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ABSTRACT OF THE THESIS 

Temporal Order Memory in Naturalistic Events Is Influenced by Semantic Knowledge and 

Hierarchical Event Structure 

by 

Yining Ding 

Master of Arts in Psychological & Brain Sciences 

Washington University in St. Louis, 2024 

Professor Jeffrey. M. Zacks, Chair 

As people go through everyday life, they segment their continuous sensory experience into 

distinct events, and the event structure being perceived during encoding has important 

implication on how event dynamics is later reconstructed from long-term memory. Previous 

studies using discrete pictorial stimuli showed that people are sometimes better at remembering 

the temporal order of items occurring within the same perceptual context than items spanning 

across a perceptual boundary, but that the opposite can also occur if contextual cues are available 

during retrieval. However, given that these paradigms only tested the episodic memory of 

arbitrary temporal associations, it is unclear if the conclusions can be generalized to everyday 

scenarios that rely heavily on structured event knowledge for perception and memory. In the 

current study, we developed a set of hierarchically organized narrative stimuli describing 

everyday events, with semantic order constraints among events either on the coarse-level or on 

the fine-level. In Experiment 1 and 2, we found that within-event temporal order memory was 

improved when fine-level semantic constraints were provided, and across-event temporal order 

memory was improved when coarse-level semantic constraints were provided. We observed 

these effects after both a shorter (2.5-minute) and a longer (20-minute) delay, which 



 
 

ix 

demonstrated that participants could use semantic order constraints on either coarse- or fine-level 

to facilitate temporal order reconstruction. In Experiment 3, we tested serial recall of the 

narratives and found that participants frequently chucked their recall based on coarse-level event 

membership. Together, these results suggested that temporal order memory of everyday events 

should be primarily viewed as a reconstruction process that utilizes multiple sources of 

information apart from episodic memory. 
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Chapter 1: Introduction 
 

Human experience unfolds unidirectionally over time, yet people’s ability of 

remembering past experiences resembles a form of “mental time travel” that resist the 

irreversibility of time (Tulving, 2002). A successful reconstruction of the past requires 

remembering not only “what” happened, but also “when” it happened.  

The representations people form when perceiving these experiences have important 

implication on how we later remember their content and reconstruct the relationship among 

them. Event Segmentation Theory (EST) suggests that during the ongoing perception of 

everyday activities, people spontaneously segment their continuous sensory experience into 

distinct events (Zacks et al., 2007). According to EST, people maintain an active event model in 

working memory that describes the current situation. The current event model is constructed 

based on a combination of sensory information available in the immediate environment and 

event schemas that represent existing semantic knowledge about the event. People use the stable 

event model to make predictions about what is going to happen next, and adaptively update their 

event model when there is a transient increase in prediction errors. When event model update 

occurs, people typically segment the event and perceive an event boundary. Supporting this 

theoretical framework, there is substantial evidence suggesting that people agree on when event 

boundaries occur and are sensitive to hierarchical structures in the events (Zacks et al., 2001; 

Zacks et al., 2006; Sasmita & Swallow, 2022). The perception of “partonomic hierarchy” in 

events, which is defined as “fine-grained events clustering into larger coarse-grained events” 

(Radvansky & Zacks, 2014), has been shown to increase as participants became more familiar 

with an event sequence (Hard et al., 2006; Zacks, 2020). In both reading and film viewing, it has 
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been demonstrated that people are able to constantly track multiple dimensions in the story, 

including characters, spatial locations, goals, and the causal and temporal relations, to segment 

and update their current event model when incoming information no longer matches predictions 

generated by the current model (Gernsbacher, 1991; Zwaan & Radvansky, 1998; Zacks et al., 

2009). For example, when a reader encounters a sentence in a story saying that the main 

character goes from their home to the school, the change in spatial location suggests that the 

reader needs to update their previous event model about home activities to accommodate new 

events that happen at the school. One important behavioral signature for event model updating at 

event boundaries is that reading time increases when spatial shifts (Radvansky et al., 2001; 

Zwaan & Radvansky, 1998), temporal shifts (Radvansky & Copeland, 2010; Rinck & Weber, 

2003), goal shifts (Radvansky et al., 2001), character shifts (McNerney et al., 2011), or causal 

shifts (Radvansky et al., 2001; McNerney et al., 2011) occur in narratives. 

Event structure influences how events are encoded, stored, and later reconstructed from 

long-term memory (Radvansky, 2012; Radvansky & Zacks, 2017; Zacks, 2020; Rubin & 

Umanath, 2015). In one study conducted by Ezzyat & Davachi (2011), they asked participants to 

read narratives that contain event boundary sentences indicating temporal shift in the storyline. 

When they later cued people with a sentence from the narrative and asked them to recall the next 

sentence, they found that the cued recall performance was worse if there was an event boundary 

separating the cue and the to-be-recalled sentence, and the effect was later replicated in both 

younger and older adults (Davis & Campbell, 2023). This evidence suggests that event 

boundaries help discretize experience into distinct episodes in long-term memory, which reduces 

interference across different event models during retrieval.  
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Consistent with the finding that boundaries seem to impair cued-recall performance, there 

have been studies showing that contextual boundary disrupts people’s ability to remember the 

temporal order among items. Unlike previous studies using narratives as stimuli, these paradigms 

aimed to simplify naturalistic event structure and demonstrate simple contextual changes are 

sufficient to cause event segmentation that supports better within-event associative memory 

(Heusser et al., 2018). In these paradigms, participants were presented with a series of discrete 

pictures during encoding, and the “context” in which these items appeared changed periodically 

to create perceptual boundaries. At the retrieval time, they were given two pictures and were 

asked to judge the relative recency of these two pictures (“Which of these two stimuli were seen 

first?”), as well as rate the subjective temporal distance between them during encoding (“How 

far apart in time were the two stimuli presented?”). A consistent finding is that people are more 

likely to forget the order of the two probed pictures, if they are encoded in two different contexts 

comparing to in a uniform context, when contextual change are operationalized by a change in 

stimuli category (DuBrow & Davachi, 2013, 2014; Sols et al., 2017), spatial location (Horner et 

al., 2016; Gurguryan et al., 2021), background color (Heusser et al., 2018; Pu et al., 2022), 

background sound (Clewett et al., 2020; McClay et al., 2022), encoding task (Wang & Egner, 

2022), or the magnitude of reward prediction error (Rouhani et al., 2020). This boundary-related 

disruption in temporal order memory is often accompanied by an inflation in temporal distance 

judgment, which means that participants are more likely to rate stimuli spanned across event 

boundaries as temporally further away from each other, even though the actual temporal lag in 

between remains constant across conditions (DuBrow & Davachi, 2013; Ezzyat & Davachi, 

2014).  
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Together, these findings can be interpreted by two different associative mechanisms for 

how temporal information is stored in memory: One is the chaining theory that emphasizes using 

direct item-item associations for recency judgment (Lewandowsky & Murdock, 1989; Murdock, 

1983). According to this account, memory for the serial order of items is supported by encoding 

and retrieving the pairwise associations between sequential items (Lewandowsky & Murdock, 

1989). This predicts that event boundaries induced by contextual changes will disrupt the 

formation of associative links between items during encoding, thereby causing recency 

information across events more difficult to retrieve (Heusser et al., 2018). Another associative 

account is given by the temporal context model (TCM) and the related context maintenance and 

retrieval (CMR) model, which emphasizes an indirect temporal linking mechanism among items 

through their shared, gradually changing temporal context (Howard & Kahana, 2002; Polyn et 

al., 2009). According to this account, event boundaries may cause an abrupt shift in the slowly 

drifting temporal context representation, which makes it easier to retrieve the temporal 

association among items within the same event than across different events (DuBrow & Davachi, 

2013; DuBrow et al., 2017). 

There is also empirical evidence suggesting that whether event boundaries exert a 

disruptive effect on temporal order memory depends on other factors. For example, Wen and 

Egner (2022) demonstrated that if the encoding context of items was salient enough and 

available during retrieval, recency judgment for items spanning across two events would be more 

accurate than items within the same event, and this effect co-occurred with an inflated temporal 

distance rating for across-event items. This finding contradicts the pattern predicted by 

frameworks centered on associative mechanisms, and instead provides partial support for 

distance-based mechanisms for memory of time (Hintzman, 2005). Distance-based theories 
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suggested that recency judgment was operationalized through a comparison of the relative 

memory strength of each individual item. According to this account, recency judgment should be 

easier for items that are relatively farther apart in time, due to their more salient difference in 

strength.  

To summarize, recent studies using picture-list learning paradigm yielded mixed results 

in identifying the mechanism underlying temporal order memory. However, one may argue that 

the mental process we typically rely on for remembering the order of everyday events operates 

somewhat differently from what we use for remembering the order of newly encountered, 

arbitrary pictures in a laboratory setting. As Friedman (1993) argued, our ability to remember the 

temporal relationship among autobiographical events should be primarily viewed as a 

reconstruction process, which specializes on combining episodic information with general 

knowledge about recurring time patterns to make inferences. This coincides with the viewpoint 

from Bartlett (1932) that structured knowledge about events, which are known as schemas, play 

an important role in how we reconstruct our memories for specific life episodes. 

Indeed, multiple empirical studies have shown that people have semantic knowledge 

about stereotyped event sequences in their long-term memory, which are referred to as “scripts” 

(Abelson, 1981). When people describe what typically happens during familiar activities (e.g., 

eating in a restaurant), they have good agreement on the fine-level events that constitutes the 

coarse-level event (e.g., entering, ordering, eating, etc.), as well as specific characters (e.g., 

customer, waiter, cashier, etc.) and actions (e.g., pick up menu, look at menu, etc.) (Bower et al., 

1979). However, scripts also differ in terms of the regularity of the temporal order among events.  

(Abelson, 1981; McRae et al., 2021). On one end of the spectrum, some scripts have strong 

constraints on the ordering of their constituent events. These constraints sometimes result from 
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causal relations (e.g., Eating a meal can only happen after ordering the meal), and sometimes 

come from socio-cultural conventions (e.g., In western culture, the main course is typically 

served after the appetizer, and dessert is typically served after the main course). On the other end 

of the spectrum, some scripts have constituent activities that are generally agreed-upon, but with 

weak constraints on the way they are sequenced (e.g., An event like cleaning a room contains 

typical subevents like vacuuming the floor and clean the table, but they can happen in any order). 

Key aspects of semantic knowledge about familiar events are (a) what fine-level events are 

contained in a coarse-level event, and (b) the typical order events at a given grain. Both aspects 

of semantic knowledge may serve as important sources of information for how we encode and 

reconstruct the temporal dynamic in everyday life. This proposal would be challenging to test 

using picture-list learning paradigms because the order of both item and context changes in these 

paradigms are arbitrary, and because the relationship between items and contexts are frequently 

orthogonalized. In other words, most of the associations formed and tested in these paradigms 

are one-shot learned episodic associations, which prevents participants from using existing 

semantic knowledge to facilitate remembering. 

