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ABSTRACT 

Opportunistic Exploration: Humans Consider Not Just Whether, but Also When, to Sample 

Unfamiliar Options 

by 

Jack Dolgin 

Master of Arts in Psychological & Brain Sciences 

Washington University in St. Louis, 2023 

Professor Wouter Kool, Chair  

 

Big or small, many decisions incorporate the tradeoff between exploration and exploitation—

whether to take advantage of what we know to be good, or to take a chance on something new. 

Recent research suggests we make this choice via a combination of stochasticity and 

directedness, and that the directedness involves prioritizing lesser seen options. Through a series 

of multi-armed bandit experiments, we extend this conceptualization of directed exploration to 

incorporate opportunistic choice in dynamic decision contexts. Participants chose between two 

bandits and, unlike in prior work, did not explore undersampled bandits more when more future 

trials remained, even though there was increased strategic value in learning about those choice 

options. Crucially, however, on each trial they chose one bandit by multiplying two randomly 

selected numbers, and the other bandit by adding the two numbers. We found that people seized 

the context to opportunistically explore, such that they were more likely to pass on the 

multiplication bandit for a hard problem when more subsequent trials remained. The results echo 

recent machine learning work on “opportunism” but in humans and suggest directed exploration 

reflects not just whether, but also when to explore.
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Chapter 1: Introduction 
Every day we perpetually size up and decide between options, and for many of those choices we 

have more familiarity with some options than others. In the case of a sports coach, she may have 

to decide which of her players, varying in experience, to put on the field. She could stick with 

those who are battle-tested and whose output is predictable; alternatively, she could take a 

chance on a young prospect who, if given the chance, might in fact prove themselves to already 

be the best. This kind of choice, pitting the unfamiliar vs. the predictable, is a variant of a long-

researched problem known as the explore-exploit dilemma. Findings have consistently pointed to 

humans’ aptitude for adaptively negotiating these scenarios, thanks both to domain-general and 

context-specific strategies. Across contexts, people decide how much to explore using two 

strategies—directed and random exploration—that mirror strategies computer scientists use to 

model optimal behavior in similar paradigms (e.g., Gershman, 2018; Wilson, Bonawitz, Costa, & 

Ebitz, 2021). In specific circumstances, we also may tack on additional bespoke strategies. For 

example, when exploring certain options makes more options available downstream, we 

prioritize these activating or “empowering” options (Brändle, Stocks, Tenenbaum, Gershman, & 

Schulz, 2023). 

Nevertheless, the strategies that exploration research has identified are only a fraction of the 

strategies people have been shown to use across all kinds of decision-making tasks. One of the 

key omissions from the exploration research has been the strategy of when, rather than just 

whether, to explore. Previous studies frame the explore-exploit choice as static, as if options are 

selected one at a time. However, the sports coach from before, for example, may not be 

contemplating only whether to explore (inserting the young prospect into the game). Her choice 
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may also be about inserting the player when the game is likeliest to be out of hand (and the risks 

to exploring are low). Even if exploring is tempting at the beginning of the game, the coach can 

get much of the same benefit (learning how talented the player is) by waiting until the end to 

insert the prospect. In that spirit, this paper investigates whether, and if so how, people sequence 

when to explore. Specifically, we ask whether people leverage the learnt, time-varying cost 

structure of the environment to opportunistically put off or pounce on chances to sample 

unfamiliar options. 

Of course, it is long known that people can and frequently do plan the order of their actions and 

decisions. Lashley (1951) catapulted the idea that there is temporal organization behind actions, 

and, taking the mantle, Miller, Galanter, and Pribram (1960) characterized much behavior as 

planned. They contended that in planned behavior, people serially execute pre-decided steps to 

service a hierarchy of sub-goals and goals. Researchers like Hayes-Roth and Hayes-Roth (1978) 

suggested one principle that guides how people order these steps. They pointed out that, in the 

everyday world, the quality of choices often fluctuates across moments, and that people often 

match when they select an option based on its idiosyncratic dips and crests, if they were 

predictable (alternatively, if not predictable, people would adjust on the fly, not necessarily 

committing to predefined steps). They referred to this idea of “timing” as “opportunistic 

planning.” 

Yet to date, only inconclusive evidence has linked planning—opportunistic or otherwise—to 

exploration. One indirect source of evidence stems from work by Hills and Hertwig (2010). 

Their participants sampled from two payoff distributions, and the results showed they 

consistently did so in one of two ways. Some participants stuck to sampling one distribution for 

half the time, then switched over to the other distribution for the second half. Another set of 
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participants continually alternated between both distributions. These explorations of the 

distributions could signal planning, because there was a relationship between consecutive 

samples, potentially meaning that participants thought out in advance how they would order their 

behavior. On the other hand, participants may very well have adopted these patterns as mere 

heuristics, myopically repeating or zig-zagging without forethought. This kind of interpretation 

question also arises in the work of optimal stopping problems. In these problems, similar to the 

casino card game Black Jack, participants keep sampling (exploration) until they decide to walk 

away with their last reward. Participants could perform complex calculations, considering how 

many trials remain, evaluating the expected reward on an average trial, factoring in the likely 

variability, and settling on a threshold for when to stop sampling. Alternatively, they might not 

plan out what threshold they will stop at, instead making their call somewhat spontaneously. 

