7.3], and it is essentially the only additional piece of machinery we were
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left to set up. Indeed, if Q C P NS’ is arbitrary, (2.6.2) allows us to appeal to Proposition

2.2.9 with the obvious choice of exponents, and obtain the chain of inequalities

WQ<f17f27f3 1QH fk 077k
21(s7)
/1
e wintoml s, T 110 OV o0l
=¥ (2.6.3)
|J|
H]' [fIDHXa (Sjmsmeg*) H Hlnk((@) [kaHYZOO(SJ,/@,sizeg,*)

2,3

|J| QH s

k=2,3

The passage to the third line follows by transport of structure, while for the subsequent step
we have applied Theorem H and estimate (2.4.1), and used that the spatial components, and
thus the corresponding local tile norms on @, are invariant under . With (2.6.3) in hand,
a stopping procedure akin to that devised in Section 2.5 easily leads to (2.6.1). Details are

left to the interested reader.

Proof of (2.6.2). Let T € T”! be a 1-tree with top (Ir,&7), and m(T') be the set of those
@ € T which are maximal with respect to <;. As & € w;(l) for all P € T, it must hold
that Io N Ig = @ whenever ), Q" € m(T) with @ # @'. Clearly, T is the disjoint union of
the 1-trees {T'(Q) : @ € m(T")}. Simply from the definitions and the disjointness we just

stressed

[ Ig|size; (F, T(Q)) < sup size)(F,T(Q))
| L7  Qem(1) | |

size; (F,T) < Z

Qem(T)

sup sizeo, i, (F,T(Q)) < sizeg, 1 (F,T)
Qem(T)
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where the second bound holds for k& € {1,2,3} and follows by obvious inclusion considera-

tions. The last two inequalities tell us that it suffices to prove (2.6.2) for 7' = T'(@)). In that

case,

3
sizel(FngFg,T(Q)) S ZSizel(FlFQF?nT(Qaj))

=1
3
<Y sizeno(F, T(Q. ) [ [ size2(Fr. T(Q. 5))
j=1 k#j
3
= Z N s;tg ' sizey (Fj o nj_l, T]j({P})) Hsizeg (Fk on; ', nk(T(Qaj)))
1 PET(Q k#j
3
<3 H sizea .k (Fr, T(Q))
k=1

as desired. We have used in the last step the lacunarity of n,(7(Q, 7)) and of the single tile

trees {{P}: P € T(Q,j)}. O
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3. Multilinear wavelet T(1) theorem

3.1 Preliminaries

An (m + 1)-linear form A defined on the (m + 1)-fold product of the Schwartz space
S(RY) is a singular integral form if its off-diagonal kernel satisfies the standard size and

smoothness estimates (see Definition 3.3.1 below). A singular integral form A is bounded on

LPo(R?) x - -+ x LPm(R?) for all

1
l<pj<oo, » —=1, (3.1.1)
=0 i

if and only if A is Calderdon-Zygmund, which we take to mean that it satisfies the weak bound-
edness property (see Definition 3.3.2 below) and the following multilinear 7'(1) condition:

There exists b; € BMO(R?) such that for every ¢ in S(R?) with mean zero,

A (¢, 1,...,1) = (¢, b;), (3.1.2)

where A*J permutes the Oth and jth argument (see (3.1.3) below). When m = 1, this is
the well known 7'(1) theorem of David and Journé [17] which was extended to m > 2 by
Grafakos and Torres [36].

Our goal in this chapter is to prove a T'(1) theorem for compactness of multilinear singular
integral forms. The first difference between the boundedness problem and compactness prob-
lem is that compactness is a property of operators, while boundedness in the reflexive range
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(3.1.1) can be equivalently stated in terms of forms. Accordingly for each j = 0,1,...,m,

we associate to A the m-linear adjoint operators 7%/ and transposed forms A*/ by

<f07T*7j(f1’ .- 7fm)> - A*J(fOufh .- 7fm> - A(fj7f17 .- '7fj—1’f07fj+17 SR 7fm)' (313)

If A is Calderén-Zygmund, then we say each 77 is an m-linear Calderén-Zygmund operator
(CZO). Furthermore, define Ty = {T%7}72.
In addition to that, for each o € S,,11 , the permutation group on {0,1,...,m}, and A

a m + 1- linear form we define

Aa(fov .- 7fm) = A(fo’(O)a .- 'afa(m))‘

3.2 Wavelets

In this section we will review some preliminaries regarding wavelets and introduce one
of the building blocks of our representation, wavelet forms. The notation which will be

expanded below will also be used in Chapter 4.

3.2.1 Analysis of the parameter space

Introduce the parameter space

7% ={z = (w,t) :w e R% t >0},

1
loc

Syt = .= 30t ().

whose elements z = (w, t) act on functions f € L (R?) functions by the formula

t
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Let 4 be the measure on Z¢ given by

/F(z)du(z):/ooo/wp(w,t)@, F e Co(2%).

Zzd

Notice that p is invariant under Sy,. To analyze multilinear operators, we will use wavelets
adapted to two parameters, one in Z™® and the other in Z?. First, given w € R™? and

wy € R?, define

For z = (w,s) € Z™ and ¢ = (wy,t) € Z4, define

min{s,t}°

max{t, s, |w — wp|y }4+9"

[Z7 dé =

We will also say z > ( if s > t. Notice that if § > ¢’ then [z, (]s < [z,(]s. For M > 1 and

¢ € Z4, introduce BT (¢) which are the following approximate balls in the hyperbolic metric,
B (() = {z e 2™ 127M < s <2M |w —wol, < 12V}

when ¢ = (0,1), M = 1, or m = 1, those parameters are omitted from the notation. Given

a function F: Z% — C we say lim F(z) = L if

Z—00

lim sup |F(z) — L| = 0.
M—>00z€IB%M
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3.2.2 Wavelet classes and forms

The building blocks of our representation theorem are wavelets for which we are going to
introduce notation and relevant classes as well as the averaging lemmata from [21,25]. We

denote the space of Schwartz functions by S(R?) and the mean-zero subspace

SY(RY) = {90 c S(RY) : /cp(x) dz = 0} :
We fix a radial function ¢ € S°(R?), supported in a ball and appropriately normalized which

we will call the mother wavelet, in which case the Calderén reproducing formula holds,

namely
f= [ (fodouduts) VS e SR (.2.1)
z
For the convenience of the reader, we restate the setup from [21] on which we will base our

analysis. For 0 < § <1 we introduce the norm on functions ¢ € C°(R™?),

lells = sup (o)™ (Joto) + EEEDZADN) ) TTaT

x,heR™d
0<|h|<1

Definition 3.2.3. For z = (w,t) € Z%, the wavelet class W7 is defined by
U0 ={p e CO(R™) : |(Sy,) tollvs <1}, z=(w,...,w,t) € Z™,

and its cancellative subclass, for j = 1,...,m is denoted by U7/ and consists of p € W9
such that

/ gO(l’l,LUQ,...,I‘m)dxj = 0.
Rd

Let x. denote the L*>°-normalized decay factor adapted to the parameter z = (w, t),

X:(z) = <x_tw>_l.
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With this notation, we can recast ¢ € U™ as

Lo A’
ol < —x3 "l — (- + h)| < =Xt
¢ g+

With the goal of making this thesis as self contained as possible, as well as to set the
stage for the representation in Proposition 3.3.8, we state the averaging lemmata from [21]

and a refinement of the averaging procedure in [25].