The goal of the current study was to investigate the extent to which semantic knowledge 

about event structure facilitates the encoding and retrieval of temporal order relationships among 

events. We would like to reconceptualize the role event boundary plays in temporal order 

memory while considering how it interacts with existing schematic information to facilitate event 

model construction. To this end, we created narratives about everyday activities with a two-level 

hierarchical structure, which paralleled the stimuli design in well-established picture-list learning 

paradigms. This was illustrated in Figure 1. In our narratives, “Fine-level events” were similar to 

“items,” and “Coarse-level events” were similar to “contexts.” But instead of having random 
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item-context pairing (e.g., a picture of a ball shown in a purple background) as a new episodic 

association to learn, the membership of fine-level events belonging to certain coarse-level events 

was designed to rely on participants’ existing semantic knowledge (e.g., The fine-level event 

“Peeling some potatoes” belongs to the coarse-level event “Help with cooking dinners in the 

kitchen”). In addition, instead of having completely random ordering among “items” and 

“contexts,” the narratives were constructed to have strong order constraints at one of the two 

levels: For Coarse-level Semantic (CS) narratives, there were strong semantic order constraints 

only among coarse-level events, but there were no semantic order constraints among each set of 

fine-level events within each coarse-level event. For example, in the “visiting aunt” CS narrative 

(see Figure 1(A), on the coarse-level, most people would agree that the protagonist would first 

prepare at home, then drive the car, and then get greeted by his aunt in her living room. But 

within the “preparing at home” coarse-level event, it would make sense for the protagonist to do 

things like taking out hoodie and checking address in any order). Fine-level Semantic (FS) 

narratives have a structure that was the complement of CS narratives: there were strong semantic 

order constraints on each set of fine-level events within each coarse-level event, but there were 

no semantic order constraints among coarse-level events. For example, in the “visiting the zoo” 

FS narrative (see Figure 1(B), on the coarse-level, it would make sense for the protagonist to do 

things like getting a tattoo or watching the sea lion show in any order. But within the “visit the 

snack cart” coarse-level event, most people would agree that the protagonist would first wait in 

the line, then tell the owner what he wants, and then pay and get food. 

We hypothesized that when reading each narrative, changes in coarse-level events would 

be perceived as event boundaries and would induce typical boundary-related effects, including 

increased reading time for boundary sentences during encoding (Radvansky et al., 2001; Zwaan 
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& Radvansky, 1998) and inflated temporal distance rating for fine-level event pairs spanning 

across event boundaries during retrieval (DuBrow & Davachi, 2013; Ezzyat & Davachi, 2014). 

Critically, we hypothesized that the relative accuracy of recency judgment should depend on 

where semantic order constraint is present: There should be better across-event temporal order 

memory when only coarse-level semantic constraints were provided (in CS narratives), but better 

within-event temporal order memory when only fine-level semantic constraints were provided 

(in FS narratives). These effects should be present both during a relatively short delay between 

encoding and retrieval (about 2.5 minutes, Experiment 1) and a longer delay (about 20 minutes, 

Experiment 2). In addition, we hypothesized that the temporal organization of recalled events 

should be influenced by semantic order knowledge and hierarchical event structure (Experiment 

3). 
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Figure 1. Example stimuli used in Experiment 1-3. Each narrative had 5 coarse-level event labels and 27 
sentences, including one opening sentence at the beginning, one ending sentence at the end, and 25 fine-
level event sentences in the middle. (A) Coarse-level Semantic (CS) Narrative: There were semantic order 
constraints on the order of the five coarse-level event labels, but there were no semantic order constraints 
among the five fine-level event sentences within each coarse-level event. (B) Fine-level Semantic (FS) 
Narrative: There were no semantic order constraints on the order of the five coarse-level event labels, but 
there were semantic order constraints on the five fine-level event sentences within each coarse-level 
event. Black arrows in the figure indicate the direction of semantic order constraints. Sentences pairs 
highlighted in orange indicate across-event pairs, and sentence pairs highlighted in blue indicate within-
event pairs that were probed in the test phase. 
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Figure 2. Schematic of experimental procedure. (A) Encoding phase in Experiment 1-3. Participants read 
each narrative sentence-by-sentence in a self-paced format. Fine-level event sentence changed every one 
screen, and coarse-level event labels changed every five screens. In Experiment 2 and 3, apart from 
reading the contents on the screen, participants also heard audio of each fine-level event sentence. (B) 
Test phase in Experiment 1 & 2. For each fine-level event sentence pair, participants performed recency 
judgment task, rated their confidence for the recency judgment task, and then rated their perceived 
temporal distance between the two sentences. (C) Test phase in Experiment 3. Participants performed a 
serial recall task for the each of the narratives they read before the delay phase. 

 

 Experiment 1 Experiment 2 Experiment 3 

Sample Size 
(after data exclusion) 

N = 40 N = 27 N = 32 

Encoding Stimuli 10 narratives (5 CS + 
5 FS) 

10 narratives (5 CS + 
5 FS) 

6 narratives (3 CS + 3 
FS) 

Encoding Task Self-paced reading Self-paced reading 
with audio 

Self-paced reading 
with audio 

Delay Length ~ 2.5 minutes ~ 20 minutes ~ 2.5 minutes 
 

Retrieval Task 
(a) Recency 
Judgment 
(b) Recency 
Judgment Confidence 
(c) Temporal 
Distance Rating 

(a) Recency 
Judgment 
(b) Recency 
Judgment Confidence 
(c) Temporal 
Distance Rating 

(a) Serial Recall 

 

Table 1. Comparison of Experiment 1-3 Method 
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Chapter 2: Experiment 1 
 

 In Experiment 1, we aimed to test the effect of event boundaries on temporal order 

memory in a narrative reading paradigm, where either coarse-level or fine-level semantic order 

knowledge could be utilized to facilitate with temporal order reconstruction. We hypothesized 

that people would perceive coarse-level event changes as event boundaries, which would lead to 

increased reading time when spatial changes happen (Radvansky et al., 2001; Zwaan & 

Radvansky, 1998). As a result, during retrieval, people would also rate fine-level events that span 

across event boundaries as farther apart in time comparing to fine-level events in the same 

coarse-level event, even though they were separated by the same number of sentences in between 

(DuBrow & Davachi, 2013; Ezzyat & Davachi, 2014). Critically, we hypothesized that the effect 

of event boundaries on recency judgment would depend on where semantic order knowledge 

could be utilized: In CS narratives, where coarse-level events were governed by semantic order 

constraints, it would be easier to discriminate the temporal order of two fine-level events from 

two different coarse-level events (CS_across pairs). But in FS narratives, where fine-level events 

within the same coarse-level event were governed by semantic order constraints, it would be 

easier to discriminate the temporal order of two fine-level events from the same coarse-level 

event (FS_within pairs). We predicted that the recency judgment accuracy of these two 

conditions would be better than the two conditions without semantic order knowledge facilitation 

(CS_within and FS_across pairs). In addition, we believed that because event models are formed 

hierarchically during reading comprehension, the order of coarse-level events would serve as an 

important information for recency judgment between fine-level events. On that view, we 

hypothesized that in the two conditions without semantic order knowledge facilitation, people 
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would have more confidence in judging the order for FS_across pairs than CS_within pairs, 

because the order of coarse-level events they remember as a form of episodic memory might 

serve as an extra source of information.  

The Institutional Review Board at Washington University in St. Louis approved the 

studies. We preregistered all the three experiments reported in this manuscript on Open Science 

Framework (https://osf.io). The preregistrations are available through the following URLs: 

Experiment 1 (https://osf.io/42d6p), Experiment 2 (https://osf.io/8wxhf), and Experiment 3 

(https://osf.io/6j4k9). 

2.1 Method 

2.1.1 Participants 

Seventy-four undergraduate students at Washington University in St. Louis participated 

in the experiment through the SONA subject pool in exchange for course credits. The mean age 

of the participants was 20.12 years (min = 18, max = 23, SD = 1.15). Fifty-two participants 

identified as female, twenty-one identified as male, and one identified as intersex, nonbinary, or 

other. Informed consent was obtained from all participants prior to the start of data collection.  

We determined the sample size by performing a bootstrapped power analysis using a 

pilot sample (n = 25, 8 dropped based on the exclusion criteria, totaling n = 17) collected using 

Washington University SONA subject pool. We randomly sampled test data from the pilot 

sample with replacement to create 1000 new datasets with sample size ranging from 15 to 45 in 

steps of 5. We then ran a mixed effects logistic regression model to predict the accuracy of each 

recency judgment question (correct/incorrect) as a function of narrative type (CS/FS) and pair 
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type (within/across), and their interaction. We calculated the proportion of simulations at each 

sample size that yielded difference estimate in the hypothesized direction and a p-value < 0.05 

for the smallest effect we hypothesized. The power analysis showed that we needed at least 30 

participants to achieve a statistical power of 80%. We recruited more participants than what was 

indicated by the power analysis, because we expected excluding some participants based on the 

criteria described below.  

2.1.2 Materials  

The design of the stimuli is depicted in Figure 1. To construct the stimulus set, we wrote 

ten narratives about everyday activities. Each narrative is consisted of 27 sentences, including 

one opening sentence at the beginning, one ending sentence at the end, and 25 fine-level event 

sentences in the middle. Each fine-level sentence was accompanied by a coarse-level event label 

that described its context, and the label changed after every five fine-level event sentences, 

totaling 5 coarse-level event labels in each narrative. To effectively create event boundaries at 

coarse-level event transitions, whenever a coarse-level event label changed to a new one, there 

was a spatial shift happening in the narrative (e.g., from “at home” to “in the car”). 

The ten narratives were divided into two conditions, with five narratives in each 

condition: For Coarse-level Semantic (CS) narratives, all the coarse-level event labels in the 

narrative had a common-knowledge temporal order constraint (e.g., preparing at home, and then 

driving the car to his aunt’s house, and then get greeted in his aunt’s living room, etc.), whereas 

each set of fine-level events contained in each coarse-level event had no semantic order 

constraint (e.g. take out hoodie, check aunt’s address, make sure the gift is wrapped, etc.). For 

Fine-level Semantic (FS) narratives, all the coarse-level events had no semantic order constraint 
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(e.g. get a souvenir tattoo, watch a sea lion show, visit a snack cart), whereas each set of fine-

level events contained in each coarse-level event had a common-knowledge temporal order 

constraint (e.g. wait in the line, then order the food, and then pay with cash). 

We verified the construction of our stimuli with an online norming study using a separate 

sample. The norming study was conducted to make sure that (1) the sets of coarse-level events in 

CS narratives and the sets of fine-level events in FS narratives have semantic order constraints 

that people generally agreed on, and (2) the sets of coarse-level events in FS narratives and the 

sets of fine-level events in CS narratives do not have semantic order constraints that people 

generally agreed on, and can instead be arranged in any order to make sense. Details of the 

norming study are reported in Supplemental Methods.  

2.1.3 Procedure and Design 

All the experiments reported in this manuscript were programmed using jsPsych 

(https://www.jspsych.org/7.3/) and were hosted online using Cognition 

(https://www.cognition.run/).  

In Experiment 1, each participant completed 10 task runs, and each run corresponded to 

one of the 10 narrative stimuli (5 CS narratives and 5 FS narratives). Each run was consisted of 

an encoding phase, a delay phase, and a test phase. 

In the encoding phase, participants were instructed to read a narrative sentence by 

sentence in a self-paced format. On each screen, they would encounter one sentence describing 

an activity (“fine-level event sentence,” e.g., “He took out his hoodie from the closet.”), as well 

as a label that gives them the context of the current activity (“coarse-level event label,” e.g., 
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“Prepare at home”). They were instructed to remember activities that happened in the story and 

click on the “Next” button to proceed to the next screen after finishing reading current contents. 

Figure 2(A) showed an illustration of the encoding phase. 

