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ABSTRACT OF THE THESIS 

Assessing reproducibility of brain-behavior  

associations using bootstrap aggregation methods 

by 

Zhetao Chen 

Master of Arts in Statistics 

Washington University in St. Louis, 2024 

Professor Soumendra Lahiri, Chair 

Assistant Professor Muriah Wheelock, Co-Chair 

In this thesis, amidst growing utilization of resting-state functional connectivity MRI (rs-fcMRI) 

for linking neural activity to pathological conditions, we confront the prevalent concerns regarding 

the reliability of such data. Our exploration concentrates on improving the reproducibility of brain-

behavior associations within the framework of the Human Connectome Project (HCP) dataset. We 

employ two distinct bootstrap aggregation approaches to investigate the enhancement of functional 

connectivity reliability: individual time series bagging using Circular Block Bootstrap (CBB) and 

subject-level bagging utilizing Linear Support Vector Regression (LSVR) models. Our 

investigation into individual time series bagging with CBB reveals that this method does not 

significantly bolster the reproducibility of brain-behavior associations. This finding points to the 

complexity of achieving reliable functional connectivity measures and the limitations of certain 

aggregation methods in overcoming this challenge. In contrast, our examination of subject-level 

bagging through LSVR models presents a more promising outcome. This approach markedly 

enhances the reliability of model weights between analyses, demonstrating its efficacy in 

improving data robustness and reproducibility. This differential impact of the two methodologies 

underscores the critical role of appropriate analytical strategies in enhancing the reliability of 
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neuroimaging data. By delineating the outcomes of these two methodologies, this thesis 

contributes to the broader discussion on data reliability in the field of neuroimaging. It underscores 

the necessity for continued methodological innovations and validations across varied datasets to 

advance the reliability and interpretability of rs-fcMRI studies.
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Chapter 1: Introduction 
The field of neuroimaging endeavors to establish robust connections between brain structure and 

function as indexed by various behavioral or trait manifestations (Woo et al., 2017). This is often 

achieved by identifying distinctive imaging features that, when integrated into statistical models, 

can shed light on potential causal relationships or accurately predict observable traits for new 

participants. The overarching objective is to derive reliable biomarkers for diagnoses or 

intervention strategies from the wealth of imaging data available (Insel et al., 2010). 

Resting-state functional connectivity Magnetic Resonance Imaging (rs-fcMRI) has gained 

significant traction for its ability to assess correlations in neural activity through monitoring 

spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal while subjects are 

at rest. These correlations hold substantial interest within the medical realm as they have been 

increasingly correlated with various pathological conditions impacting specific brain regions 

(Seeley et al., 2009). Regrettably, research indicates that the duration of scan time necessary to 

attain satisfactory levels of reproducibility and reliability often exceeds the scanning time allocated 

in the majority of clinical and cognitive neuroscience datasets that have been collected or are 

presently underway (Laumann et al., 2015). Consequently, there is a growing demand for 

methodologies capable of enhancing the reliability of resting-state functional connectivity. In our 

study, time-based Pearson correlations between different regions were used as functional 

connectivity (FC). 

Bootstrap aggregation, commonly known as bagging, is a well-regarded technique from statistics 

and machine learning that holds promise for enhancing the reproducibility of functional 

connectivity. Both bootstrapping and bagging are versatile procedures, whether parametric or 
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nonparametric, aimed at refining statistical inference across various dimensions, such as improving 

estimates of effect certainty, estimating p-values, and enhancing accuracy. Bootstrapping involves 

resampling a dataset with replacement and has found widespread applications across scientific and 

statistical domains (Efron & Tibshirani, 1994). For instance, it's commonly employed for 

estimating the accuracy of sample estimates, rooted in the idea that a sample can effectively 

represent its population through resampling. Building upon the principles of bootstrapping, 

bootstrap aggregation or bagging was initially devised to resample data for predictive modeling 

and aggregate predictions across bootstrap samples to enhance predictive performance (Breiman, 

1996). Bagging is believed to diminish variability in estimation by averaging prediction labels or 

cluster memberships across multiple resampled datasets (Dudoit & Fridlyand, 2003). More 

recently, bagging has emerged as a pivotal technique in ensemble clustering, a methodology for 

consolidating various cluster solutions into a final clustering outcome(Fischer & Buhmann, 2003). 