Lemma 3.2.4. Let ¢ be the mother wavelet and k > 0. There exist functions ', i = 1,2,3, 4,

satisfying
(i) supp ¢’ C B(0,1);
(ii) ', ¢ € CH(RY);
(iir) Y29t € SO(RY);
(iv) For any s >0 and f € S(RY),

du d
/ / (F, Gy AT / Fph 02 o+ (62 )t du.
r>s J u€Rd r R4

Lemma 3.2.5. Let ¢; € S(R?) for j =1,...,m and 0 < n < § < 1. There exists C > 0

such that for any H : Z™% x Z% — C satisfying

|H(Z7C)| S [Zadéa

there holds

ve = /z\ezmd H(Z’ C) (Qol KRR gOm)Z d,u(z) c C\I/?’n‘

z>(

Furthermore, if ¢; € S8°, then v, € C‘IIZ”’W,
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Finally, we end this section by introducing the wavelet forms, which will be used to

systematically study m-linear CZOs.

Definition 3.2.6. Given a collection {e, € C,v, € U™%! : » € Z¢} define the associated

(m + 1)-linear canonical wavelet form by

/Z o 0 U ® o ) ().

More generally, we say U is a wavelet form if U? is a canonical wavelet form for some
0 € Sppt1. We say U is a bounded wavelet form if sup,c 4 || < co. Additionally, we say U

is a compact wavelet form if it is a bounded wavelet form for which

lim ¢, = 0.
Z—00

Wavelet forms may be viewed as a generalization of the Calderon-Toeplitz operators
considered in [64, 70]. More generally though, all cancellative CZ forms can be realized
as wavelet forms [21,25]. Bounded wavelet forms are bounded in the following sense. In
fact, they themselves are cancellative CZ forms so Proposition 3.2.8 below follows from any
number of results [36,51,53,55,63]. See also [21, Proposition 5.1] for a direct proof of the
sparse (1,...,1) bound for bounded wavelet forms. Let us introduce some bookkeeping to

concisely describe the full range of Lebesgue space estimates for CZOs.

Definition 3.2.7. Let
P={(p1,..-,pm): 1 <p; <oo}.

We introduce the shorthand for p e P,

j=1

LP(RY) = >m< LP(RY), BP = {(fh---afm) € L7 || fill oy ey < 1}7 r(p) = (Z l) :
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Then the admissible classes of Holder tuples we consider are

Q={@r(P) :pe P, r(p) <oo}.

Given (p,r) € @, and an m-linear operator T, denote by ||TH5T the operator norm from

LP(RY) — L"(RY), i.e.

Tl = sup T fo)ll e -
(f15-fm )EBP

Furthermore, we define the following modification at the endpoint,

Tllopmo = sup [[T(f, -, fa)llpmomaey,  P'=(00;-..,00).

(f1yeesfm)EBP

Proposition 3.2.8. For each (p,r) € Q, there exists Cz, > 0 such that for any bounded

wavelet form U and any T € Ty,

1T, < Cyr sup le.| .- (3.2.2)
ze

Furthermore, there exists Cny > 0 such that

||T||oo,BMO S Coo sup |5z| . (323)
zeZd

3.3 Wavelet representation of compact Calderén-Zygmund forms

Let us make rigorous the informal definitions given in the introduction.

Definition 3.3.1. A function K € L. (R™VI\ {z € (RH)™ : 35 = - = 2,,}) is a
0-singular integral kernel if there exist C'x,d > 0 such that

Ck

(3272 [0 — o)™’
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=0, om h 0y--rm/| = (Z;n:l|l.0_xj|)md+6’

were Ai denotes the difference operator in the j-th position. We say A is an m-linear singular
integral form if there exists a singular integral kernel K such that for any fo,..., fn € S

with ML supp f; = & one has

m

A(va R fm) = /(]Rd)m-H K(Z‘) H fj(fL’j) dz.

=0

When m is understood, we simply say A is a singular integral form.

We need the following function spaces in order to define Calderén-Zygmund forms. For

f € LL (R?), define the BMO(R?) norm

loc

1 1
HfHBMO(Rd) = Ssup @/Q‘f@) — fol dz, fo= |Q_|/Qf<?/) dy.

Q cube
Then, the functions of bounded mean oscillation (BMO) are those with finite BMO(RR?) norm.
Let Cy(R?) be the space of all continuous functions f on R? for which limy, . f(z) = 0.
Then, the Banach space of functions with continuous mean oscillation, CMO(R?), is defined
to be the closure of Cy(R?) in the norm |||y ey Furthermore, BMO(R?) becomes a a

Banach space upon identifying functions which differ by a constant.

Definition 3.3.2. We say a singular integral form A is a Calderén-Zygmund (CZ) form if

there exists C\y such that

tmd |A(Syz900, cee aSYzSOm)‘ < CW7 v@j S C(?O(B(Ov 1)) N \1126%1)7

and furthermore, there exist b; € BMO(RR?) such that (3.1.2) holds. The rigorous definition
of (3.1.2) is as follows. Let § € C°(RY) with § = 1 near the origin. Then, for ¢t > 0, set
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6, = 6(-t). We say (3.1.2) holds, and sometimes use the language 7*/(1,...,1) = b;, if for
all p € SO(RY),

lim A (o, 0, 0;,...,0;) = (p,b;) . (3.3.1)

t—0

Furthermore, let ¢ be a mother wavelet and 12, 4* be the Schwartz functions from Lemma

3.24. For j =1,...,m define
j—1 m—1
;= <® W) ® ((X) ¢4) ® ¢. (3.3.2)
i=1 i=j
For each M > 1, define

WY(¢() = sup  sup
z2€BY; () 618m+1
=15 m

A7 () 06) |72 ¢ = (w,). (3.3.3)
A CZ form A is said to be a compact CZ form if for some (all) M > 1

b; € CMO(R?), CIL% W () = 0.
Finally, we say a CZ form is cancellative if b; = 0.

Remark 3.3.3. It is not too difficult to see that if WA — 0 for some M then the same
holds for each M. Furthermore, since S°(R?) is dense in the Hardy space H'(R?), which is
the dual space of BMO(R?), (3.3.1) should be interpreted as a weak limit, i.e. T7*7(6,, ..., 0;)

converges weakly to b; in BMO(R?).
Now we justify our description of such forms as compact.

Definition 3.3.4. Let T" be an m-linear CZO. We say T is a compact CZO if for each
(p,r) € Q, T(BP) is precompact in L"(R?), and at the upper endpoint, T'(B{°) is precompact
in CMO(R?), where

By = {(fl, ooy fm) € (oo f; compactly supported} :
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Remark 3.3.5. The classical definition of compactness of an abstract m-linear operator on
quasi-normed spaces [3, 6] is that it maps bounded sets to precompact sets. In Definition
3.3.4, we are imposing this definition of compactness on T" acting from LP(R?) — L"(R?) for
all (p,r) in @ and at the upper endpoint because our testing conditions allow us to conclude
compactness in this full range. It is tempting to only require T : LP(R?) — L"(R%) be
compact for a single (p,r), but the current state of multilinear extrapolation of compactness

[6,40] does not include the endpoints.

