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ABSTRACT OF THE DISSERTATION  

Biotic Interactions and the Maintenance of Biodiversity across a Tropical Elevational Gradient 

by 

David Henderson 
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Dr. Jonathan A. Myers, Chair 

 

A major goal of community ecology is to elucidate the processes that create patterns of 

biodiversity. Specifically, the discipline focuses on the processes that influence community 

assembly, diversity gradients, and/or species coexistence. Coexistence mechanisms have been 

traditionally thought of in terms of resource competition, whereby species are able to coexist by 

having different niche requirements, both biotic and abiotic, that maximize their fitness. Much of 

the previous work in this arena focused on the abiotic factors that influence species coexistence. 

However, many of the seminal ideas about the forces that drive abundance and coexistence 

patterns hypothesized that it was differences in the nature of biotic interactions between those 

species that were responsible for the observed patterns. However, due to the variability and 

complexity of biotic interactions, competition was generally the only interaction to be 

extensively considered. Further research gave evidence to the idea that antagonistic interactions 

with natural enemies are a possible niche axis that can determine coexistence of the hosts.  
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The vast number of natural enemies and the even greater number of defensive chemical 

metabolites provide a probable mechanism of niche differentiation, where a species niche is 

defined by those enemies that they avoid through their defenses. Advances in analytical chemical 

metabolomics techniques are used in this dissertation to examine the role that more complex 

interaction types play in structuring communities. More recent research utilizing these techniques 

have found evidence of the role that plant chemical defenses play in mediating interactions 

between plant hosts and their natural enemies. Theoretical and technical advances are combined 

here to investigate the factors that drive species diversity patterns and that maintain species 

coexistence in 3 principal ways: 1) by testing the relative importance of competitive interactions 

among tree species across an elevational-diversity gradient in the tropical Andes (Chapters 2, 3); 

2) by testing the relative importance of enemy mediated interactions via chemically-mediated 

niche differences across the same elevational-diversity gradient (Chapters 3, 4); and 3) by 

exploring the effects of the biotic and abiotic environments on trait patterns and community 

assembly processes.  

 Chapter 2 investigated whether competitive interactions among tropical tree species vary 

systematically across a large-scale biodiversity gradient. Using tree species data collected from a 

network of permanent plots in the Bolivian Andes, I quantified the taxonomic and functional 

differences of neighboring species of individuals of each species within a plot. The results 

showed that the taxonomic composition of tree neighborhoods becomes more stochastic with 

increasing species diversity. This suggests that competitive interactions appear to be more 

unpredictable among neighborhoods of the same species in higher-diversity tree communities. 

Interestingly, similar patterns were not detected in the functional trait composition of tree 
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neighborhoods. Taken together, the two patterns suggest that species traits maybe influenced by 

the abiotic environment and that biotic interactions other than competition could be at play.  

Chapter 3 investigated how enemy-mediated interactions varied over a gradient of 

climate, diversity, and elevation using an ecological metabolomics approach. Defensive chemical 

traits were measured from leaf compounds and used to gauge the strength of enemy mediated 

interactions within communities. The results showed that chemical dissimilarity among tree 

species increased with increasing community diversity and toward more benign conditions and 

that evolution of chemical defenses is more rapid along these gradients. This implies that natural 

enemies impose a stronger selective pressure on plant chemical defenses in more diverse 

communities and in more productive climates, and that the defensive chemical compounds that 

hosts use are less phylogenetically conserved in higher diversity communities. The differential 

strength of biotic interactions and the greater evolutionary lability of defensive metabolites 

across communities implies that these enemy mediated interactions likely play a role in the 

maintenance and origin of biodiversity gradients.  

Chapter 4 tested how community assembly is affected by both biotic and the abiotic 

environments, by examining the relationships between two suites of plant functional traits 

(chemical and morphological), and abiotic site characteristics (climate and soils). Chemical traits 

were used to approximate the biotic environment while morphological traits approximated the 

abiotic. The results showed systematic variation in morphological trait patterns but no similar 

patterns among the chemical traits. The abiotic environment was found to have a stronger than 

expected influence on chemical trait patterns, where trees may utilize chemical defenses 

differently in wet and dry environments. A focus on individual chemical defensive compounds to 
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gauge their influences on community assembly and dynamics would be a fruitful continuation of 

this work.  

Overall, this thesis sheds light on how local biotic interactions scale up to affect larger-

scale biodiversity patterns in tropical montane ecosystems. Understanding the link between local 

scale interactions and large-scale patterns is key for finding ties between complementary 

research and for protecting and conserving biodiversity by accurately predicting future changes 

between species.  
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Chapter 1: Introduction 

1.1 Background 

The biodiversity found on the planet is both tremendous and variable (Darwin 1859, 

Schemske et al. 2009). The causes of this variation in diversity have led biologists and 

biogeographers to propose many different theories (Hutchinson 1959, Tilman and Pacala 1993, 

McGill 2010) in the search for the community assembly mechanisms (i.e., “assembly rules”; 

Diamond 1975) that organize and maintain these natural ecosystems (Diamond 1975, Ricklefs 

2003, Kreft and Jetz 2007). Understanding the mechanisms that govern spatial patterns and the 

maintenance of biodiversity has widespread implications for conservation and management in a 

rapidly changing world (Lomolino 2001). 

Changes in mechanisms across gradients 

There is some disagreement as to whether ecological communities are more strongly 

structured by large-scale regional forces, such as speciation and dispersal, or by more local 

interactions, such as competition, predation and disturbance (Ricklefs 2008). The use of a 

gradient (environmental/ diversity) can provide insight about the relative roles of regional and 

local processes over large scales (Lomolino and Brown 2006, Tello et al. 2015), and resolve this 

long-standing difference of viewpoints.  

Changes in diversity across gradients are hypothesized to be driven by changes in the 

mechanisms that assemble natural communities (Myers et al. 2013, Brown 2014, Tello et al. 
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2015). This variation in community assembly mechanisms is thought to be the result of sampling 

effects from species pool variation along the gradient (Kraft et al. 2011) as well as local 

community assembly mechanisms, such as environmental filtering, dispersal limitation, 

facilitation, priority effects or any number of local biotic interactions (Tello et al. 2015). 

However, the scale of most gradients and the complexity of the communities within them make 

the study of these mechanisms extremely difficult. Despite evidence of scale dependent (Tello et 

al. 2015), geographic (Myers et al. 2013) and abiotic (McFadden et al. 2019) variation in 

community assembly mechanisms, there is still great uncertainty about the forces that generate 

diversity gradients, as the patterns detected could be the result of many different combinations of 

different assembly mechanisms acting in concert. 

Among the sometimes conflicting (though non-mutually exclusive) ideas about 

community assembly, one common thread is that most are influenced, either directly or 

indirectly, by biotic interactions (Schemske 2009). Biotic interactions, described as, “complex 

influences of organism upon organism”, by Alfred Wallace, are indeed complex, variable, and 

thus, difficult to quantify. This is perhaps why there has been considerable research at the 

community level for other proposed community assembly mechanisms (such as environmental 

filtering, competitive interactions, dispersal limitation and neutral assembly mechanisms; 

Spasojevic and Sunding 2012, Gerhold et al. 2015), but most studies of biotic interactions focus 

on specific species pairs, for example in plant/ herbivore systems (Dyer et al. 2007) or two 

species competition studies. There has been far less research investigating the community (or 

larger) level patterns of biotic interaction (Schmeske et al. 2009). 

Biotic interactions 
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Biotic interactions can influence community assembly by means of predation (top down, 

keystone effects), competition (competitive exclusion, niche partitioning, character 

displacement) or through more specialized interactions with natural enemies. However, evidence 

suggests that their influence varies regularly across environmental gradients (Callaway et al. 

2002, Schemske et al. 2009, Wiegand et al. 2012). This regular variation has helped to define 

some of the seminal theories (Darwin 1859, Wallace 1878, Lomolino et al. 2006) about the 

mechanisms underlying the major, general patterns of life on the planet. Examples include 

hypotheses that link the latitudinal diversity gradient to an assumed gradient in the importance of 

biotic interactions (Dobzhansky 1950, Schemske et al. 2009) as well as prominent ideas focused 

on species coexistence (Janzen 1970, Connell 1971, Kraft et al. 2015). 

Competitive interactions 

There has long been a focus on competition between species as a driver of occurrence 

patterns among members of a community (HilleRisLambers et al. 2012). Two competing species 

cannot coexist if both rely on the same resource (Lotka 1927, Volterra 1927). The classic belief 

was that for competing species to coexist, they must show niche differentiation, or maximize 

their fitness in different abiotic and biotic environments, in order to reduce competition (Gause 

1934, Chesson 2000). This generally involves tradeoffs (Silvertown 2004), such that intraspecific 

competition is greater than interspecific competition (Chesson 2000, 2003).  

Niche differentiation focused on competitive interactions has been supported in studies of 

animal communities, but is less compelling for organisms such as plants, that rely upon similar 

resources and show little trophic differentiation (Chase and Liebold 2003, Silvertown 2004, but 

see Adler et al. 2010). In highly diverse communities, especially, the number of coexisting 



4 

 

species, make the idea of each one occupying its own resource-based niche untenable, despite 

evidence that plants do compete for vital resources (Fowler 1986, Aarssen and Epp 1990, 

Goldberg and Barton 1992, Casper and Jackson 1997).  

Along a gradient, biotic interactions might be expected to shift from highly competitive 

in resource-rich, climactically benign areas to less competitive, or even mutualistic interactions 

in areas that impose harsh abiotic selection pressures. This expected shift is based on the 

assumption that abiotic factors such as wind, temperature and seasonality are less limiting to 

plant growth in the more benign areas (i.e. the tropics, lowland elevations), allowing plants to 

grow until growth or reproduction is limited by resources, while in abiotically harsh areas (i.e. 

the north temperate zone, high elevations) factors such as wind and temperature may limit plant 

growth more than resource availability (Callaway et al. 2002). 

Enemy mediated interactions 

Recent (Terborgh 2012, Sedio et al. 2018, Levi et al. 2019), as well as more classical 

studies (Dobzhansky 1950, Janzen 1970, Connell 1971) suggest that host-enemy interactions 

play an important role in defining community structure and maintaining the coexistence of the 

species found within those communities.  

The way that biotic interactions influence community assembly relies upon the role that 

chemical defenses play in enemy selection for host defenses. Differences in chemical defenses 

among (plant host) species may make it possible for those species to ‘escape’, from the natural 

enemies of neighboring heterospecific species, giving them a fitness advantage. In contrast to 

other plant strategies (e.g. extraforal nectaries, rapid leaf expansion, trichomes, synchrony and 

timing of leaf production), there are thousands upon thousands of unique defensive chemical 
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compounds, leading to a nearly infinite number of chemical niches (Coley & Kusar 2014, Coley 

et al. 2018). This expanded potential for niche differentiation along chemical axes, may provide 

a more accurate explanation of how species are able to coexist in high diversity communities. 

Along a gradient, enemy mediated biotic interactions would be expected to shift from 

stronger and more specialized interactions at lower elevation, more resource-rich, climactically 

benign areas to weaker and less specialized interactions, in areas that impose stronger abiotic 

selection pressures (Schemske et al. 2009, Sam et al. 2020). These effects would be manifest in 

the changes in the diversity and abundances of the chemical defensive metabolites used by plant 

hosts within those areas. 

 Recent advances in chemical analytical techniques (Sedio 2017, Sedio et al. 2018) now 

allow researchers to measure community-level, chemical similarity, between and within species 

to predict how interactions with natural enemies affect community structure. When measured 

across a gradient, systematic changes in community chemical composition, can give clues about 

how biotic interactions change in tandem with other variables (environmental, demographic, 

seasonal/temporal). These clues into how biotic interactions change systematically can be used to 

more accurately predict the mechanisms that drive the patterns of community structure across 

gradients. 
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1.2 Chapter Overview 

That there are large systematic patterns of diversity across the planet has been well 

established (Darwin 1859, Shemske et al. 2009). The mechanisms that maintain diversity are less 

well characterized. It could be that the same mechanisms that maintain diversity in an upper 

latitude, deciduous forest are the same, and operate by the same principles as those that maintain 

diversity in an incredibly species-rich tropical forest. Alternatively, the same mechanisms may 

operate differently or with differing strength in different regions, or it could be that there are 

completely different mechanisms operating among regions of the world. This dissertation will 

help to fill gaps in our knowledge of the mechanisms that maintain diversity.  

Chapter 2 investigated whether biotic interactions vary systematically across large scale 

biodiversity gradients. This was done by examining the tendency of biotic interactions within 

communities to be more diffuse compared to communities where there are few species that 

consistently interact. The idea of diffuse interactions was conceived by Hubbell and Foster in 

1986 and was a major tenet of the later neutral theory. A situation where diffuse interactions 

might occur is where in communities with many species, an individual of a given species may 

interact with a group of very different species than other individuals of its species. This can 

create a situation where selection would act on the species as a whole by the average over time of 

all the different neighboring species that individuals have interacted with. I tested this idea by 

quantifying the taxonomic and functional differences of neighboring species of individuals of 

each species within a plot. The plots tested covered a range of climactic conditions and species 

diversities. 
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Chapter 3 tested the hypotheses that stronger and more specialized biotic interactions 

contribute to higher species diversity at lower elevations and latitudes. This was done by 

quantifying the effect of multi tropic, plant enemy interactions by measuring the chemical traits 

used defensively. A metric that describes the pairwise chemical distance between species within 

a plot was tested against plot diversity and environmental variables to determine the strength of 

enemy-mediated biotic interactions operating within the plots. 

 

Chapter 4 investigated how community assembly is affected by both the biotic and the 

abiotic environment by examining the relationships between two suites of plant functional traits: 

chemical traits (chemical defensive compounds) that are defined by to biotic interactions, and 

morphological traits (resource acquisition) that are defined by abiotic site characteristics. This 

was accomplished by examining the functional distance, measured as functional dispersion, of 

the species with subplots of 5 – 20 m. The functional dispersion scores of each plot, composed of 

numerous subplots, were tested against climactic and environmental variables. A null model that 

simulated community trait patterns was used to understand the effect of both the biotic and the 

abiotic environments on community structure. 

 

1.3 Large Scale Diversity Patterns: Elevational Gradients 

Perhaps the most well-known pattern of biodiversity on the planet is the latitudinal 

diversity gradient (Forster 1778, Turner 2004). There are many explanations for the pattern of 

increasing diversity from the poles to the equator, but, some of the most well accepted 

explanations attribute the gradient to evolutionary history, area or increased intensity of biotic 
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interactions (Mittelbach et al. 2007, Schemske 2009). Although this global pattern has been 

investigated for centuries, there is still no consensus as to its cause. However, as many studies 

have concluded, (Ricklefs & Schluter 1993, Lawton 1996, Brown & Lomolino 1998), general 

patterns in nature may result from the combined effects of many non-mutually exclusive 

processes, rather than the assumed independent effects of a single dominant force (Lomolino 

2001). The potentially complex nature of general patterns of diversity, combined with the fact 

that there is only one latitudinal gradient (on two hemispheres), makes an already difficult search 

for answers even more daunting. Elevational gradients, however, may provide a system where it 

is possible to find greater insight into the workings of large-scale, general biodiversity patterns 

(MacArthur 1972, McCain and Grytnes 2010).  

The elevational gradients found along the slopes of mountains have long acted as a 

testing system critical to the development of central theories of biology (Lomolino 2001). 

Historical examples abound, from Linnaeus’s (1743) supposed Mount Ararat, in Turkey, where 

Noah landed the Ark, to von Humbolt’s (1849) studies on Ecuador’s Chimborazo volcano, and 

even including Wallace (1876) and Darwin’s (1839) studies in Indonesia and Chile, respectively. 

Studies that have utilized elevational gradients in their research have found that elevational 

gradients on mountains roughly mirror the latitudinal diversity gradient from equator to poles as 

one ascends up to the peak (Stevens 1992, Brown 2001). Unlike the latitudinal diversity gradient, 

however, elevational gradients are replicated many times over the surface of the planet. These 

repeated natural experiments can provide an arena in which to separate different mechanisms 

operating at different spatial scales (Tello et al. 2015), by using comparative analyses (McCain 

2005). Furthermore, unlike the latitudinal gradient, where biodiversity turnover/changes occur 

over large degrees of spatial area, the biodiversity transitions on elevational gradients are rapid, 
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sometimes with lowland species having dispersal ranges into the highlands and vice versa. This 

means that dispersal limitation may be unlikely at the edges of a species elevational range 

(Gworek et al. 2006). This makes for a great system in which to test different community 

assembly mechanisms such as abiotic filtering, dispersal limitation, competitive exclusion, 

neutral assembly theories. 

Although it is true that elevational gradients are replicated many times over, the 

mountains that they occur on are not the same (Rahbek et al. 2019). The widely assumed pattern 

of a monotonic decrease in richness with increasing elevation is by no means consistent across 

every mountain range (Rahbek 1995, Grytnes 2002, Ko¨rner 2007). Nor does the assumption that 

mountain land area steadily decreases with elevation hold for every mountain range (Ko¨rner 

2007). Some mountain ranges such as the Rockies of North America actually have larger areas 

slightly above the base of the mountain, and others, such as the Himalayas of Asia, contain the 

greatest surface area on flat plateaus found at very high altitudes. However, differences 

notwithstanding, elevational gradients offer a unique opportunity to gain insight into the large, 

general drivers of patterns organizing the life on Earth. 
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Chapter 2: Disentangling Determinism and 

Stochasticity in Local Tree Neighborhoods 

Across a Tropical Elevational Gradient 

2.1 Introduction 

Geographic variation in biotic interactions has been hypothesized to shape the assembly 

and diversity of ecological communities from local to biogeographic scales (Wallace 1878, 

Dobzhanksy 1950, MacArthur 1972, Schemske et al. 2009, Fine 2015). Within communities, 

patterns of diversity reflect the net outcomes of negative species interactions including resource 

competition and predation, and positive species interactions including facilitation and 

mutualisms. Among communities, the nature and strength of these interactions may change 

systematically across ecological gradients. Prominent examples include changes in the strength 

of interspecific competition across productivity gradients (Huston 1979), changes in the strength 

and specialization of plant-enemy interactions across latitudinal gradients (Janzen 1970, Connell 

1971), latitudinal and elevational gradients in the relative importance of abiotic and biotic 

controls on biodiversity (Schemske et al. 2009, HilleRisLambers et al. 2013), and changes in the 

relative importance of facilitative interactions across abiotic stress gradients (Callaway et al. 

2002). Despite ample evidence that biotic interactions, particularly competitive interactions, have 

a strong effect on the composition of local communities (Goldberg & Barton 1992, Choler et al. 

2001), far less is known about how the nature or strength of competitive interactions differs 

between communities or regions (Diamond 1975, Schemske et al. 2009). Understanding how 

competitive biotic interactions vary across gradients is increasingly important for predicting how 
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species ranges, species diversity, and ecosystems respond to environmental change (Urban et al. 

2016).     

 Theory suggests that competitive biotic interactions may shift from more deterministic 

outcomes in low-diversity communities to more stochastic outcomes in high-diversity 

communities (Hubbell and Foster 1986, Hurtt and Pacala 1995, Chisholm and Pacala 2011). 

Based on their observations in a tropical tree community, Hubbell and Foster (1986) 

hypothesized that chance and history are more important determinants of community structure in 

species-rich communities than either competition or abiotic factors. They observed a high degree 

of variability in the taxonomic identities of neighboring trees from tree neighborhood to tree 

neighborhood among individuals of the same species. In this way, high species diversity could 

lead to unpredictable and inconsistent species-species interactions, which leads to diffuse 

evolution by weakening selection for niche differentiation. Ecological interactions among 

species in these communities should be weak, and result in stochastic community assembly. In a 

spatial analysis of three large forest plots with different tree species richness (two tropical and 

one temperate), Wiegand et al. (2012) found support for the hypothesis that the spatial 

arrangement of species becomes increasingly stochastic in more species-rich communities. These 

findings suggest that stochastic outcomes of diluted species interactions can overpower effects of 

more predictable (deterministic) species interactions in species-rich communities.  

The Hubbell-Foster hypothesis makes two key predictions about how the composition of 

biotic neighborhoods should vary across biodiversity gradients. First, it predicts that 

neighborhoods of individuals surrounding a given focal species (conspecific neighborhoods) are 

more variable (high compositionally dissimilarity) in high-diversity communities than in low-

diversity communities. This corresponds to the original observation by Hubbel and Foster (1986) 
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and represents the proposed effects of high diversity that leads to diffuse evolution and weak 

interspecific interactions. Second, it predicts that compositional differences among conspecific 

neighborhoods are closer to random (more stochastic) in high-diversity communities than in low-

diversity communities. This reflects the proposed outcome of weak species interactions on local 

species distributions and community structure. Both predictions can be tested by analyzing 

patterns in the taxonomic and functional-trait composition of local neighborhoods. If functionally 

similar species compete more strongly for shared resources than functionally dissimilar species, 

functionally similar species are less likely to coexist at local scales (Adler et al. 2013), resulting 

in non-random patterns in the trait composition of conspecific neighborhoods. Therefore, the 

composition of functional traits at neighborhood scales can provide insights into how biotic and 

abiotic processes structure communities (e.g., Kraft et al. 2008, Fortunel et al. 2016), especially 

in communities with functionally redundant species that share similar traits (Fukami et al. 2005). 

Research suggests that functional trait patterns may reflect abiotic factors of the environment 

(Dubuis et al. 2013). These abiotic factors are taxon independent and may have value in 

prediction of community arrangements (Webb et al. 2010, Cadotte et al. 2015). However, 

identification of functional trait patterns at biogeographic scales remains elusive (Lamanna et al. 

2014) and the generality of these processes in shaping large-scale diversity gradients remains 

unknown. Moreover, empirical tests of these predictions have largely focused on either the 

taxonomic or functional composition of neighborhoods within single communities (Wiegand et 

al. 2017), resulting in key gaps in our understanding of how neighborhood-scale patterns and 

processes vary across larger-scale diversity gradients. 

In this study, we tested the Hubbell and Foster hypothesis by examining if determinism 

and stochasticity in local tree neighborhoods change in relative importance across a tropical 
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elevational gradient. As trees are sessile organisms, their immediate biotic neighborhood has a 

strong influence on their fitness (Hubbell et al. 2001, Canham & Uriarte 2006, Uriarte et al. 

2010), making them an ideal system to study how competitive interactions affect the structure of 

local neighborhoods. Using 31 1-ha forest plots distributed across an ~3000 m elevational-

diversity gradient in the Bolivian Andes (15-137 tree species per plot), we analyzed patterns in 

the taxonomic and functional composition of conspecific neighborhoods at three neighborhood 

scales (neighborhood radii of 10, 15, and 20 m). To test the prediction that compositional 

differences among conspecific neighborhoods increase from low-diversity to high-diversity 

communities, we first calculated the taxonomic and functional dissimilarity among 

neighborhoods of all individuals of each species within a plot. We then tested whether the mean 

dissimilarity across species’ neighborhoods increased with forest-plot diversity. To test the 

prediction that compositional differences among conspecific neighborhoods are more random in 

high-diversity communities than in low-diversity communities, we used a null model to 

randomize the taxonomic identity and functional traits of both all (conspecific and 

heterospecific) and heterospecific only neighboring trees. We then tested whether mean 

deviations from the null model decreased with forest-plot diversity. Larger deviations from the 

null model would indicate a stronger effect of local ecological processes that diversify or 

homogenize the species taxonomic or trait composition of neighbors across conspecific 

neighborhoods.  

 

2.2 Methods 

Forest plot network in the Bolivian Andes 
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Our study utilized data collected by the Madidi Project, a 20-year collaboration between 

the Herbario Nacional de Bolivia (La Paz, Bolivia) and the Missouri Botanical Garden, (St. 

Louis, USA) to document the flora of the Madidi region in the Andean Mountains of Bolivia 

(Friedman-Rudovsky 2012, Tello et al. 2015). The elevational gradient encompasses different 

forest types and a broad range of abiotic conditions (Rafiqpoor & Ibish 2004). The Madidi 

Project dataset includes a network of 50, 1-ha forest plots in which all woody plants (hereafter 

trees) with a diameter at breast height (DBH) > 10 have been tagged, mapped, measured, and 

identified to species or morphospecies. A small fraction of individuals (<0.5%) could not be 

identified in this way and were removed from all analyses. For this study, we used 31 plots in 

which 8 plant functional traits were measured on tagged trees throughout 3-4 censuses, roughly 

every 5 years (Table S1). The 31 forest plots range in elevation from 724-3334 m and species 

richness from 15 species to 137 species (Table S2). 

 

Functional trait data 

For each species in each forest plot, we measured eight functional traits including leaf, 

stem, and whole-plant traits associated with plant life-history strategies (Table S1; Figure S1). 

Traits were chosen to encompass plant life history and overall growth strategies: maximum 

height and maximum diameter at breast height (DBH), which are associated positively with the 

position of the species in the vertical light gradient of the vegetation, competitive vigor, 

reproductive size, potential lifespan, and whether a species is able to establish and attain 

reproductive size between disturbance events; specific leaf area (SLA), which is associated with 

higher photosynthetic rates and grow faster, but lower resistance to damage; relative growth rate 
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(RGR), which is associated with tree life history strategy with respect to environmental 

productivity (soil nutrients, light moisture), where a higher RGR indicates faster growth but less 

defenses; leaf thickness, which is associated with abiotic environment, where sun leaves tend to 

be thicker than shade leaves as well as lower in N%, slower in CO2 diffusion and subject to 

more internal shading of chloroplasts; leaf size, which represents a compromise between growth 

and resource use efficiency, where larger leaf sizes generally grow faster, but are less efficient; 

twig specific density is positively associated with stability, defense, architecture, hydraulics, C 

gain and growth potential of plants; relative twig bark thickness represents a tradeoff between 

growth and survival as thicker bark protects buds and tissues against attack by pathogens, 

herbivores, frost or drought, but is associated with slower growth (Perez-Harguindeguy et al. 