After finishing each encoding phase, participants entered a delay phase in which they 

solved 40 math questions for approximately 150 seconds. They were asked to choose whether a 

given math question (e.g., 3*5-7) produced an odd or even result, and feedback (“Correct!” or 

“Wrong!”) was given immediately after each answer. Participants were asked to not rush over 

the questions and try their best to maximize the accuracy.  

After the delay phase, participants entered a test phase in which they were told to answer 

some questions based on the story. Each test phase consisted of eight trials. On each trial, they 

were presented with a pair of two fine-level event sentences selected from the narrative, and 

were asked to (1) make a recency judgment (“Please select the event that occurred first in the 

story”), (2) indicate their confidence for the recency judgment (On a scale of 1-100, what's your 

confidence for the previous order judgment?), and (3) give their rating of perceived temporal 

distance between these two sentences (On a scale of 1-10, how far apart in time were the two 

events presented in the story?). For each pair of fine-level sentences being probed, they were 

either within-event pairs (i.e., two sentences studied at the second and the fifth positions of the 

same coarse-level event), or across-event pairs (i.e., one sentence studied at the third position of 

a given coarse-level event, and another sentence studied at the first position in the next adjacent 

coarse-level event). Critically, both within-event sentence pairs and across-event sentence pairs 

were lag-2 pairs that were separated by two sentences in between during encoding time. 

Depending on whether the narrative being encoded in the current run was a Coarse-level 

Semantic (CS) or Fine-level Semantic (FS) narrative, a given test pair could be one of four types: 
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within-event pairs from Coarse-level Semantic narratives (CS_within), across-event pairs from 

Coarse-level Semantic narratives (CS_across), within-event pairs from Fine-level Semantic 

narratives (FS_within), across-event pairs from Fine-level Semantic narratives (FS_across). 

(Note that we conducted a separate semantic similarity analysis to make sure test pairs in 

different conditions do not differ significantly in terms of the semantic similarity between two 

sentences, in order to rule out semantic similarity as a confounding variable that might influences 

the memorability of the temporal relationship between sentences. Details of the semantic 

similarity analysis are reported in Supplemental Methods.) All the test questions were self-paced, 

and participants were instructed to use the “Next” button to proceed to the next question after 

finishing each question. Figure 2(B) showed an illustration of the testing phase. 

The experiment was conducted using a 2 (Narrative Type: CS vs. FS) × 2 (Pair Type: 

Within vs. Across) within-subject design. Both Narrative Type and Pair Type were within-

subject variables. The presentation order of ten narratives was randomized for each participant, 

and the order of event pairs being tested for a given narrative were randomized for each run.   

2.1.4 Data Preparation 

The final sample included responses from forty participants. Thirty-four Participants 

were excluded from the data analysis based on the exclusion criteria that we preregistered. Two 

were excluded for reporting experiencing technical problems during the online experiment, eight 

were excluded for having less than 75% accuracy for math questions during the delay phase, 

fourteen were excluded for having response times greater than 40000 ms for more than five 

encoding or test trials, and ten were excluded for having response times less than 300 ms for 

more than five encoding or test trials.  
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In addition, we excluded outlier trials based on the exclusion criteria that we 

preregistered. For encoding trials, we excluded all trials that had response times less than 300 

ms, or more than 3SDs above the mean response time of sentences that are not the opening (first) 

or the ending (last) sentences of each narrative (0.2% of the data). For test trials, we excluded all 

trials that had response times less than 300 ms or greater than 3SDs above the mean reaction 

time for recency judgment trials (1.8% of the data), recency judgment confidence trials (1.3% of 

the data), and temporal distance rating trials (0.9% of the data).  

We excluded the reading time data for the opening (first) and ending (last) sentence for 

each narrative. Reading time data were log-transformed to correct for skewness. In addition, we 

transformed recency judgment confidence (on a scale of 1-100) into a binary confidence group 

variable by coding confidence scores greater than 90 as in the “High Confidence” group, and 

coding confidence scores less than 90 as in the “Low Confidence” group. This was determined 

based on the distribution of confidence data in the pilot dataset, in which confidence = 100 was 

the mode, occurring in 40% of all confidence trials. 

2.1.5 Analyses 

We conducted data analyses using R. We estimated Linear Mixed-Effects Models using 

the lmer function, and Generalized Linear Mixed-Effects Models using the glmer function from 

the lme4 package (Bates et al., 2015). We started by fitting the “maximal model” (Barr et al., 

2013) that included random slopes of all predictors. We removed a single random effect each 

time, and used a likelihood ratio test to compare the reduced model with the more complex 

model. We retained the most parsimonious model that did not differ significantly from the more 

complex model on model fit for each analysis (Bates et al., 2018).   
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2.2 Results 

2.2.1 Reading Time 

 Based on previous studies showing that reading time was increased at event boundaries 

(Radvansky et al., 2001; Zwaan & Radvansky, 1998), we predicted that reading time for 

boundary sentences (i.e. the first sentence in each coarse-level event) would be longer than non-

boundary sentences (i.e. the second to fifth sentences in each coarse-level event), when 

controlling for whether the sentence came from the first coarse-level event of each narrative, and 

controlling for narrative type (CS vs. FS). In addition, we predicted that in the first coarse-level 

event in a narrative, the extent to which boundary sentences required longer encoding time than 

other sentences would be larger than in other coarse-level events.  

Mean reading time for sentences during the encoding phase (excluding opening and 

ending sentences) was 2131 ms (SD = 3986 ms). To satisfy model assumptions, we log-

transformed reading time before entering it into the regression model. We predicted the log-

transformed reading time of each sentence using a linear mixed-effects model, with fixed effects 

of fine-level position type (boundary vs. non-boundary sentence), coarse-level position type (first 

coarse event vs. other coarse event), narrative type (CS vs. FS narrative), and the interaction 

between coarse-level position type and fine-level position type. For the fine-level position type 

predictor, the boundary sentence condition was the reference condition. For the coarse-level 

position type predictor, the first coarse event condition was the reference condition. For the 

narrative type predictor, the CS narrative condition was the reference condition. The model 

comparison and random effects selection process led us to retain the random slope of narrative 

type on participant and random intercept of narrative as random effects. In Wilkinson notation, 
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the model can be described as follows: Log-transformed Reading Time ~ Fine-level Position 

Type + Coarse-level Position Type + Narrative Type + Coarse-level Position Type:Fine-level 

Position Type + (Narrative Type | Participant) + (1| Narrative). 

 Figure 3(A) shows estimated log-transformed reading time from the model by 

conditions. The linear mixed-effects model showed a significant main effect of fine-level 

position type, F(1, 9891.01) = 155.14, p < .001, a significant main effect of coarse-level position 

type, F(1, 9891.03) = 116.28, p < .001, no significant main effect of narrative type, F(1, 11.62) = 

.003, p = 0.96, and a significant interaction between fine-level position type and coarse-level 

position type, F(1, 9891.03) = 19.40, p < .001. The significant main effect of fine-level position 

type confirmed our hypothesis that boundary sentences (M = 7.55, SE = 0.06) required longer 

reading time (log-transformed) than non-boundary sentences (M = 7.32, SE = 0.06) after 

controlling for other factors, which suggests that participants perceived coarse-level event 

change as event boundaries during encoding. We probed the fine-level position type  coarse-

level position type interaction with planned contrasts and found that the effect of being a 

boundary sentence on reading time was stronger in the first coarse-level event in a narrative (B = 

0.31, SE = 0.03, z = 9.42, p < .001) than in other coarse-level events (B = 0.15, SE = 0.02, z = 

9.01, p < .001), when controlling for narrative type.  
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Figure 3. Experiment 1 and 2 results. (A) Estimated log-transformed reading time as a function of fine-
level position type and coarse level position type from Experiment 1. (B) Estimated accuracy of recency 
judgment as a function of narrative type and fine-level event pair type from Experiment 1 (left) and 2 
(right). (C) Estimated recency judgment confidence for FS_across and CS_within conditions from 
Experiment 1 (left) and 2 (right). (D) Estimated temporal distance rating as a function of narrative type 
and fine-level event pair type from Experiment 1 (left) and 2 (right). Error bars represent 95% confidence 
intervals. 
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2.2.2 Recency Judgment Accuracy 

We hypothesized that whether the presence of event boundary impairs or facilitates 

temporal order memory depends on whether semantic order knowledge facilitation applies to 

coarse-level events or fine-level events. When there is semantic knowledge that helps people 

infer the temporal order between coarse-level events, temporal order memory of across-event 

pairs (CS_across pairs) will be better than when there is no semantic knowledge facilitation 

(FS_across and CS_within pairs); similarly, when there is semantic knowledge facilitation 

among fine-level events, temporal order memory of within-event pairs (FS_within pairs) will be 

better than when there is no semantic knowledge facilitation (CS_within and FS_across pairs). 

Across all trials, mean recency judgment accuracy was .86 (SD = .35). We predicted 

whether a given recency judgment trial was correct or not using a logistic mixed-effects model, 

with the fixed effects of narrative type (CS vs. FS narrative), fine-level event pair type (across 

vs. within), and the interaction between narrative type and fine-level event pair type. For the 

narrative type predictor, the CS narrative condition was the reference condition. For the fine-

level event pair type predictor, the across-event pair condition was the reference condition. The 

model comparison and random effects selection process led us to retain the random intercept of 

subject and event pairs as random effects. In Wilkinson notation, the model can be described as 

follows: Recency Judgment Result (0/1) ~ Narrative Type + Fine-level Event Pair Type + 

Narrative Type:Fine-level Event Pair Type + (1 | Participant) + (1| Event Pair). 

Figure 3(B) shows estimated probabilities of correct recency judgment from the model by 

conditions. The logistic mixed-effects model showed a significant interaction between narrative 

type and fine-level event pair type, X2(1) = 36.45, p < .001, but there was no significant main 
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effect of narrative type, X2(1) = .20,  p = .65, and no significant main effect of event pair type, 

X2(1) = .32 , p = .57. We further probed the interaction and tested the four hypothesized pairwise 

contrasts: We found that CS_across pairs had better accuracy than both FS_across pairs (B = 

1.38, SE = 0.30, p < .001) and CS_within pairs (B = 1.40, SE = 0.30, p < .001), and FS_within 

pairs had better accuracy than both CS_within pairs (B = 1.19, SE = 0.30, p < .001) and 

FS_across pairs (B = 1.16, SE = 0.30, p < .001). This confirmed our hypothesis that semantic 

order knowledge could be used on either level to improve the accuracy of recency judgment.  

2.2.3 Recency Judgment Confidence 

We hypothesized that due to the hierarchical event structure in the narratives, coarse-

level episodic information would improve people’s confidence on inferring the temporal order 

between fine-level event pairs. Specifically, when there was no influence of semantic knowledge 

on temporal order, temporal order memory confidence for across-event pairs in fine-level 

semantic narratives (FS_across pairs) would be better than within-event pairs in coarse-level 

semantic narratives (CS_within pairs), controlling for whether the trial was correct. 