Proposition 3.3.6. Let A be an (m+1)-linear CZ form such that each T € Ty is a compact

CZO. Then, each b; € CMO(R?), j =0,...,m, and for each M > 1,

lim W/ (¢) = 0. (3.3.4)

(—o0

Proof. To prove the first conclusion, since A is a CZ form, (3.3.1) holds. Let us fix j =
0,...,m. Up to an absolute constant, (6;,...,0;) € B3, so there exists t,, — 0 such that
T*3(0y,,...,0;) converges in CMO(R?). However, the second statement in Remark 3.3.3
requires this limit to coincide with b;, and the first part is proved. To prove the second
conclusion, let us suppose, towards a contradiction, that there exists M > 1 such that
(3.3.4) does not hold. Therefore we can find o € S, 11, 1E € S(RY)™, ¢ > 0 and sequences

Co = (W, t,) € Z% and z,, € Z™? such that

G oo, m€BRG), [N (000)| 2 du=tide, d=t"T0,, (335)

and r € (1,00). Let us suppose, for simplicity that o is the identity. If not, then in what
follows we would replace T@Zn by T%7©) (@ZZ’) where @Eg/ is an appropriate permutation of the
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m elements of 1,. Since {¢, ey is a bounded sequence in LP(RY), for some j € P with
r(p) = r, by the compactness of T" we find a subsequence so that {T Jnk}keN is convergent
in L"(RY). Finally, it is not hard to check that since ¢, — 0o, ¢, converges weakly to zero

in L7 (R%) which, since r > 1, is the dual space of L"(R%). Therefore,

A7 (G sty ) = <¢nk,T¢7nk> 50, ask — oo,

which contradicts (3.3.5). Finally, we remark that if € (1, 00) the weak convergence of ¢,

to zero in Lﬁ(Rd) follows from the fact that for any K > 1 and g € C°(R?) there holds

1
lim ({ =22 ) =0
2—00 (Kt)y

which follows from the inequality

lgs,
‘<<Kt>ff’g> -}

and the fact this inner product vanishes when K B, Nsupp (g) # 9. O]

. _d d
< min { gl (K07 llglh, (Kt)*

The main step in the representation theorem is given in Proposition ?? below. There we
will show that a compact cancellative CZ form enjoys additional decay in the wavelet basis.
For a general cancellative CZ form, we recall the following lemma from [21, Lemma 3.3]
regarding its decay when applied to a (m + 1)-tuple of wavelets. When we want to specify

the value of the smoothness parameter § > 0 from Definition 3.3.1, we say A is a 0-CZ form.

Lemma 3.3.7. Let A be a cancellative §-CZ form, n € (0,6), and ¢; € C3°(B(0,1)), j =
1,...,m—1. Then, there exists C' > 0 such that for all 0 € S,,41, ( € Z%, and z € Z™¢ with

z 2,

A? (Jz,ég)( <Clz.(,, V=11 @100
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Proof. By symmetry, we can assume o is the identity element and 7 = 1. Furthermore, set
J = 1;1 to declutter the notation. For each n € N, we will construct {5? eC: (e Zd} and

p > 0 with the properties that

sup leZ| <1,  lim |e}] =0,
ceZpd| 4|N <_>OO| ¢|

. B (¢) n=1,
‘A (wz, ¢<>‘ S22, zeld 2> C.
By (O \By1(¢) n =2,

Assuming we have such e¢, define

oo
B
n=1
The first and third properties of e in (??) are immediate and the second follows by Lebesgue’s
dominated convergence theorem since each e approaches zero. Now, to construct £¢, let

6; > 0 such that n < &; < d3 < §. By Lemma 3.3.7 and the definition of W}/ from (3.3.3),

we have for any 0 € (0, 1),

A (i) | S (0) I, min{ LWROY ™, 2 €BI(O), 22 C.

We choose 6 close enough to 1 that mdf + 9.0 — md = ;. With this specific choice of 6, one
can easily verify that (t‘md)1_9 [z, ¢]5, = [2, (s, Setting e} = min{1, W;(¢)}'~? handles the

case n = 1. For n > 2, we factor, with p = §; — 7,

12, Cly, = (max et w0|})p 2,0),.

Therefore, one only needs to verify that for z € B"(¢)\B.",(¢), the first factor is comparable
to 277", The proof is concluded by setting e = min{1, Wr () 0. O
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Proposition 3.3.8. Fvery compact cancellative CZ form is a finite sum of compact wavelet

forms.

Proof. We recycle the proof of the representation theorem in [21] relying on Lemma 3.2.4

and Lemma 3.2.5. First expand each f; using (3.2.1) to obtain

Mforoooafud = [ M 600) o) (20 U ) o).

Split the integration region into m(m + 1) components defined by
{(20,- -, 2m) € (ZY)™ i 2 > 25 > 2, i £ Gk}, k=0,...,m, j=0,... k=1,k+1,...,m.

For each j, k and each i # j, k, we apply Lemma 3.2.4 to (f;, ¢.,) ¢.,. Furthermore, setting

fo= ®;n:0 fo(j) and relabelling the variables, we obtain

Moot =3 [ g (60 (172 () @ 0c) dia(z) dp(©)
where the sum is taken over all o E_ Smi1 and over the combinations 1/79 is of the form
(3.3.2) for some j = 1,...,m and ¥, is of the same form but with 12 and 9* replaced by 1!
and 13 from Lemma 3.2.4. Each of these summands (of which there are only finitely many

depending on m), will now be converted to a compact wavelet form by Proposition ?? and

Lemma 3.2.5. Fix now one o, 156, and 150. We define

0= [, A7 ()60}

z>(

and the result will be proved if we can show ¥ = e, for some v, € \I/Zl’d;m and e, approach-
ing zero as ¢ — oo. Let ¢ be the collection provided by Proposition ??. In particular, the

third property in (??) guarantees

—

A7 (), b¢) = ecH(z,C¢),  [H(z, Q)| < [2,(ly,
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whence the proof is concluded by Lemma 3.2.5 and recalling that the m-th component of 1[70

is the mother wavelet and thus belongs to S°(R?). O

3.4 Compact wavelet forms

In this section we will prove the compact analogue of Proposition 3.2.8.

Proposition 3.4.1. Let U be a compact wavelet form. Then each T € Ty is a compact

CZ0.

Proof. Let us fix a compact wavelet form U, T € Ty, and (p,r) € Q. T(f1,..., fm)(z) is

either of the form

/Zd e (fi® @ frmyva) do(x)dpu(z) or /Zd e: (fo) ® @ form), va(2,7) ® ¢2) du(2)

(3.4.1)
for some o0 € S,, and v, € \Il;”";;j; by v.(z,-) we mean for each x it returns the function
(X9, ..., Tm) — vo(x, 29, ..., xy). We will only handle the second case, and we will reduce,
by symmetry, to the case where o is the identity. The first case in (3.4.1) is simpler, though
in fact they are handled in exactly the same fashion. Let p > 0 and split the integral defining
T over By, and Z%\ By, where M is chosen large enough that |e.| < p for 2 ¢ Bj,. Therefore,
the operator norm of the second component is, by (3.2.2) controlled by p. The proof will be

concluded if we can show R, defined by

Rpf(x):/B <f1®"'®fmyyz<x7')®¢z> dlu'(z)a f:(flu---7fm)7
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is compact. By the Riesz-Kolmogorov compactness criteria (see e.g. [58] and [75] for the

case 0 < r < 1), we need to prove that

lim sup/ |R,f(x)|"dz = 0, (3.4.2)
N=00 i J|z|>N

lim sup / |R,f(x + h) — R,f(x)|"dz = 0. (3.4.3)
h=0¢epi JRrd

To this end we will give suitable pointwise bounds on the operator R, and the differences

induced by it. Since M is fixed, we will crucially use that z = (w,t) € By, satisfies
t~1, w1 xS, (3.4.4)

where X = X(0,1) While ~ and < now denote comparability with constants depending on M.
Let us now note the preliminary trivial bounds that can be obtained via applying Holder’s

inequality and (3.4.4). To this end, introduce, for j =1,...,m — 1,

d 1 d
)\0:——1-77, )\j:—,—i-ﬁ, U:—(T+5)>O.
T m

m

It is easy to check that md + 0 = Z;:Ol Aj; Aor > d, and \;p; > d, thus for z € By,

[(fms 02)| < N Sl 1020, S 1
(3.4.5)
< x(@).