2016).   

Functional traits were collected over multiple censuses from 5 individuals of each 

species, when possible, per plot. The field collection and laboratory methods used in the 

determination of functional trait values were adapted from (Cornelissen et al. 2003) and can be 

read in full detail in the Madidi Project methods manual (Jørgensen et al. 2015).  

The trait values assigned to each species were the average trait values for each species in 

each plot. The traits used were for the most part not strongly correlated (r2 = < 0.27), however 

traits such as SLA and leaf thickness (r2 = -0.65), and maximum height and DBH (r2 = 0.68) 

were more strongly correlated. We calculated the mean pairwise distance (MPD) of trait values 

both as a multivariate measure, which includes all eight functional traits combined, as well as 

univariate measures for single traits (Table S1; Figure S1). 

 

Taxonomic and functional composition of tree neighborhoods 
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 We calculated the taxonomic and functional composition of tree neighborhoods in three 

steps. First, we defined a focal tree’s biotic neighborhood (hereafter neighborhood) as all the 

individuals (both conspecific and heterospecific) that occur within a circle of a given radius 

drawn around a focal tree. Neighborhoods were built this way for all individuals of each species 

in a plot. Individuals were excluded if their distance to the edge of the plot was smaller than the 

neighborhood radius. This prevented using trees with artificially incomplete neighborhoods. We 

performed all analyses at three neighborhood sizes: 10, 15 and 20 m radii. In addition, we 

performed all analyses by defining neighborhoods including only heterospecific neighbors. 

These analyses yielded similar results to analyses including both conspecific and heterospecific 

neighbors. For simplicity, we therefore present results including both conspecific and 

heterospecific neighbors. 

Second, for each species in each forest plot, we calculated the taxonomic dissimilarity 

among all intra-specific pairs of neighborhoods (Figure 1). We calculated pairwise taxonomic 

dissimilarity using an abundance-based dissimilarity metric (Bray-Curtis). We calculated 

functional dissimilarity using the mean pairwise distance (MPD) of trait values with the comdist 

function (picante package) in R.  

Third, for each species in each forest plot, we calculated mean pairwise dissimilarity of 

each neighborhood, both taxonomically and functionally, which represents the typical variability 

in neighborhood composition from one individual of that species to the next. We aggregated this 

data to the community level by calculating an abundance weighted mean for the whole forest 

plot. This plot-wide dissimilarity metric represents the typical neighborhood dissimilarity for all 

of the species in a plot. 
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Null model of random assembly  

To evaluate how deterministic the taxonomic and functional composition of 

neighborhoods are, we compared the observed compositional neighborhood dissimilarities to 

values produced by a randomized null model. The null model accounts for the mechanisms 

responsible for plot-level species abundances and richness but eliminates the effects of the local 

ecological processes that determine the composition of individual tree neighborhoods. In this 

way, empirical deviations from null model expectations can be used to quantify the relative 

effects of those local ecological interactions (Chase & Myers 2011; Kraft et al. 2011). High 

deviations, in this context, suggest a stronger role for local deterministic interactions. 

 For the null model, we defined a species pool for each forest plot as the total number and 

relative abundances of species observed in that plot. In each iteration of the null model, null 

neighborhoods were created by randomly sampling individuals from the plot without 

replacement from the species pool. In this way, the null model constrained the plot-level species 

abundance distribution (SAD), as well as the spatial distribution of all trees, to be the same in 

null and observed datasets, but switches the identities of the species contained within. Next, we 

calculated null neighborhood dissimilarities using the same methods as for the observed data. We 

ran a fixed number of iterations of the null model (n = 1000). This produced a distribution of null 

values of taxonomic and trait dissimilarities that were expected due to sampling from plots of 

variable diversities along the gradient, but in the absence of local ecological interactions. Based 

on this frequency distribution, we calculated a standard effect size (SES; Kraft et al. 2011) for 

pairwise SES values between all conspecific neighborhoods and then averaged all SES values for 
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each species in each plot, and across all species in each plot, as described for the observed data. 

The SES was calculated as: 

 

SES = obs. dissimilarity – mean exp. dissimilarity 

SD of expected dissimilarities 

 

Where the mean exp. dissimilarity and the SD of expected dissimilarities are the average and 

standard deviation of the frequency distribution of null values for a plot and the obs. dissimilarity 

are the plot dissimilarity values calculated from the observed data. 

 

Hypothesis testing 

In order to investigate the effects that community diversity has on community assembly, 

we quantified diversity in several ways: species richness is an intuitive measure but does not take 

into account relative abundances or evenness of species in communities, the Shannon diversity 

index which does take into account community evenness but not abundance, and the inverse 

Simpson’s index which accounts for both community relative abundances and evenness. Results 

are shown for the inverse Simpon’s measure of diversity throughout We obtained quantitatively 

similar results using the Shannon diversity index and using observed plot species richness.  

To test our predictions, we regressed the plot-wide mean observed neighborhood 

dissimilarities and plot-wide mean SES values against plot species diversity. If, as proposed by 

the Hubbell and Foster hypothesis, competitive interactions among tree species shift from more 

deterministic outcomes in low-diversity communities to more stochastic outcomes in high-

diversity communities, we would expect the mean observed dissimilarities of taxonomic and 
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functional neighborhoods to increase with plot species diversity. In addition, we would expect 

mean SES values of neighborhood taxonomic and functional dissimilarities to vary 

systematically with plot species diversity, from larger deviations from the null model in lower-

diversity plots (i.e. less stochastic) to smaller deviations from the null model in higher-diversity 

plots (i.e. more stochastic).  

 

2.3 Results 

Taxonomic dissimilarity of tree neighborhoods 

 

Across forest plots, mean observed taxonomic dissimilarity among conspecific tree 

neighborhoods increased significantly with plot species diversity at all three neighborhood sizes 

(Figure 2). This relationship was strongest at the smallest neighborhood size (10-m 

neighborhood radius: P = 1.1e-09 , r2 = 0.74; Figure 2A), very similar at the intermediate 

neighborhood size (15-m neighborhood radius; P = 1.052e-09, r2 = 0.74; Figure 2C), and weaker 

at the largest neighborhood size (20-m neighborhood radius: P = 4.7e-09, r2 = 0.72; Figure 2E).   

Null-model deviations of taxonomic dissimilarity (mean standardized effect sizes; SES) 

decreased significantly with plot species diversity at the all neighborhood sizes (Figure 2). This 

relationship was strongest at the smallest neighborhood size (10-m neighborhood radius: P = 

0.0003, r2 = 0.37; Figure 2B), weaker at the intermediate neighborhood size (15-m neighborhood 

radius; P = 0.0008, r2 = 0.32; Figure 2D), and weakest, though significant at the largest 

neighborhood size (20-m neighborhood radius: P = 0.03, r2 = 0.12; Figure 2F). At all three 
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neighborhood sizes, null-model deviations were positive in most forest plots, indicating higher 

taxonomic dissimilarity among conspecific neighborhoods than expected by chance.  

 

Functional dissimilarity of tree neighborhoods 

In contrast to taxonomic dissimilarity, mean observed functional dissimilarity of 

conspecific neighborhoods and null-model deviations of functional dissimilarity were generally 

unrelated to plot species diversity at all three neighborhood sizes (Figure 3; Table S2). Similarly, 

there were few significant patterns observed for all traits combined and individual traits, with a 

few exceptions. First, mean observed functional dissimilarity of DBH was positively related to 

plot species diversity at the 15-m neighborhood scale (P = 0.034, r2 = 0.13; Figure 3E; SES: P = 

0.84, r2 = -0.035; Figure 3F), but this relationship was not significant for null-model deviations 

of DBH (Figure 3F). This relationship also held at the 10m (P = 0.032, r2 = 0.13; Figure S3E; 

SES: P = 0.96, r2 = -0.037; Figure S3F) and 20m (P = 0.035, r2 = 0.12; Figure S3E; SES: P = 

0.84, r2 = -0.035; Figure S3F) scales.  Also, mean observed dissimilarity in RGR varied 

positively with plot species diversity at the 10m neighborhood size (P = 0.034, r2 = 0.13; Figure 

S3C), and the null deviations varied negatively with plot diversity (SES: P = 0.012, r2 = 0.19; 

Figure S3D). At the 20m scale, the observed relationship of RGR with plot diversity was not 

significant, while there was a significant negative relationship with the SES comparisons (P = 

0.11, r2 = 0.70; Figure S3C; SES: P = 0.012, r2 = 0.19; Figure S3D). For the majority of forest 

plots, null-model deviations of all traits combined, and specific leaf area (SLA) were negative 

(Figure 3B, D), indicating lower mean functional dissimilarity among conspecific neighborhoods 

than expected by chance. Null-model deviations for other individual traits (e.g., maximum tree 
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diameter & twig specific wood density; showed more variable patterns, with a combination of 

positive, zero, and negative SES (Figure 3F, H).   

2.4 Discussion 

Overall, we found strong support taxonomically but no support functionally for the 

Hubbell-Foster hypothesis. In support of our predictions, we found that the dissimilarity in 

neighborhood species composition increased with plot species diversity at all three neighborhood 

scales (Prediction 1). We also found that null-model deviations of taxonomic dissimilarity 

decreased with plot species diversity at small to intermediate neighborhood scales (10–15 m 

neighborhood radii) (Prediction 2), suggesting more random differences in species composition 

among local neighborhoods in higher-diversity communities. We found that the relationship 

between null-model deviations of taxonomic composition and forest plot diversity was strongest 

at the smallest neighborhood size (10-m radius) and became insignificant at the largest 

neighborhood size (20-m radius). This result is in accord with other studies that have observed 

the strongest effects of neighboring trees on focal individuals at smaller neighborhood scales 

(Hubbell et al. 2001, Comita et al. 2010, Wiegand et al. 2012, Wiegand & Moloney 2014, 

Murphy et al. 2017). However, neither of the predictions were upheld for most tests when the 

functional composition of tree neighborhoods were analyzed. Together, these findings suggest 

that competitive interactions play a stronger role in shaping the taxonomic composition of local 

biotic neighborhoods, but not necessarily the composition of species’ traits, in lower-diversity 

tree communities. In contrast, competitive interactions appear to be more unpredictable among 

neighborhoods of the same species in higher-diversity tree communities. 
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This tendency towards more random competitive interactions among species in higher-

diversity communities can help to explain differences in species diversity across ecological 

gradients. In high diversity communities, where individuals of a single species can have 

dissimilar neighbors, the selective strength of a single pairwise interaction is, by necessity, 

reduced, and so this benign abiotic environment may lead to a community where competitive 

interactions among pairs of species are largely diffuse. A feedback loop of a slow accumulation 

of species could occur as new species disperse to or originate within a local community, but are 

not selectively excluded over time, resulting in the maintenance of higher-diversity communities. 

In lower-diversity communities, in contrast, more frequent, predictable competitive interactions 

would lead to species being excluded and thus lower diversity over time. 

 We found that the taxonomic dissimilarity of tree neighborhoods varied systematically 

across the diversity gradient, from less variable and non-random in lower-diversity forest plots to 

more variable and random in higher-diversity forest plots (Figure 2). Previous studies 

investigating the effects of competitive interactions on community assembly have largely 

focused on environmentally driven, deterministic niche differences (Weiher & Keddy l995, 

Chesson 2000, Cavender-Bares et al. 2006, Mayfield & Levine 2010). However, the 

unpredictable identity of neighbors among individuals of a focal species in high-diversity 

communities may increase the unpredictability of neighborhood interactions. The tendency of 

species-rich communities to have few dominant and many rare species (Hubbell 2015, Silk et al. 

2015) further increases the unpredictability of individual biotic neighborhoods and further limits 

opportunities for pairwise species interactions, as there may be less individuals of each species 

with which to interact (Gaston 2000). This variability among biotic neighborhoods also has the 

potential to slow rates of competitive exclusion, when recruitment of individuals of a species in 
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favorable biotic neighborhoods counteracts competitive exclusion in less favorable biotic 

neighborhoods (Hurtt & Pacala 1995, Mayfield & Levine 2010, Wang et al. 2012). These effects 

projected over evolutionary timescales could result in selection for ecological (or functional) 

equivalence (Hubbell 2006, Wang et al. 2016), where many species with similar life-histories 

and functional traits co-occur, and the composition of biotic neighborhoods is more strongly 

influenced by stochastic birth-death processes than by deterministic niche differences among 

species.  

 Previous studies have suggested that seemingly random (neutral) patterns in the 

composition of biotic neighborhoods could result from a combination of stochastic and 

deterministic processes (Hurtt and Pacala 1995, Volkov et al. 2009, McGill 2010, Wiegand et al. 

2012, Wang et al. 2016). Consistent with this idea, we found that the taxonomic composition of 

tree neighborhoods in high-diversity plots still deviated, if slightly in some cases, from the null 

model. Similar to previous studies in tree communities (Wiegand et al. 2012), our results suggest 

that stochastic species interactions are relatively more important in higher-diversity 

communities, and possibly overwhelm the signals of predictable interactions/ associations 

between individuals of species located near to each other (Wiegand et al. 2012, Parmentier et al. 

2014, Perry et al. 2014, Wang et al. 2016). In low-diversity plots, where there are fewer species 

and where there may be an increasing dominance of certain species, the strength of deterministic, 

pairwise species interactions may increase, leading to greater neighborhood predictability and 

thus, greater deviations from null models of random community assembly, as observed in this 

and previous studies involving plant communities along ecological gradients (Wiegand et al. 

2012, Perry et al. 2014, Wang et al. 2016, but see Callaway et al. 2002).  



28 

 

In contrast to the taxonomic structure of tree neighborhoods, the functional structure of 

tree neighborhoods did not vary systematically across the diversity gradient. This suggests that 

overall, community diversity does not influence how predictable or unpredictable the functional 

neighborhoods of trees are along the diversity gradient and that from a functional perspective, 

the dissimilarity of neighborhoods is similar for species in high-diversity communities or in low-

diversity communities (prediction 1). Moreover, the strength of local deterministic processes in 

shaping in variation in functional composition among neighborhoods is the same along the 

diversity gradient (prediction 2). The lack of a systematic relationship between the functional 

composition of neighborhoods and species diversity may reflect a high degree of functional 

redundancy among co-occurring species. If species’ traits are highly redundant within a 

community, then high diversity introduces variation in species composition, but the redundancy 

causes the same functional composition despite different taxonomic compositions. If trees within 

a community are separated into similar life-history guilds, such as shade-tolerant tree species in 

tropical forests (Hubbell & Foster 1986, Hubbell 2006), then this tendency toward similarity in 

functional composition will be greater (Hubbell 2001, Webb et al. 2006, Uriarte et al. 2010, 

Paine et al. 2012, Lebrija-Trejos et al. 2014). Another potential explanation could be dispersal 

limitation (Hurtt & Pacala 1995, Muller-Landau et al. 2002, Uriarte et al. 2010), where a high 

proportion of conspecifics increases high functional redundancy within tree neighborhoods. 

However, we obtained similar results when conspecifics were removed from the analyses, so this 

explanation is less likely. A more probable explanation for the discrepancy between taxonomic 

and functional patterns is that the elevational gradient is environmentally/abiotically correlated to 

the observed functional patterns (Read et al. 2014). For example, abiotic filtering would cause 

species with similar functional traits to co-occur more frequently (Keddy 1992, Weiher et al. 
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1998, Kraft et al. 2008, Swenson & Enquist 2009), as observed in many functional trait-based 

analyses (Vellend 2016). Another factor may be convergent evolution, where similar functional 

traits evolve across different taxonomic groups over evolutionary timescales (Clausen et al. 

1940, Ackerly & Reich 1999, Swenson & Enquist 2007). The lack of functional patterns within 

local communities could be strongly influenced by the abiotic conditions found over the 

elevational gradient that may overwhelm any effects of the competitive biotic interactions on the 

functional arrangement of the neighborhoods.  

Future studies of tree neighborhoods across diversity gradients can be expanded to 

consider several additional processes. First, studies can evaluate the relative roles of competitive 

interactions among different life stages. Our dataset only included older trees >10 cm DBH. 

Analyses of younger life stages, including individuals in the seedling and sapling stages, may 

reveal stronger competitive interactions (Hubbell and Foster 1986, Givnish 2010, Swamy & 

Terborgh 2010). Second, some functional traits may be more strongly associated with abiotic 

niche requirements than competitive ability. For example, smaller leaf size (leaf area) is strongly 

associated with heat stress, cold stress, and high-radiation stress (Perez-Harguindeguy et al. 

2013). Other traits, particularly chemical or physical plant defenses against natural enemies 

(Terborgh 2012, Sedio et al. 2018) may well show different patterns. Finally, diversity gradients 

are often correlated with abiotic factors (temperature, precipitation, seasonality), potentially 

confounding the observed relationships. The shift in the strength or importance of stochastic 

biotic interactions along the diversity gradient might be further clarified by identifying 

consistent, pairwise relationships between species in a community. 

Although geographic variation in biotic interactions has been a central theme in ecology 

and biogeography for decades, surprisingly little is known about how the nature and strength of 
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competitive interactions varies among local communities across ecological gradients. Our 

findings suggest that competitive interactions play a stronger role in shaping the taxonomic 

composition of local biotic neighborhoods, but not necessarily the composition of species’ traits, 

in lower-diversity tree communities. Understanding how competitive biotic interactions vary 

across gradients is increasingly important for predicting how species ranges, species diversity, 

and ecosystems respond to environmental change. Overall, our results suggest that the role of 

competitive biotic interactions in the structuring of biotic communities should be quantified and 

evaluated in the consideration of large-scale biodiversity gradients. 
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2.6 Figures 

 

Figure 1 – Examples of two stem-mapped, 1-ha forest plots, showing spatial distributions 

of individual trees (circles) and tree species (circle colors). A) High-diversity forest plot 

containing 112 tree species. B) Low diversity plot containing 16 tree species. The x and y 

axes show distances in meters from the bottom-left corner of the plot. C) Illustration of 

methods used to calculate the taxonomic dissimilarity (Bray Curtis dissimilarity) and 

functional dissimilarity (Mean Pairwise Distance of one or more functional traits) between 

10-m neighborhoods of two conspecific individuals of a focal tree species.   
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Figure 2 – Mean taxonomic dissimilarity of tree neighborhoods across the diversity gradient. 

The left panels show relationships between the mean observed taxonomic dissimilarity (Bray 

Curtis dissimilarity) of conspecific tree neighborhoods and species diversity (Inverse Simpson 

Index; N = 31 forest plots) at A) 10-m, C) 15-m, and E) 20-m neighborhood radii. The right 

panels show the same relationships for null-model deviations (mean standardized effects sizes, 

SES). The dashed line shows the null expectation (SES = 0); positive and negative SES indicate 

higher and lower taxonomic dissimilarity than expected from random sampling of individuals 

from the plot species pool, respectively. Solid trend lines indicate significant linear relationships 

(P < 0.05). 
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Figure 3 – Mean functional dissimilarity of tree neighborhoods across the diversity gradient. The 

left panels show the relationships between the mean observed functional dissimilarity of (trait 

mean pairwise distances) and species diversity (Inverse Simpson Index; N = 29 forest plots) at 

the at 15m neighborhood scale for A) all eight traits combined, and three selected individual 

traits including C) specific leaf area (SLA), E) maximum tree diameter at breast height (max. 

DBH), and G) Twig specific wood density. The right panels show the same relationships for 

null-model deviations (mean standardized effect sizes, SES). The dashed line shows the null 
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expectation (SES = 0); positive and negative SES indicate higher and lower functional 

dissimilarity than expected from random sampling of traits from the plot species pool, 

respectively. Solid trend lines indicate significant linear relationships (P < 0.05). Results were 

quantitatively similar for 10 and 20 m neighborhood sizes (Figures S2 & S3). 
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Chapter 3: An ecological metabolomics 

window on plant chemistry and diversity 

gradients: Chemical dissimilarity within tree 

communities increases with species diversity 

and decreases with elevation in the Central 

Andes 

3.1 Introduction 

Foundational hypotheses in ecology and evolution posit that stronger and more 

specialized biotic interactions contribute to large-scale gradients in biological diversity 

(Schemske et al. 2009). Wallace (1878) and Dobzhansky (1950) proposed that biotic interactions 

comprise a stronger selective force than the abiotic environment in the tropics. However, the 

mechanisms by which tropical forests may facilitate the ecological coexistence of hundreds to 

thousands of tree species remain unclear (Wright 2002). Unlike animals, which can exploit 

distinct resources, nearly all plants require light, water, CO2, and a few shared micronutrients, so 

opportunities for resource-based niche differentiation are few (Hubbell 2001). In contrast to 

resource-based niche axes, the nearly infinite variety of insect herbivores and microbial 

pathogens provides a highly multidimensional space within which plant species can carve out a 

distinct niche defined by the enemies they support, and by those they avoid. Specialized natural 

enemies can maintain species-rich plant communities by attacking their host plants where they 

are abundant, impeding their fitness relative to competitors that avoid the enemy (Janzen 1970, 

Connell 1971, Bever et al. 2015). Hence, large-scale gradients in biodiversity may be attributed 
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to greater pressure from specialized herbivores and pathogens at lower elevations and latitudes 

with warmer, wetter, and less-seasonal climates (Schemske et al. 2009, Comita et al. 2014, 

Terborgh 2012, Levi et al. 2019). A major impediment in understanding these complex 

interactions has been the difficulty in the study of chemical ecology within communities and 

across large spatial and taxonomic scales. 

Plant-secondary metabolites are organic molecules that do not function in the primary, 

resource-acquisitive metabolism but mediate plant responses to abiotic or biotic stress or 

function as defenses against the ability of herbivores or pathogens to identify or digest the plant 

host, or through acute toxicity. The natural enemies of the plant host do evolve counters to these 

defenses, though often at the cost of generality (Schemske et al. 2009). 

Plant-chemical defenses mediate biotic interactions, defining the host-use relationships 

between plants and their natural enemies (Becerra 1997, Kursar et al. 2009, Salazar et al. 2016). 

In response, herbivores and pathogens can evolve counters to plant chemical defenses, but often 

at the cost of generality (Ehrlich & Raven 1964). Plant-enemy coevolution can result in host-use 

patterns that track plant secondary metabolites, promote chemical diversity and species richness 

in plant communities (Sedio and Ostling 2013), and mediate selection for chemical divergence 

among closely related plants (Becerra 1997, Kursar et al. 2009, Endara et al. 2017, Salazar et al. 

2016). Biotic interactions are presumed to exert greater selective pressure in more stable, benign 

climates that allow for a greater range of adaptations (Dobzhansky 1950, Fischer 1960), or 

allowed an escape from glaciation on larger timelines (Wallace 1878, Schemske et al. 2009). 

Plant-secondary metabolites are organic molecules that do not function in the primary, resource-

acquisitive metabolism, and have been shown to be more evolutionarily labile than other traits, 

where even closely related species can have very different metabolomes (Wink 2003). At 
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evolutionary timescales this evolutionary lability is expected to result in patterns of less 

phylogenetic conservation of secondary metabolites among species found in warmer, wetter, 

more stable climates, where biotic interactions are presumably stronger. Along an elevational 

gradient, the abundance of herbivores and pathogens tends to decrease with elevation (Pellissier 

et al., 2014; Sam et al., 2020), while abiotic stress tends to increase with elevation. This can 

result in a tradeoff (Coley 1985) where high-elevation plants may be expected to invest more in 

chemical defenses because compensatory regrowth of biomass lost to natural enemies under 

unfavorable abiotic conditions and low nutrients is relatively more costly to high-elevation plants 

(Defossez et al., 2018; Salgado et al. 2016). Furthermore, abiotic stress itself may select for 

investment in, and optimization of, specialized secondary metabolites that mediate plant stress 

response or protect against damage, such as from ultraviolet let (Volf et al. 2020). Yet unlike 

plant-enemy interactions that may undergo reciprocal coevolution, abiotic stress ought to select 

for convergence on shared, optimal traits (Asplund et al. 2022; Bakhtiari et al., 2021). At 

extremes, abiotic stress may even result in the collapse of some metabolic pathways (Pellissier et 

al. 2014). On the other hand, high elevations may select for unique metabolites not found in 

lowland plants (Defossez et al. 2021). Perhaps because of such discordant selection, several 

studies have found non-linear, hump-shaped relationships between herbivory, plant secondary 

metabolite dissimilarity and elevational gradients (Sam et al., 2020; Volf et al., 2020). 

Despite the importance of plant chemistry in mediating community dynamics, key gaps 

remain in our understanding of the chemical ecology of plant communities across elevational 

gradients. First, although a few studies have examined chemical variation over elevational 

gradients in herbaceous grassland communities (Defossez et al., 2018, 2021), previous studies of 

woody plants have focused on single genera (Sam et al. 2019, Volf et al. 2020, 2022). Second, 
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the role that plant secondary metabolites play in generating biodiversity patterns has until 

recently been limited by their overwhelming diversity and the lack of untargeted approaches to 

study them at macroecological scales. Here, we overcome this obstacle by taking advantage of 

recent innovations in untargeted metabolomics based on mass spectrometry (Wang et al. 2016, 

Dührkop et al. 2019) that enable the study of chemical ecology at the scale of species-rich 

ecological communities (Sedio 2017, Sedio et al. 2018).  

