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ABSTRACT OF THE THESIS

Predictive Looking and Predictive Looking Errors in Everyday Activities

by

Sophie Su

Master of Arts in Psychological and Brain Sciences

Department of Psychological and Brain Sciences

Washington University in St. Louis, 2023

Professor Jeffrey Zacks, Chair

People spontaneously segment continuous streams of experiences into distinct episodes. Prediction

errors are theorized to drive segmentation. However, existing studies exploring the relationship

between prediction error and event segmentation lack a continuous measure of prediction error

during naturalistic perception and often fail to distinguish between prediction error and prediction

uncertainty. Do moment-by-moment fluctuation of prediction errors, not prediction uncertainty

during naturalistic event perception correlate positively with segmentation probabilities? To tackle

this question, we harnessed the predictive nature of eye movements and introduced a predictive

looking model. In this model, individuals’ prior gaze patterns act as predictors for critical features

in the current frame. Testing the model using group gaze density maps from participants engaged in

passive movie viewing—with actors’ hand locations serving as an approximation for the prediction

target—we uncovered that past gaze patterns, up to 9 seconds prior, predict the current locations of

actors’ hands in the movie. Furthermore, a significant and positive correlation emerged between

predictive looking errors and prediction errors generated by a computational model. This suggests a

congruence in capturing true prediction error signals in the brain. Crucially, aligning with theories

proposing an association between increased prediction errors and event segmentation, predictive

looking errors positively correlated with event segmentation probabilities.
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Chapter 1: Introduction

How can humans effortlessly navigate the continuous, complex, and uncertain world around them?

Previous research has highlighted two key strategies: generating predictions of imminent futures

and segmenting the ongoing streams of daily experiences into discrete, meaningful events. The

question arises: are these two strategies interconnected? Event Segmentation Theory (EST[1])

posits that an increase in prediction error—defined as the discrepancy between prediction and

reality—leads to segmentation. A computational model of event comprehension that monitors

prediction error and segments when these errors increase has been shown to align with human

segmentation, forming human-like event categories [2]. To test this theory of event perception and

validate the computational model, our study quantified the extent of predictive looking and prediction

errors during naturalistic movie viewing. We further examined the relationships between predictive

looking errors, computational model-based prediction errors, and segmentation probabilities.

1.1 The Role of Prediction and Prediction Error in Cognition

Anticipate threats and opportunities before they become imminent is a pivotal strategy for survival

in an uncertain and complex world. Prediction has been identified to be crucial for numerous

psychological processes. For instance, in scene perception, where people look and attend to are

based on their predictions of where goal-relevant objects are likely to be found. [3–8]. Within the

domain of action control, it is theorized that predicted outcomes, such as anticipating the green

light while crossing the street, are filtered from pedestrians’ perception. This filtering mechanism

enables individuals to allocate cognitive resources, such as attention and control, to unexpected

events that hold greater behavioral relevance, such as unexpected cars running through a red light.

In the realm of learning, updating based on predictions of action values often leads to optimal
1



strategies.[9, 10]. These empirical findings align with the predictive brain hypothesis, which posits

that the brain is not merely a reactive mechanism responding to external stimuli, but rather a proactive

system that formulates hypotheses, anticipates the consequences of our actions, and constructs

expectations [11–13].

Prediction error plays a pivotal role in updating our internal representation of the environment,

with one well-understood form being the temporal difference error in reinforcement learning. This

type of prediction error enables us to adjust value we assign to stimuli and outcomes of our actions,

ultimately to optimize our actions. For example, as a person starts to learn to play the piano,

they may have a prediction of how each combination of notes should sound. Through practicing,

they encounter prediction errors, discrepancies between their expected sound and the actual sound

produced. Through repeated practice and feedback, the individual gradually refines their mental

model, reducing the temporal difference errors over time, leading to improved performance and

mastery of the musical piece. At the implementational level, midbrain dopaminergic neurons

exhibiting heightened activity in response to predictive cues. The intensity of this activity reflects

the magnitude, likelihood, and temporal delay of the anticipated reward [14].

1.2 Event segmentation May Reflect Predictive Processing

Prediction error is also proposed to be a crucial factor in shaping our perception of daily experiences.

According to EST; [1] individuals continually generate predictions about what will occur next during

ongoing perception. These predictions are thought to stem from internal models known as working

event models, known as working event models, which combine sensory input with knowledge of

event types (schemata). When the current working event model fails to accurately represent the

ongoing situation, resulting in an increase in prediction error, internal working event model will be

updated. Subjectively, individuals experience an event boundary between the preceding and current

event models. In controlled laboratory settings, with little training participants can identify event

boundaries by pressing a button whenever they believe one natural and meaningful unit of activity

2



has ended and another has begun while observing the activity [15]. Segmentation judgments are

reliable across and within participants [16, 17]. Furthermore, when asked to identify events of

different grains, segmentation is hierarchically organized such that shorter, fine-grained events are

nested within longer, coarse-grained events [15]. Neuroimaging studies showed that during movie

viewing, cortical patterns shift systematically and align with participants’ marked event boundaries,

suggesting that event boundaries are a normal aspect of ongoing perception [18].

