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ABSTRACT OF THE DISSERTATION 

Brain Structure Correlates of Obsessive-Compulsive Personality Traits 

by 

Allison Moreau 

Doctor of Philosophy in Psychological and Brain Sciences 

Washington University in St. Louis, 2023 

Professor Ryan Bogdan, Chair 

Obsessive-Compulsive Personality Disorder (OCPD) is the most common personality disorder, 

yet much remains unknown about its etiology. Although neural contributions to many other 

psychiatric disorders have been extensively studied, few existing studies have examined neural 

correlates of OCPD. Furthermore, all have had insufficient sample sizes to produce reliable results. 

Large samples are needed to reliably detect the expected small brain-behavior relationships. 

However, large neuroimaging studies often do not assess for personality disorders, although many 

assess for normative personality. The present study employed a Five-Factor Model of personality 

disorders, which conceptualizes personality disorders as maladaptive extremes of normative 

personality traits, to predict OCPD scores from normative personality data using machine learning 

techniques in a large community-based sample (n=1,606). This trained ML model was then applied 

to a separate dataset with normative personality and neuroimaging data (n=1,253) to generate 

predicted OCPD scores and subsequently examine brain structure correlates of OCPD traits. 

Despite a moderate ability to predict OCPD traits using normative personality data that generalizes 

across samples, we found limited evidence that predicted OCPD scores are associated with 

individual differences in brain structure. Indeed, there was only one significant univariate 

association wherein thicker right superior frontal cortex was associated with higher OCPD scores. 



 

ix 
 

Adopting ML models to generate multivariate models of brain structure resulted in imprecise 

models and thus no reliable associations. Collectively, these data suggest that OCPD symptoms 

may be predicted using normative personality data, but that OCPD personality traits may not be 

strongly associated with brain structure and may require exceptionally large samples to reliably 

identify these modest associations. Broadly, this approach exemplifies how deeply phenotyped 

small samples may be used to inform large national samples that may not have assessed specific 

phenotypes.
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Chapter 1: Introduction 

Obsessive-Compulsive Personality Disorder (OCPD) is the most common personality 

disorder, with a prevalence rate of 4.3% in Western countries (Volkert et al., 2018). It is 

characterized by “a pervasive pattern of preoccupation with orderliness, perfectionism, and mental 

and interpersonal control, at the expense of flexibility, openness, and efficiency” (American 

Psychiatric Association, 2013, p. 678) that results in occupational and/or social impairment (e.g., 

not finishing tasks and missing deadlines due to perfectionism and refusing to delegate or 

alienating friends and family with one’s rigidity and insistence on control) (Skodol et al., 2002, 

2005). This occupational stress and impairment has been linked to burnout, depression, and 

physical health conditions (Atroszko et al., 2020). Some evidence suggests that executive 

functioning is also impaired (García-Villamisar & Dattilo, 2015).  In addition to these negative 

impacts on individuals, OCPD also presents an economic burden, estimated to be over $1,400 per 

person annually in direct and indirect costs (Soeteman et al., 2008). The individual and societal 

costs of OCPD make it important to understand its etiology. As individual differences in behavior 

have been associated with variability in brain structure and function, studying the neural correlates 

of OCPD may help inform our etiologic understanding of this debilitating disorder as well as refine 

its nosological distinctions (Morris & Cuthbert, 2012).   

1.1 Existing OCPD Neuroimaging Literature 

Unlike most other psychiatric disorders, there have been few neuroimaging studies of OCPD; 

indeed, I am only aware of seven published studies (Table 1.1). Four of the publications evaluated 

brain structure; of these four, three are from the same small sample (total n=36 [50% patients]) 
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and the fourth did not examine OCPD independently. The remaining three independent published 

studies evaluated brain function.  

1.1.1 Brain Structure Studies  

Structural neuroimaging studies can examine a variety of metrics including the volume, surface 

area, or thickness of brain regions, as well as properties of structural connectivity that characterize 

the white matter fiber tracts that connect different regions of the brain. Structural connectivity is 

measured by a type of magnetic resonance imaging (MRI) called diffusion weighted imaging 

(DWI); diffusion tensor models can be “fit” to these images to measure the orientation and water 

diffusion properties of the fiber tracts. Common structural connectivity metrics include fractional 

anisotropy (FA) (the directionality of diffusion), mean diffusivity (MD) (the average rate of 

diffusion), axial diffusivity (AD) (the rate of diffusion along the main axis of the tract) and radial 

diffusivity (RD) (the rate of diffusion in the transverse direction of the tract) (Soares et al., 2013). 

Existing OCPD studies have examined all of these metrics.  

The three OCPD structural publications from the same sample (N=16 patients, 18 controls) 

(Atmaca, Korucu, Caglar Kilic, et al., 2019; Atmaca, Korucu, Tabara, et al., 2019; Gurok et al., 

2019) reported that participants with OCPD had smaller volumes of the orbitofrontal cortex, 

amygdala, hippocampus, and pineal gland and larger thalamic volume.  The fourth structural study 

(Payer et al., 2015) reported that Cluster C personality disorder symptoms, which includes OCPD, 

were associated with larger caudate tail surface area, smaller ventral striatum volume, and thicker 

right prefrontal cortex. While the study did not analyze OCPD symptoms independently, 25 of the 

29 participants in the Cluster C group had elevated OCPD symptoms, highlighting their relevance 

for understanding OCPD. Finally, an unpublished dissertation examined structural connectivity in 

OCPD (Fernandes Gonçalves, 2015). In a sample of 18 participants, that may overlap with one of 
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the functional studies, individuals with OCPD (N=9) had higher mean diffusivity (MD) in the right 

cingulum bundle and higher axial diffusivity (AD) in the tract connecting the right precuneus and 

lateral occipital cortex. 

Several limitations strongly reduce the informativeness of these prior brain structure 

studies of OCPD. First, the sample sizes were small (ns=18-72), making it likely that effect sizes 

are overestimated and possible that the findings are false positives (Button et al., 2013). Given 

expected small effects between complex behavioral traits and brain phenotypes (Dick et al., 2020; 

Marek et al., 2022), as well as the heterogeneity of OCPD, these studies are likely substantially 

underpowered. Second, the published data are relatively lower resolution (1.5T field strength, 2.4 

mm slice thickness) than current standards in the field which results in less accurate image 

segmentation and resulting estimates of brain structure. Third, the three publications from the same 

sample evaluated independent regions of interest; if multiple testing was adjusted for across these 

studies, some results would not withstand multiple testing correction (12 tests across sample; 

Bonferroni corrected alpha level = 0.0042; thalamus and OFC findings no longer significant).  

Finally, it is unclear if the Atmaca studies controlled for age, sex, and intracranial volume 

simultaneously.  

1.1.2 Brain Function Studies  

Three studies have examined brain function in OCPD, including two resting state fMRI studies 

and one electroencephalography (EEG) study. Coutinho and colleagues (2016) reported increased 

resting-state functional connectivity in the left precuneus of OCPD patients in a small (N=20; 50% 

OCPD) pilot study. Meanwhile, Lei and collaborators (2020) (N=74, 50% OCPD) found that 

individuals with OCPD had higher amplitudes of low frequency fluctuation (ALFF), a measure of 

spontaneous neural activity at rest, in the bilateral caudate and left precuneus, insula, and medial 
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superior frontal gyrus, as well as lower ALFF in the left lingual and right fusiform gyri. Left 

precuneus ALFF values correlated with OCPD severity. The EEG study (Luo et al., 2020) 

compared neural mechanisms of OCPD and obsessive-compulsive disorder (OCD) during decision 

making and found that OCPD and OCD subjects (Ns=19, 24, respectively) both had larger 

feedback-related negativity waveforms than healthy controls (N=26); feedback-related negativity 

is an EEG signal of brain activity that is sensitive to valenced feedback (Rawls et al., 2020).  

Table 1.1 Existing OCPD Neuroimaging Studies 

Study Imaging Sample Findings 

Structural 
Atmaca et al. (2019a),  
Atmaca et al. (2019b),  
Gurok et al. (2019) 

Volume  
(1.5T) 

34 Total 
16 OCPD 
18 Controls 

OCPD subjs had smaller 
volume in OFC, amygdala, 
hippocampus and pineal 
gland, larger thalamus 
volume. No global volume 
differences. 

Payer et al. (2015) Volume, 
cortical 
thickness, and 
surface area 
(1.5T) 

72 Total 
37 w/ likely PD  
(20 Cluster B,  
 28 Cluster C,  
 11 Cluster B + C,  
 0 Cluster A) 
35 Controls 

Cluster C PD-sxs associated 
w/ larger caudate tail surface 
area, smaller ventral striatum 
volume, thicker cortex in 
RH superior and middle 
frontal gyri, lateral OFC  

Fernandes Gonçalves 
(2015)* 
unpublished 

Diffusion  
(3T) 

18 Total 
9 OCPD 
9 Controls 

OCPD subjs had higher MD 
in RH cingulum bundle + 
higher AD in precuneus to 
lateral occipital cortex tract 

Functional 
Coutinho et al. (2016) Resting-state 

fMRI  
(3T) 

20 Total 
10 OCPD 
10 Controls 

OCPD subjs had increased 
resting-state functional 
connectivity in LH 
precuneus (posterior DMN 
node) 

Lei et al. (2020) Resting-state 
fMRI  
(3T) 

74 Total 
37 OCPD 
37 Controls 

OCPD subjs had higher 
ALFF in bilateral caudate, 
LH precuneus, LH insula, 
LH medial superior frontal 
gyrus + lower ALFF in RH 
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fusiform and LH lingual 
gyri. 
LH precuneus ALFF values 
correlated w/ OCPD severity 
scores 

Luo et al. (2020) EEG 69 Total 
19 OCPD, 24 OCD 
26 Controls 

OCD + OCPD subjs had 
larger feedback-related 
negativity (FRN) waveform 
(lose-win) than controls 

Notes: ALFF = amplitude of low frequency, AD = axial diffusivity, DMN = default mode network, EEG = 
electroencephalography, fMRI = functional MRI, LH = left, MD = mean diffusivity, OCD = obsessive 
compulsive disorder, OCPD = obsessive compulsive personality disorder, OFC = orbitofrontal cortex, PD-
sxs = personality disorder symptoms, RH = right, subjs = study participants. 
 

1.1.3 Summary of Existing Studies 

While the literature contains no replicated findings, several brain regions (i.e., precuneus, caudate, 

prefrontal cortex) were linked to OCPD across multiple studies. The precuneus, a node of the 

default mode network, is associated with self-referential processing and rumination (Cavanna & 

Trimble, 2006; Zhou et al., 2020). The default mode network is active when the brain is “at rest” 

(Raichle, 2015). Individuals with OCPD often experience high levels of preoccupation and a 

ruministic cognitive style (Smith et al., 2006), making precuneus findings salient. The left 

precuneus exhibited increased resting state functional connectivity (Coutinho et al., 2016) and 

ALFF (Lei et al., 2020) while a white matter tract connecting the right precuneus and lateral 

occipital cortex exhibited increased axial diffusivity (Fernandes Gonçalves, 2015). The caudate, 

which is involved in executive planning and goal-directed action (Grahn et al., 2008), showed 

increased surface area of its tail (Payer et al., 2015) and ALFF (Lei et al., 2020) in both 

hemispheres. In OCPD, a hyperfocus on goal-direction action, often at the expense of interpersonal 

relationships and efficiency, is common. The prefrontal cortex coordinates most higher-level 

cognition, including cognitive control, which covers a range of mental processes such as inhibiting 
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automatic responses, monitoring and planning, and shifting between tasks (N. P. Friedman & 

Robbins, 2022). Individuals with OCPD often exhibit behavioral differences in these processes, 

including a strong ability to resist impulsive urges and other automatic responses and excessive 

planning. In OCPD, the prefrontal cortex exhibited increased ALFF in the left medial superior 

frontal gyrus (Lei et al., 2020) and thicker cortex in the right superior and middle frontal gyri 

(Payer et al., 2015). Studies also found both smaller volume in the bilateral orbitofrontal cortex 

(Atmaca, Korucu, Tabara, et al., 2019) and thicker cortex in right lateral orbitofrontal cortex (Payer 

et al., 2015).  This sparse and inconsistent literature suggests that more research is needed before 

a model of OCPD neurobiology can be advanced (Marincowitz et al., 2021). 

Although some patterns across imaging modalities have emerged from the existing 

literature, all of the studies have been limited by small sample sizes (Button et al., 2013). Large 

samples are needed for well-powered neuroimaging studies capable of detecting the small effects 

often found for brain-behavior relationships (Dick et al., 2020). However, most large 

neuroimaging studies do not explicitly assess for personality disorders. Therefore, an alternative 

method of assessing personality disorders is needed for a sufficiently powered neuroimaging study 

of OCPD-related traits. The five-factor model of personality, which is readily assessed in many 

large consortium and independent neuroimaging samples, provides this alternative method and has 

proved useful for other personality disorders (e.g., (Baranger et al., 2020)).  