Thus, it remains unresolved whether people actively plan out how they will explore. 

Work at the intersection of exploration and the form of planning central to this paper—

opportunism—is less settled still. One study, deploying six bandits, informed participants that a 

bandit would disappear if they did not regularly sample it; the authors found that this threat 

caused participants to select unappealing bandits more often (Navarro, Tran, and Baz, 2018). 

This increase in sampling could reflect opportunistic exploration, since a bandit is explored 

specifically because it is a particularly opportune time to do so (it is available now, but will not 

otherwise be in the future); however, this behavior might have little to do with optimizing when 

to explore and may more reflect loss aversion (Kahneman & Tversky, 1979). Another study 

(Schulz, Klenske, Bramley, and Speekenbrink, 2017) controlled for any preservation tendencies, 

but the authors did not find compelling evidence of opportunistic exploration. In this virtual 

boat-steering task, anticipating high downstream costs to explore did not encourage more 
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exploration at the outset. It therefore remains unclear whether opportunism might characterize 

exploration. 

To test for opportunistic exploration, we created a bandit task where the value of a moment for 

exploration, defined in terms of mental effort, was sometimes particularly cheap and at other 

times particularly costly. Specifically, on each trial participants chose one bandit by multiplying 

two randomly selected numbers, or the other bandit by adding the numbers. Participants 

sometimes faced difficult multiplication problems (e.g., 19 and 13), or in more opportune 

moments sampling the multiplication bandit required completing only a simple calculation (1 

and 13). Our hypothesis was that while a more difficult math problem might make one bandit 

particularly more aversive than the other, this aversiveness should be amplified when there are 

more future opportunities to explore that same side, especially under the expectation that the cost 

of exploring that same side will likely be lower (i.e., easier math problems) on future trials. 

Likewise, an easy math problem will loom especially large, we expected, when one might be in 

the thick of a longer series of trials, because if one hopes to sample that side anyways, they may 

pounce on the opportunity before facing a more difficult math problem. In short, when there are 

more future opportunities to explore, participants should become more sensitive to the relative 

cost between bandits. 

In total, we ran a baseline arithmetic task and three novel two-choice bandit tasks. Besides being 

realistically complex, without obvious demand effects, our bandit task also examined the 

presence of two of the most common types of uncertainty-driven strategies. In directed 

exploration, options that are less well known are most likely to be chosen, all else equal. In 

random exploration, choices are made randomly, which indirectly results in less explored options 

being sampled. In our task, bandits differed not only in associated math difficulty, but also 
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expected rewards and number of previous samples (informativeness). Thus, we measured 

opportunism, random exploration, and directed exploration as three mutually compatible 

strategies. 
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Chapter 2: Baseline Experiment 
The baseline task indexed the difficulty of addition and multiplication problems. These math 

problems subsequently appeared during bandit task trials, thereby indexing their opportunism. 

2.1 Materials and Methods 

2.1.1 Participants 

We recruited all participants from the Washington University pool of undergraduate psychology 

students. The tasks were approved by the Washington University Institutional Review Board, 

built using jsPsych (de Leeuw, 2015), and completed online, remotely, and for class credit. We 

recruited 129 participants for the arithmetic task and analyzed data from 115 (57 female, 56 

male, 2 other) after removing participants for correctly answering fewer than 80% of trials. 

2.1.2 Experimental Design 

The entire task was answering 74-75 addition problems and 74-75 multiplication problems. Each 

problem featured two numbers, between 1 and 24. To generate the problems, we constructed 16 

sets of addition and multiplication number pairs, with each pair appearing in one of the 16 sets as 

addends and again in another of the 16 sets as multiplicands. Each set consisted of 74-75 

multiplicand and 74-75 addend pairs that were otherwise determined pseudorandomly. The pairs 

together represented all combinations of numbers between 1 and 24 except the couple 2 and 2. 

We randomly assigned a set to each participant so that the participant’s task was answering the 

148-150 problems in that set. Within each participant we randomized the order the pairs of 

numbers appeared. On a given trial, participants had unlimited time to answer, and they 

responded by typing their answer on their keyboard; problems lasting longer than 75 seconds 

were not further analyzed. After each response, they rated the difficulty of the problem on a scale 

from 0-100. We asked participants ahead of time to do all the math in their head, meaning not 
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using the Internet or pen and paper, for example, as assistance. We also asked participants after 

the experiment if they followed the instructions about doing the math in their head, and excluded 

participants who did not. 