Therefore, it appears to be a feasible approach to diminish sample variability and enhance data 

reliability by employing bagging to resample individuals or time within individuals. 

Previous research has demonstrated the benefits of bagging in enhancing the reproducibility and 

test-retest reliability of both cortical and subcortical functional parcellations across a range of sites, 

scanners, samples, scan lengths, clustering algorithms, and clustering parameters (Nikolaidis et al., 

2020). In the current study, we aim to assess the efficacy of bagging methodologies in enhancing 

the reliability of data utilizing Human Connectome Project (HCP) data. Preliminary investigations 

have indicated the efficacy of circular block bootstrap (CBB) in robustly estimating associations 

between brain regions (Bellec et al., 2008). Subsequent research has delved into leveraging CBB 

and bootstrapping techniques at the group level to elucidate the hierarchical organization of brain 

networks (Bellec et al., 2010). Consequently, our study endeavors to employ CBB to resample 
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individual time points, subsequently computing the average of functional connections, with the 

aim of ascertaining whether the reliability of the data can be bolstered through network-level 

analysis. 

Additionally, resampling aggregated models, which involve subject-level bootstrapping with 

replacement, offer improved model performance and generalizability, particularly within the 

context of the connectome predictive modeling (CPM)(O’Connor et al., 2021). While we want to 

apply the models to predict behavioral or clinical outcomes using the functional connectome, a 

challenge introduced by cross-validation procedures in datasets with related individuals is that 

these related subjects may appear in both the training and hold-out test sets. Given that related 

individuals and twins tend to have more similar connectome data compared to unrelated 

individuals (Miranda-Dominguez et al., 2018), the shared variance among families violates the 

assumption of independent datasets in cross-validation. Consequently, when predicting labels in 

the test set, the presence of related subjects from the training set with known labels undermines 

the reliability of using test set prediction accuracy as a measure of model performance. To mitigate 

this limitation, a random sampling approach that accounts for family structure is implemented (Li 

et al., 2023). In this study, we intend to integrate the HCP data into a linear support vector 

regression model using the random sampling approach, thereby evaluating whether averaging 

model features across a sample of individuals can enhance the reliability of the data. 

In our study, we aim to assess the efficacy of the bagging technique in enhancing data reliability 

from two primary perspectives. Firstly, we employ the CBB method to sample individual time 

series data. By computing and averaging the functional connectivity matrix derived from the 

sampled data, we anticipate that this approach will bolster the reliability of rs-fcMRI estimates. 

Subsequently, we conduct subject-level resampling to aggregate the data while ensuring that 
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familial relationships are preserved within each group. Utilizing these two distinct sets of data for 

concurrent model training, we anticipate an improvement in the reliability of model weights.   
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Chapter 2: Methods 

2.1 Dataset 
The Human Connectome Project (HCP) aimed to study and freely share data from 1200 young 

adults (ages 22-35) from families with twins and non-twin siblings, using a protocol that includes 

structural and functional magnetic resonance imaging (fMRI) at 3 Tesla (3T) and behavioral 

testing (Seitzman et al., 2020; Van Essen et al., 2012). In all parts of the HCP, participants were 

scanned on the same equipment using the same protocol for every subject. Participants are 

administered the Mini Mental Status Exam (Folstein et al., 1975) as a broad measure of cognitive 

status (participants are excluded if they scored below a 27)(Crum et al., 1993). 

2.2 Sleep Quality Behavioral Data 
The Pittsburgh Sleep Questionnaire (Buysse et al., 1989) as a measure of sleep quality. 