1.2 Five Factor Model of Personality Disorders 

A popular dimensional model of personality psychopathology argues that personality disorders 

represent maladaptive extremes of personality traits (Widiger & Trull, 2007). The most prevalent 

model of normative personality traits is the Five Factor Model (FFM), which includes the traits 
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neuroticism, extraversion, openness, agreeableness, and conscientiousness (Digman, 1990).  

Neuroticism describes the tendency to experience distress or negative affect and subsequent 

cognitive and behavioral patterns. Extraversion represents the tendency to obtain gratification from 

the outer world rather than inner self. Openness describes a tendency to appreciate and seek out 

novel ideas and experiences. Agreeableness represents a tendency to prioritize social harmony in 

interpersonal interactions. Conscientiousness describes a tendency to exhibit self-discipline and 

achievement-striving. Each trait has been further broken down into more specific facets (e.g., the 

extraversion facet assertiveness). The five-factor model of personality disorders characterizes the 

disorders by the extent to which higher-level traits (or “domains”) and lower-level facets of the 

five-factor model are exhibited in the disorders.   

 Meta-analyses broadly support the FFM-based conceptualization of personality disorders 

(Samuel & Widiger, 2008; Saulsman & Page, 2004). More specifically, using data from 2,873 

participants from 12 studies Saulsman and Page (2004) found that the five-factor model was 

meaningfully associated with all 10 personality disorders.  Most personality disorders were 

positively associated with neuroticism and negatively associated with agreeableness. The 

correlations between the five personality domains and the personality disorders ranged from |0.01 

to 0.49|. A subsequent meta-analysis that extended Saulsman and Page’s work by examining the 

30 facets of the FFM, in addition to the “Big Five” traits or “domains”, also supported the FFM 

conceptualization of personality disorders (Samuel & Widiger, 2008).  When combining results 

from 3,207 individuals across 16 studies and 18 independent samples (only one of which was in 

Saulsman and Page (2004)), each personality disorder had significant correlations between 

researchers’ and clinicians’ hypothesized FFM profiles and meta-analytic results, with all but one 

(histrionic PD) greater than 0.50.  
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This support for a dimensional model of personality disorders led to the fifth edition of the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) including a proposed dimensional 

model in its “Emerging Measures and Models” section (American Psychiatric Association, 2013). 

While clinical practice still uses the same categorical approach and diagnostic criteria as the DSM-

IV, the proposed model involves a dimensional assessment of personality functioning and 

pathological personality traits that are maladaptive variants of the FFM domains (although one 

domain, psychoticism, appears less directly linked to the “Big Five”). The five maladaptive 

personality domains are: negative affectivity (i.e., neuroticism), detachment (the maladaptive 

opposite of extraversion), antagonism (the maladaptive opposite of agreeableness), disinhibition 

(the maladaptive opposite of conscientiousness), and psychoticism. Similar to the FFM, each of 

these domains is broken down into lower-order facets, totaling 25 in all. Under this alternative 

model for personality disorders (AMPD), OCPD is diagnosed when at least three out of four 

pathological personality traits (i.e., rigid perfectionism (required), perseveration, intimacy 

avoidance, and restricted affectivity) are present and associated with impairment in personality 

functioning. 

1.2.1 FFMs of OCPD  

While overall the FFM model of personality disorders has received strong support, the FFM 

conceptualization of OCPD specifically has been controversial. Clinicians and researchers have 

proposed that OCPD can be represented by high levels of anxiousness and all of the 

conscientiousness facets along with low levels of excitement seeking, openness to actions, and 

openness to values (Lynam & Widiger, 2001; Samuel & Widiger, 2004). Researchers have also 

suggested that low levels of impulsiveness and openness to feelings and ideas are present (Lynam 

& Widiger, 2001). However, despite these hypothesized representations and evidence that most 
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personality disorders show high correlations with normative personality traits, the empirical data 

for OCPD have been less strong.  

While personality disorders tend to have low convergent validity broadly (r=0.60 for two 

self-report measures and r=0.39 for self-report and clinician interview) (Widiger & Boyd, 2009), 

meta-analysis has revealed that the convergent validity between FFM OCPD scores and DSM-IV 

OCPD symptom counts is lower (r=0.16) than any other personality disorder (Miller, 2012). This 

can also be seen in low correlations between traditional OCPD assessment scores with both FFM 

domains (|r|=|0.04-0.24|) and facets (|r|=|0.01-0.25|) in meta-analyses (Table 1.2) (Samuel & 

Widiger, 2008; Saulsman & Page, 2004). For both domains and facets, conscientiousness exhibited 

the largest effect sizes. (Samuel & Widiger, 2008). For 22 of the 30 facet effect sizes, there was 

also evidence of between-study heterogeneity in results. The DSM-5 AMPD model of OCPD, 

which was established after these meta-analyses, has also not performed well. Studies have found 

that the DSM-5 AMPD traits account for only 24 to 38% of the variance in OCPD scores (reviewed 

in (Samuel et al., 2022)). Collectively, meta-analyses suggest that FFMs of OCPD do not well 

represent prior definitions of OCPD. 

However, the meta-analytic OCPD profile created by facet-level results correlates strongly 

with consensus FFM OCPD profiles from researchers (r=0.92 (Lynam & Widiger, 2001)) and 

clinicians (r=0.91 (Samuel & Widiger, 2004)). Thus, these data suggest that while FFMs of OCPD 

may not well represent prior OCPD diagnostic classification, they align well with researcher and 

clinician conceptualizations of the disorder. This overlap between FFM meta-analytic results and 

researcher and clinician descriptions of OCPD suggests that an FFM model of OCPD holds 

potential. Improvements to FFM measures of OCPD are needed to realize that potential.   
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1.2.2 Improving FFM OCPD Measurement  

Incorporating Maladaptive Conscientiousness 
The unexpectedly small correlations between conscientiousness and OCPD may be due to 

normative FFM personality assessments not capturing maladaptive levels of conscientiousness. 

For example, in the revised NEO-Personality Inventory (NEO-PI-R), the most commonly used 

FFM measure, only 10% of high conscientiousness items describe maladaptive or dysfunctional 

behavior (Haigler & Widiger, 2001). After modifying items to describe more extreme or 

maladaptive versions of the trait, Haigler and Widiger found that the correlations between 

conscientiousness and OCPD were much higher, 0.47-0.69 compared to -0.02-0.27 in the original 

NEO-PI-R. Samuel and Widiger (2011) administered multiple measures of conscientiousness, 

OCPD, and specific components of OCPD to college students (n=536 oversampled for OCPD). 

They found that conscientiousness instruments designed to assess general personality functioning 

had small to medium relationships with OCPD, but instruments designed for maladaptive versions 

of traits had large effect sizes. These findings suggest that FFMs of normative personality traits 

may contribute noise to OCPD by being unable to distinguish between adaptive and maladaptive 

conscientiousness.  

Heterogeneity in OCPD Assessment 
Some data suggests that heterogeneity in OCPD assessments, as opposed to FFMs of OCPD, may 

weaken correlations between conscientiousness and OCPD. For instance, a meta-analysis 

comparing correlations between FFM facets and OCPD for several different FFM and PD 

measures found that two of the PD measures, the Millon Clinical Multiaxial Inventory (MCMI-

III) and Schedule for Nonadaptive and Adaptive Personality (SNAP), had relatively larger 

correlations with conscientiousness facets (MCMI-III: 0.38-0.5, SNAP: 0.17-0.3) while two 

others, the PDQ and SCID-II, produced lower estimates (all rs ≤0.09) (Samuel & Widiger, 2008). 
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In a follow-up study comparing eight OCPD measures, Samuel and Widiger (2010) reported that 

the OCPD measures only had moderate convergent validity, with important differences in how 

they captured conscientiousness, agreeableness, and neuroticism. The correlations between these 

personality traits and OCPD differed in direction (i.e., positive or negative) and magnitude (e.g., 

conscientiousness r’s from -0.06 to 0.71) across the OCPD measures. Clearly, the OCPD 

assessment tool used strongly impacts how well an FFM model of OCPD performs. 

Heterogeneity in Personality Factors 
Researchers have also investigated if different statistical approaches for measuring the relationship 

between conscientiousness and OCPD might also demonstrate stronger correlations between the 

two. Mike and colleagues (2018) used a bifactor model to distinguish common trait variance from 

facet-specific variance (Table 1.2). Surprisingly, they found that conscientiousness was negatively 

associated with OCPD (r=-0.22). At the facet level, however, achievement striving, order, and 

dutifulness were all positively and significantly associated with OCPD (rs=0.55, 0.39, and 0.25, 

respectively). Notably these bifactor-generated correlations are much higher than those found in 

studies using zero-order correlations. The authors suggest that OCPD is related to higher levels of 

these facets, individually, yet when combining all of these personality traits into the domain of 

conscientiousness, the unexpected negative correlation between conscientiousness and OCPD may 

be due to the perfectionism and rigidity of OCPD hindering individuals’ abilities to accomplish 

tasks and goals, a core element of conscientiousness. These results suggest that facet-level analyses 

are needed and that looking at conscientiousness as a single factor may introduce heterogeneity 

that attenuates correlations with OCPD.  
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Table 1.2. Correlations between FFM and OCPD 
 Saulsman and  

Page (2004) 
Samuel and 

Widiger (2008) 
Mike et al.  

(2018) 
Mike et al.  

(2018) 
Neuroticism 0.08 0.18 0.45 0.20 
Anxiousness  0.16 0.07 0.18 

Angry hostility  0.10 0.33 0.11 
Depressiveness  0.09 ----- ----- 

Self-consciousness  0.13 0.08 0.12 
Impulsiveness  −0.07 -0.02 0.05 
Vulnerability  0.03 -0.06 0.05 
Extraversion -0.12 -0.12 -0.27 -0.11 

Warmth  −0.07 -0.04 0.04 
Gregariousness  −0.16 -0.28 -0.32 
Assertiveness  −0.01 0.04 0.02 

Activity  0.03 0.12 0.11 
Excitement seeking  −0.12 0.24 0.06 
Positive emotions  −0.09 -0.10 -0.10 

Openness -0.07 -0.04 -0.10 -0.02 
Fantasy  −0.09 0.10 0.02 

Aesthetics  0.01 -0.08 0.06 
Feelings  0.01 0.16 0.11 
Actions  −0.12 -0.44 -0.35 
Ideas  0.03 0.06 0.13 

Values  −0.09 -0.21 -0.12 
Agreeableness -0.04 -0.05 -0.50 -0.19 

Trust  −0.08 -0.17 -0.02 
Straightforwardness  0.04 0.09 0.06 

Altruism  0.04 ----- ----- 
Compliance  0.01 -0.13 -0.01 

Modesty  0.02 0.02 0.08 
Tendermindedness  0.00 ----- ----- 
Conscientiousness 0.23 0.24 -0.22 -0.17 

Competence  0.19 0.05 0.09 
Order  0.25 0.39 0.27 

Dutifulness  0.25 0.25 0.23 
Achievement striving  0.25 0.55 0.55 

Self-discipline  0.21 ----- ----- 
Deliberation  0.24 0.05 0.07 

Data source 
information 

Meta-analysis Meta-analysis NEO & self-report 
MAPP 

NEO & interviewer 
SIDP 

Effect Statistic Pearson’s 
correlations 

Pearson’s 
correlations 

Bi-factor 
correlations 

Bi-factor 
correlations 

Significance Bold values 
significant at 

p<0.001 (one-tailed) 

Bold values 
significant at 

p<0.05 

Bold values indicate 
95% CI does not 

include 0 

Bold values indicate 
95% CI does not 

include 0 
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Note: CI = confidence interval, MAPP = Multi-source Assessment of Personality Pathology, NEO = 
Revised NEO Personality Inventory (NEO-PI-R), SIDP = Structured Interview for DSM-IV Personality. 
Cells with dashed lines for Mike et al. (2018) indicate facets that did not have significant variance after 
accounting for the general trait. Saulsman and Page (2004) only examined personality domains, so facet 
level data are unavailable.  
 