Across all trials, the mean recency judgment confidence was 76.53 (SD = 28.16) on a 

scale of 1 to 100. The confidence rating distribution was highly left-skewed, with 48% of the 

scores higher than 90. Therefore, we binarized the confidence variable used 90 as a cutoff, 

coding confidence scores greater than 90 as “High Confidence” and confidence score less than 

90 as “Low Confidence.” In addition, because the key comparison was between the recency 

judgment confidence of FS_across pairs and CS_within pairs, we decided to dummy code the 

fine-level event pair type variable (with FS_across as the reference group, and three dummy 

variables for FS_within, CS_across, and CS_within). We predicted recency judgment confidence 
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(high/low) of a given sentence pair using a logistic mixed-effects model, with the fixed effects of 

recency judgment result (0/1), and three dummy variables FS_within, CS_across, and 

CS_within. For the recency judgment accuracy predictor, incorrect (0) was the reference 

condition. The model comparison and random effects selection process led us to retain the slope 

of three dummy variables of FS_within, CS_across, and CS_within on subject and random 

intercepts of event pairs as random effects. In Wilkinson notation, the model can be described as 

follows: Recency Judgment Confidence (High/Low) ~ Recency Judgment Result (0/1) + 

FS_within + CS_across + CS_within + (FS_within + CS_across + CS_within | Participant) + 

(1| Event Pair). 

Figure 3(C) shows the estimated probabilities of rating a given recency judgment trial as 

highly confident (higher than 90) from the model by conditions. The logistic mixed-effects 

model showed a significant main effect of recency judgment result, X2(1) = 73.98,  p < .001, a 

significant main effect of event pair type CS_within (compared to the reference group 

FS_across), B = -1.17, X2(1) = 14.42, p < .001, and a significant main effect of event pair type 

FS_within (compared to the reference group FS_across), B = 1.15,  X2(1) = 13.71, p < .001. 

There was no significant effect of event pair type CS_across (compared to the reference group 

FS_across), B = 0.352, X2(1) = 1.32, p = 0.25. The significant main effect of CS_within 

confirmed our hypothesis that participants had higher confidence for recency judgment for 

FS_across pairs (M = -.20, SE = .37) than for CS_within pairs (M = -1.37, SE = .49), after 

controlling for accuracy. This suggested that when there was no semantic order knowledge 

facilitation, participants had higher confidence for the relative recency of event pairs coming 

from two different coarse-level events (FS_across) than for event pairs coming from the same 

coarse-level events (CS_within), controlling for the accuracy of the judgment.  
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2.2.4 Temporal Distance Rating 

Based on previous studies showing temporal distance rating inflation due to the presence 

of event boundaries (DuBrow & Davachi, 2013; Ezzyat & Davachi, 2014), we hypothesized that 

the temporal distance between two fine-level events would be rated as farther if they spanned 

across an event boundary, and this effect would not be influenced by where semantic order 

constraints existed in the narratives. 

Across all trials, the mean temporal distance rating was 3.61 (SD = 2.00) on a scale of 1 

to 7. We predicted the temporal distance rating of a given sentence pair using a linear mixed-

effects model, with the fixed effects of narrative type (CS vs. FS narrative), fine-level event pair 

type (across vs. within), and the interaction between narrative type and fine-level event pair type. 

For the narrative type predictor, the CS narrative condition was the reference condition. For the 

fine-level event pair type predictor, the across-event pair condition was the reference condition. 

The model comparison and random effects selection process led us to retain the random slopes of 

narrative type, fine-level event pair, and their interaction on subject, and random intercepts of 

event pairs as random effects. In Wilkinson notation, the model can be described as follows: 

Temporal Distance Rating ~ Narrative Type + Fine-level Event Pair Type + Narrative 

Type:Fine-level Event Pair Type + (Narrative Type + Fine-level Event Pair Type + Narrative 

Type:Fine-level Event Pair Type | Participant) + (1| Event Pair). 

Figure 3(D) shows estimated value of temporal distance rating from the model by 

condition. The linear mixed-effects model showed a significant main effect of narrative type, 

F(1, 84.29)  = 13.79, p < .001, a significant main effect of fine-level event pair type, F(1, 92.19) 

= 168.68, p < .001. There was no significant interaction between narrative type and fine-level 
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event pair type, F(1, 79.09) = 1.89, p = .17. To highlight, the significant main effect of fine-level 

event pair type confirmed our hypothesis that across-event pairs (M = 4.60, SE = 0.18) were 

rated as farther away than within-event pairs (M = 2.63, SE = 0.16) after controlling for other 

factors, which suggested that the presence of event boundary inflated temporal distance rating. 

We further probed the interaction and tested the four hypothesized pairwise contrasts: We found 

that CS_across pairs were perceived as more temporally distant than both CS_within pairs (B = 

1.80, SE = 0.19, p < .001) and FS_within pairs (B = 1.50, SE = 0.20, p < .001), and FS_across 

pairs were perceived as more temporally distant than both CS_within pairs (B = 2.46, SE = 0.20, 

p < .001) and FS_within pairs (B = 2.15, SE = 0.20, p < .001).  

2.3 Discussion 

 Our primary goal in Experiment 1 was to examine whether semantic order knowledge 

could interact with hierarchical event structure to facilitate temporal order memory. First, we 

showed that changes in coarse-level events in our narratives were reliably perceived by the 

participants as event boundaries. This was supported by two converging pieces of evidence: (1) 

Increased reading time for boundary sentences comparing to non-boundary sentences during 

encoding, and (2) inflated temporal distance judgment for across-event sentence pairs comparing 

to within-event pairs during retrieval. Second, for recency judgments, we found that participants 

could use semantic constraints at either level to facilitate temporal order memory. This was 

supported by our finding that when semantic order knowledge was present at coarse-level (in CS 

narratives), across-event recency judgment is more accurate than within-event recency judgment; 

when semantic order knowledge was present at fine-level (in FS narratives), within-event 

recency judgment is more accurate than across-event recency judgment. Specifically, the 
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advantage that FS_within pairs received suggested that semantic order constraint on the fine-

level can be used as a source of information for fine-level recency judgment. The advantage that 

CS_across pairs received suggested that semantic order constraint on the coarse-level can also be 

used as a source of information for fine-level recency judgment, suggesting that participants 

construct and store event models hierarchically during reading comprehension. Together, these 

finding suggested that the role event boundaries play in shaping temporal order memory task 

performance depends on how semantic order knowledge can be leveraged to facilitate memory 

reconstruction. 

 In addition, we compared the confidence ratings for recency judgment between the two 

conditions when semantic order knowledge could not be leveraged and found that when 

controlling for whether the outcome is correct, participants were more confident about recency 

judgments outcome in FS_across condition than in CS_within condition. One important 

difference between these two conditions is that the two fine-level event sentences in FS_across 

pairs came from two different coarse-level events, but the two sentences in CS_within pairs 

came from the same coarse-level event. Semantic order knowledge could not be used in either of 

these two conditions, because there were no semantic order constraints among coarse-level 

events in FS narratives or among fine-level events in the CS narratives. The fact that participants 

were more confident about FS_across pairs again suggested people encode hierarchical 

relationship among events during reading comprehension, and they might be using episodic 

coarse-level association that was formed during encoding as a source of information for fine-

level recency judgment.  

 One limitation of Experiment 1 was that following the design of most picture-list learning 

paradigms, we used a relatively short delay task (~ 2.5 minutes) between encoding and retrieval. 
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With meaningful narratives as stimuli, we were also curious about whether the patterns we 

observed would remain the same after a longer delay period, which would make it more 

convincing to make generalizations about how temporal order relationship is reconstructed from 

long-term memory.  
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Chapter 3: Experiment 2 
 

In Experiment 2, we aimed to replicate some of our key findings in Experiment 1 using a 

longer delay procedure. Instead of testing each narrative after its own encoding block followed 

by a short distraction task, we decided to have participants encode all the ten narratives at once, 

and then receive tests regarding these narratives according to the order they were encoded. In this 

way, we created a natural delay of about 20 minutes between the encoding and retrieval of each 

narrative and filled the delay period with learning and testing on other stimuli. Thus, we sought 

to observe if the patterns we observed about temporal order memory would hold true after more 

chances of interference and memory decay that resembled memory retention in the real world. 

In order to increase participants’ engagement during a long encoding period, we played 

audio for sentences in each narrative during encoding, and participants could only proceed to the 

next screen after the audio of each sentence finished playing. This led us to drop the hypothesis 

regarding longer boundary sentence reading time from Experiment 1, because the length of audio 

play might constrain self-paced reading time. Apart from this hypothesis, we predicted that we 

would find the same pattern in recency judgment accuracy, recency judgment confidence, and 

temporal distance rating as in Experiment 1 using a longer retention interval in the current 

experiment. 

3.1 Method 

3.1.1 Participants 

Thirty-eight undergraduate students at Washington University in St. Louis participated in 

the experiment through the SONA subject pool in exchange for course credits. The mean age of 
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the participants was 19.47 years (min = 18, max = 22, SD = 1.20). Twenty-six participants 

identified as female, and twelve identified as male. Informed consent was obtained from all 

participants prior to the start of data collection.  

We determined the sample size by performing a bootstrapped power analysis using a 

pilot sample (n = 15, 5 dropped based on the exclusion criteria, totaling n = 10) collected using 

Prolific (https://www.prolific.com/). We randomly sampled test data from the pilot sample with 

replacement to create 1000 new datasets with sample size ranging from 15 to 35 in steps of 5. 

We then ran a mixed effects logistic regression model to predict the accuracy of each recency 

judgment question (correct/incorrect) as a function of narrative type (CS/FS) and pair type 

(within/across), and their interaction. We calculated the proportion of simulations at each sample 

size that yielded difference estimate in the hypothesized direction and a p-value < 0.05 for the 

smallest effect we hypothesized. The power analysis showed that we needed at least 25 

participants to achieve a statistical power of 90%. We recruited more participants than what was 

indicated by the power analysis, because we expected excluding certain participants based on the 

exclusion criteria.  

3.1.2 Materials  

The stimuli were the same ten narratives about everyday activities used in Experiment 1. 

Additionally, we generated audios for sentences in all the narratives using an online AI-based 

text-to-speech tool, ElevenLabs (https://elevenlabs.io/). 

3.1.3 Procedure and Design 
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In order to create a 20-minute delay between encoding and test for each narrative in 

Experiment 2, we decided to have a long encoding block for encoding all ten narratives one by 

one sequentially, followed by a long test block for testing all narratives in the same order. 

In the encoding block, participants completed the encoding phases of all ten narratives 

consecutively in a randomized order. Same as in Experiment 1, they were instructed to read each 

narrative sentence by sentence in a self-paced format. The on-screen display of fine-level event 

sentences and coarse-level event labels were the same as in Experiment 1, except that 

participants also heard the audio of each fine-level event sentence as they read. They could only 

click on the “Next” button to proceed to the next sentence after the audio for the current sentence 

finished playing. This change was made to increase participants' engagement in the task, but we 

also acknowledged that it would constrain the encoding time for each sentence. Therefore, we 

dropped the hypotheses regarding how narrative structure influenced reading time for each 

sentence that were tested in the previous experiment. Figure 2(A) showed an illustration of the 

encoding phase. 

 Another change from Experiment 1 was that participants answered two reading 

comprehension questions immediately after reading each narrative. This change was also made 

to increase participants’ engagement in the task. Each of these reading comprehension questions 

probed one specific detail in the narrative, and participants chose one option out of four options 

provided. Here is a sample reading comprehension question: “What did Jim notice outside of his 

car window?” (Correction option: “The trees turning yellow.”) To avoid interference with the 

later test block, we carefully constructed these questions so that they never probe contents in the 

fine-level event sentences being tested in the recency judgment and distance rating tasks.   
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 After encoding all ten narratives in the encoding block, participants entered the test 

block. They completed the test phase of each narrative according to their presentation order in 

the encoding block. Before entering each test phase, they received an instruction specifying the 

narrative being probed (e.g., “The following questions are for the story about Jim visiting his 

aunt.”). Each test phase tested the same eight fine-level event sentence pairs as in Experiment 1. 