~Y

m—1
1 1,
[(v.(2, ), L@ ... @ fma)| < t—dxz(x)“ IT 51, t—dxi’
j=1

P

With these estimates in hand we have that |R,f| < x* and therefore (3.4.2) holds since

Aor > d. In the same way, we have that

‘<U2(I7 ')7 fl ®...Q fm71> - <Uz($ + h’> ')7f1 X...Q0 fm71>‘ S ’h’(SX(I))\O

and therefore | R f(x)—R,f(z—h)| < |h|°x(z)* from which (3.4.3) now follows. It remains to
handle the endpoint case. We claim it suffices to establish that for each sequence {f,},en C
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>, R,f, has a convergent subsequence in CMO(R?). Indeed, given such an {f,},cn, by a

diagonalization argument, we may extract a subsequence {f,, } xen such that for each p, = 1

n’

{R,, £, }ren is Cauchy in CMO(R?). Then, for any e > 0 pick n large enough that

1T = Ry, | <

Ll m

o0,BMO

Such an n exists by the condition £, — 0 and (3.2.3). Then, pick N large enough that for

all i,k > N, [|R,, £, — Ry, £, lgpomaey < 5- Therefore, by the triangle inequality,
1 TE0, — T | gvomay < €

whence {Tf,, }ren is Cauchy and has a limit in CMO(RR?). Now it remains to show each R,
is compact. Applying (3.4.5) with all p; = oo implies the same pointwise estimates as above,
which implies R, : B — C,(R?) and that the family {R,f : f € BS°} is equicontinuous.
Therefore, by the Arzela-Ascoli theorem and a diagonalization argument, given a sequence
{f. }nen € B3°, we can obtain a subsequence such that {R,f,, } ren is Cauchy in ||'||Loo([—n,n]d)
for each n € N. However, the pointwise estimate for R,f shows that given ¢ > 0 we can find
n large enough that |R,f,, (z)| < & for = outside [—n,n]?. Combining these two facts with
the triangle inequality shows that {R,f,, }ren is Cauchy in ||-||; . which is a stronger norm
than ||-[|pyo(ray- Finally, recalling that R,f,, € C,(R9) establishes that the limit belongs to
CMO(RY).

Remark 3.4.2. We remark that (3.4.4) follows from the fact that if B, C C'B,/ then we

have the following elementary pointwise inequality

Xz ,SC Xz-
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Indeedify € B, = |y—z| <t=|y—a| < |y—z|+ |z — 2| S, (where the last inequality

was obtained because |x — 2’| < t') therefore

Xz’(y) ~ 17 Xz(y) ~1

so the desired inequality is trivially true. If y ¢ B, we have that |y — z| > ¢ therefore

ly =2 <ly—a[+lz -2 Sly—=z[+¥

hence we can estimate

and the claim is proved.

3.5 Compactness of paraproducts

In this section we will deal with the compactness of the paraproducts that arise from
our representation theorem. Specifically, we will prove that the membership of the symbols
in CMO(R?) is sufficient for the compactness of the associated paraproduct by giving an
essential norm estimate. Given (p,r) € @), and an m-linear operator 7', define the essential

norm

||T||ess(ﬁ,r) o

— inf ||T-K|
Kc

ompact

and the natural modification at the endpoint which we denote by ||| (e Bmoy Where the

ess(

operator norm of 7' — K is measured in ||| , gyo-
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Definition 3.5.1. Let ¥ € C5°(B(0,1)) with [9(z)dz = 1. For each z € Z%, set ¥, = Sy, 9.

Given b € BMO(RY), define the (m + 1)-linear form II; by

Hb(fo,f1,~-7fm):/zd ) or 6) [T U5, 0-
7=1

IT, is called a paraproduct form with symbol b. Any m-linear operator in Ty, is called a

paraproduct with symbol b, which we denote by Sj.
In this section we aim to prove the following.
Proposition 3.5.2. If b € CMO(R?), then any paraproduct Sy is a compact CZO.

Before proving this, let us review the standard boundedness theory of paraproducts,
analogous to Proposition 3.2.8 for wavelet forms. To do so, it is convenient to view Il
as an (m + 2)-linear form, where the extra input function is b itself. In fact, in this way
o (fo, .-y fn) = U(b, fo,- .., fm) where U is a canonical (m + 2)-linear wavelet form with
le.| < 1. Such forms are cancellative in the first and second positions, for which a slight

strengthening of (3.2.2) and (3.2.3) holds:

TeTv, Volfor o fm) = U0, fo, s fm),
(3.5.1)

1T, < Cor lIbllgyvomey s 1Tl o < Coo l1bllpromay,  (Pi7) € Q.
In particular, (3.5.1) applies to T = Sp. A proof of (3.5.1) is omitted since it follows from
standard considerations; see e.g. the proofs and comments following Propositions 2.5 and
2.7 in [25].
Now, to give a description of CMO(R?) which is more amenable to Sy, let us introduce
an orthonormal wavelet system {¢r} .. Here D is a dyadic grid on R? and for each I € D,
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set C(I) = (c(1),(I)) € Z¢, where c(I) is center of the cube I and ¢(I) the side length.
Then ¢y = Sy, ;)¢ for a specific ¢ € ClIfl 11 . We have kept 17 to be L'-normalized, so the

reproducing formula is

F=Y 1 (fr )t

1eD

Now introduce the family of orthogonal projections for M > 1,

Puf =Y [If,vn)r, Du={l€D:((I)€By}, Pj=1d-Py.

I€Dy,

From [76, Lemma 2.20], an equivalent characterization of b € CMO(RR?) is that

lim HPM

M— o0

bHBMO(Rd) =0.

Therefore, Proposition 3.5.2 will be a consequence of the following essential norm estimate.

Proposition 3.5.3. Let S, be a paraproduct with symbol b € BMO(R?). Then for each

(7,r) € QU {(c0, BMO)},

15| (3.5.2)

ess

i) S lﬁn_}gof ||P1\J/_[b||BMO(Rd) :

Proof. Let M > 1 large, and perform the splitting Sy, = Ry + Ty where

mmwmmzém o) T] 50 0-) 6- dnc2),
100M j=1

and R); is same but the integration is taken over B1ggy;. The operator R, is clearly compact
by repeating the discussion made in §3.4 to show that R, there was compact. Therefore the

essential norm of Sy is controlled by the operator norm of T);. Now, for z &€ Bigon, we can
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calculate the pairings appearing in the above equation by expanding b with the aid of the
wavelet basis {11} ,cp:

For the first term we will employ the linear wavelet averaging process from Lemma 3.2.5.

We expand

PMb (bz Z |I| 1/}1' ¢Ia¢z _<b Z |]| w17¢z>¢1>

I€Dy, 1€Dy

Since ¢ € \Ill(]) and ¢, € WL one can compute (17, ¢.)| < [z, ((I)]1 (see e.g. [25, Lemma

2
2.3] or [31, Appendix, Lemmata 2 and 4]). Furthermore, since ((I) € By, and z & Bigons,

1

[z,(]1 S M~i[z,(]1. Now, to apply Lemma 3.2.5, rewrite

S 111, 6y = / H(C, =)0 du(©),
I1€D)y

where for each I € Dy and ¢ = (w,t) € I x (@,K(I)], we define

1]
p(l % (5 0]
and H(C,2) = 0 it ¢ & Urep, I x (%2, (I)]. Since |H((,2)| S M~i[z,(]1, Lemma 3.2.5

";ﬁ = wla H(Cv Z) = <w}7¢z>7

1.
provides a universal constant C' and \, € C\Ifi’g’l such that

Tu(fore . ) = M 00 + (P, o)) TT 02 s di().
/Zd\]BloOM ( >3—1

Therefore, (3.5.2) follows by the triangle inequality and (3.5.1). O

3.6 Proofs of Theorems C and D

Let us now put together the pieces from the previous sections to prove the following
compact T'(1) wavelet representation theorem.
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Proof of Theorem C. To show A. implies B. we isolate the cancellative part of A, namely
Ac=A—Tl,, IIy= ZH;;?.
§=0
Ac is definitely a CZ form, and to verify that it is cancellative, simply note that since

(9,1) = 1, by the reproducing formula (3.2.1), for ¢ € S°(R?),

My Lo ) = [ (6:0) (6209 du(e) = (0.