2.2 Results 
Measures of difficulty all significantly correlated with one another. At the group level, self-rated 

difficulty correlated with response time r(596) = 0.96, p < .001 and with accuracy r(596) = -0.89, 

p < .001. Because of the particularly tight link between self-rated difficulty and response time, 

we focus on these two measures in the rest of the paper. As seen in Figure 2.1, each participant 

found multiplication problems more difficult than addition problems. However, Figure 2.2 

reveals that this difference varied widely depending on the pair of numbers. For the median pair, 

multiplying the two numbers took 4.53 seconds longer than adding those same two numbers; 

however, that difference increased to 27.0 seconds in the case of one pair, 18 and 18, whereas on 

the other end of the spectrum, participants on average multiplied the pair 10 and 12 0.84 seconds 

faster than adding the two numbers. Therefore, the baseline task successfully produced a 

continuous and dispersed index of difficulty serviceable for the bandit experiments.
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Figure 2.1 Individual difference in response time for correct answers to addition and multiplication problems. 
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Figure 2.2 Difference in difficulty between multiplication and addition problems by number pairs. 
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Chapter 3: Bandit Experiments 
We ran three bandit experiments in total. The first and third experiments were identical, and the 

second version was nearly the same. Key predictions for the second and third experiments were 

pre-registered, as shown in Tables 3.1-3.4, logged at osf.io/kb4xa/registrations, and further 

discussed in the Results section. 

3.1 Materials and Methods 

3.1.1 Participants 

3.1.1.1 Bandit Experiment 1 

We recruited 129 undergraduate students for the first bandit task and analyzed data from 81 (46 

female, 33 male, 2 other). We removed 8 participants with accuracies below 80% on math 

problems, 30 more who, despite instructions, reported that they did not complete all math 

problems entirely in their head, and another 10 who chose the same bandit more than 85% of the 

time. 

3.1.1.2 Bandit Experiment 2 

We recruited 241 individuals for the first preregistered bandit task and analyzed data from 150 

(106 female, 41 male, 3 other). In line with our preregistration, we pruned 16 with accuracies 

below 80% on math problems, 66 more who, despite instructions, reported not completing all 

math problems entirely in their head, and another 9 who chose the same bandit more than 85% of 

the time. 

3.1.1.3 Bandit Experiment 3 

We collected data on a new set of 367 participants for the replication bandit task and analyzed 

the data of 200 (106 female, 88 male, 6 other). In line with our preregistration, we first excluded 

any participants who did not meet the exclusion criteria in Experiments 1 and 2. We pruned 34 

https://osf.io/kb4xa/registrations
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with accuracies below 80% on math problems, 84 more who, despite instructions, did not 

complete all math problems entirely in their head, and another 23 who chose the same bandit 

more than 85% of the time. In addition, also in line with our preregistration, we excluded 0 

participants who we suspected may have used a calculator, in spite of what they listed in the 

post-task questionnaire. These participants’ data followed a similar pattern in choice time and 

math problem difficulty compared to those who listed post-task that they did use calculator help. 

Specifically, they chose a multiplication bandit at least 15 times when multiplying the two 

numbers was, on average in the pilot task, more than 12 seconds slower than adding them. Also, 

among those 15 or more choices, their average choice time was quicker than 10 seconds, 

suggesting they did not invest requisite effort into these difficult multiplication problems. 

3.1.2 Experimental Design 

We modeled the bandit experiments off Wilson et al.’s (2014) Horizon Task. The experiments 

were broken into 80 games, and each game was broken into a number of trials. At the start of a 

game, two vertical rectangles appeared, each sliced into the same number of pieces as the 

number of trials in that game (see Figure 3.1). We told participants that each vertical rectangle 

represented one bandit, and bandits were set up so they dispensed some average amount of 

rewards over the game that was variable from trial to trial. The rewards were always valued 

between 1 and 100 points. 
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Figure 3.1 Example games from the experiment; short horizon on the left long horizon on right. 

We explicitly told participants that the bandits during one game would have zero relation with 

the rewards underlying subsequent bandits on either side. We also did not provide them any 

clues, other than the opportunity to sample from trial to trial, about which side was more likely to 

yield a greater reward. Under the hood, we randomly assigned one of the two bandits a 

generative average of either 60 or 40, and we randomly assigned the other bandit’s generative 

mean as 20, 8, or 4 points different (these differences were 4-20 points lower if the first bandit 

was 60, and 4-20 points greater if the first bandit was 40). We also set the standard deviation of a 

bandit from its mean at 8 points. 

The first four trials in each game were always forced choices. Specifically, participants were told 

whether to press the left arrow key, corresponding to the left rectangle, or the right arrow key, 

corresponding to the right one (the task ignored presses of the wrong key). In 50% of games, two 

choices were forced to each of the two rectangles, in a random order; in the other 50% of games 



13 

 

one side was forced once and the other side three times (50% of these games involved three 

forced choices to the right side, 50% involved three forced choices to the left). 

After the forced choices, participants were free to choose between bandits (“free choice” trials). 

Participants faced either 1 free choice trial (known as “short horizon” games) or 4-5 free choice 

trials (“long horizon” games). The singular difference between the first and third experiments 

vs. the second is that each long horizon was 4 trials for the first and third experiments but 5 trials 

for the second experiment. Each participant completed 40 short horizon games and 40 long 

horizon games, shuffled randomly. Note that at the onset of a game, participants could 

immediately see how many trials the game would last. 

