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ABSTRACT OF THE DISSERTATION

Some Problems in Harmonic Analysis

by

Fragkos, Anastasios

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2024.

Professor Brett Wick, Chair

One the most central questions in harmonic analysis of whether the Fourier series of

a square integrable function on the torus T converges Lebesgue a.e. x ∈ T was answered

positively by L. Carleson in 1966 [7], by means of a weak-L2 inequality for the maximal

operator

Cf(x) = sup
N∈Z

∣∣∣∣∣ ∑
|ξ|≤N

f̂(ξ) exp(ixξ)

∣∣∣∣∣, x ∈ T. (0.0.1)

The argument of [7] estimates C pointwise as a maximal modulated Hilbert transform, outside

appropriately constructed exceptional sets whose mass is controlled by almost-orthogonality.

The implicit distributional estimate in [7] was later exploited by Hunt [39] to deduce the

family of restricted weak-type Lp bounds

∥Cf∥Lp,∞(T) ≤
Cp2

p− 1
|F |

1
p , F ⊂ T, |f | ≤ 1F , 1 < p <∞. (0.0.2)

vi



The estimate (1.0.2) and interpolation yield that C is a bounded operator on each Lp(T),

for 1 < p < ∞. Consequently, pointwise a.e. convergence of the Fourier series holds for

f ∈ Lp(T) in the same range. Since [7,39], several substantially different proofs of Carleson’s

theorem have appeared: in particular, the celebrated ones by Fefferman [28] and Lacey-Thiele

[48], one implicit in the return times theorem of Demeter, Lacey, Tao and Thiele [19], and

more recently an improvement of Fefferman’s proof [28] due to Lie [56].

The primary focus of the first part of this thesis is the behavior of the Carleson operator

as p → 1+. Besides its intrinsic interest, this question is deeply connected to the pointwise

a.e. behavior of Fourier series in function spaces between L1(T) and Lp(T). To exemplify the

connection, Antonov [1] coupled the precise information on the growth rate of the restricted

weak norm from (1.0.2) with an approximation argument to deduce a mixed type estimate,

which is the case w = 1 of (2.0.3) below.

The second part of this thesis is concerned with the compactness of multilinear Calderón-

Zygmund operators. Calderón-Zygmund operators are omnipresent in the field of analysis.

For example, they are connected to PDEs, Complex Analysis and Geometric Measure The-

ory. The study of the compactness of singular integral operators stems from applications to

other fields such as the study of elliptic PDEs and the characterization of Semmes-Kenig-

Torro domains but also from a functional analysis point of view. In particular, we prove

a wavelet T (1) theorem for compactness of multilinear Calderón-Zygmund (CZ) operators.

Our approach characterizes compactness in terms of testing conditions and yields a repre-

vii



sentation theorem for compact CZ forms in terms of wavelet and paraproduct forms that

reflect the compact nature of the operator.

The third and final part of this thesis deals with Lp estimates on the commutator of

cancellative singular integral operators. In further detail, the aim of this chapter is to

provide a proof of Bloom’s original inequality using the wavelet representation theorem from

[25]. A particular feature of our proof is that we precisely quantify the heuristic that ”the

commutator of a singular integral operator is a linear combination of the compositions of

the paraproduct with the singular integral operator”. In addition to that, we completely

avoid working with shifts of arbitrary complexity. The main technical tool we use is wavelet

averaging. Furthermore, our approach is robust enough to allow us to obtain off-diagonal

estimates as well. Besides that, our proof is noticably shorter than the ones existing in the

literature.
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1. Introduction

One the most central questions in harmonic analysis is whether the Fourier series of a square

integrable function on the torus T converges Lebesgue a.e. x ∈ T was answered positively

by L. Carleson in 1966 [7], by means of a weak-L2 inequality for the maximal operator

Cf(x) = sup
N∈Z

∣∣∣∣∣ ∑
|ξ|≤N

f̂(ξ) exp(ixξ)

∣∣∣∣∣, x ∈ T. (1.0.1)

The argument of [7] estimates C pointwise as a maximal modulated Hilbert transform, outside

appropriately constructed exceptional sets whose mass is controlled by almost-orthogonality.

The implicit distributional estimate in [7] was later exploited by Hunt [39] to deduce the

family of restricted weak-type Lp bounds

∥Cf∥Lp,∞(T) ≤
Cp2

p− 1
|F |

1
p , F ⊂ T, |f | ≤ 1F , 1 < p <∞. (1.0.2)

The estimate (1.0.2) and interpolation yield that C is a bounded operator on each Lp(T),

for 1 < p < ∞. Consequently, pointwise a.e. convergence of the Fourier series holds for

f ∈ Lp(T) in the same range. Since [7,39], several substantially different proofs of Carleson’s

theorem have appeared: in particular, the celebrated ones by Fefferman [28] and Lacey-Thiele

[48], one implicit in the return times theorem of Demeter, Lacey, Tao and Thiele [19], and

more recently an improvement of Fefferman’s proof [28] due to Lie [56].

The primary focus of the first part of this thesis, which is based on joint work with

Francesco Di Plinio [69], is the behavior of the Carleson operator as p → 1+. Besides its

1



intrinsic interest, this question is deeply connected to the pointwise a.e. behavior of Fourier

series in function spaces between L1(T) and Lp(T). To exemplify the connection, Antonov

[1] coupled the precise information on the growth rate of the restricted weak norm from

(1.0.2) with an approximation argument to deduce a mixed type estimate, which is the case

w = 1 of (2.0.3) below. This may be leveraged to extend the pointwise convergence result

to functions in the Orlicz space Llog1Llog3L(T). Antonov’s result has been, to date, the

strongest known within the Orlicz-Lorentz scale.

The result of this chapter goes beyond the Carleson-Hunt bound (1.0.2), upgrading the

estimate to the weak Lp-type.

Theorem A. The maximal operator (1.0.1) obeys the family of estimates

∥Cf∥Lp,∞(T) ≤
C

p− 1
∥f∥Lp(T) , 1 < p ≤ 2.

The same bounds hold for the maximal multiplier (1.0.5) and for the real line analogue (1.0.3).

In fact, we obtain Theorem A as an immediate corollary of a stronger quantitative esti-

mate for the sparse norms of the operator C

Theorem B. Let m ∈ L∞(R)∩ C∞(R \ {0}) be a smooth Hörmander-Mihlin multiplier, see

(2.1.5). The associated maximally modulated multiplier

Cf(x) := sup
N∈R

∣∣∣∣∫
R
m(ξ −N)f̂(ξ)eixξ dξ

∣∣∣∣ x ∈ R, (1.0.3)

satisfies the family of sparse bounds

∥C∥(p,1) ≤
C

p− 1
, 1 < p ≤ 2 (1.0.4)

2



with a uniform constant C. The same estimates hold for the periodic version of (1.0.3)

Cf(x) := sup
N∈Z

∣∣∣∣∣∑
ξ∈Z

m(ξ −N)f̂(ξ)eixξ

∣∣∣∣∣ x ∈ T (1.0.5)

under the additional transference assumption that lim
ε→0+

−
∫
|t|<εm exists.

As a direct corollary of the aforementioned sparse bound we are able to obtain the

following weighted estimate.

Corollary B.1. The maximal operator (1.0.3) obeys the weighted norm inequality

∥Cf∥Lq(w) ≤ Cq[w]
max{q,2}

q−1

Aq
∥f∥Lq(w) , 1 < q <∞.

The same estimates holds for the periodic version of (1.0.5).

The backbone of our treatment is a new, sharply quantified near-L1 Carleson embedding

theorem for the modulation-invariant wave packet transform. The proof of the Carleson

embedding relies on a newly developed smooth multi-frequency decomposition which, near

the endpoint p = 1, outperforms the abstract Hilbert space approach of past works, including

the seminal one by Nazarov, Oberlin and Thiele. As a further example of application, we

obtain a quantified version of the family of sparse bounds for the bilinear Hilbert transforms

due to Culiuc, Di Plinio and Ou.

The second part of this thesis is based on joint work with Walton Green and Brett Wick

[29] and is concerned with the compactness of multilinear Calderón-Zygmund operators.

Calderón-Zygmund operators are omnipresent in the field of analysis. For example, they

are connected to PDEs, Complex Analysis and Geometric Measure Theory. The study of

3



the compactness of singular integral operators stems from applications to other fields such

as the study of elliptic PDEs and the characterization of Semmes-Kenig-Torro domains but

also from a functional analysis point of view. In the linear case, Villaroya in [76] gave a

complete characterization of compact Calderón-Zygmund operators on L2(Rd), which was

further developed in [67, 68, 73, 77]. Recently, Mitkovski and Stockdale in [57] gave a sim-

plified formulation of the T (1) theorem for compactness of Villaroya. More precisely, they

showed that a CZO T is compact if and only if T (1) and T ∗(1) both belong to CMO(Rd)

and a vanishing version of the weak boundedness property, called the weak compactness

property, is satisfied. In contrast, a multilinear version of these compactness testing the-

orems remains unexplored. These T (1) theorems for compactness are complemented by a

compact Rubio De Francia theory of extrapolation developed by Hytönen and Lappas in

[40,41]. Subsequently, in [6], Cao, Olivo, and Yabuta extended the bilinear results of [40] to

the multilinear setting and to the quasi-Banach range, in which case the target space can be

Lr with r > 1
m
. However, due to the difficulties of extrapolating to the upper endpoint in

the multilinear setting [53, 63], the results of [6, 40] do not consider the case where one (or

more) input spaces is L∞(Rd). We point out that our results below do yield compactness

when an input space is L∞(Rd). In [29] we prove a wavelet T (1) theorem for compactness

of multilinear Calderón-Zygmund (CZ) operators. Our approach characterizes compactness

in terms of testing conditions and yields a representation theorem for compact CZ forms

in terms of wavelet and paraproduct forms that reflect the compact nature of the operator.

The main result of this chapter is stated as follows

4



Theorem C. Suppose Λ is an (m + 1)-linear CZ form, with associated symbols bj ∈

BMO(Rd), j = 0, 1, . . . ,m satisfying (3.1.2). The following are equivalent.

A. Λ is a compact CZ form, i.e. WM
Λ (z) → 0 as z → ∞ and bj ∈ CMO(Rd).

B. There exist compact wavelet forms {Uk}Km
k=1 and compact paraproduct forms

{
Πbj

}m
j=1

such that for all fj ∈ S(Rd),

Λ(f) =
Km∑
k=1

Uk(f) +
m∑
j=0

Π∗,j
bj
(f), f = (f0, . . . , fm).

C. Each element of TΛ is a compact CZO.

We note that Theorem C applies to the linear case as well and a few simplifications can

be made due to the greater symmetry enjoyed in this setting. For additional clarity, we

restate Theorem C when m = 1 .

Theorem D. Let T be a linear CZO. The following are equivalent.

A. T (1), T ∗(1) ∈ CMO(Rd) and

lim
ζ→∞

sup
z∈B(ζ)

td |⟨Tϕz, ϕζ⟩| = 0.

B. There exists a compact wavelet form U such that for all f, g ∈ S(Rd),

⟨Tf, g⟩ = U(f, g) + ΠT (1)(f, g) + ΠT ∗(1)(g, f).

C. T and T ∗ are compact CZOs.

D. T (1), T ∗(1) ∈ CMO(Rd) and

lim
z→∞

t
d
2 ∥Tϕz∥L2(Rd) = 0.

5



Our main result is another example of a new result in the Lebesgue setting obtained

through wavelet representations. This approach differs from the ones in [57] and [76] as we

do not use the machinery regarding localization, and neither do we require additional decay

of the kernel, but rather we use a wavelet averaging procedure to obtain the representation

formula in §3.3 and then use the Riesz-Kolmogorov criterion to obtain the precompactness

of the image of the unit ball under the adjoint operators to the wavelet and paraproduct

forms in §3.4 and §3.5.

The third and final part of this thesis is based on joint work with Brett Wick [30] and

deals with Lp estimates on the commutator of cancellative singular integral operators. In

further detail, the aim of this chapter is to provide a proof of Bloom’s original inequality

using the wavelet representation theorem from [25]. A particular feature of our proof is that

we precisely quantify the heuristic that “the commutator of a singular integral operator is a

linear combination of the compositions of the paraproduct with the singular integral opera-

tor”. In addition to that, we completely avoid working with shifts of arbitrary complexity.

The main technical tool we use is wavelet averaging. Furthermore, our approach is robust

enough to allow us to obtain off-diagonal estimates as well. Besides that, our proof is noti-

cably shorter than the ones existing in the literature. In particular, we can recover Bloom’s

inequality as a corollary of the following two weight theorem.

Theorem E. For a 1-cancellative Calderón-Zygmund operator, w, σ ∈ Ap, b ∈ BMOν(R),

where ν =
(
w
σ

) 1
p we have that

∥[b, T ]∥Lp(w,R) ≲ ∥b∥BMOν(R) ∥f∥Lp(σ,R) .

6



Finally, our method revisits the following one weight result.

Theorem F. Let T be a cancellative Calderón-Zygmund operator and w weight with wp ∈ Ap

and wq ∈ Aq then

∥[b, T ]∥Lp(wp,Rd)→Lq(wq ,Rd) ≲



∥b∥BMO , q = p,

∥b∥Ċ0,α(Rd) ,
α
d
= 1

p
− 1

q
, q > p,

∥b∥L̇r(Rd) ,
1
q
= 1

r
+ 1

p
, q < p.

Where the homogeneous Hölder norm of exponent a is defined as

∥b∥Ċ0,a(Rd) := sup
x ̸=y

|b(x)− b(y)|
|x− y|a

and the L̇r(Rd) norm is defined as ∥b∥L̇r(Rd) := infc∈R ∥b− c∥Lr(Rd) .

The notational organization of this thesis consists of introducing the notation for the

first chapter separately from the one that will be used in the second and third chapter.

In particular, the notation and general definitions in the second and third chapter will be

common.

7



2. The weak type Carleson’s theorem via wave packet estimates

Recurring notation

The treatment in this part of the thesis focuses on the case of functions defined on the real

line; however, the generalization to higher dimensional Euclidean spaces is merely notational

and all arguments are easily transcribed to that setting. The Fourier transform on R obeys

the normalization

Ff(ξ) = f̂(ξ) =
1√
2π

∫
R
f(x)e−ixξ dx, ξ ∈ R.

Throughout, the transformations

Traf := f(· − a), Modaf := exp(ia·)f(·), Dilpbf := b−
1
pf(b−1·)

for a ∈ R, b > 0, 0 < p ≤ ∞, are used to describe the invariance properties of our singular

operators. The symbol

⟨x⟩ =
√
1 + |x|2, x ∈ R

indicates the usual Japanese bracket. The center and length of an interval I ⊂ R are

respectively denoted by cI and ℓI . Accordingly, define the L
∞-normalized polynomial decay

factor adapted to I by

χMI := TrcIDil
∞
ℓI
⟨·⟩−M , M ∈ 2N \ {0}.

8



When we drop M and simply write χI instead, the parameter M is large and unimportant.

As customary, for 0 < p ≤ ∞, local Lp-(quasi)norms on I, their tailed analogues and the

p-th Hardy-Littlewood maximal operator follow the notation

⟨f⟩p,I := |I|−
1
p ∥f1I∥p , ⟪f⟫p,I := |I|−

1
p

∥∥∥∥fχ 29

p

I

∥∥∥∥
p

, Mpf := sup
I⊂R

⟨f⟩p,I1I .

with most times M1 = M for simplicity. We clarify our notation for the weighted Lorentz

and Orlicz spaces appearing in the results of Corollary F.1. A weight stands for a positive

integrable function w on T = (−π, π]. There is no loss in generality with assuming that∫
Tw = 1. As customary, we overload the notation for the weight w and the corresponding

measure dw = wdx. The weak and strong weighted Lebesgue quasinorms are then defined

for p ∈ (0,∞) by

∥f∥Lp,∞(T;w) := sup
t>0

t [w ({x ∈ T : |f(x)| > t})]
1
p , ∥f∥Lp(T;w) :=

(∫
T
|f |p dw

) 1
p

.

If Φ : [0,∞] → [0,∞) is a fundamental function, the weighted Orlicz norm Φ(L)(T;w) is

∥f∥Φ(L)(T;w) := inf

{
t > 0 :

∫
T
Φ

(
|f |
t

)
dw ≤ 1

}
.

The fundamental functions occurring are Φ(t) = tlog1t and Φ(t) = tlog1tlog3t, with iterated

logarithm notation

log1t = max{1, log t}, logkt = max{1, log(logk−1t)}, k ≥ 2.

The quasinorm QAq(w) appearing in (2.0.4) is defined by

∥f∥QAq(w) = inf

{
∞∑
j=1

log1j ∥fj∥L1(T;w) log1

(∥fj∥Lq(T;w)

∥fj∥L1(T;w)

)
: f =

∞∑
j=1

fj,

∞∑
j=1

|fj| <∞ a.e.

}
.

(2.0.1)

9



Finally, the symbol C and the constant implied by the almost inequality sign ≲ are meant to

be absolute, unless otherwise specified via the notation Ca1,...,an ,≲a1,...,an . The latter notation

highlights dependence on the parameters a1, . . . , an.

2.0.1 Introduction

For n ≥ 2, p⃗ = (p1, . . . , pn) ∈ (0,∞)n, the n-linear p⃗-maximal function of a tuple {fj ∈

L
pj
loc(Rd) : 1 ≤ j ≤ n} is defined as

Mp⃗(f1, . . . , fn) := sup
Q

1Q

n∏
j=1

⟨fj⟩pj ,Q

the supremum being taken over all cubes Q of Rd. See the final paragraph of this introduction

for a summary of standard notations. An n-sublinear form Λ acting e.g. on n-tuples of

functions fj ∈ L∞
0 (Rd) is p⃗-sparse bounded if there exists a constant C > 0 such that

|Λ(f1, . . . , fn)| ≤ C ∥Mp⃗(f1, . . . , fn)∥1

uniformly over all such tuples, and the p⃗-sparse bound ∥Λ∥p⃗ is the infimum of the set of all

such constants. If T is an (n− 1)-sublinear operator, the quantity ∥T∥p⃗ indicates the sparse

bound ∥Λ∥p⃗ of the n-sublinear form

Λ(f1, . . . , fn) = ⟨T (f1, . . . , fn−1), fn⟩.

Note that T is a specific formal adjoint of Λ, and the index n plays a distinguished role.

The equivalence of this formulation with more standard notions of sparse bounds [51] is

thoroughly discussed in [15, 63] and references therein. Note that the Carleson maximal

10



operator, on the real line and on the torus respectively, correspond up to symmetries and

linear combination with the identity operator to the choice m = 1(0,∞) in (1.0.3), (1.0.5).

The p⃗-sparse bounds of T subsume a full range of quantitative weighted norm inequalities

of weak and strong type. We send to the references [54,63] for a complete list of consequences

and for the related extrapolation theory, and content ourselves with recalling those implica-

tions most crucial for our exposition, in the form of corollaries to this main result. Then,

the estimates of Theorem A are derived from the sparse bound of Theorem B as in e.g.

[12, Theorem E]. Two more corollaries are of weighted nature. The following weak type

Lp(w) bound for A1 weights with controlled constant holds.

Corollary F.1. For weights w ∈ A1 and 1 ≤ p ≤ 2, define

K(w, p) := [w]
1
p

A1
[w]

1− 1
p

A∞
[log1[w]A∞ ]

2
p .

For both (1.0.3), (1.0.5), there holds

∥Cf∥Lp,∞(w) ≤
CK(w, p)

p− 1
∥f∥Lp(w) , 1 < p ≤ 2. (2.0.2)

As a further corollary of (2.0.2), (1.0.5) satisfies the following endpoint estimates:

∥Cf∥L1,∞(T;w) ≤
Cq
q−1

K(w, 1) ∥f∥L1(T;w) log1

(
∥f∥Lq(T;w)

∥f∥L1(T;w)

)
, 1 < q ≤ ∞, (2.0.3)

∥Cf∥L1,∞(T;w) ≤
Cq
q−1

K(w, 1) ∥f∥QAq(w)
, 1 < q ≤ ∞, (2.0.4)

∥Cf∥L1,∞(T;w) ≤ CK(w, 1) ∥f∥Llog1Llog3L(T;w) . (2.0.5)

See (2.0.1) for the definition of the QAq(w)-quasinorms. Additionally, as a consequence of

(2.0.4), the Fourier series of f ∈ QAq(w) converges pointwise a.e. whenever w ∈ A1.
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Proof. Estimate (2.0.2) is obtained by using the (p, 1)-sparse bound of Theorem B as the

input of [32, Theorem 1.4]. For (2.0.3), a consequence of (2.0.2) is that

∥Cf∥L1,∞(T;w) ≤ ∥Cf∥Lp,∞(T;w) ≤
CK(w, p)

p− 1
∥f∥Lp(T;w) ≤

CK(w, 1)

p− 1
∥f∥Lp(T;w) (2.0.6)

holds whenever 1 < p ≤ 2. For p < q, ∥f∥Lp(T;w) ≤ ∥f∥1−q
′/p′

L1(T;w) ∥f∥
q′/p′

Lq(T;w) , and (2.0.3) fol-

lows by using (2.0.6) for p given by the equation p′ = max
{
2, q′ log

(
∥f∥Lq(T;w)/∥f∥L1(T;w)

)}
.

Now, (2.0.4) is deduced from the definition of QAq(w) and Kalton’s log-convexity of L1,∞(T;w)

[45]. Estimate (2.0.4) immediately implies (2.0.5) once the (strict) continuous inclusion

Llog1Llog3L(T;w) ⊊ QA∞(w). (2.0.7)

is established. This is done repeating with obvious changes the argument of [10, Sect. 3.3].

Note that the inclusion (2.0.7) is tight in the Orlicz class, under modest assumptions on the

fundamental function [8].

Another aspect naturally arising in the pursuit of endpoint estimates and pointwise con-

vergence of Fourier series for spaces near L1 is the sharp quantification of the dependence

on the weight constants in the weighted bounds for the Carleson operator. For instance, the

next result yields that C : L(log1L)
2(T) → L1(T), via the extrapolation theory of [9]. Note

that L(log1L)
2(T) is the largest Orlicz space currently known to have this property, a result

originally due to Sjölin [71].

Remark 2.0.2 (Comparison with previous results). This remark will place our new results in

the context of past literature. First of all, the Carleson-Hunt estimate (1.0.2) is quantitatively

equivalent to the generalized restricted weak type bound of Lacey and Thiele [48], and strictly
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stronger than the estimate proved by [28], which, when phrased as a restricted type estimate,

is of type C : Lp,1 → Lq for 1 < q < p. An alternative formulation of (1.0.2) is

∥Cf∥L1,∞(T) ≤ C|F |log1
(

1

|F |

)
, F ⊂ T, |f | ≤ 1F . (2.0.8)

Relying on the smoothness of the Dirichlet kernel via an approximation argument, Antonov

[1] upgraded (2.0.8) to a mixed type bound which is exactly estimate (2.0.3) with w = 1

and q = ∞, and deduced the w = 1 case of (2.0.5). Further work of Sjölin and Soria

[72] extended Antonov’s approach to more general sublinear operators satisfying Carleson-

Hunt type bounds as in (2.0.8); see also [35] for applications of this principle to weighted

bounds. Arias de Reyna [2] introduced the quasi-Banach spaces QA∞ := QA∞(dx) and

noticed that Antonov’s result may be phrased in terms of (2.0.4) for w = 1. The observation

of [2] is relevant because of the strict inclusion (2.0.7). The work [56] by Lie gave a proof

of the Lebesgue case of (2.0.3), with unspecified dependence on 1 < q < ∞, without any

appeal to approximation arguments of the type used in [1,72]. In a nutshell, [56] refines the

construction of the forests from Fefferman’s proof of Carleson’s theorem in a BMO sense.

The main result of [56] thus implies the unweighted case of (2.0.4) via the same log-convexity

argument. The work [56] also contains the observation1 that QA∞ and QAq are equivalent

quasinorms for each 1 < q <∞, so that the results of [56] and [2] are formally equivalent.

As far as prior weighted bounds at the endpoint p = 1, the work of Carro and Domingo-

Salazar [9] deduces from the Carleson-Hunt bound (1.0.2) and extrapolation that the Car-

leson operator maps Llog1Llog3L(T;w) into the space R1(w), which is a logarithmic correc-

1In [56], the observation that QA∞ and QAq are the same quasi-Banach space is attributed to L. Rodriguez-
Piazza.
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tion of L1,∞(T;w), and the operator norm dependence on [w]A1 is unspecified. In view of

the strict continuous embeddings L1,∞(T;w) ↪→ R1(w) and (2.0.7), and of the dependence

of K(w, 1) on [w]A1 , our estimate (2.0.4) improves on [9, Theorem 4.5].

Corollary B.1 is an improvement on the previously best known quantitative estimate

for the Lq(w) norms of maximally modulated multipliers, due to Lerner and Di Plinio [22].

In particular, the extra log2[w]Aq term appearing in [22, Corollary 1.2 (ii)] is shown to be

unnecessary.

In summary, the weak-Lp bound of Theorem A, and a fortiori the (p, 1)-sparse estimate

of Theorem B, sharpen the Carleson-Hunt bound (1.0.2). Theorem B also yields upgraded

versions of previous results at p = 1, which are all consequences of (1.0.2). In particular,

Corollary F.1 ensures that the Fourier series of any function in the class

X :=
{
f ∈ L1(T) : f ∈ QA∞(w) for some w ∈ A1

}
converges almost everywhere. We stress that the class X is not just formally larger than

QA∞. For instance, for

w(x) =
1

| log(|x|)| 12
1R\{0}(x), f(x) =

1

x(log x)2 log log | log x|
1(0,e−ee )(x),

we have w ∈ A1, f ∈ Llog1Llog3L(T;w) ⊂ QA∞(w), f ̸∈ QA∞.