In this study we explored the hypothesis that stronger selection by natural enemies at 

lower elevations shape gradients in the diversity and evolution of plant secondary metabolites. 

We utilized data from 16 1-ha forest plots distributed across an ~3000-m elevational-diversity 

gradient in the Bolivian Andes (17-137 tree species per plot). Using recent advances in large-

scale chemical-metabolomic analytical techniques (Wang et al. 2016, Sedio 2017), we compared 

patterns of primary and secondary foliar metabolites in 473 species (906 unique species-plot 

combinations) to plot diversity, elevation, climate, and phylogeny across the gradient to test four 

predictions: 1) Interspecific differences in plant-secondary metabolites will increase with species 

diversity; 2) Interspecific differences in plant-secondary metabolites will increase towards 

warmer, wetter, less-seasonal climates; 3) Plant species exhibit faster evolution of secondary 

metabolites (i.e., less phylogenetic signal) in high diversity communities; and 4) Plant species 

exhibit faster evolution of secondary metabolites (i.e., less phylogenetic signal) in warmer, 

wetter, and less-seasonal locations. Evidence in favor of these predictions would lend support to 

the hypothesis that variation in the strength of selection for interspecific divergence in secondary 

metabolites associated with climatic gradients contributes to the widespread elevational diversity 

gradient in trees. 

 



44 

 

3.2 Methods 

Floristic Data 

Floristic data were collected as part of the Madidi project (Jørgensen et al. 2015), a 

collaboration of more than two decades between the Herbario Nacional de Bolivia and the 

Missouri Botanical Garden to document the flora of the Madidi region in the Andes of Bolivia 

(Tello et al. 2015). The region ranges in elevation from lowland rainforests located at around 200 

m above sea level (a.s.l.) to high mountains above 6,000 m a.s.l., above the tree line (Fuentes 

2005). The elevational gradient is covered by different forest types and encompasses a broad 

range of abiotic (climatic and environmental) conditions (Rafiqpoor & Ibish 2004, Friedman-

Rudovsky 2012). The Madidi Project includes a total of 50 1-ha permanent plots ranging in 

elevation from 212 m to 3334 m above sea level. For this study, we selected a subset of 16 1-ha 

permanent plots in which leaves were sampled for chemical analyses and which spanned 

gradients in elevation (662-3324 m above sea level), climate, and tree-species richness (17-137 

species per plot) (Table 1). The 16 plots include three seasonally dry, low-elevation forest plots, 

and 13 moist, montane forest plots (Table 1). Some of the most abundant genera in the low 

elevation moist plots include: Miconia, Sloanea, Ocotea and at high elevations (> 2500m): 

Weinmannia, Hedyosmum, Clethra, and in the seasonally dry plots: Weinmannia, Hedyosmum, 

Clethra. The species richness exhibits the typical negative relationship with elevation among the 

13 moist forest plots, but that the 3 seasonally dry forest exhibit a unique pattern of low species 

diversity at low elevations. Within each plot, all woody plants (hereafter trees) with a diameter at 

breast height of at least 10 cm were spatially mapped, measured, and identified to a valid species 
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or morphospecies. The majority of these plots have been censused a minimum of two times. The 

16 plots represented a total of 473 species, and 906 unique species-by-plot. 

 

Chemical Analysis 

Analytical chemistry and untargeted metabolomics 

 Leaves of up to five individual trees per species per plot, that were collected after 2010, 

and dried on silica gel were used for metabolite sampling. When a species had fewer than 5 

individuals in a plot, we sampled leaves from all individuals. These samples were extracted and 

analyzed following Sedio et al. (2021). Briefly, 50 mg of dry leaf tissue was ground to a fine 

powder and 10 mg weighed for extraction in 1800 L 90:10 methanol:water at pH 5 overnight at 

4 C. We used this solvent to extract metabolites over a wide range of polarity; mild acidity 

improves the solubility of most alkaloids, an important class of defensive secondary metabolites 

(Sedio et al. 2017). Extracts of five individuals per species per plot were pooled to create 906 

extract pools representing each unique species-by-plot for subsequent analysis. 

We analyzed filtered extract pools using ultra-high performance liquid chromatography-

tandem mass spectrometry (UHPLC-MS/MS) using a Thermo Fisher Scientific (Waltham, MA, 

USA) Vanquish UHPLC with a C18 column and a Thermo QExactive quadrupole-orbitrap MS. 

Separation of metabolites by UHPLC was followed by heated electrospray ionization (HESI) in 

positive mode using full scan MS1 and data-dependent acquisition of MS2. Detailed 

instrumental methods are described by Sedio et al. (2021). Spectra for all 906 species-by-plot is 

curated as a public MassIVE dataset on the Global Natural Products Social (GNPS) Molecular 

Networking server (ftp://massive.ucsd.edu/MSV000090549) 



46 

 

Raw LC-MS data were centroided and processed for peak detection, peak alignment, and 

filtering using MZmine2 (Pluskal et al. 2010). Aligned chromatograms were used to create a 

‘feature-based molecular network’ (FBMN; Nothias et al. 2020) using GNPS (Wang et al. 2016). 

The resulting network was used to create a dendrogram in which the structural similarities of all 

metabolites were reflected in one phylogeny-like dendrogram using Qemistree (Tripathi et al. 

2021). Metabolites were annotated by predicting molecular formulae using Sirius (Dührkop et al. 

2015), predicting molecular structures usig CSI:FingerID (Dührkop et al. 2019), and classifying 

compounds chemically using ClassyFire (Djoumbou Feunang et al. 2016) and NPClassifier (Kim 

et al. 2022). 

NPClassifier is a deep-learning artificial intelligence that classifies metabolites according 

to basic biosynthetic pathways, in addition to superclasses and classes (Kim et al. 2022). We 

used the “pathway”-level classifications of NPClassifier to group metabolites into “primary” and 

“secondary” metabolites as follows: primary metabolites were those classified in the 

“Carbohydrates” and “Fatty acids” pathways, whereas secondary metabolites were those 

classified in the “Alkaloids”, “Amino acids and Peptides”, “Polyketides”, “Shikimates and 

Phenylpropoanoids”, and “Terpenoids” as well as compounds likely to be products of multiple 

core biosynthetic pathways that included one of these secondary-metabolite pathways. 

Glycosides were classified based on their non-carbohydrate moieties; nucleotides and 

nucleosides were classified among the carbohydrates at the “pathway” level (Kim et al. 2022). 

Our classification scheme was based on the broad likelihood of a metabolite being associated 

with anti-herbivore or antimicrobial defense. For example, amino acids and peptides include 

many primary metabolites, but may also include defensive compounds. 
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Chemical structural and compositional similarity (CSCS)  

Sedio et al. (2017) developed a metric that quantifies chemical structural-compositional 

similarity (CSCS) over all compounds among species pairs. Conventional distance or similarity 

indices such as Bray-Curtis incorporate shared compounds but ignore structural similarity of 

unique compounds, and hence underestimate the similarity of species with distinct but very 

structurally similar, and perhaps functionally redundant, metabolites (Sedio et al. 2017). For each 

pair of the 906 species-by-plot, we calculated CSCS using i) the whole metabolome, using all 

metabolites in the data, ii) primary metabolites, and iii) secondary metabolites. We transformed 

CSCS matrices into dissimilarity matrices by calculating 1-CSCS. We calculated the abundance-

weighted median 1-CSCS for the species assemblages represented by each of the 16 forest plots.  

To disentangle the community chemical dissimilarity from the effect of diversity per se, 

we carried out rarefaction based on 12 species, the [sampled] species richness of Kañupa, the 

most species-poor plot. We calculated rarified CSCS by taking a random sample of 12 species 

and calculating the median chemical dissimilarity values at the plot-level. This operation was 

performed 1000 times for each plot and the mean of the distribution was taken as the rarified 

median chemical dissimilarity value. We obtained qualitatively similar results using observed 

and rarefied CSCS values. For simplicity, we therefore focus on results for observed CSCS and 

include results for rarefied CSCSS in the supplementary material. 

 

Climate Data 

 Climate variables were selected to represent the variation in plot temperature, 

precipitation, and seasonality over the elevational gradient. The temperature variables annual 

mean temperature and temperature annual range were used from WorldClim Version 2.1 (Fick & 
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Hijmans 2017). The precipitation variables annual precipitation and precipitation seasonality 

were used from the Tropical Rainfall Measuring Mission (TRMM) because of the greater 

accuracy compared to WorldClim data in the Madidi region. The 4 variables were scaled and 

centered, and a principal components analysis was run, of which the first two axes were used in 

the following analyses. 

 

Phylogenetic Signal 

 In order to quantify phylogenetic relationships among species, a phylogenetic tree was 

constructed using the V.Phylomaker package (Jin & Qian 2019) in R. As inputs, V.Phylomaker 

requires family, genus and species information, which is then referenced against two combined 

mega trees (Zanne et al. 2014, Smith & Brown 2018) to generate the phylogenetic tree. The 

resulting tree was generated from all 50 of the Madidi permanent plots and had 1123 unique 

species as tips. The tree was then rooted and transformed into a distance matrix using the 

‘cophenetic’ function, in the stats package in R, in order to be directly comparable to the 

chemical distance matrices. The tree was pruned to include only the species recorded in the 16 

plots for all phylogenetic signal analyses, which included 892 species-by-plot. 

 For each plot, we calculated Adams’ (2014) Kmult metric of phylogenetic signal for 

multivariate trait data. This technique compares an explicit model of evolution in multivariate 

trait space to the observed trait data, accounting for the topology and branch lengths of the 

phylogeny. When Kmult < 1, taxa are less chemically similar to one another than expected by 

Brownian motion evolution on the observed phylogeny, whereas Kmult > 1 indicates that species 

are more chemically similar to each other than expected by Brownian motion. The Kmult test is an 

improvement over the Mantel test for matrix correlation between chemical distance and 
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phylogenetic distance matrices, which does not consider an explicit model of trait evolution 

underlying the expected relationship between phylogenetic and trait distance (Swenson 2014). 

 

Hypothesis Testing: Plot-Level Regressions 

 We tested our predictions using linear regression. For each plot, we calculated tree 

species diversity as the inverse Simpson’s index using the R vegan package (Hurlbert 1971). We 

chose the inverse Simpson’s index because it is scale-independent and is insensitive to 

differences in numbers of individuals (Chase et al., 2018). To test Prediction 1 (P1), we 

regressed median chemical dissimilarity versus diversity (inverse Simpson’s index) for the 16 

forest plots. To test P2, we regressed median chemical dissimilarity versus elevation and the first 

two principal component (PC) axes of climatic variation. To test P3, we regressed Kmult versus 

diversity, and to test P4, we regressed Kmult versus elevation and the first two PC axes of climatic 

variation among the 16 forest plots. The three seasonally dry, low-elevation forest plots appeared 

to exhibit distinct relationships to other variables not represented by the 13 moist, montane forest 

plots. Hence, all regressions were repeated with the 13 moist montane forests, excluding the 

seasonally dry forests. 

 

3.3 Results 

Overview of metabolomics and climate data 

We detected 22,576 unique metabolites in foliar extracts from 473 species in 16 1-ha 

forest plots (Figure 1). Metabolites ranged in mass from 116.0704 to 599.4789 Daltons (Da). We 
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generated a predicted molecular structure and biosynthetic classification for 18,364 and 19,844 

of the metabolites, respectively. Metabolites classified at the level of biosynthetic pathway of 

origin (“pathway” in NPClassifier, Kim et al. 2022) were represented by 4,448 Alkaloids, 458 

Amino acids and Peptides, 262 Carbohydrates, 928 Fatty acids, 584 Polyketides, 6,131 

Shikimates and Phenylpropanoids, 6,871 Terpenoids, and 153 metabolites derived from more 

than one major pathway. 

The first two principal components of climatic variation represented 71.2% and 15.8% of 

the variation among the 16 forest plots, respectively. The first principal component of climatic 

variation (PC1) was composed of temperature and precipitation, whereas the second principal 

component of climatic variation (PC2) was primarily composed of precipitation seasonality and 

temperature annual range (Figure 2).  

 

Chemical dissimilarity and phylogenetic signal across gradients 

Chemical dissimilarity with respect to all detected metabolites increased with species 

diversity (R2 = 0.40, p < 0.01), decreased with elevation (R2 = 0.30, p = 0.02), and increased 

along Climate PC1 (R2 = 0.46, p < 0.01) but was unrelated to Climate PC2 among the 16 forest 

plots (Figure 3a-d). The relationship between chemical dissimilarity and elevation was much 

stronger when three seasonally dry, low-elevation forest plots were excluded (Figure 3b, dashed 

line excluding open circles, R2 = 0.54, p < 0.01). 

Chemical dissimilarity with respect to secondary metabolites increased with species 

diversity (Figure 3e; R2 = 0.43, p < 0.01) and Climate PC1 (Figure 3g; R2 = 0.35, p < 0.01) 

among the 16 forest plots. This measure decreased with elevation when three lowland dry forests 

were excluded (Figure 3f; R2 = 0.45, p < 0.01). In contrast, plot median chemical dissimilarity 
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with respect to primary metabolites decreased with climate PC2 (Figure 3l; R2 = 0.25, p = 0.03) 

but was unrelated to diversity, elevation, or climate PC1 (Figure 3i-k).  

Phylogenetic signal was exceedingly low for all, secondary, and primary metabolites, as 

none of the plots approached the Brownian motion expectation (Kmult = 1) for any of the three 

metabolite classes (Table 1). Phylogenetic signal appeared greatest for low-elevation, low-

species diversity dry forests and the highest-elevation, low-species diversity moist montane 

forests in the gradient (Table 1). 

Phylogenetic signal with respect to all detected metabolites decreased with species 

diversity (Figure4a; R2 = 0.27, p = 0.2) but was unrelated to elevation or Climate PC1 or PC2 

(Figure 4b-d). Phylogenetic signal with respect to secondary metabolites decreased with species 

diversity (Figure 4e; R2 = 0.35, p = 0.01). When the three seasonally dry, low-elevation dry 

forest plots were excluded, phylogenetic signal with respect to secondary metabolites increased 

with elevation (Figure 4f; R2 = 0.26, p = 0.04) and decreased with Climate PC1 (Figure 4g; R2 = 

0.24, p = 0.05). Phylogenetic signal with respect to primary metabolites decreased with species 

diversity (Figure 4i; R2 = 0.28, p = 0.02) but was unrelated to elevation or Climate PC1 or PC2 

(Figure 4j-l). 

    

3.4 Discussion 

Elevational diversity gradients are a striking feature of our planet and have inspired the 

development of ideas in ecology for centuries (von Humboldt & Bonpland 1807, Lomolino 

2001, Rahbek 2005). The 16 tropical forest plots we examined here represented a wide range of 

variation in elevation, species diversity, and climate within a regional biodiversity hotspot in the 
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central Andes Mountains. Hypotheses propose that biodiversity gradients are driven by variation 

in the relative strength and nature of selection imposed by the abiotic and biotic environment 

(Wallace 1878, Dobzhansky 1950, Schemske et al. 2008, Lim et al. 2015), which are predicted to 

be reflected in the interspecific dissimilarity and phylogenetic signal of secondary-metabolite 

profiles among co-occurring tree species.  Our results broadly support four specific predictions 

concerning the relationships between chemical dissimilarity and phylogenetic signal and 

underlying gradients in species diversity, elevation, and climate, which we discuss below. 

 

High-diversity communities are composed of species with more dissimilar secondary 

metabolites 

In Prediction 1, we predicted a positive relationship between chemical dissimilarity and 

community species diversity, based on the hypothesis that diversity itself is increased by 

antagonistic biotic interactions that select for chemical divergence among species (Dobzhansky 

1950, Ehrlich and Raven 1964), reduce natural-enemy overlap among species (Becerra 1997, 

Endara et al. 2017), and promote competitive coexistence (Sedio and Ostling 2013). Our results 

supported Prediction 1. We found that chemical dissimilarity increased with species diversity 

(Figure 3a,e), whether measured in terms of the whole metabolome or metabolites we classified 

as secondary metabolites based on their biosynthetic pathways of origin as predicted by 

NPClassifier (Kim et al. 2022). These patterns emerged in models based on median chemical 

dissimilarity of all co-occurring species at the forest-plot scale, and models based on rarified 

subsamples of co-occurring species that served to control for variation in species richness 

(Figure S1). These results are consistent with hypotheses that attribute community-scale 

variation in species diversity to variation in the strength of mechanisms that promote chemical 
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divergence among species, such as pressure from relatively host-specific, but oligophagous 

herbivores and pathogens (Schemske et al. 2009, Lim et al. 2015). Furthermore, dissimilarity 

with respect to secondary metabolites strongly increased with species diversity (Figure 3e), while 

dissimilarity with respect to primary metabolites did not (Figure 3i). This contrast suggests that 

species differences in secondary metabolites, which include alkaloids, phenolics, polyketides, 

terpenoids (including steroid, or cardiac, glycosides), and non-protein amino acids that function 

as anti-herbivore and/or antimicrobial defenses, contribute to the diversity gradient. 

 

Communities in warmer, wetter, and less-seasonal climates are composed of species with more 

dissimilar secondary metabolites 

In Prediction 2, we predicted that chemical dissimilarity of co-occurring species would 

decrease with elevation and increase in warmer, wetter, and less-seasonal climates, based on the 

hypothesis that chemically mediated plant-enemy coevolution that selects for chemical 

divergence among plants plays a greater role in these abiotically benign climates (Wallace 1878, 

Dobzhansky 1950). Our results supported Prediction 2. We found that chemical dissimilarity 

decreased with elevation and increased with temperature and precipitation as reflected in climatic 

PC1. For the metabolome considered as a whole, these patterns was true whether three lowland 

tropical dry forests were included or not (Figure 3b,c). For secondary metabolites, the positive 

relationship between chemical dissimilarity and PC1 was significant (Figure 3 g), whereas the 

negative relationship between chemical dissimilarity and elevation was significant only if three 

lowland tropical forests were excluded (Figure 3f).  

Recent investigations of metabolomic variation associated with elevational gradients 

have considered single genera of woody plants, such as Ficus in Papua New Guinea (Volf et al. 
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2020) and Salix in Europe (Volf et al. 2022, in press), and communities of herbaceous plants in 

Europe (Defossez et al. 2018, 2021). However, few of these studies have explicitly quantified 

chemical dissimilarity of co-occurring species at points along an elevational gradient. Volf et al. 

(2022, in press) found that low-elevation Salix were more dissimilar with respect to salicinoids, 

an important class of phenolic chemical defenses, than high-elevation willows, a result consistent 

with ours. 

Studies of chemical dissimilarity of co-occurring species have more frequently asked 

whether communities exhibit chemical overdispersion, wherein species that co-occur at the local 

scale are less chemically similar than expected by chance given the regional species pool. This 

result has been reported for species-rich tree and shrub genera in the lowland Neotropics, 

including Bursera (Burseraceae) in Mexico (Becerra 2007), Inga (Fabaceae) in Panama and Peru 

(Kursar et al. 2009), Piper in Costa Rica (Salazar et al. 2016), and Protium (Burseraceae) in Peru 

(Vleminckx et al. 2018). Similar patterns have been found in Ficus in Papua New Guinea (Volf 

et al. 2018), Euphorbiaceae (principally Macaranga) in Yunnan, China (Wang et al. 2022) and in 

an assessment of seven species-rich genera in Panama (Sedio et al. 2017). In addition to studies 

focused on single lineages, community-wide studies have found that plants that co-occur within 

meters are more chemically dissimilar than expected from a community-wide sample (Wang et 

al. in rev) and the chemical dissimilarity of co-occurring species tends to decrease with latitude 

in the temperate and tropical zones (Sedio et al. 2018) and with temperature and precipitation 

within the boreal and temperate zones (Sedio et al. 2021). 

Our study contrasts with these previous studies focused on single lineages and 

comparative studies focused on variation among whole plant communities at continental scales 

(Sedio et al. 2018, 2021) in that we focused on variation along a local elevational gradient within 
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the same biogeographic region (Central Andes). Nevertheless, our results are consistent with the 

widely observed chemical dissimilarity of tree species in low-elevation tropical forests. 

However, it is worth noting that Sedio et al. (2018, 2021) found differences in chemical 

dissimilarity among geographically distant plant communities with very different biogeographic 

histories and little possibility for dispersal over ecological timescales. Our findings suggest that 

variation in temperature, precipitation, and seasonality over distances of kilometers may generate 

variation in community chemical dissimilarity comparable to that of climatic gradients on a 

continental scale, and hence that the underlying mechanisms that link climate to chemical 

evolution and competitive coexistence are likely general and operate over a wide range of 

variation in spatial scale. 

In stark contrast with our results concerning the whole metabolome or secondary 

metabolites, we observed a positive relationship between chemical dissimilarity with respect to 

primary metabolites and Climate PC2 (Figure 3l). As Climate PC2 was primarily defined by 

temperature range and precipitation seasonality, this result suggests that species that occur in 

more seasonal climates are less dissimilar chemically than species in climates that are stable 

throughout the year. 

 

Chemical divergence among closely related species is greater in high-diversity communities, 

and in warmer, wetter, and less-seasonal climates  

Phylogenetic signal was much lower than expected based on a model of Brownian 

motion drift without selection, even in high-elevation plots with comparatively higher 

phylogenetic signal than wetter, low-elevation plots (Table 1). Plants do exhibit phylogenetic 

signal with respect to broad chemical classes that tend to occur in certain plant families or genera 
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(quinolizidine alkaloids in some lineages of legumes, Wink 2003). However, our result is 

consistent with other recent studies that have concluded that plant metabolite composition can be 

highly evolutionarily labile, especially in tropical climates when phylogenetic signal is measured 

among confamilial species (Becerra 1997, Kursar et al. 2009, Salazar et al. 2018, Volf et al. 

2018, Wang et al. 2022) and this can degrade phylogenetic signal when measured in the context 

of a species-rich forest community characterized by many co-occurring congeneric and 

confamilial species (Sedio et al. 2018, 2021, Wang et al. in rev). 

In Predictions 3 and 4, we predicted that chemical phylogenetic signal among co-

occurring species would decrease with species diversity, increase with elevation, and decrease in 

warmer, wetter, and less-seasonal climates, based on the hypothesis that selection by natural 

enemies for chemical divergence among closely related species (Becerra 1997, Kursar et al. 

2009) is relatively stronger in such environments. Our results supported Prediction 3 for 

secondary metabolites as well as both all and primary metabolites (Figure 4a,e,i). Prediction 4, 

that phylogenetic signal increases with elevation and decreases with temperature and 

precipitation reflected in Climate PC1, was supported only when we excluded the three 

seasonally dry, low-elevation forest plots (Figure 4 f,g). These and other results (Figure 3b,f) 

suggest that the climatic data we used in our PCA may not completely represent the climates 

experienced by the three seasonally dry forests. This may be because climate varies dramatically 

over a finer spatial scale in the topographically heterogeneous Andes and their foothills than that 

captured by the TRMM satellite, and/or the climatic variables we used did not reflect the source 

of abiotic stress experienced by the dry forests, such as, for example, if short periods of intense 

drought or strong interannual variation stresses plants in a manner that is not reflected in the 

TRMM precipitation seasonality variable. However, the relationship between phylogenetic 
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signal with respect to secondary metabolites and elevation and Climate PC1, respectively, when 

the three seasonally dry forests were excluded suggests that the rate of chemical divergence 

among tree species varies with temperature along a wet-forest elevational gradient. This result 

supports our Prediction 4, which follows from Dobzhansky’s (1950) that biotic interactions are 

stronger forces of natural selection in warmer, wetter, and less-seasonal climates.       

 

 

Conclusions 

Biodiversity gradients are a striking feature of our planet. While latitudinal biodiversity 

gradients have generally attracted more attention from biologists (Schemske et al. 2009), 

elevational gradients present perhaps a better opportunity to test hypotheses regarding proposed 

mechanisms, as key climatic variables vary over short distances, permitting experimentation or 

comparative study within a single system in which interacting species could plausibly disperse. 

Hence, we suggest that future research should take advantage of elevational gradients to test 

basic hypotheses concerning the intensity of plant interactions with insect herbivores and 

microbial pathogens, their effects on rates of chemical evolution in tree communities, and their 

contribution to the maintenance of species diversity.  

Our results support the hypothesis that chemically mediated species interactions shape 

elevational diversity gradients by imposing stronger selection for interspecific divergence in 

plant chemical defenses in warmer, wetter, and less seasonal climates. Abiotic stress associated 

with high elevations may select for secondary metabolite evolution distinct from that imposed by 

biotic stressors (Defossez et al. 2021, Volf et al. 2020, 2022), but competitive interactions among 

plants mediated by shared herbivores and pathogens are expected to select for chemical 
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divergence. Our results suggest that the strength of this mechanism varies with climate in a 

manner that affects character evolution and diversity in plant communities. Our study also 

illustrates the promise of ecological metabolomics in the study of biogeography, community 

ecology, and complex species interactions in high-diversity ecosystems. 
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3.6 Tables 
 

Table 1 - Variation in tree species richness, elevation, mean annual precipitation (MAP), and 

mean annual temperature (MAT) among 16 1-ha forest plots in the Madidi Project, Bolivia. Dry 

forest plots italicized. 
Plot Name Species 

richness 

Elevation 

(m) 

MAP (mm) MAT ( C) N trees 

sampled 

N Spp. 