The novel and critical wrinkle in our design was that for the free choices (trials 5 and beyond), 

selecting a bandit entailed solving an arithmetic problem in lieu of pressing the corresponding 

arrow key. For each participant, the bandit on the left side of the screen in every game was 

associated with either addition or multiplication, and the bandit on the right side of the screen 

with the other of the two types of arithmetic (side and arithmetic type were randomized between 

participants). Specifically, we randomly presented one of 299 pairs of numbers from the 

arithmetic-only experiment on each trial 5 or beyond. The two numbers were always between 1 

and 24, and participants decided whether to choose the bandit that required them to add these 

two numbers or to multiply them. For example, imagine a trial on which the numbers are 4 and 

13. If the participant chose the multiplication bandit, then the participant needed to answer “17” 

(= 4 + 13), but if they chose the addition bandit, then they needed to answer “52” (= 4 x 13). If 

participants provided an answer that did not solve either problem, the trial ended and no points 

were provided. Moreover, we encouraged them to amass the most total points over the 
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experiment, and further, we informed them that ranking among the top seven participants in 

points earned would amount to a $15 Amazon gift card on top of participation class credit. 

3.2 Analysis 
We conducted our analyses in R (R Core Team, 2021), using the packages tidyverse (Wickham 

et al., 2019), arrow (Richardson et al., 2021), cowplot (Wilke, 2020), patchwork (Lin Pedersen, 

2020), and gghalves (Tiedemann, 2020). The code for the online task and the analyses are 

available at https://github.com/jackdolgin/opportunistic_exploration. The results can also be 

explored interactively at https://jackdolgin.shinyapps.io/opportunistic_exploration. The only 

trial-level pruning occurred if a trial or any trial preceding it in the same game involved an 

incorrect math response (5.3% of trials were incorrect) or if the response time while answering 

was greater than three minutes. 

Our statistical tests centered around a model used by studies with a similar task design 

(Zajkowski, Kossut, and Wilson, 2017; Feng, Wang, Zarnescu, and Wilson, 2021), with the 

addition of a difficulty parameter. The model, which takes the shape of a logistic choice curve, 

incorporates inputs that are different components of the choice. Our model is as follows: 

𝑝𝑚𝑢𝑙𝑡 =
1

1 + 𝑒𝑥𝑝 (
𝑅𝑚𝑢𝑙𝑡 − 𝑅𝑎𝑑𝑑 + 𝛼(𝐼𝑚𝑢𝑙𝑡 − 𝐼𝑎𝑑𝑑) + 𝐷(𝑀𝑎𝑑𝑑 − 𝑀𝑚𝑢𝑙𝑡) + 𝐵

√2𝜎
)

          (3.1) 

 

In this equation, pmult represents the probability of selecting the multiplication side, Rmult - Radd 

the difference in the mean points between the multiplication and addition bandits, and Imult - Iadd 

the difference in ‘informativeness’ between bandits. This latter difference equals 1 when the 

multiplication bandit is more informative (less sampled) than the addition bandit, -1 when the 

https://github.com/jackdolgin/opportunistic_exploration
https://jackdolgin.shinyapps.io/opportunistic_exploration
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addition bandit is more informative, and 0 when both sides are evenly sampled. Thus, the greater 

the magnitude of the corresponding coefficient, 𝛼, the more sensitive participants are to bandit 

exposure. We interpreted 𝛼 as a measure of directed exploration. 

Because challenging math problems demand more cognitive effort (Hess & Polt, 1964; Dunn, 

Inzlicht, & Risko, 2019), which people experience as aversive (Kool, McGuire, Rosen, & 

Botvinick, 2010; Westbrook, Kester, & Braver, 2013), we expected participants to seek easier 

math problems and avoid more difficult ones. The difference Madd - Mmult represents how much 

more difficult it is to multiply the trial’s numbers than to add them. We defined difficulty as the 

average time to solve the problem during the baseline experiment. Since pilot data revealed the 

distribution of RT differences to be skewed (see the bottom half of Figure 2.2), we entered the 

differences in RT between multiplication and addition as rank-ordered values, compared against 

the difference in RT of all 298 other pairs in the baseline experiment. The corresponding 

parameter, D, increased in magnitude when sensitivity to difficulty increased. We also 

recalculated D three other ways, resulting in four overall, slightly different models. First, we re-

fit D in terms of raw RT differences, rather than performing rank-ordering. Second and third, we 

defined difficulty in terms of self-rated difficulty during the baseline; in the second model, we 

rank-ordered self-rated difficulty; in the third model, we used raw self-rated difficulty. All four 

approaches to quantifying D yielded similar fits, as RT and self-rated difficulty were correlated 

0.96 in the baseline task. 

We standardized the difference in difficulty (regardless of how it was defined) and difference in 

reward so they spanned between -1 and 1 and therefore sat on the same scale as the information 

difference. The last two free parameters, B and 𝜎, represent a bias for bandits on one side of the 
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screen vs. the other and represent decision noise, respectively. This decision noise corresponds to 

how randomly a participant explored with respect to the other free parameters. We interpreted 

decision noise as a proxy for random exploration. 