Five-Factor Obsessive-Compulsive Inventory (FFOCI) 
These findings on maladaptive conscientiousness and the heterogeneity of measures, along with 

others (Clark et al., 1996; Markon et al., 2005; O’Connor, 2005; Schroeder et al., 1992; Watson et 

al., 2008) in support of the FFM model of OCPD, led Samuel and colleagues to develop a five-

factor measure of obsessive-compulsive personality traits, the Five-Factor Obsessive-Compulsive 

Inventory (FFOCI) (Samuel et al., 2012). FFOCI items were written to capture maladaptive 

variants of the relevant FFM facets (competence (“perfectionism”), order (“fastidiousness”), 

dutifulness (“punctiliousness”), achievement striving (“workaholism”), self-discipline 

(“doggedness”), deliberation (“ruminative deliberation”), warmth (“detached coldness”), 

excitement-seeking (“risk aversion”), openness to feelings (“constricted”), actions 

(“inflexibility”), values (“dogmatism”), and anxiety (“excessive worry”)). The FFOCI 

demonstrated significant convergent validity with four existing measures of OCPD (convergent 

correlations ranged from 0.50 to 0.71).  While the FFOCI also provided significant incremental 

validity over the NEO-PI-R facets for predicting an OCPD composite (D R2 from 0.03 to 0.39, 

mean 0.2), it is important to note that all but one of the 12 NEO-PI-R facets predicted a significant 

portion of variance in an OCPD composite (Samuel et al., 2012). This suggests that NEO-PI-R-

based measures may still be valid in samples where specialized measures such as the FFOCI are 

unavailable. 
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1.2.3 Summary of FFM Models of Personality Disorders 

In summary, meta-analytic research broadly supports FFM models of personality disorders 

(Samuel & Widiger, 2008; Saulsman & Page, 2004), which led to its inclusion as an alternative 

characterization of PDs in the DSM-5. However, among PDs, OCPD was least well captured by 

normative FFMs of personality despite aligning well with researcher and clinician versions of the 

disorder. Research suggests this is likely due to commonly used FFM measures not capturing 

maladaptive conscientiousness as well as the variability in OCPD measures, rather than conceptual 

flaws with a FFM model of OCPD. The development of the FFOCI provides a FFM measure of 

OCPD that addresses these concerns.   

1.3 FFM Neuroimaging Studies 

To my knowledge only two existing studies (Baranger et al., 2020; Haas & Miller, 2015) utilize a 

FFM model of personality disorders to examine neural correlates. However, the field of personality 

neuroscience contains numerous neuroimaging studies examining the neural correlates of the five-

factor model. Although both functional and structural neuroimaging studies have examined 

personality and personality disorders, the current study focuses on brain structure given increasing 

evidence that task-based fMRI studies may not be sufficiently reliable for individual differences 

research (Elliott et al., 2020) and resting-state fMRI acquisitions must be much longer than 

originally thought to obtain reliable data (Gordon et al., 2017). 

The normative personality literature has generated mixed and inconsistent findings 

regarding brain structure. Several studies analyzing data from the Human Connectome Project 

(HCP) (Hyatt et al., 2019; Owens et al., 2019; Riccelli et al., 2017) as well as other, smaller, 

samples (Bjørnebekk et al., 2013; DeYoung et al., 2010; Privado et al., 2017; Vartanian et al., 
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2018) have found significant associations between each of the “Big Five” and brain structure. 

However, other studies (Avinun et al., 2020; Masouleh et al., 2019), including some also analyzing 

HCP data (Gray et al., 2018; Nostro et al., 2017; Valk et al., 2020), have found less or no support 

for brain structure correlates of personality. Hyatt and colleagues examined whether these null to 

small effect sizes were due to the level of personality and/or morphometry being analyzed (Hyatt 

et al., 2022). Using mixed effects models in the HCP dataset, higher-order variables (domains for 

personality and “omnibus” measures for morphometry (e.g., total brain volume, total cortical area, 

mean cortical thickness)) had the largest effect sizes on average, although these relationships were 

still small. Together, these findings suggest that personality traits may not be robustly associated 

with brain structure as measured by typical univariate analyses, or, if they are, large samples are 

needed to accurately estimate effects.  

1.4 The Neural Correlates of OCPD: Gaps in the Literature  

In summary, the existing neuroimaging studies of OCPD have been too small to provide reliable 

results. Larger samples are required for future studies; however, it is difficult to obtain large 

neuroimaging samples that include explicit personality disorder assessments. This leads to the need 

for another way of measuring personality disorders, which the five-factor model of personality 

disorders offers, given its basis in a normative personality taxonomy that is more frequently 

assessed in large studies. Yet, the controversy over the FFM conceptualization of OCPD and the 

lack of robust, replicable personality neuroimaging findings present challenges to using the typical 

approaches to measuring and analyzing FFM OCPD traits (i.e., count or similarity scores) and 

neuroimaging data (i.e., numerous regressions of individual brain regions). To overcome these 

limitations, multivariate machine learning is a promising alternative to traditional factor analytic 
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approaches to determine an FFM-based model of OCPD. In addition, it may also be better able to 

identify the small effect sizes expected in the neuroimaging results by aggregating large amounts 

of data (Abi-Dargham & Horga, 2016; Reddan et al., 2017; Walter et al., 2019a).   

1.5 Machine Learning  

Machine learning is a branch of computer science that uses algorithms to learn to recognize 

patterns and make predictions from data. This can provide information about the data at hand or 

allow predictions to be made about new data. Machine learning (ML) approaches are typically 

divided into two main types: supervised and unsupervised. Supervised ML techniques use labeled 

training data to predict a categorical (i.e., classification) or continuous (i.e., regression) variable in 

novel test data. Unsupervised ML techniques detect patterns from unlabeled training data which 

can then be characterized and applied to new datasets. These unsupervised approaches often focus 

more on grouping observations rather than labeling them. This offers an alternative to expert-

perceived similarities in symptoms to drive diagnoses and allows for data to generate observed 

clusters that researchers and clinicians may not detect. 

While classical statistical methods test for group differences, ML approaches are typically 

used for prediction, which in psychiatry often means single-subject diagnostic or prognostic 

prediction. For example, machine learning has been used to predict treatment response (Webb et 

al., 2020), to differentiate individuals with anxiety versus depression (Richter et al., 2020), to 

identify the most informative risk factors for a disorder (Beeney et al., 2021), and even to predict 

suicidal behavior without data on suicidal ideation (Horvath et al., 2020). Thus, machine learning 

holds potential for a precision medicine approach in psychiatry; this potential is a large reason for 

the markable growth of machine learning in psychiatric research (Shatte et al., 2019). 
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Machine learning techniques have also increased in popularity due to several additional 

advantages.  Machine learning approaches can model both linear and non-linear relationships, 

account for variable interactions, and use both correlations between and uniqueness of variables 

to predict outcomes. They also reduce the variance of predictions, providing more stability across 

samples. Thus, machine learning provides a more robust way to model disorders and associated 

clinical features. 

For personality disorders, machine learning may be able to identify how the interplay 

among normative personality traits are associated with the disorders. Given the large number of 

traits and underlying facets identified in dimensional models of personality disorders, they are 

well-positioned to benefit from ML approaches which adeptly handle high numbers of features. 

Using a supervised machine learning approach in combination with an epidemiological sample 

that includes explicit measures of personality disorders holds potential for a more refined 

conceptualization of personality traits associated with personality disorders.  

In neuroimaging data, machine learning’s ability to consider hundreds or thousands of 

variables (or “features”) at once permits researchers to look for combinations of neural metrics 

(e.g., brain region volumes, BOLD signal levels during tasks) most associated with outcomes. 

Given the small effect sizes typically seen in standard neuroimaging analyses that test individual 

voxels or regions of interest separately, identifying a combination of neural phenotypes that are 

correlated with outcomes of interest may result in stronger, more clinically meaningful effects 

(Abi-Dargham & Horga, 2016; Reddan et al., 2017; Walter et al., 2019a). Understanding the 

relationships between identified phenotypes may also lead to new mechanistic understanding of 

the disorder or phenomenon of interest.  
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1.6 Aims and Hypotheses  

The aims of the current study are to 1) develop and validate a predictive model of OCPD scores 

generated from normative personality data, and 2) apply this model to a large neuroimaging dataset 

that does not have explicit OCPD assessment data to examine brain structure correlates of OCPD 

traits.  I hypothesize that OCPD traits will be associated with structural differences in the prefrontal 

cortex, including the orbitofrontal, dorsal and rostral anterior cingulate cortices, medial and lateral 

prefrontal cortices, as well as the insula, posterior cingulate cortex, precuneus, caudate and ventral 

striatum. The orbitofrontal cortex is involved in decision making and subjective valuation (Bechara 

A. et al., 2000; Walton et al., 2011), which may be altered in individuals with OCPD such that 

tasks and rule-following are valued over leisure activities and flexibility. The dorsal anterior 

cingulate cortex (dACC) plays an important role in behavioral control and conflict monitoring 

(Carter & van Veen, 2007; Shenhav et al., 2016), which can both be conceptualized as 

overexpressed in OCPD. Differences in the dACC may make it harder for individuals with OCPD 

to correct their actions based on differences between expectations and actual outcomes which 

precludes their ability to be effective. The rostral anterior cingulate cortex is involved in cognitive 

control and serves as a hub where motivation and action control networks interact (Tang et al., 

2019). Alterations in this region could be linked to the rigid over-control present in OCPD.  The 

dorsolateral PFC (dlPFC) is responsible for forming plans (Kaller et al., 2011; Mushiake et al., 

2006), so impairments in this region could lead to the perseveration on lists and plans that often 

get in the way of finishing tasks. The right inferior frontal gyrus acts as a brake for response 

tendencies (Aron et al., 2014). Differences in this region could explain individuals with OCPD’s 

strong ability to inhibit impulsive tendencies. The insula controls interoception to both 

sensorimotor and socioemotional cues and assigns subjective value to body signals that it sends to 
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the prefrontal cortex (Mutschler et al., 2009). It has also been linked to empathy and flexible 

behavior (Singer et al., 2009); thus, it could be involved in the scrupulousness and rigidity of 

OCPD. The posterior cingulate cortex and precuneus, two key nodes of the default mode network, 

are both involved in self-referential thought and rumination (Brewer et al., 2013; Cavanna & 

Trimble, 2006; Zhou et al., 2020), especially for future events, so differences in these regions may 

correspond to the perfectionism and preoccupation with plans and schedules that predominate in 

OCPD. The caudate is involved in executive planning and response switching (Grahn et al., 2008), 

through its connections with the dlPFC, while the ventral striatum is involved in motivation 

(Cardinal et al., 2002), so both of these subcortical regions may also exhibit impairments in 

individuals with OCPD.  

  



 

20 
 

Chapter 2: Methods 
2.1  Studies  

Three independent study samples were used in the present study (total n=3,034), the: 1) St. Louis 

Personality and Aging Network (SPAN) Study (Oltmanns & Gleason, 2011); 2) Five Factor 

Obsessive Compulsive Inventory (FFOCI) Validation study (Samuel et al., 2012); 3) Duke 

Neurogenetics Study (DNS) (Nikolova et al., 2012). The SPAN study is an ongoing study of 

personality, experiences, biology, and health. It was leveraged to generate a predictive model of 

OCPD using normative personality data. The FFOCI validation study was conducted to investigate 

the psychometric properties of the FFOCI. It was used to test the external validity of the predictive 

OCPD model in an independent sample of young adults. The DNS study examined a wide range 

of psychological constructs, behavioral phenotypes, genetics, and the brain to explore their 

interactions in health and psychopathology. It was used to examine associations between predicted 

OCPD scores and brain structure. All studies followed protocols approved by relevant institutional 

review boards. 

2.2 Participants 

2.2.1 OCPD Model Training Sample – St. Louis Personality and Aging 

Network (SPAN) Study 

The St. Louis Personality and Aging Network (SPAN) study is an ongoing longitudinal protocol 

that recruited 1,630 mid-late life adults (55-64 years of age) for the initial baseline session from 

2007-2011 in the St. Louis area (Table 2.1). Participants were recruited using listed phone 

numbers that were crossed with census data to identify households with at least one member in the 
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target age range. When more than one person was in the target age range, the Kisch (1949) method 

was used to randomly select one individual from the household. If the target refused to participate, 

other potentially eligible residents were not recruited. Individuals were excluded if they lacked 

permanent residence, could not read at a 6th-grade level, or had active psychotic symptoms.  The 

SPAN sample is 55% female, and 66% Caucasian, 32% African American, and 2% another 

reported race/ethnicity. 1.9% of participants identified as Latinx. Regarding education level, 1.7% 

did not complete high school, 32.1% received a high school diploma or equivalent, 14.2% 

completed a 2-year college degree or vocational school, 25.2% had a bachelor’s degree, and 26.9% 

had an advanced degree. At baseline, participants completed a 3-hour in-person interview and self-

report questionnaires, followed by brief mailed/online follow-up questionnaires every 6 months. 

In-person follow-up interviews occurred every 2.5-3.5 years after baseline. Data from the baseline 

(n=1,630) and two in-person follow-up visits (FU10, n=1,344; and FU12, n=937) were considered. 