2.0.3 Methods, organization and further results

The proof of Theorem B is, in essence, a version of the Lacey-Thiele argument from

[48] for functions outside local L2 that avoids interpolation and the consequent loss of con-
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stants. In Section 2.1, matters are reduced to estimating bilinear forms involving wave packet

coefficients (2.1.2) associated to a tile P , namely a Heisenberg uncertainty box in the space-

frequency plane, and their modified version (2.1.3). The wave packet coefficient (2.1.2) is

roughly the L∞ norm of the projection of f to a O(1)-dimensional subspace of functions

space-frequency adapted to P . Using the outer Lp framework of Do-Thiele [26], described in

Section 2.2, the main steps of the proof become two quantified and localized outer Carleson

embedding theorems for the wave packet maps (2.1.2) and (2.1.3). The latter is essentially a

localized reformulation of the mass parameter bounds of [48] and occupies Section 2.3. The

former, Theorem H, is substantially new, and is stated and proved in Section 2.4. Section

2.5 then contains the short and completely elementary stopping forms argument leading to

Theorem B.

The main novel technical tool behind the proof of Theorem H is a smooth space-frequency

decomposition of a function f locally in Lp, 1 < p < 2 induced by a forest, namely a

collection of tiles organized into space-frequency trees. The decomposition is constructed by

expanding f in Gabor series spatially localized on Calderón-Zygmund intervals associated to

the forest, and selecting a principal part (2.4.11) which is locally in L2, albeit with local norms

depending on the counting function of the forest. Multi-frequency decomposition lemmas

of different flavor have been used extensively in the past literature on modulation invariant

singular integrals [23, 24, 66]. The construction used in all these references generates a good

part via projection on the linear span of N pure frequencies on a spatial interval, initially due

to Nazarov, Oberlin and Thiele [62], and based on a sleek Hilbert space lemma of Borwein-
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Erdelyi [5]. The corresponding remainder term does have vanishing moments with respect to

the relevant frequencies, but its local norms are of the same order of those of the good part,

and thus also depend on the counting function. This loss may only be offset by paying an

additional price on the good part. On the contrary, the smooth remainder (2.4.12) from our

decomposition inherits the much smaller local norms of f and its contribution to (2.1.2) may

be estimated as a pure error term, by careful exploitation of frequency decay and separation

in frequency localization. We expect that our smooth decomposition will find extensive use

in further problems involving modulation invariant estimates outside local L2, such as, for

instance, uniform estimates for the bilinear Hilbert transform, see [61,66,74] for context.

The wave packet coefficients (2.1.2) also appear in the model sums of the multiplier

operators with singularity along subspaces of rank one, whose archetypal example is the

bilinear Hilbert transform. The first Lp-bounds for the latter operator are due to Lacey and

Thiele [46, 47], while Muscalu, Tao and Thiele address more general multipliers and higher

ranks [60]. A systematic qualitative weighted theory for rank one multiplier operators was

first obtained by Culiuc, Di Plinio and Ou in [16], as a corollary of a family of p⃗-sparse

bounds. Subsequently, several works have deduced from the sparse bounds of [16] further

qualitative weighted and vector-valued norm inequalities by developing suitable multilinear

extrapolation theorems, see e.g. [14, 53, 54, 63]. On the other hand, it has proved difficult

to deduce quantitative weighted estimates, i.e. with specified, possibly sharp dependence,

from the main result of [16], mainly because the constant in the p⃗-sparse bounds blows up

in an unspecified way when the vector p⃗ approaches the extremal points of the range. The
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wave packet embedding of Theorem H may be used to quantify the blow up rate much more

precisely, leading to the following improvement of [16, Theorem 1.3].

Theorem G. Let Γ = {ξ = (ξ1, ξ2, ξ3) ∈ R3 : ξ1 + ξ2 + ξ3 = 0} and Γ′ = span γ be a

non-degenerate rank 1 subspace of Γ, in the sense that γ = (γ1, γ2, γ3) is a unit vector with

γj ̸= 0 for all j = 1, 2, 3. Let m ∈ L∞(R3)∩C∞(R3 \Γ′) be a symbol satisfying the estimates

sup
ξ∈R3\Γ′

[dist(ξ,Γ′)]
|α| |∇αm(ξ)| ≤ 1

for all multi-indices α up to some finite order. Then the form2

Λm(f1, f2, f3) =

∫
Γ

m(ξ)
3∏
j=1

f̂j(ξj) dξ (2.0.9)

satisfies the family of p⃗-sparse bounds

∥Λm∥p⃗ ≲
1

ε(p⃗)
, 1 ≤ p1, p2, p3 <∞, ε(p⃗) := 2−

2∑
j=1

1

min{pj, 2}
> 0. (2.0.10)

The proof of Theorem G is given in Section 2.6. Note that the adjoint forms to the

(non-degenerate) bilinear Hilbert transforms with parameter β = γ × (1, 1, 1) correspond to

the choices m(ξ) = 1(0,∞)(β · ξ)ψ((1, 1, 1) · ξ), where ψ is any Schwartz function on R with

ψ(0) = 1. We do not detail the consequences in terms of weighted bounds for Λm, which

may be reconstructed by the interested reader via the extrapolation theorems of [53,54,63].

Tracking the constants in those works will lead to quantitative weighted estimates. This

point is transversal to the present chapter of this thesis and will be expounded elsewhere.

2The action of Λm on tuples of functions fj which are merely assumed to belong to L∞
0 (R) may be defined

by smooth truncation of the integral (2.0.9) near Γ and at infinity. The obtained bounds are uniform with
respect to the truncation parameter, thus allowing for the limiting argument. This is classical, and we omit
details.
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In a different direction, Theorem G yields precise information on the behavior of Λm near

the extremal [49, Subsect. 2.2] pair L1(R) × L2(R), fully recovering all results obtained in

[24] and leading to several improvements. One of these is detailed in the following corollary,

improving in particular [24, Theorem 3].

Corollary G.1. Let Tm be an adjoint to Λm from (2.0.9). Then

∥∥∥Tm : L
1

1−ε (R)× L2(R) → L
2

3−2ε
,∞(R)

∥∥∥ ≲
1

ε
, 0 < ε < 2−6,∥∥∥∥∥Tm : L1, 2

3 logL
2
3 (R)× L2(R) → L

2
3
,∞

logL
(R)

∥∥∥∥∥ ≲ 1.

For the definition of the spaces appearing in the second estimate and its easy deduction

from the first, see [18, Theorem 4].

Remark 2.0.4 (On the relationship between sparse and weak type). Corollaries F.1 and B.1

demonstrate how sparse bounds are both formally stronger and convey additional information

than Lebesgue estimates. The article [22], based on mean oscillation techniques, contains

a partial converse of the sparse to weak type implication for maximal modulation singular

integrals. The weighted estimates of [22] have in fact been deduced relying on weak-Lp type

bounds which are strictly weaker than both Theorem B and the Carleson-Hunt bound (1.0.2),

and which are in fact consequences of (1.0.2) and extrapolation; see e.g. [22, Estimate (1.7)].

On the other hand, our embedding Theorem H yields Theorem B directly, and also applies

in the context of Theorem G, which is out of reach for current mean oscillation techniques:

see [52] for a more recent, unified approach to sparse domination via weak type bounds.
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2.1 Space-frequency analysis of modulation invariant operators

After a few preliminaries, this section introduces the wave packet transform (2.1.2) on

the space-frequency tiles, its modified version (2.1.3), and their role in the discretization of

maximally modulated singular integrals.

2.1.1 Dyadic grids and tiles

We say that a collection D of intervals of R is a dyadic grid if

a. {ℓI : I ∈ D} ⊂ ρ2Z for some 1
2
< ρ = ρD < 2.

b. for all k ∈ Z there holds R =
⋃
{I ∈ D, ℓI = ρ2k} up to possibly a set of zero measure

(covering property);

c. I, J ∈ D =⇒ I ∩ J ∈ {∅, I, J} (grid property).

The elements of a dyadic grid are referred to as dyadic intervals. A typical example that we

will use at times are the three shifted dyadic grids

Dg :=
{
2k
(
ℓ+ g(−1)k

3
+ [0, 1)

)
: k, ℓ ∈ Z

}
, g = 0, 1, 2.

Remark 2.1.2 (Parent, sibling, and children intervals). Let I ∈ D be a dyadic interval and

κ ≥ 1. Properties a. to c. yield the existence of a unique interval Ip(κ) ∈ D with ℓIp(k) = 2κℓI

and I ⊂ Ip(κ). We call Ip(κ) the κ-th parent of I. Conversely, if I ∈ D, we enumerate by

Ich(κ,j), j = 1, . . . , 2κ
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the collection of the κ-grandchildren of I. These are those J ∈ D with Jp(κ) = I, with the

obvious convention that c(Ich(κ,j1)) < c(Ich(κ,j2)) if 1 ≤ j1 < j2 ≤ 2κ. Finally, we denote by

Ib, the sibling of I, the unique J ∈ D with ℓJ = ℓI and I
p(1) = I ∪ J .

Remark 2.1.3 (Shifted grids). Let M be a large integer, standard shifted dyadic grid

techniques, see e.g. [51], yield the existence of dyadic grids Gj, j = 1, . . . , 2M+10 with the

following property: for every (not necessarily dyadic) interval Q ⊂ R there exists j and

I(Q) ∈ Gj with Q ⊂ I(Q) and ℓI(Q) ≤ (1 + 2−M)ℓQ. This property will be used a couple of

times in what follows.

We say that the grids D,D′ are dual if ρDρD′ = 1. Let now D × D′ be a fixed pair of

dual dyadic grids on R. A tile P = IP × ωP ∈ D × D′ is the Cartesian product of dyadic

intervals with reciprocal lengths, that is ℓ(IP )ℓ(ωP ) = 1. The intervals IP , ωP are referred to

respectively as the spatial support and frequency support of the tile P . The set of all tiles in

D ×D′ is denoted by SD,D′ or simply S if the dyadic grids are fixed and clear from context,

and referred to as tiling associated to D ×D′ or simply tiling. It is convenient to adopt the

notation scl(P ) = ℓIP for the (spatial) scale of P .
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2.1.4 Wave packets and wave packet transforms.

The rationale for defining tiles as above is that they describe the space-frequency local-

ization of the functions, referred to as wave packets, involved in the analysis of modulation

invariant operators. Denote by ΘM the unit ball of the Banach space

{
ϑ ∈ CM(R) : ∥ϑ∥⋆,M <∞,

}
, ∥ϑ∥M := sup

0≤α≤M
sup
x∈R

∣∣⟨x⟩MDαϑ(x)
∣∣ .

For a tile P = IP ×ωP , define the corresponding L
1-adapted, localized classes of order M by

ΦM(P ) :=
{
φ = Modc(ωP )Trc(IP )Dil

1
scl(P )ϕ for some ϕ ∈ ΘM , supp φ̂ ⊂ ωP

}
. (2.1.1)

We stress that φ ∈ ΦM(P ) has compact frequency support in ωP . From now on, we omit

the M from the superscript and our forthcoming definitions depend on M implicitly. The

order M wave packet transform of f ∈ L∞
0 (R) is the map

W [f ] : S → [0,∞), W [f ](P ) := sup
φ∈ΦM (P )

|⟨f, φ⟩| . (2.1.2)

The dependence on M is kept implicit in the notation. We can think of W [f ](P ) as the

magnitude of the space-frequency localization of f to the tile P .

When dealing with maximally modulated singular integrals, a modified wave packet trans-

form models the contribution of the dualizing function. Namely, define

A[f ](P ) := sup
ψ∈ΨM (P )

∣∣∣〈f, ψ(·, N(·))1ωb
P
(N(·))

〉∣∣∣ (2.1.3)
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where N : R → R stands for a fixed measurable function, and ΨM(P ) is the modified class

ΨM(P ) :=

{
ϕ = ϕ(x, ν) ∈ CM(R× R) :

[
∂ν

scl(P )

]a
ϕ(·, ν) ∈ ΦM(P ), ∀ν ∈ R, a = 0, 1

}
.

(2.1.4)

The dependence on the function N and on the smoothness-decay parameter M is kept

implicit in the notation for (2.1.2)-(2.1.3), as these will be clear from context. For this

reason, unless strictly necessary, M is dropped from the notations, writing for example

Φ(P ),Ψ(P ).

2.1.5 Analysis of maximally modulated singular multipliers

The wave packet transforms (2.1.2) and (2.1.3) enters directly the discrete models of

both the Carleson operator and of rank 1 multilinear multipliers such as the bilinear Hilbert

transform. For the sake of motivation, here follows the reduction of the former family to the

wave packet form (2.1.9) below.

Let m ∈ L∞(R) ∩ C∞(R \ {0}) be a smooth Hörmander-Mihlin multiplier, that is

sup
0≤α≤M

sup
ξ ̸=0

|ξ|α
∣∣m(α)(ξ)

∣∣ ≤ 1 (2.1.5)

for some large and unimportant M . In the next paragraph, we prove the pointwise estimate

Cf(x) ≤
95∑
u=1

∑
⋆∈{+,−}

∑
g={0,1,2}

sup
N∈R

∣∣∣∣∣∣
∑
P∈Sg

|IP |⟨f, ϕP ⟩ψ⋆P ,u(x,N)

∣∣∣∣∣∣ , x ∈ R (2.1.6)

where

Cf(x) = sup
N∈R

|HNf | , HNf(x) :=

∫
R
m(ξ −N)f̂(ξ)eixξ dξ, x ∈ R
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is the maximally modulated multiplier operator already introduced in (1.0.3), Sg := SD0,Dg is

the set of all tiles associated to the grids D0,Dg, the functions ϕP , ψ
⋆
P ,u are uniform multiples

of adapted wave packets from respectively Φ(P ),Ψ(P ), cf. (2.1.1)-(2.1.4), and

supp2ψ
±
P ,u :=

{
N ∈ R : ψ±

P ,u(·, N) ̸= 0
}
⊂ Q±,u

P := c(ωP )∓ ℓωP

[
7 + u

4
, 9 + u

4

]
. (2.1.7)

Fix the parameters g, u and ⋆ = + ∈ {+,−} . We claim that there exist dyadic grids

Gj, j = 1, . . . , 218 with the property that for all P ∈ Sg there exists jP ∈ {1, . . . , 218} and

JP ∈ GjP with

supp2ψ
+
P ,u ⊂ J

ch(1,1)
P , ωP ⊂ J

ch(1,2)
P .

This is easily obtained by applying Remark 2.1.3 with M = 8 to the convex hull of Q+,u
P

and ωP , whose leftmost fourth contains Q+,u
P and is contained within the left half of the

smoothing interval, and whose rightmost fourth contains ωP , and is contained within the

right half of the smoothing interval. We then define the tile P̃ = P̃ (P ) = IP̃ × ωP̃ ∈ SHj×Gj

by

IP̃ := the unique J ∈ Hj with c(IP ) ∈ J, ℓJℓJch(1,2)
P

= 1, ωP̃ := J
ch(1,2)
P

where Hj is a fixed dual grid to Gj. With this definition,

supp2ψ
+
P ,u ∈ ωb

P̃ (P )
. (2.1.8)

For P̃ ∈ SHj×Gj
, let Sg(P̃ ) := {P ∈ Sg : P̃ (P ) = P̃}. For each N ∈ R, we then have

∑
P∈Sg(P̃ )

|IP |⟨f, ϕP ⟩ψ+
P,u(x,N) =

∑
P∈Sg(P̃ )

|IP |⟨f, ϕP ⟩ψ+
P,u(x,N)1ωb

P̃
(N)

having used (2.1.8) in the first equality. By construction, it is then easily verified that

#Sg(P̃ ) ≲ 1, ϕP ∈ CΦ(P̃ ), ψ+
P,u ∈ CΨ(P̃ ) ∀P ∈ Sg(P̃ )
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with uniform constants over P̃ ∈ SHj×Gj
. Linearization of the suprema in (2.1.6), a passage

to the adjoint followed by using the definitions of (2.1.2), (2.1.3), and a limiting argument

thus allow us to reduce estimation of the operator (1.0.3) to proving uniform bounds for the

forms

CP(f1, f2) :=
∑
P∈P

|IP |W [f1](P )A[f2](P ) (2.1.9)

where P is a finite subset of S = SD,D′ for a fixed pair of dual grids D,D′, and the function

N(·) in the definition (2.1.3) of A[f2](·) is a fixed but arbitrary measurable function.

Proof of estimate (2.1.6). By splitting and symmetry, we may assume thatm is supported on

the positive half-line, and obtain the ⋆ = + term, whose superscript is omitted throughout.

Let ψu ∈ S(R), u = 1, . . . , 95 with

supp ψ̂u ⊆
[
1
2
+ u−1

64
, 1
2
+ u+1

64

]
,

95∑
u=1

∑
k∈Z

ψ̂u(2
kξ) = 1(0,∞)(ξ)

and perform the corresponding Littlewood-Paley decomposition of the multiplier H0f as

H0f =
95∑
u=1

∑
k∈Z

f ∗Ψk,u, Ψk,u(x) :=

∫
R
m(ξ)ψ̂u(2

kξ)eixξ dξ, x ∈ R.

Further, let Dg, g = 0, 1, 2 be the three 1/3-shifted dyadic grids on R, and Sg(k) = {P ∈

Sg : scl(P ) = 2k} be the corresponding scale k tiles. Performing the standard Gabor decom-

position, we pick ϕ ∈ S(R) with supp ϕ̂ ⊆
[
0, 2

3

]
such that

∑
λ∈Z

∣∣∣ϕ̂ (ξ − λ
3

)∣∣∣2 = 1, ξ ∈ R

so that for each k ∈ Z

f =
2∑
g=0

∑
P∈Sg(k)

|IP |⟨f, ϕP ⟩ϕP , ϕP := ModcωP
TrcIP Dil

1
scl(P )ϕ
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holds. Note that ϕP ∈ CaΦ
a(P ) for all a. Combining and using the frequency support

property of ψk to restrict the summation,

HNf =
95∑
u=1

∑
k∈Z

f ∗ModNΨk,u =
95∑
u=1

2∑
g=0

∑
k∈Z

∑
P∈Sg(k+4)

|IP |⟨f, ϕP ⟩ϕP ∗ModNΨk,u

=
95∑
u=1

2∑
g=0

∑
P∈Sg

|IP |⟨f, ϕP ⟩ψP,u(·, N)1[7+u
4
,9+u

4 ]

(
c(ωP )−N
ℓωP

) (2.1.10)

having defined the functions

ψP ,u(x,N) := ϕP ∗ModNΨk,u(x), 2k+4 = scl(P ).

To obtain (2.1.10), we have used that supp ̂ModNΨk,u ⊂ N + 2−k[1
2
+ u−1

64
, 1
2
+ u+1

64
] and that

when P ∈ Sg(k + 4) the frequency support of ϕP is an interval ωP of length 2−k−4. Thus, in

order for ψP,u(·, N) to be nonzero, N must belong to the interval Q+,u
P as claimed in (2.1.7).

We are left with proving that ψP,u ∈ CaΨ
a(P ) for all 0 ≤ a ≤ M − 1. To this aim,

fix P ∈ Sg(k + 4). We treat both cases α = 0, 1 at the same time. First of all, using the

Hörmander-Mihlin condition (2.1.5)

supp Ψ̂k,u ⊂ [2−k−1, 2−k+1],
∣∣∣DaΨ̂k,u(ξ)

∣∣∣ ≲M 2ka ∼M |ξ|−a

for all 0 ≤ a ≤ M , k ∈ Z. Let also β be an auxiliary Schwartz function with the property

that 1[− 1
2
, 1
2
] ≤ β ≤ 1[−1,1] and define

Φk,u,P (x,N) :=

∫
R

(
− D

scl(P )

)α
Ψ̂k,u(ξ)β

(
ξ +N − cωP

ℓωP

)
eixξ

dξ√
2π
, x ∈ R.

Using the Fourier transform and the definition, we check that

[
∂N

scl(P )

]α
ψP ,u(·, N) = ϕP ∗ModNΦk,u,P
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so our claim follows easily from the scale scl(P ) ∼ 2k bump function estimates for the

function Ξ = ModN−cωP
Φk,u,P , whose Fourier transform is supported on |ξ| ≤ ℓωP

∼ 2−k and

satisfies

Ξ̂(ξ) =
(
− D

scl(P )

)α
Ψ̂k,u

(
ξ − (N − cωP

)
)
β

(
ξ

ℓωP

)
,∣∣∣Ξ̂(a)(ξ)

∣∣∣ ≲a

∑
b+c=a

2−kα
∣∣∣Ψ̂(b)

k,u

(
ξ − (N − cωP

)
)∣∣∣ 2kc ≲a 2

−kα |ξ − (N − cωP
)|−b 2kc ≲a 1

for 0 ≤ a ≤ M − 1, having used that cωP
− N ≥ 3ℓωP

, while |ξ| ≤ ℓωP
on the support of

β(·/ℓωP
). This completes the proof of (2.1.6).

2.2 Outer Lp estimates for the wave packet transforms

Outer Lp spaces, introduced in this context by Do and Thiele [26], provide the functional

setting for our estimates on the wave packet transforms. In this section, after particularizing

the main definitions, we introduce two new outer Lp norms enjoying a weaker, but more

precisely quantified form of the outer Hölder inequality. In what follows, we refer to a fixed

tiling S = SD,D′ .

2.2.1 Trees

Let κ be a nonnegative integer. We say that T ⊂ S is a κ-tree if there exists an interval

IT ∈ D and a frequency ξT ∈ R such that

IP ⊂ IT , ξT ∈ ω
p(κ)
P ∀P ∈ T.
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The pair (IT , ξT ) is referred to as top data of T . The notation

I(T ) := {I ∈ D : I = IP for some P ∈ T}, Ω(T ) := {ω ∈ D′ : ω = ωP for some P ∈ T}

is used for the spatial and frequency components of a κ-tree T .

Let 1 ≤ j ≤ 2κ. We say that a κ-tree T is of type j if ωP = [ω
p(κ)
P ]ch(κ,j), that is, equals

the j-th κ-grandchild of its κ-parent, for all P ∈ T . Clearly any κ-tree T splits as the disjoint

union T =
⊔2κ

j=1 T|j, with each T|j being a κ-tree of type j with the same top data.

Remark 2.2.2. The structure of S and the above definition entails that the intervals {ωp(κ) :

ω ∈ Ω(T )} are nested. Therefore, #{ω ∈ Ω(T ) : ℓω = ρ} ≤ 2κ for all ρ > 0. As a first

consequence,

#{P ∈ T : IP = I} ≤ 2κ ∀I ∈ I(T ). (2.2.1)

In general, each tree T contains both a Littlewood-Paley type and a maximal function

type component. The next definition isolates the Littlewood-Paley part. Say that a κ-tree

T is lacunary if

ω, ω′ ∈ Ω(T ), ω ̸= ω′ =⇒ ω ∩ ω′ = ∅.

and for every tree T , split

T = T ov ∪ T lac, T ov := {P ∈ T : ξT ∈ ωP}, T lac := T \ T ov. (2.2.2)

The next lemma tells us in particular that T lac is a union of at most κ2κ lacunary trees, and

that the residual part T ov has additional structure.

Lemma 2.2.3 (Structure of trees). Let T be a κ-tree with top data (IT , ξT ). Then T =⊔κ
u=1 T

u, with each T u also a κ-tree with the same top data and such that, for all j = 1, . . . , 2κ

27



(i)
[
T u|j
]lac

is a lacunary tree;

(ii) whenever j′ ̸= j, the intervals
{[
ω
p(κ)
P

]ch(κ,j′)
: P ∈

[
T u|j
]ov}

are pairwise disjoint.

Proof. We set T u :=
{
P ∈ T : scl(P ) ∈ 2κZ+u

}
for 1 ≤ u ≤ κ . Since every P ∈ T u belongs

in T we have that ξT ∈ ω
p(κ)
P and IP ⊂ IT therefore T u is a tree with top data (IT , ξT ). We

prove the first claim by taking ω, ω′ ∈ Ω
([
T u|j
]lac)

for which we can assume without loss of

generality that ℓω ≤ ℓω′ and ω ̸= ω′. If ℓω = ℓω′ it is clear that they cannot intersect. In the

case ℓω < ℓω′ then 2κℓω < ℓω′ henceforth if ω ∩ ω′ ̸= ∅ we would have that ωp(κ) ⊂ ω′ which

implies that ξT ∈ ω′ which is absurd by the defintion of
[
T u|j
]lac

. For the second claim we

proceed similarly, noting that the case ℓω = ℓω′ we would have that ω = ω′, and therefore

we can assume 2κℓω < ℓω′ so that if ω and ω′ intersect we would have ωp(k) ⊂ ω′ ⇒ ξT ∈ ω′

but by the definition of T|j we have that ξT ∈
[
ωp(κ)

]ch(κ,j)
which does not intersect ω′ so we

arrive at a contradiction.

2.2.4 Outer Lp on the space of local tiles

For J ∈ D, let SJ be the collection of all tiles P ∈ S with IP ⊂ J . Below, the notation

ℓp(SJ) stands for the ℓp spaces on SJendowed with the weighted counting measure

A 7→
∑
P∈A

|IP |, A ⊂ SJ .