We fit the model separately for each free choice trial number for each horizon length for each 

participant using a maximum a posteriori estimation. As a result, there were six fits for each 

participant in Experiments 1 and 3 and seven for each participant in Experiment 2 (technically, 

there were four times as many fits, since we ran four models, one for each of the four difficulty 

parameters). We added an exponential prior (with length scale 20) for the temperature coefficient 

and a N(0, 20) Gaussian prior distribution for the information, difficulty, and side bias 

coefficients (Feng et al., 2021). In our first two experiments, we used a pair-wise t-test to assess 

whether coefficients significantly differed between the first free choices of short horizons 

vs. long horizons. Since the fits were not normally distributed, in our third experiment, we used a 

Wilcoxon signed-rank test in accordance with our pre-registration. A global optimizer from the 

RcppDE R package (Eddelbuettel, 2018) set bounds of -100 to 100 for the side bias, information, 

and difficulty coefficients, set a bound of 0 to 100 for the temperature coefficient, and ran up to 

1,000 iterations per fit until the objective function had been minimized. 

3.3 Results 
Using generalized linear models, we performed several manipulation checks on our data to 

ensure their sufficient quality. As expected, greater expected reward, as measured by the mean 

standardized points on previous pulls to the bandit, significantly increased the odds a bandit 

would be picked (𝛽 = 1.17, 95% CI [1.16, 1.19], z = 20.70, p < .001). Conversely, the more 

difficult the arithmetic solution required to pull a bandit, as measured by the response time of 

that math problem in the baseline experiment, the lower the odds that side would be picked (𝛽 = 
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0.49, 95% CI [0.48, 0.50], z = -73.50, p < .001). Still, though multiplication problems in general 

were more difficult than their addition counterparts (𝛽 = 17.52, 95% CI [15.10, 19.43], t(596) = 

10.03, p < .001), participants picked the multiplication side 39.8% of the time, indicating that 

people engaged with the experiment and did not myopically choose only the easiest math 

problem. 

Our key question was whether people leveraged the learnt cost structure of the environment to 

opportunistically put off or pounce on chances to explore. Such a prediction would result in more 

sensitivity to costs at the start of long horizons compared to short horizons, when there are no 

future opportunities to explore and therefore is no putting off or pouncing to be done. The results 

in Figure 3.2, particularly for Experiments 1 and 2, align with this hypothesis. When participants 

had seen both bandits an equal number of times via forced choice, when the rewards those 

bandits had yielded so far had been comparable (on average), and when the math problems for 

one bandit were much harder than those for the other bandit, there still seemed to be a discernible 

avoidance of the multiplication side at the start of a long horizon, compared to during a short 

horizon. We formally tested sensitivity to difficulty via the D coefficient in the model described 

in the Analyses section. 
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Figure 3.2 Facing several upcoming trials led participants to be more sensitive to the math trial difficulty. 

In Experiment 1, the D coefficient (Figure 3.3) was significantly larger at the start of long 

horizons than at the start of short horizons (Md = 5.64, 95% CI [3.92, Inf], t(80) = 5.45, p < .001). 

In Experiment 2, our pre-registered test for the difference in the difficulty parameter, calculated 

in terms of rank-ordered RT, was marginally significant (Md = 1.42, 95% CI [-.04, Inf], t(149) = 

1.61, p = .055). However, as mentioned in the Methods section, there were three other equally 

plausible ways of calculating difficulty, and those approaches each reached significance (see 

Table 3.1; p-values all less than .01). Moreover, all four approaches reached significance when 

we implemented a Wilcoxon signed-ranked test, reflecting the non-normal shape of the 

parameter distribution. Therefore, in Experiment 3 we increased our sample size, pre-registered 

all four methods for calculating difficulty, and measured significance with a Wilcoxon signed-

ranked test. As seen in Table 3.1, the difference in the difficulty parameter was significant across 

all measurement approaches (p-values of .001, .049, .001, and .044). These results suggest 
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greater sensitivity to bandit math difficulty at the start of long horizons compared to short 

horizons. 

Table 3.1 Estimates of the difficulty parameter, D, across the three bandit experiments, measuring whether 

sensitivity to difficulty is greater at the start of a long horizon compared to a short horizon. 



Experiment 

(and type of 

pair-wise test) 

Proxy for 

Difficulty in the 

Model 

Pre-

registered? 