Respondents are asked to indicate how frequently they have experienced certain sleep difficulties 

over the past month and to rate their overall sleep quality in this test. Examples of such difficulties 

include waking up multiple times during the night or experiencing difficulty falling asleep within 

a specified timeframe. Scores for each question range from 0 to 3, with higher scores indicating 

more acute sleep disturbances. Then the scores for all questions are added up to get a total score. 

In this study, we mainly used rs-fMRI data and subjects' total scores in HCP to explore the 

correlation between them. Given that sleep quality assessments were conducted on the first scan 

day and corresponded solely to the sleep quality experienced the night before the first scan, any 

variance observed on the second scan day could be attributed to the fact that the sleep quality data 

aligned most closely with the brain function observed on the first day. Therefore, we opted to 

analyze data from the first day to explore this aspect of reliability. 
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2.3 Data grouping based on Gower’s distance 
To ascertain the reliability of the correlation between behavioral scores and functional connectivity 

observed on the initial day of observation, it is imperative to stratify the subjects into two cohorts. 

This stratification enables the subsequent computation of correlations between behavioral scores 

and functional connectivity within each group for the same day, followed by an assessment of the 

reliability of these correlations across the two cohorts. To accomplish this stratification, we 

propose utilizing Gower's distance as a metric to quantify the dissimilarity between subjects based 

on a comprehensive set of variables, including education level, Body Mass Index (BMI), 

handedness, gender, ethics, race, age, family number, income, smoking history, heavy drinking 

frequency, and illicit drug usage frequency. In light of the identified limitations associated with 

the unweighted application of Gower's distance—specifically, its vulnerability to outliers in ratio-

scaled variables and the unequal weighting of variables in the overall distance calculation—

modifications have been proposed to refine this methodology (D’Orazio, 2021). These 

modifications are designed to mitigate the impact of outliers and ensure a more equitable 

contribution of each variable to the composite distance measure. We use the method to compute 

the distance between each subject's behaviour records and aggregating these distances to all other 

subjects. Subsequently, a sorting process is undertaken based on the total distances, enabling the 

systematic allocation of subjects into distinct groups, which are marked as split1 and split2 

respectively. This ensures a more balanced distribution, where individuals within each group 

exhibit comparable distances to all other subjects. Through these refinements, the reliability and 

robustness of the Gower's distance calculation are enhanced, facilitating more meaningful data 

grouping and analysis. 
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2.4 fMRI data preprocessing  
The preprocessing steps applied to HCP data in this study, as described by Gordon et al., (2017), 

involved several key procedures. Initially, the first 29.52 seconds or 41 frames of each resting-

state run were discarded to account for magnetization equilibrium and any responses evoked by 

the scan start (Laumann et al., 2015). Subsequently, the functional data were aligned to the first 

frame of the first run using rigid body transforms, motion corrected, and whole-brain mode 1000 

normalized (Miezin et al., 2000). The resting-state data, comprised of 2x2x2mm voxels, were then 

registered to the T1-weighted image and a WashU MNI atlas using affine and FSL transforms 

(Smith et al., 2004). 

Further preprocessing steps were implemented to remove artifacts from the resting-state BOLD 

data (Ciric et al., 2017). Frame-wise displacement (FD), a metric quantifying motion or 

displacement between consecutive frames in fMRI data (Power et al., 2012), was calculated, and 

artifact removal (Ciric et al., 2017; Power et al., 2014) was conducted with a low-pass filter at 0.1 

Hz to address respiration artifacts affecting the FD estimates (Fair et al., 2020). Frames with FD 

greater than 0.04 mm were removed (Dworetsky et al., 2021). Nuisance variable regression was 

performed, including whole-brain mean, ventricular and white matter CSF signals, the temporal 

derivatives of those regressors, and 24 movement regressors (Yan et al., 2013). Temporal masks 

of the gray matter, white matter, and ventricles were created using Freesurfer automatic 

segmentation (Fischl et al., 2002), and segments of data lasting fewer than 5 contiguous frames 

were excluded (Hocke & Kämpfer, 2009; Power et al., 2014). Data were then bandpass filtered 

from 0.009 to 0.08 Hz, and censored frames were removed from the time series (Seitzman et al., 