For each pair, they were asked to (1) make a recency judgment, (2) indicate their confidence for 

the recency judgment, and (3) give their rating of perceived temporal distance between these two 

sentences. Figure 2(B) showed an illustration of the testing phase. 

As in Experiment 1, Experiment 2 was conducted using a 2 (Narrative Type: CS vs. FS) 

× 2 (Pair Type: Within vs. Across) within-subject design. Both narrative Type and pair type are 

within-subject variables. The presentation order of ten narratives (which is the same as their 

order of being tested) were randomized for each participant, and the order of event pairs being 

tested for a given narrative were randomized for each run.   

3.1.4 Data Preparation 

The final sample included responses from twenty-seven participants. Eleven Participants 

were excluded from the data analysis based on the exclusion criteria that we preregistered. One 

was excluded for reporting experiencing technical problems during the online experiment, three 

were excluded for having reaction time greater than 40000 ms for more than five encoding or test 

trials, four were excluded for having less than 60% accuracy for reading comprehension 

questions after encoding each narrative, and three were excluded for having less than 50% 

accuracy for fine-level recency judgment questions.  
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Additionally, we excluded outlier trials based on the exclusion criteria that we 

preregistered. For test trials, we excluded all trials that had reaction time less than 300 ms, or 

greater than 3SDs above the mean reaction time for recency judgment trials (1.6% of the data), 

recency judgment confidence trials (1.1% of the data), and temporal distance rating trials (1.3% 

of the data). Like in Experiment 1, we transformed recency judgment confidence (on a scale of 

1-100) into a binary confidence group variable by coding confidence score greater than 90 as 

“High Confidence,” and coding confidence score less than 90 as “Low Confidence.” 

3.1.5 Analyses 

We conducted data analyses using R. We estimated Linear Mixed-Effects Models using 

the lmer function, and Generalized Linear Mixed-Effects Models using the glmer function from 

the lme4 package (Bates et al., 2015). We started by fitting the “maximal model” (Barr et al., 

2013) that included random slopes of all predictors. We removed a single random effect each 

time, and used a likelihood ratio test to compare the reduced model with the more complex 

model. We retained the most parsimonious model that did not differ significantly from the more 

complex model on model fit for each analysis (Bates et al., 2018).   

3.2 Results 

3.2.1 Recency Judgment Accuracy 

The results from Experiment 1 were replicated in Experiment 2 using the same analyses. 

Across all trials, mean accuracy on recency judgment was .76 (SD = 0.43). We predicted 

whether a given recency judgment trial was correct or not using a logistic mixed-effects model, 

with the fixed effects of narrative type (CS vs. FS narrative), fine-level event pair type (across 
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vs. within), and the interaction between narrative type and fine-level event pair type. For the 

narrative type predictor, the CS narrative condition was the reference condition. For the fine-

level event pair type predictor, the across-event pair condition was the reference condition. The 

model comparison and random effects selection process led us to retain the random intercepts of 

subject and event pairs as random effects. In Wilkinson notation, the model can be described as 

follows: Recency Judgment Result (0/1) ~ Narrative Type + Fine-level Event Pair Type + 

Narrative Type:Fine-level Event Pair Type + (1 | Participant) + (1| Event Pair). 

Figure 3(B) shows estimated probabilities of correct recency judgment from the model by 

conditions. The logistic mixed-effects model showed a significant interaction between narrative 

type and fine-level event pair type, X2(1) = 18.13, p < .001, but there was no significant main 

effect of narrative type, X2(1) = 0.13, p = 0.72, and no significant main effect of event pair type, 

X2(1) = 1.50, p = 0.22. We further probed the interaction and tested the four hypothesized 

pairwise contrasts: We found that CS_across pairs had better accuracy than both FS_across pairs 

(B = 0.86, SE = 0.31, p = .005) and CS_within pairs (B = 0.67, SE = 0.31, p = .03), and 

FS_within pairs had better accuracy than both CS_within pairs (B = 1.02, SE = 0.32, p = .001) 

and FS_across pairs (B = 1.21, SE = 0.31, p < .001). This confirmed our hypothesis that semantic 

order knowledge could be used at either level to facilitate recency judgment accuracy, even after 

a 20-minute delay. 

3.2.2 Recency Judgment Confidence 

Results in Experiment 1 were replicated in Experiment 2 using the same analyses. Across 

all trials, the mean recency judgment confidence was 61.55 (SD = 33.17) on a scale of 1 to 100. 

The confidence rating distribution was highly left-skewed, with 28% of the scores higher than 
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90. Therefore, we decided to use 90 as a cutoff, coding confidence score greater than 90 as “High 

Confidence,” and confidence score less than 90 as in the “Low Confidence” group. In addition, 

since the key contrast we would like to compare was the recency judgment confidence between 

FS_across pairs and CS_within pairs, we decided to dummy code the fine-level event pair type 

variable (with FS_across as the reference group, and three dummy variables for FS_within, 

CS_across, and CS_within). We predicted the recency judgment confidence (high / low) of a 

given sentence pair using a logistic mixed-effects model, with the fixed effects of recency 

judgment result (0/1), and three dummy variables FS_within, CS_across, and CS_within. For the 

recency judgment accuracy predictor, incorrect (0) was the reference condition. The model 

comparison and random effects selection process led us to retain the random intercepts of subject 

and event pairs as random effects. In Wilkinson notation, the model can be described as follows: 

Recency Judgment Confidence (High/Low) ~ Recency Judgment Result (0/1) + FS_within + 

CS_across + CS_within + (1 | Participant) + (1| Event Pair). 

Figure 3(C) shows the estimated probabilities of rating a given recency judgment trial as 

highly confident (> 90) from the model by conditions. The logistic mixed-effects model showed 

a significant main effect of recency judgment result, X2(1) = 52.73,  p < .001, a significant main 

effect of event pair type CS_within (compared to the reference group FS_across), B = -1.13, 

X2(1) = 10.63, p < .001, and a significant main effect of event pair type FS_within (compared to 

the reference group FS_across), B = 1.23,  X2(1) = 13.80, p < .001. There was no significant 

effect of event pair type CS_across (compared to the reference group FS_across), B = 0.12, X2(1) 

= 0.13, p = 0.72. To conclude, the significant main effect of CS_within confirmed our hypothesis 

that participants had higher confidence for recency judgment for FS_across pairs (M = -.197, SE 

= 0.37) than for CS_within pairs (M = -1.37, SE = 0.49), after controlling for accuracy. This 
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suggested that when there is no semantic order knowledge facilitation, participants have higher 

confidence for the relative recency of event pairs coming from two different coarse-level events 

(FS_across) than for event pairs coming from the same coarse-level events (CS_within), 

controlling for the accuracy of the judgment.  

3.2.3 Temporal Distance Rating 

Results in Experiment 1 were replicated in Experiment 2 using the same analyses. Across 

all trials, the mean temporal distance rating was 3.77 (SD = 2.12) on a scale of 1 to 7. We 

predicted the temporal distance rating of a given sentence pair using a linear mixed-effects 

model, with the fixed effects of narrative type (CS vs. FS narrative), fine-level event pair type 

(across vs. within), and the interaction between narrative type and fine-level event pair type. For 

the narrative type predictor, the CS narrative condition was the reference condition. For the fine-

level event pair type predictor, the across-event pair condition was the reference condition. The 

model comparison and random effects selection process led us to retain the random slopes of 

fine-level event pair type on subject and random intercepts of event pairs as random effects. In 

Wilkinson notation, the model can be described as follows: Temporal Distance Rating ~ 

Narrative Type + Fine-level Event Pair Type + Narrative Type:Fine-level Event Pair Type + 

(Fine-level Event Pair Type | Participant) + (1| Event Pair). 

Figure 3(D) shows estimated value of temporal distance rating from the model by 

conditions. The linear mixed-effects model showed a significant main effect of fine-level event 

pair type, F(1, 62.11) = 84.38, p < .001. There was no significant main effect of narrative type, 

F(1, 75.97) = 2.60, p = .11, and there is no significant interaction between narrative type and 

fine-level event pair type, F(1, 75.97) = 0.75, p = .39. To highlight, the significant main effect of 
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fine-level event pair type confirmed our hypothesis that across-event pairs (M = 4.75, SE = 0.21) 

were rated as farther away than within-event pairs (M = 2.79, SE = 0.19) after controlling for 

other factors, which suggested that the presence of event boundary inflated temporal distance 

rating. We further probed the interaction and tested the four hypothesized pairwise contrasts: We 

found that CS_across pairs were perceived as more temporally distant than both CS_within pairs 

(B = 1.83, SE = 0.19, p < .001) and FS_within pairs (B = 1.71, SE = 0.26, p < .001), and 

FS_across pairs were perceived as more temporally distant than both CS_within pairs (B = 2.21, 

SE = 0.26, p < .001) and FS_within pairs (B = 2.10, SE = 0.26, p < .001). 

3.3 Discussion 

In Experiment 2, we aimed to replicate key findings in Experiment 1 using a longer 

delay. We increased the length of the delay period between encoding and retrieval from 2.5 

minutes to about 20 minutes and added more potentially interfering information during the 

retention period. We ended up replicating all the patterns observed in Experiment 1: For recency 

judgment, we again confirmed the hypothesis that semantic order knowledge could be used at 

either coarse-level and fine-level to facilitate recency judgment accuracy. For recency judgment 

confidence, we found that when there was no semantic knowledge facilitation, coarse-level event 

information might serve as an extra source of information for recency judgment, and thus 

increased subjective confidence when controlling for accuracy. For temporal distance rating, we 

observed the stable pattern that when two fine-level events were separated by an event boundary, 

they were rated as temporally farther apart from each other. Together, these results suggested 

that coarse-level event membership and semantic order constraints might influence how fine-

level events were organized in long-term memory. To directly investigate the temporal 
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organization of people’s memory about events in the narratives, we decided to test serial recall 

performance in the next experiment.  
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Chapter 4: Experiment 3 
 

In Experiments 1 and 2, we used recency judgment tasks to examine the influence of 

semantic order knowledge and event hierarchy on temporal order memory. However, one 

potential limitation of the task design was that since both test probes were presented to the 

participants to make recency judgment, participants were forced to make a choice even if they 

did not remember the temporal relationship between the two probes. Thus, in order to understand 

how semantic order knowledge and event structure influence the temporal organization of events 

in long-term memory, we tested participants’ serial recall of the narratives in Experiment 3. We 

asked participants to type down what they remember about the narrative according to the order it 

was presented after a short delay (as in Experiment 1) and analyzed the structure of their recall 

response. First, we hypothesized that the number of fine-level events being recalled would be 

influenced by whether the narrative contained semantic order constraint on the fine-level to 

facilitate reconstruction. This was based on previous literature suggesting that people were more 

likely to recall more information if they were directly related to an underlying script or linked by 

causal structure (Lichtenstein & Brewer, 1980; Radvansky & Zacks, 2017; Lee & Chen, 2022). 