Parameter 

Estimate 

95% 

Confidence 

Interval t Statistic Significance 

 

 

 

Experiment 1 

(pair-wise t 

test) 

RT (Rank-

ordered) 

 Md = 5.64 [3.92, Inf] t(80) = 5.45 p < .001 

RT (Raw)  Md = 1.00 

 

[0.44, Inf] t(80) = 2.97 p = .002 

Self-Rated 

Difficulty (Rank-

ordered) 

 Md = 4.79 [3.00, Inf] t(80) = 4.46 p < .001 

Self-Rated 

Difficulty (Raw) 

 Md = 0.29 [0.09, Inf] t(80) = 2.37 p = .010 

 

 

 

Experiment 2 

(pair-wise t 

test) 

RT (Rank-

ordered) 

Yes Md = 1.42 [-.04, Inf] t(149) = 

1.61 

p = .055 

RT (Raw)  Md = 0.79 [0.34, Inf] t(149) = 

2.89 

p = .002 

Self-Rated 

Difficulty (Rank-

ordered) 

 Md = 2.15 [0.71, Inf] t(149) = 

2.47 

p = .007 

Self-Rated 

Difficulty (Raw) 

 Md = 0.31 [0.13, Inf] t(149) = 

2.81 

p = .003 

 

 

Experiment 3 

(Wilcoxon 

signed-rank 

test) 

RT (Rank-

ordered) 

Yes z = 3.037   p  = .001 

RT (Raw) Yes z = 1.650   p  = .0495 

Self-Rated 

Difficulty (Rank-

ordered) 

Yes z = 3.004   p  = .001 

Self-Rated 

Difficulty (Raw) 

Yes z = 1.710   p = .044 



20 

 

 

 

Figure 3.3 Estimates of the difficulty parameter, D, across the three bandit experiments. 

Alongside opportunism, we also examined the mutually compatible presences of directed and 

random exploration strategies. These strategies predict increased long horizon exploration and an 

increased short horizon exploitation of reward, similar to the results in Experiment 2 depicted in 

Figure 3.2. Specifically, in Experiment 2 greater reward for one bandit on free choice 1, short 

horizon made that bandit particularly more compelling than when the bandit was equally 

rewarding on free choice 1, long horizon. To formally test the presence of these exploration 
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strategies, we measured whether their corresponding model coefficients—for informativeness 

and 𝜎 for decision noise—were greater for the first choice on long horizon trials compared to 

short horizon trials. 

Across the three studies, we found inconclusive evidence for such information and noise 

increases (see Tables 3.2 and 3.3 and Figures 3.4 and 3.5). In Experiment 1, how we defined 

difficulty influenced whether the informativeness coefficient was significantly greater at the start 

of the long horizon (p-values ranged between .032 and .055) (see Table 3.2). Meanwhile, we 

observed no difference in the decision noise coefficient between short and long horizons (Md = 

0.10, 95% CI [-Inf, 1.08], t(80) = -0.17, p = .567) (see Table 3.3). In Experiment 2, there was 

clear evidence for an increase in both informativeness (Md = -2.10, 95% CI [-Inf, -0.77], t(149) = 

-2.61, p = .005) and decision noise (Md = -1.17, 95% CI [-Inf, -0.56], t(149) = -3.18, p = .001) 

during longer horizons, regardless of which of the four ways we defined difficulty. However, for 

Experiment 3, we observed non-significant differences between information parameters (z = -

1.00, p = .160) and between temperature parameters (z = -0.83, p = .203) across horizons. 
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Table 3.2 Estimates of the information-seeking parameter, ∝, across the three bandit experiments, 

measuring whether participants sought out the more informative (less sampled) bandit more often at the 

start of a long horizon compared to a short horizon. 



Experiment 

(and type of 

pair-wise test) 

Proxy for 

Difficulty in the 

Model 

Pre-

registered? 

Parameter 

Estimate 

95% 

Confidence 

Interval t Statistic Significance 

 

 

 

Experiment 1 

(pair-wise t 

test) 

RT (Rank-

ordered) 

 Md = -2.19 [-Inf, -0.26] t(80) = -

1.88 

 

p = .032 

RT (Raw)  Md = -2.08 [-Inf, 0.07] t(80) = -

1.61 

p = .055 

Self-Rated 

Difficulty (Rank-

ordered) 

 Md = -1.99 [-Inf, -0.07] t(80) = -

1.73 

p = .044 

Self-Rated 

Difficulty (Raw) 

 Md = -2.05 [-Inf, 0.01] t(80) = -

1.66 

p = .051 

 

 

 

Experiment 2 

(pair-wise t 

test) 

RT (Rank-

ordered) 

Yes Md = -2.10 [-Inf, -0.77] 

 

t(149) = -

2.61 

 

p = .005 

RT (Raw)  Md = -2.07 [-Inf, -0.69] t(149) = -

2.49 

 

p = .007 

Self-Rated 

Difficulty (Rank-

ordered) 

 Md = -2.20  [-Inf, -0.85] t(149) = -

2.70 

p = .004 

Self-Rated 

Difficulty (Raw) 

 Md = -2.10 [-Inf, -0.73] t(149) = -

2.54 

p = .006 

 

 

Experiment 3 

(Wilcoxon 

signed-rank 

test) 

RT (Rank-

ordered) 

Yes z = -0.996   p  = .160 

RT (Raw) Yes z = -0.442   p  = .329 

Self-Rated 

Difficulty (Rank-

ordered) 

Yes z = -0.843   p  = .200 

Self-Rated 

Difficulty (Raw) 

Yes z = -0.511   p = .305 
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Figure 3.4 Estimates of the information-seeking parameter, 𝛼, across the three bandit experiments. 
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Table 3.3 Estimates of the decision noise parameter, σ, across the three bandit experiments, measuring 

whether participants explored more randomly with respect to the other parameters at the start of a long 

horizon compared to a short horizon. 