Metabolomes 

Chaqui 32 35 3116 975 11.9 85 22 

Fuerte 27 80 1900 1350 18 236 72 

Kanupa 44 17 3324 961 10.7 52 12 

Lomaka 40 137 1242 1332 21 248 109 

Lomasa 39 95 1054 1383 21.5 250 81 

Pintat 5 48 880 1684 22 164 42 

Resina 12 50 662 1858 23.1 141 45 

Sumpul 34 103 1223 1500 20.4 245 79 

Tapuri 45 43 2697 1013 15.2 121 35 

Tintay 24 117 1400 1358 19.7 283 87 

Tintay 25 94 1468 1357 20 253 73 

Titiri 42 34 2859 945 13.1 106 29 

Tocoaq 29 83 2407 1202 15.6 170 71 

Tocoaq 30 62 2510 1221 15.7 133 48 

Tocoaq 28 81 2200 1288 16.8 209 67 

Yarimi 9 40 850 1698 22.2 129 33 
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Table 2 – Phylogenetic signal (Kmult) for all metabolites, secondary metabolites, and primary 

metabolites for each forest plot. Dry forest plots italicized. 

Plot Name Kmult total 

metabolites 

Kmult defensive 

metabolites 

Kmult primary 

metabolites 

Chaqui 32 0.480754529 0.484029572 0.411885738 

Fuerte 27 0.053069475 0.051800002 0.097807575 

Kanupa 44 0.160817612 0.202938517 0.189504321 

Lomaka 40 0.080496417 0.084059673 0.195930742 

Lomasa 39 0.04575673 0.045695698 0.092983475 

Pintat 5 0.485211584 0.480105384 0.513034931 

Resina 12 0.317434922 0.317895271 0.342970918 

Sumpul 34 0.082048672 0.081485901 0.142247847 

Tapuri 45 0.046396496 0.045138257 0.130433359 

Tintay 24 0.055756469 0.05618906 0.073947205 

Tintay 25 0.071480487 0.070726057 0.071011916 

Titiri 42 0.103655099 0.1031501 0.290799712 

Tocoaq 29 0.220003432 0.038435117 0.014061188 

Tocoaq 30 0.045213988 0.044291159 0.092308025 

Tocoaq 28 0.214260359 0.217448637 0.092308025 

Yarimi 9 0.591126666 0.596744641 0.573387071 
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3.7 Figures 

 
 Figure 1 - Qemistree dendrogram showing relationships of the 18,364 classified 

metabolites found within the 473 species sampled.  
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Figure 2 - shows the loadings for climate PCA included, for each plot, Mean Annual 

Temperature, Mean Annual Temperature Range, Total Annual Precipitation, and 

Precipitation Seasonality. Closed dots represent the moist forest plots, while open dots 

represent the dry, seasonal forest plots. 
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Figure 3 – Variation in median chemical dissimilarity (1-CSCS) vs species diversity 

(inverse Simpson index), elevation (m), and climate among 16 forest plots in Madidi, 

Bolivia. Panels a-d represent linear regressions between median chemical dissimilarity 

among co-occurring species with respect to the whole metabolite and (a) species diversity, 

(b) elevation, (c) Climate PC1, and (d) Climate PC2, respectively. Panels e-h represent 

linear regressions between chemical dissimilarity with respect to secondary metabolites 

and (e) species diversity, (f) elevation, (g) Climate PC1, and (h) Climate PC2, respectively. 

Panels i-l represent linear regressions between chemical dissimilarity with respect to 

primary metabolites and (i) species diversity, (j) elevation, (k) Climate PC1, and (l) 

Climate PC2, respectively. Secondary metabolites are defined as those derived from the 

Alkaloids, Amino acid and Peptides, Polyketides, Shikimates and Phenylpropoanoids, and 

Terpenoids biosynethetic pathways using NPClassifier (Kim et al. 2022). Primary 

metabolites are defined as those derived from the Carbohydrates and Fatty acids pathways. 

Three seasonally dry forests are represented by open circles. Regressions using all 16 

forest plots are represented by solid lines; regressions excluding three seasonally dry 

forests are represented by dashed lines. Adjusted R2 and p-values are presented for 

significant (p < 0.05) regressions only. 
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Figure 4 – Variation in chemical phylogenetic signal (Kmult; Adams 2014) among co-

occurring species vs species diversity (inverse Simpson index), elevation (m), and climate 

among 16 forest plots in Madidi, Bolivia. Panels a-d represent linear regressions between 

phylogenetic signal among co-occurring species with respect to the whole metabolite and 

(a) species diversity, (b) elevation, (c) Climate PC1, and (d) Climate PC2, respectively. 

Panels e-h represent linear regressions between phylogenetic signal with respect to 

secondary metabolites and (e) species diversity, (f) elevation, (g) Climate PC1, and (h) 

Climate PC2, respectively. Panels i-l represent linear regressions between phylogenetic 

signal with respect to primary metabolites and (i) species diversity, (j) elevation, (k) 

Climate PC1, and (l) Climate PC2, respectively. Secondary metabolites are defined as 

those derived from the Alkaloids, Amino acid and Peptides, Polyketides, Shikimates and 

Phenylpropoanoids, and Terpenoids biosynthetic pathways using NPClassifier (Kim et al. 

2022). Primary metabolites are defined as those derived from the Carbohydrates and Fatty 
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acids pathways. Three seasonally dry forests are represented by open circles. Regressions 

using all 16 forest plots are represented by solid lines; regressions excluding three 

seasonally dry forests are represented by dashed lines. Adjusted R2 and p-values are 

presented for significant (p < 0.05) regressions only. 
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Chapter 4: Functional Trait Patterns Reveal 

Differential Mechanisms of Tree Community 

Assembly Along a Tropical Elevational 

Gradient 

4.1 Introduction 
An enduring motivation of ecologists is to find and define overarching/ general mechanisms 

by which communities of different species assemble (Vellend 2010, Mittlebach & Schemske 

2015). A second longstanding motivation that ecologists seek is to uncover how those species’ 

interactions affect community assembly (Schemske et al. 2009, Vellend 2010). These two aims 

are intertwined, and advances in one motivation may engender advances in the other. The 

existing view of community assembly often separates the complex dynamics of community 

assembly and species interactions into separate or nested processes (HilleRisLambers et al. 2012) 

that act as a result of differing forces, both biotic and abiotic (McGill et al. 2006). The biotic and 

the abiotic environments are hypothesized to have different effects on the resulting communities, 

but little research has been done on the interplay between (McGill et al. 2006, Kraft et al. 2015). 

Abiotic forces are associated with attributes of the physical environment that influence a 

species’ fitness. The extension of these ideas at the community scale is often termed abiotic 

filtering; a situation in which only certain species can survive and maintain in a given 

environment, such that the environment selects for the species found within (HilleRisLambers et 
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al. 2012, Kraft et al. 2015). In the case of functional traits, this would mean that only a subset of 

traits can survive there, so the species within would show similar, or clustered, trait patterns.  

Much of the previous research relied upon morphological traits to quantify the effect of the 

abiotic environment, and indeed, morphological traits give valuable information about how 

species acquire resources, withstand cold, drought and other attributes of their abiotic 

environment. For example, the specific leaf area (SLA), leaf size, and relative growth rate (RGR) 

would decrease in cooler and dryer locations, but the leaf thickness would increase. However, 

the abiotic environment might also have an effect on chemical traits as well. In seasonal 

locations, especially where trees are deciduous, there could be a reduced investment in foliar 

chemical defenses and a greater reliance on other defensive strategies (Sam et al. 2020), such as 

synchronous leaf growth (Forrester et al. 2019), than in less seasonal locations where leaves may 

remain on trees for several years.  

The biotic environment, on the other hand, can be conceptualized as the total effect of the 

biotic interactions operating in a community (McGill et al. 2006, Švamberková et al. 2017), often 

in regard to fitness. Biotic forces that affect community assembly have, in the past, been 

considered only as competitive interactions, the result of which is that the more competitive 

species are predicted to thrive or even to exclude their competitors from the community (Cadotte 

et al. 2015). Another view of the biotic landscape considers the interactions between species of 

different tropic levels (Janzen 1970, Connell 1971), often referred to as enemy mediated 

interactions. In contrast to standard ideas of competition for resources, enemy mediated 

interactions hypothesizes that specialized interactions between plant hosts and their natural 

enemies play a strong role in community assembly, with the hosts ability to defend against or 

avoid their natural enemies largely defining the host species’ niche. The strength of such enemy 
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mediated interactions is believed to be stronger in the tropics (Schemske et al. 2009). This view 

has explanatory potential, as there are an almost infinite variety of natural enemies that can 

potentially provide an equal number of niches by which plant hosts can differentiate (Erlich & 

Raven 1964, Bever et al. 2015). This mufti-trophic view of the biotic environment has been 

given more consideration in recent years as the methods for testing the ideas have become 

available (Wang et al. 2016, Sedio 2017).  

If the hypothesized biotic environment can be viewed as being built upon the back-and-forth 

interactions between plant hosts and their natural enemies, then the plant traits that are used to 

quantify the biotic environment are the chemical defensive metabolites that the hosts employ to 

escape, evade, or deter their enemies (Erlich & Raven 1964, Wetzel & Whitehead 2020). While 

plant-host-defenses can be morphological in nature (Forrister et al. 2019), the great variety of 

plant-chemical metabolites, many of which are employed defensively (Kursar et al. 2009, 

Salazar et al. 2016), have been shown to be a hypothetically feasible way to quantify these 

interactions, resulting in an increasing number of analyses of enemy mediated interactions in 

recent years (Kursar et al. 2009, Salizar et al. 2016, Forrister et al. 2019, Sedio et al. 2021, 

Endara et al. 2022, Volf et al. 2022). The conclusions from this body of research have supported 

the idea that species differentiate along the lines of their chemical-defensive traits, whereby 

species that have similar defenses suffer attack from shared enemies resulting in decreased 

fitness, while those that do not share defenses avoid enemies, resulting in increased fitness and or 

survival of those chemically dissimilar species (Coley et al. 2018, Sedio et al. 2018). 

Whether considering chemical-defensive traits in relation to the biotic environment, or 

morphological traits in relation to the abiotic environment, the expected relationships can be 

measured similarly. Overdispersion of traits occurs when traits are more dissimilar than expected 
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by chance. In the case of morphological traits, overdispersed trait patterns can occur from either 

competition for resources leading to character displacement (MacAuthur & Levins 1967) or 

niche differentiation (Kraft et al. 2008, Laughlin et al. 2020). Overdispersion can also occur from 

strong pressure from enemy mediated interactions where species with similar chemical profiles 

will be more vulnerable to attack from shared enemies, in the case of chemical-defensive traits. 

Underdispersion of traits is the opposite of overdispersion, where traits are more similar than 

expected, as a result of abiotic filtering and/ or resource limitation in the abiotic environment. 

Harsher environments, whether having more extreme climates or poorer nutrient resources can 

exert stronger selective pressure, resulting in only a subset of potential morphological and 

chemical forms able to exist there (May et al. 2013), and can result in underdispersed trait 

patterns in both suites of traits. Morphological traits would show a clustered pattern, with traits 

that reflect the abiotic challenges present (such as thicker smaller leaves in colder environments 

or deciduous leaves in more seasonal environments), while chemical defensive traits may show 

greater similarity simply because in harsh or nutrient-poor environments individuals are less able 

to invest in defensive chemicals (Carmona et al. 2011, Mithöfer et al. 2012).  

Despite the longstanding attention of ecologists, there is still uncertainty regarding how the 

biotic and abiotic environments affect community assembly and how their relative strengths may 

vary (Kraft et al. 2015). Many previous studies have assumed that functional trait patterns are 

driven by the abiotic environment without considering at all the effects of the biotic (McGill et 

al. 2006, May et al. 2013, Kraft et al. 2015).  Most of the existing studies that do consider the 

biotic environment in relation to the effects of biotic interactions on community assembly, focus 

on competitive interactions at the same trophic level, without considering multi-trophic, enemy-

mediated interactions (Cavander-Bares et al. 2006, Pontarp & Petchey 2016, Wetzel & 
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Whitehead 2020, Henn et al. in review). Also, while there has been research on both the biotic 

and abiotic environments separately, only a limited number of studies have considered both 

together (Sedio et al. 2021, Henn et al. in review). Considering these constraints on knowledge, a 

study that considers the effects of both the abiotic as well as the biotic environments, while 

taking into account the potentially multi-trophic nature of biotic interactions would be extremely 

valuable in predicting how community assembly mechanisms change across gradients. We 

bridge this gap by using the latest innovations in large-scale ecological, chemical metabolomics, 

with a clear focus on two different but interacting forces/ processes the result of which are 

patterns of morphological and chemical traits. 

In this study we ask how community assembly is affected by both the biotic and the 

abiotic environments, by examining the relationships between two suites of plant functional 

traits, chemical and morphological, and abiotic site characteristics. We used data from 16 1-ha 

forest plots distributed across an ~3000 m elevational-diversity gradient in the Bolivian Andes 

(17-137 tree species per plot). By using large-scale chemical-metabolomic analytical techniques 

(Wang et al. 2016, Sedio 2017, Sedio et al. 2018), we were able to compare patterns of both 

foliar leaf-defensive compounds, as well as 8 selected morphological traits that describe the 

resource acquisition strategies of the tree species, in relation to a battery of climatic and soil 

variables that thoroughly characterize the abiotic environment along the gradient. We tested 2 

hypotheses: 1) Biotic interactions are more important determinants of community structure in 

warmer, wetter, less seasonal, nutrient-rich environments, with the prediction that overdispersion 

of chemical traits will increase towards warmer, wetter, less seasonal, nutrient-rich environments 

and 2) Abiotic filtering is a more important determinant of community structure colder, drier, 

more seasonal, nutrient poor environments, with the prediction of greater underdispersion of 
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morphological traits towards colder, drier, more seasonal, nutrient poor environments. This study 

takes a more nuanced look at community assembly by examining different, but potentially 

interacting forces across a tropical-elevational gradient. It also provides a timely and 

complementary view of recent, similar studies done in the temperate zone (Henn et al. in review). 

 

 

 

4.2 Methods 

1. Floristic Data & Study Area 

Tree species data, both taxonomic as well as morphological and chemical functional trait 

data, were collected as part of the Madidi project, a 20 plus year collaboration to document the 

flora of the Madidi region in the Andes of Bolivia (Tello et al. 2015; Figure 1). The region 

ranges in elevation from lowland rainforests located at around 200 m to high mountains above 

6,000 m, above the tree line (Fuentes 2005). The elevational gradient is covered by different 

forest types and encompasses a broad range of abiotic (climatic and environmental) conditions 

(Rafiqpoor & Ibish 2004). Species composition and abundance of woody plants were obtained 

from 50, spatially mapped, 1-hectare plots. Plot elevations rise from 212m to 3334m. Within 

each plot, all woody plants with a diameter at breast height of at least 10 cm were spatially 

mapped measured and identified to a valid species or morphospecies name, through further 

taxonomic work at the Herbario Nacional de Bolivia, in La Paz, Bolivia and at the Missouri 

Botanical Garden in St. Louis, USA. The majority of the permanent plots have been censused a 

minimum of two times. Of these 50 plots, 16 plots with available chemical trait data were 
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selected, ranging from the least species rich, Kañupa with only 17 species to Lomaka, the most 

species rich, with 137 species, to carry out this investigation. 

 

 

Trait Data 

Functional trait data were collected during multiple censuses. Five individuals of each 

species, in each plot, were censused, when abundances allowed. The field collection and 

laboratory methods used in the determination of functional trait values for the Madidi censuses 

were adapted from (Cornelissen et al. 2003) and the Madidi Project methods manual (Jørgensen 

et al. 2015) describes the methods further. Before testing the predictions related to both sets of 

functional traits, the trait data were cleaned of misnamed or unidentified species. The species 

included in each data set was matched with the species found in each of the other datasets. 

2. Morphological Data 

We selected 8 morphological functional traits that were specifically intended to 

encompass the whole of a forest tree’s life history strategy (Table S2; Figure S1). Max tree 

height and max diameter at breast height (DBH), are associated with competitive vigor and 

overall growth and life history strategy. Both leaf area and specific leaf area (SLA) are 

associated with photosynthetic or growth rate, SLA additionally gives clues about the life history 

trade off between defense and growth rate, while relative growth rate (RGR) is an inclusive 

measure of growth rate. The traits leaf thickness, leaf thickness, and twig specific density are all 

associated with plant defense/ resistance to the environment (biotic and abiotic), while twig 

specific density further gives insight into the growth, survival tradeoff (Perez-Harguindeguy et 
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al. 2013). The morphological traits were centered and transformed, prior to being included in a 

principal components analysis, of which all 8 trait axes were used in the downstream analyses.  

 

3. Chemical Data 

Chemical trait data were derived according to Sedio et al. (2021) from leaf tissue samples 

collected as part of the Madidi project censuses and then persevered with silica gel. Only 

samples collected after 2011 were used for these analyses. Briefly, for each species in each plot, 

10 mg of powdered leaf tissues were extracted overnight in a high percentage methanol solution. 

Extracts of five individuals per species per plot were pooled to create 906 extract pools 

representing each unique species-by-plot for the subsequent analysis. Ultra-high-performance 

liquid chromatography tandem mass spectrometry followed by heated electrospray ionization 

were used to analyze extracts (Sedio et al. 2017, 2018) and the Global Natural Products Social 

(GNPS) Molecular Networking tool to cluster the MS/MS spectra into consensus spectra that 

represent unique structures (Wang et al. 2016). NPClassifier was used to classify metabolites 

according to basic biosynthetic pathways, into classes and superclasses (Kim et al. 2022).  The 

consensus spectra are referred to as compounds or metabolites throughout. These methods 

differentiated between both primary metabolites involved in resource-acquisitive metabolic 

functions, (which tend to be conserved across most plants, Sedio et al. 2018), and secondary 

metabolites, hypothesized to be involved in defense. Secondary metabolites display a greater 

diversity and much greater interspecific variability (Salminen and Karonen 2011) than primary 

metabolites. Due to their widespread defensive use, were used in the analyses. We calculated the 

chemical structural and compositional similarity (CSCS), which is a measure of pairwise 
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metabolite similarity among species, that takes into account similar, but non-identical chemical 

structures (Sedio 2017). 

 

Environmental Data 

The environmental data variables were scaled and centered, prior to a principal 

components analysis being run, of which the first two principal components axes were taken as 

independent variables to be used in the downstream analyses. The environmental data used was 

at the whole plot level only. 

 

4. Climate Data 

 Climate variables were selected to represent the variation in plot temperature, 

precipitation, and seasonality over the elevational gradient. The temperature variables annual 

mean temperature and temperature annual range were used from WorldClim Version 2.1 (Fick & 

Hijmans 2017). The precipitation variables total annual precipitation and precipitation 

seasonality were used from the Tropical Rainfall Measuring Mission (TRMM) because of the 

greater accuracy compared to WorldClim data in the Madidi region. 

5. Soil Data 

 A total of 13 soil variables were selected to characterize the variation in plot-soil nutrient 

richness, soil type, and local growth conditions (Appendix C: Table S2). Through the use of 

these variables, we sought to quantify the differences in the available soil resources between 

plots along the gradient. The soil data were additionally log transformed prior to the PCA. 

 

6. Statistical Tests of Hypothesis 
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 To quantify the differences in trait values, the abundance-weighted mean pairwise 

distance (MPD) of chemical and morphological functional traits within subplots were calculated 

using the ses.mpd function in the picante package in R. MPD is simply the mean of all of the 

pairwise functional distances of all of the species within a community or subplot. The mean of 

all the subplots was taken as the overall mean plot value. The morphological and chemical data 

were first transformed into dissimilarity-distance matrices of species’ within-plot trait values. 

The plot MPD was calculated at the 5, 10 and 20 m subplot scales.  

In order to account for within-plot variation not directly due to the environmental 

variables, we utilized a randomized null model. The null model randomizes the species trait 

values within a pot while preserving the total number of individuals, species abundances, and 

positions of individuals within the plots or subplots. We ran n=999 null model permutations. 

Any significant variation in MPD values from the randomized expectations of the null model 

were thus deemed due to the effects of the environmental climate and soil variables. To test 

statistically test whether the observed values differed from random, the standard effect size 

(SES) of the MPD values was used, calculated by subtracting the randomized MPD values from 

the observed values and dividing by the standard deviation of the randomized values. To 

quantify the relationship of the traits MPD with the environmental variables, we linearly 

regressed the SES values against the first two PCA axes of the climate and soil variables. 

Positive deviations from random (greater than zero) indicate that trait dissimilarity values differ 

more than expected with regard to the independent variables, and negative deviations from 

random (less than zero) indicate that trait dissimilarity values differ less than expected with 

regard to the variables.  
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4.3 Results 

Overview Results 

Overall, we found that the majority of plots had less dispersed trait patterns than expected 

(negative SES values) for both chemical and morphological traits. The relationships among the 

three subplot scales were similar (Figures 1&2). The range of functional dispersal increases with 

spatial size of subplots. There was no relationship between trait distances of chemical and 

morphological traits across the entire data set; chemical and morphological traits are not 

orthogonal (Figure S2). 

 

PCA  

Climate PC1 explains 71% variation and describes a gradient in temperature, 

precipitation and seasonality, with annual mean temperature and annual precipitation loading 

strongly and as well as annual temperature range partially loading on PC1. Soil PC1 explains 

28% of the variation and describes a gradient in soil interchangeable ions, with interchangeable 

calcium, interchangeable magnesium, interchangeable potassium, and clay loading negatively. 

Soil PC2 explains 26% variation and describes a gradient in soil organic content and total 

nitrogen, with organic material, organic carbon, total nitrogen loading strongly on PC2. 

 

Prediction 1 

  The first prediction (that chemical traits will show greater overdispersion  

in warmer, wetter, less seasonal, or more nutrient rich environments) was rejected. We did not 

find evidence of overdispersion of secondary metabolites at any spatial grain size (Figure 2). The 
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majority of the plots had subplots with less than expected functional dispersion of chemical 

traits, at all subplot scales. 

 

Prediction 2 

There was partial support for the second prediction that there would be less functional 

dispersion, for morphological traits, in cooler, dryer, less seasonal, more nutrient poor 

environments. We found (significant relationships) evidence of greater underdispersion 

(filtering) of morphological traits at lower values of soil PC1, at all scales (5m: p-value: 0.024, 

R2: 0.27; 10m: p-value: 0.0077, R2: 0.37; 20m: p-value: 0.014, R2: 0.32; Figure 3).  

 

 

4.4 Discussion 

Community assembly is influenced by a combination of factors (Vellend 2010). The 

abiotic environment consists of those factors that result from the physical conditions of the site, 

such as temperature, precipitation, or soil content. Morphological traits, specifically those that 

are involved in resource acquisition and physical structure, are thought to best approximate the 

abiotic environment. The biotic environment describes the influence of species interactions 

within the communities and can be approximated by traits that reflect the interactions between 

species, whether at the same trophic level (competition) or between different trophic levels 

(enemy-mediated interactions). Chemical-defensive traits were used in this case, to approximate 

enemy-mediated interactions. We investigated how community assembly is affected by both the 

abiotic and the biotic environments by examining relationships within two groups of functional 
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traits, chemical and morphological. The relationships were not immediately apparent. However, 

there was some evidence for an increasing relationship between morphological traits and wetter, 

warmer, more seasonal, and nutrient-rich environments, suggesting that the importance abiotic 

filtering increases (changes systematically) along the gradient. Across the whole of the sampled 

plots, for both chemical and morphological traits, the majority of the plots were more 

undispersed than expected by chance suggesting at community subplot scales, that the abiotic 

environment affect trait patterns more than expected, for both groups of traits.  

There was no evidence of overdispersion of chemical traits in relation to climate or soil 

variables across the elevational gradient. This could mean that the importance of biotic 

interactions in determining community structure does not vary across the gradient. Perhaps more 

likely, it could be that the chemical defensive compounds sampled do not closely exactly 

approximate the influence of the biotic environment.  

It has become apparent to ecologists that plant-enemy interaction networks can be 

ecologically complex and that understanding these networks is important in elucidating the 

mechanisms at work within assemblies of communities, and in selecting the proper functional 

traits to do so (Sam et al. 2020). For example, Volf et al. (2020) in a study on the variance of 

several individual classes of tree foliar metabolites, found that the individual classes of 

metabolites varied according to different factors and that some compound classes were better 

described by abiotic factors such as temperature or humidity. They also found that different 

compound classes may be employed differentially (i.e. as resistors to abiotic stressors, as 

defenses against herbivores and/or mammals). Sam et al. (2020) found that herbivore damage 

along an elevational gradient varied significantly with elevation and season. They found that 

herbivore pressure is strongest in the most productive environments, that have the most abundant 
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available water. Volf et al. (2022) found that the abiotic environment, specifically temperature 

stress, had a greater effect on the individual classes of chemical metabolites produced in trees 

along a temperate elevational gradient. They also found specific classes of compounds to have 

differing probable ecological functions. Each of the previous studies found that the abiotic 

environment was found to have a greater than expected effect on the composition of chemical 

produced by plant species, further complicating the link between enemy-mediated interactions 

and chemical defenses (Fine et al. 2004, Defossez et al. 2021). A second important commonality 

among these studies is that they found specific classes of chemical metabolites to vary in 

function and abundance along a gradient. These findings suggest that the traits chosen to 

approximate the biotic landscape must be chosen with the probable function of the specific 

metabolite or class of metabolites in mind.  