and since ¢ is cancellative, Hz’j(cp, 1,...;,1)=0for j =1,...,m. We want to apply Propo-
sition 3.3.8 to Ac so we must establish that it is a compact CZ form. Since b; € CMO(R?),
each S € Ty, is compact by Proposition 3.5.2, so by Proposition 3.3.6, II, is a compact CZ
form. Since we also know that A is a compact CZ form, A. must indeed be compact, and B.
follows by applying Proposition 3.3.8 to A.. B. implies C. is a consequence of Propositions

3.4.1 and 3.5.2. Finally, C. implies A. is the content of Proposition 3.3.6. O]
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4. Bloom’s inequality via the wavelet representation theorem

4.1 Introduction

The commutator of an operator T" with the multiplication operator, given by a symbol
b, is defined as [b, T|f = T f —T(bf). Coifman-Rochberg-Weiss in [11] characterized BMO
in terms of the commutators of Riesz transforms. Subsequently, Bloom proved, in [4], that

the commutator of the Hilbert transform,

Hf =puwv. l Mdy

) x—y
is bounded from LP(w) to LP(0), with w, o € A,, if and only if b € BMO(rv) namely if

Jo1b— (b)oldx
||b||BMO(y) = Sgp ( 9 Vo) > < 00

. Holmes, Lacey and Wick in [38] proved the upper bound for general

S =

where v = (%)
Calderén-Zygmund operators and characterized BMO(v) in terms of the boundedness of
the commutators with Riesz transforms. Except for the characterization of function spaces,
commutator theorems imply the so-called div-curl lemmata and weak factorization results
for H!. Finally, off-diagonal results for commutators have applications in characterizing the
norm of certain function spaces such as BMO, the homogeneous Holder space C% and L

by dualizing against functions in the image of the Jacobian [43].
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The foundational tool used in [37] was the representation theorem of Hytonen [42] to
analyze a Calderén-Zygmund operator as a rapidly decaying superposition of dyadic shifts,
with the most elementary example being the martingale transform, of arbitrary complexity
which was used to give an affirmative answer to the A, conjecture. Recently, Di Plinio, Wick
and Williams in [25] devised a wavelet representation leveraging the fact that a Calderén-
Zygmund operator applied to a wavelet is a rougher wavepacket with smoothness and local-
ization reflecting the kernel estimates and smoothness of the operator. One of the advantages
of their approach is that the representation formula only consists of a single complexity zero

cancellative operator, a single paraproduct, and a single adjoint paraproduct.

4.1.1 Wavelet coefficients , the intrinsic square function and averaging lemmata

We will need the notation for the intrinsic wavelet coefficient for z € Z¢, and its can-

cellative counterpart, namely we define

Wif = sup [(f,0)], WI°f = sup [(f &)l

¢€‘I’g (}56‘1’2;0
Sometimes, given a cube @ centered at cg € R? with sidelength /o we will use the notation
\Il‘é2 f instead of the notation \IJ‘ECQ ‘) f and likewise for the cancellative intrinsic wavelet coef-

ficient. Furthermore, for § € (0, 1) we introduce the intrinsic square function of smoothness

ng:(/ooo(\pg;of)Q%)Q.

By [25, Proposition 2.6] we have the LP(w, R?), p > 1 boundedness of S5 for w € A,.

J
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To end this section we will give a wavelet averaging lemma. This lemma and its successor
is a slight generalization of [25, Lemma 3.2]. In vague terms, this lemma asserts that if one
averages elements of a wavelet class with respect to the measure of the form a(z, z’)du(z),

when a(z, z') decays in a certain way, the output is a slightly rougher wavelet.

Lemma 4.1.2. Let o, € U and let u(z,2') : Zx Z¢ — C a Borel measurable function with

|u(z,2")| < [z, 2|5 then for all 0 < n < 0 we have the membership

d
1/}2 = / u( Z/dILL / / I' t I + at 6t>>t P(z+at,Bt) /Bda € C \I{W
z Rd B
In particular, we have the following memberships

1
d

= / / u((z,t), (z + at, ﬁt))tdgp(ﬁat’gt)—ﬁda e G,V
acRd B

o= [ a0t at B S da €

Proposition 4.1.3. Let ¢, have the property that |p.| < x4 and X € (0,d). Finally,

let u(z,2') : Z4 x Z%* — C a Borel measurable function satisfying the inequality

min {t,#'}°

lu(z, ') < 1w(z7z/)m

where the region F C Z% x Z¢ is defined by

F = {(272,) AR AR |:E —JZ’| Z max{t,t'}}.

Then
d
Pl :/ / u( (2 + at, Bt P (orat pr) —Bda
a€R? JO 6
00 d
¢ —/ / u((z,t), (z + at, b’t))t P (z+at,Bt) ﬁd
a€R? J1 ﬁ

satisfy the following estimates

. i I
ie{nf} = |¢Z(y)‘ <n t)‘t—dxzd A e (0,6).
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4.2 Paraproduct decomposition and two weight estimates

The treatment of commutators of singular integral operators via representation theorems
has been based on the exploitation of the formula of the product of two functions as a sum

of paraproducts and their adjoints. We start with ¢ € S(R?) with the properties
supp (¢) C {zeR?: |z| <2} and ¢=1on {zeR?: |z| <1},

Hence following the approach in [33, Section 1.2.2] we may write

fg—/ f*@/)tg*qbt / f*(btg*wt P(f,9)+Pg, f)

(4.2.1)

P(f,g) = / Frogetll w) = - Y 9@ o()
0 la|=1

It is clear that supp () C {z € R?: 1 < |z] < 2}.

Proceeding in the same manner as in [33] we further decompose the adjoint form to P

<P<f7 g)7h> = <7D1(f: g)ah> + <7)2<f7 g)7h>

by introducing the decomposition ¢ = ¢ + 1) and ¢M 1) 3 ) € S(R?) with the
properties

supp<@>c{§eﬂ%d:|f|<§}, supp (@)c{fel&dzidad}

—_—

GO©0) =0, @ =1 on (suppo® +suppd)) © {5 <l < 4}
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and so

P = [ 7 [ Rendueieneas) ([ aeitaeneds) i

:/ / T F o (@) gx (@) Te P () Lde
R4 JO t

oW () g%t (2) Tk 6 () L
=[] e g e o @) G

= <731(f, g), h) + <P2(fa 9)7 h>

Where

Pt = [ [ el @ gxnte) e - )T,

o dt

Pt = [ [ 7eu@) grvnte) oo - ) o
R Jo

In the proposition below we give two weight estimates for paraproducts that will be used

later on to estimate the main term of the commutator. In the propositions that follow Sy

and S5 are going to denote the permutation groups of 2 and 3 elements respectively.

=

Proposition 4.2.1. Letp>1w,0 € A, and v = (%) then we have that

/

(I}élsg /sl saso, fo(l)HLp(w,Rd) Hf<7(2)HLp'(Ul—p'7Rd)

[(PrLlfr, f2), )l S

\(Iflélsr; 1f2ll aso, fo(l)HLp(w,Rd) chr(?:)HLp/(gl—p'Rd)

;

gélsg 111l a0, fﬂ@)HLp(w,Rd) Hfa(fi)HLp’(glfp’,Rd)

[(Pa(f1, f2): f3)] S

\Urrégr; 1721l aso, fU(l)HLp(w,Rd) Hfo(?v)HLp’(gl—p',Rd)

[(P(f1, f2): [3)] S Cf}élsf; HfQHBMOV

for) HLp(w,Rd) ||f0(3)HLp’(al—p’,Rd) :
Proof. The proposition is well known in the literature and we will only prove the first impli-

cation as the rest have an similar treatment, however, for completeness purposes we include
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a proof. Indeed by H}(R?)-BMO,,(R?) duality, see for example [27, Theorem 5.2, Theorem