2020). 
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In accordance with the established protocols outlined by Gordon et al., (2016), the preprocessed 

BOLD time series data underwent surface processing. This involved utilizing the ribbon-

constrained sampling procedure within the Connectome Workbench software to project the BOLD 

volumes onto each subject's individual native surface. During this process, voxels exhibiting a time 

series coefficient with a variation exceeding 0.5 standard deviations above the mean of nearby 

voxels were excluded from further analysis, as per the methodology described by Glasser et al., 

(2013) and Gordon et al., (2016). Subsequently, the sampled data were subjected to deformation, 

resampling, and Gaussian smoothing (FWHM = 4mm, sigma = 1.7) to enhance spatial coherence 

and mitigate noise. The Connectome Workbench software was then utilized to integrate these 

processed surfaces with volumetric subcortical and cerebellar data, resulting in the generation of 

full brain time courses in the CIFTI format while excluding non-gray matter tissue, as outlined by 

Glasser et al., (2013). 

Following the outlined processing steps, surface-based parcels and canonical functional networks 

(Gordon et al., 2016) were utilized to partition a predefined set of regions of interest (ROIs) into 

12 networks and one unspecified network (Figure 1). This unspecified network comprised parcels 

that were not strongly connected with any others, as defined in Gordon et al., (2016). The Pearson 

correlation between the mean time courses of each pair of ROIs was evaluated (55,278 pairs in 

total, ROIs on the diagonal excluded), which are used to estimate functional connectivity (FC). 

2.5 Bootstrap aggregation. 

2.5.1  Circular Block Bootstrap on time series data 

The Circular Block Bootstrap (CBB) method is a resampling technique employed in statistical 

inference, particularly in the context of time series data and spatial data with periodic 

characteristics. It is designed to address the inherent autocorrelation present in such data by 
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preserving the underlying temporal or spatial structure during resampling. The primary principle 

of it involves dividing the time series or spatial data into blocks of contiguous observations, with 

the last block potentially overlapping with the first block in a circular fashion. This circular 

arrangement ensures that the temporal or spatial structure is maintained during the resampling 

process (Politis & Romano, 1994). At the individual level, bagging is implemented utilizing a CBB 

approach, with a window size set to the square root of the number of time steps. This method is 

applied to individual time series data to generate numerous resampled functional connectivity 

instances for each individual. Subsequently, these resampled instances are aggregated and 

averaged, following which network-level analyses are conducted to assess the reliability of the 

data. 

2.5.2  Resample Aggregation on participant functional connectivity matrices 

The Linear Support Vector Regression (LSVR) model proposed by Li et al., (2023) incorporates 

a random sampling regime considering family structure. Although maintaining individuals from 

the same family in either the training or test set led to lower prediction accuracy and reliability, it 

ensured that predictions in the test set were not influenced by information in the training set, 

thereby mitigating falsely inflated prediction accuracy. We incorporated the data sampled 

according to this random sampling system into the model and calculated the average of the final 

model weights. This averaging process will serve as a crucial step in evaluating the reliability of 

the model across different samples, thereby enhancing the validity of the model's predictions.  

In the LSVR model (Li et al., 2023), we conducted a 1000 repetitions with 5-fold cross-validation 

procedure, where the data were divided into an 80% training set and a 20% test set (family 

members were never in both the training and testing sets). Within each iteration, the hyper-

parameter of the LSVR model was selected using a 5-fold cross-validation within the training data. 
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During each iteration within the training set, which contained 80% of the subjects, we further 

randomly divided the data into an inner-cross-validation training set (80% of subjects) and an 

inner-cross-validation test set (20% of subjects). Various hyper-parameters were tested within a 

specified range to fit the LSVR model using the inner-training set. The optimal hyper-parameter 

was chosen based on the minimized mean square error (MSE) observed in the prediction using the 

inner-test set. 