The collection T J,κ of all κ-trees T ⊂ SJ concurs to the definition of the outer measure space

(SJ , T J,κ, µJ,κ), with outer measure µJ,κ defined by

µJ,κ : P(SJ) → [0,∞], µJ,κ(A) := inf

{
1

|J |
∑
T∈T

|IT | : T ⊂ T J,κ, A ⊂
⋃
T∈T

T

}
; (2.2.3)
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to wit, the infimum above is taken over all collections T ⊂ T J,κ of κ-trees whose union covers

A. Below, for a quasi-subadditive size map s as defined in [26, Def. 2.3],

[
F : SJ → C

]
7→
{
s(F, T ) : T ∈ T J,κ

}
we consider the outer Lp,r space on (SJ , T J,κ, µJ,κ),

Lp,r(J, κ, s) = Lp,r(SJ , µJ,κ, s)

as defined in [26, Def. 3.2], for exponents 1 ≤ p, q ≤ ∞. The definition therein may be

summarized as follows. First of all, define the outer essential supremum

outsup
s

F := sup
T∈T J,κ

s(F, T ) =: ∥F∥L∞(s) = ∥F∥L∞,∞(s).

Secondly, define the super level measure µs[F ] : [0,∞) → [0,∞] and the corresponding

nondecreasing rearrangement F ∗,s : [0,∞) → [0,∞] respectively by

µs[F ](τ) := inf

{
µJ,κ(A) : outsup

s
(F1SJ\A) ≤ τ

}
,

F ∗,s(t) := inf {τ ∈ [0,∞) : µs[F ](τ) ≤ t} .

We then set

∥F∥Lp,r(J,κ,s) := ∥F ∗,s∥p,q =
∥∥∥t 1pF ∗,s(t)

∥∥∥
Lq([0,∞),dt

t )
; (2.2.4)

recall that the right hand side is the standard Lorentz Lp,r quasinorm on [0,∞], see e.g.

[34, Sect. 1.4]. As customary, when q = p we omit q from the subscripts and superscripts.

The main examples of sizes and associated outer Lp,r spaces that arise in our applications

are the following. For 1 ≤ p ≤ ∞, set

sizep(F, T ) :=
∥F1T∥ℓp(SJ )

|IT |
1
p

, T ∈ T J,κ.
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For p = 2, we define the variant

size2,⋆(F, T ) := sup
{
size2(F,U) : U ∈ T J,κ lacunary, U ⊂ T

}
, T ∈ T J,κ, (2.2.5)

which is also a size. The definition of sizep(F, ·) and size2,⋆(F, ·) depends on κ via the domain

T J,κ, though we do not keep this dependence explicit in the notation.

The modified wave packet transform acting on the dual side of the Carleson operator, in

accordance with the definition (2.1.3) involving ωb
P , will be estimated in outer Lp,r-spaces

(2.2.4) where the parameter κ is naturally chosen to be 1. On the outer measure space

(2.2.3) we thus define, with reference to(2.2.2)

sizeC(F, T ) := size2(F, T
lac) + size1(F, T

ov), T ∈ T J,1.

The next proposition is a generalization to the Lorentz scale of the outer Hölder inequality,

which plays a pivotal rôle in the applications of outer spaces to modulation invariant singular

integrals.

Proposition 2.2.5. Let m ∈ N≥2 and s, s1, s2, · · · , sm be sizes on (SJ , µJ,κ, T J,κ) with the

property that for all function m-tuples F1, · · · , Fm : SJ → C,

s

(
m∏
j=1

Fj, T

)
≤

m∏
j=1

sj(Fj, T ) ∀T ∈ T J,κ. (2.2.6)

Then for all tuples 0 < p, p1, . . . , pm, q, q1, . . . , qm ≤ ∞, 1
p
=
∑m

j=1
1
pj
, 1
q
=
∑m

j=1
1
qj

there

holds ∥∥∥∥∥
m∏
j=1

Fj

∥∥∥∥∥
Lp,q(J,κ,sℓ)

≤ m
1
p

m∏
j=1

∥Fj∥Lpj,qj (J,sj)
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Proof. Chasing definitions, it is immediate to see that[
m∏
j=1

Fj

]∗,s(
t

m

)
≤

m∏
j=1

F ∗,sk
j (t) , 0 < t <∞

and the claim follows from the usual Hölder inequality on the spaces Lqj
(
[0,∞), dt

t

)
.

Remark 2.2.6. Let the assumptions of Proposition 2.2.5 stand, and particularize to the

case s = size1 and p = q = 1. Then,

1

|J |

∥∥∥∥∥
m∏
j=1

Fj

∥∥∥∥∥
ℓ1(SJ )

≲

∥∥∥∥∥
m∏
j=1

Fj

∥∥∥∥∥
L1(J,κ,size1)

≤ m
m∏
j=1

∥Fj∥Lpj (J,κ,sj)
(2.2.7)

where [26, Prop. 3.6] has been used to get the first bound.

Remark 2.2.7. Let A ⊂ SJ be a set of finite outer measure µJ,κ. It may be checked

directly that [1A]
∗,size∞ = 1[0,µJ,κ(A)), so that in particular ∥1A∥Lp,∞(J,κ,size∞) = µJ,κ(A)

1
p .

Using monotonicity of the size s, a particular case of Proposition 2.2.5 is

∥F1A∥Lp,q(J,κ,s) ≤ 2
1
p ∥F1A∥Lp1,q(J,κ,s) µ

J,κ(A)
1
p
− 1

p1 , 0 < p ≤ p1 ≤ ∞, 0 < q ≤ ∞.

(2.2.8)

2.2.8 Reverse Hölder outer Lp norms

The next definition is inspired by Remark 2.2.7. Let s be any size on (SJ , µJ,κ, T J,κ),

cf. [26, Def. 2.3]. Define, for F : SJ → C, 1 ≤ a ≤ p < ∞, 1 ≤ q ≤ ∞ and ε > 0, the

quasi-norms

∥F∥Xp,q
a (J,κ,s) := sup

A⊂SJ

∥F1A∥La,q(J,κ,s)

µJ,κ(A)
1
a
− 1

p

, ∥F∥Y p,q(J,κ,s) := max
{
∥F∥Lp,q(J,κ,s) , ∥F∥L∞(J,κ,s)

}
.
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Remark 2.2.7 tells us immediately that ∥F∥Xp,q
a (J,κ,s) ≤ 2

1
p∥F∥Lp,q(J,κ,s) in the range of the

definition. The next proposition should be interpreted as a partial converse of this control

and as a substitute for Proposition 2.2.5 with a smaller right hand side. The Y q,∞(J, κ, s)-

norm is the quantity appearing in our applications.

Proposition 2.2.9. Let m ∈ N≥2 and s1, s2, · · · , sm be m sizes on (SJ , µJ,κ, T J,κ) with the

property that (2.2.6) holds with s = size1. Suppose that

1 < a ≤ p1 <∞, 1 ≤ p2, . . . , pm <∞, ε :=

(
m∑
ℓ=1

1
pℓ

)
− 1 > 0.

Then, with implicit constant possibly depending on m only, there holds

1

|J |

∥∥∥∥∥
m∏
j=1

Fj

∥∥∥∥∥
ℓ1(SJ )

≲
a

ε (a− 1)
∥F1∥Xp1,∞

a (J,κ,s1)

m∏
ℓ=2

∥Fℓ∥Y pℓ,∞(J,κ,sℓ)

Proof of Proposition 2.2.9. Throughout the proof, the constant implied by ≲ is allowed to

depend on m only and vary at each occurrence By scaling we can assume

∥F1∥Xp1,∞
a (J,κ,s1)

= ∥F2∥Y p2,∞(J,κ,s2)
= · · · = ∥Fm∥Y pm,∞(J,κ,sm) = 1.

Under this assumption, we must prove

1

|J |
∑
P∈SJ

|IP ||F1F2F3 · · ·Fm(P )| ≲
a

ε (a− 1)
. (2.2.9)

Relying on the controls ∥Fℓ∥Lpℓ,∞(J,κ,sℓ)
, ∥Fℓ∥L∞(J,κ,sℓ)

≤ 1 for all 2 ≤ ℓ ≤ m, we iteratively

decompose the support of F2F3 · · ·Fm into pairwise disjoint sets Aj, j ∈ N such that

µJ,κ(Aj) ≤ 2j, max
2≤ℓ≤m

2
j
pℓ outsup

sℓ

(Fℓ1Aj
) ≲ 1. (2.2.10)
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For j ∈ N, let k(j) be the largest integer k with k ≤ aj
p1
. From the first estimate in (2.2.10)

and the definition of Xp1,∞
a (J, κ, s1)-norm, we learn that

∥F11Aj
∥La,∞(J,κ,s1) ≤ 2

j
(

1
a
− 1

p1

)
.

Thus, we may further decompose Aj into pairwise disjoint sets {Bj,k : −N ≤ k ≤ k(j)},

where N is an unimportant parameter related to the outer essential supremum of F1, with

outsup
s1

(F11Bj,k
) ≤ 2−

k
a , µJ,κ(Bj,k) ≤ 2

k+j
(
1− a

p1

)
, (2.2.11)

which means that we may find Tj,k ⊂ T J,κ with the property

Bj,k ⊂
⋃

T∈Tj,k

T,
∑
T∈Tj,k

|IT |
|J |

≤ 2µJ,κ(Bj,k) ≲ 2
k+j

(
1− a

p1

)
. (2.2.12)

We then estimate, using (2.2.10), (2.2.11) and (2.2.12) and subsequently summing in k,

1

|J |
∑
P∈Aj

|IP ||F1F2F3 · · ·Fm(P )| ≤
∑

−N≤k≤k(j)

∑
T∈Tj,k

|IT |size1(F1F2F3 · · ·Fm1Bj,k
, T )

≲
∑

−N≤k≤k(j)

∑
T∈Tj,k

|IT |s1(F11Bj,k
, T )

m∏
ℓ=2

sℓ(Fℓ1Aj
, T ) ≤ 2

j
(
1− a

p1
−
∑m

ℓ=2
1
pℓ

) ∑
−N≤k≤k(j)

2
a−1
a
k

≲
a

a− 1
2
j
(
1− a

p1
−
∑m

ℓ=2
1
pℓ

)
2

a−1
a
k(j) ≲

a

a− 1
2
j
(
1−

∑m
ℓ=1

1
pℓ

)
=

a

a− 1
2−εj.

The claimed bound (2.2.9) follows by summing the estimate of the last display over j ∈ N.

2.2.10 Lacunary tree estimates

This paragraph contains some size2,⋆,κ estimates for W [f ] restricted to lacunary trees,

which we use to explain the role played by this type of trees, and that will also be of use

later.
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Throughout our first discussion, let T be a lacunary tree with top data (IT , ξT ). For

simplicity, we assume ξT = 0, as the general case of our observations can be recovered by

suitably pre- and post-composing with Mod±ξT . Disjointness of frequency support and rapid

decay tell us that whenever P, P ′ ∈ T and ϕP ∈ Φ(P ), ϕP ′ ∈ Φ(P ′),

ℓIP = ℓIP ′ =⇒ |⟨ϕP , ϕP ′⟩| ≲ |IP |−1

〈
cIP − cIP ′

ℓIP

〉−M

, ℓIP ̸= ℓIP ′ =⇒ ⟨ϕP , ϕP ′⟩ = 0.

This observation and standard kernel estimates tell us that the operator

f 7→ HTf :=
∑
P∈T

|IP |⟨f, ϕP ⟩φP , ϕP , φP ∈ Φ(P ) ∀P ∈ T

and its adjoint are standard L2-bounded Calderón-Zygmund operators. Thus, Calderón-

Zygmund theory and the localization trick yield in particular that

1

|IT |
∥HTf∥1,∞ ≲ ⟪f⟫1,IT ,

1

|IT |
1
p

∥HTf∥p ≲p ⟪f⟫p,IT ,

the latter inequality being true for all 1 < p <∞. In particular

size2(W [f ], T ) ∼ |IT |−
1
2∥HTf∥2 ≲ ⟪f⟫2,IT ≲ ∥f∥∞

with ϕP , φP suitably chosen so that the first absolute equivalence holds. We have just proved

the outer estimate

∥W [f ]∥L∞(J,κ,size2,⋆) ≲p ∥f∥∞. (2.2.13)

The more precise localized estimate of the next proposition may be proved using a semi-

discrete analogue of HT and the John-Strömberg inequality. The argument is a variation on

[44, Prop. 9.3]. Associate to a collection of tiles P ⊂ S and f ∈ L∞
0 (R) the quasinorms

[f ]p,P := sup
P∈P

inf
IP

Mpf, 0 < p <∞. (2.2.14)
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Proposition 2.2.11. ∥W [f ]1P∥L∞(J,κ,size2,⋆) ≲ ⟨dist(J, supp f)⟩−28 [f ]1,P.

Proof. There is no loss in generality with assuming P ⊂ SJ . For ξ ∈ R, denote by Tξ = {P ∈

P : ξ ∈ ω
p(κ)
P }. Note that Tξ is a tree with top data (J, ξ). Then

∥W [f ]1P∥L∞(J,κ,size2,⋆) ≤ 2 sup
ξ∈R

sup
T⊂Tξ

|IT |−
1
2 ∥⟨f, ϕP ⟩1T (P )∥ℓ2P (SJ ) (2.2.15)

for suitably chosen ϕP ∈ Φ(P ). So we fix ξ and estimate supT⊂Tξ ∥⟨f, ϕP ⟩1T (P )∥ℓ2P (SJ ). By

composing with modulations, we may reduce to ξ = 0, and by (2.2.1) and finite splitting,

we may also reduce to having #{P ∈ Tξ : IP = I} = 1 for all I ∈ I(Tξ). Then

sup
T⊂Tξ

∥⟨f, ϕP ⟩1T (P )∥ℓ2P (SJ )

|IT |
1
2

≤ sup
K∈D
K⊂J

∥∥⟨f, ϕP ⟩1{P∈Tξ:IP⊂K}
∥∥
ℓ2P (SJ )

|K| 12
=

∥∥∥∥∥∥
∑

I∈I(Tξ)

⟨f, φI⟩hI

∥∥∥∥∥∥
BMO
(2.2.16)

where we have set φI =
√

|IP |ϕP for the unique P ∈ Tξ with IP = I, hI stands for the

L2-normalized Haar wavelet on I, and we mean the dyadic BMO. For K ∈ D, K ⊂ J , let

I∗(K) be the collection of maximal intervals in I ∈ I(Tξ) with I ⊂ K. The John-Strömberg

inequality, followed by disjointness of I ∈ I∗(K) tells us that

∥∥∥∥∥∥
∑

I∈I(Tξ)

⟨f, φI⟩hI

∥∥∥∥∥∥
BMO

≲ sup
K∈D
K⊂J

1

|K|

∥∥∥∥∥∥∥∥
∑

I∈I(Tξ)
I⊂K

⟨f, φI⟩hI

∥∥∥∥∥∥∥∥
1,∞

= sup
K∈D
K⊂J

∑
I∈I∗(K)

∥HI,semif∥1,∞
|K|

(2.2.17)

having set

HI,semif :=
∑

J∈I(Tξ)
J⊂I

⟨f, ϕJ⟩hJ .
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Standard kernel computations tell us that HI,semi is also an L2-bounded Calderón-Zygmund

operator and in particular is uniformly of type weak-(1, 1). Combining with the localization

trick on I ∈ I∗(K),

∥HI,semif∥1,∞ ≲ |I|⟪f⟫1,I ≲ |I| inf
I
M1f ≤ |I|[f ]1,P. (2.2.18)

Inserting the estimate (2.2.18) into (2.2.17), summing over the disjoint I ∈ I∗(K), and

perusing (2.2.15)-(2.2.16) yields the partial bound ∥W [f ]1P∥L∞(J,κ,size2,⋆) ≲ [f ]1,P. The ad-

ditional decay factor may be easily obtained by a localization trick followed by the partial

result applied to fχJ in place of f .

The following technical lemma will allow us to estimate the L∞(J, κ, size2,⋆) norm of the

wave packet transform restricted to a collection P which is covered by a certain set of top

data. It will not be used until Section 2.4, but this is the most appropriate location for its

proof. Notice that T (I, ξ) appearing in the statement that follows is a κ-tree with top data

(I, ξ).

Lemma 2.2.12. Let P ⊂ S and F ⊂ D × R be a collection of top data covering P, in the

sense that

P =
⋃

(I,ξ)∈F

T (I, ξ), T (I, ξ) :=
{
P ∈ P : IP ⊂ I, ξ ∈ ω

p(κ)
P

}
.

Then

∥W [f ]1P∥L∞(J,κ,size2,⋆)
≤ 2

κ
2 sup
(I,ξ)∈F

size2,⋆,κ(W [f ], T (I, ξ)).

Proof. There is no loss in generality with assuming P ⊂ SJ , and we do so. Fix a lacunary

κ-tree T ⊆ P and let (IT , ξT ) be its top data. Note that (IT , ξT ) does not necessarily belong
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to F . Say that P ∈ PT,⋆ if P ∈ T and IP is a maximal element of I(T ) with respect to

inclusion. By assumption, for each P ∈ PT,⋆ we may find (I(P ), ξ(P )) ∈ F with IP ⊂ I(P )

and ξ(P ) ∈ ω
p(κ)
P . Clearly

T =
⋃

P∈PT,⋆

T (P ), T (P ) := {Q = IQ × ωQ ∈ T : IQ ⊂ IP} .

The fact that T is a tree guarantees if Q ∈ T (P ) then ξT ∈ ω
p(κ)
P ∩ ω

p(κ)
Q , and comparing

scales ξ(P ) ∈ ω
p(κ)
P ⊂ ω

p(κ)
Q . Therefore T (P ) is a κ-lacunary tree with top data (IP , ξ(P )),

whence the inclusion T (P ) ⊂ T (I(P ), ξ(P )) for all P ∈ PT,⋆, and

size2(W [f ], T (P )) ≤ size2,⋆,κ(W [f ], T (I(P ), ξ(P ))) ≤ sup
(I,ξ)∈F

size2,⋆,κ(W [f ], T (I, ξ)).

Using (2.2.1) and disjointness of the maximal elements of I(T ), which are all contained in

IT ,

size2(W [f ], T ) ≤

(
1

|IT |
∑

P∈PT,⋆

|IP |
[
size2(W [f ], T (P ))

]2) 1
2

≤ 2
κ
2 sup
(I,ξ)∈F

size2,⋆,κ(W [f ], T (I, ξ))

which completes the proof of our main claim.

2.2.13 Local L2-bound for maximal modulations via wave packet estimates

In this paragraph, as a motivating example, two more outer Lp estimates for the wave

packet transforms (2.1.2)-(2.1.2) are stated and combined into a proof of Lp-boundedness

for the maximal modulated singular multiplier of (1.0.3) in the local L2-range. The first

concerns the wave packet transform (2.1.2)
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Proposition 2.2.14. Let J ∈ D and f ∈ L∞
0 (R). Then

∥W [f ]∥L2,∞(J,κ,size2,⋆)
≲ ⟪f⟫2,3J (2.2.19)

∥W [f ]∥Lp(J,κ,size2,⋆) ≲p ⟪f⟫p,3J , 2 < p ≤ ∞. (2.2.20)

The bound (2.2.19) is a restatement of [26, Theorem 5.1], see also [16,23]. Once (2.2.19) is

at disposal, (2.2.20) follows immediately from its outer Lp interpolation with e.g. (2.2.13); an

appropriate interpolation theorem is [26, Prop. 3.5]. A similar, but broader set of estimates

is available for the Lp(sizeC, J) norms of (2.1.3). As anticipated, the outer norms below refer

to the case κ = 1.

Proposition 2.2.15. Let J ∈ D and f ∈ L∞
0 (R). Then

∥A[f13J ]∥L1,∞(J,1,sizeC)
≲ ⟨f⟩1,3J ,

∥A[f13J ]∥Lp(J,1,sizeC) ≲p ⟨f⟩p,3J , 1 < p ≤ ∞.

Proposition 2.2.15 is obtained as a consequence of the localized estimate (2.3.1) of Propo-

sition 2.3.2. We send to Section 2.3 for statements and proofs. Propositions 2.2.14 and 2.2.15

may be combined to prove the estimate

CP(f1, f2) ≲p ∥f1∥p∥f2∥p′ , 2 < p <∞ (2.2.21)

uniformly over all f1, f2 ∈ L∞
0 (R) and finite P ⊂ S. In turn, via (2.1.6), (2.2.21) entails the

Lp(R)-boundedness of (1.0.3) in the same range.

Proof of (2.2.21). Fix f1, f2 ∈ L∞
0 (R) and a finite P. Using grid property (ii), find J ∈ D

such that, denoting Jj = J + j|J |, and setting Pj := P ∩ SJj , there holds

P = P−1 ∪ P0 ∪ P1, supp f1, supp f2 ⊂ 3Jj ∀j = 0,±1.
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The easy consideration size∞(F, T ) ≤ size2,⋆,1(F, T ) and the definitions tell us that

size1(F1F2, T ) ≤ size2(F1, T
lac)size2(F2, T

lac) + size∞(F1, T
ov)size1(F2, T

ov)

≤ 2size2,⋆,1(F1, T )sizeC(F2, T )

(2.2.22)

so that a form of (2.2.6) is verified. Applying the outer Hölder inequality to F1 = W [f1], F2 =

A[f2] in the form of (2.2.7) followed by Propositions 2.2.14 and 2.2.15 thus leads to

CPi
(f1, f2) ≤ ∥F1F2∥ℓ1(SJi ) ≲ |Ji| ∥W [f1]∥Lp(Ji,1,size2,⋆)

∥A[f2]∥Lp′ (Ji,1,sizeC)

≲ |Ji|⟨f1⟩p,3Ji⟨f2⟩p′,3Ji ≲ ∥f1∥p ∥f2∥p′

and the proof is completed by the observations that CP = CP−1 + CP0 + CP1 .

2.3 Localized embeddings for the modified wave packet transforms

This section contains the statement and proof of the embedding theorems for the modified

wave packet transform (2.1.3), see Proposition 2.3.2. The analysis behind this proposition

is essentially based on a combination of the tree and mass lemmata from [48]. We claim

no particular originality, but choose to present a full argument given the additional compli-

cations brought by the explicit dependence on N(·) of the wavelets in the map (2.1.3), cf.

also the definition of the wavelet classes Ψ(P ) from (2.1.4). To handle this dependence, we

borrow a continuity estimate idea from the paper [50] on Stein’s conjecture for the Hilbert

transform along vector fields.

Remark 2.3.1. Before we begin, we make the standing assumption that the function f

playing the role of the argument in (2.1.3) belongs to L∞
0 (R) and that P is a finite subset

of the collection of all tiles S = SD,D′ . The finiteness assumption in the estimates does not
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change the scope of our applications, and may in fact be removed via a limiting argument

when additional regularity assumptions on f are posed; for instance f ∈ C2
0(R) will suffice.

Proposition 2.3.2. We have

∥A[f ]1P∥Lp,∞(J,1,sizeC)
≲ [f ]1,P, 1 ≤ p ≤ ∞ (2.3.1)

with uniform constant. In particular the above estimate yields the control

∥A[f ]1P∥Y p,∞(J,1,sizeC)
≲ [f ]1,P, 1 ≤ p ≤ ∞.

In Proposition 2.3.2, as anticipated in Section 2.2, the tree parameter κ equals 1 and

all trees referred to below are 1-trees, without further explicit mention. The proposition is

proved by combining the next two lemmata, involving the auxiliary quantity

dense(f,P) := sup
P∈P

sup
P≲P ′

P ′∈S

⟪f1
N−1(ω

p(1)

P ′ )
⟫1,IP ′ (2.3.2)

defined e.g. for f ∈ L∞
0 (R) and P ⊂ S. The order relation in (2.3.2) is a modification of the

Fefferman ordering defined by

P ≲κ P
′ ⇐⇒ IP ⊂ IP ′ , ω

p(κ)
P ′ ⊂ ω

p(κ)
P . (2.3.3)

As we use (2.3.3) with κ = 1 throughout this section, we write ≲ instead of ≲1.

Remark 2.3.3. A moment’s thought yields dense(f,P) ≲ [f ]1,P uniformly over P ⊂ S.

Lemma 2.3.4. ∥A[f ]1P∥L∞(J,1,sizeC)
≲ dense(f,P).
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Lemma 2.3.5. Let P ⊆ S and δ > 0. There exists a decomposition P = P−∪
⋃
T∈F T, where

dense(f,P−) ≤ δ, each T is a tree with top interval IT , and the forest F = F(δ, f) satisfies

δ

|J |
∑
T∈F
IT⊂J

|IT | ≲ inf
J
M1f, ∀J ∈ D. (2.3.4)

The proofs of Lemmata 2.3.4 and 2.3.5 are respectively postponed to Subsections 2.3.6

and 2.3.7. We now show how a combination of these yields Proposition 2.3.2. Fix J ∈ D,

P ⊂ S . The bound (2.3.1) is an immediate consequence of

sup
t>0

max{1, t} (A[f ]1P)
∗,sizeC (t) ≤ C[f ]1,P (2.3.5)

where C is an absolute constant explicitly computed below and P ⊂ SJ . The range t ≤ 1

of estimate (2.3.5) is readily obtained by combining Remark 2.3.3 with the conclusion of

Lemma 2.3.4 and choosing C to be larger than the product of the respective absolute implicit

constants. Now, notice that the right hand side of (2.3.4) is also controlled by [f ]1,P. Applying

Lemma 2.3.5 to P with the choice δ = C
[f ]1,P
t

, provided C is larger than twice the implicit

constant in (2.3.4) yields (2.3.5) in the range t ≥ 1.