1.3 Computational and Behavior Evidence for Prediction

Error Driven Segmentation

The hypothesis that an increase in prediction errors leads to the emergence of event boundaries is

supported by both behavioral studies and computational simulations. For instance, by pausing the

video and directly asking participants for their predictions, Zacks et al., [15] found that people’s

predictions of what would happen five seconds later are more prone to error around event boundaries

compared to that around the middle of events. One limitation of this method is that, by pausing the

movie intermittently, researchers inevitably disrupted people’s online perception and altered how

people approach the viewing task.

Computational modeling provides a valuable avenue for simulating ongoing human perception

and testing theories pertaining to the mechanisms underlying event perception updates. One such

model, SEM-PE, integrates a recurrent neural network for short-term dynamics with Bayesian

inference over event types for seamless event-to-event transitions. Employing learned event schemas

in conjunction with observed perceptual information, this architecture constructs a series of event

models. This computational model predicts activity dynamics base on the event model, monitors

the errors of prediction based on the working event model and updates the current working event

model when there is an increase in prediction error. Trained through a single pass of an 18-hour

corpus of naturalistic human activity, this model demonstrated its proficiency when tested on an

3



additional 3.5 hours of activities. SEM-PE successfully segments activities in a manner reminiscent

of human perception and forms event categories comparable to those identified by humans [2].

Computational models also offer unique opportunities to differentiate signals that are correlated

in natural stimuli by adequately operationalizing continuous internal processes in the brain. In the

realm of event cognition, another measure of the dynamics of prediction is prediction uncertainty.

Alternative theory of event cognition proposes that it might be the increase in prediction uncertainty,

especially toward the end of goals [19, 20] drives event segmentation. Although prediction errors

and prediction uncertainties correlate in naturalistic activities, they represent distinct signals for

model updating. Prediction error measures the discrepancy between a model’s predicted output and

the observed ground truth, serving as a metric for how accurately the model’s predictions align with

the actual data. Prediction uncertainty, on the other hand, reflects a lack of confidence or knowledge

about a prediction, indicating the model’s level of uncertainty regarding its own predictions.

To investigate the specificity of a prediction error measure, SEM-UNCERTAINTY, a compu-

tational model of event cognition identical to SE-PE but with different updating signals, can be

employed. This allows an examination of the relative appropriateness of the measure by comparing

its fitness to SEM-PE’s prediction error against SEM-UNCERTAINTY’s prediction uncertainty.

A specific measure of prediction error should align more closely with model-generated prediction

errors rather than uncertainties.

1.4 The Necessity of Examining the Updating Signals of

Proposed Mechanisms

Merely showcasing that a hypothesis-inspired computational model can replicate human-like be-

haviors is a necessary step but falls short of being sufficient to validate the underlying theory.

Consider the domain of speech recognition, where automatic speech recognition (ASR) systems

have made significant strides, becoming ubiquitous tools employed by millions globally. While both

4



human and machine speech recognition systems can be framed as Bayesian perceptual inference

processes—with speech as sensory input and the most likely word sequence as the desired output

[21, 22]—notable distinctions exist in how machines and humans perceive voice patterns.

Unlike the hierarchical structure of human speech recognition process [23], computational speech

recognition systems don’t break voice recognition process into discrete parts, such as determining

likely speech segments given the sounds heard and identifying likely words given these segments.

Instead, computational speech recognition systems integrate acoustic and higher-level information

in a single, integrated search process, making the machine agnostic to which speech segments

were heard, but only those specific words. Furthermore, human speech recognition encompasses

non-acoustic features like lip, mouth, and tongue movements, which are integral to producing speech

sounds. However, these features are typically not incorporated into the machine’s voice recognition

process. Consequently, beyond evaluating the parallels between a computational model’s final

output and human behaviors, a comprehensive understanding of intermediate outputs—the updating

signals of computational models—becomes crucial.

To claim that a prediction error updating computational model of event comprehension is

modeling how human segment and comprehend everyday activities, one of the necessary conditions

is that model’s prediction error correlates well with a measure of human’s internals prediction error

during passive movie viewing. To examine this condition, a continuous and covert measure of

human prediction error during movie viewing is necessary.

1.5 Gaze Reveals Human’s Predictive Processes

Eye tracking emerges as a valuable tool for continually and covertly measuring human prediction

error. In the realm of statistical learning, researchers assess infants’ learning through anticipatory eye

movements directed towards locations where stimuli are expected probabilistically[24]. Similarly,

in sports, athletes demonstrate predictive behavior by looking ahead to the expected position of a

ball rather than simply tracking its current location [3]. Within complex scenes, an individual’s
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focus of attention is guided by predictions about the most meaningful and task-relevant information

present [4].