Experiment 

(and type of 

pair-wise test) 

Proxy for 

Difficulty in the 

Model 

Pre-

registered? 

Parameter 

Estimate 

95% 

Confidence 

Interval t Statistic Significance 

 

 

 

Experiment 1 

(pair-wise t 

test) 

RT (Rank-

ordered) 

 Md = 0.10 

 

[-Inf, 1.08] t(80) = -

0.17 

p = .567 

RT (Raw)  Md = 0.03 [-Inf, 1.19] t(80) = 0.05 p = .519 

Self-Rated 

Difficulty (Rank-

ordered) 

 Md = -0.28 [-Inf, 0.71] t(80) = -

0.47 

p = .319 

Self-Rated 

Difficulty (Raw) 

 Md = -0.33 [-Inf, 0.86] 

 

t(80) = -

0.47 

p = .321 

 

 

 

Experiment 2 

(pair-wise t 

test) 

RT (Rank-

ordered) 

Yes Md = -1.17 [-Inf, -0.56] 

 

t(149) = -

3.18 

p = .001 

RT (Raw)  Md = -1.48 [-Inf, -0.67] 

 

t(149) = -

3.03 

p = .001 

Self-Rated 

Difficulty (Rank-

ordered) 

 Md = -1.07 

 

[-Inf, -0.43] 

 

t(149) = -

2.78 

p = .003 

Self-Rated 

Difficulty (Raw) 

 Md = -1.45 [-Inf, -0.57] 

 

t(149) = -

2.73 

p = .004 

 

 

Experiment 3 

(Wilcoxon 

signed-rank 

test) 

RT (Rank-

ordered) 

Yes z = -0.830   p = .203 

RT (Raw) Yes z = 1.063   p = .144 

Self-Rated 

Difficulty (Rank-

ordered) 

Yes z = -0.975   p = .165 

Self-Rated 

Difficulty (Raw) 

Yes z = -1.182   p = .119 
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Figure 3.5 Estimates of the decision noise parameter, σ, across the three bandit experiments. 
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Table 3.4 Estimates of the side bias parameter, B, across the three bandit experiments, measuring whether 

participants paid more attention to the side of the screen that a bandit was on (left or right) at the start of a 

long horizon compared to a short horizon. 



Experiment 

(and type of 

pair-wise test) 

Proxy for 

Difficulty in the 

Model 

Pre-

registered? 

Parameter 

Estimate 

95% 

Confidence 

Interval t Statistic Significance 

 

 

 

Experiment 1 

(pair-wise t 

test) 

RT (Rank-

ordered) 

 Md = -0.65 

 

[-Inf, 2.10] t(80) = 0.74 p = .770 

RT (Raw)  Md = -2.75 [-Inf, -0.92] t(80) = -

2.51 

p = .007 

Self-Rated 

Difficulty (Rank-

ordered) 

 Md = 0.41 

 

[-Inf, 1.84] t(80) = 0.47 p = .680 

Self-Rated 

Difficulty (Raw) 

 Md = -2.77 

 

[-Inf, -0.89] t(80) = -

2.46 

p = .008 

 

 

 

Experiment 2 

(pair-wise t 

test) 

RT (Rank-

ordered) 

 Md = -1.45 [-Inf, -0.57] t(149) = -

2.73 

p = .004 

RT (Raw)  Md = -0.90 

 

[-Inf, 0.41] t(149) = -

1.13 

p = .129 

Self-Rated 

Difficulty (Rank-

ordered) 

 Md = 0.94 

 

[-Inf, 1.86] t(149) = 

1.67 

p = .952 

Self-Rated 

Difficulty (Raw) 

 Md = -0.86 [-Inf, 0.48] t(149) = -

1.06 

p = .145 

 

 

Experiment 3 

(Wilcoxon 

signed-rank 

test) 

RT (Rank-

ordered) 

 z = 0.012   p = 0.505 

RT (Raw)  z = 0.393   p = 0.653 

Self-Rated 

Difficulty (Rank-

ordered) 

 z = 0.176   p = 0.570 

Self-Rated 

Difficulty (Raw) 

 z = 0.337   p = 0.632 
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Chapter 4: Discussion 
Across three bandit experiments, two pre-registered, we find consistent evidence that people 

recognize how opportune a particular moment is to explore, and that they exploit that knowledge 

during their decisions. Sampling bandits in our task always involved some cost since we tied 

them to math problems, but only in some cases—when more trials remained—could participants 

opportunistically pounce or punt on that difficulty. In other words, when a participant wanted to 

sample a given bandit, they had no flexibility about when to do so if it was the only free choice 

trial in the game. We found, however, that in comparison, facing several upcoming trials led 

participants to be more sensitive to the math trial difficulty. Apparently, knowing more trials 

remained made them more likely to wait on a bandit with a difficult math problem; likewise, it 

made them more eager to sample bandits whose costs they knew were cheap now but likely to 

soon rise. In contrast, we surprisingly found inconsistent evidence for the presence of two of the 

best documented exploration strategies, directed and random exploration. 