2.3.6 Proof of Lemma 2.3.4

The proof of the Lemma consists in showing that

sizeC(A[f ], T ) =
1

|IT |
∑
P∈T ov

|IP |A[f ](P ) +

(
1

|IT |
∑
P∈T lac

|IP |A[f ](P )2
) 1

2

≲ dense(f,P) (2.3.6)

whenever T ∈ T J,⋆ is a tree with T ⊂ P. For any such tree, we introduce the support

intervals

Ωb(T ) := {ωb
P : P ∈ T}.
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We may assume, by splitting, that T is a type 2 tree, which means that ωP is the right

child of its dyadic parent ω
p(1)
P for all P ∈ T . Lemma 2.2.3 thus tells us that the collection

Ωb(T ov) consists of pairwise disjoint intervals, while T lac is a lacunary tree, so that in partic-

ular Ωb(T lac) is a nested collection of intervals containing ξT . This follows immediately by

combining

ξT ∈ ω
p(1)
P ∀P ∈ T, ωP ̸= ωP ′ =⇒ ωP ∩ ωP ′ = ∅ ∀P, P ′ ∈ T lac.

Accordingly, the quantity δ(x) := inf
{
ℓωP

: N(x) ∈ ωb
P , P ∈ T lac

}
records the minimal active

frequency scale of T lac at each N(x) ∈ R and satisfies

|N(x)− ξT | ≤ δ(x), x ∈ R. (2.3.7)

In estimating both contributions, a key role is played by the collection G of maximal

elements in {G ∈ D : 3G ̸⊇ IP ∀P ∈ T}. Accordingly, for G ∈ G, j ∈ {ov, lac} decompose

T j = T j,+
G ∪ T j,−

G , T j,+
G = {P ∈ T j : scl(P ) > ℓG}, T j,−

G = {P ∈ T j : scl(P ) ≤ ℓG}.

We begin to estimate the T ov term in (2.3.6). Using the definition and the fact that G is a

partition of R leads to∑
P∈T ov

|IP |A[f ](P ) ≤ 2
∑

∗∈{+,−}

∑
G∈G

∑
P∈T ov,∗

G

|IP |⟨f, φP1G∩N−1(ωb
P )⟩, φP := ψP (·, N(·))

(2.3.8)

for suitable ψP ∈ Ψ(P ). Note that φP are not standard wavelets as they carry the dependence

on the measurable function N from the second argument of ψP . The basic estimate

|⟨f, φP1G∩N−1(ωb
P )⟩| ≲ χ10

IP
(cG)dense(f,P) (2.3.9)
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reveals that the ∗ = − sum in (2.3.8) is a tail term. Indeed, also relying on the defining

property of G for the first estimate, and later on (2.2.1),∑
G∈G

∑
P∈T ov,−

|IP |⟨f, φP1G∩N−1(ωb
P )⟩ ≲ dense(f,P)

∑
G∈G

∑
k≥0

∑
P∈T ov

|IP |=2−k|G|,IP∩G=∅

|IP |χ10
IP
(cG)

≲ dense(f,P)
∑
G∈G

|G|χ9
IT
(cG) ≲ dense(f,P)

∫
χ9
IT

≲ dense(f,P)|IT |

(2.3.10)

which is compliant with (2.3.6). The ∗ = + term is estimated as follows. First, note that

T ov,+(G) = ∅ unless G ⊂ 9IT and there exists P (G) ∈ T with

scl(P (G)) = 2ℓG, dist(G, IP (G)) ≤ scl(P (G)).

Let P ′(G) ∈ SD,D′ be the unique tile with IP ′(G) = IP (G) and ξT ∈ ωP ′(G). As the intervals

Ωb(T ov,+(G)) are pairwise disjoint and contained in ω
p(1)
P ′(G),∑

G∈G

∑
P∈T ov,+

G

|IP |⟨f, φP1G∩N−1(ωb
P )⟩ ≲

∑
G∈G
G⊂9IT

|G|⟪f1
N−1(ω

p(1)

P ′(G)
)
⟫1,IP ′(G)

≲
∑
G∈G
G⊂9IT

|G|dense(f, {P (G)}) ≲ dense(f,P)|IT |,

which also complies with (2.3.6). The ov term in (2.3.8) is thus fully handled.

We move onto the lac term in (2.3.8). With the same notation of the T ov the term, we

estimate

∑
P∈T lac

A[f ](P )2|IP | ≤ 2
∑

∗∈{+,−}

∑
G∈G

∑
P∈T ov,∗

G

A[f ](P )⟨f, φP1G∩N−1(ωb
P )⟩|IP |. (2.3.11)

The ∗ = − sum in (2.3.11) is handled along the lines of (2.3.10), with an additional ap-

plication of (2.3.9): we omit the details. The rest of the analysis deals with the ∗ = +

43



summand in (2.3.11). The explicit dependence of φP = ψP (·, N(·)) on N(·) prohibits us

to use orthogonality methods directly. This is obviated by replacing φP with the standard

wavelets

ϕP := ψP (·, ξT ) ∈ Φ(P ), P ∈ T lac.

Setting ζP := |IP |[φP − ϕP ] = |IP |[ψP (·, N(·))− ϕP ], P ∈ T lac, th error term created by the

replacement is

∑
G∈G,G⊂9IT

∑
P∈T lac,+

G

A[f ](P )
∣∣∣⟨f, ζP1G∩N−1(ωb

P )⟩
∣∣∣

≲ dense(f,P)
∑

G∈G,G⊂9IT

〈
|f |1

G∩N−1(ω
p(1)

P ′(G)
)
,
∑

P∈T lac,+
G

|ζP |1ωb
P
(N(·))

〉

≲
∑

G∈G,G⊂9IT

|G|dense(f,P)2 ≲ |IT |dense(f,P)2.

For the passage to the second line, note that the intervals Ωb(T ov,+(G)) are all contained in

ω
p(1)
P ′(G). The subsequent step was obtained via a Lipschitz estimate in the second argument

of ψP ∈ Ψ(P ) and subsequently taking advantage of (2.3.7), so that

∑
P∈T lac

|ζP (x)|1ωb
P
(N(x)) ≲

∑
P∈T lac:ℓωP

≥δ(x)

χIP (x)
δ(x)

ℓωP

≲ 1.

We are left with estimating the ∗ = + summand in (2.3.11), where the φP have been replaced

by the almost orthogonal wavelets ϕP . A principal role is played by the tree operator

HTf :=
∑
P∈T lac

|IP |A[f ](P )ϕP .

As ξT ∈ ωb for all ω ∈ Ω(T lac), the intervals Ω(T lac) form a lacunary sequence, that is

ω ⊂
{
ξ ∈ R : ℓω

2
≤ dist(ξ, ξT ) ≤ 2ℓω

}
∀ω ∈ Ω(T lac), ℓω > ℓ⋆ := min

{
ℓω′ : ω′ ∈ Ω(T lac)

}
.
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For α ∈ {ℓω : ω ∈ ω(T lac)}, let Ψα be even, real valued Schwartz functions with

1[ 1
2
α,2α] ≤ Ψ̂α ≤ 1[ 2

5
α, 11

5
α] α > ℓ⋆, 1[0,2ℓ⋆] ≤ Ψ̂ℓ⋆ ≤ 1[0, 11

5
ℓ⋆]
.

Assuming that {ℓω : ω ∈ T lac} are separated by a factor of 4, and arguing by finite splitting

otherwise, we obtain for all ℓ⋆ ≤ α ≤ β,∣∣∣∣HT,α,βf :=
∑
P∈T lac

α≤ℓωP
<β

|IP |A[f ](P )ϕP = [Ψβ −Ψα] ∗HTf

∣∣∣∣ ≲ M[HTf ],

due to the frequency support conditions ϕP ⊂ ωP . Relying on the definition of δ(·), cf.

(2.3.7), the modified ∗ = + summand in (2.3.11) is then estimated by

∑
G∈G
G⊂9IT

∫
G

|f |1
N−1(ω

p(1)

P ′(G)
)

∣∣∣HT,δ(·), 1
ℓG

f
∣∣∣ ≲ dense(f,P)2

∫
9IT

M[HTf ]

≲ |IT |dense(f,P)2∥HTf∥2 ≲ |IT |dense(f,P)2
( ∑
P∈T lac

|IP |A[f ](P )2
) 1

2

.

Balancing out the obtained bounds completes the estimation of lac term in (2.3.8), and in

turn, the proof of Lemma 2.3.6.

2.3.7 Proof of Lemma 2.3.5

The selection of the trees T ∈ F and consequent estimation of dense(f,P−) is identical to

[48, Proposition 3.1] and is thus omitted. To prove (2.3.4), it suffices to show that whenever

P′ ⊂ SJ is a set of pairwise incomparable tiles with respect to (2.3.3)

inf
P∈P′
⟪f1

N−1(ω
p(1)
P )
⟫ > δ =⇒

∑
P∈P′

|IP | ≲ δ−1|J | inf
J
Mf. (2.3.12)

45



Due to the premise of (2.3.12), for each P ∈ P′ there exists k = kP ≥ 0 with the property

that ∫
2kIP∩N−1(ω

p(1)
P )

|f | ≥ 26kδ|IP |

and kP is minimal with this property. Let P′
k be the collection of all P ∈ P′ with kP = k.

Perform the following iterative selection. Initialize A := P′
k,B = ∅. Among those P ⋆ ∈ A

with

2kIP ⋆ × ω
p(1)
P ⋆ ∩ 2kIP × ω

p(1)
P = ∅ ∀P ∈ B

select one with scl(P ⋆) maximal, and set A := A \ {P ⋆}, B := B ∪ {P ⋆}. Repeat until no

such P ⋆ ∈ A is available. At this point, we may partition P′
k =

⋃
{P′

k(P
⋆) : P ⋆ ∈ B} where

P ∈ P′
k(P

⋆) if

2kIP × ω
p(1)
P ∩ 2kIP ⋆ × ω

p(1)
P ⋆ ̸= ∅, scl(P ) ≤ scl(P ⋆).

Notice that if P, P ′ ∈ P′
k(P

⋆) then ω
p(1)
P ∩ ωp(1)

P ′ ⊃ ω
p(1)
P ⋆ , and P, P ′ are incomparable, so that

the intervals {IP : P ∈ P′
k(P

⋆)} are pairwise disjoint and contained in 2k+2IP ⋆ . We then

have ∑
P∈P′

k

|IP | ≤
∑
P ⋆∈B

∑
P∈P′

k(P
⋆)

|IP | ≲ 2k
∑
P ⋆∈B

|IP ⋆ | ≲ 2−5kδ−1
∑
P ⋆∈B

∫
2kIP⋆∩N−1(ω

p(1)
P⋆ )

|f |

≲ 2−4kδ−1|J |⟨f⟩1,2k+2J ≲ 2−4kδ−1|J | inf
J
Mf.

To pass to the second line, note that the sets 2kIP ⋆∩N−1(ω
p(1)
P ⋆ ), P ⋆ ∈ B are pairwise disjoint

and contained in 2k+3J . Then (2.3.12) follows by summing over k.
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2.4 Localized wave packet estimates near L1

If the local L2-averages of f are under control, we may combine the bound of Proposition

2.2.11 with (2.2.19) in the single localized estimate

∥W [f ]1P∥Y 2,∞(J,κ,size2,⋆)
≤ Cκ[f ]2,P. (2.4.1)

The quantities [f ]p,P have been introduced in (2.2.14). This section contains the statement

and main line of proof of a localized estimate for the wave packet transform in terms of local

Lp norms in the range 1 < p ≤ 2, with good control on the estimate as p→ 1+. Throughout

the remainder of this section, we enforce the formal assumptions of Remark 2.3.1 without

further explicit mention.

The main result of [23], a first substitute for (2.4.1) outside local L2, is recalled in the

next proposition.

Proposition 2.4.1. Let 1 < p ≤ 2. For all t > 1 there exists Ct,p,κ > 1 such that the

following holds. Let J be any interval, f ∈ L∞
0 (R) and P ⊂ S. Then

∥W [f13J ]1P∥Ltp′ (J,κ,size2,⋆)
≤ Ct,p,κ[f ]p,P.

Proposition 2.4.1 has been used to prove sparse and localized estimates for the Carleson

operator [20] and the bilinear Hilbert transform [16]. However, an inspection of the proof

shows that having fixed t > 1, the constant Ct,p blows up polynomially in (p − 1)−1 as

p→ 1+.

The next theorem, which is the main technical novelty of this work, provides us with

a substitute embedding that does not blow up near p = 1. Remark 2.2.7 tells us that
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the norms X tp′,∞
2 are weaker than the ones appearing on the left hand side of Proposition

2.4.1. Nonetheless, the generalized Hölder inequality of Proposition 2.2.9 makes Theorem H

applicable for our purposes.

Theorem H. For all t > 1 there exists Ct,κ > 1 such that the following holds. Let 1 < p ≤ 2,

J be any interval, f ∈ L∞
0 (R) and P ⊂ S . Then

∥W [f ]1P∥Xtp′,∞
2 (J,κ,size2,⋆)

≤ Ct,κ[f ]p,P.

Remark 2.4.2. We clarify a delicate point in the statement of Theorem H. Fixing t, the

smoothness level of the wave packet transform, as defined in (2.1.2), required for Theorem

H must be greater or equal to, say, M = 10 · ⌈28t′⌉. Theorem H will be applied below with

the fixed choice t = 2, so that a fixed level of smoothness, say M = 10 · 29, is sufficient.

The proof of Theorem H occupies the remainder of this section and is structured as

follows. Subsection 2.4.3 introduces a generalization of the wavelet classes ΦM(P ) of (2.1.1)

where the compact frequency support assumption is relaxed to requiring instead vanishing

moments with respect to a fixed frequency.

2.4.3 Relaxed wavelet classes

For an interval I ⊂ R and ξ ∈ R, define the normalized classes

ΘM
1 (I, ξ) :=

{
ModξTrc(I)Dil

1
scl(I)ϑ : ϑ ∈ ΦM

}
ΘM

0 (I, ξ) :=
{
ModξTrc(I)Dil

1
scl(I)ϑ : υ ∈ ΦM , υ̂(0) = 0

}
.
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As usual we drop the M when irrelevant or clear from context. If P ∈ S is a tile and

ϕP ∈ Φ(P ) we have the inclusions

ξ ∈ ω
p(κ)
P =⇒ ϕP ∈ CκΘ1(IP , ξ), ξ ∈ ω

p(κ)
P \ ωP =⇒ ϕP ∈ CκΘ0(IP , ξ).

The next lemma is a restatement of [23, Lemma 5.2].

Lemma 2.4.4. Suppose ı ∈ {0, 1}, ϕ ∈ Θ3M
ı (I, ξ), and K ≥ 1. Then

ϕ = ψ +K−Mυ, ψ, υ ∈ CMΘM
ı (I, ξ), suppψ ⊂ KI.

Remark 2.4.5. Let P be a tile, and suppose either ı = 1, ξ ∈ κωP or ı = 0, ξ ∈ κωP \ ωP .

Then Lemma 2.4.4 may be iterated to deduce the expansion of φP ∈ Φ3M(P )

φP =
∑
k≥0

2−MkφP,k,ξ, φP,k,ξ ∈ CMΘM
ı (IP , ξ), suppφP,k,ξ ⊂ 2kIP . (2.4.2)

The expansion (2.4.2) is the form of Lemma 2.4.4 we will use in the sequel.

2.4.6 Space-frequency decomposition on minimal tiles

Our aim in this paragraph is to provide a space-frequency decomposition induced by a

finite collection of spatial intervals I ⊂ D, where D is a fixed dyadic grid. The definition also

involves a dilation factor K ≥ 1. The spatial components of the forthcoming decomposition

will come from the collection

CZK(J ) := maximal elements of
{
G ∈ D : 9K2G ̸⊃ J for all J ∈ J

}
. (2.4.3)

When clear from context, the subscript K is dropped from the notation. The following

properties, which will be of use to us below, are deduced from (2.4.3).
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(i) CZK(J ) partitions R up to a set of zero measure.

(ii) The collection {3G : G ∈ CZK(J )} has finite overlap.

(iii) If J ∈ J , G ∈ CZK(J ) and G ̸⊂ 9KJ then G ⊂ R \ 3KJ .

(iv) If J ∈ J , G ∈ CZK(J ) and G ⊂ 3KJ then KℓG ≤ ℓJ .

(v) whenever h ∈ L∞
0 (R) say, there holds

sup
J∈J

inf
J
Mh ≲ sup

G∈CZK(J )

inf
G

Mh ≲ K2 sup
J∈J

inf
J
Mh.

We briefly comment on the proof of (ii). Indeed up to finite splitting it suffices to check

(ii) for the collections CZrK(J ) :=
{
G : G ∈ CZK(J ), ℓG ∈ 28Z+r

}
, r = 0, . . . , 7. Indeed let

x ∈ 3G0 for some G0 ∈ CZrK and suppose that for some G1 ∈ CZrK(J ) with ℓG1 ̸= ℓG0 we

have that x ∈ 3G1 then 9K2G1 ⊃ 27K2G0 ⊃ 9K2G
p(1)
0 or 9K2G0 ⊃ 27K2G1 ⊃ 9K2G

p(1)
1

which is absurd by the definition of CZK(J ) therefore

∑
G∈CZr

K(J )

13G(x) =
∑

G∈CZr
K(J ), ℓG=ℓG0

13G(x) ≤ # {G : G ∈ CZrK(J ), ℓG = ℓG0 , G ⊂ 9G0} ≲ 1.

The corresponding collection of minimal space-frequency tiles is then defined by

M = M(J ) :=
{
G×

[
ξ, ξ + 1

ℓG

)
: G ∈ CZ(J ), ξ ∈ Z

ℓG

}
⊂ SD×D0 . (2.4.4)

It is clear that M depends on J , but we choose to keep the latter implicit in the notation

when clear from context. Pick η ∈ S(R) with supp η ⊂ (−1, 1) and η(0) = 1
2π
. For P ∈ M

define the approximate projection operator ΠP , acting on f ∈ L2(R) by

ΠPf := [f1IP ] ∗ ηP , ηP := ModinfωP
Dil1scl(P )η.
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The Poisson summation formula tells us that

f =
∑
P∈M

ΠPf (2.4.5)

with convergence in L2(R) and almost everywhere. The decomposition (2.4.5) is approxi-

mately space-frequency localized in the sense that

suppΠPf ⊂ 3IP , ΠPf ∈ C[f ]1,PΘ1(IP , cωP
)

for some absolute constant C. The approximate projection onto the space-frequency region

associated to some W ⊂ M is then defined, for say f ∈ L2(R), by

ΠWf :=
∑
P∈W

ΠPf.

Below, whenever W ⊂ M, by

W[G] = {P ∈ W : IP = G} (2.4.6)

we indicate the tiles of W having a fixed spatial interval G ∈ CZK(J ).

2.4.7 Main line of proof of Theorem H

This paragraph reduces Theorem H to a Calderón-Zygmund type decomposition of f

with respect to an arbitrary family of top data. Details are as follows. To prove the estimate

of Theorem H, having fixed

P ⊂ SJ finite, ∅ ⊊ A ⊂ SJ , µJ,κ(A) =: N <∞,

we need to prove the control

∥W [f ]1P∩A∥L2,∞(J,κ,size2,⋆)
≲ N

1
2
− 1

tp′ [f ]p,P (2.4.7)
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for f ∈ L∞
0 (R). If N ≤ 1 then (2.4.7) follows immediately from an application of Proposition

2.2.11 and (2.2.8). We deal with the difficult case N > 1. To do so, we select an almost

optimal collection of trees T ⊂ T J,⋆ covering A, that is

A ⊂
⋃
T∈T

T,
∑
T∈T

|IT | ≤ 2N |J |,

and denote by F = {(IT , ξT ) : T ∈ T } the corresponding collection of top data. Relying on

the collection F , for a given f ∈ L∞
0 (R), we produce the decomposition

f = g + b, (2.4.8)

∥g∥2 ≤ Ct|J |
1
2N

1
2
− 1

tp′ [f ]p,P (2.4.9)

∥W [b]1P∩A∥L∞(J,κ,size2,⋆)
≤ CtN

− 1
p′ [f ]p,P (2.4.10)

where the constant Ct depends only on the fixed parameter t > 1 and is allowed to vary at

each occurrence. With (2.4.9)-(2.4.10) in hand, we use quasi-subadditivity of the L2,∞(J, κ, size2,⋆)-

quasinorm to obtain

∥W [f ]1P∩A∥L2,∞(J,κ,size2,⋆)
≤ 2 ∥W [g]1P∩A∥L2,∞(J,κ,size2,⋆)

+ 2 ∥W [b]1P∩A∥L2,∞(J,κ,size2,⋆)

≤ 2 ∥W [g]∥L2,∞(J,κ,size2,⋆)
+ 4 ∥W [b]1P∩A∥L∞(J,κ,size2,⋆)

N
1
2

≤ C|J |−
1
2 ∥g∥2 + CtN

1
2
− 1

p′ [f ]p,P ≤ CtN
1
2
− 1

tp′ [f ]p,P.

To pass to the second line, we have employed monotonicity on both terms and (2.2.8). The

subsequent bound follows from an application of Proposition 2.2.14, in particular (2.2.19)

and by taking advantage of (2.4.10), while the final estimate is a consequence of (2.4.9). This

completes the proof of (2.4.7), and in turn of Theorem H, up to actual construction of the

splitting f = g + b with properties (2.4.9)-(2.4.10). This task is conducted in the upcoming
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paragraphs. The first step towards (2.4.9)-(2.4.10) is to construct a suitable collection of

minimal space-frequency tiles adapted to the collection P. To do so, take

J = {J ∈ D : J = IP for someP ∈ P}

in (2.4.3). The choice of the constant K ≥ 1 depends on N, p and t and will be made explicit

in (2.4.22) below. From now on, M = M(J ) refers to the collection obtained from (2.4.4)

for this choice of J , K. Note that the spatial components of the tiles in M come from the

collection CZK(J ). This fact will be employed in the proof quite a few times.

Below, the notation T is used, with meaning clear from context, for both the top data

pair itself T = (IT , ξT ) ∈ F and to the set T = T (IT , ξT ) = {P ∈ P : IP ⊂ IT , ξT ∈ ω
p(κ)
P }.

The collection of top data F induces a certain decomposition of the minimal tiles M, as

follows. First, the principal region Q is defined by

Q =
⋃
T∈F

{Q ∈ M : scl(Q)| inf ωQ − ξT | ≤ K, IQ ⊂ 3KIT} . (2.4.11)

Each T = (IT , ξT ) ∈ F then partitions the tail region M \Q into the two components

Q′(T ) := {Q ∈ M \Q : scl(Q)| inf ωQ − ξT | > K} ,

Q′′(T ) := {Q ∈ M \Q : scl(Q)| inf ωQ − ξT | ≤ K}
(2.4.12)

roughly corresponding to the frequency tails and spatial tails with respect to T . The defini-

tions guarantee that M = Q ⊔Q′(T ) ⊔Q′′(T ) for each T ∈ F .
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2.4.8 Space-frequency tail estimates

The following technical lemma, via a suitable decomposition, shows how the action of the

(adjoint) frequency tails projection ΠQ′(T ) on wave packets localized to T is exponentially

small in the separation parameter K.

Lemma 2.4.9. Let M be a large integer. There exists a positive constant C = C(M) and a

decomposition

Π∗
Q′(T ) = Π∗,avg

Q′(T ) +Π∗,osc
Q′(T )

with the following properties.

(i) For each pair f, g ∈ L2(R), there exists h ∈ L2(R) such that |h| ≤ C|f | and

⟨f,Π∗,avg
Q′(T )g⟩ = K−M⟨h, g⟩. (2.4.13)

(ii) If I ∈ D, the pointwise inequality

∑
P∈T
IP⊂I

∣∣∣Π∗,osc
Q′(T )ϕP

∣∣∣ ≤ CK−M
10χ

M
10
I (2.4.14)

holds for each L∞-normalized collection {ϕP : P ∈ T, |IP |−1ϕP ∈ ΘM
1 (IP , ξT )}.

Proof. With the notation of (2.4.6),

Π∗
Q′(T ) =

∑
G∈CZK(J )

[
f ∗
(
ZG(−·)

)]
1G, ZG :=

∑
Q∈Q′(T )[G]

ηQ.
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The claimed decomposition is

Π∗,avg
Q′(T )f :=

∑
G∈CZK(J )

ẐG(ξT ) (1Gf) , Π∗,osc
Q′(T )

:= Π
∗,polyn
Q′(T ) +Π∗,canceln

Q′(T )

Π
∗,polyn
Q′(T ) f :=

∑
G∈CZK(J )

1G

∫
Modxf̂

[
PξTn (ẐG)− ẐG(ξT )1R

]
Π∗,canceln

Q′(T ) f :=
∑

G∈CZK(J )

1G

∫
Modxf̂

[
ẐG − PξTn (ẐG)

]
where n := M

10
and PξTn (ẐG) is the order n Taylor polynomial of ẐG centered at ξT . First,

observe that (2.4.13) follows by taking advantage of the trivial estimate∣∣∣∂ν(ẐG)(ξT )∣∣∣ ≲M,ν K
−M(ℓG)

ν , (2.4.15)

and subsequently setting

h :=
1

K−M

∑
G∈CZK(J )

ẐG(ξT )(1Gf) ⇒ |h| ≲M |f |. (2.4.16)

As an intermediate step towards (2.4.14), we first prove a preliminary result under a tem-

porary spatial compact support assumption. Namely, for i ∈ {polyn, canceln} , Π∗,i
Q′(T ) has the

property that if φP ∈ Θ
M
3
ι (IP , ξT ) with suppφP ⊂ ∆IP∣∣∣Π∗,polyn

Q′(T ) φP

∣∣∣ ≲ ℓ−1
IP
∆K−M

n∑
m=1

∑
G∈CZK(J ),3G∩∆IP ̸=∅

1G

(
ℓG
ℓIP

)m
(2.4.17)

∣∣∣Π∗,canceln
Q′(T ) φP

∣∣∣ ≲ ℓ−1
IP
∆

∑
G∈CZK(J ),3G∩∆IP ̸=∅

1G

(
ℓG
ℓIP

)n+1

. (2.4.18)

We check (2.4.17). The adaptation |φ̂P | ≲ ∆χ
M
3
ωξT ,P (ξ) allows us to estimate∥∥∥(ξ − ξT )

j φ̂P

∥∥∥
1
≲

(∫
|ξ−ξT |≤ℓωP

|ξ − ξT |j +
∫
|ξ−ξT |>ℓωP

|ωP |
M
3 |ξ − ξT |j−

M
3

)
≲ ∆(ℓIP )

−(j+1)

(2.4.19)
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for 1 ≤ j ≤ n + 1. Combining (2.4.19) with (2.4.15) yields (2.4.17). Finally, an application

of (2.4.19) for j = n + 1 yields (2.4.18). In order to prove (2.4.14), apply Remark 2.4.2 to

write ϕP as rapidly decaying superposition of wave packets with compact support and use

the intermediate estimate (2.4.17) as in∑
k≥0

2−
M
3
k
∑
P∈T

∣∣∣Π∗,osc
Q′(T ) ϕP,k,ξT

∣∣∣
≲
∑
k≥0

2−
M
3
k2k(n+1)

∑
P∈T

∑
G∈CZK(J )

3G⊂3·2kIP

1Gmax

{
K−M ,

(
ℓG

2kℓIP

)n}(
ℓG

2kℓIP

)

≲ K−M
10

∑
k≥0

2−
M
5
k

∑
G∈CZK(J )

3G⊂6·2kI

1G
∑
P∈T

3G⊂3·2kIP

(
ℓG

2kℓIP

)
.