Eye tracking can also measure the dynamics of human prediction during the viewing of naturalis-

tic activities [3, 4]. Eisenberg and colleagues [25] developed the Predictive Looking at Action Task

(PLAT) to investigate the time course of predictability during video watching. Predictive looking

was quantified as the duration participants fixated on the object to be touched during successive

500-ms time windows in the three seconds preceding the actual contact. The results revealed that

viewers predict and direct their gaze ahead to objects about to be contacted. Moreover, around

event boundaries, predictive looking was delayed compared to predictive looking in the middle

of an event. This suggests that near an event boundary, predicting future actions becomes more

challenging, leading to increased looking times just before contact. One limitation of the PLAT is its

limited measurements of prediction error in the time preceding an object contact, leading to sparse

sampling of prediction error. Moreover, prediction uncertainty confounds with prediction error,

as increase in prediction uncertainty could also results in delay in predictive looking around event

boundaries. Consequently, it remains unclear whether individuals engage in continuous predictive

looking throughout ongoing activities and whether moment-to-moment prediction error can be

accurately derived based on their looking pattern.

1.6 The Current Study

There were five goals for this study: 1) Develop a covert and continuous measure of predictive

looking error; 2) Quantify the temporal dynamics of predictive looking during passive movie

viewing; 3) Compare this biological measure of prediction error with prediction error generated by

computational models; 4) Replicate previously established findings regarding the consistency of

observers’ judgments of event boundaries; and 5) Test the hypothesis that an increase in prediction

error leads to event segmentation.

To address these goals, participants’ eye movements were tracked while they passively viewed
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video recordings of different solo actors engaging in everyday activities. Building upon prior

research indicating that individuals look predictively at an actor’s hand [25], predictive looking

was operationalized as gaze directed toward locations where the actor’s hands would be in the

next few seconds. This definition was formalized using a mixed-effect logistic regression model,

incorporating both current and past gaze values as predictors of the presence of the actor’s hands.

To quantify the extent of predictive looking, a model comparison approach was employed, wherein

a more complex model included gaze values from further in the past. Prediction error was quantified

as the magnitude of the deviance residual of the best-fitted predictive looking model. This biological

measure was then compared with two updating signals from two computational models of event

comprehension. To replicate previous findings concerning the consistency of individuals’ event

boundary judgments, an independent sample of participants was recruited to segment the same

movies into coarse or fine-grained events. Finally, to explore the relationship between this measure of

prediction error and event boundaries, segmentation probabilities were derived based on participants’

segmentation data and compared with predictive looking errors.
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Chapter 2: Methods

2.1 Eye Tracking

2.1.1 Participants

For this part of the study, we recruited participants from the subject pool at Washington University.

In exchange for their time, participants were offered compensation in the form of either course credit

or $10 per hour. A target sample size of 100 was decided before data collection to ensure adequate

to detect small to middle effect size reported in previous literature [26]. Based on the power analysis,

70 participants were necessary for power of .80. Because some participants might not have usable

eye-tracking data, we decided to recruit up to 100 participants. Data from 13 participants were

excluded because of experiment program failure (n=7), eye-tracking calibration failure (n=5) or

failure to remain on the headrest throughout the study (n=1).

A total of 87 participants successfully completed the study, with their ages ranging from 18 to

32 years (mean age = 19.9 years). The gender distribution of the participants included 28 males and

59 females.

2.1.2 Materials

Four movies of actors performing everyday activities were selected from the META corpus (Bezdek

et al., 2022). This stimulus set includes different actors exercising (586 s), making breakfast (586

s), grooming (646 s), and tidying up the room (679 s). The movies were filmed from a fixed, head-

height perspective, with no pan or zoom. The frame rate was 60 frames per second, and the frame’s

dimension was 1280*960. This movie set can be found in this directory (https://osf.io/3embr/).

Figure.2.1 shows representative frame from all 4 activities.
8



Breakfast Grooming

Exercise Cleaning

Figure 2.1: Representative Frames from the four movies..

2.1.3 Task and procedure

After giving informed consent to this study, participants passively watched four movies of an actor

performing everyday activities. Breaks were offered between movies. Participants were instructed

to watch the movies for comprehension while their eyes were recorded by the eye-tracker. The

eye-tracker was calibrated by the experimenter before the start of the experiment, and during the

break if needed. Gaze locations were obtained from the right eye using an infrared pupil-corneal

eye tracker camera (EyeLink 1000; SR Research Ltd., Mississauga, ON, Canada) that sampled at

1000 Hz. The camera was mounted on the SR Research Desktop Mount. A chin/forehead rest was

used to minimize head motion during the tasks. The camera was positioned 52 cm from the top

of the forehead rest. Stimuli were presented on a 19-in. (74 cm) monitor (1440X3900 resolution,

viewing distance of 58 cm from the forehead rest, viewing angle of 38.68).