We found evidence of greater morphological dispersion in more nutrient rich 

environments which could suggest that the strength of abiotic filtering is reduced in more 

productive environments as either the more benign environment allows a greater chance of 

survival or that it allows for a greater extent of successful functional strategies to coexist. In 

nutrient poor locales, the best survival strategies may involve tradeoffs (Fine et al. 2006) as 

environmental conditions change along a gradient. Defossez et al. (2018) found covariation in a 

suite of defensive traits (morphological as well as some volatile compounds) along a temperate 

elevational gradient, in which plant species were clustered into separate defense ‘syndromes’ 

along the gradient, likely as a result of defensive tradeoffs necessitated by limited resources, 

supporting this supposition. 

Our results underscore the importance and complexity of the abiotic environment on 

community trait patterns. The abiotic environment may have a greater than expected effect on 
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community trait patterns. The question of how well the traits selected describe the biotic and 

abiotic environments remains. 

If the relationships between the biotic and abiotic environments are not clear, neither will 

their effects on morphological and chemical trait patterns. Several studies have found 

morphological and chemical traits to be largely orthogonal (Sedio et al. 2021), however this 

pattern is in not always consistent (Labarrere et al. 2019, Henn et al. in review, Figure S2). The 

literature on how morphological traits are influenced by the abiotic environment is already quite 

extensive (Laughlin et al. 2020). As the biotic environment is complex and difficult to capture, 

choosing the right set of traits that reflect fitness or factors influencing fitness is a challenging 

task (Laughlin et al. 2020). Studies showing that different classes of chemical metabolites 

correspond to predictable adaptive or defensive purposes, such as flavonoids providing 

protection against abiotic stress (Volf et al. 2020), allows us to view the landscape of enemy-

mediation interactions in a finer degree of detail. However, chemical traits are also influenced by 

the abiotic environment. The three previous studies (Sam et al. 2020, Volf et al. 2020, Volf et al. 

2022) found the abiotic environment to have a greater than expected effect on the production of 

chemical compounds. Not only were specific classes of metabolites strongly related to certain 

environmental factors such as temperature or humidity, the chemical, but the chemical 

composition of species changed seasonally. This stronger than expected effect further 

complicates the selection of chemical traits. The selection of chemical defensive traits must be 

further refined. 

 

There are several notes worth mentioning regarding the interpretation of these data. Within 

all of the plots analyzed, only individual stems greater than 10 cm DBH were sampled, possibly 
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excluding juvenile or developmental stages of some species, and possibly adult individuals of 

smaller species.  Despite the wide variation in plot diversity and abiotic conditions along it, the 

whole of the study site is tropical, and along the gradient, there was less trait dispersion than 

expected overall. Another point to consider is that plant species’ metabolite concentrations can 

change seasonally or that plants may invest more in plant defenses at different times of the year 

(perhaps especially in more seasonal forests; Sam et al. 2020). The investment of chemical 

metabolites is costly (Schoonhoven et al. 2005), such that research has found that species may 

invest in groups defense strategies that would cause individual defensive compounds to co-occur 

(defensive syndromes, Defossez et al. 2018). This is especially important when considering the 

influence of climate or soil conditions on chemical trait patterns. An illuminating future direction 

would analyze separate classes of defensive compound individually, formulating specific 

predictions based off their likely defensive or adaptive uses. It would also be helpful to test 

which chemical metabolites co-occur along gradients or within a study system. 

We found the abiotic environment to have complex and intertwined effects with biotic 

environment and on trait patterns. Overall, our findings support the idea that there is systematic 

variation in the biotic and abiotic factors that structure tropical forest communities, but that the 

abiotic may influence the biotic, and that the interactions between species must be examined in 

yet finer detail. Undoubtedly, both the biotic and abiotic environments are important in 

community assembly, and that further understanding of their relative roles is of critical 

importance. 
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4.6 Figures 

 
Figure 1 - Map of the 16 1-ha forest plots in the Bolivian Andes used in these analyses. A) 

study region location of Bolivia within the Cono del Sur, B) study region within Bolivia, 

and C) distribution of plots along the eastern slopes of the Andes (~356 to 3,328 masl) 

within Madidi National Park (part of the Madidi region) that form the elevational gradient. 

The x axes show latitude, and the y axes show longitude in decimal degrees. 
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Figure 2 – SES of relationships of functional dispersion of chemical traits (secondary 

metabolites) across gradients: climate PC1 (top row) and soil PC1 (bottom row), at 3 

different subplot sizes: 5m (left column), 10m (middle column), and 20m (right column). 

Filled points are moist montane forest plots. Open points are dry seasonal forest plots. 
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Figure 3 – SES of relationships of functional dispersion of morphological traits across 

gradients: climate PC1 (top row) and soil PC1 (bottom row), at 3 different subplot sizes: 

5m (left column), 10m (middle column), and 20m (right column). Filled points are moist 

montane forest plots. Open points are dry seasonal forest plots. 
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Chapter 5: Conclusion  

5.1 Conclusion 
The three studies that comprise this dissertation investigated how biotic interactions 

structure diversity at large scales and small, and examined their role in maintaining diversity 

gradients. This dissertation contributes by addressing the conceptual gaps in our understanding 

of how local biotic interactions vary in their relative importance for community assembly across 

large-scale diversity gradients. It bridges this gap in three important ways: 1) by testing the 

relative importance of antagonistic species interactions among tree species across an elevational-

diversity gradient in the tropical Andes (Chapters 2, 3), 2) by testing the relative importance of 

one particular type of antagonistic species interaction (apparent competition via chemically-

mediated niche differences) across the same elevational-diversity gradient (Chapters 3, 4), and 3) 

by exploring the interaction between the biotic and abiotic environments using chemical and 

morphological traits  (Chapter 4).  

This research helps to reconcile the links between local-scale biotic interactions and 

large-scale diversity patterns. This work adds to recent works (Schemske et al. 2009) that have 

investigated the seminal hypotheses (Darwin 1859, Wallace 1878, Dobzhansky 1950, Erlich & 

Raven 1964, Janzen 1970, Connell 1971) that have long predicted the role that biotic interactions 

play in community structure, even across very large scales. The second chapter found that local 

biotic interactions become more stochastic w/ increasing diversity, suggesting that competitive 

interactions appear to be more unpredictable among neighborhoods of the same species in 
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higher-diversity tree communities. That patterns were not detected in the functional traits 

suggests that there are other forces at play than competitive biotic interactions. 

Chapter 3 investigated how multi trophic, enemy mediated interactions varied over a 

gradient of climate, diversity, and elevation. The results showed that natural enemies impose a 

stronger selective pressure on plant chemical defenses in more diverse communities and in more 

productive climates, and that the defensive chemical compounds that hosts use are less 

phylogenetically conserved in higher diversity communities. The differential strength of biotic 

interactions and the greater evolutionary lability of defensive metabolites across communities 

implies that these enemy mediated interactions likely play a role in the maintenance and origin of 

biodiversity gradients.  

While both chapters 2 and 3 both suggest that biotic interactions are a key factor in 

community structure, chapter 4 tested how community assembly is affected by both the biotic 

and the abiotic environments, by examining the relationships between two suites of plant 

functional traits, and abiotic site characteristics, finding evidence supporting systematic variation 

in the biotic and abiotic factors that structure communities. The finding that the abiotic 

environment might have a stronger than expected influence on chemical trait patterns suggests 

that a logical next step would be to further differentiate the chemical defensive compounds to 

quantify their individual influences on community assembly and dynamics.  

Chapters 3 and 4 both utilized recent advances in chemical metabolomics, to become the 

first of few studies that have examined chemical metabolite patterns at a community scale. The 

use of these advanced tools allows for examination of community interaction patterns at a very 

fine scale. The results of these chapters as well as some recent studies (Salazar et al. 2016, Sam 

et al. 2020), show that this level of precision is necessary to accurately gauge the local 



96 

 

relationships working within communities, as individual classes of chemical-defensive 

metabolites vary according to different biotic and abiotic influences (Sam et al. 2020, Volf et al. 

2020, 2022). Shedding light up how local interactions scale up and affect very large regions is 

one of the principal contributions of this work. Understanding the link between local scale 

interactions and large-scale patterns is key for finding ties between complimentary research and 

for protecting and conserving biodiversity by most accurately predicting future changes between 

species. The link between scales makes the importance of local patterns in predicting large-scale 

changes clear. 

The implications of this research are potentially far-reaching. In an ever-changing world, 

an understanding of natural systems becomes more important than ever. The pace of change has 

continued to increase in the 250-plus years since the original hypotheses were recorded. In order 

to conserve biodiversity and to accurately predict species’ shifts and relationships changes, 

accessible information is a must, and the scaling up of local data provides prodigious leverage. 

These studies have forged new ground in the direction toward a brighter future and provide a key 

step along the path to stewardship of biodiversity based on solid principles. 
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Appendix A: 
 

Supplementary table and figures to Chapter 2 

Tables 

Table S1 – Summary of eight plant functional traits measured on 701 tree species in 31 forest 

plots, including their ecological function (Pérez-Harguindeguy et al. 2013), unit of measurement, 

and the range of trait values from all plots. 

Functional trait Ecological function Units Range 

Maximum height Associated with growth 

form, position of the 

species in the vertical 

light gradient of the 

vegetation, competitive 

vigor, reproductive size, 

whole-plant fecundity, 

potential lifespan, and 

whether a species is able 

to establish and attain 

reproductive size between 

two disturbance events 

 

meters 1.6 - 40 

Maximum diameter at 

breast height (DBH) 

An alternative, workable, 

proxy for height 

centimeters 10 - 132 

Relative growth rate 

(RGR) 

Indicates plant strategy 

with respect to 

environmental 

productivity (soil 

nutrients, light moisture) 

relative measure - 

unitless 

- 0.124539788 - 

0.17521802 

Specific leaf area (SLA)  Associated with potential 

relative growth rate and 

abiotic environment. In 

general, species in 

resource-rich 

g / m2 0.8705576 – 

242.23061 



99 

 

environments have high 

SLA, while those in 

resource poor or harsh 

abiotic environments have 

low SLA. The leaf is also 

an organ with high 

investment in important 

secondary compounds 

Leaf thickness Associated with abiotic 

environment, where sun 

leaves tend to be thicker 

than shade leaves as well 

as lower in N%, slower in 

CO2 diffusion and subject 

to more internal shading 

of chloroplasts  

centimeters 0.004800000 - 

0.1502 

Leaf size Represents a compromise 

between functional 

(growth) and resource use 

efficiency.  

millimeters 88.320 - 

491553.40 

Twig specific density Similar to wood density 

but can be measured for 

herbaceous species. Twig 

specific density is 

associated with stability, 

defense, architecture, 

hydraulics, C gain and 

growth potential of plants. 

Stem density partly 

underlies the growth-

survival tradeoff; a low 

stem density (with large 

vessels) leads to a fast 

growth, because of cheap 

volumetric construction 

costs and a large hydraulic 

capacity, whereas a high 

stem density (with small 

change in water 

volume of a 

2.5cm stem 

cutting (g / g * 

cm3) 

0.01868481 - 

1.996000 
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vessels) leads to a high 

survival, because of 

biomechanical and 

hydraulic safety, 

resistance against 

pathogens, herbivores, or 

physical damage 

Relative twig bark 

thickness 

Thicker bark insulates and 

protects buds from high 

temperatures. Thick bark 

may also provide 

protection of vital tissues 

against attack by 

pathogens, herbivores, 

frost or drought. In 

general, this trait has 

special relevance in trees 

or large shrubs subject to 

surface-fire regimes. 

relative measure - 

unitless 

0.01351351 – 

.8781250 

 

 

 

 

 

Table S2 – Plot data of plots used in the analyses including plot type, plot richness, plot 

elevation, mean annual temperature, annual precipitation, dimensions, total number of stems (an 

individual may have multiple stems), average DBH and plot shape. 

Plot 

Name 

Forest 

Type 

Plot 

Richne

ss 

Elevati

on (m) 

Mean 

Annual 

Temperat

ure  

Annual 

Precipitat

ion (mm) 

Plot 

Dimensi

on X 

(m) 

Plot 

Dimensi

on Y 

(m) 

Tota

l 

Ste

ms 

Plot 

mean 

DBH 

(cm) 

Chaqui 

31 

moist, 

monta

ne 38 2909 14.18333 1104 100 100 805 

16.620

85 
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Chaqui 

32 

moist, 

monta

ne 34 3101 11.91667 975 100 100 780 

17.608

7 

Collpa 

48 

moist, 

monta

ne 95 1259 20.59167 1449 100 100 848 

20.507

45 

Fuerte 

26 

moist, 

monta

ne 73 2029 17.59583 1324 100 100 879 

17.380

76 

Fuerte 

27 

moist, 

monta

ne 91 1853 17.975 1350 100 100 733 

18.510

66 

Kanup

a 44 

moist, 

monta

ne 16 3334 10.72917 961 100 100 466 

23.929

09 

Lomak

a 40 

moist, 

monta

ne 140 1268 21.00417 1332 100 100 791 

19.480

73 

Lomas

a 39 

moist, 

monta

ne 102 1049 21.52917 1383 100 100 883 

16.954

97 

Resina 

12 

dry, 

season

al  49 724 23.0875 1858 100 100 806 

17.042

15 

Resina 

13 

dry, 

season

al  42 869 22.57083 1806 100 100 775 

16.723

41 

Resina

14 

dry, 

season

al  61 1099 21.70417 1696 100 100 876 

16.156

55 

Sanma

r 21 

moist, 

monta

ne 89 1195 21.04583 1803 100 100 635 

22.743

43 

Sanma

r 22 moist, 

monta
90 1328 20.4 1761 100 100 521 

22.660

89 
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ne 

Santaa 

36 

moist, 

monta

ne 41 2490 14.56667 1114 100 100 527 

21.251

03 

Sumpu

l 33 

moist, 

monta

ne 71 1086 21.31667 1610 100 100 614 

20.350

37 

Sumpu

l 34 

moist, 

monta

ne 97 1339 20.36667 1500 100 100 745 

19.741

93 

Tanhua 

37 

moist, 

monta

ne 94 1976 16.25 1206 100 100 703 

19.387

07 

Tapuri 

45 

moist, 

monta

ne 43 2708 15.20417 1013 100 100 702 

21.032

23 

Tapuri 

46 

moist, 

monta

ne 44 2362 16.44583 1062 100 100 1111 

14.592

59 

Terraz 

41 

moist, 

monta

ne 32 2887 13.54583 934 100 100 894 

17.693

02 

Tintay 

24 

moist, 

monta

ne 112 1478 19.65833 1358 100 100 722 

17.073

13 

Titiri 

42 

moist, 

monta

ne 34 2854 13.06667 945 100 100 631 

20.361

23 

Tocoaq 

28 

moist, 

monta

ne 77 2210 16.84583 1288 100 100 724 

18.037

68 

Tocoaq 

29 

moist, 

monta

ne 83 2407 15.6 1202 100 100 734 

17.362

28 
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Tocoaq 

30 

moist, 

monta

ne 60 2508 15.69167 1221 100 100 683 

17.746

16 

Waturu 

43 

moist, 

monta

ne 24 3088 11.69167 972 100 100 642 

22.202

67 

Yarimi 

10 

dry, 

season

al  48 1006 21.63333 1628 100 100 610 

18.656

27 

Yarimi 

11 

dry, 

season

al  55 1197 21.81667 1647 100 100 579 

22.284

02 

Yarimi 

9 

dry, 

season

al  40 927 22.175 1698 100 100 433 

23.563

42 
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Figures

  

   

Figure S1 – Bivariate trait correlations (Pearson correlation coefficient) for the 8 selected traits.  

 

 

Functional Trait Correlations 
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Figure S2 – Mean taxonomic dissimilarity of tree neighborhoods across the diversity gradient. 

The left panels show relationships between the mean observed taxonomic dissimilarity (Bray 

Curtis dissimilarity) of conspecific tree neighborhoods and species diversity (Shannon diversity 

Index; N = 29 forest plots) at A) 10-m, C) 15-m, and E) 20-m neighborhood radii. The right 

panels show the same relationships for null-model deviations (mean standardized effects sizes, 

SES). The dashed line shows the null expectation (SES = 0); positive and negative SES indicate 

higher and lower taxonomic dissimilarity than expected from random sampling of individuals 

from the plot species pool, respectively. Solid trend lines indicate significant linear relationships 

(P < 0.05). 
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Figure S3 – Mean taxonomic dissimilarity of tree neighborhoods across the diversity gradient. 

The left panels show relationships between the mean observed taxonomic dissimilarity (Bray 

Curtis dissimilarity) of conspecific tree neighborhoods and species diversity (Plot species 

richness; N = 29 forest plots) at A) 10-m, C) 15-m, and E) 20-m neighborhood radii. The right 

panels show the same relationships for null-model deviations (mean standardized effects sizes, 

SES). The dashed line shows the null expectation (SES = 0); positive and negative SES indicate 

higher and lower taxonomic dissimilarity than expected from random sampling of individuals 

from the plot species pool, respectively. Solid trend lines indicate significant linear relationships 

(P < 0.05). 
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Figure S4 – Plot of functional traits at 10m scale corresponding to Figure 3. 
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Figure S5 – Plot of functional traits at 20m scale corresponding to Figure 3. 
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Figure S6 – Remaining functional traits at the 15m neighborhood radius scale. 
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Figure S7 – Remaining functional traits at the 10m neighborhood radius scale. 
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Figure S8 – Remaining functional traits at the 20m neighborhood radius scale. 



112 

 

Appendix B: 
 

Supplementary figures to Chapter 3 

Figures 

 

 
Figure S1 – Variation in rarified median chemical dissimilarity (1-CSCS) vs species diversity 

(inverse Simpson index), elevation (m), and climate among 16 forest plots in Madidi, Bolivia. 

Panels a-d represent linear regressions between rarified (n = 12) median chemical dissimilarity 

among co-occuring species with respect to the whole metabolite and (a) species diversity, (b) 

elevation, (c) Climate PC1, and (d) Climate PC2, respectively. Panels e-h represent linear 

regressions between chemical dissimilarity with respect to secondary metabolites and (e) species 

diversity, (f) elevation, (g) Climate PC1, and (h) Climate PC2, respectively. Panels i-l represent 

linear regressions between chemical dissimilarity with respect to primary metabolites and (i) 

species diversity, (j) elevation, (k) Climate PC1, and (l) Climate PC2, respectively. Secondary 

metabolites are defined as those derived from the Alkaloids, Amino acid and Peptides, 

Polyketides, Shikimates and Phenylpropoanoids, and Terpenoids biosynethetic pathways using 

NPClassifier (Kim et al. 2022). Primary metabolites are defined as those derived from the 

Carbohydrates and Fatty acids pathways. Three seasonally dry forests are represented by open 
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circles. Regressions using all 16 forest plots are represented by solid lines; regressions excluding 

three seasonally dry forests are represented by dashed lines. Adjusted R2 and p-values are 

presented for significant (p < 0.05) regressions only. 
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Appendix C: 
 

Supplementary table and figures to Chapter 4 

Tables 

 

Table S1 - Overview of forest plots. Variation in tree species richness, elevation, total annual 

precipitation (MAP), and mean annual temperature (MAT) among 16 1-ha forest plots in the 

Madidi Project, Bolivia. Dry forest plots italicized. 

Plot Name Species 

richness 

Elevation 

(m) 

MAP (mm) MAT ( C) N trees 

sampled 

Chaqui_32 35 3116 975 11.9 85 

Fuerte_27 80 1900 1350 18 236 

Kanupa_44 17 3324 961 10.7 52 

Lomaka_40 137 1242 1332 21 248 

Lomasa_39 95 1054 1383 21.5 250 

Pintat_5 48 880 1684 22 164 

Resina_12 50 662 1858 23.1 141 

Sumpul_34 103 1223 1500 20.4 245 

Tapuri_45 43 2697 1013 15.2 121 

Tintay_24 117 1400 1358 19.7 283 

Tintay_25 94 1468 1357 20 253 

Titiri_42 34 2859 945 13.1 106 

Tocoaq_29 83 2407 1202 15.6 170 

Tocoaq_30 62 2510 1221 15.7 133 

Tocoaq_28 81 2200 1288 16.8 209 

Yarimi_9 40 850 1698 22.2 129 

 

Table S2– Environmental climate (n=4) and soil (n=13) variables used in the analyses. 
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Climate Variable Soil Variable 

Annual Mean Temperature (bio01_WC2.1) pH Dissolved 

Temperature Annual Range (bio07_WC2.1) Total Nitrogen 

Annual Precipitation (bio12_TRMM) Organic Carbon 

Precipitation Seasonality (bio15_TRMM) Organic Material 

 Available Phosphorus 

 Exchangeable Sodium 

 Exchangeable Potassium 

 Exchangeable Calcium 

 Exchangeable Magnesium 

 Cation Exchange Capacity (CEC) 

 Percentage Sand 

 Percentage Silt 

 Percentage Clay 
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Figures

  
Figure S1 – Bivariate, Pearson correlations between each of the 8 selected morphological traits.  
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Figure S2: Relationship between chemical distances and morphological distances for the entire 

dataset 

(n=891).
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Figure S3 – SES relationships functional dispersion of chemical traits (secondary metabolites) 

across gradients: climate PC2 (top row) and soil PC2 (bottom row), at 3 different subplot sizes: 

5m (left column), 10m (middle column), and 20m (right column). Filled points are moist 

montane forest plots. Open points are dry seasonal forest plots. 
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Figure S4 – SES relationships functional dispersion of morphological traits across gradients: 

climate PC2 (top row) and soil PC2 (bottom row), at 3 different subplot sizes: 5m (left column), 

10m (middle column), and 20m (right column). Filled points are moist montane forest plots. 