(2.4.20)

The proof of (2.4.14) is then completed by summing up, and taking advantage of the next

two observations. First, when G ∈ CZK(J ) and j ∈ Z the cardinality estimate

#
{
P ∈ T : 3G ⊂ 3 · 2kIP , scl(P ) = 2j

}
≲ (k + 2)2k

holds uniformly in j, G. Next, when G ∈ CZK(J ), J ∈ J and 3G ∩ 2kJ ̸= ∅, then

G ⊂ 3 · 2kJ necessarily, and in particular 3K2ℓG ≤ ℓ2kJ . Therefore, the counting estimate in

the last display allows us to perform a single scale analysis in the innermost sum of (2.4.20),

and using the disjointness of G ∈ CZ(J ), we can estimate (2.4.20) by

K−M
10

∑
k≥0

2−
M
6
k12k+3I ≲ K−M

10χ
M
10
I . (2.4.21)

Finally, the proof of the lemma is finished by taking C(M) to be the larger of the two implied

constants in (2.4.16), (2.4.21).

Lemma 2.4.10. If f ∈ L∞
0 (R) and T ∈ F there holds

size2,⋆,κ(W [ΠM\Q(f)], T ) ≲ K−M
20 [f ]1,P.
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Proof. The proof is carried by splitting ΠM\Q into frequency and spatial tails. Namely,

ΠM\Qf = ΠQ′(T )f +ΠQ′′(T )f,

and it suffices to check that

max
i∈{′,′′}

size2,⋆,κ(W [ΠQi(T )f ], T ) ≲ K−M
20 [f ]1,P.

The case i = ′ is dealt with first. By identical considerations to those from the proof of

Proposition 2.2.11, it suffices to bound∥∥∥∥∥∥∥
∑
P∈T ′
IP⊂I

|IP |⟨f,Π∗
Q′(T )ϕP ⟩hIP

∥∥∥∥∥∥∥
1,∞

≲ K−M
20 [f ]1,P|I|

for an arbitrary interval I ∈ D, lacunary tree T ′ ⊂ T , and collection {ϕP ∈ Φ(P ) : P ∈ T ′}.

To this purpose, Lemma 2.4.9 entails∥∥∥∥∥∥∥
∑
P∈T ′
IP⊂I

|IP |⟨f,Π∗,osc
Q′(T )ϕP ⟩hIP

∥∥∥∥∥∥∥
1

≤

〈
|f |,

∑
P∈T ′
IP⊂I

∣∣∣Π∗,osc
Q′(T )[|IP |ϕP ]

∣∣∣〉 ≲ K−M
20

∥∥∥fχM
10
I

∥∥∥
1
≲ K−M

20 |I|[f ]1,P.

Furthermore, (2.4.13) of Lemma 2.4.9 may be used to find |h| ≤ C|f | such that the estimate∥∥∥∥∥∥∥
∑
P∈T ′
IP⊂I

|IP |⟨f,Π∗,avg
Q′(T )ϕP ⟩hIP

∥∥∥∥∥∥∥
1,∞

≲ K−M |I|[h]1,P ≲ K−M |I|[f ]1,P

holds. This completes the handling of the term i = ′. The term i = ′′ is much easier, The

definition of Q′′(T ) guarantees that suppΠQ′′(T )f ∩KIT = ∅. Therefore, an application of

Lemma 2.2.11 in the first step yields

size2,⋆,κ(W [ΠQ′′(T )f ], T ) ≲ K−M
2

∥∥ΠQ′′(T )f
∥∥
∞ .
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while properties (ii) and (v) of the spatial intervals CZK(J ) guarantee the bound

∥∥ΠQ′′(T )f
∥∥
∞ ≲ K sup

G∈CZK(J )

inf
G
M(f) ≲ K3[f ]1,P.

The claim of the lemma for the Q′′(T ) component is then an immediate consequence of the

last two displays.

2.4.11 Conclusion of the proof

The choices

K := N
1
p′ (

10
M

+ 1
6t′ ), M :=M(t) = 30⌈28t′⌉ (2.4.22)

and the decomposition (2.4.8) are now made explicit. The choice of M , anticipated in

Remark 2.4.2, ensures (2.4.9), (2.4.10) both hold. In view of the minimal tiles expansion

(2.4.5), set in (2.4.8)

g := ΠQf, b := ΠM\Qf.

Turn to the verification of (2.4.9)-(2.4.10). For the first, write

ΠQf =
∑

G∈CZK(J )

ΠQ[G]f =
∑

G∈CZK(J )

(f1G) ∗ UG, UG :=
∑

P∈Q[G]

ηP .

A straightforward use of Plancherel’s theorem entails that
∥∥ΠQ[G]

∥∥
2→2

≲ 1. Furthermore,

observe that ÛG is a sum of #Q [G] Schwartz functions uniformly adapted to disjoint intervals

of length ℓ−1
G , leading to the estimates

∥∥∥ÛG∥∥∥
1
≲

#Q[G]

ℓG
,
∥∥∥ÛG∥∥∥

∞
≲ 1 =⇒

∥∥ΠQ[G]

∥∥
p→2

≲

(
#Q [G]

ℓG

) 1
p
− 1

2

58



where the implication is obtained by log-convexity, Young’s inequality, and finally Riesz-

Thorin interpolation of the (2, 1) and (2, 2) estimates. Preliminarily, also note

#Q [G] ≤ 3K inf
G

∑
T∈T

13KIT ∀G ∈ CZK(J ). (2.4.23)

Estimate (2.4.9) then follows by combining (2.4.23), the fact that suppΠQ[G]f ⊂ 3G and the

finite overlap (ii) of {3G : G ∈ CZK(J )} in the string of inequalities

∥ΠQf∥2 ≲

 ∑
G∈CZK(J ),G⊂9KJ

∥∥ΠQ[G]f
∥∥2
2

 1
2

≲ |J |
1
p′K3

(∑
T∈T

|IT |

) 1
2
− 1

p′

[f ]p,P

≲ |J |
1
2N

1
2
− 1

tp′ [f ]p,P

as claimed. For the property (2.4.10), by Lemma 2.2.12 it suffices to check that for each

T ∈ T there holds

size2,⋆(ΠM\Qf, T ) ≲ N
− 1

p′ [f ]p,P.

Taking notice of the relation between M and t in (2.4.22), this was proved in Lemma 2.4.10.

2.5 Proof of Theorem B

Fix a tiling S = SD,D′ , fj ∈ L∞
0 (R), j = 1, 2. The crux of the matter is to establish the

estimate

sup
P⊂S finite

CP(f1, f2) ≲
1

ε

∥∥∥M( 1
1−ε

,1)(f1, f2)
∥∥∥
1

(2.5.1)

with implied constant independent of ε > 0, referring to the model sums (2.1.9). In fact, if

C stands for (1.0.3), in view of (2.1.6), the form ⟨Cf1, f2⟩ is controlled by the sum of ≲ 1

terms of the type appearing in the left hand side of (2.5.1). The same sparse bound for the
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periodic operator (1.0.5) then follows from (1.0.4) via a standard transference type argument

based on the Stein-Weiss lemma, see e.g [65, Appendix A].

We turn to the proof of (2.5.1), fixing 0 < ε ≤ 1
2
, and a finite collection P ⊂ S. To

unify notation below, it is convenient to write q1 = 1
1−ε , q2 = 1 and q⃗ = (q1, q2) below. Let

Q ⊂ D be a partition of R with the property that supp fj ⊂ 3Q for j = 1, 2, Q ∈ Q. For

each Q ∈ Q, define §0(Q) = {Q} and inductively for m ≥ 0

B(S) := maximal B ∈ D with B ⊂ S ∩
2⋃
j=1

{
Mqj [fj13S] > Θ⟨fj⟩q,3S

}
, S ∈ §m(Q),

Sm+1(Q) :=
⋃

S∈§m(Q)

B(S).
.

Finish by setting S :=
⋃
Q∈Q

⋃
m≥0 Sm(Q). Note that the sets {ES : S ∈ S} defined by

ES := S \ [
⋃
{B : B ∈ B(S)}] are pairwise disjoint, and the packing condition

∑
B∈B(S)

|B| ≤ 1

4
|S|, S ∈ S

which holds provided the absolute constant Θ is picked suitably large, guarantees that |S| ≤

2|ES| for all S ∈ S. Also, the iterated stopping interval nature of the collection S yields

sup
I⊂S

I ̸⊂
⋃

B∈B(S)B

inf
I
Mqjfj ≲ ⟨fj⟩qj ,3S, S ∈ S, j = 1, 2.

Therefore, the partition

P =
⊔
S∈S

P(S), P(S) :=

P ∈ P : IP ⊂ S, IP ̸⊂
⋃

B∈B(S)

B


inherits the property

[fj]qj ,P(S) ≲ ⟨fj⟩qj ,3S, S ∈ S, j = 1, 2. (2.5.2)
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By virtue of (2.2.22), we may apply Proposition 2.2.9 with p1 = 2q′1 =
2
ε
, a = 2 and p2 = 1

in the second step, and pass to the second line through an appeal to Theorem H with t = 2

and p = q1 for W , and Proposition 2.3.1 for A, obtaining

CP(f1, f2) =
∑
S∈S

CP(S)(f1, f2) ≲
1

ε

∑
S∈S

|S|
∥∥W [f1]1P(S)

∥∥
X

2q′1,∞
2 (S,size2,1,⋆)

∥∥A[f2]1P(S)
∥∥
Y 1,∞(S,sizeC)

≲
1

ε

∑
S∈S

|S|
∏
j=1,2

[fj]qj ,P(S) ≲
1

ε

∑
S∈S

|ES| inf
ES

Mq⃗(f1, f2) ≤
1

ε
∥Mq⃗(f1, f2)∥1.

The middle almost-inequality in the last line relies on (2.5.2) as well as |ES| ≳ |S|, while the

final step is due to the pairwise disjointness of ES, S ∈ S. The proof is thus complete.

2.6 Proof of Theorem G

2.6.1 Rank 1 forms

This paragraph devises a reformulation, within our framework, of the trilinear forms

discretizing multipliers with singularity along a rank one subspace, such as the bilinear

Hilbert transforms. Although these date back in essence to the works of Lacey-Thiele [46,47],

they appear in a form closer to ours in [60]. The main change in our definition with respect to

the usual one is that our does not involve multi-tiles, at least explicitly, to avoid reformulating

outer Lp-spaces and use our embedding theorems in the most direct way possible.

Fix κ ≥ 1, two dual dyadic grids D,D′ and the tiling S = SD,D′ . Our construction,

similarly to [60], relies on the two order relations on S

P ≲κ P
′ ⇐⇒ IP ⊂ IP ′ , ω

p(κ)
P ′ ⊂ ω

p(κ)
P , κ ≥ 1,

P ≲′
κ P

′ ⇐⇒ P ≲κ P
′ and P ̸≲1 P

′, κ ≥ 2.
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Note that ≲κ has been already defined in (2.3.3) and is recalled here for the reader’s conve-

nience. Let κ ≥ 10, P be a finite subset of S with scales separated by a factor of 25κ, and

η = (η1, η2, η3) : P → S× S× S have the properties

r1. the components ηj : P → S are injective maps for j = 1, 2, 3;

r2. Iηj(P ) = IP for j = 1, 2, 3;

r3. if P, P ′ ∈ P are such that ηj(P ) ≲1 ηj(P
′) for some j ∈ {1, 2, 3} then ηk(P ) ≲κ ηj(P

′)

for all k ∈ {1, 2, 3};

r4. if P, P ′ ∈ P are such that ηj(P ) ≲1 ηj(P
′) for some j ∈ {1, 2, 3} then ηk(P ) ≲κ ηk(P

′)

for all k ∈ {1, 2, 3}, and in fact ηk(P ) ≲′
κ ηk(P

′) for at least two indices k ∈ {1, 2, 3}.

It is convenient to denote by Pj, j ∈ {1, 2, 3} the ranges of ηj. The rank 1 form of parameter

κ associated to η and Q ⊂ P acts on a triple fj ∈ L∞
0 (R) by

Λη,Q(f1, f2, f3) =
∑
P∈Q

|IP |
∏

j∈{1,2,3}

W [fj](ηj(P ))

where W stands for the wave packet transform (2.1.2).

A typical example of map η satisfying r1. to r4. and thus giving rise to rank 1 forms is

the following. Let Γ′ be a 1-dimensional subspace of Γ = {ξ ∈ R3 : ξ1 + ξ2 + ξ3 = 0} as in

the statement of Theorem G and Q ⊂ D′ ×D′ ×D′ be a finite collection satisfying

g1. ℓQ1 = ℓQ2 = ℓQ3 ∈ 2HZ+h for all Q = Q1 ×Q2 ×Q3 ∈ Q,

g2. Q ∩ Γ ̸= ∅ for all Q ∈ Q,
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g3. KℓQ1 ≤ dist(Q,Γ′) ≤ K2ℓQ1 for all Q ∈ Q

for parameters H,K ∈ N and h ∈ {0, . . . , H − 1}. If H,K are sufficiently large parameters

depending on Γ′, conditions g1. to g3. tell us that the collection {Q ∈ Q : Q1 = ω} has at

most one element for each ω ∈ D′, see e.g. [60, Lemma 6.2]. If such collection is nonempty,

we may then write Q = ω×Q2(ω)×Q3(ω) for its unique element. Of course, the index j = 1

can be replaced by any other index in a symmetric statement. In this setting, if P = P1 is a

finite subset of {P ∈ S : ωP = Q1 for some Q ∈ Q} the map

η : P → S× S× S, η(P ) = (P, IP ×Q2(ωP ), IP ×Q3(ωP ))

satisfies r1. to r4. The usual model sum reduction of [60] may be then summarized in the

statement that the singular multipliers (2.0.9) lie in the closed convex hull of rank 1 forms

as defined above, with parameter κ chosen sufficiently large depending on the parameter K

in g3. Therefore Theorem G will follow from the estimate

Λη,P(f1, f2, f3) ≤
C

ε(p⃗)
∥Mp⃗(f1, f2, f3)∥1 (2.6.1)

uniformly over all rank 1 forms, for all tuples p⃗ = (p1, p2, p3) satisfying the conditions in

(2.0.10). Symmetry in the indices p1, p2, p3 and a complex interpolation argument allow us

to restrict ourselves to tackling (2.6.1) in the extremal case p1 =
1

1−ε , p2 = 2 = p3, for which

ε(p⃗) = ε. We do so in the next paragraph.
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2.6.2 Using the wave packet embeddding

We now prove (2.6.1) in the above mentioned extremal case. By eventually composing

η with the inverse of η1, we reduce to the case where P = P1 and η1 is the identity map.

Properties r1. to r4. of the map η associated to a rank 1 form of fixed constant κ come into

play via the following observation. If ∅ ⊊ S ⊂ S, Q ∈ S, then the set

S(Q) := {P ∈ S : P ≲1 Q}

is a 1-tree with top (IQ, cωQ
). Property r3. tells us that the sets ηj(S(Q)) := {ηj(P ) : P ∈

S(Q)} are κ-trees with top (Iηj(Q), cωηj(Q)
) = (IQ, cωηj(Q)

), j = 1, 2, 3. Furthermore, property

r4. and scale separation as in the proof of Lemma 2.2.3 allows us to decompose

S(Q) =
3⋃
j=1

S(Q, j)

with each S(Q, j) having the property that ηk(S(Q, j)), obviously contained in ηk(S(Q)),

is a lacunary κ-tree with top (IQ, cωηk(Q)
) for k ∈ {1, 2, 3} \ {j}. In accordance with this

property, we define three new variants of (2.2.5) on the outer measure space (SJ , T J,1, µJ,1).

Setting for k = 1, 2, 3

size2,⋆,k(F, T ) := sup
{
size2(F ◦ η−1

k , U) : U ⊂ ηk(T ), U lacunary κ-tree
}
, T ∈ T J,1

we have the estimate

size1(F1F2F3, T ) ≲
∏

k=1,2,3

size2,⋆,k(Fk, T ), ∀T ∈ T J,1. (2.6.2)

This inequality, proved at the end of this section, is our analogue of the usual tree estimate,

see e.g. [60, Lemma 7.3], and it is essentially the only additional piece of machinery we were
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left to set up. Indeed, if Q ⊂ P ∩ SJ is arbitrary, (2.6.2) allows us to appeal to Proposition

2.2.9 with the obvious choice of exponents, and obtain the chain of inequalities

Λη,Q(f1, f2, f3) ≤

∥∥∥∥∥1Q

3∏
k=1

(W [fk] ◦ ηk)

∥∥∥∥∥
ℓ1(SJ )

≲
|J |
ε

∥1Q (W [f1] ◦ ηk)∥
X

2
ε ,∞
2 (SJ ,1,size2,⋆,1)

∏
k=2,3

∥1Q (W [fk] ◦ ηk)∥Y 2,∞(SJ ,1,size2,⋆,k)

≤ |J |
ε

∥∥1η1(Q) (W [f1])
∥∥
X

2
ε ,∞
2 (SJ ,κ,size2,⋆)

∏
k=2,3

∥∥1ηk(Q) (W [fk])
∥∥
Y 2,∞(SJ ,κ,size2,⋆)

≲
|J |
ε
[f1] 1

1−ε
,Q

∏
k=2,3

[fk]2,Q.

(2.6.3)

The passage to the third line follows by transport of structure, while for the subsequent step

we have applied Theorem H and estimate (2.4.1), and used that the spatial components, and

thus the corresponding local tile norms on Q, are invariant under η. With (2.6.3) in hand,

a stopping procedure akin to that devised in Section 2.5 easily leads to (2.6.1). Details are

left to the interested reader.

Proof of (2.6.2). Let T ∈ T J,1 be a 1-tree with top (IT , ξT ), and m(T ) be the set of those

Q ∈ T which are maximal with respect to ≲1. As ξT ∈ ω
p(1)
P for all P ∈ T , it must hold

that IQ ∩ IQ′ = ∅ whenever Q,Q′ ∈ m(T ) with Q ̸= Q′. Clearly, T is the disjoint union of

the 1-trees {T (Q) : Q ∈ m(T )}. Simply from the definitions and the disjointness we just

stressed

size1(F, T ) ≤
∑

Q∈m(T )

|IQ|size1(F, T (Q))
|IT |

≤ sup
Q∈m(T )

size1(F, T (Q)),

sup
Q∈m(T )

size2,⋆,k(F, T (Q)) ≤ size2,⋆,k(F, T )
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where the second bound holds for k ∈ {1, 2, 3} and follows by obvious inclusion considera-

tions. The last two inequalities tell us that it suffices to prove (2.6.2) for T = T (Q). In that

case,

size1(F1F2F3, T (Q)) ≤
3∑
j=1

size1(F1F2F3, T (Q, j))

≤
3∑
j=1

size∞(Fj, T (Q, j))
∏
k ̸=j

size2(Fk, T (Q, j))

=
3∑
j=1

sup
P∈T (Q,j)

size2
(
Fj ◦ η−1

j , ηj({P})
)∏
k ̸=j

size2
(
Fk ◦ η−1

k , ηk(T (Q, j))
)

≤ 3
3∏

k=1

size2,⋆,k (Fk, T (Q))

as desired. We have used in the last step the lacunarity of ηk(T (Q, j)) and of the single tile

trees {{P} : P ∈ T (Q, j)}.
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3. Multilinear wavelet T(1) theorem

3.1 Preliminaries

An (m + 1)-linear form Λ defined on the (m + 1)-fold product of the Schwartz space

S(Rd) is a singular integral form if its off-diagonal kernel satisfies the standard size and

smoothness estimates (see Definition 3.3.1 below). A singular integral form Λ is bounded on

Lp0(Rd)× · · · × Lpm(Rd) for all

1 < pj ≤ ∞,
m∑
j=0

1

pj
= 1, (3.1.1)

if and only if Λ is Calderón-Zygmund, which we take to mean that it satisfies the weak bound-

edness property (see Definition 3.3.2 below) and the following multilinear T (1) condition:

There exists bj ∈ BMO(Rd) such that for every ϕ in S(Rd) with mean zero,

Λ∗,j(ϕ, 1, . . . , 1) = ⟨ϕ, bj⟩, (3.1.2)

where Λ∗,j permutes the 0th and jth argument (see (3.1.3) below). When m = 1, this is

the well known T (1) theorem of David and Journé [17] which was extended to m ≥ 2 by

Grafakos and Torres [36].

Our goal in this chapter is to prove a T (1) theorem for compactness of multilinear singular

integral forms. The first difference between the boundedness problem and compactness prob-

lem is that compactness is a property of operators, while boundedness in the reflexive range
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(3.1.1) can be equivalently stated in terms of forms. Accordingly for each j = 0, 1, . . . ,m,

we associate to Λ the m-linear adjoint operators T ∗,j and transposed forms Λ∗,j by

⟨f0, T ∗,j(f1, . . . , fm)⟩ = Λ∗,j(f0, f1, . . . , fm) = Λ(fj, f1, . . . , fj−1, f0, fj+1, . . . , fm). (3.1.3)

If Λ is Calderón-Zygmund, then we say each T ∗,j is an m-linear Calderón-Zygmund operator

(CZO). Furthermore, define TΛ = {T ∗,j}mj=0.

In addition to that, for each σ ∈ Sm+1 , the permutation group on {0, 1, . . . ,m}, and Λ

a m+ 1- linear form we define

Λσ(f0, . . . , fm) = Λ(fσ(0), . . . , fσ(m)).

3.2 Wavelets

In this section we will review some preliminaries regarding wavelets and introduce one

of the building blocks of our representation, wavelet forms. The notation which will be

expanded below will also be used in Chapter 4.

3.2.1 Analysis of the parameter space

Introduce the parameter space

Zd = {z = (w, t) : w ∈ Rd, t > 0},

whose elements z = (w, t) act on functions f ∈ L1
loc(Rd) functions by the formula

Syzf := fz =
1

td
f

(
· − w

t

)
.
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Let µ be the measure on Zd given by

∫
Zd

F (z) dµ(z) =

∫ ∞

0

∫
Rd

F (w, t)
dw dt

t
, F ∈ C0(Zd).

Notice that µ is invariant under Syz. To analyze multilinear operators, we will use wavelets

adapted to two parameters, one in Zmd and the other in Zd. First, given w ∈ Rmd and

w0 ∈ Rd, define

|w − w0|2 =

√√√√ m∑
i=1

|wi − w0|2, w = (w1, . . . , wm), wi ∈ Rd.

For z = (w, s) ∈ Zmd and ζ = (w0, t) ∈ Zd, define

[z, ζ]δ =
min{s, t}δ

max{t, s, |w − w0|2}md+δ
.

We will also say z ≥ ζ if s ≥ t. Notice that if δ ≥ δ′ then [z, ζ]δ ≤ [z, ζ]δ′ . For M ≥ 1 and

ζ ∈ Zd, introduce BmM(ζ) which are the following approximate balls in the hyperbolic metric,

BmM(ζ) =
{
z ∈ Zmd : t2−M ≤ s ≤ t2M , |w − w0|2 ≤ t2M

}
when ζ = (0, 1), M = 1, or m = 1, those parameters are omitted from the notation. Given

a function F : Zd → C we say lim
z→∞

F (z) = L if

lim
M→∞

sup
z ̸∈BM

|F (z)− L| = 0.
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3.2.2 Wavelet classes and forms

The building blocks of our representation theorem are wavelets for which we are going to

introduce notation and relevant classes as well as the averaging lemmata from [21, 25]. We

denote the space of Schwartz functions by S(Rd) and the mean-zero subspace

S0(Rd) =

{
φ ∈ S(Rd) :

∫
φ(x) dx = 0

}
.