In the context of investigating the relationship between connectivity matrices and labels(i.e., 

scores), Pearson correlations are commonly employed as a univariate method, allowing for the 

examination of individual feature-label associations. However, our utilization of the LSVR model 

enables simultaneous consideration of the collective impact of multiple variables on the label, 

offering a more comprehensive analysis. Additionally, in line with insights from Haufe et al., 

(2014), an inversion process applied to machine learning (ML) results is deemed necessary for 

enhanced biological interpretation. Haufe et al., (2014) demonstrated that for a linear predictive 

model, the appropriate transformation can be obtained by computing the covariance of each feature 

and the predicted target variable in the training set. With a sufficient sample size, feature 

importance (operationalized as Haufe-transformed weights) have been demonstrated to achieve 

fair to excellent split-half reliability, which refer to as ICC (Chen et al., 2023). Therefore we will 

simultaneously calculate the original weights and Haufe-transformed weights for each model. 

Then, in our study, the effectiveness of bagging methods in improving the reliability of model 

weights are concurrently evaluated in the three models. 

2.6 Reliability 
Reliability in the context of statistical analysis refers to the consistency and stability of 

measurements or observations across different conditions, time points, or raters. It signifies the 
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extent to which the measurements or observations yield consistent results under varying 

circumstances. In the realm of research, reliability is a fundamental concept as it reflects the degree 

to which findings can be replicated or trusted. One commonly used metric to assess reliability is 

the Intraclass Correlation Coefficient (ICC). The ICC is a statistical measure that quantifies the 

proportion of total variance in measurements or observations that can be attributed to differences 

between subjects or raters, relative to the total variance (Tian & Zalesky, 2021). For example, if 

we have two sets of feature importance (𝑓1 𝑎𝑛𝑑 𝑓2), 

𝐼𝐶𝐶 =
1

𝐾𝑠2
∑(𝑓1,𝑘 − 𝑓)̅(𝑓2,𝑘 − 𝑓)̅

𝐾

𝑘=1

 

where K is the total number of features and 

𝑓̅ =
1

2𝐾
∑(𝑓1,𝑘 + 𝑓2,𝑘)

𝐾

𝑘=1

, 𝑠2 =
1

2𝐾
∑ ((𝑓1,𝑘 − 𝑓)̅

2
+ (𝑓2,𝑘 − 𝑓)̅

2
)

𝐾

𝑘=1

 

This is referred to as the 1-1 formulation of the ICC. Specifically, ICC(1,1) typically denotes a 

measure of absolute agreement for single measurements, meaning it evaluates the reliability of 

single ratings made by evaluators on the same set of subjects.. 

2.7 Network Level Analysis 

2.7.1  Observed Network-Level Enrichment    

For the LSVR model, we computed the mean estimated FC-score beta weights across 1000 

repetitions to serve as input. Similarly, for the LSVR model with the inversion applied, we 

calculated the inverse weights in each repetition and averaged them across 1000 replications. 

Specifically, the covariance between each rsFC and the predicted score was computed as the 

estimated inverted weight for each ROI pair (Haufe et al., 2014). These weights underwent z-
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scoring, followed by thresholding at |Z| > 2 and subsequent binarization. We selected a threshold 

value of 2 after testing several thresholds, with 2 yielding a balanced distribution of features across 

the connectome, striking a suitable balance between sparsity and density. This threshold was 

quantitatively evaluated in a prior study (Li et al., 2023). Weights within each network block that 

passed this threshold were used to compute the χ2 values and Welch's t values relative to the 

distribution of all weights passing the threshold in the rest of the connectome. The 1-degree-of-

freedom χ2  test and Welch's t test compared the observed number of strong (thresholded and 

binarized) brain-behavior weights within a pair of functional networks to the expected number if 

such values were uniformly distributed across the full connectome (Wheelock et al., 2021). A large 

resulting test statistic indicates enrichment of strong associations within a specific network block, 

implying a greater number of strong weights than expected.  