The analytic sample sizes, after addressing missing data (described below in section 2.4.1), were 

1,606 (baseline), 1,015 (FU10), and 898 (FU12).    

2.2.2 OCPD Model External Validation Sample – FFOCI Validation Study 

The FFOCI Validation study was used to test the external validity of the trained OCPD model and 

its extension to a college-aged sample (Table 2.1) (Samuel et al., 2012). Data from 203 college 

students included in the study’s psychometric validation analyses were considered. The sample 

(n=203) is 64.9% female, and 88% Caucasian, 4.5% African American, 3.5% Asian, 2.0% 

multiracial, and 2.0% another reported race. 1.0% of participants identified as Latinx. The average 

age was 19.4 (SD = 4.5), with most participants falling between 18 to 26 years old and two older 

(i.e., 46 and 71 years old) students. The analytic sample size after addressing missing data 

(described below in section 2.4.2) was 175. 
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2.2.3 Neuroimaging Sample – Duke Neurogenetics Study (DNS) 

The Duke Neurogenetics Study (DNS) assessed a wide range of behavioral and biological traits 

among 1,330 young adult college students (Table 2.1). Study exclusions included: major medical 

diagnoses (e.g., cancer), lifetime history of psychotic symptoms, use of psychotropic or 

hypolipidemic medications, and conditions affecting cerebral blood flow (e.g., hypertension). The 

sample is 57% female, and 49.9% Caucasian, 27.3% Asian, 11.8% African American/Black, 7.8% 

multiracial, 0.2% Native American, and 2.9% another reported race. 10.2% of participants 

identified as Latinx. The average age was 19.7 (SD =1.3). Participants completed two sessions 

between 2012-2016: 1) a neuroimaging session, and 2) a behavioral assessment and clinical 

interview. The current sample (n=1,253) is comprised of participants with acceptable 

neuroimaging and complete personality data. 

Table 2.1. Participant Demographics 

Variable SPAN 
(N=1,606) 

FFOCI Validation 
Study 

(N=175) 

DNS 
(N=1,253) 

Age Range: 55-64 
Mean (SD): 60.0 (2.7) 

Range: 18-71 
Mean (SD): 19.4 (4.6) 

Range: 18-22 
Mean (SD): 19.7 (1.3) 

Gender 884 female (55.0%) 115 female (65.7%) 727 female (58.0%) 

Race    
Caucasian/White 1,052 (65.7%) 152 (87%) 628 (50.1%) 

Asian 5 (0.3%) 7 (4.0%) 337 (26.9%) 
African 

American/Black 513 (32.0%) 8 (4.6%) 149 (11.9%) 

Native American 3 (0.2%) 0 (0%) 2 (0.2%) 
Multiracial 9 (0.6%) 3 (1.7%) 101 (8.1%) 

Other 19 (1.2%) 4 (2.3%) 36 (2.9%) 
Ethnicity – 
Hispanic/Latino 30 (1.9%) 1 (0.5%) 126 (10.1%) 

Note: Summary statistics are provided for the subjects that will be included in analyses based on complete 
data. For SPAN and the FFOCI validation study, this includes subjects with NEO and OCPD data. For 
DNS, this includes subjects with both NEO data and quality-controlled MRI data. See sections 2.4 and 



 

23 
 

2.5 for further preprocessing details that explain how final sample sizes were derived. Demographic 
percentages in the text represent the full samples.  

2.3 Data 

2.3.1 Personality and OCPD Measures 

Revised NEO Personality Inventory (NEO-PI-R) 
The NEO-PI-R (Costa & McCrae, 1992), a 240-item self-report measure of the Five Factor Model 

of Personality, was administered in all 3 studies (Figure 2.1). It generates dimensional scores for 

five personality factors (i.e., extraversion, neuroticism, openness, conscientiousness, 

agreeableness) with six lower-order facets per factor (for a total of 30 facets). Each facet includes 

eight items scored from 0 to 4. This results in facet scores ranging from 0-32 and factor scores 

ranging from 0-192.  
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Figure 2.1 Personality Data from NEO-PI-R 
Note: Data are from the final analytic samples and were preprocessed as described below.  
 
Five-Factor Obsessive-Compulsive Inventory – Short Form (FFOCI-SF) 
The FFOCI-SF (Griffin et al., 2018), a 48-item self-report measure of OCPD based on the Five 

Factor Model, was administered in the SPAN and FFOCI validation studies (Figure 2.2). It 

includes 12 scales that represent maladaptive variants of 12 facets of the FFM related to OCPD. 

Each scale is comprised of four items, scored from 1 to 5. In the present study, items were rescored 

on a 0-4 scale to be consistent with the NEO-PI-R scale (total score 0-192). The FFOCI-SF differs 
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slightly from the DSM-5 OCPD criteria in 1) including the historical notion of emotional inhibition 

and 2) excluding hoarding, which does not have a strong personality trait analog.   

Structured Interview for DSM-IV Personality (SIDP-IV)  
The SIDP-IV (Pfohl et al., 1997) is a clinician-administered semi-structured interview assessment 

of personality disorders. The eight diagnostic criteria for OCPD were scored based on interview 

responses on a scale from 0 (not present) to 3 (strongly present). At least four out of the eight 

criteria must be rated 2 (“present”) or higher to meet diagnostic criteria for OCPD. In addition to 

a categorical OCPD variable, the sum of all OCPD responses (range: 0-24) was used as a 

dimensional score for OCPD (Figure 2.2). The SIDP-IV was only administered in the SPAN 

study, at baseline and follow-up 10. Interrater reliability for the baseline interviews was 0.67 

(intraclass correlation) (Oltmanns et al., 2014). 46 participants (2.9%) met criteria for OCPD at 

baseline; at follow-up 10, 12 participants (0.9%) met criteria.   

Multi-source Assessment of Personality Pathology (MAPP)  
The MAPP (Oltmanns et al., 1998) is a 106-item questionnaire assessing normative personality 

(25 items) and personality disorders (81 items). Items are scored from 0 to 4. The OCPD scores 

include eight items that correspond to the eight OCPD diagnostic criteria in the DSM-IV. A 

dimensional score summed the scores of the eight OCPD items (range: 0-32; Figure 2.2), while 

categorical scores indicated the number of OCPD criteria that met diagnostic threshold (i.e., item 

scores of 3 or higher) and whether the individual met criteria for an OCPD diagnosis (i.e., four or 

more items had scores of 3 or higher). The MAPP was only administered in the SPAN study, at 

all three timepoints considered. 
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Figure 2.2 OCPD Data 
Note: Data are from the final analytic samples and were preprocessed as described below, including 
scaling for missing items.  
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2.3.2 Correlates of OCPD 

Depression 
The Beck Depression Inventory II (BDI-II) (Beck et al., 1996), a 21-item dimensional measure of 

depressive symptoms (total score range: 0-63), was administered at all three SPAN timepoints.   

Romantic Relationship Satisfaction 
The Dyadic Adjustment Scale-4 (DAS-4) (Sabourin et al., 2005) was administered at all SPAN 

time points to assess participants’ satisfaction with their romantic relationship, if applicable. 

Informant data from the romantic partner was also analyzed when available.   

Social and Occupational Functioning 
The Social Adjustment Scale-Self Report (SAS-SR) (Weissman, 1999) was administered at all 

SPAN time points. At baseline, the full questionnaire, except school functioning due to the 

sample’s age range, was included to assess social (Section C) and occupational (Section A) 

functioning. Follow-up visits only included Section C on social functioning and leisure activities. 

The Scale of Unpleasant Relational Conduct Effects (SOURCE; (Lawton, 2014); total score range: 

0-16) and the Quality of Relationship Inventory General Support subscale (QRI; (Pierce et al., 

1991); total score range: 7-28) also provided data on SPAN participants’ social functioning at 

follow-ups 10 and 12.  

Education Attainment 
SPAN participants reported their highest level of education obtained, which was analyzed as a 

categorical variable ranging from 1 (less than high school) to 9 (professional degree).  

Life Satisfaction and Loneliness 
The Satisfaction with Life (Diener et al., 1985) (5 items, total score range: 7-35) and UCLA 

Loneliness (Version 3) Scales (Russell, 1996) (20 items, total score range: 20-80) were 

administered at SPAN follow-ups 10 and 12. 

Health Behaviors 
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The Health Behavior Checklist (Vickers et al., 1990) was administered to SPAN participants at 

follow-ups 10 and 12. The Good Health Practices scale (16 items; total score range: 16-80) was 

selected as a general measure of engaging in healthy behaviors.  

Physical and Mental Health Help-Seeking 
SPAN participants reported whether they had sought treatment or counseling for a psychiatric 

disorder or life problem (baseline = ever; FU10 and FU12 = in past six months). They also 

provided information on physical health treatment at follow-ups 10 and 12. For the present study, 

number of doctor’s visits in past six months was used to assess this construct.  

2.3.3 Neuroimaging Data 

DNS participants were scanned on GE MR750 3 T MRI machines, using an eight-channel head 

coil. Of the 1,253 participants included in analyses (details below in 2.5.2), 1,035 participants were 

scanned on scanner one and 218 participants on scanner two. T1-weighted images were acquired 

using a 3D Axial FSPGR BRAVO sequence (scan parameters: TR = 8.148 ms; TE = 3.22 ms; 162 

axial slices; flip angle = 12°; FOV = 240 mm; matrix = 256 x 256; slice thickness = 1 mm with no 

gap (voxel size 0.9375 x 0.9375 x 1 mm); scan time = 4 min and 13 s).  

2.4 Aim 1 – OCPD Model 

2.4.1 OCPD Predictive Model Training 

The first aim of the present study was to train a machine learning model that could predict the 

score of an OCPD measure based on normative personality data. The goal was to be able to apply 

this trained model to a neuroimaging dataset without OCPD data in an effort to characterize brain 

structure correlates of OCPD traits. ML model training occurred in the SPAN dataset. Only 

participants with at least some data for all relevant measures (i.e., NEO, SIDP, MAPP, and FFOCI) 
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for a timepoint were considered (baseline=1,610; FU10=1,032; FU12=904) to facilitate model 

comparisons across different OCPD measures.  

Preprocessing 

Preprocessing was conducted to prepare the SPAN data for model training. First, the data were 

checked for near zero variance and/or highly correlated (r>0.75) predictor variables. None of the 

predictor variables (i.e., NEO items) met these criteria and required manipulation. Second, 

summary scores for OCPD measures were scaled to address missing data. Specifically, if enough 

items were completed, then the total scores were divided by the number of relevant items 

completed and multiplied by the expected number of items. If a participant was missing more than 

the accepted number of missing items, then the scaled score was marked as missing.  Third, 

participants missing key data that were not addressed with the aforementioned scaling and that 

could not be reliably imputed were removed. Specifically, individuals with missing values for the 

scaled versions of the SIDP or MAPP OCPD item total scores or FFOCI-SF total were removed 

(baseline n=0; FU10 n=17; FU12 n=6) because too much data was missing for accurate values on 

the OCPD variables of interest. Individuals missing gender or age data (n=1) were also removed 

from the sample because these demographic variables were used to residualize the predictor and 

outcome variables for the OCPD models. Individuals missing data for more than 25 percent of 

NEO items (i.e., > 60 items; n=3 for baseline, 0 for FU10 and FU12) were removed because the 

ML models were trained on the individual NEO item data and imputation was unlikely to be 

accurate for participants missing that many NEO items. For the remaining participants, missing 

NEO item data was imputed with the individual’s relevant facet mean. The final sample sizes were 

1,606 (baseline), 1,015 (FU10), and 898 (FU12).  



 

30 
 

Fourth, data was split into training, validation, and testing datasets for each timepoint 

separately, using a 70/10/20 split. OCPD diagnosis, as defined by the SIDP (baseline and FU10) 

or MAPP (FU12), was used to balance group sizes when splitting data. Training datasets were 

used to test multiple ML algorithms on the candidate OCPD measures (i.e., SIDP OCPD items 

total score, MAPP OCPD items total score, and FFOCI-SF total score). Validation datasets were 

used to evaluate and compare the performances of the best algorithm for each OCPD measure at 

every timepoint. The testing dataset for the timepoint of the best-performing model in the 

validation data was used to estimate the model’s out-of-sample performance.  

Fifth, predictor (i.e., NEO items) and outcome (i.e., OCPD) variables were residualized 

with age (as a continuous variable) and gender (as a binary factor) to control for these 

demographics in the ML models. Residualizing was conducted separately for the training, 

validation, and testing datasets to prevent data leakage, when information is unintentionally shared 

between the training or testing data which leads to inflated model performance (Grzenda et al., 

2021). All models were trained on both residualized and unresidualized data to assess the influence 

of controlling for these covariates and to determine if residualizing was necessary.  