We fix a radial function ϕ ∈ S0(Rd), supported in a ball and appropriately normalized which

we will call the mother wavelet, in which case the Calderón reproducing formula holds,

namely

f =

∫
Zd

⟨f, ϕz⟩ϕz dµ(z) ∀f ∈ S(Rd). (3.2.1)

For the convenience of the reader, we restate the setup from [21] on which we will base our

analysis. For 0 < δ ≤ 1 we introduce the norm on functions φ ∈ Cδ(Rmd),

∥φ∥⋆,δ = sup
x,h∈Rmd

0<|h|≤1

⟨x⟩md+δ
(
|φ(x)|+ |φ(x+ h)− φ(x)|

|h|δ

)
, ⟨x⟩ =

√
1 + |x|2.

Definition 3.2.3. For z = (w, t) ∈ Zd, the wavelet class Ψm,δ
z is defined by

Ψm,δ
z =

{
φ ∈ Cδ(Rmd) : ∥(Syz)−1φ∥⋆,δ ≤ 1

}
, z = (w, . . . , w, t) ∈ Zmd,

and its cancellative subclass, for j = 1, . . . ,m is denoted by Ψm,δ;j
z and consists of φ ∈ Ψm,δ

z

such that ∫
Rd

φ(x1, x2, . . . , xm) dxj = 0.

Let χz denote the L∞-normalized decay factor adapted to the parameter z = (w, t),

χz(x) =

〈
x− w

t

〉−1

.
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With this notation, we can recast φ ∈ Ψm,δ
z as

|φ| ≤ 1

tmd
χmd+δz , |φ− φ(·+ h)| ≤ |h|δ

tmd+δ
χmd+δz .

With the goal of making this thesis as self contained as possible, as well as to set the

stage for the representation in Proposition 3.3.8, we state the averaging lemmata from [21]

and a refinement of the averaging procedure in [25].

Lemma 3.2.4. Let ϕ be the mother wavelet and k ≥ 0. There exist functions ψi, i = 1, 2, 3, 4,

satisfying

(i) suppψi ⊂ B(0, 1);

(ii) ψ1, ψ3 ∈ Ck(Rd);

(iii) ψ2, ψ4 ∈ S0(Rd);

(iv) For any s > 0 and f ∈ S(Rd),∫
r≥s

∫
u∈Rd

⟨f, ϕu,r⟩ϕu,r
du dr

r
=

∫
Rd

⟨f, ψ1
u,s⟩ψ2

u,s + ⟨f, ψ3
u,s⟩ψ4

u,s du.

Lemma 3.2.5. Let φj ∈ S(Rd) for j = 1, . . . ,m and 0 < η < δ ≤ 1. There exists C > 0

such that for any H : Zmd × Zd → C satisfying

|H(z, ζ)| ≤ [z, ζ]δ ,

there holds

νζ =

∫
z∈Zmd

z≥ζ

H(z, ζ) (φ1 ⊗ · · · ⊗ φm)z dµ(z) ∈ CΨm,η
ζ .

Furthermore, if ϕj ∈ S0, then νζ ∈ CΨm,η;j
ζ .
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Finally, we end this section by introducing the wavelet forms, which will be used to

systematically study m-linear CZOs.

Definition 3.2.6. Given a collection {εz ∈ C, νz ∈ Ψm,δ;1
z : z ∈ Zd} define the associated

(m+ 1)-linear canonical wavelet form by∫
Zd

εz ⟨f0, ϕz⟩ ⟨f1 ⊗ . . .⊗ fm, νz⟩ dµ(z).

More generally, we say U is a wavelet form if Uσ is a canonical wavelet form for some

σ ∈ Sm+1. We say U is a bounded wavelet form if supz∈Zd |εz| < ∞. Additionally, we say U

is a compact wavelet form if it is a bounded wavelet form for which

lim
z→∞

εz = 0.

Wavelet forms may be viewed as a generalization of the Calderón-Toeplitz operators

considered in [64, 70]. More generally though, all cancellative CZ forms can be realized

as wavelet forms [21, 25]. Bounded wavelet forms are bounded in the following sense. In

fact, they themselves are cancellative CZ forms so Proposition 3.2.8 below follows from any

number of results [36, 51, 53, 55, 63]. See also [21, Proposition 5.1] for a direct proof of the

sparse (1, . . . , 1) bound for bounded wavelet forms. Let us introduce some bookkeeping to

concisely describe the full range of Lebesgue space estimates for CZOs.

Definition 3.2.7. Let

P = {(p1, . . . , pm) : 1 < pj ≤ ∞} .

We introduce the shorthand for p⃗ ∈ P ,

Lp⃗(Rd) =
m×
j=1

Lpj(Rd), Bp⃗ =
{
(f1, . . . , fm) ∈ Lp⃗ : ∥fj∥Lpj (Rd) ≤ 1

}
, r(p⃗) =

(
m∑
j=1

1

pj

)−1

.
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Then the admissible classes of Hölder tuples we consider are

Q = {(p⃗, r(p⃗)) : p⃗ ∈ P, r(p⃗) <∞} .

Given (p⃗, r) ∈ Q, and an m-linear operator T , denote by ∥T∥p⃗,r the operator norm from

Lp⃗(Rd) → Lr(Rd), i.e.

∥T∥p⃗,r = sup
(f1,...,fm)∈Bp⃗

∥T (f1, . . . , fm)∥Lr(Rd) .

Furthermore, we define the following modification at the endpoint,

∥T∥∞,BMO = sup
(f1,...,fm)∈Bp⃗

∥T (f1, . . . , fm)∥BMO(Rd) , p⃗ = (∞, . . . ,∞).

Proposition 3.2.8. For each (p⃗, r) ∈ Q, there exists Cp⃗,r > 0 such that for any bounded

wavelet form U and any T ∈ TU ,

∥T∥p⃗,r ≤ Cp⃗,r sup
z∈Zd

|εz| . (3.2.2)

Furthermore, there exists C∞ > 0 such that

∥T∥∞,BMO ≤ C∞ sup
z∈Zd

|εz| . (3.2.3)

3.3 Wavelet representation of compact Calderón-Zygmund forms

Let us make rigorous the informal definitions given in the introduction.

Definition 3.3.1. A function K ∈ L1
loc(R(m+1)d \ {x ∈ (Rd)m+1 : x0 = · · · = xm}) is a

δ-singular integral kernel if there exist CK , δ > 0 such that

|K(x0, . . . , xm)| ≤
CK

(
∑m

j=1 |x0 − xj|)md
,
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max
j=0,...,m

|∆j
hK(x0, . . . , xm)| ≤

CK |h|δ

(
∑m

j=1 |x0 − xj|)md+δ
,

were ∆j
h denotes the difference operator in the j-th position. We say Λ is anm-linear singular

integral form if there exists a singular integral kernel K such that for any f0, . . . , fm ∈ S

with ∩mj=0supp fj = ∅ one has

Λ(f0, . . . , fm) =

∫
(Rd)m+1

K(x)
m∏
j=0

fj(xj) dx.

When m is understood, we simply say Λ is a singular integral form.

We need the following function spaces in order to define Calderón-Zygmund forms. For

f ∈ L1
loc(Rd), define the BMO(Rd) norm

∥f∥BMO(Rd) = sup
Q cube

1

|Q|

∫
Q

|f(x)− fQ| dx, fQ =
1

|Q|

∫
Q

f(y) dy.

Then, the functions of bounded mean oscillation (BMO) are those with finite BMO(Rd) norm.

Let Cv(Rd) be the space of all continuous functions f on Rd for which lim|x|→∞ f(x) = 0.

Then, the Banach space of functions with continuous mean oscillation, CMO(Rd), is defined

to be the closure of Cv(Rd) in the norm ∥·∥BMO(Rd). Furthermore, BMO(Rd) becomes a a

Banach space upon identifying functions which differ by a constant.

Definition 3.3.2. We say a singular integral form Λ is a Calderón-Zygmund (CZ) form if

there exists CW such that

tmd |Λ(Syzφ0, . . . , Syzφm)| ≤ CW, ∀φj ∈ C∞
0 (B(0, 1)) ∩Ψ1,1

(0,1),

and furthermore, there exist bj ∈ BMO(Rd) such that (3.1.2) holds. The rigorous definition

of (3.1.2) is as follows. Let θ ∈ C∞
0 (Rd) with θ = 1 near the origin. Then, for t > 0, set
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θt = θ(·t). We say (3.1.2) holds, and sometimes use the language T ∗,j(1, . . . , 1) = bj, if for

all φ ∈ S0(Rd),

lim
t→0

Λ∗,j(φ, θt, θt, . . . , θt) = ⟨φ, bj⟩ . (3.3.1)

Furthermore, let ϕ be a mother wavelet and ψ2, ψ4 be the Schwartz functions from Lemma

3.2.4. For j = 1, . . . ,m define

ψ⃗j =

(
j−1⊗
i=1

ψ2

)
⊗

(
m−1⊗
i=j

ψ4

)
⊗ ϕ. (3.3.2)

For each M ≥ 1, define

WM
Λ (ζ) = sup

z∈Bm
M (ζ)

sup
σ∈Sm+1
j=1,...,m

∣∣∣Λσ ((ψ⃗j)z, ϕζ)∣∣∣ tmd, ζ = (w, t). (3.3.3)

A CZ form Λ is said to be a compact CZ form if for some (all) M ≥ 1

bj ∈ CMO(Rd), lim
ζ→∞

WM
Λ (ζ) = 0.

Finally, we say a CZ form is cancellative if bj = 0.

Remark 3.3.3. It is not too difficult to see that if WM
Λ → 0 for some M then the same

holds for each M . Furthermore, since S0(Rd) is dense in the Hardy space H1(Rd), which is

the dual space of BMO(Rd), (3.3.1) should be interpreted as a weak limit, i.e. T ∗,j(θt, . . . , θt)

converges weakly to bj in BMO(Rd).

Now we justify our description of such forms as compact.

Definition 3.3.4. Let T be an m-linear CZO. We say T is a compact CZO if for each

(p⃗, r) ∈ Q, T (Bp⃗) is precompact in Lr(Rd), and at the upper endpoint, T (B∞
0 ) is precompact

in CMO(Rd), where

B∞
0 =

{
(f1, . . . , fm) ∈ B(∞,...,∞) : fj compactly supported

}
.
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Remark 3.3.5. The classical definition of compactness of an abstract m-linear operator on

quasi-normed spaces [3, 6] is that it maps bounded sets to precompact sets. In Definition

3.3.4, we are imposing this definition of compactness on T acting from Lp⃗(Rd) → Lr(Rd) for

all (p⃗, r) in Q and at the upper endpoint because our testing conditions allow us to conclude

compactness in this full range. It is tempting to only require T : Lp⃗(Rd) → Lr(Rd) be

compact for a single (p⃗, r), but the current state of multilinear extrapolation of compactness

[6, 40] does not include the endpoints.

Proposition 3.3.6. Let Λ be an (m+1)-linear CZ form such that each T ∈ TΛ is a compact

CZO. Then, each bj ∈ CMO(Rd), j = 0, . . . ,m, and for each M ≥ 1,

lim
ζ→∞

WM
Λ (ζ) = 0. (3.3.4)

Proof. To prove the first conclusion, since Λ is a CZ form, (3.3.1) holds. Let us fix j =

0, . . . ,m. Up to an absolute constant, (θt, . . . , θt) ∈ B∞
0 , so there exists tn → 0 such that

T ∗,j(θtn , . . . , θtn) converges in CMO(Rd). However, the second statement in Remark 3.3.3

requires this limit to coincide with bj, and the first part is proved. To prove the second

conclusion, let us suppose, towards a contradiction, that there exists M ≥ 1 such that

(3.3.4) does not hold. Therefore we can find σ ∈ Sm+1, ψ⃗ ∈ S(Rd)m, ε > 0 and sequences

ζn = (wn, tn) ∈ Zd and zn ∈ Zmd such that

ζn → ∞, zn ∈ BmM(ζn),
∣∣∣Λσ (ϕn, ψ⃗n)∣∣∣ ≥ ε, ϕn = t

d
r
nϕζn , ψ⃗n = t

d(m− 1
r
)

n ψ⃗zn , (3.3.5)

and r ∈ (1,∞). Let us suppose, for simplicity that σ is the identity. If not, then in what

follows we would replace T ψ⃗n by T ∗,σ(0)(ψ⃗σ
′

n ) where ψ⃗
σ′
n is an appropriate permutation of the
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m elements of ψ⃗n. Since {ψ⃗n}n∈N is a bounded sequence in Lp⃗(Rd), for some p⃗ ∈ P with

r(p⃗) = r, by the compactness of T we find a subsequence so that {T ψ⃗nk
}k∈N is convergent

in Lr(Rd). Finally, it is not hard to check that since ζn → ∞, ϕn converges weakly to zero

in L
r

r−1 (Rd) which, since r > 1, is the dual space of Lr(Rd). Therefore,

Λσ(ϕnk
, ψ⃗nk

) =
〈
ϕnk

, T ψ⃗nk

〉
→ 0, as k → ∞,

which contradicts (3.3.5). Finally, we remark that if r ∈ (1,∞) the weak convergence of ϕn

to zero in L
r

r−1 (Rd) follows from the fact that for any K ≥ 1 and g ∈ C∞
c (Rd) there holds

lim
z→∞

〈
1KBz

(Kt)
d
r′
, g

〉
= 0

which follows from the inequality∣∣∣∣∣
〈

1KBz

(Kt)
d
r′
, g

〉∣∣∣∣∣ ≲ min
{
∥g∥r , (Kt)

− d
r′ ∥g∥1, (Kt)

d
r ∥g∥∞

}
and the fact this inner product vanishes when KBz ∩ supp (g) ̸= ∅.

The main step in the representation theorem is given in Proposition ?? below. There we

will show that a compact cancellative CZ form enjoys additional decay in the wavelet basis.

For a general cancellative CZ form, we recall the following lemma from [21, Lemma 3.3]

regarding its decay when applied to a (m + 1)-tuple of wavelets. When we want to specify

the value of the smoothness parameter δ > 0 from Definition 3.3.1, we say Λ is a δ-CZ form.

Lemma 3.3.7. Let Λ be a cancellative δ-CZ form, η ∈ (0, δ), and ψj ∈ C∞
0 (B(0, 1)), j =

1, . . . ,m−1. Then, there exists C > 0 such that for all σ ∈ Sm+1, ζ ∈ Zd, and z ∈ Zmd with

z ≥ ζ, ∣∣∣Λσ (ψ⃗z, ϕζ

)∣∣∣ ≤ C [z, ζ]η , ψ⃗ = ψ1 ⊗ · · · ⊗ ψm−1 ⊗ ϕ.

77



Proof. By symmetry, we can assume σ is the identity element and j = 1. Furthermore, set

ψ⃗ = ψ⃗1 to declutter the notation. For each n ∈ N, we will construct
{
εnζ ∈ C : ζ ∈ Zd

}
and

ρ > 0 with the properties that

sup
ζ∈Zd

|εnζ | ≲ 1, lim
ζ→∞

|εnζ | = 0,

∣∣∣Λ(ψ⃗z, ϕζ

)∣∣∣ ≲ 2−ρn
∣∣εnζ ∣∣ [z, ζ]η , z ∈


Bm1 (ζ) n = 1,

Bmn (ζ) \ Bmn−1(ζ) n ≥ 2,

z ≥ ζ.

Assuming we have such εnζ , define

εζ =
∞∑
n=1

2−ρnεnζ .

The first and third properties of εζ in (??) are immediate and the second follows by Lebesgue’s

dominated convergence theorem since each εnζ approaches zero. Now, to construct εnζ , let

δj > 0 such that η < δ1 < δ2 < δ. By Lemma 3.3.7 and the definition of WM
Λ from (3.3.3),

we have for any θ ∈ (0, 1),

∣∣∣Λ(ψ⃗z, ϕζ

)∣∣∣ ≲ (t−md)1−θ [z, ζ]θδ2 min{1,Wn
Λ(ζ)}1−θ, z ∈ Bmn (ζ), z ≥ ζ.

We choose θ close enough to 1 that mdθ+ δ2θ−md = δ1. With this specific choice of θ, one

can easily verify that
(
t−md

)1−θ
[z, ζ]θδ2 = [z, ζ]δ1 . Setting ε

1
ζ = min{1,W1

Λ(ζ)}1−θ handles the

case n = 1. For n ≥ 2, we factor, with ρ = δ1 − η,

[z, ζ]δ1 =

(
t

max {s, |w − w0|}

)ρ
[z, ζ]η .

Therefore, one only needs to verify that for z ∈ Bmn (ζ)\Bmn−1(ζ), the first factor is comparable

to 2−ρn. The proof is concluded by setting εnζ = min{1,Wn
Λ(ζ)}1−θ.
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Proposition 3.3.8. Every compact cancellative CZ form is a finite sum of compact wavelet

forms.

Proof. We recycle the proof of the representation theorem in [21] relying on Lemma 3.2.4

and Lemma 3.2.5. First expand each fj using (3.2.1) to obtain

Λ(f0, . . . , fm) =

∫
(Zd)m+1

Λ(ϕz0 , . . . , ϕzm) ⟨f0, ϕz0⟩ dµ(z0) . . . ⟨fm, ϕzm⟩ dµ(zm).

Split the integration region into m(m+ 1) components defined by

{(z0, . . . , zm) ∈ (Zd)m+1 : zi ≥ zj ≥ zk, i ̸= j, k}, k = 0, . . . ,m, j = 0, . . . , k−1, k+1, . . . ,m.

For each j, k and each i ̸= j, k, we apply Lemma 3.2.4 to ⟨fi, ϕzi⟩ϕzi . Furthermore, setting

fσ =
⊗m

j=0 fσ(j) and relabelling the variables, we obtain

Λ(f0, . . . , fm) =
∑∫

ζ∈Zd

∫
z∈Zmd

z≥ζ

Λσ((ψ⃗e)z, ϕζ)
〈
fσ, (ψ⃗o)z ⊗ ϕζ

〉
dµ(z) dµ(ζ),

where the sum is taken over all σ ∈ Sm+1 and over the combinations ψ⃗e is of the form

(3.3.2) for some j = 1, . . . ,m and ψ⃗o is of the same form but with ψ2 and ψ4 replaced by ψ1

and ψ3 from Lemma 3.2.4. Each of these summands (of which there are only finitely many

depending on m), will now be converted to a compact wavelet form by Proposition ?? and

Lemma 3.2.5. Fix now one σ, ψ⃗e, and ψ⃗o. We define

ϑζ =

∫
z∈Zmd

z≥ζ

Λσ((ψ⃗e)z, ϕζ)ψ⃗o dµ(z)

and the result will be proved if we can show ϑζ = εζνζ for some νζ ∈ Ψm,δ;m
ζ and εζ approach-

ing zero as ζ → ∞. Let εζ be the collection provided by Proposition ??. In particular, the

third property in (??) guarantees

Λσ((ψ⃗e)z, ϕζ) = εζH(z, ζ), |H(z, ζ)| ≤ [z, ζ]η,
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whence the proof is concluded by Lemma 3.2.5 and recalling that the m-th component of ψ⃗o

is the mother wavelet and thus belongs to S0(Rd).

3.4 Compact wavelet forms

In this section we will prove the compact analogue of Proposition 3.2.8.

Proposition 3.4.1. Let U be a compact wavelet form. Then each T ∈ TU is a compact

CZO.

Proof. Let us fix a compact wavelet form U , T ∈ TU , and (p⃗, r) ∈ Q. T (f1, . . . , fm)(x) is

either of the form

∫
Zd

εz ⟨f1 ⊗ · · · ⊗ fm, νz⟩ϕz(x) dµ(z) or

∫
Zd

εz
〈
fσ(1) ⊗ · · · ⊗ fσ(m), νz(x, ·)⊗ ϕz

〉
dµ(z)

(3.4.1)

for some σ ∈ Sm and νz ∈ Ψm,δ;j
z ; by νz(x, ·) we mean for each x it returns the function

(x2, . . . , xm) 7→ νz(x, x2, . . . , xm). We will only handle the second case, and we will reduce,

by symmetry, to the case where σ is the identity. The first case in (3.4.1) is simpler, though

in fact they are handled in exactly the same fashion. Let ρ > 0 and split the integral defining

T over BM and Zd\BM whereM is chosen large enough that |εz| ≤ ρ for z ̸∈ BM . Therefore,

the operator norm of the second component is, by (3.2.2) controlled by ρ. The proof will be

concluded if we can show Rρ defined by

Rρf(x) =

∫
BM

⟨f1 ⊗ · · · ⊗ fm, νz(x, ·)⊗ ϕz⟩ dµ(z), f = (f1, . . . , fm),
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is compact. By the Riesz-Kolmogorov compactness criteria (see e.g. [58] and [75] for the

case 0 < r < 1), we need to prove that

lim
N→∞

sup
f∈Bp⃗

∫
|x|>N

|Rρf(x)|rdx = 0, (3.4.2)

lim
h→0

sup
f∈Bp⃗

∫
Rd

|Rρf(x+ h)−Rρf(x)|rdx = 0. (3.4.3)

To this end we will give suitable pointwise bounds on the operator Rρ and the differences

induced by it. Since M is fixed, we will crucially use that z = (w, t) ∈ BM satisfies

t ∼ 1, |w| ≲ 1, χz ≲ χ, (3.4.4)

where χ = χ(0,1) while ∼ and ≲ now denote comparability with constants depending on M .

Let us now note the preliminary trivial bounds that can be obtained via applying Hölder’s

inequality and (3.4.4). To this end, introduce, for j = 1, . . . ,m− 1,

λ0 =
d

r
+ η, λj =

d

p′j
+ η, η =

1

m

(
d

p′m
+ δ

)
> 0.

It is easy to check that md+ δ =
∑m−1

j=0 λj, λ0r > d, and λjp
′
j > d, thus for z ∈ BM ,

|⟨fm, ϕz⟩| ≤ ∥fm∥pm ∥ϕz∥p′m ≲ 1

|⟨vz(x, ·), f1 ⊗ . . .⊗ fm−1⟩| ≤
1

td
χz(x)

λ0

m−1∏
j=1

∥fj∥pj

∥∥∥∥ 1tdχλjz
∥∥∥∥
p′j

≲ χ(x)λ0 .

(3.4.5)

With these estimates in hand we have that |Rρf | ≲ χλ0 and therefore (3.4.2) holds since

λ0r > d. In the same way, we have that

|⟨vz(x, ·), f1 ⊗ . . .⊗ fm−1⟩ − ⟨vz(x+ h, ·), f1 ⊗ . . .⊗ fm−1⟩| ≲ |h|δχ(x)λ0

and therefore |Rρf(x)−Rρf(x−h)| ≲ |h|δχ(x)λ0 from which (3.4.3) now follows. It remains to

handle the endpoint case. We claim it suffices to establish that for each sequence {fn}n∈N ⊂
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B∞
0 , Rρfn has a convergent subsequence in CMO(Rd). Indeed, given such an {fn}n∈N, by a

diagonalization argument, we may extract a subsequence {fnk
}k∈N such that for each ρn = 1

n
,

{Rρnfnk
}k∈N is Cauchy in CMO(Rd). Then, for any ϵ > 0 pick n large enough that

∥T −Rρn∥∞,BMO <
ϵ

3
.

Such an n exists by the condition εz → 0 and (3.2.3). Then, pick N large enough that for

all i, k ≥ N , ∥Rρnfni
−Rρnfnk

∥BMO(Rd) <
ϵ
3
. Therefore, by the triangle inequality,

∥T fnk
− T fni

∥BMO(Rd) < ϵ

whence {T fnk
}k∈N is Cauchy and has a limit in CMO(Rd). Now it remains to show each Rρ

is compact. Applying (3.4.5) with all pj = ∞ implies the same pointwise estimates as above,

which implies Rρ : B∞
0 → Cv(Rd) and that the family {Rρf : f ∈ B∞

0 } is equicontinuous.

Therefore, by the Arzela-Ascoli theorem and a diagonalization argument, given a sequence

{fn}n∈N ∈ B∞
0 , we can obtain a subsequence such that {Rρfnk

}k∈N is Cauchy in ∥·∥L∞([−n,n]d)

for each n ∈ N. However, the pointwise estimate for Rρf shows that given ϵ > 0 we can find

n large enough that |Rρfnk
(x)| < ϵ

3
for x outside [−n, n]d. Combining these two facts with

the triangle inequality shows that {Rρfnk
}k∈N is Cauchy in ∥·∥L∞ which is a stronger norm

than ∥·∥BMO(Rd). Finally, recalling that Rρfnk
∈ Cv(Rd) establishes that the limit belongs to

CMO(Rd).

Remark 3.4.2. We remark that (3.4.4) follows from the fact that if Bz ⊆ CBz′ then we

have the following elementary pointwise inequality

χz′ ≲C χz.
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Indeed if y ∈ Bz ⇒ |y− x| ≤ t⇒ |y− x′| ≤ |y− x|+ |x− x′| ≲ t′, (where the last inequality

was obtained because |x− x′| ≲ t′) therefore

χz′(y) ∼ 1, χz(y) ∼ 1

so the desired inequality is trivially true. If y ̸∈ Bz we have that |y − x| ≥ t therefore

|y − x′| ≤ |y − x|+ |x− x′| ≲ |y − x|+ t′

hence we can estimate

1 + |y−x′|
t′

1 + |y−x|
t

≲
1 + |y−x|

t′
+ |x−x′|

t
|y−x|
t

≤ 1 + 1 +
|y−x|
t′

|y−x|
t

= 2 +
t

t′
≲C 1

and the claim is proved.

3.5 Compactness of paraproducts

In this section we will deal with the compactness of the paraproducts that arise from

our representation theorem. Specifically, we will prove that the membership of the symbols

in CMO(Rd) is sufficient for the compactness of the associated paraproduct by giving an

essential norm estimate. Given (p⃗, r) ∈ Q, and an m-linear operator T , define the essential

norm

∥T∥ess(p⃗,r) = inf
K compact

∥T −K∥p⃗,r ,

and the natural modification at the endpoint which we denote by ∥·∥ess(∞,BMO) where the

operator norm of T −K is measured in ∥·∥∞,BMO.
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Definition 3.5.1. Let ϑ ∈ C∞
0 (B(0, 1)) with

∫
ϑ(x) dx = 1. For each z ∈ Zd, set ϑz = Syzϑ.