Since only FS narratives contained semantic order constraints on the fine-level, we predicted that 

participants would recall more fine-level events per narrative or per coarse-level event for FS 

narratives, comparing to CS narratives. Second, we hypothesized that the order of fine-level 

events being recalled would be influenced by semantic order constraints as well, based on 

previous studies suggesting that the temporal order of recalled goal-directed events was strongly 

influenced by underlying schema (Lichtenstein & Brewer, 1980; Bower et al., 1979; Brewer & 

Dupree, 1983). Therefore, we predicted that for FS narratives, fine-level events recalled within 



40 
 

each coarse-level event would be more in-order comparing to for CS narratives. In addition, we 

asked how the order of immediate transitions in serial recall was influenced by fine-level 

semantic order constraints. We predicted that in CS narratives, if adjacent fine-level events being 

recalled came from the same coarse-level event (CS_within transition), they were more likely to 

be recalled in the wrong order, compared to when adjacent fine-level events being recalled came 

from the same coarse-level event in FS narrative (FS_across transition) or when adjacent fine-

level events being recalled came from different coarse-level events in CS narrative (CS_across 

transition). 

4.1 Method 

4.1.1 Participants 

Thirty-eight undergraduate students at Washington University in St. Louis participated in 

the experiment through the SONA subject pool in exchange for course credits. The mean age of 

the participants was 20.12 years (min = 18, max = 23, SD = 1.23). Twenty-nine participants 

identified as female, and nine identified as male. Informed consent was obtained from all 

participants prior to the start of data collection.  

We determined the sample size by performing a bootstrapped power analysis using a 

pilot sample (n = 9, 1 dropped based on exclusion criteria, totaling n = 8). All the hypothesized 

effects were in the right direction in the pilot sample, and we decided to power our study based 

on the smallest effect we observed by running simulation-based power analysis using the 

package “Mixedpower” in R (Kumle et al., 2021). The power analysis showed that we need at 

least 30 participants to achieve the power of 90%. 
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4.1.2 Materials  

The stimuli we used in Experiment 3 were six out of ten narratives about everyday 

activities used in the previous experiments, which contained three Coarse-level Semantic (CS) 

narratives and three Fine-level Semantic (FS) narratives.  

4.1.3 Procedure and Design 

In the experiment, each participant completed 6 task runs, and each run corresponded to 

one of the 6 narrative stimuli (3 Coarse-level Semantic and 3 Fine-level Semantic). Each run 

consisted of an encoding phase, a delay phase, and a test phase. 

The encoding and the delay phase used the same procedure as in Experiment 1, with the 

following exception: During the encoding phase, in addition to reading the fine-level event 

sentences and coarse-level event labels on the screen, participants also heard the audio of each 

fine-level event sentence. They were instructed to remember each activity in the story in as much 

detail as possible, as if they were preparing to retell the story to a friend later. In the delay phase, 

they solved 40 math questions for approximately 150 seconds, as in Experiment 1.  

After the delay phase, participants entered a test phase. They were told to type down 

everything they could remember from the story they read before doing math, according to the 

order it was presented, in as much detail as possible. They were given at least two minutes to 

type down their response before proceeding to the next run using the “Next” button. If they did 

not finish after two minutes, they were allowed to take extra time to finish their typing.  

The presentation order of the six narratives were randomized for each participant. 

4.1.4 Data Preparation 
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The final sample included responses from thirty-two participants. Six participants were 

excluded from the data analysis based on the exclusion criteria that we preregistered. Three were 

excluded for reporting experiencing technical problems during the online experiment, two were 

excluded for having less than 75% accuracy for math questions during the delay phase, and one 

were excluded for giving empty response for at least one recall trial.  

Additionally, we excluded outlier recall trials based on the exclusion criteria that we 

preregistered. We excluded all trials that had reaction time > 3SDs above the mean reaction time 

of all recall trials (1% of the data). 

To score recall responses, we compared each participants’ typed recall with the original 

script for each narrative. For each fine-level event sentence in the original script of a narrative, 

two coders identified the key verbs and key objects in the sentence based on the situation it 

described. For example, for the fine-level event sentence “he took out his hoodie from the 

closet,” “took out” was identified as the key verb phrase, and “hoodie” and “closet” were 

identified as the key objects. We counted a fine-level event as being recalled if at least one of the 

key verbs or the key objects in the original sentence or their synonyms was mentioned in the 

recall protocol, and if the recalled event corresponded to the original event on a situational level 

(van Dijk & Kintsch, 1983).  

For each of the fine-level events in the script that was mentioned in the recall, we 

recorded the event’s ordinal position in the script following the order it was mentioned in the 

recall. Therefore, for each typed recall, we derived a vector of ordinal positions representing the 

fine-level events being recalled (Diamond & Levine, 2020) for the whole narrative (“fine-level 

order vector”), as well as the sub-vectors of ordinal positions representing the fine-level events 
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recalled within each coarse-level event (“sub-fine-level order vector”). For each recall response 

made by each participant, there were one fine-level order vector and up to five (depending on the 

number of coarse-level events being recalled) sub-fine-level order vectors being extracted.  

For each coarse-level event in the script, we counted it as being recalled if the coarse-

level label was directly mentioned in the recall. If the coarse-level event was not directly 

mentioned, we counted it as being recalled if at least one fine-level event from it was coded as 

recalled (Tulving & Pearlstone, 1966). We recorded the ordinal position of each coarse-level 

event in the script following the order it was mentioned in the recall and derived a vector of 

ordinal positions representing the coarse-level events being recalled (“coarse-level order 

vector”). For each participant’s recall of one story, there was one coarse-level order vector 

extracted.  

Based on the three types of recall vectors, we computed the number of fine-level events 

recalled per narrative (i.e. the length of fine-level order vector), the number of fine-level events 

recalled per coarse-level event (i.e. the length of sub-fine-level order vector), and the number of 

coarse-level events recalled per narrative (i.e. the length of coarse-level order vector). To 

quantify how much fine-level events recalled within each coarse-level event deviated from the 

correct order, we computed a deviance score by comparing each sub-fine-level order vector 

(recall_vector) with a correct version of this recall_vector being sorted in ascending order 

(correct_vector). To compute a deviance score, for each adjacent transition, we subtracted the 

transition lag in correct_vector by the transition lag in recall_vector, took the absolute value of 

the subtraction, and sum across all adjacent transitions. For example, if the sub-fine-level order 

vector was [5, 1, 3, 2], which meant that the participant first recalled the fifth fine-level event in 

the coarse-level event, then the first, then the third, and then the second, it was compared with 
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the vector [1, 2, 3, 5], which arranged all the events recalled in the correct order, to yield a 

deviance score of 9 (9 = |(2-1)-(1-5)| + |(3-2)-(3-1)| + |(5-3)-(2-3)|). A recall in the correct order 

would yield a deviance score of 0, and larger deviance score would indicate a bigger deviance 

from the correct order. We then divided the deviation score by the number of transitions made in 

each recall vector (number of transitions = recall vector length – 1) to create a normalized 

deviation score that was independent on length of the recall, and use this normalized deviation 

score as the outcome variable of the regression model.  

To quantify the direction of recall transitions, we categorized all immediate (lag = 0) 

transitions among fine-level events in each recall into within-event transitions (i.e. two adjacent 

fine-level events belonging to the same coarse-level event) and across-event transitions (i.e. two 

adjacent fine-level events belonging to two different coarse-level events), and determine if each 

transition is in the same order as in the narratives presented during encoding. For example, if the 

5th fine-level event was recalled right after the 3rd fine-level event, we would count this as a 

correct forward transition, even though the 4th event was skipped in the recall. We coded each 

transition as 1 if it was in the correct order, and 0 otherwise.  

Two raters (YD and DA) were trained on the scoring criteria described above using data 

from the pilot experiment (n = 8). For the data collected in Experiment 2, YD and DA each 

scored recall data from half of the participants. To calculate interrater reliability, YD scored the 

recall data from five participants that DA also scored. The interrater reliability was relatively 

high (mean Cohen’s Kappa = 0.86), which justified our decision of having each rater coding half 

of the recall data.  
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4.2 Results 

4.2.1 Number of Fine-level Events Recalled Per Narrative 

We hypothesized that participants would recall more fine-level events per narrative for 

FS narratives than for CS narratives, because previous works have suggested that events with 

more causal connections to other events are more likely to be remembered during retrieval 

(Radvansky & Zacks, 2017; Lee & Chen, 2022). In FS narratives, since each set of five fine-

level events has semantic order constraints, they should be more likely to be recalled than fine-

level events without order constraints in CS narratives. 

On average, each participant recalled 12.01 (SD = 5.54) out of 25 fine-level events in 

each narrative. We predicted the number of fine-level events recalled in each narrative using a 

linear mixed-effects model, with the fixed effects of narrative type (CS vs. FS narrative). For the 

narrative type predictor, the CS narrative condition was the reference condition. The model 

comparison and random effects selection process led us to retain the random intercepts of subject 

and narrative as random effects. In Wilkinson notation, the model can be described as follows: 

Number of Fine-level Events Recalled Per Narrative ~ Narrative Type + (1 | Participant) + (1| 

Narrative). 

Figure 4(A) shows estimated number of fine-level events recalled in each narrative from 

the model by conditions. Contrary to our hypothesis, the linear mixed-effects model did not show 

a significant main effect of narrative type, F(1, 4.00) = 0.05, p = 0.84. The Bayes Factor value 

indicated weak evidence in support of the null hypothesis, BF10 = 0.48. In conclusion, we did not 

find strong evidence suggesting that the number of fine-level events recalled per narrative differ 

significantly across FS and CS narratives.  



46 
 

4.2.2 Number of Fine-level Events Recalled Per Coarse-level Event 

We hypothesized that participants would recall more fine-level events per coarse-level 

event for FS narratives than for CS narratives, based on previous works suggesting that events 

with more causal connections to other events are more likely to be remembered during retrieval 

(Radvansky & Zacks, 2017; Lee & Chen, 2022) 

On average, each participant recalled 2.85 (SD = 1.25) out of 5 fine-level events per 

coarse-level event. We predicted the number of fine-level events recalled in each coarse-level 

event using a linear mixed-effects model, with the fixed effects of narrative type (CS vs. FS 

narrative). For the narrative type predictor, the CS narrative condition was the reference 

condition. The model comparison and random effects selection process led us to retain the 

random intercept of subject and narrative as random effects. In Wilkinson notation, the model 

can be described as follows: Number of Fine-level Events Recalled Per Coarse-level Event ~ 

Narrative Type + (1 | Participant) + (1| Narrative). 

Figure 4(B) shows estimated number of fine-level events recalled in each coarse-level 

event from the model by conditions. Contrary to our hypothesis, the linear mixed-effects model 

did not show a significant main effect of narrative type, F(1, 4.00) = 0.89, p = 0.40. The Bayes 

Factor value indicated weak evidence in support of the null hypothesis, BF10 = 0.85. In 

conclusion, we did not find strong evidence suggesting that the number of fine-level events 

recalled per coarse-level event differ significantly across FS and CS narratives.  

4.2.3 Order of Fine-level Events Recalled within Each Coarse-level Event 
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Next, we hypothesized that participants would recall fine-level events within each coarse-

level event less in-order for CS narratives than for FS narratives, because comparing to FS 

narratives, there is no semantic order constraints among fine-level events in CS narratives. 

On average, the mean normalized order deviance score for fine-level events recalled 

within each coarse-level event is 0.31 (SD = 0.85). We predicted the magnitude of normalized 

recall order deviance score using a linear mixed-effects model, with the fixed effects of narrative 

type (CS vs. FS narrative). For the narrative type predictor, the CS narrative condition was the 

reference condition. The model comparison and random effects selection process led us to retain 

the random intercept of subject and narrative as random effects. In Wilkinson notation, the model 

can be described as follows: Number of Fine-level Events Recalled Per Narrative ~ Narrative 

Type + (1 | Participant) + (1| Narrative).  