Finally, predictor variables were standardized (i.e., mean centered and divided by the 

standard deviation) within the model fitting and cross-validation process, instead of separately 

during pre-processing, to prevent data leakage. 

Machine Learning Model Specification 

Machine learning analyses were conducted with the caret package (version 6.0-91; (Kuhn, 2008)) 

in R (version 4.1.3). ML models were trained to predict OCPD scores (i.e., SIDP OCPD items 

total score, MAPP OCPD items total score, or FFOCI-SF total score) from normative personality 

data (i.e., all 240 NEO-PI-R items). Repeated 5x5 cross-validation (CV) was conducted in the 
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training data for hyperparameter tuning. Adaptive resampling, rather than grid or random search, 

was used for more efficient hyperparameter tuning, testing 100 hyperparameter combinations for 

the smallest root mean squared error (RMSE). Four supervised machine learning algorithms were 

tested, including elastic net regression (“glmnet” method in caret), gradient boosting machines 

(“gbm”), support vector regression with a linear kernel (“svmLinear”), and support vector 

regression with a radial kernel (“svmRadial”). Elastic net regression (Zou & Hastie, 2005) is a 

modified form of standard regression that uses regularization, a technique to decrease the variance 

of parameter estimates, which is often large in ordinary least squares regression when there are 

many predictor variables. Gradient boosting machines (J. Friedman, 2001) combine multiple 

“weak” models sequentially in an ensemble, attempting to minimize the ensemble’s error as it 

goes, to “boost” the end model’s predictive power (Natekin & Knoll, 2013). Support vector 

regression (Drucker et al., 1997) determines a model’s best fit line within a specified error 

threshold. SVR may be conducted in a higher dimensional space than the original data and uses a 

“kernel” function to map data between the dimensions.  

The “glmnet” and “gbm” algorithms include feature selection procedures during model 

training; no external feature selection was conducted prior to the SVR model fittings. These 

algorithms were applied to each OCPD measure in each timepoint, for both residualized and 

unresidualized data, resulting in 56 models trained in the training data (Figure 2.3). Parallel 

processing was implemented with the doParallel R package (version 1.0.17). Random number 

seeds and cross-validation indices, which specify the training data rows to use for each CV fold, 

were explicitly set with the trainControl function to ensure consistent and reproducible results from 

parallel processing. The caretList function was employed to run multiple models at once. 
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Because the OCPD measures were on different scales, the best performing ML algorithm 

for each OCPD measure and timepoint combination was identified by the ratio of the root mean 

squared error (RMSE) to outcome variable standard deviation. RMSE is the standard deviation of 

the residuals, indicating the absolute fit of the model to the data. It also provides the average model 

prediction error in the units of the outcome variable. Lower RMSE values indicate better fitting 

models. The RMSE value used was the average RMSE from cross-validation. Another common 

performance metric, mean absolute error (MAE), calculates the average absolute error between 

observed and predicted values. Although MAE was not used for model comparisons, MAE values 

are reported for model performance in the Results.      

These best-performing trained models were then applied to the held-out validation data, 

generating predicted OCPD scores (Figure 2.3). Model performance was compared again, using 

the same metric as the training data, and the best overall model was selected. This final model was 

then applied to the held-out test data to generate predicted OCPD scores and obtain model 

performance metrics. This three-tiered process was implemented to identify the OCPD measure 

best predicted by the FFM and the best model while accounting for overfitting in training data. 

Caret’s varImp function was run to examine feature importance. 

2.4.2 External Validation of Trained OCPD Model  

A second dataset with personality and OCPD data was used to test the external validity of the 

trained OCPD model and its generalizability to a college age sample. The data were preprocessed 

in the same way as the SPAN dataset used for model training (described above). In this dataset, 0 

participants were missing > 25 % of NEO items and had to be removed; 5 participants were missing 

FFOCI-SF scaled totals and removed from the sample; and 23 participants were missing age or 



 

33 
 

gender data and also removed from the sample. The final sample for analyses included 175 

participants.  

 Predicted FFOCI-SF scaled total scores were generated from the trained OCPD model. 

Model performance was assessed using RMSE, R2, and the ratio of RMSE to the standard deviation 

of the observed scores.  

2.4.3 Control Analyses: Correlates of OCPD 

OCPD is often comorbid with depression (Grant et al., 2012) and associated with decreased marital 

satisfaction (South et al., 2020). Control analyses examined whether the observed and predicted 

OCPD scores in the SPAN dataset were correlated with these variables.  They also investigated 

correlations between OCPD and social and occupational functioning, education attainment, life 

satisfaction, loneliness, health behaviors, and physical and mental health seeking behaviors.   
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Figure 2.3. Machine Learning Model Selection Process 

Each model in the training data (blue boxes) was run twice, once with unresidualized data and 
once with residualized data. The same algorithms performed best for each OCPD 
measure/timepoint combination, regardless of whether the data was residualized or not. Thus, the 
residualized and unresidualized versions of the best models from the training data were evaluated 
in the validation and test data.  

2.5 Aim 2 – Neuroimaging Analyses 

2.5.1 Generating Predicted OCPD Scores in Neuroimaging Dataset  

The second aim of the present study was to characterize brain structure correlates of OCPD traits. 

We did not have access to a neuroimaging dataset with OCPD data, as personality disorder 

assessments are rarely conducted in large neuroimaging studies. Therefore, the trained OCPD ML 

model from Aim 1 was applied to the DNS neuroimaging dataset, which does not include OCPD 

measures, to generate predicted OCPD scores from normative personality data (i.e., the NEO-PI-

R). Data were preprocessed in the same manner as the SPAN data used to train the model 

(described above). No participants were missing data for age or gender, or more than 25% of NEO 

items and had to be removed from the sample. As such, predicted OCPD scores were generated 

for the full dataset and the DNS dataset was ready for neural analyses.  

2.5.2 Neuroimaging Data Processing 

T1-weighted images were processed with the FreeSurfer image analysis suite (v5.3; 

http://surfer.nmr.mgh.harvard.edu/)  to estimate volume, cortical thickness, and surface area (Dale 

et al., 1999; Fischl et al., 1999, 2002). Cortical regions were defined by the Desikan-Killiany-

Tourville atlas (Klein & Tourville, 2012). Of the 1,321 participants who completed the high-

resolution T1-weighted imaging protocol, 11 were excluded for the presence of motion-related or 

external artifacts, 4 were excluded for incidental findings, and 1 was unable to be processed with 
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FreeSurfer.  Additionally, the gray and white matter boundaries determined by recon-all were 

visually inspected using FreeSurfer QA Tools 

(https://surfer.nmr.mgh.harvard.edu/fswiki/QATools). This revealed small to moderate errors in 

gray matter boundary detection in 51 individuals who were consequently excluded. One participant 

with acceptable neuroimaging data did not complete the NEO-PI-R and was thus missing a 

predicted FFOCI-SF score, so they were also excluded. The final sample size for gray matter 

analyses was 1,253.  

2.5.3 Standard Regression Analyses 

Neuroimaging analyses were first conducted with standard regression models. The volume, 

cortical thickness, or surface area of individual brain regions were standardized (i.e., centered and 

scaled) and then modeled as the independent variable of interest. Separate models were run for 

each brain region, hemisphere, and structural phenotype combination. Predicted FFOCI-SF total 

score (residualized and scaled for missing data, as described above) was modeled as the dependent 

variable. Covariates included age, gender (as factor), self-reported race (as factor), scanner (as 

factor), and global brain structure when analyzing a regional, rather than global, ROI (estimated 

total intracranial volume for volume and surface area models and average whole brain cortical 

thickness for cortical thickness models).  

First, a priori analyses examined brain regions hypothesized to be related to OCPD (n=15 

per hemisphere, 30 total): medial and lateral orbitofrontal cortex, dorsal anterior cingulate (“caudal 

anterior cingulate” in FreeSurfer),  rostral anterior cingulate, medial and lateral prefrontal cortices 

(including the superior frontal and rostral and caudal middle frontal gyri (which contain the dlPFC) 

and inferior frontal (pars orbitalis, pars triangularis, pars opercularis) regions), as well as the insula, 

posterior cingulate cortex, precuneus, caudate, and ventral striatum (FreeSurfer's “Accumbens 
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Area”). Cortical thickness and surface area were examined for cortical regions while volume was 

examined for subcortical regions, resulting in 56 regression models. Multiple testing was corrected 

for with matrix spectral decomposition (MatSpD) (Nyholt, 2004) which accounts for the 

correlation between brain structure metrics to estimate the number of independent tests conducted. 

The volume of the subcortical ROIs and cortical thickness and surface area of the cortical ROIs 

were included together in the correlation matrix. The estimated number of independent tests (n=35) 

and subsequent alpha level (a=0.001464) was calculated using the method from (Li & Ji, 2005).  

Next, exploratory analyses examined cortical thickness and surface area in all cortical ROIs 

in the Desikan-Killiany-Tourville atlas (n=31 regions per hemisphere, two hemispheres, and two 

phenotypes per ROI=124 regressions) and volume in all subcortical ROIs from FreeSurfer’s 

automatic segmentation (“aseg”) procedure except the ventricles, vessels, surface holes, 

hypointensities, cerebral spinal fluid, choroid plexus, optic chiasm, and brainstem (n=25 total; left 

and right hemisphere run separately when applicable). For global volume measures, cortical gray 

matter (total, left, and right), cerebral white matter (total, left, and right), subcortical gray matter, 

and total gray matter were included (n=8). Estimated total intracranial volume was not included 

because it was used as a covariate to control for global brain structure rather than a ROI of interest. 

These measurements were included in a separate correlation matrix to estimate the number of 

independent tests conducted (n=86.1) and subsequent alpha level (a=0.000595) for the 157 

exploratory regression models.  

2.5.4 Machine Learning Analyses 

Next, neuroimaging analyses were conducted using machine learning techniques, which have been 

proposed to better capture the expected small effect sizes of psychopathology-related individual 

differences in morphometry (Dick et al., 2021; Götz et al., 2022; Walter et al., 2019b). Given 
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machine learning algorithms’ ability to handle multiple predictor variables and capture complex 

interactions amongst them, all 157 measurements from the exploratory analyses described above 

were included as features in model training. The neuroimaging ML processing pipeline was largely 

consistent with the Aim 1 pipeline with a few exceptions. First, features (i.e., morphometric 

measures) were residualized for age and gender, like the OCPD models, but also for self-reported 

race and MRI scanner (which have known effects on brain morphometry (Tanga et al., 2010) and 

imaging output (Han et al., 2006), respectively) and global brain structure (estimated total 

intracranial volume for volume and surface area measurements and average whole brain cortical 

thickness for cortical thickness measurements). Second, data were randomly split into training 

(70%) and testing (30%) subsets, instead of training, validation, and testing datasets. Third, only 

participants with quality-controlled FreeSurfer data were included, so there was no missing feature 

data (i.e., morphometric measures) that required imputation. Fourth, a neural net algorithm was 

also trained (method “nnet” in caret from “nnet” R package), in addition to the elastic net, gradient 

boosting machines, and linear and radial support vector regression algorithms employed in Aim 1.  

 

 
 

  



 

39 
 

Chapter 3: Results 
3.1 Aim 1 – OCPD ML Model Training 

3.1.1 Final Model Performance  

Broadly, the FFM items in the NEO-PI-R were better able to predict scores on the FFOCI-SF than 

the MAPP and SIDP across all time points (Table 3.1). In the validation dataset, the ratio of RMSE 

to standard deviation was ~0.6 for FFOCI, ~0.85 for MAPP, and ~0.87 for SIPD. An elastic net 

regression algorithm and FFOCI-SF data at follow-up 12 had the lowest ratio of RMSE (i.e., error) 

to standard deviation in the validation data (0.523), and thus produced the best model fit (Table 

3.1; testing data: RMSE=12.07, R2=0.55, MAE=9.6; observed SD=18.09; n=179; Figure 3.1). 

Hyperparameter tuning, conducted using adaptive resampling in caret, identified the optimal 

values of alpha (0.0921), the mixing percentage, and lambda (5.078), the regularization parameter. 