5.5] we have that

[(Pu(fos f2)s f3)| < [l fsllgnio,, PL(f1s f)llgy S I fsllmo, (15¢(PL(fy o))l -

Where S denotes the square function with respect to a wavelet system {Cé}a: .. 29-1,0€D

of order 10d. We have for ¢ € {1,...,2? =1} and Q € D

Pt eh = [ [ Reehasu@Ge ol = [ o e 0P Glan:)

Pz = Syzlo7 p e {¢(1)7¢7W} ) <= (.I‘,t)

From [25, Lemma 2.3] we have the estimate

(o, )| < [(cqs o), 2y

for any n € (0,10d). In addition to that for any ¢ > 1

max {tqua |l’ — ZL’/|}
min {t, (¢}

d
(600 S gt 30 5 ) it (),
Henceforth we have that, for n close to 10d that

O e ) I )

Therefore using wavelet averaging lemma 4.1.2 we have that

[ 5060 .o 0 (2) = i My () o). vg € O

for some absolute constant C. Therefore

Sc(Pi(f1, f2)) S My(f1)S(f2)
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where S is the intrinsic square function. From this we learn that

1Se (Pl Pl gy S WM (O oy 1S o vy S Ml oy 121 1019

provided that ¢ has been chosen close to 1. O

In addition to the diagonal estimates we obtained in the previous proposition, standard
techniques and the usage of the intrinsic square function allows us to get off-diagonal esti-

mates when the symbol belongs in L"(R%).

Proposition 4.2.2. Let 1 < g < p < oo, r with the property that i = % + }D and a weight

with w? € A,,w? € A, Then the following estimates hold

;

‘Ijrég; ||f3||Lr(Rd) ||f0'(1)HLP(wP’Rd) ||f0(2)”L‘I’(w*q’7]Rd)

|<7D1(f1a f2)7 f3>| 5
\ gélsg HfQHLT(Rd) Hfff(l)”wP,LP(Rd) Hfa(?’)Hqu(w*q',Rd)
)

min [ fll gy | Fo ) 2oun ey | Fo@ | oo e

[(P2(f1, f2), f3)] S

0 (Ll gy (1o l o ey [ o) o e

|<P(f17 f2)7 f3>| S/ (I,Iélsré ”fQHL’"(Rd) ||f0'(1)HLP(wP’]Rd) ||f0(3)HLq/(w7q”Rd) .

Proof. We only prove the first estimate where o(1) = 1,0(2) =2 and f3 € L”(Rd) we choose

¢ with the property f — ¢ € L"(R%) so by the cancellation properties of wﬁg) we can rewrite

(Pi(f1, f2), f3) = (Pi(f1, fa), f3 — ©)

and therefore

(il ) fo= I S [ MOS0

< [IMCO Lo wr ety 1S (F2) | o (o ey 15 (Fs = )] 1 ay
5 ||f1||Lp(wp,Rd) ||f2||Lq’(wfq’7Rd) ||f3 - CHLT(Rd)
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which completes the proof. O]
With the aid of (4.2.1) we can write

b, Tf = T(bf) = bTf = MTy(f) +Ra(f)
May(f) = T(P(f,b)) + T(Pa(b, f)) = Pa(b, Tf) = P(Tf,b) (4.22)
Rap(f) = T(Pi(b, ) = Pr(b, Tf)).

We will separately prove estimates for Ry, and MT,(f). Immediately from Corollary 4.2.1,

combined with the boundedness of Calderén-Zygmund operators on weighted LP spaces

associated to A, weights, is the following.

3=

Corollary H.1. Let p > 1,w,0 € A, and v = (%) then we have the estimate

HMT,b<f)”Lp(w) S HbHBMOV HfHLp(g) .
In addition to that, if w? € A, and w? € A, and é =14 % then

M2 () Lo uor ety S 10N @y 17l oo ety -

4.3 One weight estimates

In this section we will handle the dual form to the remainder term Ry. It is organized as
follows. First, we will calculate the remainder term and rewrite it in a form that allows us
to use wavelet averaging. Next, we will give certain estimates in the coefficients that appear

that allow us to perform this averaging.
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Proposition 4.3.1. Let T be a d-cancellative Calderon-Zygmund operator. Then for each

n € (0,8) there exist u,,v, € CUTC, for some absolute constant C, with the property that

Raal)o) = [ (0.0 = 6000, 02 ) ) )
[0 = o)) ) O ) )l
Where p,, = ?wp? p e {qb(l)v %W} , W= <y7 S)‘

Proof. Using [25, Theorem A] for T' we learn that for each n € (0,7) there exist u,, v, € CUT°

7(0) = [ (fouda(a)

Coupling this information with the fact that

f—/ooof*?/ft%

and subtracting gzﬁ,(zl) and gzﬁg) inside the pairings involving b in the definitions of the ad-
joint forms to T'(Pi(b, f)) and Py(b, T f) respectively we obtain the desired formula after
performing a routine calculation.

O

The next lemma allows us to estimate the pairings that involve b that appear in Propo-
sition 4.3.1 by ||b]|gyo conceding only a logarithm factor of the ratio of the distance to the

smallest scale and the ratio of the scales. A variant when the function belongs in the homo-
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geneous Holder space is obtained. Before stating the lemma we will introduce the following

quantity that will help us declutter notation

max{l,log <max{t’t/}>} if Lzl <9

min{¢,t’} max{t,t'}
/
d(z, 2" )Bmo =

max {1, log <m|f;f;|,}> } if else.
Lemma 4.3.2. Let ( € S(R?) with the property that [y, = 1. Then the following estimate

holds
|(b,Sy.C — Sy..C)| < d(z, 2 )Mo max {igf Mb, iBl’lf M#b} :
In addition to that,

’<b7 SyzC - Syz’CH S [b]éoﬁa(Rd) max {t7 t,a ’x - x/’}a :

Proof. We start off by recalling the trivial and well known estimates

. 1
(b, ¢:) — bp.| Sinf Myb, bp, = b(y)dy
B t B(xz,t)
|bg, — bap.| < max{1,log(a)} i}glf Mub, a>1
b, — bs,| S igf Myb, when B,N B, # 0, t ~ t.

Henceforth by virtue of the first estimate, it suffices to estimate the quantity |bBZ —bp,|.

Without loss of generality we assume that ¢ > t. First, we consider the case @ < 1 then

B(z,t) N B(x',t) # & so

t . .
|bB(x,t)_bB(z/,t/)| S |bB(x,t)_bB(x/,t)|+|bB(x’,t)_bB(a:’,t’)| 5 max {1, log (;) } max {lng M#b, llglf M#b} .
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To conclude the proof of the first part of the lemma we may focus, from now in the case that

jo—a|
>,

10B(z,t) — bB@ )| < 0Bt — OB(@jo—2')| + 0B Jr—a2') — OB@ Jo—a/)| + |0B@ ) — DB jo—a'))|

_ /
< max {1, log (%) } max {igf M.b, iélf M#b} .

The second part of the lemma is easily obtained as a combination of the inequality
[€0s Clay) — ()| S [B] 0. (ra)
and the quantitative membership of b in C'%%(R%). O

Proposition 4.3.3. Let 6 > 0 then we have that for each n € (0,9) there holds

d(z, Z/>BMO[27 Z/]5 §5ﬂ7 HbHBMO [27 Z/]ﬂ‘

Proof. The proof of this proposition is elementary and is based on the fact that log(t) <. t°

when ¢ > 1.

In the following lemma we estimate the L?(w, R?) norm of Rr.