Open points are dry seasonal forest plots. 
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Appendix D: R code 
R code for Chapter 2 

title: "Chapter 2 R code" 

output: word document 

--- 

 

Functions for analyses 

```{r} 

print("Yes!") 

 

### FUNCTION 1 ### 

neig.sim.sp <- function(sp.s.name, plot.p, trait.dists,  

  neig.limit, dists.p, which.close.edge, show.animation=FALSE)  

{ 

   

  ## Open packages necessary 

  require(vegan) 

  require(plotrix) 

  require(picante) 

  require(FD) 

   

  diag(dists.p) <- NA # Ensures that the focal individual is not selected  

                      # as part of its own neighborhood 

   

  which.sp.s <-  
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    which(as.character(plot.p$BinomialSpeciesName)==sp.s.name) # which individuals  

                                                               # in the plot belong  

                                                               # to species  

                                                               # "sp.s.name" 

  

  neig.n <- length(which.sp.s) # the number of individuals of species  

                              # 'sp.s.name' in  the plot  

   

  which.sp.s <- setdiff(which.sp.s, which.close.edge) # which individuals in the  

                                                      # plot are usable because  

                                                      # they are not too close  

                                                      # to the edge 

  usable.neig.n <- length(which.sp.s) # number of trees for which neighborhoods  

                                      # can be estimated 

   

 

  if(show.animation==TRUE) 

  { 

    plot(plot.p$Y~plot.p$X, pch=21, bg="grey80", col="grey80", asp=1,  

      ylim=range(plot.p$Y, na.rm=TRUE), xlim=range(plot.p$X, na.rm=TRUE),  

      ylab="Y", xlab="X", main=sp.s.name) 

           

    points(plot.p$Y[which.sp.s]~plot.p$X[which.sp.s], pch=21,  

      bg="forestgreen", col="forestgreen", cex=1.5) 
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    for(j in 1:length(which.sp.s)) 

      draw.circle(x=plot.p$X[which.sp.s[j]], y=plot.p$Y[which.sp.s[j]],  

        radius=neig.limit, nv=100, border="black", col=NA, lty=1, lwd=1) 

  }  

   

  ## Initiates the result objects as all NAs 

  ind.n <- ind.n.hetero <- ind.n.conspecific <-  

        rich <- rich.hetero <- NA 

   

  BC <- Jac <- BC.hetero <- Jac.hetero <-  

      trait.mpd <- trait.mpd.hetero <- NA 

   

   

  ## Calculations are run only of there are more than 2 usable neighborhoods 

  if(usable.neig.n >= 2) 

  { 

     

    dists.s.in.p <-  dists.p[which.sp.s,] # distances for individuals that can  

                                          # be used 

     

    ind.names <- rownames(plot.p)[which.sp.s] # individuals that could be used 

    if(identical(rownames(dists.s.in.p), ind.names)==FALSE)  

      stop() # test that the distance matrix and the tree table match 
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    ## Creates empty tables for the community composition by neighborhood 

    spp.in.plot <-  sort(unique(plot.p$BinomialSpeciesName)) 

    compo <-  matrix(0, nrow=usable.neig.n, ncol=length(spp.in.plot)) 

    colnames(compo) <-  spp.in.plot 

    rownames(compo) <-  ind.names 

        

     

    ## Loops through all usable neighborhoods 

    for(i in 1:usable.neig.n) 

    { 

 

      dists.to.i <- dists.s.in.p[i,] # Isolate distances of all individuals to  

                                     # individual 'i'. 

       

      which.neig.i <- which(dists.to.i <= neig.limit) # Determines which  

                                                      # individuals are within the  

                                                      # neighborhood, meaning  

                                                      # 'neig.limit' away or   

                                                      # closer to individual 'i'. 

      All.i <- plot.p[which.neig.i,] # Reduces the plot data to only those  

                                     # rows corresponding to all individuals  

                                     # within the neighborhood of  

                                     # individual 'i' 
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      ## Creates a composition table for all individuals in the neigborhood of 'i' 

      compo.i <-  

        as.matrix(table(as.character(All.i$BinomialSpeciesName)))  

       

      match.names <-   

        match(rownames(compo.i), colnames(compo)) 

       

      compo[i, match.names] <-  compo.i 

    } 

     

     

    ## For compo matrix with only heterospecifics, all cospecifics are 0 

    compo.hetero <-  compo 

    compo.hetero[,sp.s.name] <-  0  

 

    ## Eliminates columns (species) with zero individuals 

    compo <- compo[,colSums(compo)>0] 

    compo.hetero <- compo.hetero[,colSums(compo.hetero)>0] 

     

    ## For each neighborhood, calculates numbers of individuals and richness 

    ind.n <-  rowSums(compo) 

    ind.n.hetero <-  rowSums(compo.hetero) 

    ind.n.conspecific <-  ind.n - ind.n.hetero 

 

    rich <-  rowSums(compo>0) 
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    rich.hetero <-  rowSums(compo.hetero>0) 

       

     

    ## Calculates taxonomic beta-diversity across neighborhoods 

    BC <- vegdist(x=compo, method="bray", binary=FALSE) 

    Jac <- vegdist(x=compo, method="jaccard", binary=FALSE) 

             

    BC.hetero <- vegdist(x=compo.hetero, method="bray", binary=FALSE) 

    Jac.hetero <- vegdist(x=compo.hetero, method="jaccard", binary=FALSE) 

     

     

    ## Calculates functional beta-diversity across neighborhoods 

 

    trait.dists <-  as.matrix(trait.dists) 

           

     

    shared.spp.1 <-  intersect(colnames(compo), colnames(trait.dists)) 

     

    if(length(shared.spp.1) >= 2) 

    {             

      trait.dists.1 <-  as.dist(trait.dists[shared.spp.1, shared.spp.1]) 

      compo.1 <-  compo[,shared.spp.1] 

   

      trait.mpd <-   

        comdist(comm = compo.1,  



126 

 

        dis = trait.dists.1, abundance.weighted = TRUE) 

    }  

     

     

    shared.spp.2 <-  intersect(colnames(compo.hetero), colnames(trait.dists)) 

     

    if(length(shared.spp.2) >= 2) 

    { 

      trait.dists.2 <-  as.dist(trait.dists[shared.spp.2, shared.spp.2]) 

      compo.hetero.2 <-  compo.hetero[,shared.spp.2] 

   

      trait.mpd.hetero <-   

        comdist(comm = compo.hetero.2,  

        dis = trait.dists.2, abundance.weighted = TRUE) 

    } 

  } 

 

  ## Combines results for each neighborhood into a table 

  neigh.res.table <-  

    cbind(ind.n, ind.n.hetero, ind.n.conspecific,  

      rich, rich.hetero) 

  colnames(neigh.res.table) <- c("ind.n", "ind.n.hetero", 

    "ind.n.conspecific", "rich", "rich.hetero") 

       

  ## Save results of neighborhood pairwise comparisons into table 
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  pairwise.res.table <- cbind(as.numeric(BC), 

    as.numeric(Jac),  as.numeric(BC.hetero), as.numeric(Jac.hetero), 

    as.numeric(trait.mpd), as.numeric(trait.mpd.hetero)) 

     

  colnames(pairwise.res.table) <- c("BC",  

    "jaccard", "BC.hetero", "jaccard.hetero", 

    "trait.mpd", "trait.mpd.hetero")   

     

     

  res.summary <- c(neig.n, usable.neig.n,  

    colMeans(neigh.res.table, na.rm=TRUE),  

    colMeans(pairwise.res.table, na.rm=TRUE)) 

   

  names(res.summary) <- c("neig.n", "usable.neig.n",  

    paste("mean.", colnames(neigh.res.table), sep=""),  

    paste("mean.", colnames(pairwise.res.table), sep="")) 

   

  output <- list(res.summary, pairwise.res.table, neigh.res.table) 

  names(output) <- c("res.summary", "pairwise.res.table", "neigh.res.table") 

   

  output 

} 
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### FUNCTION 2 ### 

neig.sim.plot <- function(plot.p, trait.dists, neig.limit,  

  rand.n=10, SAD="fixed", show.animation=FALSE) 

{ 

  require(R.utils) 

 

  if(is.factor(plot.p$BinomialSpeciesName)==FALSE)  

    stop("'BinomialSpeciesName' needs to be a factor") 

   

  spp.list <- unique(as.character(plot.p$BinomialSpeciesName)) 

  spp.n <- length(spp.list) 

   

  dists.p <- as.matrix(dist(plot.p[,c("X", "Y")])) 

  diag(dists.p) <- NA 

   

  ## NOTE: this assumes a rectangular plot 

  plot.y.range <- range(plot.p$Y, na.rm=TRUE) 

  plot.x.range <- range(plot.p$X, na.rm=TRUE) 

   

  which.close.edge <- which(plot.p$Y<plot.y.range[1]+neig.limit |  

      plot.p$Y>plot.y.range[2]-neig.limit |  

      plot.p$X<plot.x.range[1]+neig.limit |  

      plot.p$X>plot.x.range[2]-neig.limit) 

   

  elements.to.randomize <-  
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    c("mean.ind.n", "mean.rich", 

      "mean.BC", "mean.jaccard",        

      "mean.BC.hetero", "mean.jaccard.hetero", 

      "mean.trait.mpd", "mean.trait.mpd.hetero") 

     

     

  pb <- txtProgressBar(min=0, max=spp.n, style=3)   

   

  for(s in 1:spp.n) 

  { 

    #print(paste("Species", s, "of", spp.n)) 

    setTxtProgressBar(pb, s) 

     

    sp.s.name <- spp.list[s] 

     

    which.sp.s <-  which(as.character(plot.p$BinomialSpeciesName)==sp.s.name) 

    which.not.sp.s <-  setdiff(c(1:nrow(plot.p)), which.sp.s) 

 

    emp.results.sp <-  neig.sim.sp(sp.s.name=sp.s.name, plot.p=plot.p,  

      trait.dists=trait.dists, neig.limit=neig.limit, dists.p=dists.p,  

      which.close.edge=which.close.edge, show.animation=show.animation) 

 

    emp.results.sp <-  emp.results.sp$res.summary 
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    if(s==1) 

    { 

      spp.results.names <- c(names(emp.results.sp),  

          paste("rand.", elements.to.randomize, sep=""),  

          paste("SES.", elements.to.randomize, sep="")) 

       

      spp.results <- as.data.frame( 

        matrix(NA, ncol=length(spp.results.names), nrow=spp.n)) 

       

      colnames(spp.results) <- spp.results.names 

      rownames(spp.results) <- spp.list 

    } 

     

    rand.results.table <- as.data.frame( 

      matrix(NA, nrow=rand.n, ncol=length(emp.results.sp))) 

    colnames(rand.results.table) <- names(emp.results.sp) 

     

    if(FALSE %in% (elements.to.randomize %in% colnames(rand.results.table)))  

      stop("'elements.to.randomize' are not all part of the results from fuction 'neig.sim.sp'") 

 

    #Creates fixed and randomized null models     

    for(r in 1:rand.n) 

    { 

      rand.plot.p <- plot.p 
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      if(SAD=="fixed")  

        rand.plot.p$BinomialSpeciesName[which.not.sp.s] <-  

          sample(rand.plot.p$BinomialSpeciesName[which.not.sp.s]) 

       

      if(SAD=="randomized")  

        rand.plot.p$BinomialSpeciesName[which.not.sp.s] <-  

          sample(unique(rand.plot.p$BinomialSpeciesName[which.not.sp.s]),  

            size=length(which.not.sp.s), replace="TRUE") 

       

      rand.which.sp.s <-  

        which(as.character(rand.plot.p$BinomialSpeciesName)==sp.s.name) 

       

      if(identical(rand.which.sp.s, which.sp.s)==FALSE)  

        stop("something wrong with randomization 1") 

       

      rand.results.sp <-  

        neig.sim.sp(sp.s.name=sp.s.name, plot.p=rand.plot.p,  

          trait.dists=trait.dists, neig.limit=neig.limit,  

          dists.p=dists.p, which.close.edge=which.close.edge,  

          show.animation=show.animation) 

       

      rand.results.table[r,] <- rand.results.sp$res.summary 

    } 

     

    rand.results.table <-  
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      rand.results.table[,which(colnames(rand.results.table) %in%  

          elements.to.randomize)] 

     

    if(identical(colnames(rand.results.table), elements.to.randomize)==FALSE) 

    { 

      print(colnames(rand.results.table)) 

      print(elements.to.randomize) 

      stop("'colnames(rand.results.table)' and 'elements.to.randomize' are not the same or in the 

same order") 

    } 

     

    rand.means <- colMeans(rand.results.table, na.rm=TRUE) 

    rand.sd <- apply(rand.results.table, 2, sd, na.rm=TRUE) 

  

    #Calculates standard effect size    

    ESs <- emp.results.sp[which(names(emp.results.sp) %in%  

        colnames(rand.results.table))]-rand.means 

    SESs <- ESs/rand.sd 

     

    spp.results[s,] <- c(emp.results.sp, rand.means, SESs) 

  } 

  close(pb) 

   

  spp.results 

} 
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``` 

 

Tree maps and data preparation 

```{r} 

 

# Load plot and individual data 

plot.data <- read.csv(paste0(path.to.files, 

  "02_Data/01_PlotData_Clean_v4.1_2020-09-07.txt"), 

 header = TRUE, sep = "\t", fileEncoding="UTF-8")  

dim(plot.data) 

 

tree.data <- read.csv(paste0(path.to.files, 

  "02_Data/04_TreeData_PP_Clean_v4.1_2020-09-07.txt"),  

 header = TRUE, sep = "\t", fileEncoding="UTF-8") 

dim(tree.data) 

 

tree.data<- tree.data[which(tree.data$IsAlive=="True"), ] #Denote only trees alive in the first 

census, excludes new recruits 

dim(tree.data) 

 

# Need to remove a single uncertain data point 

tree.data<- tree.data[-which(tree.data$Gx > 1977), ] 

dim(tree.data) 
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## Trait Data 

trait.data <- read.csv( 

  paste0(path.to.files, 

    "02_Data/06_TraitData_Clean_v4.1_2020-09-07.txt"), 

  header = TRUE, sep = "\t", fileEncoding="UTF-8") 

dim(trait.data) 

 

 

 

###### SELECT ONLY PLOTS WITH TRAIT DATA 

####################################### 

 

plots.not.to.use<-c("PP_Heatht_8", "PP_Heathi_7", "PP_Hondo_1", "PP_Tuichi_4", 

"PP_Chiriu_2", "PP_Mamaco_3", "PP_", "PP_Pintat_5") 

plots.with.traits <- unique(trait.data$PlotName) 

 

intersect(plots.with.traits, plots.not.to.use) 

 

plots.with.traits <- setdiff(plots.with.traits, plots.not.to.use) 

 

 

plot.data.traits <- plot.data[plot.data$PlotName %in% plots.with.traits,] 

dim(plot.data) 

dim(plot.data.traits) 
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tree.data.traits <- tree.data[tree.data$PlotName %in% plots.with.traits,] 

dim(tree.data) 

dim(tree.data.traits) 

 

tree.coords <- as.data.frame(cbind(tree.data.traits$Gy, tree.data.traits$Gx)) 

colnames(tree.coords)<-c("Y", "X") 

 

tree.data.traits <- tree.data.traits[,c("PlotName", "BinomialSpeciesName", "DetRank", "Family", 

"Diameter_t2")] 

tree.data.traits <- data.frame(tree.data.traits, tree.coords) 

dim(tree.data.traits) 

 

 

 

###### CALCULATE MEAN TRAITS BY SPECIES AND PLOT 

############################### 

 

traits.to.use.1 <- c("RGR", "SLA", "LeafSize", "LeafThickness",  

  "TwigBarkThickness_Relative", "TwigSpecDens") 

 

traits.to.use.2 <- c("Height", "DBH") 

 

mean.traits <- aggregate(trait.data[ ,traits.to.use.1],  

  by = list(trait.data$BinomialSpeciesName, trait.data$PlotName),  

  FUN = "mean", na.rm = TRUE) 
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max.traits <- aggregate(trait.data[ ,traits.to.use.2],  

  by = list(trait.data$BinomialSpeciesName, trait.data$PlotName),  

  FUN = "quantile", probs=0.90, na.rm = TRUE) 

 

traits.summary <- data.frame(mean.traits[,1:2], 

  scale(log1p(mean.traits[,traits.to.use.1])),  

  scale(log1p(max.traits[,traits.to.use.2]))) 

 

colnames(traits.summary)[1:2] <- c("BinomialSpeciesName", "PlotName") 

 

head(traits.summary) 

 

# Correlation of variables 

pairs(traits.summary[,c(-1,-2)]) # visually see the correlations on plots 

traits.cor<-cor(traits.summary[,c(-1,-2)][complete.cases(traits.summary[,c(-1,-2)]),]) # Calculate 

PeARSON'S R between variables  

traits.cor 

library(corrplot) 

p.mat<-cor.mtest(traits.summary[,c(-1,-2)][complete.cases(traits.summary[,c(-1,-2)]),])# 

calculate the P values for correlations 

 

# do the correlation plot 

corrplot(traits.cor,method="color",  

         type="upper", order="hclust",  

         addCoef.col = "black", # Add coefficient of correlation 
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         tl.col="black", tl.srt=45, #Text label color and rotation 

         # Combine with significance 

         p.mat = p.mat$p, sig.level = 0.05,  

         # hide correlation coefficient on the principal diagonal 

         diag=FALSE ) 

 

###### WRITE FILES ############################### 

 

write.table(x=plot.data.traits,  

  file=paste0(path.to.files, "02_Data/plot.data.traits.txt"),  

  sep="\t", fileEncoding="UTF-8") 

 

write.table(x=tree.data.traits,  

  file=paste0(path.to.files, "02_Data/tree.data.traits.txt"),  

  sep="\t", fileEncoding="UTF-8") 

 

write.table(x=traits.summary,  

  file=paste0(path.to.files, "02_Data/traits.summary.txt"),  

  sep="\t", fileEncoding="UTF-8") 

 

 

###### CREATING MAPS OF STEMS ############################### 

 

tree.sizes <- sqrt(as.numeric(tree.data.traits$Diameter_t2)) # had to add as.numeric/ no longer 

necessary b/c read.csv correction 
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size.to.plot.tree <- (tree.sizes-min(tree.sizes, na.rm=TRUE)) / (max(tree.sizes, na.rm=TRUE)-

min(tree.sizes, na.rm=TRUE)) 

size.to.plot.tree[is.na(size.to.plot.tree)] <- 0.5 

size.to.plot.tree <- (size.to.plot.tree)+0.75 

 

par(mfrow=c(1,2)) 

plot(tree.sizes~size.to.plot.tree) 

hist(size.to.plot.tree) 

 

tree.data.traits <- data.frame(tree.data.traits, size.to.plot.tree) 

tree.data.traits <- tree.data.traits[order(tree.data.traits$size.to.plot.tree, decreasing=TRUE), ] 

 

 

plot.list<-unique(as.character(tree.data.traits$PlotName)) 

 

for(i in 1:length(plot.list)) 

{ 

  #i<-50 #To test a single iteration of the for loop 

   

  PlotName.i<-plot.list[i] 

  print(PlotName.i) #Why print the plotName here? 

   

  tree.data.traits.i <- tree.data.traits[which(tree.data.traits$PlotName==PlotName.i),] 

  tree.coords.i <- tree.data.traits.i[,c("Y", "X")] 
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  which.plot.i<-which(plot.data$PlotName == PlotName.i) 

  plot.info<-plot.data[which.plot.i,] 

   

  spp.list<-unique(as.character(tree.data.traits.i$BinomialSpeciesName)) 

  colors.spp<-rainbow(length(spp.list)) 

  colors.spp<-colors.spp[sample(1:length(spp.list))] 

   

  png(filename = paste(path.to.files, "04_Results/Figures/PlotMaps/", i, "_", PlotName.i, ".png", 

sep=""), width=480*7, height=480*7.9, res=800) 

  try( 

    { 

      y.range <- range(c(tree.coords.i$Y), na.rm=TRUE) 

      y.labels<-seq(y.range[1], y.range[2], length.out=6) 

      x.range <- range(c(tree.coords.i$X), na.rm=TRUE) 

      x.labels<-seq(x.range[1], x.range[2], length.out=6) 

       

      plot.title <- paste(plot.info$PlotName, ": ", length(spp.list), " species", sep="") 

      plot(tree.coords.i$Y~tree.coords.i$X, pch=21, bg="forestgreen", asp=1, 

ylim=range(tree.coords.i$Y, na.rm=TRUE), xlim=range(tree.coords.i$X, na.rm=TRUE), 

ylab="Y", xlab="X", main=plot.title, type="n", cex.axis=1, cex.lab=1, cex.main=1, las=1, 

axes=FALSE) 

      axis(side=1, at=x.labels, labels = round(x.labels, 0), lwd = 1, lwd.ticks = 1, col = NULL, 

col.ticks = NULL, hadj = NA, padj = NA, cex.axis=1) 

      axis(side=2, at=y.labels, labels = round(y.labels, 0), lwd = 1, lwd.ticks = 1, col = NULL, 

col.ticks = NULL, hadj = NA, padj = NA, cex.axis=1, las=1) 

       

      for(j in 1:length(spp.list))  
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points(tree.coords.i$Y[tree.data.traits.i$BinomialSpeciesName==spp.list[j]]~tree.coords.i$X[tree

.data.traits.i$BinomialSpeciesName==spp.list[j]], pch=21, bg=colors.spp[j], col="grey30", 

cex=tree.data.traits.i$size.to.plot.tree, lwd=1) 

       

    }, silent=TRUE) 

  dev.off() #Makes sure it closes files after creation when starting a new file 

   

} 

 

``` 

 

Neighborhood analyses 

```{r} 

 

rm(list=objects()) 

set.seed(1981) 

 

library(FD) 

library(vegan) 

 

### OPEN FUNCTIONS NEEDED FOR ANALYSES 

source(paste0(path.to.files,"03_Rcode/00_FunctionsForAnalyses_INDEVELOPMENT_2021Oct

19.R")) 
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### OPEN BOTH LISTS, INDIVIDUALS AND COORDS + TRAITS BY INDS. 

 

plot.data <- read.csv(paste0(path.to.files, 

  "02_Data/plot.data.traits.txt"), 

  header = TRUE, sep = "\t", fileEncoding="UTF-8")  

dim(plot.data) 

 

tree.data <- read.csv(paste0(path.to.files, 

  "02_Data/tree.data.traits.txt"), 

  header = TRUE, sep = "\t", fileEncoding="UTF-8")  

dim(tree.data) 

 

traits.summary <- read.csv(paste0(path.to.files, 

  "02_Data/traits.summary.txt"), 

  header = TRUE, sep = "\t", fileEncoding="UTF-8")  

dim(traits.summary) 

 

 

plot.list <- plot.data$PlotName 

 

 

SAD.Options <- c("fixed") 

 

Neig.Limits <- c(20, 15, 10, 5) 
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#Neig.Limits <- c(15) 

 

rand.n <- 50 

save.res <- TRUE 

 

#trait.option <- "SLA" 

trait.option <- "all" 

 

Animation <- FALSE 

 

nl <- 1 

SAD.o <- 1 

p <- 1 

 

 

### IMPUTATION OF MISSING VALUES IN THE FULL TRAIT MATRIX ### 

 

library(missForest) 

 

imputation <- missForest(traits.summary[,-c(1,2)]) 

imputation <- imputation$ximp 

 

traits.summary <- cbind(traits.summary[,c(1,2)], imputation) 
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### MODIFY THE TRAIT MATRIX DEPENDING ON THE TRAITS TO USE ### 

 

## If all traits are to be used, then the trait matrix is first 

## run through a PCA 

if(trait.option=="all") 

{ 

  traits.pcs <- princomp(traits.summary[,-c(1,2)], cor=TRUE)$scores 

  traits.summary <- cbind(traits.summary[,c(1,2)], traits.pcs) 

} 

 

 

 

### CALCULATES PLOT-LEVEL FUNCTIONAL DIVERSITY FOR ALL PLOTS 

SIMULTANEOUSLY ### 

 

compo.by.plot <- table(tree.data$PlotName, tree.data$BinomialSpeciesName) 

dim(compo.by.plot) 

 

 

plot.richness <- rowSums(compo.by.plot>0) 

plot.shannon <- diversity(x=compo.by.plot, index="shannon", MARGIN = 1, base = exp(1)) 

plot.invsimpson <- diversity(x=compo.by.plot, index = "invsimpson", MARGIN = 1, base = 

exp(1)) 

 

plot.TDiv.table <- cbind(plot.richness=plot.richness, plot.shannon=plot.shannon, 

                         plot.invsimpson=plot.invsimpson) 
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# Create a species composition matrix and trait table using species-by-site 

# combinations.  

plot.compo.temp <- table(tree.data$PlotName, paste(tree.data$PlotName,  

  tree.data$BinomialSpeciesName, sep="_")) 

 

traits.summary.temp <- traits.summary 

rownames(traits.summary.temp) <- paste(traits.summary$PlotName,  

  traits.summary$BinomialSpeciesName, sep="_") 

 

spp.with.traits.temp <- intersect(rownames(traits.summary.temp), colnames(plot.compo.temp)) 

 

traits.summary.temp <- traits.summary.temp[spp.with.traits.temp,-c(1,2)] 

plot.compo.temp <- as.data.frame.matrix(plot.compo.temp[,spp.with.traits.temp]) 

 

plot.dbFD <- dbFD(x=traits.summary.temp, a=plot.compo.temp,  

                  w.abun=TRUE, calc.FGR=FALSE, calc.CWM=FALSE) 

   

MPDs <- mpd(samp=plot.compo.temp,  

            dis=as.matrix(dist(traits.summary.temp)), abundance.weighted=TRUE) 

 

names(MPDs) <- rownames(plot.compo.temp) 

 

plot.FDiv.table <- cbind(nbsp=plot.dbFD$nbsp, FRic=plot.dbFD$FRic, FDiv=plot.dbFD$FDiv,  
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                         FDis=plot.dbFD$FDis, RaoQ=plot.dbFD$RaoQ, MPD=MPDs) 

 

 

## Joins both diversity tables 

identical(rownames(plot.TDiv.table), rownames(plot.FDiv.table)) 

plot.diversity.table <- cbind(plot.TDiv.table, plot.FDiv.table) 

 

pairs(plot.diversity.table) 

 

### RUNS THE NEIGBORHOOD CALCULATIONS FOR MULTIPLE OPTIONS IN LOOPS 

### 

 

for(nl in 1:length(Neig.Limits)) 

{ 

  neig.limit <- Neig.Limits[nl] 

   

   

  for(SAD.o in 1:length(SAD.Options)) 

  { 

    sad.option <- SAD.Options[SAD.o] 

     

    plot.res.list <- sapply(rep(NA, length(plot.list)), list) 

    names(plot.res.list) <- plot.list 
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    for(p in 1:length(plot.list)) 

    { 

      plot.name <- plot.list[p] 

      print(paste(plot.name, "; Plot", p, "of", length(plot.list))) 

       

       

      ## individuals and their coordinates + traits by individuals 

      plot.p <- tree.data[tree.data$PlotName == plot.name,] 

      plot.p <- plot.p[order(plot.p$BinomialSpeciesName), ] 

      dim(plot.p) 

       

       

      # Functional distances only if there is functional data 

      traits.p <- traits.summary[traits.summary$PlotName == as.character(plot.name),] 

      rownames(traits.p) <- traits.p$BinomialSpeciesName  

      traits.p <- traits.p[order(traits.p$BinomialSpeciesName), ] 

      traits.p <- traits.p[,-c(1,2)] 

       

       

      spp.R.abund <- as.numeric(table(plot.p$BinomialSpeciesName))  

       

      which.0.abund <- which(spp.R.abund==0) 

      if(length(which.0.abund)>0)  

        spp.R.abund <- spp.R.abund[-which.0.abund] 
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      spp.with.traits <-  

        intersect(plot.p$BinomialSpeciesName, rownames(traits.p)) 

      plot.rich.with.traits <- length(spp.with.traits) 

       

       

      plot.p$BinomialSpeciesName <- as.factor(plot.p$BinomialSpeciesName) 

       

       

      if(trait.option=="all") 

      { 

        trait.dists <- dist(traits.p, method = "euclidean") 

      } 

      else 

      { 

        traits.p <- traits.p[trait.option] 

        trait.dists <- dist(traits.p, method = "euclidean") 

      } 

       

     

      # give to the function one object with the tree and coordinates info (the original version), 

      # but add another argument that receives an object with the info on traits per individual. 

       

      plot.res <-  

        neig.sim.plot(plot.p=plot.p, trait.table=traits.p, trait.dists=trait.dists,  
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          neig.limit=neig.limit, rand.n=rand.n, 

          SAD=sad.option, show.animation=Animation) 