Figure 4(C) shows estimated normalized order deviance score for fine-level events 

recalled within each coarse-level event from the model by conditions. The linear mixed-effects 

model showed a significant main effect of narrative type, F(1, 4.16) = 19.81, p = 0.01. This 

confirmed our hypothesis that fine-level events within each coarse-level event were recalled less 

in-order for CS narratives (M = 0.56, SE = 0.08) than for FS narratives (M = 0.04, SE = 0.08). 

4.2.4 Forward Transition Probability between Adjacent Fine-level Events Recalled 

We hypothesized that there would be lower probability of making transitions in the 

correct order if the adjacent fine-level events recalled were from the same coarse-level event in 

CS narratives. Specifically, correct forward within-event transition in CS narratives (CS_within) 

will be less likely than within-event transitions in FS narratives (FS_within) or across-event 

transitions in CS narratives (CS_across).  
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We predicted the probability of making correct forward recall transition using a logistic 

mixed-effects model, with the fixed effects of narrative type (CS vs. FS narrative), transition 

type (within- vs. across-event transition), and their interaction. For the narrative type predictor, 

the CS narrative condition was the reference condition. For the transition type predictor, the 

across-event transition condition was the reference condition. The model comparison and 

random effects selection process led us to retain the random intercept of subject and narrative as 

random effects. In Wilkinson notation, the model can be described as follows: Accuracy of 

Transition Order (0/1) ~ Narrative Type + Transition Type + Narrative Type:Transition Type  + 

(1 | Participant) + (1| Narrative).  

Figure 4(D) shows the predicted probability for forward recall transition as a function of 

narrative type and transition type. The logistic mixed-effects model indicated a significant main 

effect of narrative type, X2(1) = 6.37, p = 0.01, and a significant interaction between transition 

type and narrative type, X2(1) = 36.17, p < .001. The main effect of transition type was not 

significant, X2(1) = 1.04, p = .31.  We further probed the interaction and tested the two 

hypothesized pairwise contrasts: We found that CS_within transitions had lower probability of 

being in the correct order than both CS_across pairs (B = -2.12, SE = 0.37, p < .001) and 

FS_within pairs (B = -3.09, SE = 0.56, p < .001).   
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Figure 4. Experiment 3 results. (A) Estimated number of recalled fine-level events per narrative as a 
function of narrative type. (B) Estimated number of recalled fine-level events per coarse-level event as a 
function of narrative type. (C) Estimated normalized deviance score for fine-level events recalled in each 
coarse-level event. (D) Estimated forward transition probability as a function of narrative type and 
transition type. Error bars represent 95% confidence intervals. 
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4.3 Discussion 

 In Experiment 3, we examined how semantic order knowledge and hierarchical event 

structure influenced the temporal organization of events in long-term memory using a serial 

recall task. Our results suggested that fine-level semantic order knowledge exerted a strong 

influence in the order of fine-level events recalled within each coarse-level narrative: When there 

were semantic order constraints in the order of fine-level events, they were more likely to be 

recalled in order than when there were no semantic order constraints. This confirmed previous 

findings that event schema or scripts served as an important factor biasing the order of events 

recalled (Lichtenstein & Brewer, 1980; Bower et al., 1979; Brewer & Dupree, 1983). 

 In addition, by analyzing the order of adjacent recall transitions and looking at the 

influence of event boundary, we found evidence that narrative recall was organized 

hierarchically, with coarse-level event membership being an important grouping factor for the 

recall of fine-level events. First, we found that for adjacent fine-level events recalled in CS 

narratives, if they belonged to the same coarse-level event, they were less likely to be recalled in 

the correct order. But for adjacent fine-level events recalled in the FS narratives, if they belonged 

to the same coarse-level event, they were almost always recalled in the correct order. These two 

pieces of evidence offered additional support to the previous conclusion that fine-level semantic 

order constraint helped organize the order of recall, and correct order was not always 

successfully reconstructed when there was no semantic order knowledge facilitation. Second, we 

found that if adjacent fine-level events recalled in CS narratives belonged to different coarse-

level events, they were almost always recalled in the correct order. To some extent, this suggests 

that participants formed different event models for each coarse-level event and organized them 
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into the correct order in the long-term memory using the coarse-level semantic constraints that 

we provided to CS narratives as a manipulation. When recalling the narrative, they would follow 

the hierarchical organization of event models, recalling all fine-level events they could remember 

from the first coarse-level event, and then move on to the second coarse-level event and recall all 

fine-level events they could remember there, and continue this process until they scanned all the 

coarse-level events they could remember. This would explain why we almost never observe 

CS_across transitions in the wrong order, and the proposed process corresponds to one of the 

principles proposed in the Event Horizon Model: Causal connectivity is the dominant factor 

organizing the relationship among event models the long-term memory (Radvansky, 2012; 

Radvansky & Zacks, 2017). In addition, we observed a surprising result that FS_across 

transitions in serial recall also had a very high (more than 95%) probability of being in the 

correct direction, almost as high as CS_across and FS_within transitions. At first glance, this 

might seem to contradict the results in Experiment 1 and 2 that recency judgment for FS_across 

pairs consistently had impaired performance comparing to CS_across and FS_within pairs with 

semantic order knowledge facilitation. However, we need to consider the fact that the recall 

transition analysis in Experiment 3 was conducted based on the events that were recalled by the 

participants, which did not include everything in the narrative. In fact, participants recalled about 

half of the fine-level events (mean = 12.01) in each narrative narrative. One possibility is that for 

the proportion of the coarse-level events that they remembered, participants had very accurate 

episodic memory of their relative order. These event models were organized in the long-term 

memory by strong episodic associations that formed during encoding, which led to an accurate 

order reconstruction during retrieval. However, some FS_across event pairs we tested in recency 

judgment tasks might come from the coarse-level events they did not remember, which led to 
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inaccurate performance for these pairs. A second possibility is that participants had very accurate 

episodic memory for almost all the coarse-level events, which led to the accurate FS_across 

transitions that we observed in Experiment 3. However, it is possible that for some FS_across 

sentences that we tested in recency judgment tasks, participants had inaccurate source memory 

and linked them to the coarse-level events they did not belong to, which caused impaired 

performance. A third possibility is that participants did not consistently use order information 

among coarse-level events to inform their decision for fine-level recency judgments in 

Experiment 1 and 2, despite the fact that it could have supported accurate performance. Follow-

up experiments need to be conducted to distinguish between these possibilities.  

 In the current experiment, we did not observe the hypothesized effect that more fine-level 

events would be recalled per narrative (or per coarse-level event) in FS narratives compared to in 

CS narratives. Since fine-level events in FS narratives were mostly causally connected within 

each coarse-level event, participants were likely to jump over some events in the causal chain, 

while still maintaining the correct forward transition order. For example, when participants were 

reconstructing the “visit the snack cart” coarse-level event of the “visiting the zoo” FS narrative, 

after recalling the protagonist “waited in the line,” they might skip the “told the owner what he 

wanted” event to report “paid with cash and received the food.” Omissions like this might mask 

the difference in the number of units recalled across the two conditions.  
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Chapter 5: General Discussion 
 

In this set of experiments, we developed a novel narrative reading paradigm to examine 

how semantic order knowledge and hierarchical event structure can be leveraged to facilitate the 

reconstruction of temporal order relationship among events. To summarize, we first 

demonstrated that coarse-level event changes in our narratives were reliably perceived as event 

boundaries. This was characterized by increased reading time for boundary sentences during 

encoding (Experiment 1) and inflated temporal distance rating for fine-level events pairs that 

spanned across event boundary during retrieval (Experiment 1 and 2), which replicated findings 

in the previous literature (Radvansky et al., 2001; Zwaan & Radvansky, 1998; DuBrow & 

Davachi, 2013; Ezzyat & Davachi, 2014). Furthermore, we confirmed our critical hypothesis that 

semantic order knowledge on both coarse and fine levels could be applied to facilitate recency 

judgment, and this effect overrode the influence of event boundary alone (Experiment 1 and 2). 

Although many previous picture-list learning paradigms found a consistent effect that event 

boundary impaired recency judgment for items that spanned across a contextual boundary 

(DuBrow & Davachi, 2013; Heusser et al., 2018; Pu et al., 2022), our results showed that at least 

in more naturalistic events, such as narratives about everyday activities, the effect of event 

boundary on recency judgment depended on people’s ability to use information other than 

episodic memory, which included their semantic knowledge about stereotypical event order. 

When there were semantic order constraints among fine-level events, recency judgment of fine-

level events within the same coarse-level event was improved, suggesting that people could use 

direct fine-level order knowledge to facilitate temporal order reconstruction on the same level. 

However, the mechanism was slightly different in another scenario: When there were semantic 
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order constraints among coarse-level events, recency judgment of fine-level events coming from 

different coarse-level events were improved. This cross-level semantic facilitation suggested that 

participants might form a hierarchical representation of the narrative in their long-term memory, 

which enabled the order among coarse-level events to inform the reconstruction of the order 

among fine-level events. This was further supported by results from the recency judgment 

confidence measure: When there was no semantic order knowledge facilitation, having coarse-

level event information as an extra source of information increased confidence in recency 

judgment, after controlling for accuracy (Experiment 1 and 2). By analyzing participants’ serial 

recall of the narrative, we found further evidence that participants frequently chunked their recall 

of fine-level events based on their coarse-level event membership (Experiment 3). In addition, 

we also discovered that semantic order constraints served as an important factor in organizing the 

order of recall on both the coarse-level and fine-level.  

Our results were largely consistent with the principles outlined by Event Segmentation 

Theory (Zacks et al., 2007) and Event Horizon Model (Radvansky, 2012; Radvansky & Zacks, 

2017) in how people create structured representations of events during perception and store them 

into long-term memory. These theoretical frameworks argued that people segment an ongoing 

stream of activity into distinct event models and transform them into “episodes” in long-term 

memory. During this process, semantic knowledge not only plays an important role in combining 

with incoming sensory information to construct the working event model, but also serves as an 

important factor in organizing the relationship among event models in long-term memory 

(Radvansky & Zacks, 2017; Zacks, 2020). In addition, it is worth noting that one role event 

segmentation plays in shaping long-term memory is that the event structure formed during 

perception can serve as an effective chunking mechanism. By grouping fine-level events into 
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larger chunks of coarse-level events, it helped with creating a hierarchical and relational 

representation of events in long-term memory. This representation is likely to include a 

mechanism to represent the order of events both on the coarse-level and fine-level, and a way to 

represent the membership of fine-level events within certain coarse-level events. In this way, 

when asked to judge the recency between two fine-level events that come from two different 

coarse-level events, instead of only relying on direct temporal relationship between the two fine-

level events, an additional way is to consult the temporal relationship between the coarse-level 

events they each belong to. Since the chunking mechanism of event segmentation determined 

that there will be less coarse-level events than fine-level events, it is adaptive to have access to a 

mechanism that requires encoding less temporal relationship among individual units.  

 We plan to look for behavioral evidence for the mechanism outlined above in a follow-up 

experiment, in which we aimed to figure out different sources of information used in the recency 

judgment of fine-level pairs that each belonged to a different coarse-level event. First, we plan to 

conduct an additional source memory test to see if participants can link each fine-level sentence 

to the coarse-level event it belongs to. Second, we plan to test coarse-level recency judgment by 

asking participants to order of the two coarse-level events that the fine-level sentences belong to. 