2.7.2  Permutation Test 

To evaluate the significance of network-level associations, we employed a permutation test to 

compute permutation-based p-values. This involved shuffling the sleep disturbance score labels 

and fitting the same model with the connectome data to generate null FC-score weight matrices. 

This process was repeated for 1000 repetitions for each model, yielding a null distribution of χ2 

test and Welch's t statistics. Subsequently, the observed (real) χ2 values and Welch's t values were 

compared to this null distribution to determine network-level significance, defined as family-wise 

error rate (FWER) permutation-based p-values < 0.05. 

2.7.3  Network-level Reliability 

Additionally, we assessed network-level reliability using Matthews Correlation Coefficient 

(MCC). To compute MCC scores, we constructed a confusion matrix considering split1 and split2 

as the observation and prediction sets, respectively. We categorized significant blocks in split1 as 
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"true" and other blocks as "false," while significant blocks in split2 were labeled as "positive" and 

other blocks as "negative." With this configuration, MCC scores were calculated using the formula  

MCC =
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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Chapter 3: Results 

3.1 Bagging individual time series data can not improve the 

reliability of data significantly 
To rigorously assess the reliability of our dataset, we applied Gower’s distance as a metric to 

segment the dataset into two distinct cohorts, encompassing 483 and 482 subjects respectively. 

Subsequent to this division, we implemented the Composite Bootstrap Bagging (CBB) 

methodology to perform 1,000-fold bootstrap sampling on the daily functional magnetic resonance 

imaging (fMRI) data of each subject, subsequently averaging the data to enhance robustness. The 

investigation into the relationship between resting-state functional connectivity (rsFC) features and 

sleep-related behavioral scores was conducted through the application of univariate marginal 

Pearson correlation analysis for each region of interest (ROI) pair in relation to the response 

variable. The evaluation of the reliability of the weight coefficients derived post-application of the 

Bagging technique to the univariate model revealed a remarkable consistency across both the χ2 

test and Welch's T test, indicating a negligible disparity in reliability outcomes (Figure 2,3). 

Moreover, the ICC scores were computed for these weight coefficients, yielding values of 0.397 

and 0.400 in χ2 test and 0.755 and 0.701 in welch's T test, respectively, which further underscores 

the similarity in reliability metrics. This finding led us to the conclusion that the employment of 

the bagging methodology for time-series data does not significantly enhance the reliability of the 

weight estimates within the Pearson univariate model framework. 

3.2 Using bagging methods on subjects does improve the 

reliability of model weights 
In our endeavor to enhance the reliability of time-series data analysis, an alternative approach was 

adopted by implementing bagging on subjects instead of time points, utilizing both the Linear 
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Support Vector Regression (LSVR) model and its inverse for analysis. The dataset was 

meticulously partitioned into an 80% training set and a 20% test set, ensuring no overlap of family 

members between the training and testing subsets. Within each iteration of the model training 

process, hyper-parameters for the LSVR model were fine-tuned via 5-fold cross-validation 

exclusively within the training dataset. 

Our analysis aimed to elucidate the relationships between different Region of Interest (ROI) pairs 

and sleep-related behavioral scores through three distinct methodologies: firstly, by exploring the 

univariate marginal Pearson correlation between each resting-state functional connectivity (rsFC) 

feature and the behavioral scores; secondly, by incorporating rsFC as predictive features in the 

LSVR model; and thirdly, by employing rsFC features in predicting scores utilizing the inverse of 

the LSVR model's beta weights (figure 4). Concurrently, the application of NLA χ2  test and 

Welch's T test across these three analytical outcomes identified specific network blocks most 

predictive of the behavioral scores. 