       

      plot.res.means.1 <- colMeans(plot.res[,c(1,2)], na.rm=TRUE) 

      plot.res.means.2 <- apply(plot.res[,-c(1,2)], 2,  

        weighted.mean, w=plot.res$usable.neig.n, na.rm=TRUE) 

       

      plot.res.means <- c(plot.res.means.1, plot.res.means.2) 

       

       

      if(p==1) 

      { 

        plot.res.table <- as.data.frame( 

          matrix(NA, ncol=(1+length(plot.res.means)), nrow=length(plot.list))) 

         

        rownames(plot.res.table) <- plot.list 

        colnames(plot.res.table) <- c("plot.rich.with.traits", names(plot.res.means)) 

      } 

       

      plot.res.table[p,] <- c(plot.rich.with.traits, plot.res.means) 

       

      plot.res.list[[p]] <- plot.res 

    } 

     

    plot.res.table <- plot.res.table[order(rownames(plot.res.table)),] 
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    plot.diversity.table <- plot.diversity.table[order(rownames(plot.diversity.table)),] 

     

    if(!identical(rownames(plot.res.table), rownames(plot.diversity.table))) 

      stop("Names of these tables are not the same") 

     

    plot.res.table <- data.frame(plot.diversity.table, plot.res.table) 

     

    if(save.res) 

    {   

      save(plot.res.list, file=paste(path.to.files, "04_Results/plot.res.list_", neig.limit, "m_SAD.", 

sad.option,  sep="")) 

      write.table(plot.res.table, file=paste(path.to.files, "04_Results/plot.res.table_", neig.limit, 

"m_SAD.", sad.option, ".txt", sep=""), sep="\t") 

    }   

  } 

} 

 

 

``` 
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R code for Chapter 3 

title: "Chapter 3 R code" 

output: word document 

 

```{r} 

 # Create phylogenetic tree 

library(picante) 

library(V.PhyloMaker) 

library(phylomatic) 

library(phangorn) 

library(phylotools) 

library(ape) 

library(dplyr) 

library(phytools) 

library(ggtree) 

 

 

#Load tree plot data 

treeplotdata = read.table(paste0(path.to.files,  

                                 "02_Data/tree.plot.data.txt")) 

unique(treeplotdata$PlotName) 

 

# Fix Kanupa 

treeplotdata$PlotName[which(treeplotdata$PlotName=="PP_KaÃ±upa_44")]<- 

  rep("PP_Kanupa_44",length(which(treeplotdata$PlotName=="PP_KaÃ±upa_44"))) 
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unique(treeplotdata$PlotName) 

 

###   Make tree from treeplotdata  ### 

 

v.phylo.df <- as.data.frame(treeplotdata[ ,2]) 

 

v.phylo.df$Genus <- sapply(strsplit(treeplotdata$BinomialSpeciesName, " "), 

                           function(x) x[1]) 

 

v.phylo.df$Family <- treeplotdata[ ,4] 

 

colnames(v.phylo.df) = c("Species", "Genus", "Family") 

 

# Make tree 

phy <- phylo.maker(v.phylo.df) 

 

tree.3 <- phy$scenario.3 

 

class(tree.3) #phylo 

length(tree.3$tip.label) #1124 

 

# Root tree 

tree.3.rooted <- multi2di(tree.3) 

``` 
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```{r} 

# Calculate abundance-weighted median & mean CSCS 

 

# Calculate mean and median CSCS for all plots # 

cscs.plot.list <- list(Chaqui32, Fuerte27, Kanupa44, Lomaka40, Lomasa39, 

                    Pintat5, Resina12, Sumpul34, Tapuri45, Tintay24, 

                    Tintay25, Titiri42, Tocoaq28, Tocoaq29, Tocoaq30, Yarimi9) 

 

cscs.plot.mean.med.df <- data.frame(Plot=unique(cscs$Plot), plot.mean.cscs=rep(0, 16),  

                                    plot.med.cscs=rep(0, 16)) 

 

# Check to see that plots are in original order (matching cscs.plot.list) 

cscs.plot.mean.med.df$original.plot <-  

 

# Loop species pairs each plot 

for(i in 1:length(cscs.plot.list)) 

{ 

   

  # calculate the mean of dissimilarity matrix of 

  i.mean <-  

    sum(cscs.plot.list[[i]])/(nrow(cscs.plot.list[[i]])*ncol(cscs.plot.list[[i]])-

nrow(cscs.plot.list[[i]])) 

   

  cscs.plot.mean.med.df[i, 2] <- i.mean 
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  # calculate the median of dissimilarity matrix of  

  i.med <- 

    median(as.vector(as.matrix(cscs.plot.list[[i]]))[ 

      which(as.vector(as.matrix(cscs.plot.list[[i]]))!=0)]) 

   

  cscs.plot.mean.med.df[i, 3] <- i.med 

   

} 

 

# add columns to dataframe 

cscs.plot.mean.med.df$abundWtCSCS <- plotabmeanCSCS 

cscs.plot.mean.med.df$elevation <- plot.elevations.2 

cscs.plot.mean.med.df$invSimpson <- plot.invSimp 

 

# Save dataframe for later 

write.csv() 

``` 

 

```{r} 

# Phylogenetic (Mantel) and Rarefaction analyses by plot 

library(vegan) 

library(ggplot2) 

library(dplyr) 

library(sfsmisc) 
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library(tidyr) 

library(picante) 

library(matrixStats) 

library(V.PhyloMaker) 

 

#path.to.files <- "~/Documents/" 

setwd("~/Documents/") 

 

                                   

cscs.plot.mean.med.df = read.csv("cscs.plot.mean.med.df_20220930.csv", header = TRUE, sep = 

",")                                   

                                   

cscs.plot.mean.med.df <- cscs.plot.mean.med.df[, -1] 

 

colnames(cscs.plot.mean.med.df) 

 

# Opens phylogenetic tree 

load("mad_tree_rooted1") 

phylo.dist <- as.matrix(cophenetic(tree.3.rooted)) 

 

rownames(phylo.dist) <- gsub("_", " ", rownames(phylo.dist)) 

colnames(phylo.dist) <- gsub("_", " ", colnames(phylo.dist)) 

 

 

# All Compounds 
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load(paste0(path.to.files, 

            

"04_Results/Individual_CompoundClasses/Madidi_plotabundmeanCSCS_metabtot_20220608.R

data")) 

load("Madidi_plotabundmeanCSCS_metabtot_20220608.Rdata") 

cscs.all <- as.matrix(mad_cscs_all) 

 

 

# Defense Compounds 

load(paste0(path.to.files, 

            

"04_Results/Individual_CompoundClasses/MadAll_metabsim_npclass_defense_20220614_2022

0806.Rdata")) 

load("MadAll_metabsim_npclass_defense_20220614_20220806.Rdata") 

cscs.def <- as.matrix(1-cscs) 

 

 

# Primary Compounds 

load(paste0(path.to.files, 

            "04_Results/Individual_CompoundClasses/CSCSsppBCI-prim-20220822.Rdata")) 

load("CSCSsppBCI-prim-20220822.Rdata") 

cscs.prim <- as.matrix(1-cscs) 

 

 

dim(cscs.all) 

dim(cscs.def) 
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dim(cscs.prim) 

 

## ***NOTE*** ## 

# Species in row and colum 384 is present for all and defense compounds, 

# but not for the primary compounds matrix. To standardize matrices, we  

# remove if from all matrices 

#which(rownames(mad_cscs_all) == "PP_Sumpul_34_Pleurothyrium trianae") # 

mad_cscs_all[384, 384] 

#Not included in CSCSsppBCI-prim-20220822.Rdata 

 

cscs.all <- cscs.all[-384, -384] 

cscs.def <- cscs.def[-384, -384] 

 

identical(rownames(cscs.def), rownames(cscs.prim)) 

 

 

# Change rownames, colnames 

rownames(cscs.def) <- rownames(cscs.all) 

colnames(cscs.def) <- colnames(cscs.all) 

identical(rownames(cscs.all), rownames(cscs.def)) 

 

rownames(cscs.prim) <- rownames(cscs.all) 

colnames(cscs.prim) <- colnames(cscs.all) 

identical(rownames(cscs.all), rownames(cscs.prim)) 
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## ***NOTE*** ## 

## One species in the cscs matrix has no name "NA_NA" 

which(rownames(cscs.all) == "NA_NA") 

 

cscs.all <-  

  cscs.all[-which(rownames(cscs.all) == "NA_NA"),  

           -which(colnames(cscs.all) == "NA_NA")] 

 

cscs.def <-  

  cscs.def[-which(rownames(cscs.def) == "NA_NA"),  

           -which(colnames(cscs.def) == "NA_NA")] 

 

cscs.prim <-  

  cscs.prim[-which(rownames(cscs.prim) == "NA_NA"),  

           -which(colnames(cscs.prim) == "NA_NA")] 

 

 

# Add columns for species and plot 

species.var <- sapply(strsplit(colnames(cscs.all), "[_]"), function(x) x[4]) 

length(unique(species.var)) 

 

setdiff(species.var, rownames(phylo.dist)) ## Some species are missing from the phylogeny 

setdiff(rownames(phylo.dist), species.var) 
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plot.var.1 <- sapply(strsplit(rownames(cscs.all), "[_]"), function(x) x[[1]]) 

plot.var.2 <- sapply(strsplit(rownames(cscs.all), "[_]"), function(x) x[[2]]) 

plot.var.3 <- sapply(strsplit(rownames(cscs.all), "[_]"), function(x) x[3]) 

plot.var <- paste0(plot.var.1, "_", plot.var.2, "_", plot.var.3) 

 

plot.list <- unique(plot.var) 

 

 

# Loop through each plot 

for(i in 1:length(plot.list)) 

{ 

   

  plot.name.i <- plot.list[i] 

  print(plot.name.i) 

 

  which.plot.i <- which(plot.var==plot.name.i) 

   

  species.var.i <- species.var[which.plot.i] 

   

  cscs.all.i <- cscs.all[which.plot.i, which.plot.i] 

  cscs.def.i <- cscs.def[which.plot.i, which.plot.i] 

  cscs.prim.i <- cscs.prim[which.plot.i, which.plot.i] 
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  rownames(cscs.all.i) <-  colnames(cscs.all.i) <- species.var.i 

  rownames(cscs.def.i) <-  colnames(cscs.def.i) <- species.var.i 

  rownames(cscs.prim.i) <-  colnames(cscs.prim.i) <- species.var.i 

   

   

  # Finds the phylogenetic distances for plot i 

  species.var.i <- intersect(species.var.i, rownames(phylo.dist)) 

   

  phylo.dist.i <- phylo.dist[species.var.i, species.var.i] 

   

   

  phylo.cor.all <- mantel(xdis=as.dist(phylo.dist.i),  

         ydis=as.dist(cscs.all.i[species.var.i, species.var.i]))$statistic 

   

  phylo.cor.def <- mantel(xdis=as.dist(phylo.dist.i),  

         ydis=as.dist(cscs.def.i[species.var.i, species.var.i]))$statistic 

 

  phylo.cor.prim <- mantel(xdis=as.dist(phylo.dist.i),  

         ydis=as.dist(cscs.prim.i[species.var.i, species.var.i]))$statistic 

  

   

  cscs.plot.mean.med.df$phylo.cor.all[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- phylo.cor.all 

   

  cscs.plot.mean.med.df$phylo.cor.def[ 



160 

 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- phylo.cor.def 

 

  cscs.plot.mean.med.df$phylo.cor.prim[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- phylo.cor.prim 

       

                

  # calculate the mean of dissimilarity matrix of 

  mean.all.i <- mean(as.dist(cscs.all.i)) 

  mean.def.i <- mean(as.dist(cscs.def.i)) 

  mean.prim.i <- mean(as.dist(cscs.prim.i)) 

       

  # calculate the median of dissimilarity matrix of 

  median.all.i <- median(as.dist(cscs.all.i)) 

  median.def.i <- median(as.dist(cscs.def.i)) 

  median.prim.i <- median(as.dist(cscs.prim.i)) 

       

  cscs.plot.mean.med.df$mean.cscs.all[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- mean.all.i 

   

  cscs.plot.mean.med.df$mean.cscs.def[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- mean.def.i 

   

  cscs.plot.mean.med.df$mean.cscs.prim[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- mean.prim.i 
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  cscs.plot.mean.med.df$median.cscs.all[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- median.all.i 

   

  cscs.plot.mean.med.df$median.cscs.def[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- median.def.i 

   

  cscs.plot.mean.med.df$median.cscs.prim[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- median.prim.i 

   

   

   

  # Rarifed speices analyses 

  n.rand <- 1000 

  target.S <- 12 

   

  #Mean 

  mean.all.i.j <- rep(NA, times=n.rand) 

  mean.def.i.j <- mean.prim.i.j <- mean.all.i.j 

   

  for(j in 1:n.rand) 

  { 

    if(nrow(cscs.all.i) <= target.S) 

    { 

      mean.all.i.j <- mean.all.i 
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      mean.def.i.j <- mean.def.i 

      mean.prim.i.j <- mean.prim.i 

       

      warning("Not enough species") 

      break() 

    } 

     

    sample.j <- sample(1:nrow(cscs.all.i), size=target.S)   

       

    cscs.all.i.j <- cscs.all.i[sample.j, sample.j]   

    cscs.def.i.j <- cscs.def.i[sample.j, sample.j]   

    cscs.prim.i.j <- cscs.prim.i[sample.j, sample.j]   

       

    mean.all.i.j[j] <- mean(as.dist(cscs.all.i.j)) 

    mean.def.i.j[j] <- mean(as.dist(cscs.def.i.j)) 

    mean.prim.i.j[j] <- mean(as.dist(cscs.prim.i.j)) 

         

  } 

   

  cscs.plot.mean.med.df$raref.mean.cscs.all[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- mean(mean.all.i.j) 

   

  cscs.plot.mean.med.df$raref.mean.cscs.def[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- mean(mean.def.i.j) 
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  cscs.plot.mean.med.df$raref.mean.cscs.prim[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- mean(mean.prim.i.j) 

   

   

  # Median 

  median.all.i.j <- rep(NA, times=n.rand) 

  median.def.i.j <- median.prim.i.j <- median.all.i.j 

   

  for(j in 1:n.rand) 

  { 

    if(nrow(cscs.all.i) <= target.S) 

    { 

      median.all.i.j <- median.all.i 

      median.def.i.j <- median.def.i 

      median.prim.i.j <- median.prim.i 

       

      warning("Not enough species") 

      break() 

    } 

     

    sample.j <- sample(1:nrow(cscs.all.i), size=target.S)   

     

    cscs.all.i.j <- cscs.all.i[sample.j, sample.j]   

    cscs.def.i.j <- cscs.def.i[sample.j, sample.j]   

    cscs.prim.i.j <- cscs.prim.i[sample.j, sample.j]   
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    median.all.i.j[j] <- median(as.dist(cscs.all.i.j)) 

    median.def.i.j[j] <- median(as.dist(cscs.def.i.j)) 

    median.prim.i.j[j] <- median(as.dist(cscs.prim.i.j)) 

     

  } 

   

  cscs.plot.mean.med.df$raref.median.cscs.all[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- median(median.all.i.j) 

   

  cscs.plot.mean.med.df$raref.median.cscs.def[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- median(median.def.i.j) 

   

  cscs.plot.mean.med.df$raref.median.cscs.prim[ 

    cscs.plot.mean.med.df$Plot == plot.name.i] <- median(median.prim.i.j) 

       

} 

 

 

# Save dataframe for later 

write.csv() 

``` 

 

```{r} 

# Run KMULT phylogenetic analysis - more appropriate than Mantel test  
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#### 2023-02-21: Use Kmult from Adams 2014 Syst Biol (in R package 'phylocurve') to 

calculate phylogenetic signal 

#### regress the Kmult statistic against diversity, elevation, and climatic PC1 and PC2 

 

setwd("~/Documents/Madidi_Project/Chapter2_2023_02_21") 

 

library(vegan) 

library(ggplot2) 

library(dplyr) 

library(sfsmisc) 

library(tidyr) 

library(picante) 

library(matrixStats) 

library(V.PhyloMaker) 

library(phylocurve) 

 

 

plotdata = 

read.csv("~/Documents/Madidi_Project/Chapter2_2023_02_21/cscs.plot.mean.med.df_2023022

1.csv", header = T)[,-1] 

 

 

dim(plotdata) 

# [1] 16 26 
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head(plotdata) 

 

#### load phylogenetic tree generated usig v.phylomaker 

load("mad_tree_rooted1") 

phylo.dist <- as.matrix(cophenetic(tree.3.rooted)) 

 

rownames(phylo.dist) <- gsub("_", " ", rownames(phylo.dist)) 

colnames(phylo.dist) <- gsub("_", " ", colnames(phylo.dist)) 

 

setwd("~/Documents/Madidi_Project") 

load("MadidiAllMetab_20220205.RData") 

load("Madidid_30k_all_Sirius_NPClassifier_20220607.RData") 

 

 

heat.def = heat.real[which(siri.itol$custom %in% c("Alkaloids", "Amino acids and Peptides", 

"Polyketides", "Shikimates and Phenylpropanoids", "Terpenoids", "Multiple")),] 

dim(heat.def) 

 

heat.prim = heat.real[which(siri.itol$custom %in% c("Amino acids and Peptides", 

"Carbohydrates", "Fatty acids")),] 

dim(heat.prim) 

# [1] 1190  906 

 

names(heat.real) = gsub(".Peak.area", "", names(heat.real)) 

names(heat.def) = gsub(".Peak.area", "", names(heat.def)) 

names(heat.prim) = gsub(".Peak.area", "", names(heat.prim)) 
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length(tree.3.rooted$tip.label) 

# [1] 1124 

 

 

metabig = read.table("~/Documents/Madidi_Project/Madidi_metadata_MSV000090549.txt", 

header = T, sep = "\t") 

 

length(which(tree.3.rooted$tip.label %in% metabig$ATTRIBUTE_Genus_species)) 

[1] 359 

 

tree.3.rooted$tip.label[which(tree.3.rooted$tip.label %in% 

metabig$ATTRIBUTE_Genus_species)] 

 

 

 

tree.3.rooted$tip.label[1:100] 

 

 

tree.3.rooted$tip.label[grep("Psychotria", tree.3.rooted$tip.label)] 

[1] "Psychotria_trivialis"      "Psychotria_AF14766"        "Psychotria_LC6490"         

"Psychotria_CMG2521"        "Psychotria_CMG2789"        

[6] "Psychotria_AEC305"         "Psychotria_trichotoma"     "Psychotria_AF16987"        

"Psychotria_carthagenensis" 

 

metabig$ATTRIBUTE_Genus_species[grep("Psychotria", 

metabig$ATTRIBUTE_Genus_species)] 
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[1] "Psychotria_AEC-305" "Psychotria_AEC-305" "Psychotria_AEC-305" "Psychotria_AEC-

305" "Psychotria_AEC-305" 

 

 

tree.3.rooted$tip.label[grep("Ocotea", tree.3.rooted$tip.label)] 

 [1] "Ocotea_NPZ4964"     "Ocotea_AM3556"      "Ocotea_olivacea"    "Ocotea_LC3806"      

"Ocotea_caesifolia"  "Ocotea_LC6779"      

 [7] "Ocotea_mandonii"    "Ocotea_RSS25"       "Ocotea_ALM253"      "Ocotea_ALM63"       

"Ocotea_ETP63"       "Ocotea_CMG2534"     

[13] "Ocotea_LC5997"      "Ocotea_LC6203"      "Ocotea_subrutilans" "Ocotea_AEC335"      

"Ocotea_AEC147"      "Ocotea_oblonga"     

[19] "Ocotea_PCL155"      "Ocotea_NCH209"      "Ocotea_cernua"      "Ocotea_AM3387"      

"Ocotea_FZR18951"    "Ocotea_PCL181"      

[25] "Ocotea_floribunda"  "Ocotea_AF15396"     "Ocotea_AF12244"     "Ocotea_LC4365A"     

"Ocotea_micrantha"   "Ocotea_albida"      

[31] "Ocotea_LC4144A"     "Ocotea_weberbaueri" "Ocotea_comata"      "Ocotea_ECQ72"       

"Ocotea_obovata"     "Ocotea_bofo"        

[37] "Ocotea_longifolia"  "Ocotea_puberula"    "Ocotea_aciphylla"   

 

metabig$ATTRIBUTE_Genus_species[grep("Ocotea", metabig$ATTRIBUTE_Genus_species)] 

 

 

levels(as.factor(meta$ATTRIBUTE_Plot)) 

 [1] "PP_Chaqui_32"    "PP_Fuerte_27"    "PP_Ka\x96upa_44" "PP_Lomaka_40"    

"PP_Lomasa_39"    "PP_Pintat_5"     "PP_Resina_12"    "PP_Sumpul_34"    

 [9] "PP_Tapuri_45"    "PP_Tintay_24"    "PP_Tintay_25"    "PP_Titiri_42"    "PP_Toqoaq_28"    

"PP_Toqoaq_29"    "PP_Toqoaq_30"    "PP_Yamiri_9"   
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meta[which(meta$ATTRIBUTE_Plot == "PP_Tintay_24"),] 

 

 

meta[which(meta$ATTRIBUTE_Plot == "PP_Yamiri_9"),] 

 

meta[which(meta$ATTRIBUTE_Plot == "PP_Pintat_5"),] 

 

meta[which(meta$ATTRIBUTE_Plot == "PP_Ka\x96upa_44"),] 

 

"PP_Yamiri_9"  

 

 

?phylocurve 

 

 

metabig$ATTRIBUTE_Genus_species = gsub("-", "", metabig$ATTRIBUTE_Genus_species) 

metapool = meta 

metapool$Genus_sp = NA 

 

for(i in 1:nrow(metapool)){ 

 metapool$Genus_sp[i] = 

metabig$ATTRIBUTE_Genus_species[which(metabig$ATTRIBUTE_SpeciesCode == 

meta$ATTRIBUTE_SppCode[i])] 

} 
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head(metapool) 

metapool$ATTRIBUTE_Plot = gsub("\x96",  "n", metapool$ATTRIBUTE_Plot) 

metapool$ATTRIBUTE_Plot = gsub("Toqoaq",  "Tocoaq", metapool$ATTRIBUTE_Plot) 

metapool$ATTRIBUTE_Plot = gsub("Yamiri",  "Yarimi", metapool$ATTRIBUTE_Plot) 

 

levels(as.factor(metapool$ATTRIBUTE_Plot)) 

 [1] "PP_Chaqui_32" "PP_Fuerte_27" "PP_Kanupa_44" "PP_Lomaka_40" "PP_Lomasa_39" 

"PP_Pintat_5"  "PP_Resina_12" "PP_Sumpul_34" "PP_Tapuri_45" 

[10] "PP_Tintay_24" "PP_Tintay_25" "PP_Titiri_42" "PP_Toqoaq_28" "PP_Toqoaq_29" 

"PP_Toqoaq_30" "PP_Yamiri_9"  

 

plotdata$Kmult.tot.K = NA 

plotdata$Kmult.tot.p = NA 

plotdata$Kmult.def.K = NA 

plotdata$Kmult.def.p = NA 

plotdata$Kmult.prim.K = NA 

plotdata$Kmult.prim.p = NA 

 

for(i in 14:length(levels(as.factor(metapool$ATTRIBUTE_Plot)))){ 

 ploti = as.character(levels(as.factor(metapool$ATTRIBUTE_Plot))[i]) 

 cat("Analyzing Kmult for plot", ploti, sep = " ", "\n") 

 metapooli = metapool[which(metapool$ATTRIBUTE_Plot == ploti),] 

 # filesploti = metapool$filename[which(metapool$ATTRIBUTE_Plot == ploti)] 

 # speciesploti = metapool$Genus_sp[which(metapool$ATTRIBUTE_Plot == ploti)] 

 dummy = rep(1,nrow(metapooli)) 

 names(dummy) = metapooli$Genus_sp 
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 phyloploti = prune.missing(x = dummy, phylo = tree.3.rooted)$tree 

 phyloploti = prune.missing(x = dummy, phylo = testphylo)$tree 

 heat.tot.ploti = heat.real[,which(names(heat.real) %in% metapooli$filename)] 

 heat.tot.ploti = heat.tot.ploti[which(rowSums(heat.tot.ploti) > 0),] 

 heat.def.ploti = heat.def[,which(names(heat.def) %in% metapooli$filename)] 

 heat.def.ploti = heat.def.ploti[which(rowSums(heat.def.ploti) > 0),] 

 heat.prim.ploti = heat.prim[,which(names(heat.prim) %in% metapooli$filename)] 

 heat.prim.ploti = heat.prim.ploti[which(rowSums(heat.prim.ploti) > 0),] 

 for(j in 1:ncol(heat.tot.ploti)){ 

  filenamej = names(heat.tot.ploti)[j] 

  names(heat.tot.ploti)[j] = names(heat.def.ploti)[j] = names(heat.prim.ploti)[j] = 

metapooli$Genus_sp[which(metapooli$filename == filenamej)] 

 } 

 evomodel.tot = evo.model(tree = phyloploti, Y = t(heat.tot.ploti), method = "Pairwise 

ML") 

 kmultresults.tot = K.mult(model = evomodel.tot, nsim = 1000, plot = F) 

 plotdata$Kmult.tot.K[which(plotdata$Plot == ploti)] = kmultresults.tot$K 

 plotdata$Kmult.tot.p[which(plotdata$Plot == ploti)] = kmultresults.tot$Pval 

 evomodel.def = evo.model(tree = phyloploti, Y = t(heat.def.ploti), method = "Pairwise 

ML") 

 kmultresults.def = K.mult(model = evomodel.def, nsim = 1000, plot = F) 

 plotdata$Kmult.def.K[which(plotdata$Plot == ploti)] = kmultresults.def$K 

 plotdata$Kmult.def.p[which(plotdata$Plot == ploti)] = kmultresults.def$Pval 

 evomodel.prim = evo.model(tree = phyloploti, Y = t(heat.prim.ploti), method = "Pairwise 

ML") 

 kmultresults.prim = K.mult(model = evomodel.prim, nsim = 1000, plot = F) 
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 plotdata$Kmult.prim.K[which(plotdata$Plot == ploti)] = kmultresults.prim$K 

 plotdata$Kmult.prim.p[which(plotdata$Plot == ploti)] = kmultresults.prim$Pval 

} 

 

 

 

 

 

write.csv(plotdata, file = "Madidi_plotdata_Kmult_20230222.csv", quote = F) 

 

 

 

mod.div = lm(plotdata$Kmult.tot.K ~ plotdata$invSimpson) 

summary(mod.div) 

 

 

mod.elev = lm(plotdata$Kmult.tot.K ~ plotdata$elevation) 

summary(mod.elev) 

 

mod.elev.nodry = lm(plotdata$Kmult.tot.K[which(plotdata$ForestType == "moist montane")] ~ 

plotdata$elevation[which(plotdata$ForestType == "moist montane")]) 

summary(mod.elev.nodry) 

 

 

mod.pc1 = lm(plotdata$Kmult.tot.K ~ plotdata$PCA1) 
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summary(mod.pc1) 

 

mod.pc2 = lm(plotdata$Kmult.tot.K ~ plotdata$PCA2) 

summary(mod.pc2) 

 

 

 

K.mult(model = , nsim = 1000, plot = T) 

 

 

test = heat.tot.ploti/rowMeans(heat.tot.ploti) 

evomodel.tot = evo.model(tree = phyloploti, Y = t(test), method = "Pairwise ML") 

 

 

 

 

rand.data <- sim.traits() 

 

rand.data 

# $trait_data 

            # V1          V2         V3         V4 

# t2   1.3969525  0.47883417  4.2579360  4.5814450 

# t6   2.9829437 -0.89376273 -2.1986710 -1.3402672 

# t7   2.8468325 -0.42314268  0.7725386  0.8158939 

# t3   0.2883345 -0.27384562  1.3952555  4.3724692 
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# t4  -1.2785160 -0.71825975  0.1592125  6.0280045 

# t8  -1.1388404 -0.65469252  2.3485904  7.8514698 

# t9  -0.3107582  0.22277635  2.4436410  5.3318763 

# t12  1.7461535  0.43612073  3.7927976  3.8182190 

# t14  1.4809865  1.26835503  5.0226705  3.8463821 

# t15  1.4043228  1.28734259  4.8853338  3.7569117 

# t13  1.4908855  1.10941296  4.4181962  3.5220316 

# t5   3.2182798  0.92199269  5.3783353  1.8242808 

# t10  0.4621692 -0.54571569  3.8448105  6.6462391 

# t11  1.3677619 -0.08560965  2.7896276  3.8337457 

# t1   2.5311757  1.94589249  5.5230757  1.5326607 

 

# $tree 

 

# Phylogenetic tree with 15 tips and 14 internal nodes. 

 

# Tip labels: 

  # t2, t6, t7, t3, t4, t8, ... 

 

# Rooted; includes branch lengths. 

 

# $sim_tree 

 

# Phylogenetic tree with 15 tips and 14 internal nodes. 
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# Tip labels: 

  # t2, t6, t7, t3, t4, t8, ... 

 

# Rooted; includes branch lengths. 

 

null.model <- evo.model(tree = rand.data$tree, Y = rand.data$trait_data,method = "Pairwise 

ML") 

# Evolutionary rate(s) (sigma2mult): 

# [1] 2.642536 

 

# Log-likelihood:  -257.9414  

# Method:  Pairwise ML  

 

# Evolutionary model: BM 

 

 K.mult(model = null.model,nsim = 100) 

 

# Bootstrapping under null model. 

 

# **********Simulation results**********                                  

# Test statistic (K)      0.9756736 

# Critical test statistic 0.3503957 

# Estimated Power         1.0000000 

 

# P-value: 0 
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testKmult =  K.mult(model = null.model,nsim = 100) 

 

str(testKmult) 

# List of 5 

 # $ K            : num 0.912 

 # $ Pval         : num 0 

 # $ power        : num 1 

 # $ K.expectation: num 1 

 # $ plot.tools   :List of 5 

  # ..$ test_statistic         : num 0.912 

  # ..$ critical_test_statistic: num 0.268 

  # ..$ test_statistic_name    : chr "K" 

  # ..$ null_sim_test_statistic: num [1:100] 0.0645 0.0881 0.0691 0.0617 0.0722 ... 

  # ..$ alt_sim_test_statistic : num [1:100] 0.702 0.937 0.984 0.929 0.999 ... 

 # - attr(*, "class")= chr "compare.model" 

  

testKmult$K 

# [1] 0.9115932 

 

 

 

 

names(heat.tot.ploti)[-which(names(heat.tot.ploti) %in% phyloploti$tip.label)] 

[1] "Weinmannia_LC4951" 
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tree.3.rooted$tip.label[grep("Weinmannia", tree.3.rooted$tip.label)] 

 [1] "Weinmannia_LC3488B"     "Weinmannia_MCM1203"     "Weinmannia_AF19282"     

"Weinmannia_MCM1102"     "Weinmannia_sorbifolia"  

 [6] "Weinmannia_fagaroides"  "Weinmannia_AF13212"     "Weinmannia_lechleriana" 

"Weinmannia_AF16205"     "Weinmannia_LC4909"      

[11] "Weinmannia_reticulata"  "Weinmannia_davidsonii"  "Weinmannia_JGM42"       

"Weinmannia_LC4791"      "Weinmannia_LC4887"      

[16] "Weinmannia_haenkeana"   "Weinmannia_pinnata"     "Weinmannia_crassifolia" 

"Weinmannia_nebularum"   "Weinmannia_ovata"  

 

 

 

testphylo = tree.3.rooted 

 

testphylo$tip.label[which(testphylo$tip.label == "Weinmannia_LC4791")] = 

"Weinmannia_LC4951" 

 