If the hierarchical mechanism proposed above is correct, we should see that the accuracy of fine-

level recency judgment being strongly predicted by both source memory accuracy and coarse-

level recency accuracy. 

 It is worth noting that the hierarchical mechanism that we outlined here has some 

fundamental differences from previous computational models that were proposed for temporal 

order memory and recency judgment (Horner et al., 2016; Pu et al., 2022). Those models were 

largely based on picture-list learning paradigms that orthogonalized the relationship between 



56 
 

“items” and “contexts,” and the only role that event boundaries play in these paradigms is to alter 

the stability of the encoding context. In their implementation, both of the two models were built 

on a class of temporal context models (Estes, 1950; Howard & Kahana, 2002), which associate 

different items to be encoded with a context signal that gradually drifts over time. Both models 

assumed a sharp change in the contextual representation at event boundary, but one implemented 

the change with a faster random drifting rate in the context signal (Horner et al., 2016), and 

another implemented the change with a reinstatement of the pre-experimental context (Pu et al., 

2022). However, since “context” was implemented as a continuously drifting signal in these 

models, there was no explicit representation of each context (e.g., color background, task type, 

etc.) that was present in the behavioral paradigms, which made them hard to accommodate 

behavioral results from our experiments using hierarchical narrative stimuli. We argue that in 

order to build computational models that account for temporal order memory phenomena in 

naturalistic context, we need to incorporate mechanisms for hierarchical reasoning and the reuse 

of schematic structures into the model architecture.  

 Another implication for the paradigm we developed here is to use it for examining how 

aging influences people’s ability to encode and reconstruct temporal relationships among 

everyday events. Using highly controlled stimuli, some previous studies of older adults’ temporal 

order memory have distinguished their intact ability to utilize pre-experimental semantic 

association from their general deficit to encode and use new episodic associations online. A 

study looking at the serial recall of word lists found that older adults relied more heavily than 

younger adults on semantic organization among words to structure recall order, and made fewer 

in-order recall transitions based on newly encoded temporal context (Golomb et al., 2008). 

Similarly, a previous study using short sequences of pictures found that older adults’ 
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performance in identifying out-of-sequence items was comparable to younger adults when tested 

on familiar and predictable sequences (e.g. the letters A-F), but was greatly impaired for newly 

encountered sequences (e.g. distinct fractal images) (Allen et al., 2015). These findings 

suggested that specific types of sequential processing might be differentially affected by aging, 

depending on whether the task allows older adults to leverage their pre-existing knowledge 

structure. In the context of our paradigm, it is natural to hypothesize that when doing recency 

judgment tasks, the existence of semantic order knowledge will provide a greater facilitation to 

older adults’ temporal order judgment and recall memory, comparing to younger adults. By 

testing this hypothesis using stimuli that closely approximate real-life scenario, we might be able 

to develop more targeted interventions that exploit existing knowledge structure to improve older 

adults’ temporal memory in everyday tasks.    

 One potential limitation of the current study is that the stimuli we used contain pre-

determined hierarchical and semantic structure created by the experimenter, such that a given 

narrative can only contain either coarse-level or fine-level semantic order constraints. In real life 

scenario, the event dynamic we attempt to reconstruct from autobiographical memory is likely to 

be more nuanced, with a hierarchical structure of more than two levels and a mix and match of 

semantic order constraints on different levels. This concern needs to be addressed in future 

studies, in which real-world stimuli including movies or novels can be used to test the 

conclusions made by the current study.  

 In conclusion, Experiment 1 and 2 suggest that semantic order knowledge and 

hierarchical event structure can be leveraged to reconstruct the order of naturalistic events. 

Experiment 3 suggests that coarse-level event membership serves as chucking mechanism to 

order fine-level events in serial recall. Together, the findings from all three experiments highlight 
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that the reconstruction of the temporal order among events can depend on many sources of 

information coming from semantic and episodic memory, across different time scales. 
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Appendix A: Supplementary Methods 
 

A.1 Norming Study 

To create Coarse-level Semantic (CS) and Fine-level Semantic (FS) narratives, we 

conducted a norming study using a separate sample to confirm that the event sets with semantic 

order constraints were agreed by people to happen only in one specific order, and that the event 

sets without semantic order constraints were agreed by people to potentially happen in any order.  

The stimuli used in the norming study were sixty sets of event labels describing familiar 

everyday activities, with five event labels in each set. Ten sets were coarse-level event labels sets 

that corresponded to the five coarse-level events in each of the ten narratives. The remaining fifty 

sets were fine-level event label sets that corresponded to each of the five sets of fine-level event 

sentences in each narrative.  

Our sample included 36 participants recruited from Prolific (https://www.prolific.com/). 

During the online study, participants were shown different sets of event labels describing 

familiar everyday activities. They were asked to answer two questions for each set of event 

labels: (1) Rating: To rate the degree to which these activities should occur in a certain temporal 

order (scale = 1-7, 1 = “could happen in any order,” 7 = “could happen in only one order”), and 

(2) Ranking: To sort the five activities into what they believe to be the most likely order, 

regardless of how they answered the rating question. The order of event label sets was 

randomized for each participant, and the layout order of event labels within each set was 

randomized for each trial.  
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 To quantify how much the event order ranking provided by the participants deviated from 

the order they were presented in the narrative, we calculated order deviance scores based on 

participants’ answers to the ranking questions. For example, if the order of one set of event labels 

was [1, 2, 3, 4, 5] in the narrative, and the ranking answer a participant gave was [3, 1, 2, 4, 5],  

deviance score = |1-3| + |3+1-1| + |1+1-2| + |2+1-3| + |4+1-5| = 5. The range of the deviance score 

is [0, 15], with 0 meaning that participants’ ranking was exactly the same as the order in the 

narrative, 15 meaning that participants’ ranking was completely the opposite comparing to the 

order in the narrative. 

 Therefore, for the rating question, we hypothesized that both coarse-level event label sets 

from CS narratives and fine-level event label sets from FS narratives should be mostly rated as 

“could happen in only one order,” with values close to 7. In contrast, both fine-level event label 

sets from CS narratives and coarse-level event label sets from FS narratives should be mostly 

rated as “could happen in only one order,” with values close to 1.  

 For the ranking question, we hypothesized that both coarse-level event label sets from CS 

narratives and fine-level event label sets from FS narratives should have low order deviation 

scores, with values close to 0. In contrast, both fine-level event label sets from CS narratives and 

coarse-level event label sets from FS narratives should have high order deviation scores, with 

values farther away from 0. 

 In Table 2, we report the mean rating scores for both coarse-level and fine-level event 

labels sets in each narrative, with their corresponding 95% confidence interval. In Table 3, we 

report the mean ranking deviance score for both coarse-level and fine-level event labels sets in 

each narrative, with their corresponding 95% confidence interval. Based on the results, we can 
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conclude that our manipulation worked as intended for developing narrative stimuli: According 

to their semantic knowledge, people agreed that coarse-level events in CS narratives and fine-

level events within each coarse-level event in FS narratives should follow a specific order, and 

that fine-level events within each coarse-level event in CS narratives and coarse-level event in 

FS narratives did not need to follow a specific order.  

 Coarse-level event label set (*1) Fine-level event label sets (*5) 

CS1_Aunt 6.08 [5.65, 6.51] 2.30 [2.05, 2.55] 

CS2_Swimming 6.58 [6.18, 6.98] 2.69 [2.41, 2.97] 

CS3_Morning 6.25 [5.90, 6.60] 2.14 [1.92, 2.36] 

CS4_Cafeteria 6.33 [5.88, 6.79] 2.24 [1.97, 2.52] 

CS5_Examination 6.08 [5.64, 6.52] 1.98 [1.74, 2.22] 

FS1_Shopping 1.42 [1.25, 1.58] 6.31 [5.93, 6.69] 

FS2_Cleaning 1.53 [1.33, 1.72] 5.77 [5.20, 6.35] 

FS3_Zoo 1.50 [1.31, 1.69] 6.51 [6.17, 6.84] 

FS4_Campus 1.36 [1.24, 1.48] 6.32 [5.90, 6.74] 

FS5_Farm 1.47 [1.27, 1.67] 6.44 [6.04, 6.85] 

 

Table 2. Mean rating scores for both coarse-level and fine-level event labels sets in each narrative, with 
their corresponding 95% confidence interval. Note that for each narrative, there was only one coarse-level 
event label set and five fine-level event sets. For the name of each narrative, “CS” meant that it was a CS 
narrative, and “FS” meant that it was a FS narrative. 
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 Coarse-level event label set (*1) Fine-level event label sets (*5) 

CS1_Aunt 0.81 [0.03, 1.58] 10.40 [9.98, 10.82] 

CS2_Swimming 1.06 [0.40, 1.71] 9.07 [8.65, 9.50] 

CS3_Morning 1.36 [0.42, 2.30] 10.59 [10.18, 11.01] 

CS4_Cafeteria 0.19 [0, 0.47] 9.81 [9.32, 10.30] 

CS5_Examination 2.22 [1.08, 3.36] 9.81 [9.37, 10.24] 

FS1_Shopping 10.78 [10.37, 11.18] 1.14 [0.37, 1.91] 

FS2_Cleaning 9.42 [8.94, 9.89] 2.12 [1.05, 3.18] 

FS3_Zoo 10.22 [9.84, 10.60] 1.27 [0.48, 2.07] 

FS4_Campus 10.19 [9.82, 10.57] 1.06 [0.19, 1.93] 

FS5_Farm 9.78 [9.21, 10.35] 0.71 [0, 1.44] 

 

Table 3. Mean ranking order deviance scores for both coarse-level and fine-level event labels sets in each 
narrative, with their corresponding 95% confidence interval. Note that for each narrative, there was only 
one coarse-level event label set and five fine-level event sets. For the name of each narrative, “CS” meant 
that it was a CS narrative, and “FS” meant that it was a FS narrative. 

 

A.2 Semantic Similarity Analysis 

For the recency judgment task that was used in Experiment 1 and 2, we acknowledged 

that the accuracy of recency judgment could potentially be affected by a confounding variable, 

which was the semantic similarity between the two sentences in each event pair. Therefore, we 

used Universal Sentence Encoder (USE) to convert each event sentence being tested into a 

sentence embedding and calculated the inner product of the two sentence embeddings in each 

event pair to quantify their semantic similarity. We then compared the semantic similarity 

between the two sentences in each event pair across four different types of pairs. 
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 An one-way between-groups ANOVA revealed that there was not a significant effect of 

pair type on semantic similarity, F(3, 76) = 1.084, p = 0.36. We then calculated Bayes factors for 

the four pairwise contrasts that was hypothesized and tested in the main analysis: We found 

anecdotal evidence that there was not a significant difference in semantic similarity between 

FS_within and CS_within conditions (BF10 = 0.31), between FS_within and FS_across 

conditions (BF10 = 0.33), between CS_across and FS_across conditions (BF10 = 0.53), and 

between CS_across and CS_within conditions (BF10 = 0.85). Based on this result, we concluded 

that semantic similarity did not differ systematically across event pairs in different conditions 

and was not likely to have caused the recency judgment accuracy differences we observed.  

 

Figure 5. Semantic similarity between two sentences in each event pair, across four different event pair 
types. Each dot on the graph represents a different fine-level event sentence pair that was tested in 
Experiment 1 and 2. The red dot in the center of each bar represents the mean semantic similarity score 
within each event pair type. 
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