Calibration of the eye tracker was conducted before beginning the study task. Participants were

instructed to look at each of five to nine dots presented serially across the participant’s central
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and peripheral visual field. Following calibration, the measurements were validated by having the

participants look at each of these nine dots again as they appeared on the screen. This validation of

calibration was considered good when there was an average error of 0.50 degrees of visual angle or

less and when the maximum error for any given dot was 1.00 degree or less.

Movie order was counterbalanced across participants. Participants were debriefed after com-

pleting the study.

2.2 Event Segmentation Norms

2.2.1 Participants

For the event segmentation part of the study, to make the distribution of segmentation probabilities

less skewed, two separated datasets were combined to increasing the number of subjects. The

first dataset included 184 participants from Amazon Mechanical Turk. Participants self-reported

their age (mean age = 35 years, SD = 11.95 years), gender (70 female, 112 male, and 2 other). The

recruitment procedure is detailed in another study. [27].

For the second dataset, participants were recruited from the Volunteer for Health participant

registry, which is maintained by the Washington University School of Medicine. Data from 47

participants were included in the analyses for this study (age range: 18–35; mean age = 23 years; 14

males,33 female). Both studies received approval from the Washington University Human Research

Protection Office and were conducted in accordance with the Declaration of Helsinki.

2.2.2 Materials

The same four movies from the passive viewing part of the study were used for this task.
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2.2.3 Procedure

After giving informed consent, participants were randomly assigned either to identify coarse event

boundaries or fine event boundaries in those four movies. In the coarse condition, participants were

instructed to push the button whenever they believe that a large meaningful unit of activity has

ended. In the fine condition, participants were instructed to push the button whenever they believe

that a small meaningful unit of activity has ended.

All participants practiced the segmentation task before segmenting the four movies. During

the practice session, participants segmented a video with a duration of 2 min 35 s in which a man

constructs a toy boat using interlocking building blocks. Participants repeated the practice until

they pressed the button within a pre-defined range: 5-8 times for fine segmentation and 2–4 times

for coarse segmentation. Participants were never informed of these ranges but were asked to repeat

the practice to identify more (or fewer) activities in the video until performance was within range.

2.3 Estimating Predictive Looking

To establish a continuous measure of predictive looking error, this study employed regression

models to formalize predictive looking. The residuals of the predictive looking model served as the

quantifiable prediction error. Predictive looking was defined as the extent to which participants’

prior gaze locations predicted the current hand location of the actor. The hands’ location was

selected as the region of interest to approximate the most crucial area to predict in each frame,

given the frequent hand movements observed across all movies. Attending to hand locations was

deemed vital for processing and comprehending the four activities in this study. Moreover, previous

research has indicated that individuals naturally focus on hand locations during naturalistic viewing,

and distinctive hand positions are associated with event boundaries.

To facilitate model convergence and address the zero-inflation issue within the dataset, the

model fitting procedure was conducted at the grid level rather than the pixel level. In essence, the

11



predictive looking model aimed to estimate the presence of the actor’s hands within a grid square by

leveraging the prior gaze positions of participants within that specific square. The creation of grids

involved employing a set of vertical and horizontal lines to partition the frame into equal sections,

with the width of each frame (1280 pixels) divided into 8 parts and the length of the frame (960

pixels) divided into 6 parts. Consequently, for each frame in every movie, this process resulted in

the generation of 48 squares of equal sizes.

The dependent variable in the predictive looking model, denoted as H in equations 1-6, signifies

the presence or absence of the actor’s hands. To determine the existence of actor’s hands for each

grid in each frame for each movie, we initially identified the hand positions using the OpenPose

algorithm, a computer vision model for pose detection [28]. Subsequently, the hand locations

were convolved with a two-dimensional Gaussian kernel (sd=50 pixels, determined through visual

inspection of the hands’ density map to ensure the heatmap accurately represented hand locations).

Following convolution, the sum of hand location probabilities for pixels within each grid was

computed. An ’elbow point’ in the distribution of these probabilities across all grids for each frame,

representing a significant change in the rate of loss, was then identified. This elbow point served as

the cut-off threshold. Grids surpassing this threshold were assigned a binary code of 1, indicating

the presence of hands, while grids falling below the threshold were coded as zero.

The independent variables in the predictive looking model are represented by participants’ gaze

density for each grid in each frame, denoted as F in equation 1-6. To calculate gaze density for

each grid in every frame, we initially convolved each participant’s gaze location for a specific

frame using a two-dimensional Gaussian kernel. The standard deviation of this Gaussian kernel

was determined by the viewing angle of the participants (sd = 37 pixels). This convolution process

generated the gaze density value for each pixel corresponding to each participant. Subsequently,

the density values of all participants for all pixels within a given grid were aggregated, resulting in

the final gaze density measurement for each grid.