In elastic net regression, the mixing percentage determines the relative weights, or “mixture”, of 

lasso and ridge penalties (here 9.21% lasso and 90.79% ridge); these penalties are based on the 

size of the coefficients and aim to decrease the risk of overfitting. The regularization parameter 

determines the size of that penalty, with higher values indicating fewer variables will be kept in 

the model. The regularization feature selection process retained 114 of the 240 NEO items in the 

model (Figure 3.2).  Performance for the unresidualized model was very similar (RMSE=12.41, 

R2=0.56, MAE=9.60, observed SD=18.32, RMSE/SD=0.68, 113 features; Table 3.1). 
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Figure 3.1. Actual versus predicted FFOCI-SF residualized values in the SPAN testing 

dataset for the final OCPD model   
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Table 3.1. OCPD Model Training Results 

 

RMSE R2 MAE SD RMSE/SD RMSE R2 MAE SD RMSE/SD RMSE R2 MAE SD RMSE/SD RMSE R2 MAE SD RMSE/SD
Baseline MAPPOC Scaled Total glmnet 3.76 0.31 3.01 4.52 0.832 3.75 0.29 3.00 4.46 0.842 --- --- --- --- --- --- --- --- --- ---
Baseline MAPPOC Scaled Total gbm 3.84 0.29 3.06 4.52 0.850 3.82 0.27 3.03 4.46 0.856 --- --- --- --- --- --- --- --- --- ---
Baseline MAPPOC Scaled Total svmLinear 4.33 0.22 3.43 4.52 0.959 4.32 0.20 3.42 4.46 0.968 --- --- --- --- --- --- --- --- --- ---
Baseline MAPPOC Scaled Total svmRadial 3.75 0.32 2.98 4.52 0.829 3.73 0.30 2.97 4.46 0.837 3.92 0.28 3.02 4.60 0.852 3.90 0.27 3.01 4.59 0.851
Baseline SIDPOC Scaled Total glmnet 2.54 0.15 1.91 2.75 0.924 2.53 0.14 1.91 2.72 0.929 2.23 0.19 1.71 2.48 0.899 2.21 0.21 1.68 2.47 0.892
Baseline SIDPOC Scaled Total gbm 2.56 0.14 1.94 2.75 0.931 2.56 0.12 1.94 2.72 0.941 --- --- --- --- --- --- --- --- --- ---
Baseline SIDPOC Scaled Total svmLinear 2.83 0.09 2.10 2.75 1.032 2.83 0.08 2.09 2.72 1.038 --- --- --- --- --- --- --- --- --- ---
Baseline SIDPOC Scaled Total svmRadial 2.54 0.14 1.94 2.75 0.927 2.55 0.13 1.94 2.72 0.935 --- --- --- --- --- --- --- --- --- ---
FU10 MAPPOC Scaled Total glmnet 3.62 0.32 2.86 4.40 0.823 3.61 0.31 2.85 4.36 0.829 3.82 0.29 2.97 4.52 0.845 3.80 0.24 2.94 4.35 0.872
FU10 MAPPOC Scaled Total gbm 3.64 0.32 2.89 4.40 0.826 3.70 0.28 2.94 4.36 0.850 --- --- --- --- --- --- --- --- --- ---
FU10 MAPPOC Scaled Total svmLinear 4.39 0.20 3.50 4.40 0.998 4.38 0.19 3.49 4.36 1.006 --- --- --- --- --- --- --- --- --- ---
FU10 MAPPOC Scaled Total svmRadial 3.62 0.33 2.86 4.40 0.823 3.62 0.31 2.85 4.36 0.832 --- --- --- --- --- --- --- --- --- ---
FU10 SIDPOC Scaled Total glmnet 1.87 0.19 1.42 2.08 0.899 1.86 0.19 1.42 2.07 0.899 1.69 0.26 1.29 1.96 0.862 1.67 0.27 1.25 1.96 0.851
FU10 SIDPOC Scaled Total gbm 1.88 0.19 1.43 2.08 0.904 1.91 0.16 1.46 2.07 0.922 --- --- --- --- --- --- --- --- --- ---
FU10 SIDPOC Scaled Total svmLinear 2.26 0.09 1.74 2.08 1.090 2.26 0.09 1.73 2.07 1.088 --- --- --- --- --- --- --- --- --- ---
FU10 SIDPOC Scaled Total svmRadial 1.90 0.17 1.44 2.08 0.913 1.89 0.17 1.44 2.07 0.913 --- --- --- --- --- --- --- --- --- ---
FU10 FFOCI Scaled Total glmnet 12.37 0.57 9.77 18.80 0.658 12.33 0.57 9.77 18.70 0.659 13.65 0.61 10.39 20.75 0.658 13.05 0.61 10.16 20.52 0.636
FU10 FFOCI Scaled Total gbm 12.77 0.54 10.21 18.80 0.679 13.13 0.51 10.52 18.70 0.702 --- --- --- --- --- --- --- --- --- ---
FU10 FFOCI Scaled Total svmLinear 15.69 0.41 12.59 18.80 0.835 15.66 0.40 12.56 18.70 0.837 --- --- --- --- --- --- --- --- --- ---
FU10 FFOCI Scaled Total svmRadial 12.56 0.56 10.01 18.80 0.668 12.53 0.55 9.98 18.70 0.670 --- --- --- --- --- --- --- --- --- ---
FU12 MAPPOC Scaled Total glmnet 3.86 0.30 3.02 4.60 0.839 3.86 0.28 3.02 4.55 0.848 --- --- --- --- --- --- --- --- --- ---
FU12 MAPPOC Scaled Total gbm 4.00 0.25 3.16 4.60 0.870 3.96 0.25 3.10 4.55 0.869 --- --- --- --- --- --- --- --- --- ---
FU12 MAPPOC Scaled Total svmLinear 4.77 0.18 3.77 4.60 1.037 4.77 0.17 3.77 4.55 1.048 --- --- --- --- --- --- --- --- --- ---
FU12 MAPPOC Scaled Total svmRadial 3.85 0.30 3.01 4.60 0.837 3.85 0.29 3.02 4.55 0.845 3.59 0.31 2.86 4.33 0.830 3.58 0.28 2.84 4.23 0.846
FU12 FFOCI Scaled Total glmnet 12.02 0.62 9.55 19.53 0.615 12.02 0.62 9.55 19.48 0.617 10.32 0.76 8.20 19.93 0.518 10.18 0.75 8.18 19.45 0.523
FU12 FFOCI Scaled Total gbm 12.61 0.58 9.98 19.53 0.646 12.77 0.58 10.14 19.48 0.656 --- --- --- --- --- --- --- --- --- ---
FU12 FFOCI Scaled Total svmLinear 14.88 0.49 11.66 19.53 0.762 15.01 0.49 11.69 19.48 0.770 --- --- --- --- --- --- --- --- --- ---
FU12 FFOCI Scaled Total svmRadial 12.13 0.62 9.54 19.53 0.621 12.14 0.61 9.53 19.48 0.623 --- --- --- --- --- --- --- --- --- ---

Residualized - Validation  DataTime 
Point Outcome Measure Algorithm

Unresidualized - Training  Data Residualized - Training  Data Unresidualized - Validation  Data
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Figure 3.2 NEO-PI-R items kept in model by facet 

The residualized trained model performed similarly well in the external validation dataset 

(RMSE=12.06, R2=0.75, MAE=8.92; observed SD=23.56, RMSE/SD=0.51; n=175; Figure 3.3), 

suggesting evidence of model generalizability. Results were nearly identical when the two age 

outliers were excluded, so they were retained in the sample. The unresidualized model performed 

worse than the residualized model (RMSE=13.70, R2=0.75, MAE=10.41, observed SD=23.59, 

RMSE/SD=0.58; n=175). This suggested that residualizing the data to control for gender and age 
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was important to model performance, as the validation dataset was much younger than the dataset 

used to train the model (SPAN) but the same age range as the dataset the model was designed to 

be applied to (DNS). Thus, the residualized version of the trained model was applied to the DNS 

dataset in Aim 2 (described below).  

 

Figure 3.3. Actual versus predicted FFOCI-SF residualized values in the FFOCI Study 

external validation dataset using the final trained OCPD model 

3.1.2 Feature Importance 

Feature importance information, also known as variable importance, provides an indication of the 

relative importance of included predictors. Multivariate predictive models are dependent upon all 

of the input features and therefore individual features should not be strongly interpreted in isolation 

(Nielsen et al., 2020). However, this information can still provide insights into which predictor 

variables (in the current study, NEO items) were influential in model performance. For the final 

model (an elastic net regression model), feature importance was determined by the regression 

coefficients. The distribution of feature importance values steadily decreased from the highest 
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(1.69) to the lowest (0.00009); a cluster of most important items was not readily apparent. 

Conscientiousness had the highest average ranking of individual items’ feature importance values 

(50.1 out of 114, 63% of items kept in model), followed by openness (54.3 out of 114, 54% of 

items kept in model), extraversion (58.7 out of 114, 46% of items kept in model), neuroticism 

(62.1 out of 114, 38% of items kept in model), and agreeableness (68.5 out of 114, 38% kept in 

model). The top 20 most important NEO items (Figure 3.4) were 35% conscientiousness, 30% 

openness, 15% extraversion, 10% neuroticism, and 10% agreeableness. These items came from 

the following facets: conscientiousness - achievement striving (3 items), deliberation (1 item), 

dutifulness (1 item), order (2 items); openness - actions (2 items), fantasy (1 item), and values (3 

items); extraversion - gregariousness (2 items), and warmth (1 item); agreeableness - tender-

mindedness (1 item) and trust (1 item); neuroticism - anxiety (1 item) and self-consciousness (1 

item).  
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Figure 3.4. Feature Importance for Final Trained OCPD Model 
Note: Values represent regression coefficients from the residualized elastic net regression model for FU12 
FFOCI data.  



 

46 
 

3.1.3 Control Analyses: Correlates of OCPD 

OCPD was correlated with increased depression severity and loneliness but also marginally better 

occupational functioning. OCPD was also associated with decreased romantic relationship and life 

satisfaction and engagement in healthy behaviors. The direction of associations was inconsistent 

across the OCPD measures (i.e., MAPP, SIDP, and FFOCI) for education attainment, social 

functioning, and physical and mental health care received. Notably, the strengths of the 

associations were very similar for the predicted FFOCI-SF scores from the final ML model and 

the corresponding observed scores (Table 3.2).  
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Table 3.2 Correlates of OCPD 

Notes: Help-seeking correlations are point-biserial correlations; all other values are Pearson correlation coefficients. The color gradient indicates strongest 
negative to strongest positive correlations. Bold=p<0.05, *=p<0.01, **=p<0.001, ***=p<0.0001, SAS=Social Adjustment Scale, SOURCE=Scale of 
Unpleasant Relational Conduct Effects, QRI=Quality of Relationship Inventory-General Support Subscale, BDI-II=Beck Depression Inventory–II, 
DAS=Dyadic Adjustment Scale, SWLS=Satisfaction with Life Scale, UCLA=UCLA Loneliness Scale (Version 3), HBC=Health Behavior Checklist, 
GHP16=Good Health Practices-16, MH=Mental Health, Tx=Treatment, MAPP=Multisource Assessment of Personality Pathology, SIDP=Structured 
Interview for DSM-IV Personality (SIDP-IV), FFOCI=Five-Factor Obsessive Compulsive Inventory-Short Form, Predicted FFOCI=FFOCI-SF 

  Baseline FU10 FU12  
Measure MAPP SIDP MAPP SIDP FFOCI MAPP FFOCI Predicted 

FFOCI 
Occupational 
Functioning SAS Factor A 0.070 0.058       

Social 
Functioning 

SAS Factor C 0.23*** 0.086** 0.17*** 0.20*** 0.26*** 0.21*** 0.23*** 0.23*** 
SOURCE - Participant   0.25*** 0.23*** 0.15*** 0.20*** 0.15*** 0.18*** 
SOURCE - Informant   0.062 0.10* 0.039 0.16*** 0.019 0.060 

QRI   -0.15*** -0.17*** -0.19*** -0.17*** -0.18*** -0.17*** 

Education Level Categories 0.014 0.044 0.072 -0.047 -0.12*** 0.031 -0.097* -0.16*** 

Depression BDI-II 0.27*** 0.13*** 0.26*** 0.26*** 0.20*** 0.27*** 0.16*** 0.20*** 

Relationship 
Satisfaction 

DAS - Participant -0.087* -0.059 -0.14** -0.15** -0.19*** -0.11 -0.086 -0.089 
DAS - Partner -0.073 -0.067 -0.063 -0.088 -0.048 -0.12 0.001 -0.087 

Life Satisfaction SWLS   -0.15*** -0.21*** -0.18*** -0.13*** -0.078 -0.098* 

Loneliness UCLA   0.29*** 0.29*** 0.24*** 0.30*** 0.19*** 0.23*** 
Health 

Behaviors HBC GHP16   -0.049 -0.057 -0.065 -0.073 -0.10* -0.098* 

Medical Care # Recent Doctor Appts   0.072 0.12** 0.010 0.014 -0.065 -0.048 

Help-Seeking Received MH Tx 
(Yes/No) -0.036 -0.025 -0.024 0.12 -0.029 0.10 0.029 0.069 
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residualized predicted scores generated from the final OCPD ML model in Aim 1. All measures except occupational functioning, education level, number 
of recent doctor appointments and mental health treatment were scaled to address missing data.  
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3.2 Aim 2 – Neuroimaging Analyses 

3.2.1 Standard Regressions 

A priori Regions of Interest Analyses 
Right superior frontal cortical thickness was significantly associated with the predicted OCPD 

score (i.e., FFOCI-SF total score scaled for missing data and residualized) wherein thicker cortex 

was associated with higher OCPD scores (b= 2.21 [95% Confidence Interval (CI): 0.85-3.57], 

t(1,242)=3.19, p=0.001435). Regions with nominally significant results that did not survive 

correction for multiple comparisons included the left insula (b=-1.33, p=0.0099; cortical thickness) 

and pars triangularis (b=-1.15, p=0.047; cortical thickness) and right precuneus (b=-1.67, p=0.014; 

surface area) and pars orbitalis (b=-1.1, p=0.048; surface area).  