``` 
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R code for Chapter 4 

title: "Chapter 4 R code" 

output: word document 

 

```{r} 

library(vegan) 

library(ggplot2) 

library(dplyr) 

library(sfsmisc) 

library(tidyr) 

library(picante) 

library(matrixStats) 

library(V.PhyloMaker) 

library(FD) 

library(ggfortify) 

library(missForest) 

library(picante) 

 

 

path.to.files <- 

  "C:/Users/marvi/Box Sync/DavidHenderson/03_Chapter1/" 

 

 

plot_list <- c("PP_Chaqui_32", "PP_Fuerte_27", "PP_Kanupa_44", "PP_Lomaka_40", 

"PP_Lomasa_39", "PP_Pintat_5", "PP_Resina_12", "PP_Sumpul_34", "PP_Tapuri_45", 
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"PP_Tintay_24", "PP_Tintay_25", "PP_Titiri_42", "PP_Tocoaq_28", "PP_Tocoaq_29", 

"PP_Tocoaq_30", "PP_Yarimi_9") 

 

# Load plot data 

plot.data <- read.csv(paste0(path.to.files, 

                             

"02_Data/MadidiRawAndCleanData_v4.1/03_CleanMadidiData/01_PlotData_Clean_v4.1_2020

-09-07.txt"), 

                      header = TRUE, sep = "\t", fileEncoding="UTF-8")  

dim(plot.data) 

colnames(plot.data) 

 

plot.data <- plot.data[which(plot.data$PlotType=="PP"), ] 

 

# Change name of Kanupa 

unique(plot.data$PlotName) 

plot.data$PlotName[19] <- "PP_Kanupa_44" 

 

plot.data$PlotName[which(plot.data$PlotName=="PP_Kañupa_44")]<- 

  rep("PP_Kanupa_44",length(which(plot.data$PlotName=="PP_Kañupa_44"))) 

 

 

plot.data <- plot.data[which(plot.data$PlotName %in% plot_list), ] 

unique(plot.data$PlotName) 

colnames(plot.data) 
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# Load tree data 

tree.data <- read.csv(paste0(path.to.files, 

                             

"02_Data/MadidiRawAndCleanData_v4.1/03_CleanMadidiData/04_TreeData_PP_Clean_v4.1_

2020-09-07.txt"),  

                      header = TRUE, sep = "\t", fileEncoding="UTF-8") 

dim(tree.data) 

colnames(tree.data) 

 

#Change kanupa 

unique(tree.data$PlotName) 

tree.data$PlotName[19] <- "PP_Kanupa_44" 

 

tree.data$PlotName[which(tree.data$PlotName=="PP_Kañupa_44")]<- 

  rep("PP_Kanupa_44",length(which(tree.data$PlotName=="PP_Kañupa_44"))) 

 

# 2022 OCT 27: For now remove all rows w/ NoName for binomal species name 

#tree.data[which(".NoName" %in% tree.data$BinomialSpeciesName), ] 

tree.data <- tree.data[-which(tree.data$BinomialSpeciesName == ".NoName"), ] 

 

# 2022 NOV 08: 

tree.data <- tree.data[-which(tree.data$BinomialSpeciesName == ".NoName AF18382"), ] 

 

# 2022 OCT 27: Fix any hyphenated names 

#which(treedata$BinomialSpeciesName == "Guatteria sanctae-crucis") # 

treedata$BinomialSpeciesName[14877]  treedata[14877, ] 
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tree.data$BinomialSpeciesName <- gsub("\\-", " ",  

                                      tree.data$BinomialSpeciesName) 

 

 

 

tree.data <- tree.data[which(tree.data$PlotName %in% plot_list), ] 

unique(tree.data$PlotName) 

colnames(tree.data) 

 

### Add in numberic for subplots of subplots here ### 

tree.data.1 <- tree.data 

 

tree.data.1$Subplot_subplot <- 0 

#tree.data.1$Subplot_subplot <- tree.data.1$Subplot 

 

tree.data.1 <- tree.data.1[which((tree.data.1$Ly >= 0) & (tree.data.1$Ly <= 20) & 

                                   (tree.data.1$Lx >= 0) & (tree.data.1$Lx <= 20)), ] 

 

 

tree.data.1$Subplot_subplot[which((tree.data.1$Ly >= 0) & (tree.data.1$Ly < 10) & 

                                    (tree.data.1$Lx >= 0) & (tree.data.1$Lx < 10))] <-1  

 

tree.data.1$Subplot_subplot[which((tree.data.1$Ly >= 0) & (tree.data.1$Ly < 10) & 

                                    (tree.data.1$Lx >= 10) & (tree.data.1$Lx <= 20))] <- 2 
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tree.data.1$Subplot_subplot[which((tree.data.1$Ly >= 10) & (tree.data.1$Ly <= 20) & 

                                    (tree.data.1$Lx >= 0) & (tree.data.1$Lx < 10))] <- 3 

 

tree.data.1$Subplot_subplot[which((tree.data.1$Ly >= 10) & (tree.data.1$Ly <= 20) & 

                                    (tree.data.1$Lx >= 10) & (tree.data.1$Lx <= 20))] <- 4 

 

tree.data.1$Subplot_subplot 

nrow(tree.data.1[which(tree.data.1$Subplot_subplot == 0), ]) 

 

tree.data.1$Subplot_quadrat <- paste(tree.data.1$Subplot, tree.data.1$Subplot_subplot, sep=".") 

 

tree.data.1$Subplot_quadrat 

 

 

tree.data <- tree.data.1 

 

# Load plot - climatic/ env data - create clim & soli PCA 

path.to.files <-  

  "C:/Users/marvi/Box Sync/DavidHenderson/04_Chapter2/" 

 

## Load environmental data 

env.data <- read.delim(paste0(path.to.files, 

                              "02_Data/12_EnviroRasterData_Clean_v4.1_2020-09-07.txt")) 

env.data <- env.data[which(env.data$PlotType=="PP"), ] 

colnames(env.data) 
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# Change Kanupa 

env.data$PlotName[19] <- "PP_Kanupa_44" 

env.data$PlotName[which(env.data$PlotName=="PP_KaÃ±upa_44")]<- 

  rep("PP_Kanupa_44",length(which(env.data$PlotName=="PP_KaÃ±upa_44"))) 

 

 

env.data <- env.data[which(env.data$PlotName %in% plot_list), ] 

unique(env.data$PlotName) 

colnames(env.data) 

 

#Aggregate environmental data 

plot.env.data <- merge(env.data, plot.data, by="PlotName") 

 

colnames(plot.env.data) 

 

#Run Clim PCA 

imputation <- missForest(plot.env.data[, c(10,16,29,32)]) 

imputation <- imputation$ximp 

 

plot.clim.summary <- cbind(plot.env.data[,1], imputation) 

colnames(plot.clim.summary)[1] <- c("PlotName") 

colnames(plot.clim.summary) 
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pca.clim.test <- prcomp(plot.clim.summary[2:5], 

                        center=TRUE, scale.=TRUE) 

summary(pca.clim.test) 

 

pca.clim.test$x[,1] 

pca.clim.test$x[,2] 

 

# Plot 

autoplot(pca.clim.test, data = plot.clim.summary, colour = 'PlotName', 

         loadings = TRUE, loadings.colour = 'blue', loadings.label = TRUE, loadings.label.size = 3) 

 

#Run Soil PCA 

imputation <- missForest(plot.env.data[, c(72, 74:81, 83:86)]) 

imputation <- imputation$ximp 

 

plot.soil.summary <- cbind(plot.env.data[,1], imputation) 

colnames(plot.soil.summary)[1] <- c("PlotName") 

colnames(plot.soil.summary) 

 

# Scale and log transform soil variables: DEC 02 2022 

 

plot.soil.summary.1 <- data.frame(plot.soil.summary[,1], 

                                  scale(log(plot.soil.summary[,2:14]))) 
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pca.soil.test <- prcomp(plot.soil.summary.1[2:14], 

                        center=TRUE, scale.=TRUE) 

summary(pca.soil.test) 

 

pca.soil.test$x[,1] 

pca.soil.test$x[,2] 

 

 

### Chemical Trait Data ### 

path.to.files <-  

  "C:/Users/marvi/Box Sync/DavidHenderson/04_Chapter2/" 

 

# All Compounds 

load(paste0(path.to.files, 

            

"04_Results/Individual_CompoundClasses/Madidi_plotabundmeanCSCS_metabtot_20220608.R

data")) 

cscs.all <- as.matrix(mad_cscs_all) 

 

# Defense Compounds 

load(paste0(path.to.files, 

            

"04_Results/Individual_CompoundClasses/MadAll_metabsim_npclass_defense_20220614_2022

0806.Rdata")) 

cscs.def <- as.matrix(1-cscs) 
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# Primary Compounds 

load(paste0(path.to.files, 

            "04_Results/Individual_CompoundClasses/CSCSsppBCI-prim-20220822.Rdata")) 

cscs.prim <- as.matrix(1-cscs) 

 

# Shikimate Compounds 

load(paste0(path.to.files, 

            

"04_Results/Individual_CompoundClasses/MadAll_metabsim_npclass_shikimates_20220614.R

data")) 

cscs.shik <- as.matrix(1-cscs) 

 

# Terpenoid Compounds 

load(paste0(path.to.files, 

            

"04_Results/Individual_CompoundClasses/MadAll_metabsim_npclass_terpenoids_20220614.Rd

ata")) 

cscs.terp <- as.matrix(1-cscs) 

 

 

dim(cscs.all) 

dim(cscs.def) 

dim(cscs.prim) 

dim(cscs.shik) 

dim(cscs.terp) 
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## ***NOTE*** ## 

# Species in row and colum 384 is present for all and defense compounds, 

# but not for the primary compounds matrix. To standardize matrices, we  

# remove if from all matrices 

#which(rownames(mad_cscs_all) == "PP_Sumpul_34_Pleurothyrium trianae") # 

mad_cscs_all[384, 384] 

#Not included in CSCSsppBCI-prim-20220822.Rdata 

 

cscs.all <- cscs.all[-384, -384] 

cscs.def <- cscs.def[-384, -384] 

cscs.shik <- cscs.shik[-384, -384] 

cscs.terp <- cscs.terp[-384, -384] 

 

 

identical(rownames(cscs.def), rownames(cscs.prim)) 

identical(rownames(cscs.shik), rownames(cscs.terp)) 

identical(rownames(cscs.shik), rownames(cscs.prim)) 

 

 

# Change rownames, colnames 

rownames(cscs.def) <- rownames(cscs.all) 

colnames(cscs.def) <- colnames(cscs.all) 

identical(rownames(cscs.all), rownames(cscs.def)) 
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rownames(cscs.prim) <- rownames(cscs.all) 

colnames(cscs.prim) <- colnames(cscs.all) 

identical(rownames(cscs.all), rownames(cscs.prim)) 

 

rownames(cscs.shik) <- rownames(cscs.all) 

colnames(cscs.shik) <- colnames(cscs.all) 

identical(rownames(cscs.all), rownames(cscs.shik)) 

 

rownames(cscs.terp) <- rownames(cscs.all) 

colnames(cscs.terp) <- colnames(cscs.all) 

identical(rownames(cscs.all), rownames(cscs.terp)) 

 

 

## ***NOTE*** ## 

## One species in the cscs matrix has no name "NA_NA" 

which(rownames(cscs.all) == "NA_NA") 

 

cscs.all <-  

  cscs.all[-which(rownames(cscs.all) == "NA_NA"),  

           -which(colnames(cscs.all) == "NA_NA")] 

 

cscs.def <-  

  cscs.def[-which(rownames(cscs.def) == "NA_NA"),  

           -which(colnames(cscs.def) == "NA_NA")] 
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cscs.prim <-  

  cscs.prim[-which(rownames(cscs.prim) == "NA_NA"),  

            -which(colnames(cscs.prim) == "NA_NA")] 

 

cscs.shik <-  

  cscs.shik[-which(rownames(cscs.shik) == "NA_NA"),  

            -which(colnames(cscs.shik) == "NA_NA")] 

 

cscs.terp <-  

  cscs.terp[-which(rownames(cscs.terp) == "NA_NA"),  

            -which(colnames(cscs.terp) == "NA_NA")] 

 

 

### Morphological Trait Data ### 

path.to.files <- 

  "C:/Users/marvi/Box Sync/DavidHenderson/03_Chapter1/" 

 

trait.data <- read.csv( 

  paste0(path.to.files, 

         

"02_Data/MadidiRawAndCleanData_v4.1/03_CleanMadidiData/06_TraitData_Clean_v4.1_202

0-09-07.txt"), 

  header = TRUE, sep = "\t", fileEncoding="UTF-8") 

dim(trait.data) 

colnames(trait.data) 
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# Change name of Kanupa 

unique(trait.data$PlotName) 

trait.data$PlotName[7] <- "PP_Kanupa_44" 

 

trait.data$PlotName[which(trait.data$PlotName=="PP_Kañupa_44")]<- 

  rep("PP_Kanupa_44",length(which(trait.data$PlotName=="PP_Kañupa_44"))) 

 

trait.data <- trait.data[which(trait.data$PlotName %in% plot_list), ] 

unique(trait.data$PlotName) 

colnames(trait.data) 

 

 

# Calculate mean by species and plot # 

traits.to.use.1 <- c("RGR", "SLA", "LeafSize", "LeafThickness",  

                     "TwigBarkThickness_Relative", "TwigSpecDens") 

 

traits.to.use.2 <- c("Height", "DBH") 

 

mean.traits <- aggregate(trait.data[ ,traits.to.use.1],  

                         by = list(trait.data$BinomialSpeciesName, trait.data$PlotName),  

                         FUN = "mean", na.rm = TRUE) 

 

max.traits <- aggregate(trait.data[ ,traits.to.use.2],  

                        by = list(trait.data$BinomialSpeciesName, trait.data$PlotName),  

                        FUN = "quantile", probs=0.90, na.rm = TRUE) 
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traits.summary <- data.frame(mean.traits[,1:2], 

                             mean.traits[,traits.to.use.1],  

                             max.traits[,traits.to.use.2]) 

 

traits.summary <- data.frame(mean.traits[,1:2], 

                             scale(log1p(mean.traits[,traits.to.use.1])),  

                             scale(log1p(max.traits[,traits.to.use.2]))) 

 

 

 

colnames(traits.summary)[1:2] <- c("BinomialSpeciesName", "PlotName") 

colnames(traits.summary) 

 

# Imputation of missing values in trait matrix 

imputation <- missForest(traits.summary[,-c(1,2)]) 

imputation <- imputation$ximp 

 

traits.summary <- cbind(traits.summary[,c(1,2)], imputation) 

 

head(traits.summary) 

unique(traits.summary$PlotName) 

colnames(traits.summary) 
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# Run PCA for morphological traits  

pca.test.morpho <- prcomp(traits.summary[, 3:10], 

                          center=TRUE, scale.=TRUE) 

summary(pca.test.morpho) 

 

# Plot 

autoplot(pca.test.morpho, data = traits.summary, colour = 'PlotName', 

         loadings = TRUE, loadings.colour = 'blue', loadings.label = TRUE, loadings.label.size = 3) 

 

 

traits.summary$PCA1 <- pca.test.morpho$x[,1] 

traits.summary$PCA2 <- pca.test.morpho$x[,2] 

traits.summary$PCA3 <- pca.test.morpho$x[,3] 

traits.summary$PCA4 <- pca.test.morpho$x[,4] 

traits.summary$PCA5 <- pca.test.morpho$x[,5] 

traits.summary$PCA6 <- pca.test.morpho$x[,6] 

traits.summary$PCA7 <- pca.test.morpho$x[,7] 

traits.summary$PCA8 <- pca.test.morpho$x[,8] 

colnames(traits.summary) 

 

 

rownames(pca.test.morpho$x) <- paste(traits.summary$PlotName,  

                                     traits.summary$BinomialSpeciesName, sep="_") 

 

trait.dists <- as.matrix(dist(pca.test.morpho$x)) 
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## Need to change code to save obs.mpd as well ## 

 

# Null randomization SES.MPD 

plot_list <- c("PP_Chaqui_32", "PP_Fuerte_27", "PP_Kanupa_44", "PP_Lomaka_40", 

"PP_Lomasa_39", "PP_Pintat_5","PP_Resina_12", "PP_Sumpul_34", "PP_Tapuri_45", 

"PP_Tintay_24", "PP_Tintay_25", "PP_Titiri_42", "PP_Tocoaq_28", "PP_Tocoaq_29", 

"PP_Tocoaq_30", "PP_Yarimi_9") 

 

 

## Functional Distances and SES.MPD Null 

plot.MPD.df <- data.frame(PlotName=plot_list) 

 

for(p in 1:length(plot_list)) 

{ 

  plot = plot_list[p] 

   

  plotdata = droplevels(tree.data[which(tree.data$PlotName == plot),]) 

   

  plot.compo.temp <- table(plotdata$Subplot, paste(plotdata$PlotName,  

                                                           plotdata$BinomialSpeciesName, sep="_")) 

   

  cscs.temp <- cscs.def 

   

  spp.intersecting <- intersect(intersect(rownames(cscs.temp),  

                                          colnames(plot.compo.temp)), rownames(trait.dists)) 
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  cscs.temp <- cscs.temp[spp.intersecting, spp.intersecting] 

  trait.dists.temp <- trait.dists[spp.intersecting, spp.intersecting]  

  plot.compo.temp <- as.data.frame.matrix(plot.compo.temp[ ,spp.intersecting]) 

   

  #cscs.temp <- as.dist(cscs.temp) 

  plot.MPD.chem.subquad <- ses.mpd(samp=plot.compo.temp, dis=cscs.temp, 

null.model="taxa.labels", 

                                abundance.weighted=T, runs=999) 

   

  #trait.dists.temp <- as.dist(trait.dists.temp) 

  plot.MPD.morpho.subquad <- ses.mpd(samp=plot.compo.temp, dis=trait.dists.temp, 

                                  null.model="taxa.labels", abundance.weighted=T, runs=3) 

   

   

  mpd.obs.chem <- mean(plot.MPD.chem.subquad$mpd.obs,  na.rm=T) 

  mpd.z.chem <- mean(plot.MPD.chem.subquad$mpd.obs.z,  na.rm=T) 

   

  mpd.obs.morpho <- mean(plot.MPD.morpho.subquad$mpd.obs, na.rm=T) 

  mpd.z.morpho <- mean(plot.MPD.morpho.subquad$mpd.obs.z, na.rm=T) 

   

   

  # Save results 
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  # Chem 

  plot.MPD.df[p, 2] <- mpd.obs.chem 

  plot.MPD.df[p, 3] <- mpd.z.chem 

   

  # Morpho 

  plot.MPD.df[p, 4] <- mpd.obs.morpho 

  plot.MPD.df[p, 5] <- mpd.z.morpho 

 

   

} 

 

colnames(plot.MPD.df)[2] <- "mpd.obs.chem" 

colnames(plot.MPD.df)[3] <- "mpd.z.chem" 

 

colnames(plot.MPD.df)[4] <- "mpd.obs.morpho" 

colnames(plot.MPD.df)[5] <- "mpd.z.morpho" 

 

 

# Save dataframe for later 

write.csv(plot.MPD.df, paste0(path.to.files, 

                              "04_Results/")) 

 

``` 
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