Lemma 4.3.4. If w € A, we have that

||RT,b(f)||Lp(w7Rd) S ”bHBMO ||f||Lp(w,Rd) :

Proof. We claim that for each n € (0,d) there exist \,, x, € CUT for some absolute positive

constant C' with the property that

(Resl1).9) = o ([ (140 9)02) + [ (05 g)an))
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Indeed, combining Lemmata 4.3.2, 4.1.2, [25, Lemma 2.3|, the fact that wgg’),wz,uz,vz €

CU%° and Proposition 4.3.3 we obtain that

1 :
2 I10]] /Zd(l% qbi}) — gbgl)><¢£§>7vz>¢zldu(zl) e Cyn
BMO
: :
Kyt W Ld<b, ngl) - ¢i})><uza¢z’>w5)’)d/f/<zl) c C\I/Z’O_
BMO

Using [25, Proposition 2.6] we obtain that the (1, 1) sparse norm of Ry, is controlled by
16]lgapo henceforth by the well known theory of sparse forms, see for example [59] we obtain

that

[(Rrwf, 0| S Ibllsaio N F 1oy 191 o sy

from which we the conclusion of the lemma readily follows. m

The rest of this section is going to be concerned with the obtaining off-diagonal estimates.
Initially, we will prove a sparse type estimate for bi-sublinear forms that arise either from
the paraproducts or the error term Rypj related to symbols that belong in the homogeneous

Holder space.

Lemma 4.3.5. Let § = - — % with p < q and § > 0 then

1
p

Z %”\I%f%g S sup Z EC]L%+d<f>1,R<g>1,R‘
QeD S .5-sparse ReS
In particular, we have that
Z fcgd‘l’&@f@d@g S HfHLP(wP,Rd) ||g||Lq’(w*Q’,]Rd) ‘
QeD

Proof. As the value of ¢ is not important for the proof of this lemma we will omit it from
the notation of the intrinsic wavelet coefficients. By standard limiting arguments it suffices
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to show that for a finite collection of dyadic cubes, T(Q), contained in Q and f, g € LF(R?)
with the additional property that there holds supp (f),supp (g) C 3Q
S U NRf Urg S sup > N 1r(9) 1A
RET(Q) S .5-sparse ResS
To initiate our stopping time argument, we make the initial observation that
Z (R Vrg S hiroldhm@
ReT(Q)

where for each IC C D and r > 0 we adopt the notation [f], x = sup i%fMT f. This estimate
Rek

is an immediate consequence of the calculation

D=3 Y =) sy (4:3.1)

RCQ 2k<10p=2klg,RCQ 2k <1

We construct S(@) inductively as follows. We initially set So(Q) = {Q} and form > 1, R €

Sm-1(Q)
Z(R) :== maximal I € D with 91 C RN ({M [13rf] > C <f>1733} U{M [13r9] > C<9>1,3R}>

Sa(@) = |J B, SQ =]

ReSH-1(Q) m>0

Note that the packing condition

|R|
Z)WST

I€Z(R

is a direct consequence of the weak (1,1) type of the Hardy-Littlewood maximal operator
and guarantees that the collection S(Q) is sparse. We proceed with the proof in an iterative
scheme. We make the conscious choice to present only the first step of the iteration as the

subsequent ones pass in an identical fashion.
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It is easy to observe that Z(Q) induces a natural splitting of the underlying collection

T(Q). To be more precise,

T(Q): stopI U T
1eZ(Q)

Taopz(Q) ={ReT(Q):R¢ I, VIeZ(Q)}, TUI)={ReT(Q):RcCI}.

By the definition of Z(Q) we learn that

i Taonz@ S (1300 91Teez@ S (9130

so that

S U RS Urg < CU Y fhselgse + > D L WR(f130)Ur(glsg). (4.3.2)

RET(Q) 1€1(Q) ReT(I)

For the tail terms we calculate

> G UA(flagu)VR(gls) S Y. L2 inf M(f130) U r(g1s1)

RET(I) k>0 RET(I),Lp=2-F(;
S 2 H D)1 aq >, (7 r(9131)
k>0 RET(I) Lr=2"Flg

SN Pso(9)1se-

So that

Y W R(f1ag)Ur(glag) < Z Fiso(9) 130

1€Z(Q) RET(I) €7(Q

+ Z Z E(}%erqu(flfil)\I’R(glsI)

IeZ(Q) ReT(I)

where the first term is controlled as follows using the same single scale analysis as in (4.3.1)

ZEQH‘ 13(9)13¢ S (6 (f)13ely 13QZ|]| SN Msal9)se
IeT Q)
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and the proof is completed by iterating (4.3.2). Finally, the second part of our lemma is
available to us from the proof of [13, Theorem 4.5] and the 3% grid trick.

]

Proposition 4.3.6. Let T be a 6-cancellative Calderdn-Zygmund operator and b € C*%(R?).
Then for each n € (0,0) there exist o', 85, € CUT and 4% such that |y,| < Ctody e

, v € {1,2} with the property that
(Rrof,9) = /Zd (D] 0.0 ray (E*(f, =) (at-g) + 19 f, B2) (uss g) + (F,002) (72, 9)) dpa(2)

= [ PBlenagan (4503020 + 20,80 0) + (0002, 0) (o)
Proof. Initially, given z € Z? we partition the parameter space in the following manner
7%= A(z) UB(2) UC(2)
A(z) = {7 € Z" imax {|z — 2'|,t,t'} = t}, B(z) = {2 € Z% max{|z — 2|, t,t'} =t'},
C(z) ={< € Z" : max{|z — 2/, t,¥'} = |z — 2|} .

1

1 and 7! as the arguments for the rest are identical. We write

We will only calculate !,
al = / L) (2) (0, 05 — 6DV () v )ussdp()
CO a(Rd zd
Bl = / Laen (2)(b, 0% — ) v.)prdp(2)
CO a Rd zd
=g [ Lol = o) 0 vudu),
[b]co,a(Rd) zd

We learn the memberships o}, 31 € C¥%° and the size estimate on 7! via combining Lemma

4.3.2 with Lemmata 4.1.2 and 4.1.3 respectively. O

The above lemma yields readily the following corollary that allows us to give off-diagonal

estimates.
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Lemma 4.3.7. Let T be §-cancellative Calderon-Zygmund operator and b € I./"(Rd). Then

for each n € (0,8) there exist o, 70 € CUTC 1 € {1,2} with the property that

z) 'z

<RT,bfa g> = / lélf M#b <<f7 ¢z><ai7g> + <U’z7g><f7 7—7}> - < 70_3><@a g> - <f’ Uz><7—z27.g>> dlu’(z)

zd z

Proof. Given z € Z% we will partition the parameter space Z% according to the sharp maximal

function. In particular
ZT=H(z) U (H(2))" H(z) = {z' €Z: ing Myb > anf M#b} :
We proceed similarly as in the proof of Lemma 4.3.6. O
We end this section with the proof of Theorem F.

Proof of Theorem F. Using Corollary H.1, Lemma 4.3.5 and the latter part of Lemma 4.3.2
we obtain the desired estimates for Mrp, for the cases p = ¢, ¢ < p and p > ¢ respectively. By
the decomposition of the commutator as expanded in (4.2.2) it suffices to prove the relevant
estimates for the term Rypj. The case p = ¢ is contained in Lemma 4.3.4. The case p > ¢

follows by combining Proposition 4.3.6 and Lemma 4.3.5 since

[(Rrp (), 9| S D)o (ma) (Z !QI\If%f‘Pég + (L), |9|>>

QeD

where the first term comes from the a, 5., ¢ € {1,2} and the second term comes from the
calculation of the kernel of the relevant operator, see Lemma 4.5.1. Finally, from Lemma

4.3.7 we learn that

(Res(D)a)l S [ MabS(1)5(0) (433

which completes the case p < q. O
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Remark 4.3.8. We remark that we could have concluded the cases p < ¢ and p = ¢ from
(4.3.3) but we want to emphasize the point that the “correct” quantitative estimate in the

case that p = ¢ of the term Ry is that its sparse (1,1) norm controlled by ||b||zp0 -

4.4 Two weight estimates

In this section we will reprove Bloom’s original theorem for the Hilbert transform or for
any fully cancellative Calderén-Zygmund operator with smoothness 1.