The presence of opportunism in our findings links sequential decision-making research to the 

exploration literature. Many decision-making studies have documented that different parts of the 

brain are responsible for deciding what to choose compared to deciding when to choose it (Brass 

& Haggard, 2008; Zapparoli, Seghezzi, & Paulesu, 2017). If the timing is at least a partially 

independent process in many decisions, it stands to reason that it should also be a component of 

exploration decisions. We believe our findings to be the first to tap into this component. To be 

sure, the exploration literature has considered the related idea of anticipation. That is, people 

certainly think about future events, like upcoming trials, when making a decision—knowing 

more trials are to come boosts exploration in the now, because one will have more chances to 

later exploit whatever they explore now (Gureckis & Rich, 2018; Navarro, Newell, & Schulze, 
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2016; Sang, Todd, Goldstone, & Hills, 2020; Wilson et al., 2014). However, our results go a step 

further, showcasing the ability to plan a sequence of decisions in the context of exploration. 

Specifically, people may be uncertain about one kind of distribution—the expected rewards of 

each bandit—but they can leverage what they know about other distributions, like expected math 

difficulty, to opportunistically arrange their choices. 

It is unclear whether opportunism was a deliberate strategy that participants deployed, or if it 

occurred more automatically. One could tease apart this question by subjecting participants to a 

working memory load while completing the task, a method Cogliati Dezza, Cleemans, and 

Alexander (2019) used to show that another strategy, directed exploration (which decreased 

under load), is a top-down process. The fact that the presence of these two strategies, 

opportunistic and directed exploration, did not consistently coincide with one another in the 

present study suggests that both may indeed be top-down and, by extension, in competition. 

Nevertheless, participants in Experiments 1 and 3 did not explore randomly either, even though 

Cogliati Dezza et al. (2019) suggest random exploration is an automatic process. Participants 

may have simply prioritized one attribute, the relative difficulty of bandits’ math problems, over 

how many times they had previously explored that bandit. Future work can disentangle the 

strategies that go into play in settings where opportunism is leverageable. 

Together, the different strength of results among random, directed, and opportunistic exploration 

raises questions about what constitutes a strategy. On the one hand, participants may have, 

explicitly or implicitly, switched between exploration strategies from trial to trial. On the other 

hand, they may have carried out multiple strategies concurrently. If so, they may have applied 

random, directed, and opportunistic exploration strategies separately to the choice options, 

generating a weighted score for the options. Alternatively, they may have somehow combined 
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strategies. Work by Wilson, Wang, Sadeghiyeh, and Cohen (2020 preprint) contends that random 

and directed exploration are ends on a continuum of a singled shared strategy known as “Deep 

Exploration.”; in that model, people simulate which option to pick, and the more simulations 

they run, the more directed their exploration becomes. Future work could investigate whether a 

different holistic model could incorporate opportunistic exploration among other exploration 

strategies. 

We should note a number of conceptual limitations in our experiment. We used large samples to 

obtain relatively modest effective sizes, though we note the task was performed online and we 

could not guarantee that participants bought into the math difficulty aspect of the task instead of 

cheating with an online calculator. The size of the effects also may in part be due to participants’ 

inability to notice or keep in mind the opportunistic nature of the task, rather than deliberately 

ignoring whether upcoming trials would be easier or harder. If participants did approach each 

problem in a sort of silo, that might say more about how participants even recognize and 

remember opportunities and patterns rather than a reluctance to take advantage of them 

(Marković, Goschke, and Kiebel, 2021). Additionally, we defined opportunities in a specific 

way, with regard to math difficulty, and that is only one such measure of an opportunity. We 

alternatively could have defined opportunities in relation to availability, for example. A future 

study could eliminate one of two bandits on a predictable set of bandit pulls, thereby potentially 

encouraging a participant to pull and sample that bandit before it temporarily disappears. 

Stepping back, though, our results provide compelling evidence for people’s capacity and 

willingness to seize opportunities to explore choice options when they are relatively cheap. This 

strategy is perhaps the strongest affirmative answer yet to a question posed by Schulz and 

Gershman (2019), among others, about whether people plan exploratory behavior, as opposed to 
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it emerging more as a heuristic. Likewise, just as opportunism is revealing of exploration, so too 

is exploration revealing about opportunism. It is hard to imagine a situation riper for prioritizing 

the “when” as exploration; if one is pre-committed to sampling several options anyways, and 

therefore at least to some extent indifferent between them, they will be left to focus their 

attention elsewhere, such as on opportune timing. It is telling that this paper behaviorally 

replicates a conceptually similar paradigm recently proposed in computer science (Wu, Guo, & 

Liu, 2018), signaling a convergence of opportunistic exploration research in disparate domains. 

Regardless, our participants’ ability to recognize cheap and expensive moments to sample and to 

pounce or punt, accordingly, speaks to human sophistication in flexibly managing uncertainty. 

That probably bodes well for young prospects’ playing time during blowouts. 
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