Given b ∈ BMO(Rd), define the (m+ 1)-linear form Πb by

Πb(f0, f1, . . . , fm) =

∫
Zd

⟨b, ϕz⟩ ⟨f0, ϕz⟩
m∏
j=1

⟨fj, ϑz⟩ dµ(z).

Πb is called a paraproduct form with symbol b. Any m-linear operator in TΠb
is called a

paraproduct with symbol b, which we denote by Sb.

In this section we aim to prove the following.

Proposition 3.5.2. If b ∈ CMO(Rd), then any paraproduct Sb is a compact CZO.

Before proving this, let us review the standard boundedness theory of paraproducts,

analogous to Proposition 3.2.8 for wavelet forms. To do so, it is convenient to view Πb

as an (m + 2)-linear form, where the extra input function is b itself. In fact, in this way

Πb(f0, . . . , fm) = U(b, f0, . . . , fm) where U is a canonical (m + 2)-linear wavelet form with

|εz| ≲ 1. Such forms are cancellative in the first and second positions, for which a slight

strengthening of (3.2.2) and (3.2.3) holds:

T ∈ TVb , Vb(f0, . . . , fm) = U(b, f0, . . . , fm),

∥T∥p⃗,r ≤ Cp⃗,r ∥b∥BMO(Rd) , ∥T∥∞,BMO ≤ C∞ ∥b∥BMO(Rd) , (p⃗, r) ∈ Q.

(3.5.1)

In particular, (3.5.1) applies to T = Sb. A proof of (3.5.1) is omitted since it follows from

standard considerations; see e.g. the proofs and comments following Propositions 2.5 and

2.7 in [25].

Now, to give a description of CMO(Rd) which is more amenable to Sb, let us introduce

an orthonormal wavelet system {ψI}I∈D. Here D is a dyadic grid on Rd and for each I ∈ D,
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set ζ(I) = (c(I), ℓ(I)) ∈ Zd, where c(I) is center of the cube I and ℓ(I) the side length.

Then ψI = Syζ(I)ψ for a specific ψ ∈ CΨ1,1;1
(0,1). We have kept ψI to be L1-normalized, so the

reproducing formula is

f =
∑
I∈D

|I| ⟨f, ψI⟩ψI .

Now introduce the family of orthogonal projections for M ≥ 1,

PMf =
∑
I∈DM

|I|⟨f, ψI⟩ψI , DM := {I ∈ D : ζ(I) ∈ BM} , P⊥
M = Id− PM .

From [76, Lemma 2.20], an equivalent characterization of b ∈ CMO(Rd) is that

lim
M→∞

∥∥P⊥
Mb
∥∥
BMO(Rd)

= 0.

Therefore, Proposition 3.5.2 will be a consequence of the following essential norm estimate.

Proposition 3.5.3. Let Sb be a paraproduct with symbol b ∈ BMO(Rd). Then for each

(p⃗, r) ∈ Q ∪ {(∞,BMO)},

∥Sb∥ess(p⃗,r) ≲ lim inf
M→∞

∥∥P⊥
Mb
∥∥
BMO(Rd)

. (3.5.2)

Proof. Let M ≥ 1 large, and perform the splitting Sb = RM + TM where

TM(f1, . . . , fm) =

∫
Zd\B100M

⟨b, ϕz⟩
m∏
j=1

⟨fj, ϑz⟩ϕz dµ(z),

and RM is same but the integration is taken over B100M . The operator RM is clearly compact

by repeating the discussion made in §3.4 to show that Rρ there was compact. Therefore the

essential norm of Sb is controlled by the operator norm of TM . Now, for z ̸∈ B100M , we can
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calculate the pairings appearing in the above equation by expanding b with the aid of the

wavelet basis {ψI}I∈D:

⟨b, ϕz⟩ = ⟨PMb, ϕz⟩+ ⟨P⊥
Mb, ϕz⟩.

For the first term we will employ the linear wavelet averaging process from Lemma 3.2.5.

We expand

⟨PMb, ϕz⟩ =
∑
I∈DM

|I|⟨b, ψI⟩⟨ψI , ϕz⟩ =

〈
b,
∑
I∈DM

|I|⟨ψ1
I , ϕz⟩ψ1

I

〉
.

Since ψI ∈ Ψ1,1;1
ζ(I) and ϕz ∈ Ψ1,1;1

z , one can compute |⟨ψI , ϕz⟩| ≲ [z, ζ(I)] 1
2
(see e.g. [25, Lemma

2.3] or [31, Appendix, Lemmata 2 and 4]). Furthermore, since ζ(I) ∈ BM and z ̸∈ B100M ,

[z, ζ] 1
2
≲M− 1

4 [z, ζ] 1
4
. Now, to apply Lemma 3.2.5, rewrite

∑
I∈DM

|I|⟨ψI , ϕz⟩ψI =
∫
Zd

H(ζ, z)ψ̃ζ dµ(ζ),

where for each I ∈ DM and ζ = (w, t) ∈ I × ( ℓ(I)
2
, ℓ(I)], we define

ψ̃ζ = ψI , H(ζ, z) =
|I|

µ(I × ( ℓ(I)
2
, ℓ(I)])

⟨ψ1
I , ϕz⟩,

and H(ζ, z) = 0 if ζ ̸∈ ∪I∈DM
I × ( ℓ(I)

2
, ℓ(I)]. Since |H(ζ, z)| ≲ M− 1

4 [z, ζ] 1
4
, Lemma 3.2.5

provides a universal constant C and λz ∈ CΨ
1, 1

8
;1

z such that

TM(f1, . . . , fm) =

∫
Zd\B100M

(
M− 1

4 ⟨b, λz⟩+
〈
P⊥
Mb, ϕz

〉) m∏
j=1

⟨fj, ϑz⟩ϕz dµ(z).

Therefore, (3.5.2) follows by the triangle inequality and (3.5.1).

3.6 Proofs of Theorems C and D

Let us now put together the pieces from the previous sections to prove the following

compact T (1) wavelet representation theorem.
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Proof of Theorem C. To show A. implies B. we isolate the cancellative part of Λ, namely

Λc = Λ− ΠΛ, ΠΛ =
m∑
j=0

Π∗,j
bj
.

Λc is definitely a CZ form, and to verify that it is cancellative, simply note that since

⟨ϑ, 1⟩ = 1, by the reproducing formula (3.2.1), for φ ∈ S0(Rd),

Πb(φ, 1, . . . , 1) =

∫
Zd

⟨b, ϕz⟩ ⟨ϕz, φ⟩ dµ(z) = ⟨b, φ⟩ ,

and since ϕ is cancellative, Π∗,j
b (φ, 1, . . . , 1) = 0 for j = 1, . . . ,m. We want to apply Propo-

sition 3.3.8 to Λc so we must establish that it is a compact CZ form. Since bj ∈ CMO(Rd),

each S ∈ TΠΛ
is compact by Proposition 3.5.2, so by Proposition 3.3.6, ΠΛ is a compact CZ

form. Since we also know that Λ is a compact CZ form, Λc must indeed be compact, and B.

follows by applying Proposition 3.3.8 to Λc. B. implies C. is a consequence of Propositions

3.4.1 and 3.5.2. Finally, C. implies A. is the content of Proposition 3.3.6.
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4. Bloom’s inequality via the wavelet representation theorem

4.1 Introduction

The commutator of an operator T with the multiplication operator, given by a symbol

b, is defined as [b, T ]f := bTf − T (bf). Coifman-Rochberg-Weiss in [11] characterized BMO

in terms of the commutators of Riesz transforms. Subsequently, Bloom proved, in [4], that

the commutator of the Hilbert transform,

Hf := p.v.
1

π

∫
f(y)

x− y
dy

is bounded from Lp(w) to Lp(σ), with w, σ ∈ Ap, if and only if b ∈ BMO(ν) namely if

∥b∥BMO(ν) := sup
Q

(∫
Q
|b− ⟨b⟩Q|dx
ν(Q)

)
<∞

where ν =
(
w
σ

) 1
p . Holmes, Lacey and Wick in [38] proved the upper bound for general

Calderón-Zygmund operators and characterized BMO(ν) in terms of the boundedness of

the commutators with Riesz transforms. Except for the characterization of function spaces,

commutator theorems imply the so-called div-curl lemmata and weak factorization results

for H1
ν . Finally, off-diagonal results for commutators have applications in characterizing the

norm of certain function spaces such as BMO, the homogeneous Hölder space Ċ0,α and L̇r

by dualizing against functions in the image of the Jacobian [43].
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The foundational tool used in [37] was the representation theorem of Hytönen [42] to

analyze a Calderón-Zygmund operator as a rapidly decaying superposition of dyadic shifts,

with the most elementary example being the martingale transform, of arbitrary complexity

which was used to give an affirmative answer to the A2 conjecture. Recently, Di Plinio, Wick

and Williams in [25] devised a wavelet representation leveraging the fact that a Calderón-

Zygmund operator applied to a wavelet is a rougher wavepacket with smoothness and local-

ization reflecting the kernel estimates and smoothness of the operator. One of the advantages

of their approach is that the representation formula only consists of a single complexity zero

cancellative operator, a single paraproduct, and a single adjoint paraproduct.

4.1.1 Wavelet coefficients , the intrinsic square function and averaging lemmata

We will need the notation for the intrinsic wavelet coefficient for z ∈ Zd, and its can-

cellative counterpart, namely we define

Ψδ
zf := sup

ϕ∈Ψδ
z

|⟨f, ϕ⟩|, Ψδ;0
z f := sup

ϕ∈Ψδ;0
z

|⟨f, ϕ⟩|.

Sometimes, given a cube Q centered at cQ ∈ Rd with sidelength ℓQ we will use the notation

Ψδ
Qf instead of the notation Ψδ

(cQ,ℓQ)f and likewise for the cancellative intrinsic wavelet coef-

ficient. Furthermore, for δ ∈ (0, 1) we introduce the intrinsic square function of smoothness

δ

Sδf =

(∫ ∞

0

(
Ψδ;0
z f
)2 dt

t

) 1
2

.

By [25, Proposition 2.6] we have the Lp(w,Rd), p > 1 boundedness of Sδ for w ∈ Ap.
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To end this section we will give a wavelet averaging lemma. This lemma and its successor

is a slight generalization of [25, Lemma 3.2]. In vague terms, this lemma asserts that if one

averages elements of a wavelet class with respect to the measure of the form a(z, z′)dµ(z),

when a(z, z′) decays in a certain way, the output is a slightly rougher wavelet.

Lemma 4.1.2. Let φz ∈ Ψδ
z and let u(z, z′) : Zd×Zd → C a Borel measurable function with

|u(z, z′)| ≤ [z, z′]δ then for all 0 < η < δ we have the membership

ψz :=

∫
Z

u(z, z′)φz′dµ(z
′) =

∫
Rd

∫ ∞

0

u((x, t), (x+ at, βt))tdφ(x+at,βt)
dβ

β
da ∈ CηΨ

η
z .

In particular, we have the following memberships

ψn
z =

∫
a∈Rd

∫ 1

0

u((x, t), (x+ at, βt))tdφ(x+at,βt)
dβ

β
da ∈ CηΨ

η
z

ψf
z =

∫
a∈Rd

∫ ∞

1

u((x, t), (x+ at, βt))tdφ(x+at,βt)
dβ

β
da ∈ CηΨ

η
z .

Proposition 4.1.3. Let φz have the property that |φz| ≤ 1
td
χ−d−δ
z and λ ∈ (0, d). Finally,

let u(z, z′) : Zd × Zd → C a Borel measurable function satisfying the inequality

|u(z, z′)| ≤ 1F(z, z
′)

min {t, t′}δ

|x− x′|d+δ−λ

where the region F ⊂ Zd × Zd is defined by

F :=
{
(z, z′) ∈ Zd × Zd : |x− x′| ≳ max {t, t′}

}
.

Then

ψn
z =

∫
a∈Rd

∫ 1

0

u((x, t), (x+ at, βt))tdφ(x+at,βt)
dβ

β
da

ψf
z =

∫
a∈Rd

∫ ∞

1

u((x, t), (x+ at, βt))tdφ(x+at,βt)
dβ

β
da

satisfy the following estimates

i ∈ {n, f} =⇒
∣∣ψi

z(y)
∣∣ ≲η t

λ 1

td
χ−d−η−λ
z , η ∈ (0, δ).
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4.2 Paraproduct decomposition and two weight estimates

The treatment of commutators of singular integral operators via representation theorems

has been based on the exploitation of the formula of the product of two functions as a sum

of paraproducts and their adjoints. We start with ϕ ∈ S(Rd) with the properties

supp (ϕ̂) ⊂
{
x ∈ Rd : |x| < 2

}
and ϕ̂ = 1 on

{
x ∈ Rd : |x| < 1

}
.

Hence following the approach in [33, Section 1.2.2] we may write

fg =

∫ ∞

0

f ∗ ψt g ∗ ϕt
dt

t
+

∫ ∞

0

f ∗ ϕt g ∗ ψt
dt

t
= P(f, g) + P(g, f)

P(f, g) =

∫ ∞

0

f ∗ ϕt g ∗ ψt
dt

t
, ψ(x) = −

∑
|a|=1

∂a(xaϕ(x)).

(4.2.1)

It is clear that supp (ψ̂) ⊂
{
x ∈ Rd : 1 < |x| < 2

}
.

Proceeding in the same manner as in [33] we further decompose the adjoint form to P

⟨P(f, g), h⟩ = ⟨P1(f, g), h⟩+ ⟨P2(f, g), h⟩

by introducing the decomposition ϕ = ϕ(1) + ψ(1) and ϕ(1), ψ(1), ϕ(3), ψ(3) ∈ S(Rd) with the

properties

supp (ϕ̂(1)) ⊂
{
ξ ∈ Rd : |ξ| < 1

2

}
, supp

(
ψ̂(1)

)
⊂
{
ξ ∈ Rd :

1

4
< |ξ| < 2

}
ψ̂(3)(0) = 0, ψ̂(3) = 1 on

(
supp ϕ̂(1) + supp ψ̂

)
⊂
{
ξ :

1

2
< |ξ| < 4

}
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and so

⟨P(f, g), h⟩ =
∫
Rd

∫ ∞

0

(∫
Rd

f̂(ξ1)ϕ̂(tξ1)e
2πixξ1dξ1

)(∫
Rd

ĝ(ξ2)ψ̂(tξ2)e
2πixξ2dξ2

)
h(x)dx

=

∫
Rd

∫ ∞

0

f ∗ ϕ(1)
t (x) g ∗ ψt(x) h ∗ ψ(3)

t (x)
dt

t
dx

+

∫
Rd

∫ ∞

0

f ∗ ψ(1)
t (x) g ∗ ψt(x) h ∗ ϕ(3)

t (x)
dt

t
dx

:= ⟨P1(f, g), h⟩+ ⟨P2(f, g), h⟩.

Where

P1(f, g)(y) :=

∫
Rd

∫ ∞

0

f ∗ ϕ(1)
t (x) g ∗ ψt(x) ψ(3)

t (x− y)
dt

t
dx,

P2(f, g)(y) :=

∫
Rd

∫ ∞

0

f ∗ ψ(1)
t (x) g ∗ ψt(x) ϕ(3)

t (x− y)
dt

t
dx.

In the proposition below we give two weight estimates for paraproducts that will be used

later on to estimate the main term of the commutator. In the propositions that follow S2

and S3 are going to denote the permutation groups of 2 and 3 elements respectively.

Proposition 4.2.1. Let p > 1 w, σ ∈ Ap and ν =
(
w
σ

) 1
p then we have that

|⟨P1(f1, f2), f3⟩| ≲


min
σ∈S2

∥f3∥BMOν

∥∥fσ(1)∥∥Lp(w,Rd)

∥∥fσ(2)∥∥Lp′ (σ1−p′ ,Rd)

min
σ∈S2

∥f2∥BMOν

∥∥fσ(1)∥∥Lp(w,Rd)

∥∥fσ(3)∥∥Lp′ (σ1−p′ ,Rd)

|⟨P2(f1, f2), f3⟩| ≲


min
σ∈S2

∥f1∥BMOν

∥∥fσ(2)∥∥Lp(w,Rd)

∥∥fσ(3)∥∥Lp′ (σ1−p′ ,Rd)

min
σ∈S2

∥f2∥BMOν

∥∥fσ(1)∥∥Lp(w,Rd)

∥∥fσ(3)∥∥Lp′ (σ1−p′ ,Rd)

|⟨P(f1, f2), f3⟩| ≲ min
σ∈S2

∥f2∥BMOν

∥∥fσ(1)∥∥Lp(w,Rd)

∥∥fσ(3)∥∥Lp′ (σ1−p′ ,Rd)
.

Proof. The proposition is well known in the literature and we will only prove the first impli-

cation as the rest have an similar treatment, however, for completeness purposes we include
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a proof. Indeed by H1
w(Rd)-BMOw(Rd) duality, see for example [27, Theorem 5.2, Theorem

5.5] we have that

|⟨P1(f1, f2), f3⟩| ≤ ∥f3∥BMOw
∥P1(f1, f2)∥H1

w
≲ ∥f3∥BMOw

∥Sζ(P1(f1, f2))∥L1(w) .

Where Sζ denotes the square function with respect to a wavelet system
{
ζεQ
}
ε=1,...,2d−1,Q∈D

of order 10d. We have for ε ∈
{
1, . . . , 2d − 1

}
and Q ∈ D

⟨P1(f1, f2), ζ
ε
Q⟩ =

∫
Rd

∫ ∞

0

f1 ∗ ϕ(1)
t f2 ∗ ψt(x)ζϵQ ∗ ψ(3)

t =

∫
Zd

⟨f1, ϕ(1)
z ⟩⟨f2, ψz⟩⟨ψ(3)

z , ζϵQ⟩dµ(z)

ρz = S̃yzρ, ρ ∈
{
ϕ(1), ψ, ψ(3)

}
, z = (x, t).

From [25, Lemma 2.3] we have the estimate

∣∣⟨ζQ, ψ(3)
z ⟩
∣∣ ≲ [(cQ, ℓQ), z]η

for any η ∈ (0, 10d). In addition to that for any q > 1

|⟨f, ϕ(1)
z ⟩| ≲ inf

Bz

Mq(f) ≲

(
max {t, ℓQ, |x− x′|}

min {t, ℓQ}

) d
q

inf
Q
Mq(f).

Henceforth we have that, for η close to 10d that

[(cQ, ℓQ), z]η

(
max {t, ℓQ, |x− x′|}

min {t, ℓQ}

) d
q

= [(cQ, ℓQ), z]η− d
q
.

Therefore using wavelet averaging lemma 4.1.2 we have that

∫
Zd

⟨f1, ϕ(1)
z ⟩⟨f2, ψz⟩⟨ζQ, ψ(3)

z ⟩dµ(z) = inf
Q
Mq(f1)⟨f2, vQ⟩, vQ ∈ CΨδ,0

Q

for some absolute constant C. Therefore

Sζ(P1(f1, f2)) ≲Mq(f1)S(f2)
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where S is the intrinsic square function. From this we learn that

∥Sζ(P1(f1, f2))∥L1(w) ≲ ∥Mq(f1)∥Lp(µ) ∥S(f2)∥Lp′ (λ1−p′ ) ≲ ∥f1∥Lp(µ) ∥f2∥Lp′ (λ1−p′ )

provided that q has been chosen close to 1.

In addition to the diagonal estimates we obtained in the previous proposition, standard

techniques and the usage of the intrinsic square function allows us to get off-diagonal esti-

mates when the symbol belongs in L̇r(Rd).

Proposition 4.2.2. Let 1 < q < p < ∞, r with the property that 1
q
= 1

r
+ 1

p
and a weight

with wp ∈ Ap, w
q ∈ Aq Then the following estimates hold

|⟨P1(f1, f2), f3⟩| ≲


min
σ∈S2

∥f3∥L̇r(Rd)

∥∥fσ(1)∥∥Lp(wp,Rd)

∥∥fσ(2)∥∥Lq′ (w−q′ ,Rd)

min
σ∈S2

∥f2∥L̇r(Rd)

∥∥fσ(1)∥∥wp,Lp(Rd)

∥∥fσ(3)∥∥Lq′ (w−q′ ,Rd)

|⟨P2(f1, f2), f3⟩| ≲


min
σ∈S2

∥f2∥L̇r(Rd)

∥∥fσ(1)∥∥Lp(wp,Rd)

∥∥fσ(3)∥∥Lq′ (w−q′ ,Rd)

min
σ∈S2

∥f1∥L̇r(Rd)

∥∥fσ(2)∥∥Lp(wp,Rd)

∥∥fσ(3)∥∥Lq′ (w−q′ ,Rd)

|⟨P(f1, f2), f3⟩| ≲ min
σ∈S2

∥f2∥L̇r(Rd)

∥∥fσ(1)∥∥Lp(wp,Rd)

∥∥fσ(3)∥∥Lq′ (w−q′ ,Rd)
.

Proof. We only prove the first estimate where σ(1) = 1, σ(2) = 2 and f3 ∈ L̇r(Rd) we choose

c with the property f − c ∈ L̇r(Rd) so by the cancellation properties of ψ
(3)
t we can rewrite

⟨P1(f1, f2), f3⟩ = ⟨P1(f1, f2), f3 − c⟩

and therefore

|⟨P1(f1, f2), f3 − c⟩| ≲
∫
Rd

M(f1)S(f2)S(f3 − c)

≤ ∥M(f1)∥Lp(wp,Rd) ∥S(f2)∥Lq′ (w−q′ ,Rd) ∥S(f3 − c)∥Lr(Rd)

≲ ∥f1∥Lp(wp,Rd) ∥f2∥Lq′ (w−q′ ,Rd) ∥f3 − c∥Lr(Rd)
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which completes the proof.

With the aid of (4.2.1) we can write

[b, T ]f = T (bf)− bTf = MT b(f) +Rb(f)

MT,b(f) := T (P(f, b)) + T (P2(b, f))− P2(b, Tf)− P(Tf, b)

RT,b(f) := T (P1(b, f)− P1(b, Tf)).

(4.2.2)

We will separately prove estimates for Rb and MT b(f). Immediately from Corollary 4.2.1,

combined with the boundedness of Calderón-Zygmund operators on weighted Lp spaces

associated to Ap weights, is the following.

Corollary H.1. Let p > 1, w, σ ∈ Ap and ν =
(
w
σ

) 1
p then we have the estimate

∥MT,b(f)∥Lp(w) ≲ ∥b∥BMOν
∥f∥Lp(σ) .

In addition to that, if wp ∈ Ap and wq ∈ Aq and
1
q
= 1

r
+ 1

p
then

∥MT,b(f)∥Lp(wp,Rd) ≲ ∥b∥L̇r(Rd) ∥f∥Lq(wq ,Rd) .

4.3 One weight estimates

In this section we will handle the dual form to the remainder term Rb. It is organized as

follows. First, we will calculate the remainder term and rewrite it in a form that allows us

to use wavelet averaging. Next, we will give certain estimates in the coefficients that appear

that allow us to perform this averaging.
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Proposition 4.3.1. Let T be a δ-cancellative Calderón-Zygmund operator. Then for each

η ∈ (0, δ) there exist uz, vz ∈ CΨη;0
z , for some absolute constant C, with the property that

⟨RT,b(f), g⟩ =
∫
Zd×Zd

⟨b, ϕ(1)
z′ − ϕ(1)

z ⟩⟨f, ψz′⟩⟨ψ(3)
z′ , vz⟩⟨uz, g⟩dµ(z)dµ(z

′)

−
∫
Zd×Zd

⟨b, ϕ(1)
z − ϕ

(1)
z′ ⟩⟨f, vz′⟩⟨uz′ , ψz⟩⟨ψ

(3)
z , g⟩dµ(z)dµ(z′).

Where ρw = S̃ywρ, ρ ∈
{
ϕ(1), ψ, ψ(3)

}
, w = (y, s).

Proof. Using [25, Theorem A] for T we learn that for each η ∈ (0, η) there exist uz, vz ∈ CΨη;0
z

T (f) =

∫
Zd

⟨f, vz⟩uzdµ(z).

Coupling this information with the fact that

f =

∫ ∞

0

f ∗ ψt
dt

t

and subtracting ϕ
(1)
z and ϕ

(1)
z′ inside the pairings involving b in the definitions of the ad-

joint forms to T (P1(b, f)) and P1(b, Tf) respectively we obtain the desired formula after

performing a routine calculation.

The next lemma allows us to estimate the pairings that involve b that appear in Propo-

sition 4.3.1 by ∥b∥BMO conceding only a logarithm factor of the ratio of the distance to the

smallest scale and the ratio of the scales. A variant when the function belongs in the homo-
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geneous Hölder space is obtained. Before stating the lemma we will introduce the following

quantity that will help us declutter notation

d(z, z′)BMO =


max

{
1, log

(
max{t,t′}
min{t,t′}

)}
if |x−x′|

max{t,t′} ≤ 1

max
{
1, log

(
|x−x′|

min{t,t′}

)}
if else.

Lemma 4.3.2. Let ζ ∈ S(Rd) with the property that
∫
Rd ζ = 1. Then the following estimate

holds

|⟨b, Syzζ − Syz′ζ⟩| ≲ d(z, z′)BMO max

{
inf
Bz

M#b, inf
Bz′

M#b

}
.