Exploratory Analyses 
No additional brain regions exhibited a significant association between brain structure and 

predicted OCPD score. Nominally significant results were found for surface area in the left 

fusiform gyrus, middle temporal gyrus, cuneus, and entorhinal cortex. 

3.2.2 Machine Learning 

The elastic net regression model performed best in the MRI training data (n=880; Table 3.3). 

Hyperparameter tuning, conducted using adaptive resampling in caret, identified the optimal 

values of alpha (0.92), the mixing percentage, and lambda (1.15), the regularization parameter. 

The regularization feature selection process retained 7 of the 157 morphometry measures in the 

model (Figure 3.5). Performance metrics from the testing data (n=373) were: RMSE=16.23, 

R2=0.002, MAE=12.65; outcome SD=16.16; RMSE/SD=1.005.  
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Table 3.3. MRI training data model performance 

Algorithm RMSE R2 MAE SD RMSE/SD 
glmnet 16.067 0.00801 12.696 16.11 0.997 
gbm 16.237 0.00557 12.802 16.11 1.008 
svmLinear 18.147 0.00418 14.294 16.11 1.126 
svmRadial 16.107 0.00428 12.708 16.11 1.000 
nnet 16.095 NA 12.698 16.11 0.999 

Note: Both features and outcome variables were residualized. SD = outcome variable standard deviation. 
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Figure 3.5. Morphometry measures retained in the machine learning model   
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Feature Importance 
The seven morphometric measurements retained in the model included (from largest to smallest 

importance; Figure 3.6): left insula thickness, left thalamus volume, left fusiform gyrus surface 

area, right lateral occipital cortex thickness, left hemisphere cerebral white matter volume, right 

superior frontal gyrus thickness, and right caudal anterior cingulate thickness. However, given the 

high error rate of the model, interpretation of the feature importance data is severely limited.  

 

Figure 3.6. Feature Importance Values for the OCPD Neuroimaging Model 
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Post-Hoc Tests 
Several follow-up tests were conducted in response to the poor model performance. First, models 

were trained using unresidualized outcome and/or features data, with and without covariates, to 

assess whether the residualization process was degrading performance. However, the performance 

metrics of these models were very similar to the residualized models (Table 3.4), suggesting that 

residualizing was not causing the poor performance. Second, models were trained using only the 

a priori ROIs included in the a priori regression analyses to assess whether including all ROIs was 

obscuring signal from important brain regions. Again, model performance was similar to the 

original analyses (Table 3.5). Third, models were trained to predict average cortical thickness from 

individual ROIs’ thickness to test whether the ML algorithms were capable of capturing expected 

strong relationships. The residualized models continued to perform poorly, with the RMSE equal 

to the standard deviation of average thickness (Table 3.6). The unresidualized models performed 

well, with an RMSE one-third of the outcome standard deviation. This suggested that errors in 

data or model processing were not causing the poor performance, given that average thickness 

could be accurately predicted as expected.    

Supplemental Post-Hoc Tests 
Additional post-hoc tests were conducted to assess whether brain structure accurately predicted 

neuroticism and conscientiousness, two of the personality domains most strongly associated with 

OCPD. The same machine learning algorithms as the main analyses (i.e., elastic net, gradient 

boosting machines, support vector machine with linear kernel, support vector machine with radial 

kernel) were run. Here, the outcome variable of interest was the residualized neuroticism or 

conscientiousness domain score from the NEO-PI-R. Similar to the main analyses, the 

neuroimaging features did not reliably predict personality (training data: RMSE/outcome SD@ 1, 

R2 @ 0.006; Table 3.7). 
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Table 3.4 MRI Model Performance for Unresidualized Data 

 Residualized? Training Data Testing Data 
Algorithm Brain 

data? 
FFOCI

-SF? 
RMSE R2 MAE Outcome 

SD 
RMSE/

SD 
RMSE R2 MAE Outcome 

SD 
RMSE/

SD 
No Covariates 
glmnet No Yes 16.064 0.010 12.684 16.11 0.997 16.167 0.001 12.610 16.16 1.001 
gbm No Yes 16.220 0.006 12.802 16.11 1.007 16.229 0.001 12.619 16.16 1.004 
svmLinear No Yes 17.879 0.005 14.093 16.11 1.110 18.109 0.000 14.202 16.16 1.121 
svmRadial No Yes 16.088 0.005 12.688 16.11 0.999 16.148 0.001 12.528 16.16 0.999 
nnet No Yes 16.085 0.009 12.683 16.11 0.998 16.129 0.001 12.532 16.16 0.998 
glmnet No No 16.022 0.011 12.636 16.07 0.997 16.140 0.001 12.554 16.14 1.000 
gbm No No 16.170 0.007 12.764 16.07 1.006 16.189 0.003 12.558 16.14 1.003 
svmLinear No No 17.787 0.005 14.005 16.07 1.107 18.035 0.000 14.090 16.14 1.117 
svmRadial No No 16.038 0.006 12.633 16.07 0.998 16.130 0.001 12.459 16.14 0.999 
nnet No No 98.963 NA 97.652 16.07 6.157 99.651 NA 98.339 16.14 6.175 
Covariates Included as Features 
glmnet No Yes 16.006 0.018 12.625 16.11 0.993 16.172 0.001 12.594 16.16 1.001 
gbm No Yes 16.196 0.008 12.790 16.11 1.005 16.218 0.002 12.647 16.16 1.004 
svmLinear No Yes 17.601 0.005 13.890 16.11 1.092 18.099 0.000 14.217 16.16 1.120 
svmRadial No Yes 16.043 0.012 12.627 16.11 0.996 16.257 0.001 12.589 16.16 1.006 
nnet No Yes 16.085 0.012 12.685 16.11 0.998 16.145 0.002 12.574 16.16 0.999 
glmnet No No 15.968 0.019 12.574 16.07 0.993 16.151 0.0018 12.537 16.14 1.001 
gbm No No 16.143 0.008 12.734 16.07 1.004 16.186 0.0024 12.553 16.14 1.003 
svmLinear No No 17.556 0.005 13.849 16.07 1.092 18.068 0.0004 14.180 16.14 1.120 
svmRadial No No 15.998 0.013 12.581 16.07 0.995 16.239 0.0008 12.533 16.14 1.006 
nnet No No 98.963 NA 97.652 16.07 6.157 99.651 NA 98.339 16.14 6.175 

Note: Models included all morphometry measures (i.e., exploratory). FFOCI-SF = Five-Factor Obsessive Compulsive Inventory – Short Form.  
RMSE = root mean square error. MAE = mean absolute error. SD = standard deviation 
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Table 3.5 MRI Model Performance: Exploratory vs. a priori ROIs  

 Training Data Testing Data 
Algorithm RMSE R2 MAE Outcome 

SD 
RMSE/ 

SD 
RMSE R2 MAE Outcome 

SD 
RMSE/ 

SD 
Exploratory 
glmnet 16.067 0.00801 12.696 16.11 0.997 16.233 0.00193 12.653 16.157 1.005 
gbm 16.237 0.00557 12.802 16.11 1.008 16.318 0.00003 12.666 16.157 1.01 
svmLinear 18.147 0.00418 14.294 16.11 1.126 18.2 0.00002 14.155 16.157 1.126 
svmRadial 16.107 0.00428 12.708 16.11 1.000 16.159 0 12.56 16.157 1 
nnet 16.095 NA 12.698 16.11 0.999 16.145 NA 12.574 16.157 0.999 
A priori 
glmnet 16.068 0.00987 12.690 16.11 0.997 16.177 0.00133 12.611 16.157 1.001 
gbm 16.270 0.00380 12.801 16.11 1.010 16.269 0.00038 12.809 16.157 1.007 
svmLinear 16.863 0.00460 13.312 16.11 1.047 16.656 0.00178 13.034 16.157 1.031 
svmRadial 16.097 0.00613 12.706 16.11 0.999 16.141 0.00114 12.565 16.157 0.999 
nnet 16.092 0.00715 12.693 16.11 0.999 16.166 0.00214 12.606 16.157 1.001 

Note: Both MRI features and the FFOCI-SF outcome variable were residualized. RMSE = root mean square error. MAE = mean absolute error. 
SD = standard deviation. 
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Table 3.6 Model performance for predicting average cortical thickness   
 

 Training Data Testing Data 
Algorithm RMSE R2 MAE Outcome 

SD 
RMSE/ 

SD 
RMSE R2 MAE Outcome 

SD 
RMSE/ 

SD 
Residualized 
glmnet 0.0747 NA 0.0595 0.075 1 0.0772 NA 0.0616 0.0773 0.999 
gbm 0.0757 0.005 0.0603 0.075 1.01 0.0771 0.0060 0.0618 0.0773 0.997 
svmLinear 0.0817 0.0678 0.0645 0.075 1.09 0.0784 0.0002 0.0624 0.0773 1.013 
svmRadial 0.075 0.0043 0.0596 0.075 1 0.0766 0.0325 0.0612 0.0773 0.990 
nnet 0.0779 0.0374 0.0618 0.075 1.04 0.0815 0.0007 0.0633 0.0773 1.053 
Unresidualized 
glmnet 0.0236 0.9043 0.0184 0.076 0.31 0.0265 0.8906 0.0209 0.0799 0.332 
gbm 0.0256 0.8883 0.0201 0.076 0.34 0.0282 0.8772 0.0222 0.0799 0.352 
svmLinear 0.0242 0.8998 0.0189 0.076 0.32 0.0272 0.8843 0.0215 0.0799 0.341 
svmRadial 0.0248 0.8948 0.0193 0.076 0.32 0.0276 0.8813 0.0221 0.0799 0.345 
nnet 1.4872 0.1117 1.4852 0.076 19.5 1.4870 0.0253 1.4849 0.0799 18.601 

Note: RMSE = root mean square error. MAE = mean absolute error. SD = standard deviation. 
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Table 3.7 Model performance for brain structure predicting neuroticism and conscientiousness 
 

 Training Data Testing Data 
Algorithm RMSE R2 MAE Outcome 

SD 
RMSE/ 

SD 
RMSE R2 MAE Outcome 

SD 
RMSE/ 

SD 
Neuroticism 
glmnet 22.701 0.005 17.98 22.72 0.999 21.592 0.00078 17.315 21.59 1.000 
gbm 22.912 0.006 18.16 22.72 1.008 21.988 0.00446 17.592 21.59 1.018 
svmLinear 25.818 0.006 20.69 22.72 1.136 23.156 0.00588 18.240 21.59 1.073 
svmRadial 22.675 0.007 17.97 22.72 0.998 21.589 0.00001 17.268 21.59 1.000 
nnet 22.674 0.007 17.95 22.72 0.998 21.569 0.00001 17.286 21.59 0.999 
Conscientiousness 
glmnet 21.315 0.013 16.60 21.44 0.994 20.495 0.00019 16.136 20.41 1.004 
gbm 21.351 0.016 16.72 21.44 0.996 20.778 0.00017 16.382 20.41 1.018 
svmLinear 24.097 0.003 18.94 21.44 1.124 22.264 0.00017 17.568 20.41 1.091 
svmRadial 21.330 0.015 16.61 21.44 0.995 20.514 0.00016 16.141 20.41 1.005 
nnet 21.377 0.014 16.65 21.44 0.997 20.379 0.00078 16.058 20.41 0.999 

Note: MRI features and personality scores were residualized. RMSE=root mean square error. MAE=mean absolute error. SD=standard deviation. 
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Chapter 4: Discussion 
 
The current study aimed to develop and validate a predictive model of OCPD scores generated 

from normative personality data and to subsequently examine brain structure correlates of OCPD 

traits.  Despite a moderate ability to predict OCPD traits using normative personality data that 

generalizes across samples, we found limited evidence that predicted OCPD scores are associated 

with individual differences in brain structure. Indeed, there was only one significant univariate 

association wherein thicker right superior frontal cortex was associated with higher OCPD scores. 