To ensure that the model accurately represents predictive looking, grids containing the actor’s

12



face were deliberately excluded from our analysis. This exclusion is grounded in the observation

that, in movies, the position of the actor’s face tends to exhibit relatively static behavior compared

to hand movements, suggesting that gazing towards the face may not necessarily be indicative of

predictive behavior. The same OpenPose algorithm [28] determined the location of the face. A

two-dimensional gaussian kernel was applied onto the fact location. Following this, we identified

an ’elbow point’ within the distribution of these facial location probabilities across all grids. This

’elbow point’ represents a significant change in the rate of loss, hence serving as our cut-off threshold.

Any grids with values exceeding this threshold were subsequently removed from the analysis.

The same OpenPose algorithm [28] used for determining hand locations was employed to

identify the location of the face. A two-dimensional Gaussian kernel was applied to the facial

location, and subsequently, we pinpointed an ’elbow point’ within the distribution of these facial

location probabilities across all grids. This ’elbow point’ signifies a substantial change in the rate of

loss, thereby serving as our cut-off threshold. Any grids surpassing this threshold were consequently

excluded from the analysis.

Equation 2.1 describes the form the predictive looking model:

೫ᅛᅙ Ҳ ྰᅎႱ೩ᅛႼᅎᅙ Ҭ ྰᅎႼႲᆠႱ೩ᅛႼႾᅎႻႲႿᅙ ҬНҬ ྰႱႱ೩ᅛᅙ Ҭ ࿉ (2.1)

Where Htr is the hand location for region r (pixel) at the time point t(s); F represents the density

of gaze locations. i indicates the furthest point in time where fixation probability predicts current

hand location.

To enhance the model’s robustness against potential random noise or perturbations and to facili-

tate easier interpretation, we implemented a series of steps to smooth out the temporal fluctuations

in gaze and hand values. First, a Gaussian kernel was applied to smooth the probabilities associated

with gaze and hand movements across the temporal span of each movie. The size of the smoothing

kernel (120 frames) was determined through visual inspection. Subsequently, we sampled these

smoothed values at intervals of every 60 frames. This sampling rate was chosen to align with the
13



frames per second (fps) of the movies and adhered to the standard temporal resolution commonly

employed in dynamic cognition studies, which utilizes one-second intervals.

Given the binary nature of the dependent variable, we opted to employ multivariate mixed-effects

logistic models in lme4 package (Version 1.1.27.1; Bates et al., 2015) in R software (R Core Team,

2014). The independent variables were the recent gaze densities for each grid, with the presence

of the hand within that specific grid serving as the dependent variable. To account for potential

variance stemming from specific movies and the diverse locations of the grid within frames, both

grid index and movie were integrated as random intercepts within the models. To evaluate the

degree of predictive looking, a stepwise model comparison was employed. A more sophisticated

model incorporated the gaze density of the specific grid one second further into the past, while

controlling for gaze densities closer to the current hand locations. Gaze densities from the past were

sampled at a rate of one second. The stepwise model comparison approach can be conceptualized

as follows:

೫ᅛᅙ Ҳ ྰႱႱ೩ᅛᅙ Ҭ ࿉ (Equation 2)

೫ᅛᅙ Ҳ ྰႲႱ೩ᅛႼႲᅙ Ҭ ྰႱႱ೩ᅛᅙ Ҭ ࿉ (Equation 3)

೫ᅛᅙ Ҳ ྰႳႱ೩ᅛႼႳᅙ Ҭ ྰႲႱ೩ᅛႼႲᅙ Ҭ ྰႱႱ೩ᅛᅙ Ҭ ࿉ (Equation 4)

೫ᅛᅙ Ҳ ྰႴႱ೩ᅛႼႴᅙ Ҭ ྰႳႱ೩ᅛႼႳᅙ Ҭ ྰႲႱ೩ᅛႼႲᅙ Ҭ ྰႱႱ೩ᅛᅙ Ҭ ࿉ (Equation 5)

߁
೫ᅛᅙ Ҳ ྰᅎႱ೩ᅛႼᅎᅙ Ҭ ྰᅎႼႲᆠႱ೩ᅛႼႾᅎႻႲႿᅙ ҬНҬ ྰႴႱ೩ᅛႼႴᅙ Ҭ ྰႳႱ೩ᅛႼႳᅙ Ҭ ྰႲႱ೩ᅛႼႲᅙ Ҭ ྰႱႱ೩ᅛᅙ Ҭ ࿉

(Equation 6)

Where Htr is the hand location for region r (in pixel) at the time point t (in seconds); F represents

the density of gaze locations. i indicates the furthest point in time where fixation probability predicts

the current hand location.