In addition to that,

|⟨b, Syzζ − Syz′ζ⟩| ≲ [b]Ċ0,a(Rd) max {t, t′, |x− x′|}a .

Proof. We start off by recalling the trivial and well known estimates

|⟨b, ζz⟩ − bBz | ≲ inf
Bz

M#b, bBz
:=

1

td

∫
B(x,t)

b(y)dy

|bBz − baBz | ≲ max {1, log(a)} inf
Bz

M#b, a > 1

∣∣bBz − bBz′

∣∣ ≲ inf
Bz

M#b, when Bz ∩Bz′ ̸= ∅, t ∼ t′.

Henceforth by virtue of the first estimate, it suffices to estimate the quantity
∣∣bBz − bBz′

∣∣ .
Without loss of generality we assume that t ≥ t′. First, we consider the case |x−x′|

t
≤ 1 then

B(x, t) ∩B(x′, t) ̸= ∅ so

|bB(x,t)−bB(x′,t′)| ≤ |bB(x,t)−bB(x′,t)|+|bB(x′,t)−bB(x′,t′)| ≲ max

{
1, log

(
t

t′

)}
max

{
inf
Bz

M#b, inf
Bz′

M#b

}
.
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To conclude the proof of the first part of the lemma we may focus, from now in the case that

|x−′x|
t

> 1.

|bB(x,t) − bB(x′,t′)| ≤ |bB(x,t) − bB(x,|x−x′|)|+ |bB(x,|x−x′|) − bB(x′,|x−x′|)|+ |bB(x′,t′) − bB(x′,|x−x′|)|

≲ max

{
1, log

(
|x− x′|
t′

)}
max

{
inf
Bz

M#b, inf
Bz′

M#b

}
.

The second part of the lemma is easily obtained as a combination of the inequality

|⟨b, ζ(x,t)⟩ − b(x)| ≲ [b]Ċ0,a(Rd)

and the quantitative membership of b in Ċ0,a(Rd).

Proposition 4.3.3. Let δ > 0 then we have that for each η ∈ (0, δ) there holds

d(z, z′)BMO[z, z
′]δ ≲δ,η ∥b∥BMO [z, z′]η.

Proof. The proof of this proposition is elementary and is based on the fact that log(t) ≲ε t
ε

when t > 1.

In the following lemma we estimate the Lp(w,Rd) norm of RT,b.

Lemma 4.3.4. If w ∈ Ap we have that

∥RT,b(f)∥Lp(w,Rd) ≲ ∥b∥BMO ∥f∥Lp(w,Rd) .

Proof. We claim that for each η ∈ (0, δ) there exist λz, κz ∈ CΨη;0
z for some absolute positive

constant C with the property that

⟨RT,b(f), g⟩ = ∥b∥BMO

(∫
Zd

⟨f, λz⟩⟨uz, g⟩dµ(z) +
∫
Zd

⟨f, vz⟩⟨κz, g⟩dµ(z)
)
.
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Indeed, combining Lemmata 4.3.2, 4.1.2, [25, Lemma 2.3], the fact that ψ
(3)
z , ψz, uz, vz ∈

CΨδ;0
z and Proposition 4.3.3 we obtain that

λz :=
1

∥b∥BMO

∫
Zd

⟨b, ϕ(1)
z′ − ϕ(1)

z ⟩⟨ψ(3)
z′ , vz⟩ψz′dµ(z

′) ∈ CΨη;0
z

κz :=
1

∥b∥BMO

∫
Zd

⟨b, ϕ(1)
z − ϕ

(1)
z′ ⟩⟨uz, ψz′⟩ψ

(3)
z′ dµ(z

′) ∈ CΨη;0
z .

Using [25, Proposition 2.6] we obtain that the (1, 1) sparse norm of RT,b is controlled by

∥b∥BMO henceforth by the well known theory of sparse forms, see for example [59] we obtain

that

|⟨RT,bf, g⟩| ≲ ∥b∥BMO ∥f∥Lp(w) ∥g∥Lp′ (w1−p′ )

from which we the conclusion of the lemma readily follows.

The rest of this section is going to be concerned with the obtaining off-diagonal estimates.

Initially, we will prove a sparse type estimate for bi-sublinear forms that arise either from

the paraproducts or the error term RT,b related to symbols that belong in the homogeneous

Hölder space.

Lemma 4.3.5. Let a
d
= 1

p
− 1

q
with p < q and δ > 0 then

∑
Q∈D

ℓa+dQ Ψδ
QfΦ

δ
Qg ≲ sup

S .5-sparse

∑
R∈S

ℓa+dR ⟨f⟩1,R⟨g⟩1,R.

In particular, we have that

∑
Q∈D

ℓa+dQ Ψδ
QfΦ

δ
Qg ≲ ∥f∥Lp(wp,Rd) ∥g∥Lq′ (w−q′ ,Rd) .

Proof. As the value of δ is not important for the proof of this lemma we will omit it from

the notation of the intrinsic wavelet coefficients. By standard limiting arguments it suffices
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to show that for a finite collection of dyadic cubes, T(Q), contained in Q and f, g ∈ L∞
0 (Rd)

with the additional property that there holds supp (f), supp (g) ⊂ 3Q

∑
R∈T(Q)

ℓa+dR ΨRf ΨRg ≲ sup
S .5-sparse

∑
R∈S

ℓa+dR ⟨f⟩1,R⟨g⟩1,R.

To initiate our stopping time argument, we make the initial observation that

∑
R∈T(Q)

ℓa+dR ΨRf ΨRg ≲ ℓa+dQ [f ]1,T(Q)[g]1,T(Q)

where for each K ⊂ D and r > 0 we adopt the notation [f ]r,K = sup
R∈K

inf
R
Mrf. This estimate

is an immediate consequence of the calculation

∑
R⊂Q

ℓa+dR =
∑
2k<1

∑
ℓR=2kℓQ,R⊂Q

ℓa+dR =
∑
2k<1

(2−k)d(2kℓQ)
a+d ≲ ℓa+dQ . (4.3.1)

We construct S(Q) inductively as follows. We initially set S0(Q) = {Q} and for m ≥ 1, R ∈

Sm−1(Q)

I(R) := maximal I ∈ D with 9I ⊂ R ∩
({

M[13Rf ] > C ⟨f⟩1,3R
}
∪ {M[13Rg] > C⟨g⟩1,3R}

)
Sm(Q) :=

⋃
R∈Sm−1(Q)

I(R), S(Q) :=
⋃
m≥0

Sm(Q).

Note that the packing condition ∑
I∈I(R)

|I| ≤ |R|
2

is a direct consequence of the weak (1, 1) type of the Hardy-Littlewood maximal operator

and guarantees that the collection S(Q) is sparse. We proceed with the proof in an iterative

scheme. We make the conscious choice to present only the first step of the iteration as the

subsequent ones pass in an identical fashion.
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It is easy to observe that I(Q) induces a natural splitting of the underlying collection

T(Q). To be more precise,

T(Q) = Tstop,I(Q) ⊔
⋃

I∈I(Q)

T(I)

Tstop,I(Q) := {R ∈ T(Q) : R ̸⊂ I , ∀I ∈ I(Q)} , T(I) := {R ∈ T(Q) : R ⊂ I} .

By the definition of I(Q) we learn that

[f ]1,Tstop,I(Q) ≲ ⟨f⟩1,3Q, [g]1,Tstop,I(Q) ≲ ⟨g⟩1,3Q,

so that

∑
R∈T(Q)

ℓa+dR ΨRf ΨRg ≤ Cℓa+dQ ⟨f⟩1,3Q⟨g⟩1,3Q +
∑

I∈I(Q)

∑
R∈T(I)

ℓa+dR ΨR(f13Q)ΨR(g13Q). (4.3.2)

For the tail terms we calculate∑
R∈T(I)

ℓa+dR ΨR(f13Q\3I)ΨR(g13I) ≲
∑
k≥0

∑
R∈T(I),ℓR=2−kℓI

ℓa+dR 2−δk inf
I
M(f13Q)ΨR(g13I)

≲
∑
k≥0

2−k(a+d)ℓaI⟨f⟩1,3Q
∑

R∈T(I),ℓR=2−kℓQ

ℓdIΨR(g13I)

≲ ℓa+dI ⟨f⟩1,3Q⟨g⟩1,3Q.

So that ∑
I∈I(Q)

∑
R∈T(I)

ℓa+dR ΨR(f13Q)ΨR(g13Q) ≤ C
∑

I∈I(Q)

ℓa+dI ⟨f⟩1,3Q⟨g⟩1,3Q

+
∑

I∈I(Q)

∑
R∈T(I)

ℓa+dR ΨR(f13I)ΨR(g13I)

where the first term is controlled as follows using the same single scale analysis as in (4.3.1)

∑
I∈I

ℓa+dI ⟨f⟩1,3Q⟨g⟩1,3Q ≲ ℓaQ⟨f⟩1,3Q⟨g⟩1,3Q
∑
I(Q)

|I| ≲ ℓa+dQ ⟨f⟩1,3Q⟨g⟩1,3Q
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and the proof is completed by iterating (4.3.2). Finally, the second part of our lemma is

available to us from the proof of [13, Theorem 4.5] and the 3d grid trick.

Proposition 4.3.6. Let T be a δ-cancellative Calderón-Zygmund operator and b ∈ Ċ0,a(Rd).

Then for each η ∈ (0, δ) there exist αιz, β
ι
z,∈ CΨη;0

z and γιz such that |γz| ≤ Cta−dχ−d−η+a
z

, ι ∈ {1, 2} with the property that

⟨RT,bf, g⟩ =
∫
Zd

[b]Ċ0,a(Rd)

(
ta⟨f, ψz⟩⟨α1

z.g⟩+ ta⟨f, β1
z ⟩⟨uz, g⟩+ ⟨f, ψz⟩⟨γ1z , g⟩

)
dµ(z)

−
∫
Zd

[b]Ċ0,a(Rd)

(
ta⟨f, vz⟩⟨α2

z.g⟩+ ta⟨f, β2
z ⟩⟨ψ

(3)
z , g⟩+ ⟨f, vz⟩⟨γ2z , g⟩

)
dµ(z).

Proof. Initially, given z ∈ Zd we partition the parameter space in the following manner

Zd = A(z) ⊔ B(z) ⊔ C(z)

A(z) :=
{
z′ ∈ Zd : max {|x− x′|, t, t′} = t

}
, B(z) :=

{
z′ ∈ Zd : max {|x− x′|, t, t′} = t′

}
,

C(z) :=
{
z′ ∈ Zd : max {|x− x′|, t, t′} = |x− x′|

}
.

We will only calculate α1
z, β

1
z and γ1z as the arguments for the rest are identical. We write

α1
z =

1

ta[b]Ċ0,a(Rd)

∫
Zd

1A(z)(z
′)⟨b, ϕ(1)

z′ − ϕ(1)
z ⟩⟨ψ(3)

z , vz′⟩uz′dµ(z′)

β1
z =

1

ta[b]Ċ0,a(Rd)

∫
Zd

1A(z′)(z)⟨b, ϕ(1)
z′ − ϕ(1)

z ⟩⟨ψ(3)
z′ , vz⟩ψz′dµ(z

′)

γ1z =
1

[b]Ċ0,a(Rd)

∫
Zd

1A(z)(z
′)⟨b, ϕ(1)

z′ − ϕ(1)
z ⟩⟨ψ(3)

z , vz′⟩uz′dµ(z′).

We learn the memberships α1
z, β

1
z ∈ CΨδ;0

z and the size estimate on γ1z via combining Lemma

4.3.2 with Lemmata 4.1.2 and 4.1.3 respectively.

The above lemma yields readily the following corollary that allows us to give off-diagonal

estimates.
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Lemma 4.3.7. Let T be δ-cancellative Calderón-Zygmund operator and b ∈ L̇r(Rd). Then

for each η ∈ (0, δ) there exist σιz, τ
ι
z ∈ CΨη;0

z , ι ∈ {1, 2} with the property that

⟨RT,bf, g⟩ =
∫
Zd

inf
Bz

M#b
(
⟨f, ψz⟩⟨σ1

z , g⟩+ ⟨uz, g⟩⟨f, τ 1z ⟩ − ⟨f, σ2
z⟩⟨ψ

(3)
z , g⟩ − ⟨f, vz⟩⟨τ 2z , g⟩

)
dµ(z).

Proof. Given z ∈ Zd we will partition the parameter space Zd according to the sharp maximal

function. In particular

Zd = H(z) ⊔ (H(z))c H(z) :=

{
z′ ∈ Z : inf

Bz

M#b ≥ inf
Bz′

M#b

}
.

We proceed similarly as in the proof of Lemma 4.3.6.

We end this section with the proof of Theorem F.

Proof of Theorem F. Using Corollary H.1, Lemma 4.3.5 and the latter part of Lemma 4.3.2

we obtain the desired estimates for MT,b for the cases p = q, q < p and p > q respectively. By

the decomposition of the commutator as expanded in (4.2.2) it suffices to prove the relevant

estimates for the term RT,b. The case p = q is contained in Lemma 4.3.4. The case p > q

follows by combining Proposition 4.3.6 and Lemma 4.3.5 since

|⟨RT,b(f), g⟩| ≲ [b]Ċ0,a(Rd)

(∑
Q∈D

|Q|Ψ
δ
2
QfΨ

δ
2
Qg + ⟨Ia(|f |), |g|⟩

)

where the first term comes from the aιz, β
ι
z, ι ∈ {1, 2} and the second term comes from the

calculation of the kernel of the relevant operator, see Lemma 4.5.1. Finally, from Lemma

4.3.7 we learn that

|⟨RT,b(f), g⟩| ≲
∫
Rd

M#bS(f)S(g) (4.3.3)

which completes the case p < q.
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Remark 4.3.8. We remark that we could have concluded the cases p < q and p = q from

(4.3.3) but we want to emphasize the point that the “correct” quantitative estimate in the

case that p = q of the term RT,b is that its sparse (1, 1) norm controlled by ∥b∥BMO .

4.4 Two weight estimates

In this section we will reprove Bloom’s original theorem for the Hilbert transform or for

any fully cancellative Calderón-Zygmund operator with smoothness 1.

The first ingredient in the proof of the two weight inequality is an analogue of Lemma

4.3.2 in the Bloom BMO setting. For the sake of completeness we recall the following John-

Nirenberg type inequality from [38].

Lemma 4.4.1. If w ∈ A2 the following inequality holds

sup
Q

(
1

w(Q)

∫
Q

|b(x)− ⟨b⟩Q|2w−1(x)dx

) 1
2

≲ ∥b∥BMOw
.

At this point we will introduce the analogue of d(z, z′)BMO in the Bloom BMO setting.

Given w ∈ A2−ε we set

d(z, z′)BMOw =


max{⟨w⟩1,B(x,t), ⟨w⟩1,B(x′,t′)}max

{(
|x−x′|
t′

)1− ϵ
2
,
(
t
t′

)1− ϵ
2

}
if t ≥ t′

max{⟨w⟩1,B(x,t), ⟨w⟩1,B(x′,t′)}max

{(
|x−x′|
t

)1− ϵ
2
,
(
t′

t

)1− ϵ
2

}
if else.

Lemma 4.4.2. Let w ∈ A2−ε and ζ ∈ S(R) with
∫
R ζ = 1. then we have that

|⟨b, Syzζ − Syz′ζ⟩| ≲ d(z, z′)BMOw ∥b∥BMOw
.

104



Proof. Using the doubling property of the measure w the Schwartz decay of ζ and its mean

1 property we learn that it is sufficient to show this estimate for rough averages namely, it

is enough to show that ∣∣bBz − bBz′

∣∣ ≲ d(z, z′)BMOw ∥b∥BMOw
.

Without loss of generality we can assume that t ≥ t′. Initially, if |x− x′| ≤ t we are able to

write

|bB(x,t) − bB(x′,t′)| ≤ |bB(x,t) − bB(x,3t)|+ |bB(x,3t) − bB(x′,t′)|.

For the first term we have that

|bB(x,t) − bB(x,3t)| ≲ ∥b∥BMOw
⟨w⟩1,B(x,t). (4.4.1)

For the second term we have that

|bB(x,3t) − bB(x′,t′)| ≤
1

t′

∫
B(x′,t′)

|b(y)− bB(x,3t)|dy ≤ ⟨(b− bB(x,3t))w
− 1

2 ⟩2,B(x′,t′)⟨w
1
2 ⟩2,B(x′,t′).

Observe that B(x, t)∩B(x′, t′) ̸= ∅ because x′ ∈ B(x, t)∩B(x′, t′) since |x− x′| ≤ t so that

B(x′, t′) ⊂ B(x, 3t)

⟨(b− bB(x,3t))w
− 1

2 ⟩2,B(x′,t′) ≤
(
1

t′

∫
B(x,3t)

|b(y)− bB(x,3t)|2w−1(y)dy

) 1
2

≤
(
w(B(x, 3t))

t′

) 1
2
(

1

w(B(x, 3t))

∫
B(x,3t)

|b(y)− bB(x,3t)|2w−1(y)dy

) 1
2

≲

(
w(B(x′, 9t))

t′

) 1
2

∥b∥BMOw
≲

(
w(B(x′, t′))

t′

[
t

t′

]2−ϵ) 1
2

∥b∥BMOw

≲
(
⟨w⟩1,B(x′,t′)

) 1
2

(
t

t′

)1− ϵ
2

∥b∥BMOw
.
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Where the third inequality was obtained since B(x, 3t)∩B(x′, 3t) ̸= ∅ ⇒ B(x, 3t) ⊂ B(x′, 9t)

and the final one was obtained by the doubling property of w. Therefore, all in all we have

that

|bB(x,3t) − bB(x′,t′)| ≲
(
t

t′

)1− ϵ
2

⟨w⟩1,B(x′,t′) ∥b∥BMOw
. (4.4.2)

Combining (4.4.1) and (4.4.2) yields the desired estimate. To finish the proof we check the

case |x− x′| > t by estimating

|bB(x,t) − bB(x′,t′)| ≤ |bB(x,t) − bB(x′,|x−x′|)|+ |bB(x′,|x−x′|) − bB(x′,t′)|

and using the previous estimate and w’s doubling property.

4.5 Appendix

Lemma 4.5.1. Let λζ ∈ Ψδ;0
ζ and κζ with the property that |κζ(y)| ≲ σa−d

〈
y−ξ
σ

〉−(d+δ−a)
.

Then ∣∣∣∣∫
Zd

⟨f, λz⟩κzdµ(z)
∣∣∣∣ ≲ Ia(|f |).

Here Ia is the fractional integral operator with parameter a.

Proof.

∫
Zd

⟨f, φζ⟩κζ(x)dµ(ζ) =
∫
Zd

(∫
Rd

f(y)φζ(y)κζ(x)dx

)
dµ(ζ) ≤

∫
Rd

|f |
(∫

Zd

|φζ(y)κζ(x)|dµ(ζ)
)
dy.
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The inner integral, i.e the kernel, is estimated as follows∫
Zd

|φζ(y)κζ(x)|dµ(ζ) ≲
∫ ∞

0

∫
Rd

1

σd

〈
y − ξ

σ

〉−(d+δ)

σa−d
〈
x− ξ

σ

〉−(d+δ−a)

dξ
dσ

σ

≲
∫ ∞

0

σa−d
〈
y − x

σ

〉−(d+δ−a)
dσ

σ

=

∫ |y−x|

0

σa−d
〈
y − x

σ

〉−(d+δ−a)
dσ

σ
+

∫ ∞

|y−x|
σa−d

〈
y − x

σ

〉−(d+δ−a)
dσ

σ
.

We estimate each integral separately∫ |y−x|

0

σa−d
〈
y − x

σ

〉−(d+δ−a)
dσ

σ
≲
∫ |y−x|

0

σa−d−1 σd+δ−a

|y − x|d+δ−a
dσ ≲

|y − x|δ

|y − x|d+δ−a
=

1

|y − x|d−a∫ ∞

|y−x|
σa−d

〈
y − x

σ

〉−(d+δ−a)
dσ

σ
≤
∫ ∞

|y−x|

1

σ1+d−adσ =

[
σa−d

a− d

]∞
|y−x|

≲ |y − x|a−d

and the proof is complete.

At this point we give the proof of the generalization of the wavelet averaging lemma

appearing in [25] and its fractional analogue as stated in Lemma 4.1.3.

Proof of Lemma 4.1.2.

|ψn
z(y)| ≤

∫
a∈Rd

∫ 1

0

min{t, βt}δ

max{t, βt, |a|t}d+δ
td

1

(βt)d+

〈
y − x− at

βt

〉−d−δ
dβ

β
da

≤
∫
a∈Rd

∫ 1

0

βδ

⟨a⟩d+δ
1

(βt)d

〈
y − x− at

βt

〉−d−δ
dβ

β
da

≤
∫ 1

0

βδ−1−d

td

∫
a∈Rd

〈
y − x− at

βt

〉−d−δ

dadβ ≲
1

td

∫ 1

0

βδ−1dβ ≲
1

td
.

(4.5.1)

To conclude the localization estimate it suffices to check it when |y − x| ≥ 2t. Indeed,

|∂γψn
z(y)| ≤

∫
a∈Rd

∫ 1

0

min{t, βt}δ

max{t, βt, |a|t}d+δ
td

1

(βt)d

〈
y − x− at

βt

〉−d−δ
dβ

β
da

≤
∫
a∈Rd

∫ 1

0

βδ

⟨a⟩d+δ
1

(βt)d

〈
y − x− at

βt

〉−d−δ
dβ

β
da∫

|a|≤ |y−x|
2t

∫ 1

0

β+δ−d−1

⟨a⟩d+δ
1

td

〈
y − x− at

βt

〉−d−δ

dβda

+

∫
|a|≥ |y−x|

2t

∫ 1

0

βδ−d−1

⟨a⟩d+δ
1

td

〈
y − x− at

βt

〉−d−δ

dβda = I+ II.
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We will estimate each term separately. In particular we start off with the term I. Therefore,

I ≲
1

td

∫
|a|≤ |y−x|

2t

1

⟨a⟩d+δ

(∫ 1

0

βδ−d−1+d+δ

(
t

|y − x|

)d+δ
dβ

)
da

≤ 1

td

∫
a∈Rd

1

⟨a⟩d+δ

(
2t

|y − x|

)d+δ
da ≲

1

td

〈
y − x

t

〉−d−δ

We now turn to the second term II. We observe that ⟨a⟩ ≳
〈
y−x
t

〉
and therefore

II ≲
1

td

〈
y − x

t

〉−d−δ ∫
|a|≥ |y−x|

2t

∫ 1

0

βδ−d−1

〈
y − x− at

βt

〉−d−δ

dβda

which concludes the proof by the computation in (4.5.1). We will know prove the smoothness

estimate. For |h| ≤ t we compute the modulus of the difference ψn
z(y + h)− ψn

z(y) as∣∣∣∣∫
a∈Rd

(∫
|h|<βt≤t

+

∫
|h|≥βt>0

)
βδ

⟨a⟩d+δ
{
φ(x+at,βt)(y + h)− φ(x+at,βt)(y)

}
da

dβ

β

∣∣∣∣ := |I+ II|

We will use the Hölder continuity estimate on regime |h| < βt ≤ t and rely solely on the

localization principle on the regime |h| ≥ βt > 0. So we compute∫
|h|<βt≤t

∫
a∈Rd

βδ−1

⟨a⟩d+δ
|h|δ

(βt)d+δ

〈
y − x− at

βt

〉−d−δ

dadβ ≲
|h|δ

td+δ

∫ 1

|h|
t

β−1dβ

≲
|h|δ

td+δ
log1

(
t

|h|

)
≲

|h|η

td+η
, 0 < η < δ.

We continue with estimating the second term by∫ |h|
t

0

βδ−1

∫
a∈Rd

1

⟨a⟩d+δ
1

(βt)d

〈
y + h− x− at

βt

〉−d−δ

+

〈
y − x− at

βt

〉−d−δ

dadβ

≲
∫ |h|

t

0

βδ−1−|γ|dβ ≲
1

td

(
|h|
t

)δ
.

Proof of Lemma 4.1.3. Due to similarity in the treatment of ψf
z we choose to sketch the proof

of the localization estimates of ψn
z . Initially there holds,

|ψn
z(y)| ≤

∫
|a|≳1

∫ 1

0

βδ

⟨a⟩d+δ−λ
t−d+λ

1

(β)d

〈
y − x− at

βt

〉−d−δ
dβ

β
da
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Take p(d+ δ − λ) > 1 and d
p′
+ δ − d > 0 which is possible because

p(d+ δ − λ) > 1 ⇔ p >
1

d+ δ − λ

d

p′
+ δ − d > 0 ⇔ p >

d

δ

we switch the integrals and perfrorm the Hölder in a to obtain that

|ψn
z(y)| ≤ tλ−d

∫ 1

0

βδ−d−1

(∫
|a|≳1

1

⟨a⟩p(d+δ−λ)
da

) 1
p

(∫
|a|≳1

〈
y − x− at

βt

〉−p′(d+δ)

da

) 1
p′

dβ

≲ tλ−d
∫ 1

0

βδ−d−1β
d
p′ dβ = tλ−d

[
β
δ+ d

p′−d

δ + d
p′
− d

]1
0

≲ tλ−d

where the last line is justified from the fact that δ + d
p′
− d = δ − d

p
> 0 For the range

|y− x| ≥ 2t we proceed to the splitting of the integral as in the proof of the previous lemma

and use the convolution inequality

∫
Rd

1

td

〈
y − x

t

〉−(d+δ)
tλ

td

〈
y − x′

t

〉−(d+δ−λ)

dy ≲ tλ−d
〈
x′ − x

t

〉−(d+δ−λ)

.
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