In the χ2 test, both Pearson correlations and the inverse weights derived from the LSVR model 

pinpointed similar significant network blocks, indicating a consistency in network significance 

(figure 5). Notably, the network-level reliability, as assessed by MCC scores in conjunction with 

the network-level χ2 test, exhibited marked improvement when employing the inverse weights of 

the LSVR model. Despite the raw beta weights from the LSVR model achieving high MCC scores, 

the networks identified by NLA using these weights as inputs were distinctly disparate, 

underscoring the interpretational limitations of strong Machine Learning regression raw weights 

as direct neural predictors of behavioral labels, as highlighted in the literature (Haufe et al., 2014). 
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The Welch's T test further accentuated the deficiencies associated with the utilization of raw LSVR 

model weights (figure 6), where the incorporation of weighted, signed data (reflecting mean shifts 

within the entire network block) resulted in poor MCC scores (-0.028), akin to random prediction 

accuracy. Conversely, the outcomes from Pearson correlations mirrored those obtained through 

the inverse weights of the LSVR model, both yielding MCC scores of 0.566 and identifying 

identical significant network blocks. 

In examining ICC scores for raw weights, a notable discrepancy emerges between different 

statistical tests: a high ICC of 0.788 in the χ2 test versus a significantly lower ICC of 0.054 in 

Welch's T-test, both of which align with the MCC, indicating consistent statistical behavior. 

Despite this statistical consistency within certain network blocks, as evidenced by the χ2analysis, 

the raw weights suffer from a lack of biological interpretability, underscoring the need for cautious 

interpretation of these findings. Moreover, regardless of the statistical approach( χ2test or Welch's 

T test), LSVR inversion and simple Pearson correlation yield similar ICC scores, mirroring the 

MCC results. However, the additional computational cost of LSVR inversion may not be justified 

when simple linear correlation produces comparable results with similar reliability. 
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Figure 1 Gordon networks.  

333 parcels in the brain were used to extract mean rsFC and were grouped into 12 networks and 

one unspecified network. 

 

 

 

Figure 2 Significant network blocks selected by 𝝌𝟐 test of two groups on day 1.  

(Left) split1, (Right) split2 
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Figure 3 Significant network blocks selected by Welch’s T test of two groups on day 1. 

(Left) split1, (Right) split2 

 

 

 

Figure 4 Nominally significant ROI pairs selected by two weights for two groups on day 1. 



19 

 

 

 

 

 

Figure 5 Significant network blocks selected by 𝝌𝟐 test of two groups on day 1 with three 

different sets of inputs 

Specifically, the inputs were obtained from (A) LSVR model, (B) LSVR model with inversion, 

(C) Pearson r-correlation. (Left) split1, (Right) split2 
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Figure 6 Significant network blocks selected by Welch's T test of two groups on day 1 with 

three different sets of inputs 

Specifically, the inputs were obtained from (A) LSVR model, (B) LSVR model with inversion, 

(C) Pearson r-correlation. (Left) split1, (Right) split2 
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Chapter 4: Discussion 
The primary objective of this study was to ascertain whether the application of the bagging method 

enhances the reliability of brain-behavior associations, focusing on two key perspectives: time 

series and subjects. To address the former, the CBB method was employed to resample the 

functional magnetic resonance imaging (fMRI) data of each subject, followed by the averaging of 

all resampled data to derive averaged resting-state functional connectivity (FC) data for each 

subject. Upon analysis, it was observed that the reliability of univariate FC-behavior correlations 

across two groups on first day did not exhibit significant improvement. In response, we considered 

the utilization of the LSVR model to explore the relationship between functional connectome data 

and behavioral scores. This analysis incorporated various factors including the disparities in 

reliability levels between different samples and sessions, as well as the examination of beta weights, 

weight inversions, and univariate Pearson correlations. Ultimately, our findings indicate that the 

bagging method indeed enhances the reliability of HCP data, particularly demonstrating higher 

reliability in weight inversions compared to univariate Pearson correlations. 