The optimal model was determined based on the relative variation in both Bayesian Information

Criterion (BIC) and Akaike Information Criterion (AIC) values among these models. Prediction
14



errors were quantified as the magnitude of the deviance residuals for each grid in each frame based

on the optimal predictive looking model. Deviance residuals in logistic regression are a measure

of the difference between observed and expected outcomes under the model. The mathematical

formula for the magnitude of the deviance residual is:

Prediction Error Ҳ ҭѳٺ logШProb_eventЩ (2.2)

2.4 Predictive Signals of Computational Model of Event

Comprehension

Two continuous computationally derived predictive signals, namely prediction error and prediction

uncertainty, were extracted from SEM-PE and SEM-UNCERTAINTY, respectively. For detailed

infrastructure specifications of SEM-PE and SEM-UNCERTAINTY, refer to [2]. The fundamental

architecture of SEM-PE and SEM-UNCERTAINTY is identical. In both models, event schemas,

representing knowledge of event types, are represented as RNN’s weights matrices, and each

event model (an internal representation of the current situation) is represented as RNN’s matrices

and hidden unit activations. In both models, an approximate Bayesian inference process assigns

incoming scene vectors to different event schemas. On each time step, a currently active RNN is

presented with the current scene vector and predicts the subsequent scene vector. An event boundary

is operationalized as the transition from one RNN to another.

One critical distinction between SEM-PE and SEM-UNCERTAINTY lies in the gating signals

for RNN (event schema) switching. In SEM-PE, prediction error functions as gating signal to

determine when to evaluate alternative schemas. Prediction error was operationalized as Euclidean

distance between an observed scene vector and the RNN’s prediction. If prediction error sur-

passes a predefined threshold, the event schema inference process to determine alterative event

model; otherwise, the current event schema is assigned to the current scene. Similarly, in the

15



SEM-UNCERTAINTY model, the switching process is initiated when prediction uncertainty ex-

ceeds threshold, the switching process is triggered. Prediction uncertainty was operationalized as

variability in RNN predictions across perturbations of the RNN weights. The variance of these

predicted scene vectors approximates prediction uncertainty induced by uncertainty about RNN’s

weights.
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Chapter 3: Results

Data were analyzed to address five main questions 1) Can a continuous measure of prediction

error be derived from gaze locations? To address this, we constructed statistical models that use

past gaze locations to predict the current hand location of the actor. 2) What is the extent of

participants’ predictive looking? A step-wise model comparison approach was implemented to

identify the most optimal predictive looking model to determine the extent of participants’ predictive

looking. 3) What is the relationship between predictive looking error and computational models of

prediction error? To explore this question, we examined the correlation between the magnitude of

the residual in the most optimal predictive looking model and the prediction error derived from the

computational model (SEM-PE). Additionally, we also examined the relationship between the same

magnitude of the residual with prediction uncertainty generated by another computational model

(SEM-UNCERTAINTY). 4) Do people exhibit high agreement on event boundaries? To answer

this, we quantified people’s segmentation behavior throughout movie watching. And finally, 5) Is

predictive looking error associated with segmentation probability? To address this question, we

analyzed the relationship between the magnitude of residual in the most optimal predictive looking

error with segmentation probability.

3.1 Participants Exhibited Predictive Looking During Passive

Movie Viewing

To quantify predictive looking, a forward selection stepwise model comparison approach was

implemented. The analysis began with the simplest model (Equation 2), where the current gaze

density predicts the current hand existence in a grid. A model that is one level more sophisticated
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than the simplest model is using gaze density of the grid one second ago in addition to the current

gaze density of that grid to predict the current hand existence of the same grid. Progressing to more

sophisticated models, each level considered an additional second of gaze density from the past,

culminating in a model incorporating gaze density up to 9 seconds ago to predict the current hand

existence in the same grid (equation 6). All models included random intercepts of grid locations

and movie types. To assess model fit, both AIC and BIC index were calculated for each model.

These indexes revealed that a model that includes gaze density of the grid up to 9 seconds in the

past is the best model to predict the current hand location. The comparative AIC and BIC values

across models are shown in Figure 3. AIC values showed a substantial decrease in AIC values

until the model including gaze density up to 9 seconds. BIC values decreased until the model with

gaze density from 5 seconds in the past, reaching stability until the 9-second model, after which

they increased. This suggests that, across four everyday activities, participants exhibited predictive

looking behavior up to 9 seconds.

3.2 Predictive Looking Error Correlates with Computational

Model-based Prediction Error

Now that we have identified the best fitted predictive looking model, we can establish a continuous

measure of prediction error. We operationalized prediction error as the magnitude of the deviance

residuals as it represents the discrepancies between prediction and the reality. We will refer to this

kind of prediction error as “predictive looking error” in the following paragraph, as it was derived

from participants’ gaze patterns.

To explore the relationship between predictive looking errors and prediction error generated by

the computational mode SEM-PE, we conducted a mixed-effect linear regression. In this regression,

predictive looking error served as the dependent variable, while SEM-PE’s prediction error acted as

the independent variable. This model included random intercepts for the type of movies and the
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Figure 3.1: AIC and BIC values for predictive looking models include gaze densities up to the
furthest time point in the past

grid number. The results revealed a significant and positive correlation between prediction error

and predictive looking errors (prediction error model: β= 0.035, t-value= 13.62).