The first ingredient in the proof of the two weight inequality is an analogue of Lemma
4.3.2 in the Bloom BMO setting. For the sake of completeness we recall the following John-

Nirenberg type inequality from [38].

Lemma 4.4.1. If w € Ay the following inequality holds

1
sup ( / |b(x) — (b)g|*w™ (a:)d:c) < [1bllsmo,, -

At this point we will introduce the analogue of d(z, z')pmo in the Bloom BMO setting.

Given w € Ay_. we set

r—x’ 1-3 1-5 .
max{<w>1,3<m,t>,<w>1,B<x/,t/>}max{( @) } if £ > ¢
d<Z7Z/)BMOw =

z—z' 1-3 \1-5 .
max{(W)1,B(z1), (W)1,B(z'¢) } Max { (%) : , (%) 2} if else.

Lemma 4.4.2. Let w € Ay and ¢ € S(R) with [, ¢ = 1. then we have that

(b, Sy.¢ — Sy..)| < d(z,2")Bumo,, 1bllno, -
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Proof. Using the doubling property of the measure w the Schwartz decay of ¢ and its mean
1 property we learn that it is sufficient to show this estimate for rough averages namely, it

is enough to show that

|sz - sz/

< d(z,2")Bmo, ||b||BMOw :

Without loss of generality we can assume that ¢t > ¢'. Initially, if |z — 2’| <t we are able to
write

1bB@t) — bB )| < 0Bt — OBst)| + |0B@3) — bB@ )|

For the first term we have that

|bB($,t) - bB(w73t)| S HbHBMOw <w>1,B(az,t)~ (4.4.1)

For the second term we have that

1
t/

1

1 1
1bB(2,3t) — DBy < / 1b(y) = bBa,sn|dy < (b= bsy) W 2)2,B ) (W2 )28 v)-
B(z',t")

Observe that B(xz,t) N B(z',t') # @ because ' € B(xz,t) N B(2',t') since |z — 2’| <t so that

B(«',t") C B(x,3t)

1 3
(b= bpasn)w™ % (' t) (P/ Y) — byl w_l(y)dy>
B(z,3t)

w(B(z, 3t .
s( & ) ( B o, 1) = B P~ ) )
< (w(B(,9)) w(B@, ) [t1*°\?
< TN RACELCEEN KA R RTYI

1 t 1-3

< (whse (t—) s, -
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Where the third inequality was obtained since B(x, 3t)NB(z', 3t) # @ = B(z,3t) C B(2',9t)
and the final one was obtained by the doubling property of w. Therefore, all in all we have

that

1_<
t 2
|bB(33:3t) - bB(x/,t’)| 5 (P) <w>1,B(x’,t/) ||b||BMOw . (442)

Combining (4.4.1) and (4.4.2) yields the desired estimate. To finish the proof we check the

case |z — 2’| > ¢ by estimating
1bB@t) — bB )| < 0By — 0BG o] + |PB@! Jo—a') — OB )]

and using the previous estimate and w’s doubling property. O]

4.5 Appendix

Lemma 4.5.1. Let \; € \II?O and k¢ with the property that |k (y)| < o4 <ya;§>_(d+6_a)_

Then

[t rmantz

S La(lf1)-

Here 1, is the fractional integral operator with parameter a.

Proof.

/Zd<f, pe)ic(z)du(C) = /Zd ( Rdf(y)@(y)/ﬁg(x)dx) du(¢) < /Rd £l (/Zd |s04(y)f€<($)|dﬂ(o) dy.
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The inner integral, i.e the kernel, is estimated as follows

(d+5) —(d+6—a)
y—2¢§ x—§ do
)| dp( dé—
[ letomtnuos [ [ 2a(225) () T ae
</ way- —(d+6—a) do
~Jo o o
:/|y—x Ua_d y—x —(d+d6— a)d_+/oo O_G_d y—x —(d+d—a) d_
0 o o ly—z| o o

We estimate each integral separately

_ —(d+d6—
/Iy z| o y—x a) < ly—z| i gité—a ot ‘y N x‘é _ 1
0 o ~Jo |y — a|dHoma " Y |y — gldtize |y — g|d-a

g
o0 d+6 a o0 a— d
a—d /Y — T do o 9 < a—d
g — = gltd—a a - d Sy — ]
ly—=| g g ly—z| O @ = Q] g

and the proof is complete. O]

At this point we give the proof of the generalization of the wavelet averaging lemma

appearing in [25] and its fractional analogue as stated in Lemma 4.1.3.

Proof of Lemma 4.1.2.

) 1 min{t,ﬁt}5 s 1 y—x —at d— 6dﬂ
|¢Z(y)| < /aGRd maX{t [% |a‘t}d+5t (5t)d+ < I513 > 15} —da

y—x —at = dg
/aeRd/ d+5 ﬁt < ﬁt > ?da (451)

B st o

To conclude the localization estimate it suffices to check it when |y — x| > 2t. Indeed,

n ! min{t,ﬁt}‘s g 1 y— 1 — at —d—§ a8
s L e o el A
y—x—at\ ° dﬂd
/aGRd/ d+5 Bt < Bt > 3 a
ﬁHdll y—xz—at\
/|a<y xl/ a)d+o 25d< Bt > dfda
ﬁ5 d=1 1 —al —d—§
/|a>y z| / yd-+o d < Bt - > dBda = + .
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We will estimate each term separately. In particular we start off with the term I. Therefore,

1 1 b —d14dts t e

1< — /ﬁ——++<—) a8 | da
td la|< 2l (aydto \ Jo ly — |

< 1 / 1 2t 1

Tt Jaera (@) \ |y — 7| t

We now turn to the second term Il. We observe that (a) 2 < tx> and therefore

1 /Jy—= —d=0 —at\
nsa () [ [ () s

which concludes the proof by the computation in (4.5.1). We will know prove the smoothness

estimate. For |h| <t we compute the modulus of the difference ¥?(y + h) — ¥?(y) as

B(S
/ (/ +/ ) d+6 {90(m+at,ﬁt) (Y + h) = Patatn } da— = |1+l
ackd \Jjnj<pr<t  Jipzpr=0/ (@)

We will use the Holder continuity estimate on regime |h| < ft <t and rely solely on the

localization principle on the regime |h| > St > 0. So we compute

(5—1 ) . . —d—0 5
/ / d+5 |h|d 3 <y = at> dadf 5 ‘d‘é B~dp
hj<pt<t Jacra (a)*° (Bt)4H Bt td+ 1ny

h|® t h|"
<ulog1 (—) <L, 0<n<o.

~ pd+s ‘h‘ ~ td+n
We continue with estimating the second term by

\h\ —d—§ —d—6
5 1 y+h—x—at y—x—at
/ ’ 1 /aeRd d+5 (575) < gt > i < pt > dad?

Ih\

<[ ()

Proof of Lemma 4.1.3. Due to similarity in the treatment of ¥ we choose to sketch the proof

of the localization estimates of 17. Initially there holds,

a1 <y—:v—at> - ‘Nwd
‘<L|>1/ )= At (B)? pt g
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Take p(d+ 0 — A) > 1 and z% + 0 —d > 0 which is possible because

d d
—+0-d>0&p> -
P 0

we switch the integrals and perfrorm the Holder in a to obtain that

! 1 z y—x —at P (d+9) v
prl <0 [ 5 ( ) ([ o) as

1
A—d ! S—d—1 % A—d BMP%_d A—d
St / B prdp=t P St
0 + [7 - 0

where the last line is justified from the fact that ¢ + ﬁ —d=0— % > 0 For the range
|y — x| > 2t we proceed to the splitting of the integral as in the proof of the previous lemma

and use the convolution inequality

1 /y—a —(d+9) ﬁ y— —(d+5—X) < A )
pat t t t t
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