Adopting ML models to generate multivariate models of brain structure resulted in imprecise 

models and thus no reliable associations. Collectively, these data suggest that OCPD symptoms 

may be predicted using normative personality data, but that OCPD personality traits may not be 

strongly associated with brain structure and may require exceptionally large samples to reliably 

identify. Broadly, this approach exemplifies how deeply phenotyped small samples may be used 

to inform large national samples that may not have assessed specific phenotypes. 

4.1 Predicting OCPD from the FFM 

The first aim of this study was to develop and validate a predictive model of OCPD scores 

generated from normative personality data. Three OCPD measures (i.e., FFOCI, MAPP, and 

SIDP) were tested to determine which performed best. Broadly, the FFOCI models performed 

better than the MAPP and SIDP models. Normative personality data poorly predicted the total 

score of OCPD items (as a continuous variable) on the SIDP and MAPP, the two measures based 

on standard models of personality disorders. The limited number of individuals endorsing these 

items (n=46, 12 for baseline and FU10 SIDP OCPD diagnoses, respectively) may be contributing 
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to this poor performance, even though the models used a continuous variable of OCPD scores. 

This may also be due to the reduced overlap between DSM criteria-based variables and the FFM. 

In contrast, the FFOCI was developed from a dimensional model of PDs based on the FFM; of the 

three OCPD measures, the ML algorithms could best predict FFOCI scores from normative 

personality data. The larger, normal distribution of the FFOCI data may also have contributed to 

improved model performance over the SIDP and MAPP.  

Evaluating machine learning performance metrics for dimensional outcomes is subjective 

and does not have the same established criteria as binary outcomes (e.g., sensitivity and specificity, 

area under the curve). The final trained OCPD model’s RMSE (12.06 in the testing dataset) was 

approximately two-thirds of the FFOCI standard deviation. Performance was even better in the 

external validation dataset, suggesting results were not skewed by overfitting. The range of 

residualized FFOCI scores was roughly 80 points. Therefore, for the weighted average error 

between the predicted and actual scores to be 12 points seems adequate but not outstanding. These 

performance metrics are similar to another study employing machine learning to predict depression 

treatment outcomes from psychosocial predictor variables (RMSE/SD=0.79) (Webb et al., 2020).  

In previous research, meta-analyses of FFM models of OCPD (Samuel & Widiger, 2008; Saulsman 

& Page, 2004) found that the correlations between OCPD and the five factor model factors and 

facets ranged from -0.12 to 0.25. Although these are small effect sizes, this is typical in 

psychological research (Funder & Ozer, 2019; Götz et al., 2022). These small correlations may 

explain why the ML models predicted OCPD scores from personality data moderately well, and 

not higher.  

When predicting OCPD scores from personality data, a distinct cluster of important NEO 

items, based on feature importance data, was not evident. This is not surprising given that the 
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model was trained on 114 individual NEO items. The NEO is designed to measure five personality 

factors, with six facets per factor and eight items per facet, so numerous items (i.e., predictor 

variables) were measuring similar constructs. The ten most important NEO items came from three 

out of the five factors (conscientiousness, openness, and extraversion), suggesting that OCPD is 

more than just conscientiousness. Interestingly, neuroticism was not even part of the top 15 items 

(Figure 3.4), while the other four personality factors were. This is likely due in part to fewer 

neuroticism items being kept in the model after feature selection; 18 of the 48 neuroticism items 

were included, while 30 conscientiousness, 26 openness, and 22 extraversion items were retained. 

Agreeableness also had 18 items in the final model and similarly had few items towards the top of 

feature importance. Additionally, neuroticism is only one-twelfth of the FFOCI-SF content, so it 

may be less critical to predicting FFOCI scores. Finally, another possible driver of neuroticism’s 

limited presence amongst the most important features is the lower neuroticism scores compared to 

the other personality factors (e.g., median total score of ~70 vs. > 100). Thus, the neuroticism items 

may not load as strongly onto the OCPD outcome variables.  

4.2 OCPD and Brain Structure  

The second aim of this study was to investigate brain structure correlates of obsessive-compulsive 

personality traits. In standard regression analyses, where the predicted FFOCI score was the 

outcome variable and an individual brain region was the independent variable of interest, higher 

OCPD scores were significantly associated with thicker right superior frontal cortex. This finding 

is consistent with Payer and colleagues’ (2015) results for individuals with any cluster C 

personality disorder symptoms. Right superior frontal gyrus has been linked to impulse control 
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(Hu et al., 2016). Thicker cortex here may contribute to the elevated levels of inhibitory control 

present in individuals with OCPD (American Psychiatric Association, 2013).  

In the machine learning analyses, the neuroimaging models had large error metrics and 

were not able to accurately predict OCPD from brain structure. The best performing model, again 

elastic net regression, had a root mean square error equal to the outcome variable’s standard 

deviation. As such, meaningful interpretations of the results cannot be drawn. Notably, another 

study employing machine learning to predict a continuous measure of a psychiatric diagnosis (i.e., 

depression severity) from brain structure obtained similar performance metrics (RMSE/SD ranged 

from 1.01 to 1.5 for various depression measures and samples) (Mwangi et al., 2012). It is 

noteworthy that three of the seven features retained in the final ML model were also identified in 

the standard regressions (right superior frontal thickness, left insula thickness, left fusiform surface 

area), although only one of these (right superior frontal thickness) was statistically significant after 

correcting for multiple comparisons. 

There are two possible interpretations of the high ML model error. First, brain structure 

may truly not be associated with OCPD traits. If so, then it would make sense that the model cannot 

accurately predict OCPD scores from structural imaging data. The sample sizes of the sparse 

existing literature have been too small to inform this question. In general, large neuroimaging 

consortia have identified morphometric changes associated with many psychiatric disorders (Opel 

et al., 2020). However, effects are often small in magnitude (Marek et al., 2022). Personality has 

also been linked to brain structure (Hyatt et al., 2019; Owens et al., 2019; Riccelli et al., 2017) 

(Bjørnebekk et al., 2013; DeYoung et al., 2010; Privado et al., 2017; Vartanian et al., 2018), 

although there are also large studies that have found null, weak, or non-replicable results (Avinun 

et al., 2020; Gray et al., 2018; Hyatt et al., 2022; Masouleh et al., 2019; Nostro et al., 2017; Valk 
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et al., 2020). Of note, Avinun and colleagues analyzed the DNS dataset used in this study. If we 

are conceptualizing OCPD based on a five-factor model of personality, and personality was not 

significantly associated with brain structure in this dataset, then it may be unsurprising that OCPD 

is not associated with brain structure. However, those analyses were conducted using standard 

regression. As the authors suggested in their conclusion, it remained possible that multivariate 

machine learning approaches, which can account for variable interactions, linear and non-linear 

relationships, and both correlations between and uniqueness of variables, might identify brain 

structure correlates of personality. In the present study, post-hoc machine learning analyses for 

neuroticism and conscientiousness had model error as high as the OCPD analyses. Thus, the 

neuroimaging features did not reliably predict two key personality factors for OCPD.  

The second possible interpretation is that model error was high due to limitations of the 

available data or error in the modeling techniques. To test for potential issues with the modeling 

techniques, a post-hoc analysis trained models to predict average cortical thickness from individual 

ROIs’ thickness. The unresidualized models performed well, which decreases the likelihood that 

the results were due to error in the ML modeling process. The limitations of the available data are 

expanded upon below in the context of overall study limitations.   

4.3 Limitations 

First, I did not have access to a dataset with OCPD and neuroimaging data. It is unlikely for a 

neuroimaging sample that is large enough to conduct well-powered analyses to also have 

personality disorder assessment data. Large samples are needed given the expected small effects 

for associations between the brain and psychopathology or personality (Marek et al., 2022). To 

address this challenge, I drew from the literature on dimensional models of personality disorders. 
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This growing field of research has studied measurements of OCPD based on normative personality 

data and the Five-Factor model. This motivated me to employ machine learning techniques to 

predict OCPD scores from personality data, which is available in large neuroimaging datasets. The 

FFOCI measure was explicitly designed to capture OCPD from a dimensional, five factor model 

perspective. Perhaps unsurprisingly, the FFOCI was the most accurately predicted OCPD score 

from personality data. This approach permitted me to test associations between predicted OCPD 

scores and brain structure but did not allow for testing if findings for predicted scores were the 

same as for observed scores.  

Second, there were demographic differences between the sample used for the OCPD model 

training (SPAN) and the sample that the model was applied to (DNS). To address this, I used a 

third dataset with age and education distributions similar to DNS to assess the external validity of 

the OCPD model. Model performance was similar in the SPAN testing and FFOCI external 

validation datasets. In fact, the error was smaller in the external validation dataset (RMSE/SD = 

0.51 for residualized, compared to 0.66 in SPAN). This was important given that model training 

occurred in an older middle-aged sample (SPAN) yet the model was generated to be applied to a 

college student sample (DNS). The FFOCI validation study, which was also a college student 

sample, allowed us to test if our model would be valid on the younger DNS sample. Residualizing 

the data to control for age and gender generated the most accurate predictions. Therefore, the 

residualized version of the model was used to predict OCPD scores in the DNS dataset. 

Third, the OCPD model performance was moderate, limiting the accuracy of predicted 

OCPD scores and informativeness of correlations with other phenotypes such as brain structure. 

This could be due to the likely small sample size of individuals meeting criteria for OCPD at 

timepoint 12, the timepoint with the best performing model. The SIDP was not administered at 
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that visit, but at timepoint 10 only 12 people met criteria according to the clinician-administered 

interview. On the MAPP self-report personality disorder assessment, the number of participants 

meeting diagnostic criteria decreased from 57 at timepoint 10 (notably much higher than 12 as 

identified by the SIDP) to 49 at timepoint 12. Therefore, it is likely that the SIDP numbers would 

have also decreased. Unfortunately, the FFOCI was not developed at the time that the SPAN study 

began, so baseline FFOCI data, when the number of OCPD diagnoses was highest (n=48), is not 

available. Model performance for the other two OCPD measures available at baseline, SIDP and 

MAPP, was much worse than the FFOCI. This is possibly due to smaller score distributions of 

these measures and/or their DSM diagnostic criteria focus rather than a dimensional model. The 

trained OCPD model performed better in the external validation dataset, which had been 

oversampled for OCPD, compared to the SPAN testing dataset. However, model performance in 

the SPAN validation dataset, used to select the final OCPD model, was similar to the external 

dataset (SPAN RMSE/SD=0.52, external RMSE/SD=0.51). These external validation results 

suggest that the OCPD model generalizes and is not overfitting.   

It remains possible that the ML neuroimaging models were inaccurate because the 

predicted OCPD scores that were generated in Aim 1 and used as the training label (i.e., outcome 

variable) were imprecise. Unfortunately, this cannot be directly tested as I do not have a 

neuroimaging dataset with observed OCPD data. Like in the OCPD model, the small number of 

individuals meeting diagnostic criteria for OCPD in the Aim 1 training dataset could be causing 

the high ML neuroimaging model error. There may not be enough OCPD “signal” to properly train 

the ML algorithms. Interestingly, median clinician-rated scores of OCPD, based on SIDP total 

scores for OCPD questions, decreased between baseline and timepoint 10, while self-report MAPP 
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scores stayed the same. Given our dimensional conceptualization of OCPD, we did not believe the 

small sample size meeting strict diagnostic criteria would invalidate the study. 

4.4 Implications and Future Directions 

The present study is situated in the broader context of dimensional models of personality disorders, 

OCPD assessment, machine learning-based prediction, and brain structure correlates of psychiatric 

disorders. The results suggest that normative personality data can reasonably predict an FFM-

based personality disorder measure, although performance for traditional assessments (i.e., SPAN, 

MAPP) is weak. Future studies are needed to investigate whether this is an inherent limitation of 

traditional OCPD classification or potentially a result of the present study’s small diagnostic 

sample size. Predicted OCPD trait scores had similar expected correlations with depression and 

marital satisfaction as the observed OCPD trait scores. Additionally, OCPD traits may be 

associated with thicker right superior frontal cortex, but the current study was unable to detect 

significant brain structure associations using machine learning techniques. Future research with a 

sufficient sample size of neuroimaging and OCPD data is needed to determine whether brain 

structure is indeed associated with OCPD. Until this has been conducted, using the current study’s 

approach for other personality disorders is unlikely to generate results from which the field can 

draw reliable conclusions. A focused medium-sized OCPD sample may provide the evidence 

needed to support employing this approach in large epidemiological neuroimaging studies for the 

full array of personality disorders. 
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