In addition, we explored the relationship between predictive looking error and prediction

uncertainty to assess the specificity of this measure of prediction error. A similar mixed-effects

linear regression was constructed, with predictive looking error as the dependent variable and the

prediction uncertainty of SEM-UNCERTAINTY as the independent variable, controlling for the

random effects of movie types and grid numbers. The results indicated a significant and positive

correlation between prediction uncertainty and predictive looking errors (prediction error model:

β= 0.028, t-value: 10.53). Figure 4 visually represents the relationship between eye gaze prediction
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Figure 3.2: Linear regression lines are fitted between model estimated scaled predictive looking
error and scaled updating signals (prediction error or prediction uncertainty) for all four movies.
Color indicates the type of updating signal.

error values, prediction errors by SEM-PE, and prediction uncertainty by SEM-UNCERTAINTY

for each movie. By comparing the two mixed-effects linear regressions (SEM-PE’s prediction

error predicting predictive looking error versus SEM-UNCERTAINTY’s prediction uncertainty

predicting predictive looking error), the AIC and BIC values suggest that the prediction error model

is a better fit for predictive looking errors compared to uncertainty (prediction error model AIC:

267363.9, BIC: 267438.4; prediction uncertainty model AIC: 267438.4, BIC: 267486.2). According

to Akaike weights, the model incorporating SEM-PE’s prediction error is significantly superior to

the one involving SEM-UNCERTAINTY’s prediction uncertainty (Prediction error model’s Akaike

weight is 1, whereas the prediction uncertainty model’s weight is 0).
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Figure 3.3: Segmentation Probabilities throughout four different movies for both fine and coarse
conditions.

3.3 Predictive Looking Error is Associated with Segmentation

Probability

To characterize participants’ segmentation behavior, segmentation probabilities were calculated

throughout each movie for both the fine and coarse conditions (Figure 2). To derive these prob-

abilities, a Gaussian kernel was initially applied to all the time points when participants pressed

the spacebar, generating segmentation probabilities for both conditions. As depicted in Figure 2,

despite the intentionally vague instructions, certain time points within the movies were consistently

identified by many participants as event boundaries, while at other times, no spacebar presses

occurred. This observed pattern aligned with segmentation behavior reported in prior research [15,

26]

A mixed effects multivariate regression model was employed to assess the relationship between

predictive looking error and segmentation probability where the grains of segmentation are entered

as covariate , and the type of movies as well as grid numbers were entered as the random effects.

The results was consistent with what the theory predicted and revealed a significant and positive

prediction of segmentation probabilities by predictive looking errors (β= 0.001, t-value= 6.63). As

expected, segmentation probabilities were significantly higher in the fine segmentation condition.

Additionally, there was no significant interaction between conditions and predictive looking errors.
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Figure 3.4: Linear regression lines are fitted between estimated looking error and segmentation
probability for all four movies where color indicates the segmentation condition.

Figure 5 illustrates the relationship between predictive looking error and segmentation probability

for each individual movie.
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Chapter 4: Discussion

The present study uncovered five critical phenomena related to event perception: firstly, people’s

gaze position can unveil prediction error. Secondly, individuals exhibit predictive looking up

to 9 seconds into the future while passively observing everyday activities. Thirdly, there was a

significant and positive correlation between predictive looking errors and computationally generated

prediction errors, indicating that both measures encapsulate the dynamics of prediction error in the

brain. Fourthly, untrained participants demonstrated high agreement of event boundaries. Finally,

predictive looking errors demonstrated an increase around event boundaries, providing support for

the Event Segmentation Theory.

4.1 People Looked Predictively up to 9 Seconds During the

Unfolding of Everyday Activities

Model selection revealed that eye gaze signals from as far back as nine seconds significantly

improved the prediction of hand position. This indicates that viewers’ brains engage in predictive

processes extending up to nine seconds into the future during passive observation of daily activities.

For instance, in the breakfast movie, participants started directing their gaze towards the toaster

once the actor picked up the plates from the counter, anticipating the subsequent movement of the

actor’s hand in the upcoming seconds.

Prediction manifests in various forms of eye movements. For example, anticipatory pursuit can

begin as early as 200 milliseconds before the onset of object motion when the motion direction and

onset are predictable [29, 30]. Saccades, too, synchronize with target steps rather than exhibit a time

lag if the target is predictable [31]. Beyond tracking single object or target in highly, individuals
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demonstrate the ability to anticipate future events. In sports, professional cricket players fixate

on the ball as it leaves the bowler’s hand and then rapidly make a saccade to where the ball is

expected to bounce, awaiting its image to return to the fovea [32]. In daily activities outside of

sports, Eisenberg et al. [25] showed participants increased their gaze time on a target object as

the actor approached, suggesting an anticipation of the actor making contact with the object in the

near future. Building on previous research, the current data-driven approach unveils that predictive

looking extends beyond critical objects or specific time intervals; rather, it is a continuous and

integral aspect of natural perception.