4.1 Bagging on Individual Time Series Data 
Some study have indicated that irrespective of the particular parcellation strategy utilized, 

employing bagging could serve as a pivotal technique for enhancing functional parcellation and 

bridging the gap between functional neuroimaging-based measurements and clinical applicability 

(Nikolaidis et al., 2020). However, our investigation into the impact of bagging on individual time 

series data yielded different conclusions. Despite employing the CBB method to resample and 

average daily FMRI data, the application of bagging did not significantly enhance the reliability 

of the data, as evidenced by the similar Pearson correlation coefficients between the functional 

connectivity and behaviour scores across two groups on first scan day. Additionally, network-level 
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analyses did not reveal persistent significant differences in results, suggesting that the bagging 

method's efficacy might not be contingent upon the quantity of resting-state data utilized. These 

findings underscore the importance of considering alternative approaches or refining existing 

methodologies to address the challenge of improving data reliability in time series analyses. 

4.2 Bagging on Subject-Level Data 
Conversely, our exploration of employing bagging methods on subject-level data yielded more 

promising outcomes. By three different models to fit the relationship between the functional 

connectivity and behaviour scores across two groups on first scan day, we observed notable 

improvements in model weights between two groups when utilizing the bagging method. 

Leveraging various measures including univariate marginal Pearson correlations, LSVR models, 

and inversion of LSVR beta weights, we identified significant network blocks predictive of sleep-

related behavioral scores. Notably, the LSVR model demonstrated enhanced network-level 

reliability compared to the Pearson correlations, as evidenced by higher Matthews Correlation 

Coefficients (MCC) scores. However, it is crucial to note that although beta weights demonstrated 

the highest MCC score in the chi-square test, caution must be exercised in interpreting their 

reliability. This discrepancy could be attributed to the utilization of thresholded and binarized data 

in the Chi-square test, leading to MCC evaluation solely based on the location of binarized high 

magnitude weights, regardless of sign. In contrast, Welch's T test incorporates weighted and signed 

data, reflecting mean shifts in the total network block. Additionally, while edge-level raw ML beta 

weights are interspersed within network blocks with both negative and positive weights, Pearson 

and Haufe Inversion weights tend to exhibit uniformity within a network block, either all negative 

or all positive. Consequently, raw ML beta weights may exhibit poorer MCC scores when assessed 

using Welch's T test due to this mixed representation within network blocks. While the beta 
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weights derived directly from the predictive LSVR model offer insights into the influence of 

resting-state functional connectivity on label prediction, they inherently lack direct biological 

interpretation. In contrast, the inversion model introduces a crucial layer of biological context by 

preserving the individual effects of each feature while encompassing the holistic model framework. 

This aspect is pivotal for advancing our understanding beyond mere prediction accuracy toward a 

more nuanced exploration of the underlying neurobiological mechanisms. 

4.3 Limitations and Future Work 
Our study was confined to the analysis of Human Connectome Project (HCP) data, thus limiting 

the extrapolation of our findings to other datasets. The applicability and efficacy of the bagging 

method on diverse datasets remain uncertain and warrant exploration in future research endeavors. 

While we integrated inversion models to enhance biological interpretability, we did not assess the 

impact of bagging methods on model accuracy, which is a crucial aspect often intertwined with 

reliability. Furthermore, in our study, each result has been computed only once. To thoroughly 

analyze the variance and ensure the robustness of our findings, it is essential to conduct multiple 

computations. Lastly, it's imperative to acknowledge the variability in network-level analyses 

across different datasets, necessitating tailored approaches and potentially disparate testing 

methodologies. The choice of analysis techniques can significantly influence the efficacy of the 

bagging method, highlighting the importance of carefully considering experimental design and 

analytical strategies in future investigations. 
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Chapter 5: Conclusion 
Our study investigated the reliability of Human Connectome Project (HCP) data and the efficacy 

of the bagging method in improving data consistency. Despite efforts to mitigate individual 

variability through bagging on individual time series data, the reliability of HCP data remained 

insufficient. However, employing the bagging method on subject-level data demonstrated 

promising results, particularly in enhancing the reliability of model weights. Notably, the Linear 

Support Vector Regression (LSVR) model exhibited enhanced network-level reliability compared 

to univariate Pearson correlations. Moving forward, further research is warranted to explore the 

generalizability of these findings across diverse datasets and to refine methodologies for 

optimizing data reliability and interpretability in neuroimaging studies. 
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