4.2 Predictive Looking Errors Increase Around Event

Boundaries

Previous studies have shown that event boundaries influence various characteristics of eye move-

ments. Eisenberg et al. [25] documented that predictive looking towards critical objects near event

boundaries tends to occur later and less frequently compared to looks directed towards objects within

events. Clearly, event boundaries affect the timing and frequency of predictive looking. Moreover,

viewers initiate an exploratory processing phase around event boundaries, before transitioning

to focal viewing as the event progresses. This boundary-evoked ambient phase of processing is

interpreted as adaptive and due to the unpredictability of activity around event boundaries[33].

Limitations of previous research was that predictively looking error was measured sparsely [25]

or indirectly [33]. To overcome these limitations, our study introduced a direct and continuous

method for estimating predictive looking errors during movie viewing. This novel measure was

validated by showcasing superior model fit in a statistical model that integrated computational

model-generated prediction error compared to prediction uncertainty. This outcome indicates that

our measure of predictive looking errors effectively captures the true prediction errors unfolding in

the brain.
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Having derived and validated this measure of prediction error, we then showed that controlling

for the fixed effect segmentation condition and random effect of movie types, there was a significant

and positive relationship between predictive looking errors and segmentation probabilities. This

finding provides strong evidence for theories of event cognition that suggest that prediction error

drives event segmentation.

4.3 Implications for Theories of Event Perception

Currently, theories of event segmentation focus on three types of mechanisms for event segmentation:

detecting prediction errors [1], detecting feature changes [34, 35] or detecting statistical structure

[36, 37] Our analysis results indicate a positive correlation between an increase in prediction error

and segmentation probabilities. We delve into the implications of this finding for each proposed

mechanism below.

According to EST[1], observers continuously make predictions based on a working event model,

monitoring discrepancies between the model’s predictions and reality. When prediction errors

increase, the model resets and updates to reflect the new situation, resulting in the perception of

event boundaries between the old and new event models. Consistent with this theory, the current

study demonstrates that individuals engage in predictive looking, and the errors in predictive looking

are significantly and positively correlated with segmentation probabilities.

Other accounts of event segmentation emphasize learning the sequential structure to chunk

continuous experience into units, such as predictable-unpredictability moments [38] and community

structure [37]. For accounts that focus on predictable unpredictability e .g, [36], it would predict a

time lag between event boundaries and the peak of prediction error, as an observer would anticipate

the increase in prediction error in the imminent future and then segment before the peak of prediction

error. The current study design is inadequate to test this alternative account because the lack of

effect could be due to the response time required to execute the button press movement. For theories

that focus on the community structure as a mechanism for segmentation, they would hypothesize
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that people’s predictive looking to stimuli is uncorrelated with segmentation probabilities if the

transitional predictability between the stimuli’s location is identical, making the prediction error

consistent. However, in naturalistic videos, community structures are often confounded with

fluctuation of prediction errors. Therefore, future experiments are needed to test this hypothesis.

Finally, this study’s findings offer limited insights for accounts that propose event boundaries

are determined through retroactive inferences [34, 35, 39] Baker and Levin [34] suggest the spatial

configuration of a recently encountered scene is maintained in memory and compared to current per-

ceptual input. Changes in spatial configurations lead to segmentation. Papenmeier et al [39] showed

that participants segment fewer times when casual continuation information can be retroactively

inferred. As this study focused on the predictive part of human perception and provided positive

evidence for prediction error drives segmentation, future study is needed to explore whether subset

of event boundaries could be due to retroactive change detection.

In summary, our study provided robust evidence that increase in prediction errors drive event

segmentation, while future investigations are required to unravel whether a subset of event boundaries

could due to detection of statistical structure or feature codes retrospectively.

This study has certain limitations that underscore the necessity for further investigation in this

domain. First, the reliance on the location of the actor’s hands as a proxy for the most important

features or the target of prediction may not be universally applicable. This approach may not

be applicable in scenarios where the actor’s hands are not present or where their location is not

important to the viewer. This limitation is evident in the exercise movie used in this study, where

the hands’ location is not the most informative feature throughout these activities, resulting in the

observed absence of a relationship between prediction errors and segmentation probabilities.

One potential remedy to modeling saliency or the target of prediction is to leverage computational

models to derive saliency maps for each frame and treat them as the target of prediction. However, a

challenge lies in selecting an appropriate computational model for movie frames. Viewers’ attention

differs between static pictures and movies, as evidenced by previous studies showing that object
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semantics play a critical role in guiding attention in static pictures [40]. On the other hand, when

watching movies, people tend to focus on features that are dynamic, such as actors’ hands. Therefore,

using computational saliency models trained on static pictures may not adequately represent the

target of prediction during movie viewing. On the other hand, it is plausible that computational

saliency models specifically trained on movies may inherently capture predictive looking within the

derived saliency maps.
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